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Abstract
Current algorithms for decentralized partially observable
Markov decision processes (DEC-POMDPs) require a large
amount of memory to produce high quality plans. To com-
bat this, existing methods optimize a set of finite-state con-
trollers with an arbitrary amount of fixed memory. While this
works well for some problems, in general, scalability and so-
lution quality remain limited. As an alternative, we propose
remembering some attributes that summarize key aspects of
an agent’s action and observation history. These attributes are
often simple to determine, provide a well-motivated choice
of controller size and focus the solution search on important
components of agent histories. We show that for a range of
DEC-POMDPs such attribute-based representation improves
plan quality and scalability.

Introduction
Decentralized partially observable Markov decision pro-
cesses (DEC-POMDPs) provide a powerful and attractive
way to model multiagent planning problems under uncer-
tainty which are both sequential and cooperative. As an ex-
tension of partially observable Markov decision processes
(POMDPs), DEC-POMDPs allow a set of agents to affect
a shared objective function and global state while allowing
each agent to determine its action using solely local informa-
tion. In addition to uncertainty about the global state of the
problem, each agent must cope with imperfect information
about the knowledge and actions of the other agents. These
general assumptions allow DEC-POMDPs to model a wide
range of problems in cooperative multiagent systems.

Several exact and approximate methods have been de-
veloped for solving DEC-POMDPs (Amato et al. 2007b;
Bernstein et al. 2005; Carlin and Zilberstein 2008; Emery-
Montemerlo et al. 2004; Hansen et al. 2004; Nair et al.
2003; Petrik and Zilberstein 2007; Oliehoek et al. 2008;
Seuken and Zilberstein 2007; Szer et al. 2005; Szer and
Charpillet 2005). Of these, only three algorithms ad-
dress the infinite-horizon problem (Amato et al. 2007b;
Bernstein et al. 2005; Szer and Charpillet 2005), all of
which are approximate. Additionally, an algorithm that can
solve a subclass of infinite-horizon DEC-POMDPs has been
developed using an average reward formulation (Petrik and
Zilberstein 2007). Unfortunately, this approach is restricted
to transition independent problems with full local observ-
ability.

Given the high complexity results of DEC-POMDPs
(Bernstein et al. 2000), one of the main barriers for algo-
rithms is the large amount of memory often required to pro-
vide high quality plans. For instance, the optimal algorithm
for solving the infinite-horizon problem (Bernstein 2005)
evaluates increasingly longer histories of actions and obser-
vations until the policy’s value no longer changes. This near
exhaustive search is intractable for all but the smallest prob-
lems. To combat this large memory usage, the approximate
methods optimize small, fixed-size finite-state controllers.
While this increases scalability in some problems, difficul-
ties remain. For instance, choosing the best controller size
can be difficult, partly because controller nodes do not have
much meaning. Furthermore, existing methods still require
a large amount of time and memory for larger problems and
controller sizes.

In order to make better use of limited memory, we pro-
pose identifying key attributes of an agent’s action and ob-
servation history and use them to model potential solutions.
These attributes may consist of such information as whether
another agent has been seen or an estimate of the system
state. An agent can then remember these attributes rather
than the observation histories themselves. This approach can
improve scalability by drastically reducing the memory re-
quirements. To achieve this goal, we propose using both au-
tomatic and user defined methods. Our automatic methods
use state estimates as attributes, thus permitting an agent to
remember its own location or some estimate. When an es-
timate cannot be calculated or if too many such estimates
exist, the attributes can be defined or adjusted by the user. In
these cases we can take advantage of human insight and do-
main knowledge to identify a compact set of attributes. The
solution of a DEC-POMDP can then be solved in two steps,
determining the attribute-based model and then solving for
a policy based on the given representation. In many prob-
lems, this approach is likely to improve both scalability and
solution quality.

The rest of the paper is organized as follows. We first
describe the DEC-POMDP model, the representation of its
solution as a finite-state controller and the relevant previ-
ous work. We then discuss our attribute-based represen-
tation along with how the attributes are used and chosen.
We also present a branch and bound algorithm for deter-
mining the optimal action choice given an agent’s attribute



values. Lastly, experimental results are provided compar-
ing our attribute-based representations to the current state-
of-the-art DEC-POMDP approximation algorithms. These
results show for a range of problems that our approach con-
sistently produces plans that are higher valued. This sug-
gests that in many DEC-POMDP domains, using attributes
can provide a good way to limit memory and increase plan
quality.

