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Abstract 
 

Humans routinely answer questions, make decisions, and provide explanations in the face 
of incomplete knowledge and time constraints. From everyday questions like “What will 
it cost to take that vacation?” to policy questions like “How can a carbon taxing scheme 
affect climate change?” we often do not have all the knowledge, time and computational 
resources to come up with a precise, accurate answer. This thesis describes and 
formalizes Back of the Envelope (BotE) reasoning – the process of generating rough 
quantitative estimates. 
 
We claim that a core collection of seven heuristics: mereology, analogy, ontology, 
density, domain laws, balances and scale-up achieves broad coverage in BotE reasoning. 
We provide twofold support for this claim: 1) by evaluation of BotE-Solver, an 
implementation of our theory, on thirty five problems from the Science Olympics, and 2) 
by a corpus analysis of all the problems on Force and Pressure, Rotation and Mechanics, 
Heat, and Astronomy from Clifford Swartz's book (2003), “Back-of-the-envelope 
Physics.” 
 
An aspect of estimation is learning about quantities: what is reasonable, high and low, 
what are important points on the scale. We call this facility for quantities as quantity 
sense. We present the Symbolization By Comparison (SBC) theory of quantity sense. This 
theory claims that quantity sense consists of qualitative representations of continuous 
quantity, or symbolizations, which are built by process of comparison. The computational 
implementation of the SBC theory, CARVE, is evaluated in a functional manner. The 
representations generated by CARVE help generate more accurate estimates. 
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ABSTRACT

Back of the Envelope Reasoning for Robust Quantitative Problem Solving

Praveen Kumar Paritosh

Humans routinely answer questions,  make decisions,  and provide explanations in the face of 

incomplete knowledge and time constraints. From everyday questions like “What will it cost to 

take that vacation?” to policy questions like “How can a carbon taxing scheme affect climate 

change?” we often do not have all the knowledge, time and computational resources to come up 

with  a  precise,  accurate  answer.  This  thesis  describes  and formalizes  Back of  the  Envelope 

(BotE) reasoning – the process of generating rough quantitative estimates.  

We  claim  that  a  core  collection  of  seven  heuristics:  mereology,  analogy,  ontology, 

density, domain laws, balances and scale-up achieves broad coverage in BotE reasoning. We 

provide twofold support for this claim: 1) by evaluation of BotE-Solver, an implementation of 

our theory, on thirty five problems from the Science Olympics, and 2) by a corpus analysis of all 

the  problems  on  Force  and  Pressure,  Rotation  and  Mechanics,  Heat,  and  Astronomy  from 

Clifford Swartz's book (2003), “Back-of-the-envelope Physics.”

An aspect of estimation is learning about quantities: what is reasonable, high and low, 

what are important points on the scale. We call this facility for quantities as quantity sense. We 

present the  Symbolization By Comparison (SBC) theory of quantity sense. This theory claims 

that  quantity  sense  consists  of  qualitative  representations  of  continuous  quantity,  or 

symbolizations, which are built by process of comparison. The computational implementation of 
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the SBC theory, CARVE, is evaluated in a functional manner. The representations generated by 

CARVE help generate more accurate estimates. 
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On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the machine 

wrong figures, will the right answers come out?” I am not able rightly to apprehend the 

kind of confusion of ideas that could provoke such a question.

- Charles Babbage (1791-1871)
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Chapter 1: Introduction

Humans routinely answer questions,  make decisions,  and provide explanations in the face of 

incomplete knowledge and time constraints. From everyday questions like “What will it cost to 

take that vacation?” to policy questions like “How can a carbon taxing scheme affect climate 

change?” we often do not have all the knowledge, time and computational resources to come up 

with a precise, accurate answer. In case of the vacation example, currency exchange rates may 

fluctuate,  you  might  not  yet  know exactly  what  you  will  do,  and so  on.  In  the  carbon  tax 

example,  constructing  a  detailed  model  of  the  economics  and  physics  of  human  climate 

interaction is a Herculean task – see for example, the seven hundred pages long Stern Review on 

the economics of climate change [Stern 2007]. Even if all  the knowledge and computational 

resources needed to pinpoint the answer were there, in many situations, there is considerable 

value  in  a  quick but  reasonable  estimate  while  one  waits  for  the  perfect  answer.  Examples 

include time-constrained situations involving taking an action and sanity-checking noisy data, for 

example, knowledge acquired from reading from the web.   
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1.1 Brittleness in Artificial Intelligence

A key aspect of human intelligence is the ability to operate flexibly and robustly by making 

educated  guesses  and  plausible  explanations,  when  perfect  correct  reasoning  cannot  be 

accomplished [Collins and Michalski, 1989]. On the other hand, most Artificial Intelligence (AI) 

systems, and software in general suffer from brittleness. This brittleness manifests as: 1) they fail 

to respond at all, because of lack of knowledge or computational resources, or, 2) they generate 

unreasonable answers, because of inaccuracies in their knowledge. The unfortunate aphorism of 

“Garbage In,  Garbage Out”  highlights  the fact  that  computer  programs will  unquestioningly 

process their  input.  One reason why humans,  for most part,  are exempt from that  dictum is 

because of our ability to make educated guesses to see if something makes sense. 

Doug Lenat [1986] called this the brittleness bottleneck, and proposed that the solution 

was a large explicit commonsense knowledge base. The current state of this effort is the Cyc 

knowledge  base,  which  consists  of  over  three  million  assertions  represented  in  predicate 

calculus.  However,  both  knowledge  gaps  and  inferential  complexity  of  reasoning  are  still 

crippling  factors.  Project  Halo  was  an  effort  to  systematically  analyze  the  capabilities  and 

limitations of knowledge-based systems. Three different teams: Cycorp, SRI and Ontoprise were 

given six months to design a system for answering a subset of AP level chemistry questions 

[Friedland and Allen, 2004]. For 49% of the questions, the Cycorp team failed to come up with 

an answer, and at times came up with sixteen pages of justifications without a successful answer.

A very different approach that attempts to short-circuit the knowledge issue is to directly 

tap into vast text corpora: web pages, newspaper articles and scientific papers, to name a few. 

However,  this  text-based  approach has  very little  if  any capability  to  produce  explanations, 
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sanity-check answers and make inferences. For instance, in an evaluation of question-answering 

programs that mine text for answers, one program came up with 360 tons as the amount of Folic 

acid that an expectant mother should have per day1, and 14 feet as the diameter of the earth!

Continued  progress  in  both  the  knowledge-based  and  text-based  approach  should 

facilitate systems that can perform in a broad range of domains. However a source of flexibility 

in human reasoning is the ability to make educated guesses when knowledge fails. At the risk of 

being approximate, this extends the usefulness of existing knowledge. 

1.2 Heuristic Reasoning for Alleviating Brittleness

This  thesis proposes  the  heuristic  reasoning approach [Paritosh,  2006]  for  fixing brittleness: 

endow the systems with heuristic  methods so that it  can make educated guesses when other 

mechanisms fail. Heuristic methods exploit the information processing structure of the reasoning 

system and the structure of the environment.  In problem solving, heuristic methods generate 

approximate answers in two ways: 1) by using a subset of information needed, and 2) by using a 

proxy for the information needed. For example, consider the problem of estimating density of the 

human body. To use a subset of information to infer the density would be to say that since the 

largest component of the human body is water, its density should be close to that of water, 1000 

kg.m-3. To use a proxy would be to say that human body density should be close to that of water 

as they can float/drown in water, and therefore finding the density of water gives us an answer to 

the original problem. 

The notion of heuristics has enjoyed a long history in AI in various guises. Before AI, 

George Polya [1945] popularized heuristics in his book as steps one could take while solving 

1  The question is from TREC9, and this was reported in the IBM TJ Watson AQUAINT Briefing.
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mathematical problems. Some of his heuristics included drawing a figure, working backward 

from what is to be proved and considering a more general version of the problem. Newell later 

wrote about the influence or lack thereof of Polya’s work on AI [Newell, 1981]. Herb Simon 

invented the  notion of  Bounded Rationality and  Satisficing [Simon,  1957].  In this  approach, 

reasoning is still governed by laws of rationality and realistic resource constraints are placed on 

it.  Newell and Simon [1963] proposed weak methods, e.g., means-end analysis,  generate and 

test,  etc.,  as  the  basis  of  intelligence.  Doug  Lenat's  AM and  Eurisko  [1982]  systems  made 

scientific discoveries in the domain of mathematics, device physics, games, and heuristics itself, 

among others, armed with a library of hundreds of heuristics. Lenat called for a formal study of 

the science of heuristics, heuretics. Lenat’s systems used heuristics to make interesting scientific 

conjectures and in guiding exploration of the large search space.  By heuristic  reasoning, we 

mean the inference patterns that support educated guessing. Our context is problem solving, and 

we want to quickly find a reasonable answer, even if all the relevant knowledge is not available. 

A heuristic domain is a reasoning task that is amenable to heuristic reasoning. Reasoning 

tasks where there are multiple answers and/or processes to arrive at the answer, with varying 

degrees of correctness or quality are heuristic domains. In contrast, questions like “What two US 

biochemists won the Nobel prize in 1992?” or “What is the scientific name of Viagra?” are 

examples for which it is less likely to have reasonable guesses – you either know the answer or 

don't. A heuristic method is a specific pattern of reasoning that yields a reasonable inference in 

its heuristic domain. 

The heuristic  domain that  is  described in this  thesis  is  Back of  the  Envelope (BotE) 

reasoning. BotE reasoning involves the estimation of rough but quantitative answers to questions 
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where the models and the data might be incomplete. The name back-of-the-envelope comes from 

the idea of doing quick calculations on the nearest  available piece of paper.  BotE reasoning 

exemplifies heuristic reasoning, as it is often invoked in situations where accurate answers are 

expensive to obtain, and carefully done, without such an expense it can be used to provide high-

quality estimates. 

To show the feasibility of the heuristic reasoning approach, we have built BotE-Solver, a 

system that solves estimation questions like “How much money is spent on healthcare in the 

US?” BotE-Solver can currently solve problems from both commonsense and scientific domains, 

and  we evaluate  it  on  problems from the  Science  Olympics,  a  competition  for  high school 

students (Division “C” in the US).   

The next section describes the BotE domain. Section 1.3 presents our approach to model 

BotE reasoning. Section 1.4 presents the claims and contributions of this work. We conclude 

with a roadmap for the rest of this thesis.

1.3 Back of the Envelope Reasoning

A rough estimate generated quickly is more valuable and useful than a detailed analysis, which 

might be unnecessary, impractical, or impossible because the situation does not provide enough 

time, information, or other resources to perform one. BotE reasoning is useful and practical. In 

domains like engineering, design, or experimental  science, one often comes across situations 

where a rough answer generated quickly is more valuable than waiting for more information or 

resources. Some domains like environmental science [Harte, 1988] and biophysics [O’Connor 

and Spotila, 1992] are so complex that BotE analysis is often the best that can be done with the 
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available knowledge and data. Additionally, this type of reasoning is particularly common in 

engineering practice and experimental sciences, including activities like evaluating the feasibility 

of  an  idea,  planning  experiments,  sizing  components,  and  setting  up  and  double-checking 

detailed analyses.  

BotE  reasoning  is  ubiquitous  in  everyday  problem  solving  as  well.  Common  sense 

reasoning often hinges upon the ability to rapidly make approximate estimates  that are fine-

grained  enough  for  the  task  at  hand.  We  live  in  a  world  of  quantitative  dimensions,  and 

reasonably  accurate  estimation  of  quantitative  values  is  necessary  for  understanding  and 

interacting with the world. How long will it take to get there? Do I have enough money with me? 

These everyday, common sense estimates utilize our ability to draw a quantitative sense of world 

from our experiences. We believe that the same processes underlie both these commonsense 

estimates and expert’s BotE reasoning to generate rough estimates.  Fundamental to both types 

of  reasoning  is  the  process  of  drawing  upon  experience  to  make  such  estimates,  and  the 

achievement of expertise in part by accumulating, organizing, and abstracting from experience to 

provide the background for such estimates.

1.4 A Computational Model of BotE Reasoning

Our model of BotE reasoning consists of two distinct processes. First, estimation modeling is the 

process of constructing simplified models of complex scenarios which are good enough for the 

purposes of making a rough estimate. In our theory, these models are constructed by applying 

heuristic methods. For instance, one of the heuristic methods is  Mereology, which exploits the 
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part-whole  structure.  Given  a  question  like  “What  is  the  population  of  Planet  Earth?”  the 

mereology heuristic  suggests  looking at  all  the sub-parts,  in  this  case,  countries,  finding the 

populations  of  individual  countries  and  adding  them  up.  If  the  quantity  in  question  is  an 

extensive quantity like count or mass, adding up is the right way to combine the values; if it is an 

intensive quantity,  like density,  the weighted average is the right combinator. It  also requires 

making a closed world assumption, namely that we know all the sub-parts; and that there is no 

overlap between parts. There are seven heuristic methods (including mereology) used by BotE-

Solver.  These  heuristics  are  described  in  Chapter  2,  and  the  implementation  details  are  in 

Chapter 4. 

Second, direct estimation is the process of coming up with a numeric value for a quantity. 

The estimation modeling step is only building a model: to get to an estimate, the process has to 

bottom out by plugging in numeric values. The simplest case for direct estimation is when the 

value is explicitly available. But when this is not the case, good human estimators are able to use 

their knowledge of similar situations to infer a reasonable value for the quantity in question. For 

instance, to estimate the height of Jason Kidd, the basketball player, one might use the fact that 

basketball players are usually tall. An even better estimate might be constructed by using the 

more specific fact that Jason Kidd is a point guard, and basing it on other players similar to Jason 

Kidd, for instance Steve Nash. We call this facility for quantities built out of experience quantity  

sense.  In Chapter 3, we present the  symbolization by comparison theory of quantity sense, a 

cognitively plausible account that claims that quantity sense consists of a symbolization of the 

continuous  quantity  built  by  processes  of  comparison.  This  has  been  implemented  in  a 
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computational model, CARVE. The representations generated by CARVE lead to more accurate 

analogical estimates. 

1.5 Claims and Contributions

The key theoretical claims of this thesis are: 

1. There is a core collection of powerful heuristic methods that provide broad-coverage 

in  BotE reasoning  [Paritosh  and Forbus,  2005].  Specifically,  the  seven heuristic 

methods of mereology, analogy, ontology, density, domain laws, balances and scale-

up, achieve broad coverage in answering BotE questions. This is a  knowledge level  

analysis of  BotE reasoning [Newell,  1982].  We provide  two-fold support  for  this 

claim:  1)  by evaluation  of  BotE-Solver’s  performance on  problems from Science 

Olympics,  and  2)  a  corpus  analysis  of  all  the  problems  on  Force  and  Pressure, 

Rotation and Mechanics, Heat, and Astronomy from Clifford Swartz's book (2003), 

“Back-of-the-envelope Physics.”

2. Quantity  sense  consists  of  qualitative  representations  of  continuous  quantity,  or  

symbolizations, which are learned by process of comparison [Paritosh, 2003, 2004]. 

We call  this  the  symbolization  by  comparison  theory.  In  Chapter  3,  we  describe 

ecological, psychological and task constraints on quantity sense. We provide support 

for this claim by improved performance on the analogical estimation task owing to 

the qualitative representations of quantity.

The following systems were built as a part of this thesis: 
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1. BotE-Solver: A problem solver that uses heuristic methods and the Cyc knowledge 

base to solve BotE problems [Paritosh and Forbus, 2004, 2005, in preparation].

2. CARVE : A system that learns symbolic representations of quantities by exposure to 

examples in that domain [Paritosh, 2003, 2004]. 

3. KNACK: A system that implements analogical estimation, i.e., generating numeric 

estimates for an unknown parameter by finding other similar example(s)  [Paritosh 

and Klenk, 2006].

1.6 Roadmap

Chapter  2  begins  by  describing  BotE reasoning and the  importance  of  this  domain.  It  then 

presents  a  formalization  of  problems and heuristic  methods  and presents  the  seven heuristic 

methods.  It  then  presents  the  corpus  analysis  of  problems  from  Swartz’s  book.  Chapter  3 

presents  a  theory of  quantity  sense.  It  begins by describing quantity  sense and the space  of 

quantitative knowledge organized by a review of relevant literature from education, linguistics, 

psychology and qualitative reasoning. Based on these, it then proposes constraints on human 

representations  of  quantity.  It  then describes  CARVE,  the  computational  model  for  learning 

these representations from examples. Chapter 4 describes the BotE-Solver system. It describes 

implementation aspects of each of the heuristic methods, and the results of evaluation on the 

Science Olympics  corpus of problems. Chapter 5 describes related work.  Chapter 6 presents 

conclusions and future directions. 
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Chapter 2: A Theory of Back of the Envelope Reasoning

2.1 Introduction 

Back of the envelope (BotE) reasoning involves generating quantitative answers in situations 

where exact data and models are unavailable and where available data is often incomplete and/or 

inconsistent. This chapter presents a knowledge level [Newell 1982] theory of BotE reasoning. 

We begin with two extended examples of BotE reasoning in the next section. Then we discuss 

motivations and broader implications of BotE reasoning. We then compare BotE reasoning to 

qualitative  reasoning,  highlighting the commonalities  and the differences.  Next we present a 

computational theory of BotE reasoning based on an analysis of different kinds of knowledge 

and reasoning involved. We present a formalization of BotE problems and heuristic methods, 

and then we describe seven heuristic methods that we claim achieve broad coverage in answering 

BotE questions. We present supporting evidence for this claim by a corpus analysis of all the 

problems (n=44) on Force and Pressure, Rotation and Mechanics, Heat, and Astronomy from 

Clifford Swartz's book (2003), “Back-of-the-envelope Physics.”
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2.2 Examples of Back of the Envelope Reasoning

Consider the following examples of BotE questions: 

1. How many K-8 school teachers are there in the US?

2. What is the annual cost of health care in the US?

3. What is Jason Kidd’s point per game for this season?

4. How much is spent on newspapers in the US per year? 

What these questions have in common is: 1) they seek numeric answers, and 2) even though 

exact answers might be hard to find, it is possible to generate good enough rough estimates. Let's 

start with a much simpler example. Consider the question: How many pieces of popcorn would 

fill the room you are now sitting in? You probably don’t have a value for the number of popcorns 

in your memory. One way to estimate it would be –   

number of popcorns = volume of room/volume of popcorn kernel        (1)

Approximating room to a cuboid, and a popcorn kernel to a cube (considering the voids left after 

packing in popcorn kernels this is a reasonable assumption), 

number of popcorns = l * b * h / a^3        (2)

where l,  b, h are length, breadth and height  of the room and a is the edge of the cube that 

describes  a popcorn.   In  (2),  we have built  an  estimation model for  the number of popcorn 

kernels,  which  we have now described in terms of  a  set  of  parameters  that  can be directly 

estimated. Estimation modeling is a recursive process that continues until we bottom out with 

parameters that can be successfully directly estimated. At this point, if we do know the values for 

l, b, h and a above, we can plug those in and get an answer. What if we don’t have those values? 

Let’s look at h, the height of the room. One strategy would be to say that it is around twice the 
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height of a person, so roughly 10 feet high. Or, one could use previous knowledge to say that this 

room is quite similar to their apartment with respect to height, which they know is 10 feet high. 

Let's work out one of the questions given earlier: How many K-8 school teachers are 

there in USA? If we don't know the number of K-8 teachers, then we need to relate it to other 

quantities that we do know. One approach is the following –  

Number of teachers = number of students / students per teacher
Number of students = population * fraction in the age range of K-8 students * 
                                    fraction of kids who go to school 
Fraction of population in the K-8 age range = K-8 age range / life expectancy

The above estimation model relates the number of teachers to other known quantities. Estimation 

models  often  make  simplifying  assumptions,  e.g.,  the  calculation  of  the  fraction of  students 

assumes a uniform distribution of population with respect to age. In order for the estimation 

model to successfully produce an answer for the original question, it has to bottom out with 

numeric  values.  The next  step  involves  direct  estimation of  the  quantities  in  the  estimation 

model. 

Population = 300 million
Life expectancy = 75
Fraction of kids going to school = 1
Students per teacher = 25

The goal of the direct estimation step is to find a numeric value for the given quantity, which is 

good enough for the estimation task at hand. Some values like the population of the US might be 

explicitly known, whereas some values like students per teacher might be inferred based on one's 

classroom experiences. The simplest form of direct estimation is lookup, however it can involve 

extrapolating from one or more similar examples or categorical information. For example, one 
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might come up with an estimate for life expectancy by considering some specific examples. At 

this point, we need to plug in these numbers into the estimation model to obtain the final answer. 

Fraction of population in the K-8 age range = K-8 age range / life expectancy = 9/75
Number of students = population * fraction in the age range of K-8 students * 
                                    fraction of kids who go to school
                                 = 300 million * 9/75 * 1
Number of teachers = number of students / students per teacher
                                 = 40 million / 25 = 1.6 million

This last step is often simple arithmetic and/or algebra. For example, in estimating the area of a 

letter  sized  sheet  of  paper  (8.5x11),  it  might  be  easier  to  approximate  it  as  the  simpler 

multiplication, 9x10. As arithmetic is the easiest step for a computer program, and we will not 

spend time in this thesis about discussing or modeling this aspect of human estimation process, 

(see  LeFevre,  Greenham  and  Waheed  (1993)  for  research  on  this  topic).  An  explanatory 

simplification above was that the entire estimation modeling was done separate from the direct 

estimation – as we will see later, these two processes are interleaved. 

In this example, the correct answer is 1.9 million according to the Statistical Abstracts of 

the United States, 2003.  Our answer of 1.6 million is off by fifteen percent, which brings us to 

the issue of correctness in BotE reasoning. Qualitatively,  the resolution in BotE reasoning is 

higher than order-of-magnitude reasoning, and the expected answer is within a factor of two. 

Most  published  examples  of  BotE reasoning  demonstrate  within  factor  of  two resolution  in 

answer: e.g., regularly appearing columns in American Journal of Physics [Hobart 1963; Purcell 

1983-85; Weiskopf 184-86] and Journal of Geological Education [Triplehorn 1994-95], among 

others. 
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2.3 Motivation

Brittleness is a serious problem for most AI programs, and software in general. The two common 

manifestations of brittleness are: 1) the software cannot find an answer, because of gaps in the 

knowledge base, or because of a lack of required computational resources; and 2) the software 

comes up with an unreasonable answer, possibly because of inaccuracies in its knowledge base. 

For instance, in an evaluation of question-answering programs that mine text for answers, one 

program came up with 360 tons as the amount of Folic acid that an expectant mother should have 

per day, and 14 feet as the diameter of the earth!2 

Knowledge, specifically commonsense knowledge, was proposed as a solution to avoid 

just  these  types  of  failures  [Lenat  et  al.,  1986].  One premise  of  the  Cyc  project  is  that  by 

explicitly representing commonsense knowledge, one can build more flexible systems, where 

commonsense fills  in the gaps when the system comes to a point  where it  would otherwise 

exhibit brittle behavior. Knowledge based systems consist of reasoning mechanisms that use an 

explicit knowledge base, a database of facts, to answer queries. However, these arguments might 

apply even more broadly.  Figure 2.1 shows a  highly simplified  view of a knowledge based 

system. The reasoning mechanisms might consist of forward and backward chaining, planning, 

analogy, spatial reasoning, and special-purpose procedural attachments to handle specific tasks. 

Many  of  these  reasoning  methods  are  computationally  complex,  and  in  theory  can  take 

unbounded amounts of time. However, a crucial bottleneck for these reasoning mechanisms is 

the knowledge base. If the knowledge base has gaps, i.e., lacks relevant knowledge, then there is 

no hope of being able to find an answer. 

2 The questions are from TREC9, and were reported in the IBM TJ Watson AQUAINT Briefing.
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Figure 2.1: A simplified schematic of knowledge based systems

Cyc, the largest knowledge representation effort, consists of over 3 million assertions represented 

in  predicate  calculus.  Openmind  Commonsense3,  another  such  effort,  consists  of  800,000 

assertions in English authored by volunteers on the web (Singh et al., 2002). The innovative idea 

in this project is that by lowering the barrier to knowledge authoring, it might be possible to 

quickly  build  a  large  collection  of  commonsense  knowledge.  However,  the  problem  of 

inaccuracies in the knowledge base is a serious problem with about 30% of the knowledge being 

“garbage” (Lieberman, personal communication). Furthermore, it supports very weak notions of 

reasoning with these facts, if any at all.

Project Halo4  is an effort to systematically analyze the capabilities and limitations of 

knowledge-based systems.  Three different  teams:  Cycorp,  SRI and Ontoprise were given six 

months to design a system for answering a subset of AP level chemistry questions. The detailed 

results  of  this  evaluation  are  summarized  in  Friedland  and  Allen5 (2004).  For  49%  of  the 

questions,  the Cycorp team failed to come up with an answer, and at times coming up with 

sixteen pages of justifications without a successful answer. A broad commonsense knowledge 

base is necessary for building robust programs. However, commonsense might be much vaster 

than imagined, and manually building large databases of knowledge is not enough by itself. 

3http://openmind.media.mit.edu/
4 http://www.projecthalo.com
5 http://www.projecthalo.com/content/docs/halopilot_vulcan_finalreport.pdf
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Humans face the same sources of brittleness: knowledge gaps and inferential complexity. 

They cope via their remarkable ability to generate educated guesses, reasonable explanations and 

ballpark estimates when we run into situations where knowledge and/or cognitive resources are 

lacking. BotE reasoning is an instance of such flexible reasoning. We present a computational 

theory of BotE reasoning that operationalizes patterns of heuristic reasoning that can flexibly 

handle gaps in the knowledge base at the cost of being right most, although not all, of the time. 

This  is  a  different  and  complementary  approach  to  alleviating  brittleness:  build  heuristic 

reasoning  mechanisms  that  scale  with  respect  to  relevant  knowledge  and  computational 

resources available. 

2.4 Qualitative Reasoning and Commonsense Reasoning

One of  the original  motivations  of qualitative  reasoning (QR) was to understand and model 

human commonsense reasoning [de Kleer  & Brown 1984;  Forbus 1984; Bredeweg & Schut 

1991, White & Frederiksen 1990]. QR helps us determine what phenomena are relevant, and 

experiential  knowledge supplies useful  default and pre-computed information,  including both 

numeric  values  and  relevant  modeling  assumptions,  as  well  as  knowledge  about  similar 

situations that can serve as a reality check for the estimates. The need to compare parameters and 

to make estimates guided by similarity in turn raises interesting questions about what role(s) 

quantitative dimensions play in our judgments of similarity, and how we develop our quantitative 

sense of a domain with experience. To reiterate, qualitative representations are essential for BotE 

reasoning for two reasons:
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3. Qualitative  models  provide  analytic  framework: Understanding  what  entities  and 

physical processes are relevant is crucial in determining what parameters are relevant. 

Modeling assumptions  expressed  in  terms of  the  conceptual  understanding  of  the 

situation  determine  when  particular  quantitative  estimation  techniques  are 

appropriate. 

4. Qualitative models facilitate comparison:  Similarity in qualitative, causal structure 

helps determine what experience is relevant when making an estimate.  Similarity is 

also used in helping evaluate the reasonableness of an estimate.  Including qualitative 

descriptions  in  remembered  experiences  along  with  quantitative  data  facilitates 

comparison and abstraction from experiences. 

However, some of the central assumptions of QR in practice must be rethought when considering 

commonsense reasoning, as opposed to narrow domain expertise. It is commonplace in QR to 

assume that a domain theory is complete.   This assumption is implausible for commonsense 

reasoning, whether or not one views QR purely in terms of a component in a performance system 

or as a psychological model.  The closer one looks at human knowledge, the more it appears that 

it is fragmentary, and more concrete than abstract [Forbus and Gentner, 1997].  It may be that 

such an organization is a necessity for human-level performance, whether or not one is making 

psychological claims.  Let us call this approach Commonsense QR (CQR) for concreteness. Here 

are the five important constraints shared by CQR and BotE reasoning, but are violated by most 

traditional QR approaches: 

1. Incompleteness: Domain theories are incomplete in terms of their coverage, and even 

what they do cover might contain inconsistencies.  Humans have an amazing ability to 
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make educated guesses even when their knowledge contains gaps. At the cost of being 

reasonable  (instead  of  accurate)  humans  can  efficiently  and  robustly  reason  with 

fragmentary and incomplete knowledge. 

2. Concreteness: Domain  knowledge  includes  knowledge  of  many  concrete,  specific 

situations.   These  concrete  descriptions  are  used  directly  in  analogical  reasoning,  in 

addition to first-principles reasoning. 

3. Experiential  improvement:  Domain  expertise  improves  through  the  accumulation  of 

information,  both concrete  and abstract.   Experience  improves our  abilities  to  reason 

through similar situations, and helps us develop intuitions for what is reasonable. 

4. Focused reasoning: Instead of maintaining uncertainty and ambiguity for completeness, 

assumptions  are  made  aggressively  to  tightly  constrict  the  number  of  possibilities 

considered.   Common sense reasoning is required for action in the world, and there are 

opportunities for interaction and further reflection, reducing the amount of stress on any 

particular computation.  In most situations, it is better to answer rapidly and sometimes 

be wrong, than to answer slowly and vaguely.

5. Pervasively quantitative: Our interaction with the real world requires concrete choices for 

quantities.  For example, the amount of salt one adds while cooking a certain dish (or an 

estimate of the increase in Earth's temperature due to greenhouse gases) cannot be safely 

specified as “+”.   While there are certainly tolerances, and we believe that estimation 

requires drawing upon lots of examples,  our actions in the end require that  estimates 

manifest as exact values.  Quite possibly this is true for every step along the way, as per 

the focused reasoning constraint.
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Forbus and Gentner (1997) proposed a similarity-based hybrid model of qualitative simulation 

where  analogical  reasoning  and  first-principles  qualitative  reasoning  are  tightly  interwoven, 

which has been further explored by Yan and Forbus (2004). Consider predicting what might 

happen when one is filling a cup with coffee: if there is a positive inflow when the level of coffee 

reaches  the  height  of  the  cup,  it  will  overflow.  The  key  insight  in  the  hybrid  qualitative 

simulation proposal is that one can make the same prediction using a previous experience of 

overfilling the cup rather than deriving it via first principles. This approach addresses the first 

three constraints above. This thesis focuses on the last two. 

2.5 A Model of BotE Reasoning

We present a model of BotE reasoning that captures the two types of knowledge and reasoning 

involved in it. First, BotE reasoning requires quantitative knowledge and ability to reason with 

quantities. Without any knowledge of quantitative facts, it will be impossible to answer any BotE 

question.  Direct  estimation  uses  knowledge about  quantities  and values.  With  expertise  in  a 

domain, one accumulates more and more quantitative facts, and the ability to generalize and 

extrapolate  from them.  We call  this  combination of  quantitative  knowledge and quantitative 

reasoning abilities  quantity sense. Second, BotE reasoning requires knowledge of simplifying 

heuristics  and  the  ability  to  reason  with  them.  We  call  this  heuristic  reasoning.  Heuristic 

reasoning  expands  the  scope  of  questions  that  one  can  answer  with  the  same  amount  of 

quantitative knowledge. For example, Enrico Fermi famously asked his Physics class,  “How 

many piano tuners are there in Chicago?” a question that highlights well the role of heuristic 
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reasoning and quantity sense. Most people, with the exception of people closely related to the 

piano  tuning  industry,  are  unlikely  to  have  quantitative  knowledge  to  directly  answer  the 

question. Yet, using heuristics like how many households own pianos, how often they might be 

tuned, and that the number of piano tuners can be estimated by first finding out just how many 

piano tunings might be needed, most people can relate it to quantities that they are likely to 

know.  Figure 2.2 shows a  schematic of this model. 

Figure 2.2: Quantity Sense and Heuristic Reasoning in BotE

The direct estimation step uses quantity sense, and the estimation modeling step uses heuristic 

reasoning. Below we describe these two steps in detail. 

2.5.1 Direct Estimation 

This  involves  directly  estimating  a  parameter  based  on  previous  experience  or  domain 

knowledge.  For instance, we might know the value of a physical constant, or use a value from a 

previous  example that  is  highly similar  to  the  current  problem, or  combine multiple  similar 
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examples to estimate a value based on those prior values.  Experience in a domain helps one 

develop their quantity sense for quantities in that domain: knowledge of similar values, typical 

values and a sense of the scale of values. The simplest type of direct estimation involves lookup. 

Humans good at estimation go beyond that and are able to use their quantity sense, specifically 

knowledge of typical values, scale (“1 Ampere is too high a current for a Walkman”) and similar 

experiences to generate an estimate when the answer is not directly available via lookup. Chapter 

3 presents a cognitively plausible theory and model of this process of developing quantity sense 

from experiences. In this chapter we focus on estimation modeling.  

2.5.2 Estimation Modeling 

Estimation modeling is the process of building a simplified model of the situation that is good 

enough for the purposes of making a rough estimate. This is required when a parameter cannot 

be directly estimated.  In such cases we build a model that relates the parameter in question to 

other  parameters,  which  in  turn  must  be  either  directly  estimated  or  modeled.  Estimation 

modeling is done by applying heuristic methods that are likely to yield subproblems that are 

easier to solve and can be combined to get an answer for the original question. For instance, in 

the  piano  tuners  example  above,  multiplying  the  population  of  Chicago  by  the  fraction  of 

households that own pianos is a heuristic that can be used to estimate the number of pianos in the 

city. To estimate how many piano tunings happen every year, one might estimate how often a 

piano is tuned by using their experience of owning a piano, which is generalizing from a similar 

example, another heuristic method. In the next sections, we present a formalism for representing 
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heuristic methods for estimation modeling and a set of methods that we claim provide broad 

coverage for BotE reasoning. 

2.6 Representation of BotE Problems

In this section we present our formalization of the BotE problems and heuristic methods. All 

BotE estimation problems ask for value of a quantitative property of some object. An abstract 

way to represent a BotE problem is (Q O ?V) where Q is the quantity, O the object and ?V is 

the unknown value that is being sought. For example, in the question “How many K-8 teachers 

are there in the US?,” Q is cardinality, and O is the set of K-8 teachers in the US. Note that such 

decomposition of a question into a quantity-object pair is not necessarily unique, for example, 

“How much money is spent on newspapers in the US per year?” can be decomposed into: 

Q=Cost, O=All newspapers sold every year in the US

Q=Annual sales, O=All US newspapers

Q=Annual newspaper sales, O=US 

The answer to the question is the ground statement where ?V is bound to a numeric quantity and 

the  justification.  In  case  the  answer  was  directly  available  in  the  knowledge base,  then the 

justification is a reference to the knowledge base. However, when the answer was obtained by 

estimation  modeling  it  consists  of  the  dependency  structure  of  the  heuristic  methods  and 

subproblems solved along the way along with their justifications. The justification provides the 

structure for explanation and further exploration when the estimate generated is unexpected. An 

important aspect of BotE reasoning is that the same question can have multiple answers and 
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justifications. The numerical values of answers obtained using different heuristic methods will 

most likely differ, as each answer is an approximate estimate. Therefore ?V can have multiple 

bindings, each with its own justification. Let's consider the ground statement (Q O V). Q is a 

binary predicate which attributes a numeric quantity to an object, e.g., height.  V is a numeric 

scalar  quantity,  i.e.,  it  consists  of  a  number  and  a  unit,  e.g.  1.83  meters.  In  a  well  formed 

statement, the unit has to be in accord with the quantity Q.  O can be a specific individual object, 

e.g.,  George  Bush,  or  a  collection of  objects,  e.g.,  adult  male  humans.  In  the  latter  case,  V 

represents the typical value of  Q for the collection6. In a more complex BotE question, O can 

represent a reified spatio-temporal chunk, and we can still use the simple representation proposed 

here for the question. Reification allows us to name a complex situation (like an event) and 

elaborate it using various roles that can be defined that are applicable in that situation [Davidson, 

1967].  

2.7 Representation of Heuristic Methods

Given a BotE problem (Q O ?V), a heuristic method transforms it into a set of other problems 

{(Qi Oi ?Vi)} such that ?Vi are already known or easier to estimate. Each heuristic method 

consists of:

• Trigger conditions: These specify the class of queries and additional conditions 

that must be true in order for this method to be applicable. 

6 Alternatively, it could represent the range, distribution, or some compact summarized representation of the set of 
values that Q takes on for the various objects in the collection. Simple operations like mean or median, or more 
sophisticated mechanisms for selecting a typical value can be used in that case to transform it into our 
representation.
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• Subgoals: These are the new subproblems,  {(Qi Oi ?Vi)}, that this method 

proposes, which if solved, could generate an answer to the original query. 

• Result step: This specifies how to combine answers found to the subgoals (?Vi) to 

generate the answer for the original query (?V).

With our problem representation, there are three kinds of heuristic methods based on what aspect 

of the problem it transforms: 

• Object-based: (Q O ?V) → {(Q Oi ?Vi)}: An object-based method relates an 

object,  O, to a set of objects,  {Oi}, such that the quantity values for those objects, 

{?Vi},combine in a known way to estimate the original quantity, ?V. Note that since 

we are estimating the same quantity, this combination function can only be addition 

or subtraction since ?V and {?Vi} have to have the same dimensions7. 

• Quantity-based: (Q O ?V)  → {(Qi O ?Vi)}:  A  quantity-based  method 

relates  a  quantity,  Q,  to  a  set  of  quantities,  {Qi},  such  that  the  values  of  these 

quantities (for the object  O) can be combined in a known way to derive the original 

quantity.  Note that the combination function has to satisfy dimensional constraints 

[Szirtes and Rosza 1998], i.e., ?V and f({?Vi}) have to have the same units, where f 

is the combination function. 

• System-based: (Q  O  ?V)  → {(Qi Oi ?Vi)}:  System-based  methods 

transform both the quantity and the object  into other quantities and objects.  They 

represent  relationships between quantities  of  a  system as  a  whole.  Most  common 

7 Some of the ?Vi's can be multiplied or divided by dimensionless quantities like ratios. 
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application of system based methods are when there is an invariant quantity,  e.g., 

momentum that remains unchanged between different states.

The above breakdown is based on the syntactic transformations of the aspects of the question. In 

the next section we present seven heuristic methods: three object-based, two quantity-based, and 

two  system-based,  which  we believe  is  a  comprehensive  set  of  heuristic  methods  for  BotE 

reasoning. For each of the heuristic methods, we describe it, and then briefly discuss the sources 

of flexibility in the method. 

2.7.1 Object-based Heuristic Methods

2.7.1.1 Mereology

Mereology (Lesniewski, 1916; Whitehead, 1919) is the study of parts and wholes. The basic 

primitive of mereology is the partOf  relationship. BotE reasoning exploits this relationship to 

transform the object in question into other objects that are its parts or constituents. The values of 

quantities  of  subparts  are  systematically  related  to  the  value  of  quantity  of  the  whole.  An 

extensive quantity is a physical property that is dependent on the system size, for example, mass, 

volume, heat, etc.; while an intensive quantity is one independent of system size, for example, 

density, temperature, melting point, etc.  If  Q is an extensive parameter, then,  ?V=Σ?Vi. For 

example, the weight of a basket of fruits is the sum of the weights of all the fruits and the basket. 

This heuristic method requires making a closed world assumption, namely, that we know all the 

parts of the original object. In order for this method to be applicable, the parts should be non-

overlapping along the quantity. 
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Many  objects are distributed into subparts by a Zipf or Pareto distribution, e.g., 80% of 

the world population is contained in the twelve most populous countries. This is an ecological 

argument  that  allows  us  to  extend  the  applicability  of  the  mereology  heuristic  method  to 

situations when all the subparts are not known. If O is homogeneous, i.e., composed of the same 

kind of objects, then the above sum reduces to a product of the number of parts and the value for 

each part, ?V=n*Σ?V'. In some situations, homogeneity can be an assumption to approximate a 

more complex calculation involving all the subparts.

If Q is an intensive parameter like density, we look for the constituents of O. In this case, 

we need to know all the constituents and for each of them the fraction that they constitute of the 

whole, then, ?V=Σwi*?Vi, where wi is the fraction of the ith part. For example, the density of a 

mixture is the weighted average of the densities of the constituents. Once again, we can relax this 

method in cases when we do not know all the constituents, as long we know most of them, e.g., 

the density of human body is very close to that of water, as water is the largest constituent.

2.7.1.2 Similarity

The similarity heuristic method transforms the object into other object(s) which are similar to it. 

For example, when trying to estimate the rent for an apartment, a similar apartment in the same 

neighborhood whose rent is known is a reasonable guess. We call this value from the similar 

example as an  analogical  anchor.  As a first  pass,  this analogical  anchor is evaluated for its 

plausibility for the value sought. If two objects are similar, it doesn’t warrant the inference that 

values of all the quantities for two objects are similar. For example, another grad student in my 

department  probably  gets  paid  similar  to  me,  but  doesn’t  necessarily  weigh the  same.  Two 
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similar basketball players might have similar height, but two professors might not. This notion of 

what features can be inferred from a similar  example was called  projectability by Goodman 

(1955/1983). There is increasing psychological evidence that projectability is based on centrality 

of the feature [Ahn et al, 2000; Hadjichristidis et al, 2004]. A feature is central to the extent that 

features depend on it. In our above example, height is central to basketball players, but not to 

professors.  We have operationalized this notion of centrality  as the structural  support  of the 

inference in computation of similarity using the Structure Mapping Engine [Falkenhainer et al, 

1989]. The structural support quantifies how causally connected that quantity is to other aspects 

of both the problem and the similar example.

Furthermore,  the  analysis  of  the  comparison  between  the  problem  and  the  similar 

example provides the grist for computing adjustments from the analogical anchor to improve the 

estimate: for example, one might notice that the apartment that they were reminded of is smaller, 

and  is  in  a  slightly  less  desirable  location.  Let's  assume  that  the  domain  knowledge  about 

apartments contained the following causal relationships: 

• A larger apartment has higher rent, all things being equal. 

• The more desirable the location, the higher is the rent, all things being equal. 

These  facts  suggest  that  the  estimate  of  rent  should be more  than the  rent  of  the  reminded 

apartment.  Just  how  much  more?  The  effect  of  location  on  rent  can  vary,  and  in  some 

neighborhoods, it might be stronger than others. At this point, one can use other examples to 

determine just how strong that effect is. We call these adjustments based on causal knowledge 

causal adjustments. The final estimate is generated by adjusting the analogical anchor to reflect 
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the causal adjustments. Chapter 3 gives more details about the representations and the algorithm 

that implement the similarity heuristic method.

2.7.1.3 Ontology

The ontology heuristic method tries to find other objects from the ontology hierarchy which 

might be used to guess the quantity in question. In the simplest form, if O is an instance of O1, 

then we can use the knowledge about the class to guess the value for the instance. For example, 

if we know that Jason Kidd is a point guard8, then we can use the knowledge that point guards 

are  relatively  shorter  than other  players  on the  team to guess  his  height.  If  we  didn’t  have 

information about point guards, we could even use the fact that Jason Kidd is a basketball player 

to  guess  his  height.  As  in  the  similarity  heuristic  method,  the  accuracy  of  the  estimate  is 

proportional to the centrality of the quantity.

Clearly, the further we are in the ontology from the original object, the less accurate will 

be  the  estimate.  Here  we  describe  the  stopping  strategy  for  the  ontology  heuristic  method. 

Conceptually, the category hierarchy can be considered as specific → subordinate→ basic-level

→ superordinate [Rosch, 1975]. An example of the four levels of hierarchy will be a specific 

chair in my living room, armchair, chair, furniture. In this framework, we can see that not only 

the accuracy decreases as we go higher, but also that the basic level category is a good stopping 

point. Markman and Wisniewski [1997] have argued that the basic level category maximizes the 

within category alignable differences [Markman and Gentner, 1996]. The subordinates are too 

similar,  and the  superordinates  have  too few commonalities  which  decreases  the  number  of 

8  The point guard is one of the standard positions in a regulation basketball game. Typically one of the smallest players on the 
team, the point guard’s job is to pass the ball to other players who are responsible for making most of the points.
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psychologically relevant differences. Thus the basic level categories are defined as those that 

maximize the number of alignable differences. A much simpler stopping strategy is the variance 

heuristic: compute the variance of values of known instances of a category, if it is more than a 

threshold value, do not use this as an estimate. 

2.7.2 Quantity-based Heuristic Methods

2.7.2.1 Density

The density heuristic method converts a quantity into a density quantity and an extent quantity. 

Here, density is used in a general sense to mean average along any dimension: we talk of electric 

flux density, population density, per capita income, etc. Rates, averages, and even quantities like 

teachers per student are examples of densities. For example, the number of K-8 teachers in the 

US can be estimated by multiplying the number of teachers per student by number of students. 

This  heuristic  method  exploits  the  fact  that  many  numbers  and  statistics  are  more  readily 

available  as  densities.  If  an  explicit  density  value  is  not  available,  for  example,  per  capita 

income, then one can estimate it by looking at a typical example, or averaging a set of examples, 

or using the mereology strategy; depending upon the amount of knowledge available. 

2.7.2.2 Domain Laws 

This is a family of heuristic methods that uses domain laws to convert a quantity into other 

quantities.  Domain  laws  include  laws  of  physics  as  well  as  rules  of  thumb.  For  example, 

Newton’s  second  law  of  motion,  F=m*a,  relates  the  force  on  an  object  to  its  mass  and 

acceleration.  The application of domain laws by the problem solver requires formalizing the 

assumptions  and  approximations  implicit  in  the  laws.  This  has  been  well  explored  in 
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compositional  modeling  [Falkenhainer  and  Forbus,  1991;  Nayak,  1994].  In  BotE  reasoning, 

aggressively applying approximations to simplify the problem solving becomes crucial. Some of 

the approximations are: 

1. Geometry: Assume simplest shape, e.g. Consider a spherical cow [Harte, 1988].

2. Distribution: Assume either a uniform distribution, or a Dirac-delta (point mass). 

3. Calculus:  Integrals  can  be  simplified  by  sums  or  average  multiplied  by  extent,  and 

differentials by differences. 

4. Algebra: Use simplification heuristics to reduce the number of unknowns [Pisan, 1998]. 

2.7.3 System-based Heuristic Methods

System-based methods represent relationships between quantities of a system as a whole. They 

transform the quantity and the object in question into other quantities and objects simultaneously. 

It would seem that this effect can be obtained by sequentially applying a quantity-based and an 

object-based heuristic method (or vice versa) since all  the above methods are compositional. 

There are two reasons for considering this as a separate type of heuristic method: 1) it represents 

a reasoning pattern that is different, 2) sometimes it is much more efficient to apply a system-

based heuristic method, e.g., applying conservation of momentum leads to safely ignoring all the 

internal  forces  which  need  to  be  made  explicit  otherwise.  The  two  system-based  heuristic 

methods are described next. 
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2.7.3.1 System Laws 

This class consists of physical laws that are applicable to a system as a whole. Many physical 

quantities remain conserved (or are “invariants”) for a system, e.g., energy, mass, momentum, 

angular momentum, etc. As a result of this, often one can write a balance equation that relates the 

expressions that denote the value of the quantity in two different states of the system. To avoid 

profusion of such balance equations between any two states, it is important to introduce them 

only if they relate mostly known parameters and introduce fewer new unknown quantities. In 

applying such a balance, appropriate assumptions about the system in consideration have to be 

made. For instance, while applying conservation of energy, we make a closed world assumption 

that there are no other sources or sinks in the scenario. 

2.7.3.2 Scale-up 

This is often an empirical heuristic method. A smaller model that works under the same physical 

laws can be used to estimate the quantity values for a full-scale system. To ensure that the scale-

up is valid, all the dimensionless groups must be kept the same in the model and the prototype. 

For example, the Reynolds number is a dimensionless group that corresponds to the nature of 

flow (laminar,  transient  or  turbulent),  and for  a  flow model  to  be  valid  for  scaling  up,  the 

Reynolds number must be the same in both situations. 

2.7.4 Reasonableness and Comprehensiveness

Estimation  models  are  constructed  by applying  heuristic  methods  to  transform the  problem. 

Heuristic  methods  are  patterns  of  reasoning  that  yield  reasonable answers  and  provide 
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comprehensiveness.  Next  we  define  reasonableness  and  comprehensiveness,  which  are 

analogous to notions of soundness and completeness in formal logic. 

Reasonableness: What is reasonable varies depending upon the domain and task at hand. We 

said earlier that a factor-of-two accuracy is reasonable for BotE estimates. However, for many 

examples, like estimating the increase in Earth's temperature due to increasing greenhouse gases 

in  the atmosphere over  the next  twenty years,  we do not  know the “correct”  answer.  Yet  a 

reasonable  estimate  is  quite  valuable.  In  cases  like  these,  reasonableness  is  established  by 

providing valid justifications and showing that multiple approaches converge to a similar answer. 

The justification consists of facts, axioms, heuristic methods and their dependency structure used 

to arrive at  the answer.  Heuristic methods can be contrasted with domain specific laws like 

Newton's second law or Stokes law for computing drag force, where we are guaranteed a correct 

answer  in  the  framework  of  that  law's  applicability.  Heuristic  methods  are  more  broadly 

applicable at the cost being reasonable instead of accurate, allowing us to be able to answer 

questions  that  will  be  impossible  to  answer  using  domain  specific  laws.  To summarize,  the 

properties of a reasonable answer to a question are: 

• It has a valid justification. 

• It is similar to other answers to the same question with different justifications. 

• It  is similar to the correct answer to the question. (Optional,  when answer 

available)
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Comprehensiveness: The goal of BotE reasoning is to be able to produce a reasonable estimate 

quickly and despite missing knowledge. In the next section we present heuristic methods for 

answering BotE questions. The comprehensiveness of a set of  heuristic methods is the fraction 

of  all  questions  (of  the  class,  e.g.,  all  BotE  questions)  that  they  can  be  used  to  generate 

reasonable answers for. A comprehensiveness of 1 will indicate that we are guaranteed to answer 

any question of that class using the given set of heuristics. For open ended domains like BotE 

reasoning it might be difficult to establish the value of comprehensiveness. One approach might 

be  to  do  an  empirical  analysis  with  a  large  sample  of  questions  of  that  type  to  assess  the 

comprehensiveness of the heuristics. Weak methods like hill-climbing and means end problem 

solving [Newell  and Simon 1963] have high comprehensiveness  with two caveats  – 1) they 

assume  a  fully  represented  domain  theory,  and  2)  they  can  take  unbounded  computational 

resources.

2.8 Corpus Analysis of Swartz's Back-of-the-Envelope Physics

BotE reasoning is very powerful because of its applicability to many domains. Clearly a human 

expert,  or  a  computer  problem  solver,  can  do  better  with  more  quantitative  and  heuristic 

knowledge.  The above analysis  is  an attempt to  identify the core heuristic  methods in BotE 

reasoning.  In  this  section we present  supporting  evidence  for  the  comprehensiveness  of  the 

heuristic methods. 

We arrived at these heuristic methods by an analysis of the knowledge that our problem 

solver was using. To examine the comprehensiveness of this set of heuristic methods, we then 

manually went through Clifford Swartz’s “Back-of-the-envelope Physics.” Swartz’s book is a 
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collection of estimation problems (along with solutions) from various domains in physics. Some 

examples of questions discussed in Swartz's  book: How much heat is  generated by an adult 

human? How much centrifugal force is experienced by a rider in a typical carousel? Even though 

the goal of our work is not tied to Physics, this provides an independent confirmation about our 

heuristic methods.

We looked at all the problems (n=44) from Force and Pressure, Rotation and Mechanics, 

Heat, and Astronomy. These domains represent a wide variety of problems. For every question, 

we first identify the quantity (Q) and the object (O). Then, we went through the worked out 

solution and extract all the quantities and objects mentioned. Every time a new quantity-object 

pair is introduced, we count that as a transformation which is classified as one of the seven 

heuristic methods or “other” category. Swartz's worked out solutions fortunately follow a similar 

scheme as the model presented above: he builds an estimation model, and plugs in the numbers 

and does the arithmetic as the last step. This model includes all of the transformations counted 

above, and is used for doublechecking them. We counted an application of the ontology strategy 

only if it was specifically mentioned, since trivially almost all problems apply that method, as 

most problems are not about specific instances but classes of things. 

Table  I  shows  the  results  of  our  empirical  analysis.  The table  shows  the  number  of 

instances of each heuristic method, and the corresponding percentage, for Swartz’s book as well 

as for the set of problems that BotE-Solver can currently solve9.

9  The set of problems solved by BotE-Solver is different from those in Swartz’s book. BotE-Solver’s problems are from 
commonsense domains instead of Physics. 
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Table 2.1: Distribution of heuristic methods in Swartz's book.

Heuristic method
    ↓

Number of 
times used.

% of times used

H1 Mereology 11 14
H2 Similarity 5 6
H3 Ontology 6 8
H4 Density 10 13
H5 Domain laws 29 37

H6 System laws 11 14

H7 Scale-up 2 3
Other 5 6
Total 79 100

Some observations from table 2.1: 

Coverage: The seven heuristic methods account for 94% of transformations in the problems 

from  Swartz’s  book.  The  5  in  the  “other”  category  contain  four  instances  of  designing 

experiments  to  estimate  a  quantity,  and  one  instance  of  a  complex  problem from statistical 

mechanics. The experimental strategies exploit one or more of the seven methods, but there is 

considerable complexity in designing a good experiment.  We focus on conceptual back of the 

envelope  problems.  The  three  syntactic  possibilities  for  heuristic  methods  –  object-based, 

quantity-based  and  system-based  are  complete.  Furthermore,  our  analysis  of  problems  from 

various domains and our problem solver that we will present in Chapter 4 leads us to conjecture 

that the seven heuristic methods are comprehensive for the task of back of the envelope problem 

solving. 
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Domain-specificity: Heuristic methods H1 through H4 are domain independent, and account for 

40% of  transformations,  while  60% of  transformations  are  domain specific,  with the  largest 

component being domain laws.

 

2.9 Summary

We presented a formalization for problems and heuristic methods for BotE reasoning.  Using this 

representation,  we  described  the  three  syntactic  possibilities  for  types  of  heuristic  methods: 

object-, quantity- and system-based. We then described the seven heuristic methods, which we 

claim provide broad coverage for BotE reasoning. The analysis of worked out problems from 

Swartz's Back-of-the-Envelope Physics book was presented to support this claim. 
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Chapter 3:  A Theory of Quantity Sense

3.1 Introduction

Quantities are ubiquitous and an important part of our understanding about the world. Mileage 

of  cars,  the  budget  deficit  of  the  country,  heights  of  people,  etc.,  are  some  examples  of 

quantities.  A facility  for  quantities,  which  we describe  as  quantity  sense,  is  important  for 

making decisions and arguments about why a course of action is better than another – for tasks 

ranging from buying groceries to choosing which policy to support. This chapter addresses the 

representational  and computational questions underlying quantity sense:  1) What do people 

learn about quantities?, and, 2) How do people learn about quantities? 

Our answers to these questions can be summarized as the Symbolization By Comparison 

(SBC)  theory:  People’s  knowledge  about  quantities  consists  of  qualitative  representations: 

symbolizations of the continuous quantity, which are built by the process of comparison. These 

symbolizations  consist  of  named  points  and  intervals  on  the  scale  of  quantity  that  capture 

distinctions of quality, e.g., boiling point and poverty line, and distinctions of quantity, e.g., tall 
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and short. We present evidence from Psychology and Linguistics, and arguments from ecological 

and  task/reasoning  constraints  that  support  the  SBC  hypothesis.  We  describe  CARVE,  a 

computational instantiation of the SBC theory: it learns qualitative representations of quantity 

from exposure to examples. 

We present a functional evaluation of CARVE: we show that representations generated 

by  CARVE  lead  to  more  accurate  estimates  in  an  analogical  estimation  task.  Analogical 

estimation is using a similar example to make a numeric estimate. For example, the price of a 

used car might be similar to another car of the same make and mileage. In order to use analogies 

to make numeric estimates, our analogical matching algorithms should be sensitive to quantities 

in the first place. Most models of similarity do not adequately handle numeric properties – either 

ad  hoc  similarity  metrics  such  as  Euclidean  distance  are  used,  or  the  numerical  values  are 

completely ignored in the matching and retrieval processes. The SBC theory presents a different 

approach to the problem of incorporating quantities in similarity models by proposing that the 

solution lies in better representations, not in the similarity metrics. 