Background
We begin by reviewing the DEC-POMDP framework as well
as how to represent an infinite-horizon plan as a finite-state
controller. We also review current algorithms for solving
infinite-horizon DEC-POMDPs.

The DEC-POMDP model
A DEC-POMDP can be defined with the tuple:
〈I, S, {Ai}, P,R, {Ωi}, O〉
• I , a finite set of agents
• S, a finite set of states
• Ai, a finite set of actions for each agent, i
• P , a set of state transition probabilities: P (s′|s,~a), the

probability of transitioning from state s to s′ when the set
of actions ~a are taken by the agents

• R, a reward function: R(s,~a), the immediate reward for
being in state s and agents taking the set of actions ~a

• Ωi, a finite set of observations for each agent, i
• O, a set of observation probabilities: O(~o|s′,~a), the prob-

ability of agents seeing the set of observations ~o given the
set of actions ~a has been taken which results in state s′

We consider infinite-horizon problems, which involve an
unbounded number of steps. At each step, every agent
chooses an action based on its local observation history, re-
sulting in an immediate reward and an observation for each
agent. Note that because the system state is not directly ob-
served, it may be beneficial for the agent to remember the
observation history. A local policy for an agent is a mapping
from local observation histories to actions while a joint pol-
icy is a set of policies, one for each agent in the problem. The
goal is to maximize the infinite-horizon total cumulative re-
ward, beginning at some initial distribution over states called
a belief state. Uncertainty about the behavior of other agents
can be captured from an agent’s perspective using a gener-
alized belief state. This is a distribution over not only the
states of the problem, but also the current set of policies for
the other agents. An important subclass of DEC-POMDPs
in which the system state is uniquely defined by the obser-
vations of all agents is the DEC-MDP. In a DEC-MDP, if
O(~o|s,~a) > 0 then P (s′|~o) = 1, deterministically identify-
ing the given state. In order to maintain a finite sum over the
infinite-horizon, we employ a discount factor, 0 ≤ γ < 1.

As a way to model DEC-POMDP policies with finite
memory, finite-state controllers provide an appealing option.
Each agent’s policy can be represented as a local controller
and the resulting set of controllers supply the joint policy. A
deterministic finite-state controller can formally be defined
by the tuple 〈Q,ψ, η〉, where Q is the finite set of controller
nodes, ψ : Q → A is the action selection model for each

node, and η : Q × A × O → Q represents the node transi-
tion model for each node given an action was taken and an
observation seen. The value for starting in nodes ~q and state
s is given by: V (~q, s) =

R(s,~a~q) + γ
∑
s′

P (s′|~a, s)
∑

~o

O(~o|s′,~a)V (~q′~q,~a,~o, s
′)

This is also referred to as the Bellman equation. The nota-
tion ~a~q represents the set of actions defined by the nodes ~q
and ~q′~q,~a,~o represents the resulting nodes given the previous
nodes ~q, actions ~a and observations ~o. Note that the values
can be calculated offline in order to determine controllers for
each agent that can then be executed online for distributed
control.

Previous work
Approximate algorithms for generating plans for infinite-
horizon DEC-POMDPs have been developed by Bernstein
et al. (2005), Amato et al. (2007b) and Szer and Charpillet
(2005). The first two methods use linear programming and
nonlinear programming (NLP) respectively to determine pa-
rameters for stochastic finite-state controllers. As an alterna-
tive, Szer and Charpillet use best-first search to construct de-
terministic controllers. An optimal algorithm has also been
developed (Bernstein 2005), but does not perform well in
practice due to very large time and memory requirements.
As a consequence, we will only discuss the more practical
fixed-memory methods.

Bernstein et al.’s approach, called bounded policy itera-
tion for decentralized POMDPs (DEC-BPI), improves a set
of fixed-size controllers. This is done by iterating through
the nodes of each agent’s controller and attempting to find
an improvement. A linear program searches for a probabil-
ity distribution over actions and transitions into the agent’s
current controller that increases the value of the controller
for any initial state and any initial node of the other agents’
controllers (the generalized belief space). If an improvement
is discovered, the node is updated based on the probability
distributions found. Each node for each agent is examined in
turn and the algorithm terminates when no controller can be
improved further. This allows memory to remain fixed, but
provides only a locally optimal solution. This is due to the
linear program considering the old controller values from
the second step on and the fact that improvement must be
over all possible states and initial nodes for the controllers
of the other agents. As the number of agents or size of con-
trollers grows, this later drawback is likely to severely hinder
improvement.