The next section defines the basic terms used to describe quantity sense, and describes 

the space of quantitative knowledge. Section 3.3 presents a review of literature in education, 

linguistics,  qualitative  reasoning  and  psychology  that  bears  on  quantity  sense.  Section  3.4 

presents the constraints on cognitively plausible representations of quantity. Section 3.5 goes into 

further  detail  about  the  distinctions  that  should  be  made  in  our  representations  of  quantity. 

Section 3.6 describes CARVE. Section 3.7 describes analogical estimation, verbal protocols of 

experts on an estimation task, and KNACK, the computational model of analogical estimation. 

We then conclude in Section 3.8. 
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3.2 Quantity Sense

The  notion  of  quantity  is  quite  broad,  and  there  is  a  substantial  literature  in  psychology, 

linguistics  and qualitative  reasoning (QR) on many different  aspects  of  it.  We begin with a 

description of various terms used in describing quantities.

3.2.1 Definitions and Terminology

Descriptions of specific objects or abstract categories consist of attributes (also called features or 

properties), e.g., a description of dog might consist of size, color, pedigree, etc. The set of values 

that an attribute takes is called a scale. There are four types of scales: 

1) Nominal: Attributes like gender, color, and ethnicity have values that belong to nominal 

scales,  e.g.,  {male,  female}.  The only operation of comparison on a nominal  scale is 

whether two values are same or different. 

2) Ordinal: The values on an ordinal scale can be ordered, however, the differences between 

them are indeterminate, e.g., the scale of U.S.D.A beef ratings is {good, choice, prime}. 

The operations allowed on an ordinal scale are >, <, and =. It is not possible to add or 

subtract values. More specifically, the set of ordinal values are not closed under such 

operations if a fixed set of values is allowed. 

3) Interval: The intervals between the adjacent values on an interval scale are equal with 

respect to the attribute being measured,  e.g.,  Temperature in Fahrenheit  is an interval 

scale: the difference between 32 F and 33 F is equal to the difference between 84 F and 
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85 F. Besides comparison, operation of addition and subtraction are allowed on these 

scales.

4)  Ratio:  When a scale has equidistant  adjacent  points (an interval  scale),  as well  as a 

meaningful zero point (e.g., temperature in Fahrenheit does not – what value denotes the 

absence of temperature?), then it is a ratio scale. As a result, operations of multiplication 

and division are allowed on these scales. For example, income, or age are examples of 

ratio scales. 

What  scale  might  be  used  to  describe  an  attribute  is  a  function  of  one’s  knowledge  and 

representation. For example, color values could be represented as any of the four scales above. 

We will call the attributes that take values on ordinal, interval and ratio scales as quantitative 

attributes,  or,  quantities.  Quantities can be conveniently represented numerically,  as numbers 

have all the properties to support the operations on all of the scales. 

There are two types of quantities: counts and measures. The simplest type of quantity is 

counts, for example, the count of legs of a dog is four. Linguistically, count nouns are objects 

that  allow  modification  by  a  number  directly.  Counts  directly  map  on  to  whole  numbers. 

Measures are more complex: there is no number directly ascribable to an amount of water, or a 

specific temperature. To understand measures, we need to understand the notions of  units and 

dimensions. Dimension is a formalization of comparability of quantities. For example, wingspan 

of birds and height of people are different quantities and have different scales, but have the same 

dimension of length. Associated with a dimension is a unit of measurement, a standard that is 

agreed upon and reproducible by others. Measuring the amount of water involves counting the 

(real)  number  of  units  of  the  amount  dimension,  volume,  in  the given water.  Being able  to 
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measure also involves knowing the logic of measurement and operation of measuring tools like 

balances  and  scales  of  various  kinds.  Standardized  units  and  dimensions  are  scientific 

conventions and are provided to most people via education. 

However, we start learning about many of the quantities like size and weight on our own 

very early on [see for example, Smith, 1984]. By a combination of labels provided by language – 

dimensional  adjectives  [Bierwisch,  1967]  like  tall,  heavy,  expensive  –  we learn  to identify 

quantities  and abstract  the  scale  of  values  that  they can  take.  To reiterate,  a  quantity  is  an 

attribute whose space of values (or scale) has ordinal, interval or ratio scale properties. 

3.2.2 The Space of Quantitative Knowledge

There are many types of quantities: directly perceivable, e.g., length; less directly perceivable, 

e.g., acceleration; conceptual, e.g., GDP and IQ; and subjective, e.g., spice-level in food. These 

quantities are involved in a variety of reasoning tasks: comparison, classification, estimation and 

arithmetic.  Our knowledge about quantities is of various kinds:  we understand that there are 

Expensive and Cheap things, that Canada is larger (in area) than the USA, that basketball 

players are usually tall, that the boiling point of water is 100 degrees Celsius. 

Figure 3.1 shows some of the different  research themes exploring questions in  the space of 

quantitative knowledge. This picture might indicate more order and structure than there is in 

cognitive quantitative skills: we do not know what developmental and conceptual connections 

between various boxes in the figure. Each box in the figure concern a type of knowledge and/or 

reasoning process, and we mention seminal references that exemplify it. 
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Our knowledge of quantities is influenced by at least two broad directions: experiences 

and instruction. At the heart of our quantitative abilities is the core cognitive infrastructure for 

representing counts and continuous magnitudes, shown in Box 1 in the figure. Although there is 

disagreement between theoretical interpretation and details, it  is well established that humans 

(along with many other animals) possess a language independent, non-verbal ability to count 

small  numbers  (1/2/3  and  sometimes  4),  and  approximately  estimate  large  numerosities 

[Dehaene,  1999;  Gallistel  and  Gelman,  2000].  This  has  been  called  number  sense  in  this 

literature10. On the education side, mathematics provides powerful abstractions: numbers (reals 

and integers) to describe quantities. Knowledge of units and dimensions, and causal laws enable 

powerful qualitative and quantitative reasoning. 

10  Math educators have included other quantitative skills like measurement, estimation and arithmetic when using 
the phrase “number sense,” sometimes using it in place of the more popular “numeracy.” [Madison and Steen, 
2003 (Quantitative Literacy)]
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On the experiences side, we begin with perceptual knowledge of sizes, weights, colors, etc (2), 

and  slowly  extract  more  abstract  dimensions.  We  further  build  qualitative  abstractions  of 

continuous quantities. Some examples include  tall and  short for the quantity of height of 

people;  poverty line, lower class, middle class and upper class for 

income of people; freezing point and boiling point for the temperature of water. We 

will  refer  to  such  qualitative  abstractions  of  the  continuous  as  symbolizations.  Expertise  in 

quantitative  domains  consists  of  building  and  mapping  symbolizations  on  to  the  scale  of 

quantities: having a sense of reasonable, high and low values, and causally significant points and 

intervals. We will refer to this set of skills and learning mechanisms as quantity sense. 

These symbolizations and their mapping onto quantitative values seem to be determined 

by a mixture of personal experience (e.g.,  what I consider to be  spicy in regards to food), 

society (e.g., middle class), science (e.g., phase transitions). Some are task-specific – one makes 

more  distinctions  than  freezing  and  boiling  for  bath  water.  Furthermore,  some  of  these 

symbolizations have been said to be vague [Varzi, 2003], in the sense that it is not possible to tell 

exactly  at  what  value of  height  one becomes tall.  Given these concerns,  there is  little  work 

addressing the issue of finding systematic principles behind such symbolizations. In this chapter, 

we take a closer look at what our representations of quantities contain, guided by cognitive and 

linguistic evidence, and ecological constraints on our knowledge of quantities.  We address the 

following two fundamental questions about people’s knowledge of quantities –  

• Representational:  What  do  our  representations  of  quantity  look  like?  Or,  what 

representational machinery is needed to make the distinctions that we do?

• Computational: How are these representations built with experience? 
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These are questions about how cognition works, as well as about how the world is organized. To 

quote  William  James  (1890),  “The  components  of  an  absolutely  changeless  group  of  not-

elsewhere-occurring attributes could never be discriminated. If all cold things were wet, and all 

wet things cold; is it likely that we should discriminate between coldness and wetness?” This is 

opposed  to  Bierwisch  (1967),  who  argued  that  dimensional  adjectives  do  not  represent 

“properties of surrounding world in the broadest sense, but rather certain deep seated properties 

of the human organism and the perceptual apparatus.” 

This  distinction is  important,  as many of representations  of quantity (for example,  in 

scientific  domains,  and  thus  those  in  Qualitative  Reasoning)  tend  to  have  the  underlying 

perspective  of  representing properties  of the world  in some optimal fashion.  The  Boiling 

Point, for example, seems to be more a property of the world than the notion of Expensive, 

which  seems  more  variable  and  harder  to  formalize.  For  example,  consider  the  quantity 

temperature which has associated adjectives like cold, tepid, lukewarm, warm, and hot.   We 

argue that those linguistic distinctions play an important role in our representations of quantity 

and their  development.  The quantity  space  representation  [Forbus,  1984]  has  the  expressive 

power that our representations of quantity seem to have, and we extend and provide cognitive 

and linguistic evidence in its support. The quantity space representation provides an important 

insight:  only  the  necessary  and relevant distinctions  should  be  made.  However,  it  does  not 

provide us with an algorithm to automatically discover those necessary and relevant distinctions, 

which is the subject of section 3.4. 
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3.3 Background and Motivation

This section presents a background of relevant research from education, linguistics, psychology 

and  qualitative  reasoning.  We  begin  with  high-level  motivation  coming  from  mathematics 

education.  Since  we evaluate  our  theory in  the  context  of  analogical  estimation,  we present 

deficiencies in the current models of similarity, retrieval and generalization. 

3.3.1 Education 

One of the goals of an education is to instill quantitative knowledge and reasoning required in 

everyday life of an informed citizen. On one hand, we have increasingly increased amount of 

quantitative information available – “the world of the twenty-first century will be a world awash 

in numbers” [Steen, 2001]. On the other hand, studies testing quantitative knowledge and skills 

portray a dismal picture [Corle, 1960, 1963; Swan and Jones, 1971, 1980; Sowder, 1992; Linder, 

1999].  Cockroft  [1982]  was  one  of  the  first  to  popularize  “numeracy”  as  an  important 

educational  goal,  while  “innumeracy”  seems  to  be  the  state  of  affairs  [Paulos,  1988].  An 

important contribution of the research from mathematical education has been the identification 

and  organization  of  various  quantitative  skills:  counting,  measuring,  estimating,  mental 

computation, and arithmetic,  to name a few. Many labels,  for example, numeracy [Cockroft, 

1982], quantitative literacy [Porter, 1997], empirical mathematics [Packer, 2001], and number 

sense  [Greeno,  1991]  have  been  used  to  describe  different  combinations  of  knowledge  and 

reasoning abilities related to quantities.
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3.3.2 Linguistics

In language, one of the ways in which symbolizations get represented is by relative adjectives 

like  large and  tall.  Relative  adjectives  are  different  from  absolute  adjectives  like 

rectangular, red and married in the sense that (1) they can imply varying degrees of the 

property in question, as opposed to all-or-none for the absolute adjectives, and (2) their meaning 

varies with context, e.g., tall means different things in context of people and buildings. 

These adjectives have been variously called degree, relative, gradable or dimensional adjectives 

[Bierwisch 1987]. Here we will stick to the term dimensional adjectives, emphasizing our focus 

on those that denote quantity. It has been proposed that dimensional adjectives denote measure 

functions that maps from objects to quantity values/ intervals [Kennedy, 2003]. It has long been 

recognized by linguists that dimensional adjectives convey an implicit reference to a norm or a 

standard associated with the modified noun [Sapir, 1944]. This implies two steps in interpreting a 

phrase like “a large  x”: (1)  x  establishes a  comparison class.  A comparison class is a set of 

objects that are in someway similar to x. For instance, in some cases, this comparison class might 

be the immediate superordinate of the subject [Bierwisch, 1971, see Vogel, 2004, for an analysis 

of Swedish dimensional adjectives]. How to obtain the comparison class is an open question. 

Staab and Hahn (1998) propose a computational model that uses knowledge about correlations to 

determine  comparison classes  on  the  fly.  (2)  Once  the  comparison  class  has  been found,  a 

standard of comparison is computed for the class. It is usually believed that this is the norm 

value of the property for the comparison class, but Kennedy (2003) observes that it can also be 

the minimum or maximum (e.g., full and open). 
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An important  observation  is  the  pervasiveness  of  symbolized  distinctions  of  quantity 

across  languages.  Even  languages  and  cultures  with  very  limited  numeric  vocabulary,  for 

example, the  Pirahã tribe in Amazonia [Gordon, 2004] and Munduruku [Pica et al., 2004], an 

Amazonian  language  have  the  equivalent  notions  of  “small”  and  “big”11.  In  contrast,  such 

representations are not very common in formalizations of natural sciences. Knowing that the 

water is “hot” does not necessary sanction application of any physical law (while knowing that 

the water is hotter than the atmosphere, or at a temperature more than boiling point, does). We 

believe that the pervasiveness of dimensional adjectives in language is because of their role in 

processes of comparison: being large makes two things similar in the same way being red does. 

Discovering phase transitions might be a big scientific achievement, but words like “tall” and 

“hot”  are  a  compressed  record  of  many  comparisons,  and  help  setup  implicit  ordinal 

relationships in descriptions. 

Two major issues that are little addressed in this literature are: 1) There is no general 

account of the comparison set12, and 2) There is no concrete account of how the norm or standard 

of  comparison for  a  set  is  computed.   In  cases  where we are referring to  stable  taxonomic 

categories like insects and countries,  it  is believed to be some kind of central  tendency. But 

clearly, it is more than a central tendency, since that would imply that most things in this world 

will be either large or small, as not many will be exactly equal to the norm.  

11  Both the works cited were focused on exploring the concept of number and arithmetic. However, the notion of 
quantity is different from that: one might have a very good notion of how heavy things are (a quantity), without 
being able to describe that in any numeric terms. 

12  Consider: 1) seeing your nephew after a year during which he had a growth spurt and exclaiming, “You are 
tall!” 2)  or the disclaimer on coffee cups in the US, “Caution: the contents are hot.”  In both these cases 
comparison sets are not taxonomic.
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3.3.3 Qualitative Representations of Quantity

One  of  the  goals  of  qualitative  reasoning  research  has  been  to  understand  human-like 

commonsense reasoning without resorting to the preciseness of models that consist of differential 

algebraic equations and parameters that are real-valued numbers. There is a substantial body of 

research in QR that has shown that one can, indeed, do a lot of powerful reasoning with less 

detailed  and  partial  knowledge  [Forbus,  1996].  Qualitative  reasoning  has  explored  many 

different representations:  status algebras (normal/abnormal); sign algebra (– , 0, +), which is the 

weakest  representation  that  supports  reasoning  about  continuity;  quantity  spaces,  where  we 

represent a quantity value by ordinal relationships with specially chosen points in the space; 

intervals and their fuzzy versions; order of magnitude representations; finite algebras, among 

others. The representations differ in the  kind of distinctions that they allow us to make.  While 

these  representations  are  very  promising  for  cognitive  modeling,  there  has  been  little 

psychological  work to date on this.  To echo the questions raised in the introduction, we are 

interested in finding a cognitively sound representational framework for these distinctions, and 

principles for finding the distinctions that we do and should make. 

        Our answer to the first  question raised in the introduction is that  the quantity space 

representation, augmented with distributional information, accounts for observations and existing 

evidence from psychology and linguistics. Our answer to the second question is the first attempt 

to come up with a general theory of what distinctions to make. Sachenbacher and Struss (2000) 

attacked  a  similar  problem.  They were  interested  in  finding  the  right  distinctions  given  the 

reasoning  task.  Here  we  are  more  concerned  with  cognitively  plausible  distinctions  –  for 
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example,  the  distinctions  that  are  made  in  natural  language  on the  space  of  values  that  the 

quantity takes.   

3.3.4 Relevant Psychological Phenomena

3.3.4.1 Context sensitivity

Rips (1980) considers two hypotheses about how absolute and relative adjectives might be stored 

in memory – Pre-Storage and Computational model. For absolute adjectives like married and 

pink, he accepts the pre-storage model, where these predicates are stored with the concept they 

apply to. But because of context dependence of relative adjectives like big, e.g., in, “Flamingos 

are big”, he argues against storing these predicates in memory. We might have a predicate pink 

attached to flamingo, but in order to decide a flamingo is larger than an eagle, we might need a 

predicate  is-larger-than-an-eagle associated with flamingo, which then deescalates 

into having infinitely many of those like  is-larger-than-turnips and so on. He also 

observes that relative adjectives don’t propagate in a isa hierarchy – e.g., Grasshoppers are large 

insects does not imply Grasshoppers are large animals, but if you replace ‘large’ by ‘green’, the 

implication  is  right.  He  then  shows  reaction  time  and error  rates  for  verifying  the  truth  of 

statements containing relative adjectives which supports a different model. In his ‘computational 

model’ no relative information is stored. Attached to every predicate is a normal value, e.g. with 

insects, a normal size of quarter inches. An object is called large if it is bigger than this normal 

size. Once again the problem is that just storing the norm doesn’t tell you when the object can be 
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classified as large. The representation that we propose in section 3.4 solves his concerns with 

pre-storage models. 

3.3.4.2 Reference Points and Categorization Effects in Comparison

The psychological reality of reference points on the scale of quantity has been shown in various 

domains.  Rosch (1975) argued for the special status of such “cognitive reference points” by 

showing an asymmetry – namely that a non-reference stimulus is judged closer to a reference 

stimulus (e.g., the color off-red to basic-red) than otherwise, while such relationship between two 

non-reference stimuli is symmetric. Landmarks are used to organize spatial knowledge of the 

environment which exhibit similar asymmetries [Holyoak and Mah, 1984, among others]. Other 

relevant  psychological  studies  that  support  the  existence  of  reference  points  come  from 

categorical perception [Harnad, 1987] and sensitivity to landmarks [Cech and Shoben, 1985]. 

Brown  and  Siegler  (1993)  proposed  the  metrics  and  mappings framework  for  real-world 

quantitative estimation. They make a distinction between the quantitative, or metric knowledge 

(which  includes  distributional  properties  of  parameters),  and  ordinal  information  (mapping 

knowledge).

3.3.4.3 Models of Retrieval, Similarity and Generalization

Models of similarity and retrieval in case-based reasoning [Ashley, 1990; Leake, 1996; Ram and 

Santamaria, 1997] use numeric information, but they employ ad hoc similarity metrics such as 

Euclidean distance that are not psychologically grounded. In the domain of estimation of length 

of software projects, ANGEL [Shepperd and Schofield, 1996] makes an estimate by retrieving a 
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similar project. The similarity is defined by a numeric error metric that is minimized. However 

successful some of these applications might be, we don’t think they tell us much about how 

numeric quantities are implicated in similarity judgments. 

The structure-mapping engine (SME) [Falkenhainer et al, 1989] is a computational model 

of structure-mapping theory [Gentner, 1983]. Given two structured propositional representations 

as  inputs,  the  base (about  which  we  typically  know more)  and  a  target,  SME computes  a 

mapping (or a handful of them) between the representations. MAC/FAC  [Forbus et al, 1995] is a 

model of similarity-based retrieval that uses a computationally cheap, structure-less filter before 

doing  structural  matching.  It  uses  a  secondary  representation,  the  content  vector,  which 

summarizes the relative frequency of predicates occurring in the structured representation. The 

dot product of content vectors for two structured representations provides a rough estimate of 

their  structural  match.  SEQL  [Kuehne  et  al,  2000]  provides  a  framework  for  making 

generalizations based on computing progressive structural overlaps of multiple exemplars. 

One limitation of these models  – and of other  models  of analogical  processing (e.g., 

ACME  [Holyoak  and  Thagard,  1989,  LISA  [Hummel  and  Holyoak,  1997],  ABSURDIST 

[Goldstone and Rogosky, 2002]) – is that they do not handle numerical properties well. In all 

these models, numbers are treated like symbols, so 99 and 100 are as similar/different as 99 and 

10000.  When  treated  as  symbols,  they  are  both  non-identical  symbols,  but  numerically,  the 

differences in magnitude are quite different. As a consequence, we have the following limitations 

in the retrieval, matching and generalization processes:

Retrieval: Just as Red occurring in the probe might remind me of other red objects, a bird with 

wing surface area of 0.272 sq.m. (that is the Great black-bucked gull, a large bird) should remind 
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me of other large birds. This will not happen in the current model, unless we abstract the numeric 

representation of  wing-surface-area  to a  symbol,  say,  Large.  That  will  show up in content 

vectors and thus contribute to retrieval.

Similarity: : Similarity between two quantities should be computed and combined together in a 

cognitively plausible fashion, which amounts to answering: 1) How to compute similarity along 

a  quantitative  dimension?  And  2)  How  to  combine  similarities  along  different  quantitative 

dimensions?  For  example,  in  current  matchers,  two cars  which have identical  values  for  all 

dimensions have the same similarity as two that differ in some dimensions, if other aspects of 

their representations are identical. 

Generalization: A key part of learning a new domain is acquiring the  sense of quantity for 

different quantities. E.g., from a trip to the zoo, a kid probably has learnt something about sizes 

of animals.

None of the above constraints are upheld in SME, MAC/FAC and SEQL. A large part of this 

deficiency,  we  feel,  is  due  to  poor  representations  of  quantity.  A  symbolic  and  relational 

representation of the kind we propose here would make these models more quantity-aware. 

3.4 Representing Quantity Sense

In this section, we present and argue for a cognitively plausible representation of quantity. There 

are three subsections: 4.1 organizes arguments for what must be contained in our representations 

of  quantity  around  various  constraints,  4.2  presents  the  proposed  representation,  and  4.3 

discusses some implications of this representation. 
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3.4.1 Constraints

A representation of quantity allows us to make certain distinctions. Real numbers allow us to 

make too many, and dividing the range of values into three equal sized parts doesn’t necessarily 

provide useful distinctions. Representations do not arise in vacuum – they are molded by the 

kinds of reasoning tasks we perform with them (reasoning constraints), the underlying reality of 

the things we are trying to represent (ecological constraints), and how we perceive this reality 

(psychological constraints). Based on these, and scattered pieces of evidence from psychology 

and linguistics, we argue that our representational machinery for quantities must contain partially 

(or possibly totally) ordered symbolic reference points (a la quantity space), and distributional 

information about the quantity (or an informational equivalent thereof). 

3.4.1.1 Reasoning Constraints

The three distinct kinds of reasoning tasks involving quantities are:  

1. Comparison: These involve comparing two values on an underlying scale of quantity (or 

dimension13), e.g., “Is John taller than Chris?” Our knowledge of how the quantity varies (its 

distribution), and linguistic labels like Large and Small, are but a compressed record of large 

number of such comparisons. The semantic congruity effect [Banks and Flora, 1977] is the fact 

that we are better and faster and judging the larger of two large things than the smaller of two 

large things – e.g., subjects are faster and more accurate at interpreting “A whale is larger than an 

elephant” than “An elephant is smaller than a whale.” Based on experiments involving adults 

13  Consider “The space telescope is longer than it is wide.” These cross-dimensional comparisons can get quite 
complicated to interpret, e.g., “The Sears tower is as tall as the San Francisco Bay Bridge is long” does not 
literally mean that Height(Sears Tower) <= Length(San Francisco Bay Bridge). See 
Kennedy (2001) for an analysis and implications of such comparisons.
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learning  novel  dimension  words,  Ryalls  and  Smith  (2000)  suggest  that  in  usage,  we  make 

statements like “X is larger than Y” more often than “Y is smaller than X”, if X and Y are both 

on the large end of the scale. This asymmetry in usage is a partial explanation of the semantic 

congruity effect. 

2. Classification: These involve making judgments about whether a quantity value is equal to, 

less than or greater than a specific value14, e.g., Is the water boiling?, Will this couch fit in the 

freight elevator?,  Are they below the poverty line?, etc.  Usually,  such classifications involve 

comparisons  with interesting points on the space of values that  a  quantity can take,  moving 

across which has consequences on other, different aspects of the object in concern. The metaphor 

of  phase  transitions  describes  many  of  such  interesting  points,  although such  transitions  in 

everyday domains are not as sharply and well defined as in scientific domains (consider Poverty 

line versus Freezing point). We talk about this more in the next section. 

3. Estimation: These involve inferring a quantitative/numeric value for a particular quantity, 

e.g., How tall is he? What is the mileage of your car? This is the activity that has the strongest 

connection  to  quantitative  scales  –  one  can  go  a  long  way  in  accounting  for  the  above 

phenomena without  resorting to numbers,  but  estimation involves mapping back to numbers 

[Joram et al. 1998]. Knowledge of interesting points on the scale might play an important role in 

estimation, for example in providing anchors to adjust from [Tversky and Kahmenan, 1974].

These  tasks  are  not  completely  distinct  from  each  other  –  classification  involves 

comparison, and estimation might be used in the service of classification. Two constraints on 

cognitively plausibleplausible representations that follow from the above tasks: 

14  Or corresponding judgments involving intervals.
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1. Our representations  must  keep track of interesting points on the scale of quantity,  to 

classify, as well as to estimate. 

2. Labels  like  large aid  in  making  comparisons,  as  they  setup  implicit  ordinal 

relationships (it is larger than the expected norm), which seem to be references to the 

underlying distribution of the quantity values. 

3.4.1.2 Ecological Constraints 

Quantities vary in a different fashion than nominal attributes. Our representational framework 

must  be  capable  of  capturing  the  interesting  ways  in  which  a  quantity  varies  in  real-world 

instances of it. Here are two different kinds of constraints on values a quantity can take – 

1. Distributional Constraints: Most quantities have a range (a minimum and a maximum) and a 

distribution that determines how often a specific value shows up. For example, the height of 

adult humans might be between 4 and 10 ft, with most being around 5-6.5ft. Tall and Short 

refers to the underlying  distribution of heights of people.  A popular account of dimensional 

adjectives (e.g., “Flamingo is a large bird”) is that it establishes a comparison to an underlying 

categorical norm [Rips, 1980; but see Kennedy, 2003].  But it seems more than just reference to 

the norm; anything greater than the norm is not large or high – it also implicitly takes into 

account the spread of the distributions.  More than just the norm, we can usually talk about the 

low, medium, high for many quantities, which seems to be a qualitative summary of the 

distributional information. There is psychological evidence that establishes that we  can and do 

accumulate distributions of quantities. We describe the most compelling of such studies here – 
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refer to Peterson and Beach, 1967; Fried and Holyoak, 1984; Kraus  et al, 1993; Ariely, 2001, 

among others, for more. Malmi and Samson (1983) presented subjects with one hundred three-

digit numbers, which they were told were SAT scores of two different groups (named PIM and 

DAP). Each “SAT score” was displayed as either of PIM or DAP, and the three-digit number. 

Even when the numbers were displayed for merely 0.5 seconds, subjects accurately estimated 

(within 95% confidence interval of the stimulus mean) the mean for both PIM and DAP samples 

in the case of normal, skewed distributions and bimodal distributions. The last one suggested that 

subjects might be storing more than just a running mean, and so the experimenters tested the 

subjects for how accurately they could reproduce the entire frequency distribution of the sample. 

The subjects  were able to  reproduce the distributions qualitatively,  as well  as quantitatively. 

Surprisingly, the next question of how we partition these distributions has not been raised at all15. 

2. Structural Constraints: A quantity is also constrained by what values other quantities in the 

system take, its relationship with those other quantities, the causal theories of the domain; in 

general,  the underlying structure of representation16.  For instance, for all  internal combustion 

engines, as the engine mass increases, the Brake Horse Power (BHP), the Bore (diameter) and 

the Displacement (volume) increases, and the RPM decreases. These constraints represent the 

underlying mechanism, or the causal model of the object. As we move along the space of values 

a quantity can take, it is possible that we transition into a region where the underlying causal 

story is  different  (e.g.,  ice  starting to  melt,  at  the  freezing  point),  which  induces  extremely 

15  Fuzzy variables [Zadeh 1965] can take on ‘linguistic values’ like Large, Medium and Small; and allow us to 
represent overlapping range of values for these symbols. However, the specific mapping of Large-ness to area of 
countries, for instance, is a choice of the person building the representation, and is not in the scope of fuzzy 
logic. Our focus here is that mapping. 