To address these concerns, Amato et al. define a set of
optimal controllers given a fixed size with a nonlinear pro-
gram. While it is often impossible to solve general NLPs
optimally, many locally-optimal solvers exist. Unlike DEC-
BPI, this approach allows start state information to be used
so smaller controllers may be generated and all improvement
takes place in one step. While concise controllers with high
value can be produced with this approach, large controllers
result in large NLPs that cannot be solved efficiently with
current tools. Because larger controllers may be required
for some problems, plan quality suffers in those cases.



Szer and Charpillet have developed a best-first search al-
gorithm that can generate optimal deterministic finite-state
controllers of a fixed size. This is done by calculating a
heuristic for the controller given the known deterministic
parameters and filling in the remaining parameters one at a
time in a best-first fashion. This technique generates the op-
timal deterministic finite-state controller of a given size. But
due to poor scalability, it can only produce small controllers,
which limits the quality of the resulting plans.

What’s worth memorizing?
Because requiring a large amount of memory is often the
main bottleneck for DEC-POMDP algorithms, approximate
algorithms have focused on fixed-memory solutions. While
these algorithms are more scalable than the optimal ap-
proach, more must be done in order to improve solution
quality. Instead of arbitrarily setting controller size and
searching in the space of all possible controllers, we propose
using problem dynamics and human knowledge to create a
reduced complexity model which can be solved more eas-
ily than previous approaches. The model makes use of in-
formation about the problem to more intelligently generate
a solution with much less memory and time than previous
methods.

Our method utilizes a set of attributes rather than entire
histories or arbitrary controller nodes in order to generate a
plan. That is, because it is both unnecessary and impracti-
cal to remember all histories in order to produce a policy,
our method seeks to identify a small number of attributes
which will help produce a high quality plan. Examples of an
attribute may be whether a robot saw a wall after its last ac-
tion or whether another agent has been observed in the last k
steps. These attributes have discrete values associated with
them which in this case could be wall-front, wall-left, wall-
right and wall-behind for the first attribute, and any value
from 0 to k indicating the number of steps since the other
agent has been seen for the second attribute.

These attributes are essentially landmarks or important
pieces of an agent’s history. They permit context sensitive
policies with attributes as intuitive encapsulations of the ob-
servation history. In cases such as when a local or global
state can be estimated by an agent, these estimations can be
used as attributes. Otherwise, it is often easy for a researcher
to identify a set of landmarks based on what she believes
will be important for an agent to remember. When generat-
ing these attributes, they must be based on the only source
of information for each agent: the observations and prob-
lem dynamics. Thus, attributes such as the locations of the
other agents or the underlying state of the system are not of
much use unless the agent possesses some observation that
determines these properties. So, if an agent can see another
agent when it is close enough or observe some other indica-
tor of the system state (such as the presence or absence of an
object), then these types of attributes can be used.

We also require that attribute values are determined by the
current attribute, the action taken and the observation seen.
An example of this, taken from the two agent tiger prob-
lem discussed later, can be seen in Figure 1. In this problem,
the agent has three action choices, two possible observations

Figure 1: Attribute transitions for the two agent tiger prob-
lem. The attribute ϕ has values between -2 and 2. Actions
are shown in squares and transitions are given by the arrows
labelled with the relevant observation. If the agent hears the
R or L observation after listening, the attribute value moves
respectively to the right or left. If the agent chooses an open
action, the resulting attribute value is always 0.

and there are two doors each representing a system state.
Behind one door is a tiger and behind the other is a large
reward. The agents can listen and receive a noisy observa-
tion of which door the tiger is lurking behind. Once a door
is opened, the tiger is randomly placed behind one of the
doors and problem begins again. Using our attribute-based
representation, we have one attribute, ϕ, which begins with
value 0, the agent then chooses an action and hears an ob-
servation. If a door is opened, the resulting attribute value
is always 0 and if the agent listens, the observation heard
causes the attribute value to move to the left or right. Once
the attribute value is at right or left end, the right and left
observations respectively do not change the attribute value
any further. This allows the agents to remember how many
more times one observation has been heard than the other,
up to a constant amount of two in this case.

In this example, the attributes are used by agents with par-
tial observability of the system state and no sharing of infor-
mation. Because no information is shared, an agent knows
when it opens a door, but not when the others do so. This al-
lows each agent to possess some estimate of the system state,
but these estimates may be different for each agent. Be-
cause there is no common estimate, the solution remains dis-
tributed with each agent making an action choice based on
local information. Using attributes is an efficient way to re-
member important parts of this local information and make
action choices accordingly. Thus, we can model a class of
solutions for a given problem as a finite-state controller and
solve for the optimal action choices in many cases. We dis-
cuss the details more formally below.

Attribute-based representation
The set of history attributes for an agent is defined as
Φ = 〈Φ1, . . . ,Φn〉, the set of discrete attribute values for
each attribute Φi. Also, we define a mapping from an
agent’s history, h, to a vector of attribute values as Φ(h) =
〈ϕ1, . . . , ϕn〉 where each ϕi represents the discrete value of
attribute i. We will denote this vector for a given agent i by
using ~ϕi and a set of such vectors for all agents as ~ϕ.



The transition function can be extended to a mapping η∗
from a history to an attribute vector for agent i. The mapping
is defined inductively as follows. Initially, with no history,
the initial attribute vector is used: η∗(∅) = ~ϕ0

i . If history
hi is seen followed by the agent taking action a and seeing
observation o, η∗([hi, a, o]) = η(η∗(hi), a, o). Hence, the
transition function η is applied to attribute vector η∗(hi),
action a and observation o and a new attribute vector results.

We then say the attribute transitions are one step consis-
tent if Φ([hi, a, o]) = η(Φ(hi), a, o). That is, the attribute
vector values that result from seeing the sequence of actions
and observations in history h up to step i directly followed
by action a and observation o on step i + 1 are equal to the
attribute vector values that result from starting with the val-
ues mapped to by Φ(hi) and transitioning based on taking
action a and seeing observation o on the next step. These
transitions can be be seen in Figure 1.

Therefore, we consider attribute vector transitions in
which value vectors are deterministically updated after each
step. While other transitions are possible, this allows a wide
range of attributes to be used while permitting them to be
represented by a finite-state controller with simple transi-
tions. Also, it is possible to define a stochastic transition
function which maps to distributions over nodes, but in this
paper we focus on deterministic controllers.

Using an attribute-based representation, a policy for
each agent is a mapping from attribute vectors to actions,
πA : Φ → A. Once such a policy has been defined, we
can evaluate a joint policy at state s with current attribute
vectors for all agents ~ϕ by:

V (s, ~ϕ) = R(s,~a~ϕ)+

γ
∑
s′

P (s′|s,~a~ϕ)
∑

~o

P (~o|s′,~a~ϕ)V
(
s′, ~η(~ϕ,~a~ϕ, ~o)

)
where ~a~ϕ defines the actions assigned to the attribute vec-
tors ~ϕ and ~η(~ϕ,~a~ϕ, ~o) represents the resulting attribute vec-
tors for all agents given by our transition function when the
previous set of vectors were ~ϕ, actions ~a~ϕ were taken and
observations ~o were seen.

An action mapping πA is considered optimal in this con-
text if there is no other deterministic assignment of actions
to the attribute vectors that produces a higher value given our
attribute transition function and the initial state of the prob-
lem. This representation is simple, compact and provides
a well defined policy for any DEC-POMDP. The resulting
policy has the added benefit of being easily readable as ac-
tions are chosen based on machine or user defined attribute
values.

Producing an optimal mapping
Constructing an optimal action mapping requires search-
ing through the space of action mappings for each agent.
If there are |Φ| different attribute vectors (and thus nodes
in each agent’s controller), the number of possible action
mappings for each agent is |A||Φ|. Thus, the number of
possible action mappings for n agents is |A|n|Φ|. While
variations of the algorithms described previously could be

Algorithm 1: Centralized policy iteration with full ob-
servability for a set of agents

input : An assignment of actions to attribute vectors
for each agent

output: An upper bound on the value for each state and
attribute for each agent

begin
π0(~ϕ, s)← curActMap(~ϕ)
polChange← true
t← 0
while polchange do

Vt(~ϕ, s)← evaluate(πt)
t← t+ 1
polChange← false
foreach ~ϕ, s do

πt(~ϕ, s)← maxOneStepPol
if πt(~ϕ, s) 6= πt−1(~ϕ, s) then

polChange← true

return Vt
end

used to find action mappings with transitions defined by our
attribute-based representation, each approach has significant
drawbacks. For instance, DEC-BPI and the NLP approach
provide stochastic solutions that are only locally optimal
while BFS has limited scalability due to a memory intensive
heuristic function.