16  Comic books, mythology, and fantasy, for example, have the freedom to relax this constraint – a character can 
be arbitrarily strong, large, small or be able to fly, even though the physical design of the character might not be 
able to support it.
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important  and  interesting  distinctions  of  quality on  the  space  of  quantity.  Much  of  the 

representations in QR involve such transition points.

These  two  ecological  constraints  point  us  to  the  two  different  kinds  of  information  about 

quantities which must be parts of our representations: 

1. Distributional information about how the quantity varies.

2. The quantity's role in, and relationship to, the underlying structure/mechanism, and the 

points at which there are changes in underlying structure.

3.4.2 Proposed Representation 

Based on the observations in section 3.1, here we propose that our representations must contain 

symbolic reference points and distributional information. 

3.4.2.1 Symbolic references to quantity

A partially, or possibly totally ordered set of symbolic reference points forms the quantity space 

[Forbus 1984]. Any value on the scale can then be represented via ordinal relationships to these 

symbolic reference points.  Quantity space is the minimal representation that supports variable 

resolution. The symbolic and relational nature of this representation automatically makes it much 

more useful in our (structured/symbolic) representational framework. In the original formulation 

of quantity space, these symbols are limit points, those points where different processes/model 

fragments become active or de-active. We will relax that constraint in the discussion to follow 

and see what other kind of reference points are needed. The two main types of symbols in our 

quantity spaces are: 
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1. Distributional  Partitions17:  Symbols  like  Large and  Small,  which  arise  from 

distributional information about how that quantity varies. 

2. Structural Limit Points: Symbols like Boiling Point and Poverty Line, that 

denote changes of quality, usually changes in the underlying causal story and many other 

aspects of the objects in concern. 

Distributional partitions manifest as intervals centered around a norm, and structural limit points 

as  boundaries  demarcating  transitions.  Dimensional  adjectives  like  large depend  upon the 

context. Consider area of African countries: let’s say Algeria is large, Swaziland is small, and 

Kenya is medium sized. We represent this as follows – 

(isa Algeria 

(HighValueContextualizedFn 

Area AfricanCountries))

High/Medium/LowValueContextualizedFn are functions that take two arguments:  a 

quantity  and  a  context  argument,  a  collection  of  objects.  So  in  the  above  example 

HighValueContextualizedFn denotes the collection of large African countries, and the 

isa  statement  says  that  Algeria  is  an  instance  of  that  collection.  The 

LowValueContextualizedFn similarly  lets  us  represent  the  negative  end,  for  instance 

small and cheap.

17  Interesting asymmetry here – Most of the distributional information is symbolized as intervals, and not points. 
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3.5 Necessary, relevant, and more distinctions

In this section we describe structural limit points and distributional partitions with examples. 

3.5.1 Structural Limit Points

Structural limit points are a generalization of the idea of limit points introduced in QP theory. 

One should only make the necessary and relevant qualitative distinctions, QP theory advises us 

[Forbus,  1984].  In  the  domain  of  processes,  QP  theory  provides  the  intuition  for  these 

distinctions:  where  things  change,  i.e.,  different  processes  and/or  model  fragments  get 

de/activated, e.g.,  Freezing Point and  Boiling Point of a liquid. Is there a general 

principle that provides these distinctions for more than just dynamical processes? 

One can always partition the quantity space arbitrarily – so, one could have an ad hoc 

rule that said that we’ll always divide the space between the minimum and maximum into three 

parts – high, medium and low18. We are suggesting that there are some partitions that are more 

natural than others. Some features of the natural partitions – 

Right  level  of  granularity: Freezing Point and  Boiling Point might  be fine for 

reasoning  about  physical  behavior,  but  if  one  is  talking  about  shower  water,  then  more 

distinctions like Cold, Body Temperature, Warm and Scalding Hot might be more 

appropriate. 

Structurally predictive: of other properties of the system, e.g.,  Poverty Line, Lower 

Class, Middle Class, Upper Class. 

18  For example, the Fuzzy logic community does something in the same spirit. 
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The structural constraints on quantities reflect a fundamental fact about the way things are in the 

world. Things in the world come in  packages or  bundles. For example, a “muscle car” has a 

powerful  engine,  is  expensive,  is  designed  for  style  and  fun  rather  than  safety  or  practical 

driving. In psychological literature,  a similar notion is expressed by  attribute co-variation  or 

feature correlation [Malt and Smith, 1984; Kersten and Billman, 1992 and McRae, 1992].  But 

there’s  much more than that – these are not  merely bundles of correlated attributes,  but  are 

structural bundles. The entities, and quantities associated with them, tied by relations and higher 

order  relations  constraining  them,  give  rise  to  the  structure19 therein.   Processes  (as  in  QP 

theory),  are  a  special  case  of  these  structural  bundles  (where  the  key  relationships  are  of 

causality and influence) for the class of dynamical physical systems. Thus, the key idea is:

The necessary and relevant qualitative distinctions correspond to discontinuities  

in the underlying reality as captured by the structure in the representation. 

Let us look at an example – consider people’s income. Poverty line, lower class, middle class 

and upper class define changes of quality on the space of income, as we expect that many other 

aspects  of  people  –  their  lifestyle,  the  amount  of  time/money  they  spend  on  entertainment, 

education, the kind of vacations they have (or do not), the family and social climates in which 

they live, their expectations and relationships to the rest of the social structure,  among other 

parameters, changes as we move across these interesting partitions of the scale of income. 

      Consider the size of dictionaries (as measured in number of pages, volume, or weight). There 

seem to be at least three meaningful distinctions of quality that might be projected on to size – 

pocket,  table-top,  and  library-sized  dictionaries.  The  tradeoffs  for  these  three  types  of 

dictionaries are quite different. The key aspect of the pocket dictionary is portability, and thus it 
19  The structure of relationships is an even more general notion than causality, spatial arrangement, connectivity. 
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has finer print, thinner pages, less detailed meaning, probably not much etymology and usage 

information, etc; the key aspect of the library sized one is comprehensiveness, and thus it follows 

that it  is larger,  heavier,  has a much higher number of entries and even arcane and obsolete 

words, etymologies, usage information, is well bound as it is big and thick, has pages that are 

tougher so as to stand more usage, etc. The table-top dictionary falls somewhere in between. On 

the  dimension  of  size,  thus,  the  distinctions  of  pocket,  table-top  and  library-size  define 

interesting  distinctions  which  have  deep  relationships  to  the  underlying  causal  model,  the 

underlying quality of dictionaries. 

        These changes of quality in the above two examples are reminiscent of phase transitions in 

physics/thermodynamics. In the same way as phase transitions, a set of underlying properties and 

the relationships that tie them together change as we move across the structural limit points. 

There  are  two types  of  phase  transitions:  first-order  (sharp  discontinuity,  e.g.,  solid→liquid 

change), and second-order (where one can continuously move from one phase to another, e.g., 

magnetization)20. The structure of relationships is the analogue for equations of state that hold in 

a particular phase, and the crisp/soft distinctions are analogous to first-/second-order transitions. 

3.5.2 Distributional Partitions

The importance of the structural limit points presented in the previous section is apparent – they 

are predictive of structural properties of the system, and thus quite useful in doing qualitative 

reasoning. Surprisingly, though, the language contains many references to quantity which look 

very  different  from  the  structural  limit  points  or  the  intervals  they  might  imply.  Consider 

20  See Sethna, 1992 for an introduction, and and Gunton et al, 1983 for more detailed explanation
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Large, Tall, Short, Expensive,  etc.  When we say a  large flamingo,  that  is  a 

reference to the distribution of sizes of flamingos and the fact that the particular flamingo we are 

looking at  is  larger  than the  norm. Such distinctions  like  small,  medium,  large,  seem to be 

making  cuts  based  on  the  distribution  of  values  that  the  quantity  takes,  and  the  four  most 

common  distributions  –  uniform,  normal,  skewed,  and  Zipf,  have  different  intuitions.  An 

intuitive understanding of the normal distribution might be that there are fewer short and tall 

people than there are people of regular height (and also that the range of tall and short is larger 

than the regular size). The power law, or the Zipf distribution is an interesting case interesting as 

a meaningful norm for such distributions can not be defined. Are there some systematic ways in 

which people make cuts on a distribution they have abstracted? There is little known about this. 

3.5.3 Implications 

Most symbolic references to quantity have both a structural and distributional interpretation of 

them – so being  Tall has structural consequences, for example, for a basketball player (or a 

gymnast). An interesting issue is the interactions between these two types of partitions. When do 

we choose to use structural partitions, and when distributional? The answer has to do with the 

nature of the quantity. Some quantities are more causally central – i.e., more deeply affect other 

aspects of the system than others (compare horsepower of a car to size of the door handles). In 

the class of examples that we are looking at, there will be a tendency to describe a quantity 

purely using distributional information if –
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• The parameter doesn’t have deep causal connection to the rest of the system, or it 

is  not  causally  central  (in  terms  of  structured  representation,  has  low 

systematicity), e.g.,  height of poets as compared to height of basketball players. 

• There is not much of variation in the underlying structure (as far as is known in 

our representation) at all, e.g., size of adult male penguins. 

Informal analysis of symbolic references to quantity in natural language provides support for the 

representation proposed above in language, but there are differences. 

Prevalence  of  distributional  partitions  over  structural  limit  points: Language  is  full  of 

dimensional adjectives like hot, cold, etc., which usually are distributional partitions; as opposed 

to structural limit points21, which are the kind we find in scientific domains, and thus QR.  When 

one begins to learn a domain, the distributions are accumulated until we know enough to give 

them symbolic labels, and the distributional partitions then helps us build the causal structures 

that then lead to the structural limit points. Dimensional adjectives also allow for flexibility in 

their  usage  and  interpretations,  making  them linguistically  useful.  Distributional  distinctions 

typically manifest as intervals, whereas structural distinctions typically are found as points. A 

plausible conjecture is that intervals are more informal and let us talk about the quantity without 

making commitments to where exactly the transitions happen. 

Crisp versus soft  structural  limit points: Structural  limit  points are less crisp in everyday 

domains as compared to scientific domains. For example, the lines dividing the table-top and 

21  This is true even when the transitions are sharp, e.g., dry  wet. 
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library-sized dictionaries, or the middle and upper classes, are less crisp than the freezing point. 

One plausible reason is the multiplicity and subjectivity of causal models in everyday domains, 

whereas, the equations of state that determine the scientific causal models are simpler and better 

described.  

3.6 CARVE: Symbolization by Comparison

In the previous sections we argued that symbolization of continuous quantities is a key part of 

quantity  sense.  The question  we now address  is  how these symbolizations  are learned from 

experience. This question can be further broken down into: 

1. How do we know which quantities to compare in order to build a scale?

2. How are  the  distributional  partitions  and structural  limit  points  computed from these 

scales?



80

We believe that the key learning process is comparison. Comparison identifies the quantities for 

which it is meaningful to build symbolizations. Structural alignment of two descriptions provides 

us with quantities that align. Alignable differences [Gentner and Markman, 1994] accumulated 

over a large number of examples gives rise to alignable variance. The alignable variance is the 

set of different values that are taken on by an aligned quantity. Consider one starting out to learn 

Cases

1. Identify quantities 
and their scales using 

SEQL

2. Distributional
partitioning using K -
means clustering of 

each scale

3. Compute structural 
clusters with enriched 

cases

4. Compute structural 
limit points by 

projecting the clusters 
along the quantities

Enrich cases with 
distributional 

partitions facts

Enrich cases 
with structural 

limit points facts

Figure 3.2: A schematic of CARVE
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about animals and recording various length dimensions. By comparing various exemplars, one 

might first recognize some of these dimensions that go together, for example, height and length. 

This  gives  rise  to  a  differentiation  of  the  length  dimension  into  two  quantities,  height  and 

length.Furthermore, the alignable variance accumulated for a quantity is the scale of values for 

that quantity. Early on in development, similar processes may give rise to the discovery and 

differentiation of dimensions. We call this process symbolization by comparison. CARVE is a 

computational  model  of  this  process.  It  provides  an  account  of  the  generation  of  both 

dimensional and structural partitions. The input to CARVE is a set of examples represented as 

cases. Cases are collections of facts in predicate calculus that describe an object or an episode. 

CARVE generates symbolic, qualitative representations of quantities in the examples, and the 

output is examples enriched with this symbolic representation. Figure 2 shows the main steps in 

CARVE. We discuss each of the steps in turn.  

3.6.1 Identifying Quantities and Scales

We begin with a set of examples which contain quantitative attributes. A complex example may 

contain various instances of the same type of quantity, for example, a description of a country 

may include its population, as well as populations of cities and states belonging to the country. 

Not all populations should be put on the same scale. It is reasonable to say that New York is 

large and Sri Lanka is small with respect to population, even though there are roughly the same 

number of people in both the places. The goal of this step is to find out the quantity values that 

should be compared on the same scale. Our claim is that those quantities that are comparable 

give rise to a scale. 
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Recall that, according to structure-mapping, we draw analogies between two cases by aligning 

their common structure. Each case’s representation contains entities, attributes of entities, and 

relations. Structure is the connections between elements in the representation. A simple relation 

between two entities has a small amount of structure, whereas a more complex relation between 

other relations in the representation has a deeper structure. SME takes as input two cases: a base 

case and a target case. It finds possible correspondences between entities, attributes, and relations 

in  the  two cases.  It  combines  consistent  correspondences  to  produce  mappings  between  the 

cases. SME attempts to find mappings which maximize  systematicity, the amount of structural 

depth  in  the  correspondences.  SME  also  produces  candidate  inferences  about  the  target  by 

identifying attributes and relations in the base that lack corresponding elements in the target. 

SEQL [Skorstad  et  al,  1988;  Kuehne  et  al,  2000]  provides  a  framework  for  making 

generalizations based on computing progressive structural overlaps of multiple exemplars. In its 

default mode, SEQL works in the following way: when it encounters a new case, it uses SME to 

compare that case to the known generalizations. If the new case aligns with a sufficient amount 

of the structure in one of the generalizations, the case is added to that generalization. Any part of 

the  generalization’s  structure  that  does  not  align  with  the  new case  is  removed,  so  that  the 

generalization continues to represent only the structure found in all of its exemplars.

The examples are given as an input to SEQL, which builds generalizations out of them. 

At this  step,  CARVE extracts  the aligned quantities  from the generalizations,  and the set  of 

values taken by these quantities. The output of this step is  quantities and their scales. 
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3.6.2 Distributional Partitioning

The job of the dimensional partitioning step is to find three partitions, corresponding to Low, 

Medium and High ranges of the values that the quantity takes. These partitions are currently 

generated using a k-means clustering algorithm. It is possible to plug in different heuristics that 

partitions the values into ranges of values. Heuristics based on central tendency and percentiles 

do not work for Zipf-like distributions as they have very high variance. More empirical data is 

needed to determine what set of heuristics people use to make these partitions, and when they 

work.  We  believe,  that  depending  upon  the  distribution  of  data,  people  will  use  different 

partitioning  strategies.  The  clustering  scheme  used  is  useful  across  different  kinds  of 

distributions and can be used incrementally without a priori knowledge of distributions. For each 

fact about the value of a quantity, we then add a High/Medium/LowContextualizedValueFn to 

the case depending upon which range that numeric value fell in. 

3.6.3 Structural Partitioning and Projection

The goal of structural partitioning is to find the structural clusters in the cases (for instance, 

groups  of  developing  and  underdeveloped  nations)  and  project  these  clusters  on  to  various 

quantity  dimensions.  The cases produced at the end of the dimensional  partitioning step are 

given as input to SEQL. In figure 3.3, we see the output of SEQL as three generalizations S1, S2 

and S3 and some leftover  cases  that  did  not  fit  any of  those.  Let’s  consider  two quantities 

Quantity1 and Quantity2. The projection of a cluster on a quantity is the range of values for that 

quantity  in  the  cluster.  For  Quantity1,  we  see  that  the  projections  from  all  the  three 
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generalizations overlap. On the other hand, the projections of the generalization on Quantity2 are 

non-overlapping. We have marked by L1 and L2 the boundaries for these ranges. Notice the 

predictive power of knowing that for a specific case the value of Quantity2 is less than L1. We 

not only know about the quantity value, but about the generalization to which the case belongs, 

and  so  can  predict  other  causal  properties  of  it.  For  instance  knowing  that  a  country  is  a 

developing country allows us to predict other aspects of it. Structural partitions are a reflection of 

our deep understanding of the causal and correlational structure of examples. In science, phase 

transitions, and structural distinctions in socio-economic dimensions were not easily discovered. 

Finding  meaningful  structural  partitions  is  dependent  upon  the  richness  of  such  causal  and 

relational knowledge in the example descriptions. 

Once the structural limit points are found, structural facts for each quantity are generated as 

ordinal representations with respect to the structural limit point. These facts are then added to the 

cases. Next we describe the analogical estimation task, where we show a functional evaluation of 

the representations generated by CARVE. 

Quantity 2

S1 S2
S3

C
j

Quantity 1

L
2

L
1

Figure 3. 3: Finding structural limit points by projection.
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3.7 Analogical Estimation

In this section we explore the question: How do people solve quantitative estimation problems, 

especially in knowledge and experience rich domains? Analogical estimation is using a similar 

example to make a numeric estimate. For example, consider answering the question: How much 

does a two bedroom apartment in the Rogers Park neighborhood of Chicago cost? A similar 

apartment in the same neighborhood or close by might provide a useful estimate. In order to use 

analogies to make numeric estimates, our analogical matching algorithms should be sensitive to 

quantities in the first place. We show that the representations generated by CARVE help make 

more accurate estimates. We begin with a brief and selective survey of relevant research. 

A dominant  paradigm for research in quantitative estimation has been  anchoring and 

adjustment  [Tversky and Kahneman, 1974; Kahneman, 1992]. This heuristic says that people 

make estimates by starting from an initial value that is adjusted to yield the final answer. The 

insufficient adjustment bias suggests that the adjustment process is  biased towards the initial 

values.  This  work  has  been  done  in  domains  ranging  from  information  rich,  real-world 

estimation  (Northcraft  and Neale,  1987)  to  impoverished  guessing (Tversky and Kahneman, 

1974,  Tenenbaum,  in  press).  One  demonstration  of  the  anchoring  bias  involves  the  subject 

making a comparison with an incidental number, called the anchor. Later on, when subjects are 

asked to come up with a quantitative estimate, then their answers are biased towards the anchor 

they were initially given. For example, participants were asked to compare the percentage of 

African nations in the UN as being as higher or lower than an arbitrary number (25% or 65%). 

Following this, they were asked to estimate the percentage of African nations in the UN. The 

mean estimates for the subjects who received the high anchor was 45% compared to 25% for the 
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low anchor. Anchoring effects have been found with both domain experts and novices, e.g., real 

estate  agents  and students  estimating  an appraisal  value for  a  house after  touring through it 

(Northcraft and Neale, 1987). 

There  is  a  growing  body  of  evidence  (Mussweiler  and  Strack,  2001;  Chapman  and 

Johnson, 1999) indicating that anchoring is not a purely numeric phenomenon, but has semantic 

underpinnings. Mussweiler and Strack’s  selective accessibility model of anchoring suggests that 

the anchor causes increased accessibility of anchor-consistent knowledge. For example, with the 

high (65%) anchor in the Africa example, facts like “Africa is a large continent” and “There are 

more  African  countries  than  I  keep  in  mind”  are  retrieved.  The  final  numeric  estimate  is 

generated based on the easily accessible knowledge (Higgins, 1996), so their estimate is heavily 

influenced by anchor-consistent knowledge. This line of argument proposes a semantic priming 

based explanation of the anchoring and adjustment phenomena. Epley and Gilovich (2005) argue 

that  the  standard  “experimenter-provided”  anchors  behave  differently  from  “self-generated 

anchors,” and the former are not very informative about the actual process of adjustment. 

Brown and Siegler (1993) explored quantitative estimation in a three-phase experimental 

paradigm. First, participants are presented a set of items and asked to estimate the value of a 

particular quantity for each item (e.g., populations of countries). Next, they learn the actual value 

of a subset of items (called seed items). Finally, the subjects re-estimate the values of items in 

the initial set. The experimenters found improved estimation as a result of seeding (Brown and 

Siegler 1993, 1996). They found that people access two independent sources of knowledge while 

generating estimates:  1) Metric knowledge: information about the numerical properties of the 

quantity, and 2) Mapping knowledge: non-numerical information about the domain which could 
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be used to order items relative to one another with respect to that quantity. Brown and Siegler 

(2001) have shown that seeds behave differently than anchors. Seeds provide both metric and 

mapping knowledge by providing feedback (“small European countries have fewer people than I 

would have guessed”). In contrast to anchors, seeds can push estimates of target items away from 

their own values. These data suggest that quantitative estimation is not a purely numeric task: 

non-numeric knowledge is used to construct estimates

.

3.7.1 Verbal Protocols of Analogical Estimation

To observe how experts utilize similarity and causal relationships in real world estimation tasks, 

we conducted a protocol analysis  of experts doing realistic estimation tasks. The goal of this 

study is to determine the extent to which experts use analogical estimation, specifically if they 

use  analogical  anchors  and  make  causal  adjustments  while  estimating.  We interviewed  two 

experts  in  two  different  domains,  an  employee  at  a  used  car  dealership  with  two  years  of 

experience and a  apartment  realtor  with five years  of  experience.  We constructed numerical 

estimation questions by taking items off of public listings within areas of their expertise, online 

advertisements for housing rentals and used cars, and removing the asking price.

After  performing  some  warm up  exercises  as  recommended  by  Ericsson  and  Simon 

(1993) to increase the participants willingness to reason aloud, we would present each problem. 

The subjects were given as much time as they wanted to answer each question, and they were 

occasionally prompted with questions such as “What are you thinking about right now?” if they 

remained quiet too long. Each question was a complete listing of a car or an apartment with the 
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price removed. Apartment listings were from the Craigslist22 website containing all details such 

as size, location, utilities,  etc.  This is the same information an apartment seeker would have 

access to in their preliminary search. Car listings were taken from a Carmax23, a popular used car 

website. Each description contained a picture of the specific car and a standard format containing 

relevant information about the car. After each estimate the participants were asked to explain 

their answer. The apartment trial consisted of eight questions, while the used car trial consisted 

of seven questions.

We coded the protocols for three aspects of analogical estimation:

1. Analogical  remindings: Explicit  references  to  remembered  prototypes  of  a  class,  or 

specific instances that were similar to the problem, e.g., 

a. “This [Lakeview apartment] would go for $700-750 in Rogers Park” 

b. “These [cars] are just shy of $30,000 brand new.” 

2. Causal adjustments: Explicit references to other causal quantities during the estimation 

process, e.g., 

a. “You know [parking spaces] are worth more in Lakeview” 

b. “These [cars] are particularly hot right now because of higher gas prices.”

3. Non-alignable  features: Explicit  adjustments  based  on  features  present  in  one of  the 

cases, e.g.

a. “If [the Cadillac Escalade] is black it is 1,000 dollars more” 

b. “I'm going to raise [the estimate] a little, I was not thinking about the deck.”

22 http://chicago.craigslist.org/
23 http://www.carmax.com/
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Table  3.1  below  summarizes  the  data  collected  in  protocols.  It  indicates  that  analogical 

estimation is a common strategy used by experts solving estimation tasks. 

Analogical Estimation Aspect Cars (n=7) Apartments (n=8)
Analogical remindings 7 11
Causal adjustments 11 7
Non-alignable adjustments 5 12

Table 3.1: Number of analogical estimation occurrences.

3.7.2 A Theory of Analogical Estimation 

In  this  section,  we  describe  our  theory  of  analogical  estimation.  Analogical  estimation  is  a 

specific kind of analogical inference, namely, inferring the quantitative value of an unknown 

based on a known value from a similar example. For example, when trying to estimate the rent 

for  an  apartment,  one  might  retrieve  from  memory  a  similar  apartment  in  the  same 

neighborhood. The value from the analogical reminding serves as an  analogical anchor. As a 

first pass, this analogical anchor is evaluated for its plausibility for the value sought. Analysis of 

the  comparison  between  the  problem  and  the  reminding  provides  the  grist  for  computing 

adjustments from the anchor to improve the estimate: for example, one might notice that the 

apartment that they were reminded of is smaller, and is in a slightly less desirable location. In 

this example, there are two causal assumptions about apartment rents: 

1. A larger apartment has higher rent, all things being equal. 

2. The more desirable the location, the higher is the rent, all things being equal. 

Note  that  these  are  qualitative  models  and  the  relationship  described  above  are  qualitative 

proportionalities [Forbus, 1984]. These facts suggest that the estimate of rent should be more 
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than the rent of the reminded apartment. Just how much more? The effect of location on rent can 

vary, and in some neighborhoods, it might be stronger than others. At this point, one can use 

other examples to determine just how strong that effect is. We call these adjustments based on 

causal knowledge causal adjustments. The final estimate is generated by adjusting the analogical 

anchor to reflect the causal adjustments. 

3.7.2.1 Analogical Anchors

Analogical estimation begins with searching and retrieving from memory other examples that are 

similar in ways to warrant being plausible estimates for the quantity sought. The remindings 

retrieved could be specific exemplars, or generalizations (Kuehne et al, 2000). The value of the 

quantity sought in the reminding is an analogical anchor. Analogical anchors are similar to self-

generated anchors (Epley and Gilovich, 2004) in the sense that they are generated by the subject 

spontaneously as they solve the estimation problem. An example of a self-generated anchor is 

the freezing point of water while estimating the freezing point of vodka.  However, there are two 

important differences between self-generated and analogical anchors: 1) the specific stimuli used 

in studies on self-generated anchors were designed to activate one strong anchor across subjects, 

and 2) self-generated anchors  could be salient  points  on the dimension,  irrespective of their 

relevance to the current problem. When individuals'  knowledge of the domain of estimation is 

sparse, they will recruit any salient points on the dimension to guide their estimation. Most of the 

self-generated anchors fall in this category. However, with more experience in the domain, one 

might  have access to a  number of similar  situations, possibly richly represented with causal 

knowledge and relationships between quantities. These are analogical anchors.
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The similarity between two objects doesn’t necessarily warrant the inference that values 

of all  the quantities for two objects  are  similar.  For example,  two similar  basketball  players 

might have similar height, but not necessarily two professors. This notion of what features can be 

inferred  from  a  similar  example  was  called  projectability by  Goodman  (1955/1983). 

Projectability  is  based on  centrality of  the  feature  (Hadjichristidis  et  al,  2004).  A feature  is 

central to the extent that other features depend upon it. In the above example, height is central to 

basketball players, but not to professors. We have operationalized this notion of centrality as the 

structural support (Forbus et al, 1997) of the inference in computation of similarity using the 

SME.  

3.7.2.2 Causal Adjustments

A key component  of  expertise  is  an understanding of the underlying  causal  structure of the 

domain. An important type of causal relationships is qualitative proportionalities (Forbus, 1984). 

Qualitative proportionalities indicate a monotonic relationship between two variables. These are 

useful for numeric estimation as they provide the ordinal direction for adjustment, e.g., a larger 

apartment has a higher rent, all else being equal. In verbal protocols presented in the section 3.8, 

we find that people commonly refer to such qualitative proportionalities while estimating. Such 

adjustment based on qualitative proportionalities are called causal adjustments. 