As an alternative, we present a branch and bound algo-
rithm that, given our representation, can efficiently provide
an optimal action assignment. To accomplish this, we order
the nodes of the controller and perform a depth first search
while evaluating partial action assignments in the controller.
That is, we assign an action to the node associated with the
current search depth and calculate upper and lower bounds
on its value based on assignments to the previous nodes. If
the upper bound value of a node is lower than the lower
bound of the parent node in our search, we can prune that
branch. Thus tight bounds for action assignments can dras-
tically reduce the number of possible action assignments that
need to be considered.

We propose a lower bound of random action assignments
for unassigned nodes and an upper bound using a central-
ized policy iteration algorithm. Both of these methods fix
the actions of assigned nodes, thus when a controller is fully
defined, the lower and upper bounds will both be equal to
the actual value of the controller. To find the upper bound,
we perform MDP-style policy iteration with a fixed policy
for assigned nodes and a centralized policy for unassigned
nodes. That is, when the action is not assigned for a given
node, we assume the best action is chosen for each agent
given the state and the policies of the other agents are known.
This approach is shown in Algorithm 1. The policy is initial-
ized with the current action assignment, the resulting con-
troller is evaluated and then the policy is improved by chang-
ing the actions for unassigned nodes in order to increase the
value of the controller. If no such improvement can be made,



the policy has converged and the value is returned as an up-
per bound. The improved policy for a set of attribute vectors
~ϕ and a system state s is given by

maxOneStepPol = argmax
~a

[
R(s,~a)+

γ
∑
s′

P (s′|s,~a)
∑

~o

P (~o|s′,~a)V
(
s′, ~η(~ϕ,~a, ~o)

)]
when all attribute vectors ~ϕ do not have assigned actions. If
any attribute vector does have an assigned action, the value
is only maximized for the other agents. If no attribute vec-
tors have assigned actions, no maximization is performed.
This algorithm is an upper bound because value is maxi-
mized with the assumption that the state and the values of
all agents attributes are known. This also allows different
actions to be chosen for each of these attribute values of the
agents and states of the system, which relaxes the assump-
tions necessary for decentralized execution.

This branch and bound approach is an anytime algorithm
in that if execution is halted before the optimal assignment
is found, the best known mapping at that point is returned.
Also, if an optimal action mapping is not an optimal pol-
icy, it can be used as an initial policy in other DEC-POMDP
algorithms possibly increasing the speed with which an op-
timal solution is found or otherwise improving the value fur-
ther by removing the constraints imposed by using attribute
values. Additionally, it is worth noting that if a stochas-
tic solution is desired, a modified version of the nonlinear
programming method (Amato et al. 2007b) can be used.
This would allow for stochastic action mappings and may
require fewer attribute values, but does not guarantee an op-
timal mapping is found.

Choosing attributes
In order to encapsulate the relevant information in a prob-
lem while retaining the ability to solve for an optimal action
mapping, the attributes for our representation must be cho-
sen carefully. If we define attribute values as all possible
agent histories, we could represent an optimal policy for a
DEC-POMDP, but this may require an infinite number of at-
tribute vectors. Instead, we would like to use a finite number
of attribute vectors (and thus have a finite-state controller)
to produce a high quality plan. To achieve this goal, we
will focus on automated methods based on local or global
state estimates and user defined attributes based on domain
knowledge.

We will first discuss the generation and use of state es-
timates. For instance, if the actions and observations of
an agent provide enough information, a state estimate can
be calculated at each step of the problem. One example
is when the observations and system dynamics supply suf-
ficient information about the locations and choices of the
other agents, the global state can be estimated. Also, prob-
lems in which actions and observations provide informa-
tion about the agent’s own location, but give no informa-
tion about the other agents allow a local state estimate to be
calculated. This structure is seen in DEC-MDPs with inde-
pendent observations and transitions discussed in (Becker et
al. 2004).

While remembering the state or estimates of the state lim-
its the amount of memory required to solve a problem, a
direct mapping to actions may not be sufficient to represent
an optimal policy. Instead, a non-stationary mapping may
be necessary due to uncertainty concerning the other agents.
This likely depends on how much knowledge each agent has
about the others considering all agents know the dynamics
of the domain and the problem is solved offline for online
execution. Hence agents may know enough about the other
agents to produce a more sophisticated policy than that pro-
vided by a stationary mapping.