However,  it  is  not  at  all  clear  how to  figure  how much  to adjust,  as  the  qualitative 

proportionality only indicates a monotonic functional relationship between two variables, and 

does not tell us anything about the strength of this relationship. Let’s suppose that the estimation 

problem involves  two  quantities:  x and  y, and  that  the  unknown quantity  we  are  trying  to 
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estimate is y. Further, we are given that there is a positive qualitative proportionality between x 

and y, i.e.,  

y = qprop+(x)

where  qprop+ indicates a monotonically increasing function. Suppose we were reminded of a 

similar  situation,  where  the  qualitative  proportionality  also  holds  true,  and  value  of  both 

quantities, x* and y* are known. Based on this, we can conclude if y will be more or less than y*, 

as a result of the monotonic dependence.  

sign (x-x*) = sign (y-y*)

At this point, we cannot conclude anything about how much more or less  y is than y* without 

making assumptions about the nature of the function qprop+. However, if we know a few more 

examples where this qualitative proportionality is valid, i.e., data points on this function, we can 

use that to approximate the dependence by fitting a curve over those points. Let’s assume we can 

recall a small set of situations where this proportionality is valid, {(xi, yi)}. Based on these, we 

can obtain an approximate estimate of the dependence between y and x, 

y = Q*(x)

The suggested adjustment based on this approximation is, 

adjustment = Q*(x) – y*

So,  the  causal  adjustment  is  obtained  by  using  an  approximate  estimate  of  the  functional 

dependence  between  the  quantities.  The  error  in  causal  adjustment  then  is  the  discrepancy 

between this estimated dependence and that exists in the world. So, if one falsely believes that 

there  is  a  strong  relationship  between two variables,  then one  is  likely to  produce  a  causal 
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adjustment that is higher than needed. As opposed to the insufficiency results for adjustment, we 

expect  errors  in  causal  adjustments  to  be  based  on  people's  understanding  of  qualitative 

proportionalities in the world, and thus causal adjustments need not be insufficient.  There is 

evidence to support that people can and do estimate correlations with very few samples, on the 

order of five (Kareev, 1997). We would expect causal adjustment to be affected by systematic 

biases in detecting correlations.

3.7.2.3 Adjustment based upon non-alignable features

Comparison between the reminding and the problem might reveal features that are present in one 

but do not have a corresponding feature in the other (Markman and Gentner, 1997). For example, 

one might retrieve a similar apartment, but one whose rent includes parking space. This is a sub-

problem  of  the  original  estimation  problem  that  is  solved  independently  using  the  same 

mechanisms, e.g., one will invoke analogical estimation for the parking space.   

 3.7.3 KNACK: A Computational Model of Analogical Estimation

In this section, we present Knack, a computational model of the theory of analogical estimation 

presented  in  the  previous  section.  Figure  3.4  shows  a  high  level  description  of  Knack’s 

algorithm.  Knack’s  experience  consists  of  a  case  library,  a  set  of  examples.  An  estimation 

problem is presented to Knack as a case, a set of predicate calculus expressions that represent all 

the information in the problem. Knack retrieves a few examples from the case library that are 

most  similar  to  the  problem at  hand.  The best  reminding  is  used  to generate  the  analogical 
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anchor. The projectability of this inference is determined by looking at the structural support 

returned by SME. At this point, we extract all the aligned causal relationships that involve the 

quantity sought. A linear regression is performed for all the retrieved data points for each causal 

relationship. This gives us an approximate sense of the strength of the causal relationship. We 

compute adjustments for each causal relationship based on this approximate fit  generated by 

linear regression.  If the fit  violates the expected qualitative relationship,  then the adjustment 

suggested by this relationship is ignored. All valid causal adjustments are added to the analogical 

anchor to generate the estimate.

3.7.4 Estimating Basketball Statistics

To illustrate the above ideas, we report results from an experiment in the domain of estimating 

basketball player statistics (e.g., Points per game, Assists per game, height, etc.). This domain 

was  chosen  because  there  is  a  host  of  numeric  information  easily  available,  and  there  are 

interesting causal relationships between quantities, e.g., being tall helps to rebound. We selected 

thirty players such that they were reasonably different, six from each of the five positions on the 

court. We built a case library in which each basketball player was represented as a case. The 

1. Retrieve similar examples (n=5) from memory
2. Select the most similar example's value as the anchor 
3. Check if this is a plausible anchor by computing projectability
4. Find all causally connected quantities from the common causal structure in the 
    retrieved examples
5. For each causally connected quantity

5a. Compute adjustment via linear fit with the retrieved examples
5b. Check adjustment with expected directionality of  causal relationship

6. Apply all applicable adjustments to the anchor to generate the estimate

Figure3.4. The KNACK algorithm
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average case had twelve facts, including four qualitative proportionalities, e.g., minutes per game 

is qualitatively proportional to points per game. We compared Knack to baseline analogy by 

running two trials. The baseline trial makes estimates by choosing the value for the dimension on 

the player  selected by MAC/FAC as the best reminding. The Knack trial utilized CARVE to 

enrich the cases with symbolic representations for the quantitative facts.  On an average, this 

added  ten  facts  to  every  case.  For  example,  CARVE  generates  the  following  qualitative 

representation for each quantitative fact:

Quantitative fact Qualitative representation 

 (seasonThreePointsPercent 
      JasonKidd 0.404)

  (isa JasonKidd
(HighValueContextualizedFn

          seasonThreePointsPercent
          BasketballPlayers))

In both trials, the facts mentioning the sought after dimension were filtered out of the question 

case. The trials were conducted in round robin format in which estimates were recorded for every 

player and every dimension. 

We present the comparison of error in estimates generated using baseline analogy and 

Knack. Knack's estimate are significantly more accurate (p < 0.05) for four out of six dimensions 

across all players. Although the error for assists per game appears to be higher for Knack, the 

difference is not significant. Similarly, there is no significant difference in errors for free throw 

percentage.  The  free  throw  percentage  dimension  was  not  causally  related  to  any  other 

quantities, and the assists per game is highly variable across our dataset. This is because our 

representation implies that these dimensions are not causally central.
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When looking at the amount and direction of the adjustment, we consider no adjustment to be an 

under adjustment. Qualitative proportionalities are directional, therefore Knack only made causal 

adjustments for points per game, rebounds per game, and assists per game. Knack handles the 

contradiction  between  a  computed  adjustment  direction  and  the  sign  of  the  qualitative 

proportionality by ignoring it. This leads to a systematic under adjustment for these dimensions.

Knack demonstrates  how similar  examples can be used to find analogical  anchors  in 

quantitative estimation tasks. These analogical anchors are a similar to the self generated anchors 

studied by Epley and Gilovich (2005). They found that with forewarning and incentives subjects 

could  overcome the  insufficient  adjustment  bias.  The Knack model  hypothesizes  that  under 

adjustment is more likely when the subject is less confident in the nature of the adjustment. One 

way in which Knack could model the increased effort in overcoming the bias would be when 

faced with contradictory adjustment directions, to retrieve more and more examples until  the 

qualitative  proportionality  was  satisfied.  Knack  is  consistent  with  Mussweiler  and  Strack's 
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Figure 3.5:  Comparison between normalized mean error, ABS(estimate – value)/value of estimates by dimension. 
White is baseline error and black is Knack's error.
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(2001) claim that anchors cause subjects to activate anchor consistent knowledge. The symbolic 

encoding  of  the  anchor  as  a  plausible  answer  will  bias  the  retrieval  of  examples  that  are 

consistent  with  it. We  expect  that  anchoring  and  adjustment  will  show  a  strong  effect  of 

experience with other examples in the domain: 1) the most similar examples will provide the 

anchors, and 2) adjustment need not be insufficient, but will mirror the strength of the causal 

relationships that follow from the subject’s experience. More psychological experiments have to 

be done to verify these predictions.

 3.8 Conclusions

We presented the symbolization by comparison theory of quantity sense that claims that we learn 

about quantities by abstracting qualitative representations via the process of compariosn. We 

presented CARVE, a computational model that implements this theory. We evaluated CARVE in 

Figure 3.6: Comparing under adjustments, over adjustments, and wrong adjustments 
made by Knack over all the estimation problems.
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the  context  of  an  analogical  estimation  task,  and  showed  that  representations  generated  by 

CARVE increase the accuracy of estimates. 
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Chapter 4: System Description and Examples

Problem solving is a process that takes us from a problem to its solution. This path consists of 

finding and applying relevant domain knowledge and using strategic and heuristic knowledge to 

guide the process. To test our theories of quantity and back of the envelope reasoning described 

in the previous two chapters, we have implemented BotE-Solver, a system that generates back of 

the envelope estimates in multiple domains. We evaluate BotE-Solver on the practice problems 

on  the  Fermi  problem section  from the  Science  Olympics24.  This  set  consists  of  thirty  five 

problems, some of which are shown in Figure 4.1. The system can solve all of these problems. 

In this chapter, we describe the design and implementation of BotE-Solver. We present 

examples  that  highlight  various  aspects  of  its  operation  and  heuristic  knowledge.  We  first 

describe the  general problem-solving features of the system, and then focus on implementation 

of the heuristic methods described in Chapter 2. 

24  http://www.physics.uwo.ca/olympics/
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4.1 BotE-Solver

A computational model of problem solving provides a representation for problems,  access and 

retrieval mechanisms for relevant domain knowledge. It also needs to have access to heuristic 

knowledge, which is used when the problem is complex and the answer is not directly found. It 

needs to maintain  the workspace,  where it  keeps track of its  progress made during problem 

solving.  Additionally,  it  needs  to  have  learning  mechanisms  that  allow  it  to  improve  from 

experience.  Figure  4.2  shows a  high-level  architecture  of  BotE-Solver.  The  components  are 

divided into four categories:

1. Learning: BotE-Solver learns qualitative representations of quantity using the CARVE 

system described in the previous chapter. These representations help it to retrieve better 

examples for analogical estimation. This learning is “offline,” in the sense is done not in 

response to a given problem, but when examples are accumulated, in batch. Currently 

If the mass of one teaspoon of water could be converted entirely into energy in the 
form of heat, what volume of water, initially at room temperature, could it bring to a 
boil?

How much energy does a horse consume in its lifetime? 

How many bricks are there in London?

How many electrons could a fully charged 12 volt car battery release before it was 
completely discharged?

What is the mass of all the automobiles scrapped in North America this month?

Figure 4.1:  Some examples from the Science Olympics corpus
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CARVE-generated representations are used for estimation in the basketball domain only, 

which was described in Chapter 3. 

2. Knowledge: BotE-Solver’s knowledge base (KB) consists of a 1.2 million fact subset of 

Cycorp’s ResearchCyc25 KB plus knowledge represented and developed in our research 

group. This knowledge base contains ground facts, axioms, case libraries consisting of 

episodes to be used for analogical estimation, and heuristic methods. 

3. Reasoning: BotE-Solver  generates  an  estimate  via  lookup,  analogical  estimation, 

backward chaining, in that order. If those fail, an AND/OR-tree based problem solver is 

used  to  apply   heuristic  methods  to  transform it  into  other  problems.  These  are  the 

25  All references to Cyc in this chapter refer to this specific version of ResearchCyc.  
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heuristic  methods  described in Chapter  2.  The heuristic  methods are  implemented  as 

suggestions [Forbus and deKleer, 1993] which is described in more detail in Section 1.2. 

4. Workspace: The AND/OR tree keeps track of the problem decomposition and work done 

on  the  problem.  Furthermore,  a  Logic-based  Truth  Maintenance  System [Forbus  and 

deKleer, 1993] is used to implement the working memory. This records dependencies and 

caches facts that have been retrieved from the KB or inferred via reasoning.  

The next sections describe these components in more detail. 

4.1.1 Knowledge and Reasoning Infrastructure

The Knowledge Base (KB) and the FIRE reasoning engine are part of background infrastructure 

that this work builds on. Problems, solutions, strategies are all represented uniformly and stored 

in this KB. 

FIRE is a federated reasoning architecture built by our group at Northwestern University 

in collaboration with PARC, Inc.  FIRE is described in detail elsewhere [Forbus et al., 2006] and 

here we will describe only the relevant components briefly. FIRE uses a database for storing the 

knowledge base which facilitates scaling up, persistent storage, and portability with regards to 

knowledge. It provides support for analogical reasoning using Structure-Mapping Engine and 

MAC/FAC [Forbus et al, 2002].  It provides the conventional ASK and TELL interface to the 

knowledge  base,  and  QUERY  which  uses  backward  chaining.  The  federated  aspect  of  its 

architecture  is  in  the  fact  that  it  allows  reasoning  sources as  a  mechanism  for  procedural 

attachment for doing specialized reasoning, such as spatial reasoning [Forbus et al, 2003]. A 
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reasoning source  provides  procedural  attachments  that  handle  specific  queries,  based  on the 

predicate involved and the query pattern. 

The backward chaining is partitioned, i.e., rather than chain through all the axioms in the 

knowledge base, it is limited to axioms contained in explicitly loaded chainers, subsets of the 

knowledge base that have been identified as potentially relevant for some class of queries. The 

next  level  of  reasoning  is  SOLVE which  uses  suggestions to  solve  problems by  producing 

AND/OR decompositions of the problem. Before we describe SOLVE,  we describe suggestions 

as means for encoding heuristic knowledge.

4.1.2 Implementing Heuristic Methods Via Suggestions

Suggestions are declarative fragments of knowledge that specify problem solving strategies and 

plans. A suggestion provides a decomposition for the problem. Figure 4.2

   (defSuggestion SphericalVolume
       (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)
     :documentation "Consider a spherical cow for computing volume"
     :test (and (isa ?object ThreeDimensionalThing)
                (uninferredSentence (shapeOfObject ?object ?shape)))
     :subgoals ((valueOf ((QPQuantityFn extensionParametersOfObject) 

?object) ?size))
     :result-step (evaluate ?volume (TimesFn 12 

  (ExponentFn 
    (QuotientFn ?size 2) 3))))

Figure 4.3. An example suggestion

shows  a  suggestion  SphericalVolume that  describes  an  approximation  for  computing 

volume.  The  trigger (valueOf  ((QPQuantityFn  volumeOfObject)  ?object)  ?

volume) specifies  that  this  suggestion  applies  to  problems which  are  seeking  bindings  for 
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volume of an object. The test condition checks if we know that the object in question is a three 

dimensional  object,  and confirms that we do not know the shape of this object.  It  triggers a 

subgoal to estimate any linear extent parameters. The result step then computes the volume of the 

object as if it was a sphere with that extent as diameter. In general, there are four parts to a 

suggestion:

1. Trigger: The form which is query for which the suggestion might be applicable. 

2. Test: Additional test conditions which must be true in order for the suggestion to work. 

3. Subgoals: A list  of  forms that  this  suggestion  decomposes  the  current  problem into. 

These are AND-subgoals, meaning if any one of them fails, this suggestion fails to solve 

the original problem. These subgoals are fully ordered. 

4. Result-step: The  final  step  of  the  suggestion,  which  combines  the  answers  to  the 

subgoals.  This  form  often  uses  evaluate,  which  is  a  mechanism  to  implement 

predicates that require computation, e.g., arithmetic functions.
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Inside the suggestion, the variables are ordered, such that any variable introduced can be used in 

the subsequent  parts  of the suggestion.  The  defSuggestion macro mentioned above is  a 

facility for the suggestion author. It expands the suggestion into predicate calculus statements 

that are stored in the KB. Figure 4.4  shows the predicate calculus statements corresponding to 

the suggestion above.  The library of suggestions used by BotE-Solver is included in Appendix 

B. 

4.1.3 Tracking problem solving progress by AND/OR trees

BotE-Solver uses AND/OR trees26 to track the progress as it is working on a problem. AND/OR 

problem solving is not novel, and our implementation is based on Slagle (1963) and Nilsson 

26  Because the solutions are obtained and cached in a TMS, we get the functionality of an AND/OR graph, i.e., we 
don’t re-solve an already solved node, although the underlying representation is a tree. We want to be able to 
incrementally generate solutions; sharing nodes as in a graph does not work when the nodes are generators of 
solutions.

((ist-Information BotESuggestionsMt
  (chainerContains (ChainerFn BotESuggestionsMt)
   (<==
    (suggestFor (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)
     SphericalVolume)
    (isa ?object ThreeDimensionalThing)
    (uninferredSentence (shapeOfObject ?object ?shape)))))
 (ist-Information BotESuggestionsMt
  (comment SphericalVolume "Consider a spherical cow for computing volume"))
 (ist-Information BotESuggestionsMt
  (suggestionResultStep SphericalVolume
   (evaluate ?volume (TimesFn 12 (ExponentFn (QuotientFn ?size 2) 3)))))
 (ist-Information BotESuggestionsMt
  (suggestionSubgoals SphericalVolume
   (TheList
    (valueOf ((QPQuantityFn extensionParametersOfObject) ?object) ?size))))
 (ist-Information BotESuggestionsMt
  (suggestionGoalForm SphericalVolume
   (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)))
 (ist-Information BotESuggestionsMt (isa SphericalVolume Suggestion)))

Figure 4.4: Predicate calculus statements generated by the SphericalVolume suggestion
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(1994). We made some interesting design choices with regards to incremental computation of 

solutions.  Keeping track  of  all  solutions  can  be  computationally  expensive,  especially  for  a 

problem solver using a large KB, as there can be prohibitively large number of combinatorial 

possibilities. In this section we briefly describe our AND/OR solver. 

An AND/OR tree is a convenient representation for problem decomposition and allows 

for  reuse  of  work  done  during  problem solving as  well  as  provides  the  grist  for  providing 

explanations  to  the  solutions  generated.   The  mapping  between  the  AND/OR  tree  and  our 

representations is very direct. For a problem, there could be many applicable strategies, any one 

of which succeeding lead to a solution to the problem. This results in an OR node in the tree. A 

suggestion, on the other hand, introduces one or more subgoals all of which have to solved in 

order  to  solve  the  original  goal.  This  results  in  an  AND  node  in  the  tree.  An  AND/OR 

decomposition  lets  us  keep  track  of  dependencies  between  the  original  problem  and  new 

subgoals introduced. During the course of problem solving, a node can be:

1) SOLVED: An OR-node is solved when any one of its children gets solved, and an AND-

node is solved when all of its children are solved. 

2) FAILED: An OR-node fails when all of its children fail, and an AND-node when any one 

of its children fail.  

3) MOOT: A node is moot when it is not solved or failed, but when there is no point on 

working  on  it  at  the  current  point.  So,  if  any  one  of  the  siblings  of  OR-nodes  has 

succeeded,  the  other  siblings  are  MOOT-VIA-SUCCESS,  as  at  any  point  we  are 

interested in finding one solution, so if one strategy has succeeded, we don’t want to 

pursue others right now. However, we might come back and un-moot the other strategies 
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if at some point we want more solutions, or after propagating this solution upwards in the 

tree  we find  that  the  original  goal  is  still  not  solved.  A strategy can generate  many 

solutions, and we try the next sibling strategy only if we have exhausted all the solutions 

that this strategy has to offer. On the other hand, if an AND-node fails, its siblings are 

MOOT-VIA-FAILURE as there is no point in working on them, as the parent suggestion 

has failed as a result of one of its children failing. However, if later we find that we can 

solve the subgoal that failed by working more, we can un-moot the siblings. 

These inferences are made by maintaining flags at each node, which are updated and propagated 

after every unit of problem solving. 

As BotE-Solver works on a problem, it maintains its progress in an AND/OR tree as 

mentioned above. It also maintains an agenda, which is a list of things that it can do next. The 

agenda consists of suggestions that have been found that it can try, and subgoals that have been 

suggested. The agenda is ordered by difficulty estimates, such that the first thing on the agenda is 

the easiest one. BotE-Solver starts with enqueuing the original goal on to the agenda and running 

the main loop. The rest of the discussion will explain what happens at some point in midst of 

problem solving when we have done some work and have an already expanded AND/OR tree. 

There are two different ways in which new solutions are generated in solve: 

1. AGENDA processing: The original goal hasn’t been solved yet, and we are either trying 

to find suggestions that will solve it, or working on the subgoals that were suggested. It 

picks the easiest thing off the agenda. If it is a goal node, then sees if it can be solved by a 

primitive operation. If that fails, it gathers applicable suggestions via backward chaining. 

Found suggestions are added as the children of the original goal and enqueued on the 
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agenda. If it is a suggestion node, then it instantiates the first subgoal of the suggestion 

node as a child node of the suggestion in the graph, and enqueues it on the agenda. 

2. IN-PLAY processing: This  happens when the original  goal  has  been expanded into a 

graph all of whose leaf nodes are solved. Now, no more problem solving needs to be 

done, and we can keep generating new solutions until we have exhausted all possible 

bindings found at the leaf nodes. We call a node that is solved and can possibly generate 

more solutions as an IN-PLAY node. Every subgoal maintains a pointer to the current 

IN-PLAY suggestion.  The main concern of IN-PLAY processing main is  to properly 

update what bindings have been already used. 

All the bindings that are found as a result of a successful solution are maintained at the nodes 

locally and only those that are of interest to the parent from the first successful combination of 

the bindings are propagated upwards. Each node maintains a marker to indicate the bindings that 

it has already used, and these are updated to make sure we exhaustively go through the space of 

combination of bindings from the subgoals.  The combinatorial  possibilities  of bindings from 

subgoals can be large. For example, consider a suggestion whose three subgoals are solved by a 

primitive operation, corresponding to leaf nodes in the tree.  For these leaf nodes if we found 20, 

50  and 50 successful  bindings,  we have fifty  thousand combinations  of  bindings  that  could 

possibly lead to the parent. Each of these combinations is tried one by one until a solution for the 

parent is found. 
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4.2 Evaluating BotE-Solver

Evaluating  a  system like  BotE-Solver  is  hard,  as  BotE reasoning spans  a  wide spectrum of 

commonsense,  scientific,  and  policy-making  domains.  This  makes  it  hard  to  generate  an 

exhaustive or representative set of BotE problems. 

The corpus of problems we chose to use comes from the Science Olympics organized by 

the University of Western Ontario for high school students. Science Olympics is a generic name 

for  a  set  of  science  and  mathematics  related  competitions  at  all  grade  levels.  The  Science 

Olympics for high school students (Division “C” in the US) has typically about twenty different 

events  like  “Ecology,”  “Forensics,”  “Robot  Rambler,”  “Sound  of  Music,”  and  “Fermi 

Questions.” Each of events  tests  different  types  of scientific,  mathematical  and experimental 

skills and teamwork. Teams of five or so participate and nationally compete. The set of events 

changes every year, however, the Fermi Questions section has remained in all variants of Science 

Olympics competitions. An order of magnitude answer is the goal in this competition and partial 

points are also awarded. The scoring is as follows: 5 points for the correct exponent, 3 points for 

the correct exponent ± 1, and 1 point for the correct exponent ± 2.

According to Abrams (2005), who has been supervising the Fermi Questions event for 

over twenty years, the section consists of about 30 questions and scoring 90 out of a possible 150 

points will get the team a medal. Only a few out of hundreds of participating teams (schools) 

achieve this level of performance. 

We evaluate BotE-Solver on a set of 35 practice problems from the Science Olympics 

website from University of Western Ontario. Some example questions are shown in Figure 4.1 at 

the beginning of this chapter. The full list of problems and BotE-Solver's answers is in Section 4. 
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Note that for some of the problems, we do not know the “correct” answer. One such problem is 

“How many bricks are there in London?” We requested the organizers of the Science Olympics 

for official answers, but they did not respond. 

Lets look at an example, the first question in Figure 4.1. BotE-Solver expects a question 

in predicate calculus, so the first step is to encode the question in CycL. 

If the mass of one teaspoon of water could be converted entirely into energy in 
the form of heat, what volume of water, initially at room temperature, could it 
bring to a boil?

This question is more conveniently represented as a two part question – 1) What is the heat 

energy produced by entirely converting one teaspoon of water into energy? And 2) How much 

water  will  this  amount  of  heat  energy  bring  to  a  boil?  Lets  look  at  the  first  question.  We 

introduce  a  reified event,  TeaspoonIntoEnergyEvent1,  that  describes  the  hypothetical 

event of converting a teaspoonful of water into energy. Reification allows us to name a complex 

situation  (like  an  event)  and  elaborate  it  using  various  roles  that  can  be  defined  that  are 

applicable in that situation [Davidson, 1967].

   (isa TeaspoonIntoEnergyEvent1 TotalEnergyConversionProcess)
   (genls TotalEnergyConversionProcess EnergyConversionProcess)
   (objectActedOn TeaspoonIntoEnergyEvent1 Water1)

Given that, the question can then be asked as: 

(valueOf ((QPQuantityFn energyProduced) 
            TeaspoonIntoEnergyEvent1) ?energy)

This  representation  of  quantity  is  borrowed  from  the  Qualitative  Process  Theory  ontology 

[Forbus  1984].  QPQuantityFn is  a  unary  function  whose  first  argument  is  a  continuous 

quantity, and the result of its application is a variable-arity function. The result of applying the 
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resulting function is a continuous quantity.  valueOf simply relates the continuous quantity to 

its numerical value. 

It  is  important  to  note that  there was additional  knowledge that  was provided to the 

system  for  capturing  this  question.  Cyc  did  not  have  a  notion  of 

TotalEnergyConversionProcess and the associated law of E = mc2. It is impossible to answer 

this question without this knowledge. Being able to answer questions successfully relies on there 

types of knowledge: 1) domain knowledge, 2) heuristic knowledge, and 3) heuristic applicability  

knowledge. Domain knowledge is  knowledge about  objects,  relationships and quantities  in  a 

domain, e.g., knowing about Energy, Mass and E = mc2. As we work with a KB in progress, it is 

inevitable to add domain knowledge, as one grounds out the problem solving by knowing such 

facts. 

Heuristic knowledge refers to heuristic methods, e.g., knowing that mass of an object can 

be  estimated  by  adding  up  mass  of  its  parts.  This  is  the  part  where  BotE-Solver  claims 

completeness. We claim that the seven heuristic methods used by BotE-Solver are all we need 

for BotE reasoning. As we encoded the Science Olympics corpus, we did not need to add any 

new heuristic methods.  

Heuristic applicability knowledge refers to knowledge that enables the application of the 

heuristic, for example, figuring out subparts of an object depends to some extent on the domain. 

For example, the strategy of adding up subparts requires finding all the contained objects when 

dealing with tangible objects with physical extent. However, if the dimension in question were 

time, it requires finding all the sub-events. If the heuristic methods are represented abstractly, but 

in  different  domains,  the same abstract  concepts (like part-whole-ness)  might  be represented 
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differently, with different predicates. The heuristic applicability knowledge makes that between 

general and domain specific knowledge. This type of knowledge needs to be added once per 

domain of applicability. 

4.3 Heuristic Methods in Bote-Solver

In this section, we look at each of the seven heuristic methods used by BotE-Solver. We present 

example suggestions for them and discuss the heuristic applicability knowledge. This discussion 

is grounded with respect to Cyc, however, most of these ideas apply broadly. 

4.3.1 Ontology Heuristic Method

The  ontology  heuristic  suggests  finding  the  closest  point  in  the  ontological  lattice  that  can 

sanction a guess for the quantity in question. For instance, one can estimate the height of Jason 

Kidd  by  noticing  that  he  is  a  BasketballPlayer.  However,  besides  being  a 

BasketballPlayer,  Jason  Kidd  is  also  a  FamousPerson,  MaleHuman and 

Individual among others. How can we determine that  BasketballPlayer is a better 

collection than the others mentioned for making an inference about height? 

There are two heuristics that come from psychological investigation of category structure: 

1. Level  of  categorization: Rosch  [1978]  identifies  three  levels  of  categorization: 

subordinate,  basic-level,  and  super-ordinate.  According  to  this  characterization, 

predictive power of a cue decreases as one goes higher than the basic-level. This rules 

out collections that are very general like Individual.
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2. Projectability: Even categories at the same level might sanction inferences about certain 

features and not so about others. For instance, BasketballPlayer will provide more 

accurate estimate about Jason Kidd than Professor would about a professor. There is 

increasing psychological evidence that projectability is based on centrality of the feature 

[Ahn et al.,  2000; Hadjichristidis et  al.,  2004]. A feature is central to the extent that 

features depend on it. Height is more central to basketball players than professors.

These two psychological heuristics suggest picking something from the ontological lattice as 

long as it is not more abstract than the basic-level, and the quantity being estimated is central to 

that  class  of  objects.  According  to  Rosch,  the  basic-level  of  categorization  is  that  level  of 

categorization  that  maximizes  the  total  cue  validity  of  a  category.  The  cue  validity  is  the 

probability of a given cue x successfully predicting of a given category y. The total cue validity 

of a  category is  defined as the summation of cue validities  for that category of each of the 

attributes of that category. In principle, we can compute this in Cyc: however, it is expensive to 

compute and maintain  as new information comes along27.  Figure 5 shows the way ontology 

heuristic  method  is  implemented  in  BotE-Solver.  First,  we  exclude  collections  like 

Individual from being used. This is done by automatically excluding any collection that has 

more than a threshold number of instances. This threshold can be adjusted, it is currently set to a 

thousand.  We  also  have  a  minimum  threshold  on  how  many  instances  must  exist  for  the 

inference to be useful, currently set at 3. We then find a class whose instances have values that 

have  a  variance  below  a  threshold.  This  results,  in  our  Jason  Kidd  example,  preferring 

27 Automating the computation of basic-level categories and looking at the discrepancies between human and the 
basic-level categories predicted by the KB is an interesting way to analyze the plausibility of the ontology and 
knowledge contained in it. This thesis does not explore this any further. 
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BasketballPlayer for making a height estimate rather than FamousHuman. In this case, 

when we have enough instances, we return the arithmetic mean of the values as an estimate. 