When too many state estimates exist or they cannot be
calculated, human knowledge can be utilized. This could
be accomplished by deciding when to stop including more
state estimates as attributes or otherwise choosing key as-
pects of the observation history. As pointed out earlier, it
is often easy for a researcher to perform such a task. Land-
marks such as crossroads or other milestones for an agent
can be readily identified in many problems with only cur-
sory knowledge of a domain. Thus, human knowledge can
aid in focusing the search to a manageable level while re-
taining most if not all of the relevant information needed for
an agent.

In order to represent states and state estimates in our
framework, we can define an attribute with values which
correspond to the state seen or estimated for a given agent
and these are updated based on the dynamics of the domain.
If a set of local states can be defined for an agent, such as
the agent’s own position, the state estimate can be updated
in the same way it is calculated for POMDPs. The probabil-
ity an agent transitions to state s′ given action a was taken
and observation o was seen is given by

P (s′|a, o) =
∑

s P (s′|s, a)P (o|s′, a)b(s)∑
s,s′ P (s′|s, a)P (o|s′, a)b(s)

Where b(s) is the probability the agent’s state was s in the
previous step and the other probabilities represent the likeli-
hood of transitioning and observing for an agent with inde-
pendent transitions and observations.

This process can also be used to generate global state es-
timates. If an agent’s actions and observations provide suf-
ficient information about the state of the system and actions
of the other agents, a shared global estimate can be estab-
lished and the process becomes a POMDP that can be solved
centrally. Less information may also allow a global state es-
timate to be calculated, but sometimes we must settle for an
approximation of the global state that is not shared by the set
of agents.

The example of the two agent tiger problem discussed ear-
lier is one such case. In this problem each agent can esti-
mate the global state by using local observations. Because
the state does not change until an agent opens a door, an ob-
servation provides noisy information about the system state.
Thus, an agent can compile a finite number of global state
estimates by remembering the difference in the number of
times an observation is heard up to some value k. Once the
agent opens the door, the estimating begins again. While
an agent does not know when the other agent opens a door
(instead it receives either observation with equal likelihood),



these state estimations provide a useful approximation of the
location of the tiger at each step.

Thus, choosing attributes for our representation is an im-
portant first step to finding a high quality policy for DEC-
POMDPs. The methods based on state estimation can be
helpful as even an approximation of the local or global state
can provide enough information to select a high quality ac-
tion. Similarly, many problems have aspects of the agent’s
histories that a researcher can easily label as useful or use-
less for an agent to remember. Both approaches can be uti-
lized to represent histories in an intuitive and concise way.
In many problems, this representation can then permit an
optimal action mapping which will in turn provide a high
quality plan.

Experimental results
For this paper, we compared the performance of our
attribute-based method against the three state-of-the-art al-
gorithms for infinite-horizon DEC-POMDPs. For each
problem, we evaluated how the optimal action mapping
given our attribute-based representation performs when
compared with the plans generated by the other algorithms.
It is worth noting that results from BFS represent optimal de-
terministic controllers for a given size and the DEC-BPI and
NLP results illustrate locally optimal stochastic controllers.
The results show the benefit or choosing the given attributes-
based representation as well as the fact that an optimal action
mapping can be found for these representations in a timely
manner.

We solved our representation using the branch and bound
method, reporting resulting value, the number of attributes
(size of the controller) and running time. Our algorithm
was initialized by choosing the best of 10 deterministic con-
trollers with parameters chosen from a uniform distribution.
The algorithm was then run until the optimal mapping was
found. In each problem, we used a combination of au-
tomated and human adjusted attributes, demonstrating that
good attributes can be chosen with only small amount of hu-
man effort.

For the NLP method, BFS and DEC-BPI results for previ-
ously studied domains were taken from (Amato et al. 2007a)
and we also tested these algorithms on the new domains.
There algorithms were run until memory was exhausted or
time expired (4 hours). We then report the highest valued
results for each method. BFS and our attribute mapping
approach were run on a 1.86GHz Intel Core 2 Duo with 3
GB RAM, while DEC-BPI was run on a 3.4GHz Intel Pen-
tium 4 with 2 GB RAM and the NLP method was run on the
NEOS server (http://www-neos.mcs.anl.gov/) on unknown
systems. Because different machines were required for the
algorithms, computation times are not directly comparable.
Nevertheless, we expect that they would only vary by a small
constant. The results for three test domains (with a discount
factor of 0.9) are shown in Table 1.

Two agent tiger problem
The first test domain with 2 states, 3 actions and 2 obser-
vations is the two agent tiger problem (Nair et al. 2003)
that was discussed earlier. Each agent may open one of two

doors or listen. If either agent opens the door with the tiger
behind it, a large penalty is given. If the other door is opened
and the tiger door is not, a reward is given. If both agents
open the same door a larger positive reward or a smaller
penalty is given to reward this cooperation. If an agent lis-
tens, a small penalty is given and an observation is heard that
is a noisy indication of which door the tiger is behind. While
listening does not change the location of the tiger, opening a
door causes the tiger to be placed behind each of the doors
with equal probability.

The attributes for this problem were chosen as described
in the previous section. Each agent remembers only the dif-
ference in the number of times an observation is heard up
to some finite value k. This provides an approximation of
the location of the tiger for each agent based on the obser-
vations that are heard. Recall that these estimates will differ
for each agent due to the use of solely local information. The
attribute values were set to be these observation differences
with k = 3.

On this problem, our attribute-based method produces a
drastically higher value than all the other algorithms we
tested. This was accomplished in time similar to the fastest
algorithm and with the second smallest controller. The BFS
method quickly runs out of time and memory, resulting in
a small controller with the second lowest value. DEC-BPI
and the NLP method often settle for the safe option of lis-
tening for all steps and large negative rewards make higher
valued solutions hard to find. Our approach narrows down
the search to a small, but important set of attributes. The
resulting optimal mapping consists of the very intuitive pol-
icy of an agent listening until it is reasonably sure it knows
which door the tiger is behind and then opening the opposite
door.

Meeting in a grid problems
The original meeting in a grid problem has 16 states, 5 ac-
tions and 2 observations and was introduced by Bernstein et
al. In this problem, two agents must meet in a 2-by-2 grid
with no obstacles. The agents begin diagonally across from
each other and available actions are move left, right, up, or
down and stay in place. Only walls to the left and right can
be observed, resulting in each agent knowing only if it is on
the left or right half. The agents cannot observe each other
and do not interfere with other. Action transitions are noisy
with the agent possibly moving in another direction or stay-
ing in place. A reward of 1 is given for each step that the
agents share the same square, otherwise no reward is sup-
plied.

We also examine versions of this problem in which the
walls can be seen in four directions rather than just two. This
causes the state to be fully locally observable by each agent
in problem sizes up to three by three. Thus, while the other
agent still cannot be observed, each agent knows where it
is in the grid at all times. The problem sizes considered in
this paper are 2-by-2 (16 states with 4 observations), 3-by-
2 (36 states with 6 observations) and 3-by-3 (81 states with
9 observations). Note that these are much larger than the
typical problems studied in DEC-POMDP literature.

For these problems, we chose the attribute values based



Two Agent Tiger Problem
BFS DEC-BPI NLP Attribute Mapping

-14.115 (3 nodes, 12007s) -52.633 (11 nodes, 102s) -1.088 (19 nodes, 6173s)1 4.594 (7 nodes, 127s)

Meeting in a Grid Problems: original, 2-by-2, 3-by-2 and 3-by-3
BFS DEC-BPI NLP Attribute Mapping

4.211 (2 nodes, 17s) 3.604 (7 nodes, 2227s) 5.658 (5 nodes, 117s) 6.285 (5 nodes, 7258s)
7.082 (2 nodes, 1669s) 3.794 (7 nodes, 1367s) 7.578 (4 nodes, 35s) 7.781 (4 nodes, 112s)
2.401 (1 node, 451s) 2.674 (6 nodes, 9827s) 6.228 (4 nodes, 160s) 6.910 (6 nodes, 7528s)
1.687 (1 node, 4763s) 2.675 (4 nodes, 13413s) 5.147 (3 nodes, 228s) 6.370 (5 nodes, 6169s)

Box Pushing Problem
BFS DEC-BPI NLP Attribute Mapping

-2 (1 node, 1696s) 9.442 (3 nodes, 4094s) 54.230 (4 nodes, 1824s)1 158.492 (5 nodes, 4974s)

Table 1: The highest valued results by each method along with controller size and time in seconds. BFS and Attribute Mapping
are optimal for the given conditions, while values for DEC-BPI and NLP represent means of 10 trials.

on the local states and state estimates for the agents. In the
second and third problems (our 2-by-2 and 3-by-2 versions),
we set the attributes to be the local states of each agent (their
location in the grid). While this does not necessarily provide
an optimal policy, remembering the current state provides
a great deal of information while using a small amount of
memory. In the first problem, because only walls to the left
and right are observable to the agents, we included some of
the agent’s local state estimates as attribute values. For in-
stance, if agent 1 successfully moves left on the first step, it
knows that it is in the top left corner due to a left observa-
tion. Otherwise, the agent knows it is in one of the two right
squares. Essentially, the state estimates allow the agents to
take actions until they are reasonably sure they are in the top
left square and then remain there. Depending on how sure
we would like an agent to be, we can adjust the number of
attribute values, and thus state estimates used. In the last
problem (3-by-3), we reduced the number of attribute val-
ues to five as this produced the same mapping as using nine
state attribute values. These values allow the agents to act
based on if they in the top row, bottom row, or each of the
three squares in the middle row.