More often, there are not too many concrete instances to employ the variance heuristic 

above. In such cases, there is often general information about a whole class of things expressed 

by relationAllInstance predicate, for example – 

(relationAllInstance massOfObject HomoSapiens  (Kilogram 2 400))

This statement says that for every instance of HomoSapiens, it is true that their mass is between 

2 kilogram to 400 kilogram. In this case,  we return the geometric  mean of this range as an 

estimate. We use the geometric mean here, as the relationAllInstance predicate usually 

expresses the total range which might include outliers. The geometric mean provides a more 

stable estimate in such a case. 

1. Given a problem (Q O ?V), for each class O’ such that (isa O 
O’) or (genls O O’) and is not a member of NotForOntologyHeuristic

If there are known instances {I} of O’
Calculate number of {I}
Calculate the standard deviation ?Vi such that (Q I ?Vi) 

   
 2. Return the arithmetic mean of ?V” from the O’ for which
    standard-deviation {?V”} is minimum. 

    3. If no estimate found, then, for each O’ such that (isa O O’) 
       or (genls O O’)

 If range of values for the class is available via 
(relationAllInstance Q O’ (?V’min ?V’max))

Return geometric-mean of ?V’min and ?V’max as estimate. 

Figure 4.5: The ontology heuristic in BotE-Solver
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4.3.2 Mereological Estimation Heuristic Method

The mereology heuristic transforms the object using part-whole relationships into other objects 

for which estimates might be more readily made. The first notion that is key to implementing 

mereology is knowing whether the quantity is extensive or intensive. An extensive quantity is a 

physical property that is dependent on the system size, for example, mass, volume, heat, etc.; 

while an intensive quantity is one independent of system size, for example, density, temperature, 

melting point, etc. If  Q is an extensive parameter, then,  ?V=Σ?Vi. If  O is homogeneous, i.e., 

composed of the same kind of objects, then the above sum reduces to a product of the number of 

parts  and the value for  each part,  ?V=n*Σ?V'.  In some situations,  homogeneity  can be an 

assumption to approximate a more complex calculation involving all  the subparts. If  Q is an 

intensive parameter like density, we look for the constituents of O. In this case, we need to know 

all the constituents and for each of them the fraction that they constitute of the whole, then, ?V=

Σwi*?Vi, where wi is the fraction of the part i.

Cyc does not define notions of extensive and intensive quantities, so we have to add that 

knowledge.  Additionally,  there  are  many  different  ways  in  which  part-whole  knowledge  is 

represented  in  Cyc:  part-whole  relationships  are  represented  by  physicalParts, 

systemComponents,  groupMembers,  subEvents,  constituents,  among  others.  This 

requires  adding  heuristic  applicability  knowledge  for  each  of  these  types  of  part-whole 

knowledge. 
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Figure  4.6  shows  the  HomogenousGroupExtensiveQuantityStrategy  suggestion,  which 

estimates  a  quantity  for  a  group by multiplying  the  value  for  an  individual  member  by the 

number of group members. This assumes that the quantity is uniformly distributed, and is a good 

approximation for estimating things like number of cars or pianos owned by a population. In 

cases where all members can be enumerated, another variation of this strategy finds the value for 

each of the members and then adds them up. The enumeration strategy requires making a closed 

world  assumption.  In  practice,  the  homogeneous  assumption  is  more  widely  applicable  and 

frequently employed by human estimators [Swartz, 2003]. 

(defSuggestion HomogenousGroupExtensiveQuantityStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans)

     :documentation "If there is a group of n of something, 
                     and each one of them has a value q, 
                     then the value for the all of them is n*q 
                     if q is extensive dimension"
     :test (and (isa ?quantity ExtensiveMeasurableQuantity)
                (isa ?object Group))
     :subgoals ((groupMemberType ?object ?individual-member)
                (valueOf ((QPQuantityFn numberOfGroupMembers)
                            ?object) ?count)
                (valueOf ((QPQuantityFn ?quantity) 
                            ?individual-member) ?individual-value))
     :result-step (evaluate ?ans 
                      (TimesFn ?count ?individual-value)))

Figure 4.6 The HomogenousGroupExtensiveQuantityStrategy suggestion
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Figure  4.7  shows  another  variation  of  the  mereology  heuristic.  The 

CountViaConstituentStrategy  suggestion  computes  a  count  quantity,  for  example  the 

number  of  electrons  released  by  a  12  Volt  car  battery.  The  predicate 

constituentPhysicalQuantity relates two objects to a quantity that captures the mereological 

relationship.  In  the  car  battery  case,  the  constituentPhysicalQuantity   is  the 

chargeOfObject quantity, which allows us to estimate the number of electrons by dividing the 

charge contained in the battery by the charge of a single electron. 

4.3.3 Analogy Heuristic Method

The analogy heuristic is implemented by KNACK, which was described in the previous chapter. 

Consider a problem like estimating the season points per game scored by Jason Kidd. KNACK 

(defSuggestion CountViaConstituentStrategy
       (valueOf ((QPQuantityFn ?count-quantity) 
                       ?whole ?part) ?count)
     :documentation "If ?whole is made out of ?part, 
                      then the quantities that describes
                      the dimension of the constitution 
                      can be used to measure the count" 
     :test (and (constituents ?whole ?part)
                (isa ?count-quantity CountQuantitySlot))
     :subgoals ((constituentPhysicalQuantity 
                 ?whole ?part ?constituent-quantity)
                (valueOf ((QPQuantityFn ?constituent-quantity)
                            ?whole) ?whole-measure)
                (valueOf ((QPQuantityFn ?constituent-quantity)
                             ?part) ?part-measure))     
     :result-step (evaluate ?count 
                    (QuotientFn ?whole-measure ?part-measure)))

Figure 4.7: The CountViaConstituentStrategy suggestion
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first retrieves similar examples from memory. The value of the quantity for the closest analogue 

is is called the analogical anchor. Using linear regression, it then computes the effect of other 

causally connected quantities to the quantity to be estimated. This is called causal adjustment. 

The final estimate is generated by combining the causal adjustment with the analogical anchor. 

Using this heuristic requires having a case library of examples. Therefore, we tested KNACK in 

the  domain  of  basketball  statistics.  This  domain  has  favorable  properties  of  having  a  large 

number of quantities with causal relationships between them, and allowed us to measure the 

efficacy of the analogical estimates. However, for the domains covered in the Science Olympics 

corpus, we do not have cases describing situations similar to the problems. 

4.3. 4 Density Heuristic Method

The density heuristic suggests estimating a quantity by finding the associated density and extent 

quantities associated with it. Figure 11 shows the suggestion that describes this heuristic. In this 

heuristic,  we compute a quantity by finding its associated density and extent quantities. This 

generalized notion of density includes rates and averages with respect to other parameters as 

density. We encode these relationships via densityQuantityFor and extentQuantityFor predicates 

that state the density and extent relationships for various quantities. Once such knowledge is 

available the suggestion in figure 4.8 below operationalizes this heuristic. 
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It states that while estimating  any quantity for which density and extent quantities are available, 

we can find the value by multiplying them. 

4.3.5 Domain Laws Heuristic Methods

Domain laws suggests quantity transformations, and include both laws of physics as well as rules 

of thumb. This is an open-ended set, and we had to add suggestions corresponding to relevant 

phenomena in the question. Figure 4.9 shows a description of E=mc2. This can be improved by 

explicitly representing the relationship as an equation, so that it can be used to solve for mass or 

energy. It suffices for the current examples. 

(defSuggestion DensityStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans) 

     :documentation "implements density heuristic"
     :test (and (densityQuantityFor ?quantity ?density-quantity)
                           (extentQuantityFor ?density-quantity ?extent-quantity))
     :subgoals ((valueOf ((QPQuantityFn ?density-quantity) ?object) ?density)
                           (valueOf ((QPQuantityFn ?extent-quantity) ?object) ?extent))
     :result-step (evaluate ?ans (TimesFn ?density ?extent)))

Figure 4.8: The DensityStrategy suggestion
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4.3.6 Scale-Up Heuristic Method

The scale-up heuristic relates two different systems and the quantities and objects between them. 

We  borrow  the  representation  of  mapping  and  correspondences  from  the  analogy  ontology 

[Forbus et al.,  2002] to describe scale-up. The analogy ontology provides representations for 

combining  analogical  processing  via  structure  mapping  engine  to  a  reasoning  system.  In 

structure-mapping,  a mapping consists  of  a structurally  consistent  set  of  correspondences.  A 

correspondence relates an item in base to a item in the target. Items can be entities, expressions, 

or  functors.  The  relationship  (correspondsInMapping ?m ?b ?t) indicates  that  item  ?b 

corresponds  to  ?t in  mapping  ?m.  This  predicate  helps  us  relate  entities  and  relationships 

between the scale-model and the situation being modeled. 

 

(defSuggestion TotalEnergyConversionStrategy
       (valueOf ((QPQuantityFn energyProduced) ?event) ?energy) 

     :documentation  "E=mc^2"
     :test (isa ?event TotalEnergyConversionProcess)
     :subgoals ((objectActedOn ?event ?obj)
                (valueOf ((QPQuantityFn massOfObject) ?obj) ?mass)
                (valueOf ((QPQuantityFn velocityOfObject) Light) ?c))
     :result-step (evaluate ?energy 

                    (TimesFn ?mass (ExponentFn ?c 2))))
     

Figure 4.9: The  TotalEnergyConversionStrategy suggestion

(defSuggestion SeekScaleModelStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object ?situation) ?ans)
     :subgoals ((and (correspondsInMapping ?scale-model ?base-object ?object)
                     (isa ?scale-model ScaleModel))
                (valueOf ((QPQuantityFn ?quantity) ?base-object ?situation) 
                         ?base-ans)
                (valueOf ((QPQuantityFn scalingFactor) ?scale-model) 
                         ?scaling-factor))
     :result-step (evaluate ?ans (TimesFn ?scaling-factor ?base-ans)))

Figure 4.10: The SeekScaleModelStrategy suggestion
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The suggestion in Figure 4.10 says that while estimating a quantity, if a scale model is available 

in which the object in question corresponds to something for which we know the value of the 

quantity,  then  we  look  for  the  scaling  factor  and  multiply  by  it  to  generate  an  estimate. 

Computing  scaling  factor  is  domain  specific  and  are  important  scientific  achievements.  For 

example, the following represents an important result in animal physiology: generally speaking, 

the energy requirements of an animal vary with the 3/4th power of the surface area [for details, 

see Schmidt-Nielsen, 1994].   

   

4.3.7 System Laws Heuristic Method

These are domain laws that apply to a system as a whole. This can simplify problem-solving by 

avoiding introducing unknowns in the problem solving process by considering the system as a 

whole as opposed to individual objects. Very common in scientific reasoning, we do not often 

run into this heuristic in BotE reasoning. Figure 16 shows the application of conservation of 

(defSuggestion AllometricScalingLaw
       (valueOf ((QPQuantityFn scalingFactor) ?scale-model) 
                 ?scaling-factor)
     :test (and (isa ?scale-model ScaleModel)
                (scaleModelFor ?scale-model ?quantity)
                (isa ?quantity EnergyQuantitySlot)) 
     :subgoals ((correspondsInMapping ?scale-model ?base-object 
                 ?target-object)
                (and (isa ?base-object BiologicalSpecies)
                     (isa ?target-object BiologicalSpecies))
                (valueOf ((QPQuantityFn surfaceAreaOfWholeObject) 
                           ?base-object) ?base-area)                      
                (valueOf ((QPQuantityFn surfaceAreaOfWholeObject) 
                          ?target-object) ?target-area))
     :result-step (evaluate ?scaling-factor 
                            (ExponentFn 
                              (QuotientFn ?target-area ?base-area) 0.75)))

Figure 4.11: The AllometricScalingLaw suggestion
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linear  momentum,  such  a  system  law.  This  is  another  domain  where  Cyc  is  weak  in  its 

representation of domain laws required to infer whether quantities are conserved for a system. 

   

4.4 BotE-Solver at the Science Olympics

We first present a table of all the 35 problems and BotE-Solver's answers to each of them. The 

predicate calculus representation of each question is also shown. The table is followed by a brief 

discussion of the performance of BotE-Solver. 

Table 4.1: The Science Olympics questions and BotE-Solver's answers

Question and the predicate calculus representation BotE-
Solver's 
answer

When the island of Krakatoa was destroyed by a volcanic eruption, the sound 
waves could be detected world wide. How long would it take for such a wave to 
travel around the earth and come back to Krakatoa? (Seconds)
   (valueOf ((QPQuantityFn duration)  
              KrakatoaWaveAroundEarthScenario26) ?time)

1.2e+5

How long would it take a paramecium to swim from London to Toronto? 
(Seconds)
   (valueOf ((QPQuantityFn duration) 
              ParameciumSwimmingScenario11) ?time)

1.2e+10

(defSuggestion BalanceStrategy
     (valueOf ((QPQuantityFn ?quantity) ?system ?state) ?val)
        :test (and (isa ?quantity ConservedQuantity)
                              (isa ?system System)
                              (quantityConservedForSystem ?quantity ?system))
         :subgoals ((and (stateOfSystem ?system ?alt-state)
                                          (different ?state ?alt-state))
                               (valueOf ((QPQuantityFn ?quantity) 
                                                     ?system ?alt-state) ?alt-val))
          :result-step (evaluate ?val (IdentityFn ?alt-val)))

Figure 4.12: The BalanceStrategy suggestion
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How many years would it take for McDonalds to sell a mole of their 
hamburgers? (Years)
   (valueOf ((QPQuantityFn duration) McDonaldsMoleHamburgerSale1) 
              ?time)

8.7e+13

How many dollars would each person on this planet possess if there were a mole 
of dollars to distribute? (Dollars)
   (valueOf ((QPQuantityFn amountOfMoneyTransferredInEvent) 
               Person MoleGiveaway1) ?money)

1.0e+14

People crowd into London until all available open space within the city limits is 
covered with standing people. How many people would there be? (Number)
  (valueOf ((QPQuantityFn countContained) 
             Person CrowdedLondonScenario35) ?count)

1.1e+7

How many bricks are there in London? (Number)
  (valueOf ((QPQuantityFn countContained) 
           Brick GreaterLondon-EnglandRegion) ?count)

3.2e+10

What is the thickness of a sheet of paper in wavelengths of visible light? 
(Number)
  (valueOf
      ((QPQuantityFn ratioOfToAlongQuantity) 
        SheetOfPaper VisibleLight
        heightOfObject wavelength) ?ans)

299

To what height could loose leaf paper be stacked if you possessed Avogadro's 
number of sheets? (Meters)
  (valueOf
     ((QPQuantityFn totalValue) 
       heightOfObject SheetOfPaper AvogadroSheets1) ?height)

9.5e+19

How many meters would a ground state electron in a hydrogen atom be from its 
nucleus if the nucleus of the hydrogen atom was blown up to the size of a 
baseball? (Meters)
 (valueOf
    ((QPQuantityFn distanceBetween)
     (ScaleModelAnalogueFn HydrogenAtomBaseballModel16
      (NucleusFn (AtomFn Hydrogen)))
     (ScaleModelAnalogueFn HydrogenAtomBaseballModel16
         Electron))
    ?distance)

3.7e+3

How many electrons could a fully charged 12 volt car battery release before it 
was completely discharged? (Number)
  (valueOf ((QPQuantityFn hasPhysicalPartCount) 
             AutomobileBattery Electron) ?count)

4.4e+24

How many electrons are there in the electron beam between the cathode of your 
T.V. set and the screen? (Number)
  (valueOf
    ((QPQuantityFn hasPhysicalPartCount) 
TelevisionCathodeRayTube1

4.4e+17



124

      CathodeRayTubeElectron)
     ?count)
How many piano tuners are there in Toronto? (Number)
    (valueOf ((QPQuantityFn countContained) 
               PianoTuner CityOfTorontoOntario)?count)

136

How many automobiles are scrapped in the USA per year? (Number)
    (valueOf ((QPQuantityFn countDiscardedPerYear) 
             Automobile UnitedStatesOfAmerica) ?count)

6.7e+6

How many photons/sec are emitted by a 100 watt light bulb? (Number)
   (valueOf ((QPQuantityFn countContained) 
              Photon LightBulbEvent1) ?ans)

2.5e+20

How many kilometers of D.N.A. are there in the cells of one human body? 
(Kilometers)
   (valueOf ((QPQuantityFn totalValue) 
              lengthOfObject DNAStrand HumanBody) ?length)

2.3e+14

How many sodium ions are in one tablespoon of salt? (Number)
   (valueOf ((QPQuantityFn hasPhysicalPartCount) 
      TablespoonOfSalt24 (IonFn Sodium)) ?count)

9.9e+18

How many gas molecules are there in the earth's atmosphere? (Number)
   (valueOf ((QPQuantityFn hasPhysicalPartCount) 
              TheEarthsAtmosphere (MoleculeFn Air)) ?count)

9.1e+18/1.5e
-24 = 
6.1e+4228

How many atoms of iron are there in a sewing needle? (Number)
   (valueOf ((QPQuantityFn hasPhysicalPartCount) 
              SewingNeedle (AtomFn Iron)) ?count)

3.5e+19

How many oxygen molecules enter your lungs on each inhalation? (Number)
  (valueOf ((QPQuantityFn hasPhysicalPartCount) 
           (InhalingFn Oxygen) (MoleculeFn Oxygen))?count)

6.7e+16

How many water molecules are there in a totally filled olympic size swimming 
pool? (Number)
  (valueOf ((QPQuantityFn hasPhysicalPartCount) 
             SwimmingPool1 (MoleculeFn Water)) ?count)

2.6e+27

How many air molecules in an automobile tire? (Number)
  (valueOf ((QPQuantityFn hasPhysicalPartCount) 
             AutomobileTire (MoleculeFn Air)) ?count)

1.3e+23

How many cells are there in the human body? (Number)
  (valueOf ((QPQuantityFn hasPhysicalPartCount) 
             HumanBody Cell) ?count)

9.5e+13

If fighter pilots experience too high “gee” forces in a turn they black out. What is 
the minimum safe vertical turning circle for a plane travelling at the speed of 
sound? (Meters)

1.3e+5

28 Allegro Common Lisp is not able to compute this quantity and returns #.excl::*infinity-single*, this answer is 
generated from BotE-Solver's subgoals of volume of earths atmosphere and volume of the air molecule that were 
used to generate the answer.
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  (valueOf ((QPQuantityFn radiusOfTurn) 
             FighterPilotScenario27) ?radius)
Calculate the gravitational attraction between a man and a woman as they stand 
talking to each other. (Newtons)
  (valueOf ((QPQuantityFn gravitationalForceBetween) 
             Man32 Woman32) ?force)

4.5e-7

How many joules of chemical energy are there in one litre of gasoline? (Joules)
  (valueOf ((QPQuantityFn chemicalEnergyContent) 
             Gasoline) ?energy)

1.9e+8

What is the mass of earth's population? (Kilograms)
  (valueOf ((QPQuantityFn massOfObject) 
              HumanPopulationPlanetEarth) ?mass)

5.2e+11

What is the weight of the air over Lake Superior? (Kilograms)
  (valueOf ((QPQuantityFn massOfObject) AirOverLakeSuperior) ?x)

1.8e+15

How much energy does a horse consume in its lifetime? (Joules)
  (valueOf ((QPQuantityFn energyConsumptionDuring) 
             Horse1 HorseLifetime1) ?x)

2.5e+7

How much does the Thames River heat up in going over the Fanshawe Dam? 
(Degree Celsius)
  (valueOf
     ((QPQuantityFn changeInQuantity) 
      temperatureOfObject FanshaweDamHeatingEvent)
    ?increase)

 47

How many liters of gasoline are used in Chicago in a year? (Liters)
   (valueOf ((QPQuantityFn annualConsumption) 
              Gasoline ChicagoDrivingScenario21) ?amount)

5.7e+6

Estimate the mass of lead deposited each year in London due to emissions from 
automobiles. Each litre of gas contains about 2 grams of lead. (Kilograms)
   (valueOf ((QPQuantityFn emissionAmountDuring) 
              Automobile Lead LondonScenario28) ?lead-amount)

1.5e+4

There are approximately 1.5e+9 cubic kilometres of ocean. If the water was to 
evaporate, what mass of minerals would remain behind? (Kilograms)
  (valueOf ((QPQuantityFn totalValue) 
             massOfObject Mineral TheOceanSea) ?amount)

5.2e+16

What volume of hydrogen gas measured at S.T.P. could be produced by the 
electrolysis of all the water in Lake Erie? (Liters)
  (valueOf ((QPQuantityFn totalValue) 
             volumeOfObject Hydrogen LakeErie) ?length)

6.0e+14

How much energy is produced by fully converting a teaspoonful of water to 
energy? (Joules)
   (valueOf ((QPQuantityFn energyProduced) 
              TeaspoonIntoEnergyEvent1) ?energy)
How much water can be brought to boil using this amount of energy? 

9.0e+14

4.0e+11
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(Kilograms)
  (valueOf ((QPQuantityFn amountOfParticipant)
             WaterHeatingEvent2 Water2) ?water2)

For most of these questions, correct answers are not available, therefore it is not straightforward 

to  make  claims  about  the  accuracy  of  the  estimates  generated  by  BotE-Solver.  Based  on 

quantitative facts and physics formulas from The Physics Factbook29, Eric Weisstein's World of 

Physics30, and Wikipedia31, calculations done by hand by me show that all the answers are in 

within an order of magnitude of hand generated answers. However, the key claim here is not 

about the accuracy of answers. The seven classes of heuristic methods described in Chapter 2 

were sufficient for solving all of these problems. It should be noted that this evaluation was done 

after we  proposed  the  seven  heuristic  methods  in  [Paritosh  and  Forbus,  2005].  This 

demonstration  also  shows  that  BotE-Solver's  architecture  has  enough  expressive  power  to 

operationalize the heuristics. 

4.5 Discussion and Conclusions

BotE-Solver provides support to the knowledge-level claim that the seven heuristic methods of 

ontology, similarity, mereology, density, domain laws, balances and scale-up are comprehensive 

for  BotE  reasoning.  Combined  with  the  evidence  from  the  corpus  analysis  of  worked  out 

problems in Swartz [2003], this provides compelling support for the knowledge-level claim.  

However, operationalizing all of those seven heuristic methods in a fully general manner 

is difficult. A heuristic method in BotE-Solver is implemented via multiple different suggestions. 

29 http://hypertextbook.com/facts/
30 http://scienceworld.wolfram.com/physics/
31 http://en.wikipedia.org/
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The multiple implementations deal with the  representational variance in the knowledge base. 

Representational variance is the fact that different predicates (with possibly different argument 

structures) are used to describe concepts that a problem solver might want to treat alike. For 

example,  the  mereological  relationship  in  the  characterization  of  the  mereology  heuristic  is 

expressed by 520 different predicates in the current version of Cyc KB, some of which are: 

subEvents,  intangibleParts,  subCultures,  subSeries,  capitalCity, 

chapters, citizens.  This  leads to  having different  ways  to express  the same notion of 

extracting quantity value for each of the subparts and adding them up. Even a simple concept of 

area  has  multiple  incarnations:  areaOfObject, areaOfRegion, landAreaOfRegion, 

surfaceAreaOfTopOfObject,  MetropolitanAreaFn, to  name  a  few.  We  are  not 

suggesting that this is a negative issue for the knowledge base, and that it should use the same 

predicate for all these concepts: these are important distinctions that should be represented in any 

large,  rich knowledge base.  Representational  variance is  inevitable  and desirable  in  a  larrge 

knowledge base. For a problem solver, especially one like BotE-Solver, which seeks to make 

educated guesses, it is important to be able to use  knowledge which is similar enough, but is 

differently represented. 

One heuristic that is most generally described is the ontology heuristic, which is because 

the  ontology  is  represented  by  a  small  set  of  predicates  like  isa,  genls, 

relationAllInstance, among others. An important thing about the ontology predicates is 

that they apply generally to a large class of objects, while the mereology predicates are more 

specialized. This is the source of having to write multiple suggestions to represent the same 

heuristic method. One very promising approach to automatically tackle representational variance 
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in a problem solver is the idea of learning  domain mappings by analogy [Klenk and Forbus, 

2007]. 
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Chapter 5: Related Work

This research draws upon work in three different areas: heuristics, automated problem solving, 

and psychology of human reasoning. We discuss each in turn. 

5.1 Heuristics 

George Polya (1945) popularized heuristics in his book as possible steps one could take while 

solving  mathematical  problems.  Some  of  his  heuristics  included  drawing  a  figure,  working 

backward from what is to be proved and considering a more general version of the problem. The 

final output in such reasoning is sound mathematical statements, the heuristics help explore the 

space in a clever way. Herb Simon coined the notion of  Bounded Rationality and  Satisficing 

(1957). In this approach, reasoning is still governed by laws of rationality and realistic resource 

constraints are placed on it. Newell and Simon (1963) proposed weak methods, e.g., means-end 

analysis, generate and test, etc., as the basis of intelligence. 

   Doug Lenat's AM and Eurisko (1982) systems simulated scientific discoveries in the domain of 

mathematics, device physics, games, and heuristics itself, among others, armed with a library of 
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hundreds of heuristics. Lenat called for a formal study of the science of heuristics,  heuretics. 

However, Lenat's notion of heuristics is different from ours. The goal of his systems was to make 

interesting scientific conjectures, and his heuristics guided exploring the space. For example, one 

of his heuristics would suggest that if a function f(x,y)  takes two arguments, then its worth the 

time and effort to define and explore the behavior of  g(x)=f(x,x),  that is, to see what happens 

when the arguments coincide. If f is multiplication, this new function g is squaring; if f is union 

or intersection, then g is the identity function, and so on. His notion of heuristics was ways to 

branch out and explore the space in some guided ways. This is different from the way we are 

framing heuristic reasoning: our goal is to generate answers quickly, rather than explore a space 

of hypotheses.    

 Gregg Collins identified a set of two dozen strategies and described how each would be 

applied in the domain of football [Collins, 1987]. Many of these strategies could be referenced 

with common phrases, e.g., “hedge your bets”, “hold the fort”, etc. He showed that these were 

compositional, and argued that these could be applied to other domains. Starting from Collins’ 

work, Andrew Gordon has catalogued commonsense planning strategies in ten diverse domains 

including business practices,  education,  Machiavellian politics,  personal  relationships,  among 

others [Gordon, 2004]. He has identified 372 strategies, and nearly 1000 fundamental concepts, 

and  organized  them  into  different  knowledge  areas.  A  caveat  is  that  these  strategies  are 

represented in a pre-formal representation: they are written in English, where words and phrases 

that will be needed by any formal reasoning system are marked. For example, 
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Warfare strategy 44. Give false information to enemy spies: Secretly use enemy 
spies to send deceptive information to your enemy.

Representation: The planner has an Adversarial relationship with another agent A1. 
An  agent  A2  has  a  Cooperative  relationship with  the  agent  A1  to  execute 
Cooperative plans that include Informing the agent A1 of Information that involves 
the planner. The agent A2 has the False belief that the planner has a False belief that 
the planner has a Cooperative relationship with the agent A2. The planner Monitors 
planning for  Adversarial plans that have a  Threat that the adversary agent A1 will 
Successfully execute a Counterplan. In this case, the planner executes a plan to cause 
the agent A2 to have a False belief about the Adversarial plan, and then Enables the 
Cooperative plan of this agent A2 that includes Informing.

There is  significant  representational  and computational  work that  needs to  be done to  get  a 

computer problem solver to use these strategies. However, this approach is compatible with ours 

and indirectly supports a crucial working assumption: the number of strategies (or heuristics) is 

not too many. In contrast with the number of facts or rules, which are in millions, these are in 

hundreds. 

5.2 Automated Problem Solving

Problem solving has  a  very broad  meaning  in  AI.  We are  interested  in  problem solving  in 

knowledge-rich scenarios.  Below we describe three systems that  solve problems in  different 

domains exhibiting interesting levels of competence, comparable to a human. 