The table lists results from the original meeting in a grid
problem at the top, followed by our 2-by-2, 3-by-2, then
3-by-3 versions. As seen in the table, our approach out-
performs all other algorithms that we tested on these prob-
lems. A small number of attributes permits high valued solu-
tions that are in general much higher than those produced by
BFS and DEC-BPI and noticeably higher than the NLP con-
trollers. BFS is hindered by high resource requirements and
this is especially noticeable as problem size grows and con-
troller size is limited to one node. DEC-BPI consistently un-
derperforms the NLP and attribute-based methods while re-
quiring more time than other approaches in most cases. The
NLP approach exhausts the given memory for larger con-
troller sizes due to its own high resource requirements, but
provides the second highest valued solutions in each prob-
lem in a very short amount of time. Our approach requires
more time than some of the other methods, but this is be-

cause it provides an optimal action mapping for the given
attributes.

Box pushing problem
A large domain was introduced by Seuken and Zilberstein
(2007). This problem, with 100 states, 4 actions and 5 ob-
servations consists of two agents that can gain rewards by
pushing different boxes. The agents begin facing each other
in the bottom corners of a 4-by-3 grid and may turn right,
turn left, move forward or stay in place. These movements
are noisy and the two agents can never occupy the same
square. The middle row of the grid contains one large box
in the middle of two small boxes. The large box can only be
moved by both agents pushing at the same time, while the
small boxes can be moved by a single agent. The possible
deterministic observations consist of seeing an empty space,
a wall, the other agent, a small box or the large box. The
upper row of the grid is considered the goal row and rewards
are given when the boxes are pushed into this row. A re-
ward of 100 is given if both agents push the large box and
a reward of 10 is given for each small box that is pushed.
A penalty of -5 is supplied for each agent that moves into a
wall or the other agent and -0.1 is given on each step. Once
a box is moved to the goal row, the environment resets to the
original initial state.

Here, we chose the attribute values to be the problem ob-
servations. Thus, each agent only remembers the last ob-
servation seen, resulting in a reactive policy. The optimal
mapping found by our approach consists of an agent mov-
ing forward when it sees a empty space or box and turning
otherwise. This results in a high valued policy that can of-
ten receive the large reward in a few steps. The values of
the plans generated by the other techniques are significantly
lower. BFS cannot solve a controller that is large enough to
to produce a non-trivial policy, and DEC-BPI and the NLP
method get stuck at relatively low quality solutions. While

1These results utilize controllers with fixed actions at each
node.



the time used by our method is slightly higher than the other
methods, we believe this is compensated for by the large in-
crease in value.

Conclusion
In this paper, we introduced a simple way to overcome the
high memory requirements that often hinder the generation
of plans for DEC-POMDPs by remembering a limited num-
ber of important characteristics of an agent’s action and ob-
servation history. To accomplish this, a combination of au-
tomatic and user defined attributes are used to produce a re-
duced complexity model which represents a finite-state con-
troller with a well-motivated structure. The solution of this
model provides a policy for the given problem that is not
only high valued but also compact and easily readable.

We also present a branch and bound algorithm that pro-
vides an optimal action choice for these attributes. This al-
gorithm allows the action mappings to be found in a scalable
way. Additionally, our experiments showed that when com-
pared to the current state-of-the-art infinite-horizon DEC-
POMDP approximate algorithms, our attribute-based repre-
sentation produces significantly higher valued plans. These
results demonstrate that our method can scale to larger prob-
lems and provide better plans for a range of DEC-POMDP
problems.

In the future, we plan to pursue several interesting ex-
tensions and open questions. These include incorporating
commitments between agents and using factored controllers
to improve computational efficiency when agents each have
various multi-valued attributes. We would also like to deter-
mine when attributes can be chosen in such a way that an
optimal mapping is also an optimal policy for the problem.
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