5.2.1 SAINT 

SAINT (Symbolic  Auto INTegrator)  [Slagle,  1963]  solved  symbolic  integration problems in 

freshman calculus. It was able to solve 52 out of 54 problems from the MIT freshman calculus 

final examinations. It solved problems by applying two types of transformations: 1) heuristic 

transformations,  e.g.,  substitutions,  which  might  or  might  not  succeed;  and  2)  algorithmic 
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transformation, e.g., taking the constant out of the integrand. It maintained an AND/OR tree for 

keeping track of the decomposition introduced by these transformations. It also maintained its 

agenda in two lists: a temporary goal list, and a heuristic goal list. The design of the AND/OR 

solver in BotE-Solver is influenced by SAINT and its reconstruction as JSAINT [Forbus and de 

Kleer, 1993]. 

5.2.2 FERMI 

FERMI (Flexible Expert Reasoner with Multi-domain Inferening) [Larkin et al, 1988] used two 

general  principles,  decomposition and  invariance,  with  domain  specific  knowledge  to  solve 

textbook problems in fluid statics, DC-circuits and centroid location. In this system, the factual 

and strategic knowledge required for  problem solving were stored in two different semantic 

hierarchies.  These  hierarchies  are  isa-hierarchies  consisting  of  schemas.  The  decomposition 

principle says that 

Q(E) =  Q(Ei)Σ

Where {Ei} are the individual components of E, and Q is a quantity that is decomposable with 

respect to the entity E. For example, the area of a surface can be computed by summing up areas 

of all  the components. This is a special  case of the mereology strategy in BotE-Solver. The 

comparison of invariants principle says that if a quantity Q is invariant with respect on an entity. 

This is stated in FERMI as 

Q(Ei) = constant for all Ei

The subscript in this equation refers to different states of E (as opposed to the decomposition 

principle where it refers to sub-components of E). This results in an equation like Q(E1) = Q(E2) 
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where E1 and E2 are two different states of E. FERMI’s reasoning ability was the application of 

these  two  principles.  These  principles  were  implemented  specifically  in  three  domains:  1) 

computing pressure drops in fluids at rest, 2) potential drops in DC-circuits, and 3) calculation of 

centers of mass for planar objects. 

FERMI  is  unfortunately  named,  as  it  doesn’t  and  wouldn’t  be  able  to  solve  open  ended 

problems like the Fermi problems, given its reasoning mechanisms. BotE-Solver implements the 

two principles in FERMI, and five more that are more useful in solving Fermi  problems. 

5.2.3 TPS

TPS  (Thermodynamics  Problem  Solver)  [Pisan,  1998]  solved  over  150  thermodynamics 

problems taken from multiple thermodynamics textbooks and produced expert-like solutions. 

The underlying architecture of TPS, IPSA (Integrated Problem Solving Architecture) combined 

qualitative, quantitative,  and diagrammatic reasoning. TPS used qualitative representations to 

represent modeling assumptions and causal knowledge required for problem solving. It used an 

extended version of the planning framework of the RAPS system [Firby,  1989] to represent 

problem solving methods. There were two types of plans in TPS: goal-centered and problem-

centered. The plans provided knowledge for typical ways of solving problems, grouping similar 

methods for achieving the same goal, and representing connections between domain primitives. 

It used suggestions, similar to SAINT and BotE-Solver, where plans are a type of suggestions 

that  are  given  priority  over  others  like  equation  solving  and  table-lookup.  An  important 

contribution  of  TPS  was  analysis  of  functional  classes  of  equations  in  reasoning  about 

thermodynamics problems. 
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5.2.4 Semi-quantitative Reasoning

There has been important work in the QR community in combining qualitative reasoning with 

quantitative knowledge. It is important to distinguish between the notion of quantitativeness in 

semi-quantitative  reasoning  [Berleant  and  Kuipers,  1997]  and  BotE  reasoning.  In  semi-

quantitative reasoning, functional uncertainty is represented by defining envelopes within which 

functional constraints must lie, and parametric uncertainty is represented by numeric intervals. 

Clearly, this is still in the spirit of purely first-principles reasoning, in contrast to our heuristic 

approach. 

5.3 Psychology of Human Reasoning

The flexibility and robustness of human reasoning is an important motivation for our work. We 

believe that human reasoning provides constraints for organization of knowledge and heuristics 

that are useful for building robust problem solvers. 

5.3.1 Plausible Reasoning

By  analyzing  verbal  protocols  of  people’s  answers  to  everyday  questions,  Allan  Collins 

constructed a theory of human plausible reasoning [Collins,  1978a, 1978b]. One part  of this 

theory  was  a  set  of  plausible  reasoning  inference  patterns.  A  key  difference  from  logical 

reasoning was that the theory specified how different information in memory affects the certainty 

of the conclusions drawn. Here are some examples of the type of protocols that went into this 

theory: 
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Q: Is Uruguay in the Andes Mountains? 

R: I get mixed up on a lot of South American countries (pause). I’m not even sure. 
I forget where Uruguay is in South America. It’s a good guess to say that it’s in 
the Andes Mountains because a lot of the countries are. 

Q: Do you think they might grow rice in  Florida? 

R:  Yeah,  I  guess  they  could,  if  there  were  an  adequate  fresh  water  supply. 
Certainly, a nice, big, warm, flat area. 

The  four  major  types  of  plausible  inference  patterns  were:  Generalization,  Specialization,  

Similarity and  Dissimilarity.  BotE-Solver  implements  the  first  three  of  these.  Reasoning via 

dissimilarity allows inferring that an object might not have a property since it is dissimilar to 

others  that  have  that  property.  This  is  useful  in  classifying  things.  For  example,  one  might 

conclude that coffee is not grown in Russia based on its dissimilarity to other coffee growing 

countries (they are much warmer, e.g.,  Ethiopia, Brazil,  India).   Surprisingly,  dissimilarity is 

rarely used in BotE reasoning. Collins’ work is foundational, and as we explore other domains of 

heuristic reasoning besides BotE, it will provide a gold mine of constraints for building problem-

solving systems.  

5.3.2 Heuristics and Biases 

In the 1970s, the psychologists Amos Tversky and Daniel Kahneman started the Heuristics and 

Biases program. The goal in this program was to use peoples' systematic biases in judgment 

under  uncertainty  to  reveal  the  heuristics  they  use.  Tversky and Kahneman (1974)  reported 

people’s assessment of probabilities of uncertain events. In a very important set of results, they 

show that people make systematic errors because of a set of heuristics that they employ. 
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  An important  psychological  heuristic  is  the  availability  heuristic (Tversky and Kahneman, 

1973). According to the availability heuristic, the ease with which instances come to mind is 

used as indicator of the size or frequency of the class. For example, when asked the question, 

“Do homicides  or  suicides  cause  more  deaths  in  the  US?”  most  people  erroneously answer 

homicides, as it is easier to recall examples of homicides than suicides. Tversky and Kahneman's 

goal was to highlight the heuristic by pointing out when it leads to systematic errors. However, 

the  availability  heuristic  is  usually  reasonable.  Another  heuristic  is  the  representativeness 

heuristic says that people judge the probability that P is a member of category C on the basis of 

the similarity of P to our concept of a prototypical member of C. This work has led to a large 

body of literature in Psychology exploring various aspects of intuitive reasoning in judgment and 

decision making. 

5.3.3 Simple Heuristics that Make Us Smart

Gerd Gigerenzer and his group (1999) have made compelling arguments for  fast  and frugal 

heuristics,  in  which they view the mind having an adaptive toolbox of  heuristics  that  work 

because of  the way the  environment  is  structured.  One of their  heuristics  is  the  recognition 

heuristic: something that you can recognize is likely more important than something you don't. In 

a study where both a sample of German and US students were asked questions about cities like 

“Which  is  bigger:  San  Antonio  or  San  Diego?”  they  showed  that  Germans  performed 

significantly better than Americans on American cities and vice versa for German cities. Their 

argument is  that  with lesser knowledge of American cities,  German students can invoke the 
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recognition heuristic to pick the answer that is most likely going to be right, while American 

students cannot use that heuristic as they probably have heard of both cities.  However,  their 

focus is on populating this toolbox and not on figuring out how this might be integrated with 

other cognitive functions. 

Other heuristics proposed by Gigerenzer are: take-the-first and take-the-best heuristics, which 

suggest that even though we need to know information along various dimensions to predict if a 

country is a developing nation, usually we can make a decision based on just one dimension. 

They argue that this is owing to the non-compensatory nature of cues in the world, which says 

that the classification made using the most important dimension is likely to be right, as that 

dimension usually dominates all the other dimensions.

5.3.4 Education

Linder (1999) studied quantitative estimation in the context of engineering education. About a 

hundred  mechanical  engineering  seniors  at  MIT,  and  fifty  each  at  five  other  universities 

attempted these estimation questions. He also compiled responses from a hundred professionals, 

out of which about there were about thirty each of electrical and mechanical engineers, and the 

rest from other engineering and science backgrounds. Based on these verbal protocols he tried to 

build  a  framework  for  how  people  do  rough  estimations.  His  focus  was  how  to  improve 

engineering curricula, and thus his framework is informal and not couched in computational 

terms; nevertheless, it provides an interesting source of data. In one experiment, when people 

were asked to estimate dimensions of an aluminum bar, more than 50% came up with correct 

estimates and all the answers were in the correct order of magnitude.  However, in the same 
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experiment, more than 90% of mechanical engineering seniors (100 at MIT, and 250 from five 

other universities) came up with wrong order of magnitude estimates of value of energy stored in 

a 9-volt “transistor” battery [Linder, 1999]. The responses varied by nine orders of magnitude 

excluding outliers! The heuristics presented in this thesis could be used to develop a curriculum 

of estimation instruction. 
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Chapter 6: Conclusions and Future Work

Human reasoning is  robust  and flexible,  while  most  AI systems are  fragile  and brittle.  The 

sources of brittleness in most AI systems appear to be gaps and inaccuracies in knowledge, and 

inferential complexity. On the other hand, flexibility in human reasoning arises in part from the 

ability to come up with plausible answers, educated guesses, and reasonable explanations. This is 

the  intuition  behind the  heuristic  reasoning approach  proposed  in  this  thesis.  This  approach 

suggests  reasonableness,  in quality of answer, and  comprehensiveness,  broad coverage in the 

task domain, instead of soundness and completeness. BotE-Solver demonstrates this approach in 

the domain of Back of the Envelope (BotE) reasoning. Armed with a rich ontology, analogy and 

a library of heuristic  methods, the system can generate reasonable answers to a broad set of 

questions.

Chapter 2 described the BotE reasoning domain, a formal representation for the problems 

and heuristic methods, and a corpus study of BotE problems. Chapter 3 described a theory of 

representation and learning about quantities and the CARVE system. Chapter 4 described the 

BotE-Solver system, illustrated its operators via examples, and evaluated its performance on the 

Science Olympics corpus. Chapter 5 described related work. The next section summarizes the 

major contributions of this thesis. We then describe some of the promising future directions for 

this work. 
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6.1  Summary of Key Contributions 

6.1.1  A Broad Coverage Theory of Back of the Envelope (BotE) Reasoning 

The goal in BotE reasoning is to produce a rough quantitative estimate.  Given a question, the 

first  step  is  to  see  if  one  directly  knows  the  answer  or  knows  similar  examples  for  which 

estimates  are  already available.  This  step  is  called  direct  estimation.  Indeed,  if  one  had  no 

quantitative knowledge at all, it will be impossible to answer such questions.  However, it is not 

reasonable to assume direct access to all quantitative facts. What makes BotE reasoning powerful 

is  the  fact  that  by  piecing  together  simple  facts  that  are  readily  available,  one  can  answer 

seemingly  difficult  questions.  This  step  is  called  estimation  modeling [Paritosh  and Forbus, 

2003].  Estimation  modeling  is  the  process  of  constructing  simplified  models  of  complex 

scenarios which are good enough for the purposes of making a rough estimate. These models are 

constructed by applying heuristic methods to transform the original problem into other problems 

which are possibly easier. 

We present a set of seven heuristic methods for estimation modeling: analogy, ontology, 

mereology,  density,  domain laws,  system laws,  balances  and scale-up  [Paritosh  and Forbus, 

2005].  These heuristic methods are implemented in BotE-Solver. We show two-fold support for 

the comprehensiveness of this library of heuristic methods.  In a corpus analysis of problems 

from Swartz’s “Back-of-the-Envelope Physics,” we found that the above seven heuristic methods 

accounted  for  94%  of  the  strategy  use.  The  remaining  6%  contain  instances  of  designing 

experiments  to  estimate  a  quantity,  and  one  instance  of  a  complex  problem from statistical 
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mechanics. This corpus analysis is described in Chapter 2. Further, these methods are sufficient 

for BotE-Solver to solve all the thirty five Fermi Problems from the Science Olympics. 

6.1. 2  A Cognitively Plausible Theory of Learning about Quantities 

To get to a quantitative estimate the reasoning process has to bottom out by plugging in the 

numeric values. Humans get better at solving BotE problems by exposure to more quantitative 

facts in the domain [Linder, 1999]. We call this facility with quantitative knowledge built out of 

experience as quantity sense. We present a theory of quantity sense that answers two questions: 

1) What do people learn about quantities?, and, 2) How do people learn about quantities? 

We  introduce  the  symbolization  by  comparison  (SBC) theory  [Paritosh,  2004; 

forthcoming].  The SBC theory claims that people’s knowledge about quantities consists of a 

symbolization of the continuous quantity which is built by processes of comparison. Comparison 

helps us notice and extract the scale of values of quantities and we create symbolizations that 

name points and intervals  on this  scale.  A  symbolization is  a  qualitative representation  of a 

continuous quantity. These symbolizations must make two kinds of distinctions:  distributional, 

those that denote changes of quantity, e.g., large and small;  and  structural, those that denote 

changes  of  quality,  e.g.,  boiling  point  and poverty  line.  Chapter  3  presented  evidence  from 

psychology and linguistics, and arguments from ecological and task/reasoning constraints that 

support the SBC theory. We described CARVE [Paritosh, 2003], a computational instantiation of 

the SBC hypothesis.  CARVE learns qualitative  representations  of quantity  from exposure to 

examples. 
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6.1.3  A Theory of Analogical Estimation  

Analogical  estimation  involves  using  a  similar  example  to  make  a  numeric  estimate.  For 

example, the price of a used car might be similar to another car of the same make and mileage. In 

order to use analogies to make numeric estimates, our analogical matching algorithms must be 

sensitive to quantities. Most models of similarity do not adequately handle numeric properties – 

either  ad  hoc  similarity  metrics  such  as  Euclidean  distance  are  used,  or  the  quantities  are 

completely ignored in the matching and retrieval processes. The SBC theory presents a different 

approach to the problem of incorporating quantities in similarity models by proposing that the 

solution lies in better representations. The qualitative representations generated by CARVE are 

added  to  the  descriptions  being  compared,  which  allows  Structure  Mapping  Theory  to  be 

sensitive to quantities. The analogical estimation task gives us a way to functionally evaluate the 

representations generated by CARVE. In Chapter 3, we showed that representations generated by 

CARVE lead to more accurate estimates in an analogical estimation task. 

Much of  psychological  research  on  estimation  follows  the  anchoring  and adjustment 

paradigm [Tversky and Kahneman, 1974] in knowledge-impoverished domains. To observe how 

experts utilize similarity and causal relationships in real world estimation tasks, we collected 

verbal  protocols  of  experts  doing  realistic  estimation  tasks  [Paritosh  and  Klenk,  2006].  For 

example, when trying to estimate the rent for an apartment, one might retrieve from memory a 

similar apartment in the same neighborhood. The value from the analogical reminding serves as 

an analogical anchor. As a first pass, this analogical anchor is evaluated for its plausibility for 

the value sought. Analysis of the comparison between the problem and the reminding provides 

the grist for computing causal adjustments from the anchor to improve the estimate: for example, 
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one might notice that the apartment that they were reminded of is smaller, and is in a slightly less 

desirable location. KNACK is a computational model of this theory of analogical adjustments. 

The representations generated by CARVE led to more accurate estimates by KNACK. 

This  account  makes  some  novel  psychologically  testable  predictions:  1)  Causal 

adjustments need not be insufficient and should be correlated with the perceived strength of the 

causal relationship, 2) Quantitative difference should be judged in proportion to the depth of 

nested  relationships  involving  the  quantity.  The  verbal  protocols  are  just  a  start;  more 

psychological evidence needs to be gathered to explore these claims. 

6.1.4 Summary 

We presented a computational theory and model of BotE reasoning that can successfully solve 

problems from the Science Olympics. We also presented additional support of the generality and 

coverage of heuristic methods by a corpus analysis of problems from Clifford Swartz’s Back-of-

the-Envelope  Physics.  We  believe  that  this  supports  the  heuristic  reasoning  approach  to 

alleviating brittleness in AI systems. 

An important heuristic method was the use of analogy. In order for the analogical mechanism to 

capture  the  role  of  quantitative  knowledge  in  computing  similarity,  we  implemented  a 

cognitively plausible learning mechanism that automatically builds qualitative representations of 

continuous quantity by exposure to examples. The model of analogical estimation is compatible 

with verbal protocols of expert estimators. 
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6.2  Future Work

6.2.1  Applications

Some  immediate  applications  of  BotE  reasoning  are  to  build  tools  for  everyday  numeracy 

support, for example,  number-checker-and-explainer not unlike the spell-checker that can alert 

and provide explanations when a number does not make sense, or a search engine that is geared 

towards finding and generating numerical estimates. 

Imagine being able to click on a number in a news article or a financial report, and being 

offered  a  back-of-the-envelope estimate  showing how it  makes sense,  or  being shown other 

comparable  quantities  that  contextualize  it.  A similar  project  was  PLUM [Elo,  1996]  which 

augmented news on world-wide natural disasters that readers often find remote and irrelevant. 

Using community profiles,  PLUM automatically  compares  facts  reported in an article  to  the 

reader's home community. The reader, browsing through annotations which PLUM generates, 

discovers, for example, the number of people affected by the disaster as a percentage of the home 

town population. The BotE heuristic methods offer more general relationships between quantities 

and can provide much more powerful explanations. These techniques could be used to build both 

end-user  tools  and middleware for  information  extraction  and knowledge acquisition,  where 

sanity-checking is an important issue.

6.2.2  Natural Language and Question Answering

Applications like the everyday numeracy tools mentioned above need access to vast amounts of 

quantitative  information  across  multiple  domains.   This  requires  building  support  for 
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dynamically extracting representations from natural language sources like books,  newspapers 

and the web.  The extraction and learning of verifiable quantitative facts is  an open research 

question, but one that seems tractable. First, a majority of quantitative information has a small set 

of linguistic expressions [Schwarz, 1996; Kuehne, 2004]. Second, if one has access to highly 

redundant  corpora  like  web,  numeric  information  is  easier  to  compare  and  cluster,  which 

provides one mechanism for verification. 

 Answering questions is a common task for many different paradigms of AI research. The 

knowledge-based approach focuses on problem solving, and is accomplished by reasoning with 

formal representations provided with the problem and/or available in a knowledge base.  The 

text-based approach focuses on  information extraction, and is accomplished by retrieving and 

analyzing relevant text documents from a corpus.

Both of these approaches have strengths and weaknesses. The knowledge-based approach 

uses formal representations which allow sophisticated inference and the ability to provide proofs 

as explanations for solutions. However, the cost of knowledge representation is steep: in a recent 

evaluation32,  it  was estimated that it  costs  about $10,000 to encode one page of high school 

chemistry textbook. The amount of knowledge required to successfully answer a broad range of 

questions like those in the TREC question answering track is vast. To our knowledge, no fully 

knowledge-based systems have been fielded in the TREC competitions. The text-based approach 

short-circuits  the knowledge issue,  and can directly  tap into a  vast  text  corpora:  web pages, 

newspaper articles and scientific papers, to name a few. However, the text-based approach has 

very little if any capability to produce explanations, sanity-check answers and make inferences. 

Consider the answer of 360 tons for the question “How much Folic acid should an expectant 
32    http://www.projecthalo.com/
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mother consume per day?” Simple chains of reasoning can reject this answer, but most current 

text-based approaches cannot do this. 

The strength of the KB approach is the weakness of the TB approach and vice versa.  We 

believe a key piece of the puzzle in integrating these approaches is heuristic reasoning. Starting 

with a domain like BotE reasoning, where the types of heuristic methods are well understood, we 

can build the next generation of question answering systems that leverage the best of both KB 

and  TB  approaches.  We  describe  a  preliminary  analysis  of  such  integration  and  linguistic 

expressions for BotE questions and heuristics in Paritosh [2007].

6.2.3  Heuristic Reasoning

BotE reasoning is an instance of heuristic reasoning. This raises questions like: What are other 

domains  of  heuristic  reasoning?  What  are  the  general  aspects  and  properties  of  heuristic 

reasoning?

Heuristic reasoning methods exploit the information processing structure of the reasoning 

system and the structure of the environment to produce reasonable answers when knowledge 

and/or computational resources for finding the perfect correct answer might not exist. Capturing 

all the heuristics to generate reasonable answers might not be as colossal of a project as it might 

first seem: we conjecture that there are about fifteen heuristic domains, and each of them have 

approximately ten heuristic methods [Paritosh, 2006]. The figure of fifteen is not sacrosanct, it is 

based on our efforts to build an exhaustive list from analysis of problem solving in multiple 

domains and the literature on psychology of human problem solving, judgment and decision 

making. Let's consider a non-BotE example of a heuristic  method. Suppose you were asked, 
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“What American company sells the most greeting cards?” One way to answer the question might 

be to look up statistics about sales of various greeting card companies. However, a typical human 

answer might look more like the following: 

“Let's see... Hallmark comes to mind. I have seen Hallmark cards all over the 

place. In fact, I can't think of any other major greeting card manufacturer, so I 

bet it's Hallmark.”

The above answer and rationale appear reasonable to most people, and in most circumstances 

such reasoning is right33. It exploits an important fact about human memory: the ease with which 

we can recall instances of something is usually correlated with the frequency of that thing in the 

world,  and unheard-of  things are often not  very important.  Reasoning tasks  where there  are 

multiple answers and/or processes to arrive at the answer, with varying degrees of correctness or 

quality are heuristic domains. On the other hand, questions like “What two US biochemists won 

the Nobel prize in 1992?” or “What is the scientific name of Viagra?” are examples for which it 

is less likely to have reasonable guesses – you either know the answer or don't. Both of these 

questions are from the TREC34 corpus, which places more emphasis on such questions than on 

those that require reasoning/inference.  Next we present a set of eight other heuristic domains. 

6.2.3.1 Heuristic Domains

In this section we present a list of heuristic domains, and some hypotheses about heuristic 

methods that might work in those domains. 

33  Hallmark's revenue is approximately $5 billion, its rival American Greetings' revenue is around $2 billion.
34  http://trec.nist.gov/
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Temporal Estimation: When did X happen? 

Even  when  we  do  not  know  the  exact  date  when  something  happened,  research  in 

autobiographical memory (Thompson et al.,  1996) suggests that by recalling landmark events 

and  constructing  a  local  temporal  scale,  people  can  generate  reasonable  estimates.  Allen's 

temporal interval calculus (1983) presents a concise set of relationships that could be used to 

organize the heuristic methods in this domain. For example, consider various ways to answer 

“When was Mark Twain born?” If you happened to know that Mark Twain wrote a first-person 

account of his participation35 in the American Civil War, which went on from 1861 to 1865, then 

you might guess that he was probably born around 1830. 

Comparison: Is X larger than Y along dimension D?  Who/What is the 

maximum/minimum of a class/set along dimension D? 

These questions involve making comparisons between two or more objects along some scalar 

dimension. At first glance, this might look like solving a few back of the envelope problems and 

comparing  the  results.  However,  it  is  often  easier  to  answer  the  comparative  question.  For 

example, it is easier to say that Microsoft research spending is more than Apple's than it is to 

estimate their respective spendings and compare them. One heuristic method here is projection. 

If we are comparing X and Y along dimension D, and we know another dimension E that is 

qualitatively  proportional  to  D,  then  we  can  project  the  ordinal  result  along  E  on  to  D. 

Qualitative representations and techniques of comparative analysis (Weld 1987) might play an 

important  role  in  this  heuristic  domain.  An important  psychological  heuristic  method  is  the 

availability heuristic (Tversky and Kahneman, 1973). According to the availability heuristic, the 
35  “The Private History of a Campaign That Failed” also made into a movie.
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ease with which instances come to mind is used as indicator of the size or frequency of the class. 

For example, when asked the question, “Do homicides or suicides cause more deaths in the US?” 

most people erroneously answer homicides, as it is easier to recall examples of homicides than 

suicides. Tversky and Kahneman's goal was to highlight the heuristic by pointing out when it 

leads to systematic errors. However, the availability heuristic is a useful one, and how often it is 

right is an empirical question. An interesting implication is the idea of “ease of recall”– for most 

knowledge based systems, fact lookup will take roughly the same amount of time, irrespective of 

the fact in question36. 

Probability:  How likely is X? Is X more likely than Y?

People  make judgments and decisions based on the likelihood of various events, for example, 

the author of a scientific paper might consider: “What is the likelihood that my paper will get 

accepted by a certain conference or journal?” One can generate a reasonable guess about which 

of two journals are more likely to accept the paper without knowing detailed joint probability 

distributions.  It  might  be  possible  to  answer  the  question  without  knowing  a  priori  all  the 

relevant  variables  affecting  acceptance.  One  psychological  heuristic  method  to  answer  these 

questions is the representativeness heuristic (Tversky and Kahneman, 1972) that guides people's 

estimates  of  such  likelihood.  The  representativeness  heuristic  says  that  people  judge  the 

probability that P is a member of category C on the basis of the similarity of P to our concept of 

a prototypical member of C. Models of analogy and generalization (Falkenhainer, Forbus and 

Gentner, 1989; Kuehne et al.,  2000) could be used to model the representativeness heuristic. 

36 With the exception of ACT-R, which takes reaction times as an essential element of modeling. However, ACT-R 
does not answer the specific questions raised here. 
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Recent  work  by  Halstead  (2005)  has  incorporated  probability  into  the  structured  models  of 

generalization. 

Classification: Does X belong to the class Y? Does X satisfy property P?

Allan Collins' seminal work on plausible reasoning (1989) gives us a set of strategies used by 

people in answering such questions, based on an analysis of verbal protocols used by people in 

answering such questions.  Consider questions like: Is Somalia a developing nation? Do they 

grow coffee  in Russia?  One could  use  Somalia's  similarity  to  other  instances  of  developing 

nation as evidence for answering the question in the affirmative. By noticing the dissimilarities 

between Russia and other coffee growing countries like Ethiopia, Brazil, Kenya, India, etc., one 

might conclude that Russia doesn't  grow coffee. The representativeness heuristic is useful in 

answering classification questions as well. Gigerenzer (1999) has proposed the take-the-first and 

take-the-best heuristics,  which suggest  that even though we need to know information along 

various dimensions to predict if a country is a developing nation, usually we can make a decision 

based on just one dimension. This is owing to the non-compensatory nature of cues in the world, 

which says that the classification made using the most important dimension is likely to be right, 

as that dimension usually dominates all the other dimensions. 

Choice, evaluation, decision making: Is X good? Is X better than Y? What is the best 

course of action?

At first blush, this might look like the comparison domain above. However, a key idea in choice 

and decision making is that of evaluating a situation for how good it is. In Economics, this idea 
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of  evaluation  is  captured  by  utility.  Prospect  theory  (Kahneman  and  Tversky,  1979)  is  the 

psychological  version  of  the  utility  theory.  Based  on  studying  firefighters,  pilots,  nurses  in 

Neonatal  Intensive  Care  Units,  and other  people  who  constantly  are  making  decisions  with 

important  consequences,  Gary  Klein  (1999)  has  developed  the  Recognition-primed  decision 

model, which is essentially an analogical approach. Consider questions like: Is Toyota Corolla 

the right car for me? Should we hire X or Y? Similarity and experiential knowledge are key 

elements of the heuristic methods in this domain.  

Prediction: What will happen if X?

Qualitative representations and methods of qualitative reasoning are a crucial part of making 

predictions in the face of incomplete knowledge. Consider: What will happen if the price of 

gasoline increases? What will happen to the outside temperature if it is snowing? The former 

involves  identifying  the  causally  related  quantities  to  the  price  of  gasoline,  and  might  be 

explained to a large extent by first-principles qualitative reasoning. However, a more reasonable 

account of how people might answer the latter question is with experience: we know that it gets 

relatively warmer after snowing, but might not have a full causal account of the phenomenon. 

This is the hybrid explanation of qualitative mental models: relying on mostly similarity-based 

reasoning and only a little on first-principles based reasoning (Forbus and Genter, 1997). It is 

currently being explored by Yan and Forbus (2004). 
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Explanation: Why X?

As qualitative representations make causal relationships and modeling assumptions explicit, they 

naturally provide the grist for generating explanations (Bouwer and Bredeweg, 1999). Consider a 

question like: Why are hybrid cars more fuel efficient? 

Sanity checking:  Does X make sense? Is X reasonable?  

This is a meta-heuristic domain, where rather than answering a question, we are given a question 

and a candidate answer, and we use all the above methods to figure out if the answer sounds 

reasonable. It might be possible to do sanity checking for reasoning domains for which we don't 

even have heuristic methods. For example, the question in the introduction that asked for the 

scientific  name of  Viagra:  we  can easily  reject  “Cialis,”  “sex,”  or  “42”  as  being obviously 

incorrect. The first step in sanity checking is typechecking –  making sure that the candidate 

answer is of expected class. Maintaining some global sense of various scales is another important 

aspect of sanity checking. For example, it is easy to reject 14ft as the diameter of Earth. All of 

the heuristic methods above can be then used to generate a plausible answer and compare it with 

the candidate answer to conclude if something makes sense or not.   

6.2.3.2 Summary

While an ambitious proposal, the decomposition of problem solving tasks into heuristic domains 

suggests a tractable approach towards building a comprehensive theory and implementation of 

heuristic reasoning. There are many interesting questions about the nature of heuristic domains 

that this research program hopes to answer. Which domains and tasks are inherently brittle, and 
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which domains are heuristic? Are there different types of heuristic domains? We believe that this 

approach to heuristic reasoning will lead to software that is less brittle, and help us understand 

the aspects of intuitive reasoning in human minds.

6.2.4 Cognitive and Educational Implications

The symbolization by comparison theory has ramifications for education and cognitive theories 

of  numeracy.  Recent  work  has  shown  that  humans  along  with  many  other  animals  share  a 

cognitive infrastructure for representation of approximate numerosity. However, there exists an 

explanatory  gap  between  how  our  qualitative  representations  of  quantity  are  related  to  this 

cognitive infrastructure. Quantitative literacy is a very important issue for math education, and 

there are many demonstrations of the lack of success of current educational methods to impart 

this  skill  at  various  levels  from middle-school  to  college.  For  example,  more  than  90% of 

mechanical engineering seniors (100 at MIT, and 250 from five other universities) came up with 

estimates that were off by more than one order of magnitude for the value of energy stored in a 

9-volt  “transistor”  battery,  and responses varied  by nine orders  of magnitude.  The cognitive 

insights from this work can be used to design an undergraduate-level class centered on teaching 

estimation skills. The back of the envelope reasoning provides a framework to structure the class, 

and this class will also serve as a laboratory to generate and explore hypotheses about human 

commonsense reasoning.
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6.3  Final Words

We have shown in this thesis that a small set of heuristics provide broad coverage in back of the 

envelope reasoning. BotE-Solver demonstrates the feasibility and the potential of the heuristic 

reasoning approach. The symbolization by comparison theory, implemented as CARVE, offers a 

cognitively plausible account of quantity sense. 

By leveraging natural language, we can enhance the breadth of BotE reasoning and make 

tools  for  everyday  numeracy  support.  The  heuristic  reasoning  research  program  appears  to 

provide a tractable  approach to addressing brittleness in AI systems.  Modeling the ability to 

make educated guesses, which we think is at the heart of human intelligence,  could solve the 

garbage in/garbage out problem. 
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Appendix A: Suggestions used by BotE-Solver

  (defSuggestion HomogenousGroupExtensiveQuantityStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans)
     :documentation "If there is a group of n of something, and each one 
                  of them has a value q, then the value for the all of 
                  them is n*q if q is an extensive dimension"
     :test (and (isa ?quantity ExtensiveMeasurableQuantitySlot)
                (isa ?object Group))
     :subgoals ((groupMemberType ?object ?individual-member)
                (valueOf ((QPQuantityFn numberOfGroupMembers) ?object) ?count)
                (valueOf ((QPQuantityFn ?quantity) ?individual-member) 
                           ?individual-value))
     :result-step (evaluate ?ans (TimesFn ?count ?individual-value)))
          
   (defSuggestion CountGroupMembersByMereologyStrategy
       (valueOf ((QPQuantityFn numberOfGroupMembers) ?group) ?ans)
     :documentation "Add up counts from subgroups to produce a total"
     :test (isa ?group Group)
     :subgoals ((evaluate ?subgroups 
                          (TheClosedRetrievalSetOf 
                             ?subgroup (subGroups ?group ?subgroup)))
                (evaluate ?subgroup-counts 
                          (MapFunctionOverList 
                           (FunctionToArg 2 
                              (Kappa (?s)
                                     (valueOf 
                                       ((QPQuantityFn 
                                           numberOfGroupMembers) ?s) ?val)))
                           (SetToListFn ?subgroups))))
     :result-step (evaluate ?ans (PlusAll IdentityFn ?subgroup-counts)))

(defSuggestion BalanceStrategy
    (valueOf ((QPQuantityFn ?quantity) ?system ?state) ?val)
  :test (and (isa ?quantity ConservedQuantity)
             (isa ?system System)
             (quantityConservedForSystem ?quantity ?system))
  :subgoals ((and (stateOfSystem ?system ?alt-state)
                  (different ?state ?alt-state))
             (valueOf ((QPQuantityFn ?quantity) ?system ?alt-state) ?alt-val))
  :result-step (evaluate ?val (IdentityFn ?alt-val)))

   (defSuggestion TotalEnergyConversionStrategy
       (valueOf ((QPQuantityFn energyProduced) ?event) ?energy) 
     :documentation  "E=mc^2"
     :test (isa ?event TotalEnergyConversionProcess)
     :subgoals ((objectActedOn ?event ?obj)
                (valueOf ((QPQuantityFn massOfObject) ?obj) ?mass)
                (valueOf ((QPQuantityFn velocityOfObject) Light) ?c))
     :result-step (evaluate ?energy (TimesFn ?mass (ExponentFn ?c 2))))   
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   (defSuggestion DensityStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans) 
     :documentation "implements density heuristic"
     :subgoals ((and (densityQuantityFor ?quantity ?density-quantity)
                     (extentQuantityFor ?density-quantity ?extent-quantity))
                (valueOf ((QPQuantityFn ?density-quantity) ?object) ?density)
                (valueOf ((QPQuantityFn ?extent-quantity) ?object) ?extent))
     :result-step (evaluate ?ans (TimesFn ?density ?extent)))

   (defSuggestion AmountViaLatentHeatOfVaporizationStrategy
       (valueOf ((QPQuantityFn amountOfParticipant) ?event ?object) ?ans)
     :test (and (isa ?event HeatingProcess)
             (objectActedOn ?event ?object))
     :documentation "Finds amount of a substance in a heating process"
     :subgoals ((isa ?object ChemicalSubstanceType) 
                (valueOf ((QPQuantityFn amountOfEnergyUsed) ?event) 
                              ?heat-amount)
                (valueOf ((QPQuantityFn heatOfVaporization) ?substance) 
                             ?latent-heat))
     :result-step (evaluate ?ans (QuotientFn ?heat-amount ?latent-heat)))

   (defSuggestion ChangeOfQuantityInEventStrategy
       (valueOf ((QPQuantityFn changeInQuantity) ?quantity ?event) ?ans)
     :documentation "compute change in a quantity by subtracting 
                     initial from final"
     :test (isa ?event Event)
     :subgoals ((valueOf ((QPQuantityFn initialValueOfQuantity) 
                            ?quantity ?event) ?initial-value)
                (valueOf ((QPQuantityFn finalValueOfQuantity) 
                           ?quantity ?event) ?final-value))
     :result-step (evaluate ?ans (MinusFn ?final-value ?initial-value)))
   
   
   (defSuggestion TempChangeInFallStrategy
       (valueOf ((QPQuantityFn changeInQuantity) 
                  temperatureOfObject ?event) ?delta-t)
     :documentation "Compute change in temperature if all potential 
                  energy were converted into heat via delta-t=g.h/c"
     :test (or (isa ?event HeatingProcess)
               (isa ?event CoolingProcess))
     :subgoals ((objectActedOn ?event ?object)
                (isa ?object ChemicalSubstanceType)
                (valueOf ((QPQuantityFn specificHeatCapacity) ?object) ?c)
                (valueOf ((QPQuantityFn verticalFallDistance) 
                           ?object ?event) ?h)
                (valueOf Gravity-UnitOfAcceleration ?g))
     :result-step (evaluate ?delta-t (QuotientFn (TimesFn ?g ?h) ?c)))
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(defSuggestion HomogenousEventExtensiveQuantityStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object ?time) ?ans)
     :test (and (isa ?quantity ExtensiveMeasurableQuantitySlot)
                (isa ?time TemporallyExtendedThing))
     :subgoals ((duration ?time (?duration-unit ?duration-val))
                (valueOf ((QPQuantityFn ?quantity) ?object ?duration-unit) 
                     ?ans-per-duration))            
     :result-step (evaluate ?ans (TimesFn ?duration-val ?ans-per-duration))
     :documentation "Compute total value of a quantity associated 
                     with an event by multiplying the duration")
   
   
   
   (defSuggestion SeekScaleModelStrategy
       (valueOf ((QPQuantityFn ?quantity) ?object ?situation) ?ans)
     :subgoals ((and (correspondsInMapping ?scale-model ?base-object ?object)
                     (isa ?scale-model ScaleModel))
                (valueOf ((QPQuantityFn ?quantity) ?base-object ?situation) 
                     ?base-ans)
                (valueOf ((QPQuantityFn scalingFactor) ?scale-model) 
                              ?scaling-factor))
     :result-step (evaluate ?ans (TimesFn ?scaling-factor ?base-ans)))
   
   
   (defSuggestion AllometricScalingLaw
       (valueOf ((QPQuantityFn scalingFactor) ?scale-model) ?scaling-factor)
     :test (and (isa ?scale-model ScaleModel)
                (scaleModelFor ?scale-model ?quantity)
                (isa ?quantity EnergyQuantitySlot)) 
     :subgoals ((correspondsInMapping ?scale-model ?base-object 
                  ?target-object)
                (and (isa ?base-object BiologicalSpecies)
                     (isa ?target-object BiologicalSpecies))
                (valueOf ((QPQuantityFn surfaceAreaOfWholeObject) 
                            ?base-object) ?base-area)                      
                (valueOf ((QPQuantityFn surfaceAreaOfWholeObject) 
                             ?target-object) ?target-area))
     :result-step (evaluate ?scaling-factor 
                            (ExponentFn 
                              (QuotientFn ?target-area ?base-area) 0.75)))
   
   (defSuggestion SphericalSurfaceArea
       (valueOf ((QPQuantityFn surfaceAreaOfWholeObject) ?object) ?area)
     :documentation "Consider a sperical cow for computing surface area"
     :test (and (isa ?object ThreeDimensionalThing)
                (uninferredSentence (shapeOfObject ?object ?shape)))
     :subgoals ((valueOf ((QPQuantityFn lengthOfObject) ?object) ?length))
     :result-step (evaluate ?area (TimesFn 12 (ExponentFn 
                                                (QuotientFn ?length 2) 2))))



169

   (defSuggestion IntensiveQuantityViaHomogenousMereology
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans)
     :test (and (isa ?quantity IntensiveMeasurableQuantitySlot)
                (isa ?object HomogeneousStructure))
     :subgoals ((constituents ?object ?constituent)
                (valueOf ((QPQuantityFn ?quantity) ?constituent) ?ans)))
   
   (defSuggestion VolumeViaCrossSection
       (valueOf ((QPQuantityFn volumeOfObject) ?object) ?ans)
     :test (isa ?object ThreeDimensionalThing)
     :subgoals ((valueOf ((QPQuantityFn areaOfObject) ?object) ?area)
                (valueOf ((QPQuantityFn heightOfObject) ?object) ?height))
     :result-step (evaluate ?ans (TimesFn ?area ?height)))
   
   
   (defSuggestion SpatialSurfaceAligned
       (valueOf ((QPQuantityFn areaOfObject) ?object) ?ans)
     :subgoals ((alignedAlongSurface ?object ?alt-object)
                (valueOf ((QPQuantityFn surfaceAreaOfTopOfObject) ?alt-
object) ?ans)))
   
   (defSuggestion SpatialLengthAligned
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans)
     :test (isa ?quantity DistanceQuantitySlot)
     :subgoals ((alignedAlongQuantity ?object ?alt-object ?quantity)
                (valueOf ((QPQuantityFn ?quantity) ?alt-object) ?ans)))
   
   (defSuggestion ComputeRectangularArea
       (valueOf ((QPQuantityFn areaOfObject) ?object) ?ans)
     :subgoals ((valueOf ((QPQuantityFn lengthOfObject) ?object) ?length)
                (valueOf ((QPQuantityFn widthOfObject) ?object) ?width))
     :result-step (evaluate ?ans (TimesFn ?length ?width)))

   (defSuggestion EnergyByUsageStrategy 
       (valueOf ((QPQuantityFn ?quantity) ?object) ?ans)
     :test (isa ?quantity EnergyQuantitySlot)
     :subgoals (;; we know of an event where the object is the energy source
                (energySource ?event ?object) 
                (valueOf ((QPQuantityFn energyProduced) ?event) ?energy-out)
                (objectActedOn ?event ?system)
                (amountOfStuffInRole ?event ?stuff ?amount energySource)
                (valueOf ((QPQuantityFn levelOfEfficiency) ?system) ?
efficiency))
     :result-step (evaluate ?ans (QuotientFn ?energy-out ?efficiency)))
   
   (defSuggestion EnergyViaMotionStrategy
       (valueOf ((QPQuantityFn energyProduced) ?event) ?ans)
     :documentation "In a translation event Energy/Work = Force x Distance"
     :test (isa ?event Movement-TranslationEvent)
     :subgoals ((objectActedOn ?event ?object)
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                (valueOf ((QPQuantityFn forceActingOnObject) ?object) ?force)
                (valueOf ((QPQuantityFn distanceTranslated) ?event) ?
distance))
     :result-step (evaluate ?ans (TimesFn ?force ?distance)))
   
   (defSuggestion ForceAtConstantVelocityStrategy
       (valueOf ((QPQuantityFn forceActingOnObject) ?object) ?force)
     :test (valueOf ((QPQuantityFn accelerationOfObject-Translation) ?object) 
0)
     :subgoals ((objectActedOn ?event ?object)
                (valueOf ((QPQuantityFn frictionalForce) ?event) ?friction))
     :result-step (evaluate ?force (IdentityFn ?friction)))
   
   
   (defSuggestion FrictionalForceStrategy
       (valueOf ((QPQuantityFn frictionalForce) ?event) ?force)
     :test (and (isa ?event Movement-TranslationEvent)
                (directionOfTranslation-Throughout ?event Horizontal-
Generally))
     :subgoals ((objectActedOn ?event ?object)
                (movementSurface ?event ?surface)            
                (valueOf ((QPQuantityFn massOfObject) ?object) ?mass)
                (valueOf ((QPQuantityFn coefficientOfFriction) ?object ?
surface) ?coeff)
                (valueOf Gravity-UnitOfAcceleration ?g))
     :result-step (evaluate ?force (TimesFn ?coeff ?mass ?g)))

  (defSuggestion NewtonsLawOfGravitation
       (valueOf ((QPQuantityFn gravitationalForceBetween) ?object1 ?
object2) ?ans)
     :subgoals ((valueOf ((QPQuantityFn massOfObject) ?object1) ?mass1)
                (valueOf ((QPQuantityFn massOfObject) ?object2) ?mass2)
                (valueOf ((QPQuantityFn distanceBetween) ?object1 ?object2) ?
distance))
     :result-step (evaluate ?ans (QuotientFn (TimesFn 6.67e-11 ?mass1 ?mass2)
                                             (ExponentFn ?distance 2))))
   (defSuggestion RadiusViaCentrifugalAcceleration
       (valueOf ((QPQuantityFn radiusOfTurn) ?event) ?ans)
     :test (isa ?event MovementEvent)
     :subgoals ((objectActedOn ?event ?object)
                (valueOf ((QPQuantityFn massOfObject) ?object) ?mass)
                (valueOf ((QPQuantityFn velocityOfObject) ?object) ?velocity)
                (valueOf ((QPQuantityFn accelerationOfObjectDuring) ?event) ?
acceleration))
     :result-step (evaluate ?ans (QuotientFn (TimesFn ?mass (ExponentFn ?
velocity 2)) ?acceleration)))

   (defSuggestion CountViaConstituentStrategy
       (valueOf ((QPQuantityFn ?count-quantity) ?whole ?part) ?count)
     :documentation "If ?whole is made out of ?part, then the quantities that 
describes
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                  the dimension of the constitution can be used to measure 
the count" 
     :test (and (constituents ?whole ?part)
                (isa ?count-quantity CountQuantitySlot))
     :subgoals ((constituentPhysicalQuantity ?whole ?part ?constituent-
quantity)
                (valueOf ((QPQuantityFn ?constituent-quantity) ?whole) ?
whole-measure)
                (valueOf ((QPQuantityFn ?constituent-quantity) ?part) ?part-
measure))
     :result-step (evaluate ?count (QuotientFn ?whole-measure ?part-measure)))
   
   
   (defSuggestion CylindricalVolume
       (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)
     :documentation "Consider a cylindrical cow for computing volume"
     :test (and (isa ?object ThreeDimensionalThing)
                (uninferredSentence (shapeOfObject ?object ?shape)))
     :subgoals ((valueOf ((QPQuantityFn lengthOfObject) ?object) ?length)
                (valueOf ((QPQuantityFn widthOfObject) ?object) ?width))
     :result-step (evaluate ?volume (TimesFn 3 ?length (ExponentFn 
(QuotientFn ?width 2) 2))))

   (defSuggestion RingVolume
       (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)
     :documentation "Volume of a Ring"
     :test (shapeOfObject ?object RingShapedObject)
     :subgoals ((valueOf ((QPQuantityFn innerRadius) ?object) ?radius-in)
                (valueOf ((QPQuantityFn outerRadius) ?object) ?radius-out)
                (valueOf ((QPQuantityFn widthOfObject) ?object) ?width))
     :result-step (evaluate ?volume 
                            (TimesFn 3.14 
                                     ?width 
                                     (DifferenceFn 
                                      (ExponentFn ?radius-out 2)
                                      (ExponentFn ?radius-in 2)))))
   (defSuggestion SphericalVolume
       (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)
     :documentation "Consider a spherical cow for computing volume"
     :test (and (isa ?object ThreeDimensionalThing)
                (uninferredSentence (shapeOfObject ?object ?shape)))
     :subgoals ((valueOf ((QPQuantityFn extensionParametersOfObject) ?object) 
?size))
     :result-step (evaluate ?volume (TimesFn 12 (ExponentFn (QuotientFn ?size 
2) 3))))

   (defSuggestion RectangularlVolume
       (valueOf ((QPQuantityFn volumeOfObject) ?object) ?volume)
     :documentation "Volume of a rectangular parallelepiped"
     :test (shapeOfObject ?object RectangularParallelepiped)
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     :subgoals ((valueOf ((QPQuantityFn lengthOfObject) ?object) ?length)
                (valueOf ((QPQuantityFn widthOfObject) ?object) ?width)
                (valueOf ((QPQuantityFn heightOfObject) ?object) ?height))
     :result-step (evaluate ?volume (TimesFn ?length ?width ?height)))

   (defSuggestion CountViaSignificantConstituentStrategy
       (valueOf ((QPQuantityFn ?count-quantity) ?whole ?constituent) ?count)
     :documentation "If ?whole is made out of ?main-part and we can find the 
amount of 
                     ?constituent in just that part, then that is a good 
estimate for 
                     the ?whole" 
     :test (and (constituents ?whole ?constituent)
                (significantConstituentPart ?whole ?main-part ?constituent)
                (isa ?count-quantity CountQuantitySlot))
     :subgoals ((valueOf ((QPQuantityFn ?count-quantity) ?main-part ?
constituent) ?count)))

   (defSuggestion ComputeTotalValueStrategy
       (valueOf ((QPQuantityFn totalValue) ?quantity ?object ?container) ?ans)
     :test (isa ?quantity ExtensiveMeasurableQuantitySlot)
     :subgoals ((valueOf ((QPQuantityFn ?quantity) ?object) ?ans-per-object)
                (valueOf ((QPQuantityFn countContained) ?object ?container) ?
count))
     :result-step (evaluate ?ans (TimesFn ?ans-per-object ?count)))
   
   (defSuggestion CountViaContainmentStrategy
       (valueOf ((QPQuantityFn countContained) ?object ?container) ?count)
     :subgoals ((constituentPhysicalQuantity ?object ?container ?quantity)
                (valueOf ((QPQuantityFn ?quantity) ?object) ?ans-object)
                (valueOf ((QPQuantityFn ?quantity) ?container) ?ans-
container))
     :result-step (evaluate ?count (QuotientFn ?ans-container ?ans-object)))
   
   (defSuggestion CountViaMereologyStrategy
       (valueOf ((QPQuantityFn countContained) ?contained ?container) ?ans)
     :subgoals ((physicalParts ?object ?contained)
                (valueOf ((QPQuantityFn countContained) ?contained ?object) ?
parts-per-object)
                (valueOf ((QPQuantityFn countContained) ?object ?container) ?
objects-per-container))
     :result-step (evaluate ?ans (TimesFn ?parts-per-object ?objects-per-
container)))

   (defSuggestion CountDiscardedViaLifetime
       (valueOf ((QPQuantityFn countDiscardedPerYear) ?object ?where) ?ans)
     :subgoals ((valueOf ((QPQuantityFn countContained) ?object ?where) ?
total)
                (valueOf ((QPQuantityFn lifetimeOf) ?object) ?life))
     :result-step (evaluate ?ans (QuotientFn ?total ?life)))
   
   (defSuggestion HouseholdStrategyForCounting
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       (valueOf ((QPQuantityFn countContained) ?object ?place) ?count)
     :test (ownsObjectType Household ?object) 
     :subgoals ((valueOf ((QPQuantityFn countContained) Household ?place) ?
num-households)
                (valueOf ((QPQuantityFn countContained) ?object Household) ?
num-per-household)) 
     :result-step (evaluate ?count (TimesFn ?num-households ?num-per-
household)))
   
   (defSuggestion CountGroupsViaSize
       (valueOf ((QPQuantityFn countContained) ?contained ?container) ?ans)
     :test (and (isa ?contained Group)
                (isa ?container Group))
     :subgoals ((valueOf ((QPQuantityFn numberOfGroupMembers) ?contained) ?
members) 
                (valueOf ((QPQuantityFn populationOf)  ?container) ?
population))
     :result-step (evaluate ?ans (QuotientFn ?population ?members)))

   (defSuggestion CountViaEventStrategy
       (valueOf ((QPQuantityFn countContained) ?agent ?place) ?count)
     :test (isa ?agent Agent-Generic)
     :subgoals ((performedBy ?agent ?event)
                (valueOf ((QPQuantityFn countContained) ?event ?place) ?num-
events)
                (valueOf ((QPQuantityFn productionCapacity) ?agent ?event) ?
num-acts))
     :result-step (evaluate ?count (QuotientFn ?num-events ?num-acts)))
   
   (defSuggestion AgentCapacityStrategy
       (valueOf ((QPQuantityFn productionCapacity) ?agent ?event) ?count)
     :subgoals ((valueOf ((QPQuantityFn duration) ?event) ?duration)
                (valueOf ((QPQuantityFn timeWorkedOnTask) ?agent ?event) ?
total-time))
     :result-step (evaluate ?count (QuotientFn ?total-time ?duration)))
     
   (defSuggestion CountEventsByDeviceStrategy
       (valueOf ((QPQuantityFn countContained) ?event ?place) ?num-events)
     :test (isa ?event Event)
     :subgoals ((deviceUsed ?event ?device)
                (valueOf ((QPQuantityFn countContained) ?device ?place) ?num-
devices)
                (valueOf ((QPQuantityFn frequencyOfEvent) ?event) ?freq))
     :result-step (evaluate ?num-events (QuotientFn ?num-devices ?freq)))

   (defSuggestion EnergyBalanceViaPowerRatingStrategy
       (valueOf ((QPQuantityFn energyProduced) ?event) ?ans)
     :subgoals ((energySource ?event ?source)
                (valueOf ((QPQuantityFn powerRating) ?source) ?consumed)
                (objectActedOn ?event ?device)
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                (valueOf ((QPQuantityFn levelOfEfficiency) ?device) ?
efficiency))
     :result-step (evaluate ?ans (TimesFn ?consumed ?efficiency)))
   
   (defSuggestion EnergyViaElectricPotential 
       (valueOf ((QPQuantityFn energyProduced) ?event) ?ans)
     :test (isa ?event ElectricalProcess)
     :subgoals ((objectActedOn ?event ?object)
                (valueOf ((QPQuantityFn chargeOfObject) ?object) ?charge)
                (valueOf ((QPQuantityFn electricalPotentialDifference) ?
event) ?potential))
     :result-step (evaluate ?ans (TimesFn ?charge ?potential)))

   (defSuggestion ComputeSurfaceAreaOfWholeObject
       (valueOf ((QPQuantityFn surfaceAreaOfWholeObject) ?object) ?ans)
     :test (isa ?object ThreeDimensionalThing)
     :subgoals ((valueOf ((QPQuantityFn lengthOfObject) ?object) ?length)
                (valueOf ((QPQuantityFn heightOfObject) ?object) ?height)
                (valueOf ((QPQuantityFn widthOfObject) ?object) ?width))
     :result-step (evaluate ?ans (TimesFn 2 (PlusFn (TimesFn ?length ?height)
                                                    (TimesFn ?length ?width)
                                                    (TimesFn ?width ?
height)))))

   (defSuggestion AmountViaUniformDistribution 
       (valueOf ((QPQuantityFn ?quantity) ?object ?event) ?ans)
     :test (and (isa ?event UniformDistributionEvent)
                (isa ?quantity ExtensiveMeasurableQuantitySlot))
     :subgoals ((valueOf ((QPQuantityFn totalValue) ?quantity ?object ?event) 
?total)
                (valueOf ((QPQuantityFn countContained) ?object ?event) ?
count))
     :result-step (evaluate ?ans (QuotientFn ?total ?count)))
   
   (defSuggestion CountViaLocation
       (valueOf ((QPQuantityFn countContained) ?object ?event) ?ans)
     :test (isa ?event Event-Localized)
     :subgoals ((eventOccursAtLocation ?event ?location)
                (valueOf ((QPQuantityFn countContained) ?object ?location) ?
count)
                (valueOf ((QPQuantityFn fractionParticipating) ?event ?
location) ?fraction))
     :result-step (evaluate ?ans (TimesFn ?count ?fraction)))
   
   (defSuggestion CountViaPopulation 
       (valueOf ((QPQuantityFn countContained) ?object ?location) ?ans)
     :test (isa ?location GeographicalRegion)
     :subgoals ((valueOf ((QPQuantityFn populationOf) ?location) ?ans)))

   (defSuggestion DurationViaRateStrategy
       (valueOf ((QPQuantityFn duration) ?event) ?ans)
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     :test (isa ?event Event)
     :subgoals ((performedBy ?event ?performer)
                (rateQuantityFor ?event ?rate-quantity)
                (amountQuantityFor ?event ?amount-quantity)
                (valueOf ((QPQuantityFn ?amount-quantity) ?event) ?amount)
                (valueOf ((QPQuantityFn ?rate-quantity) ?performer) ?rate))
     :result-step (evaluate ?ans (QuotientFn ?amount ?rate)))
   
   (defSuggestion ComputeDistance
       (valueOf ((QPQuantityFn distanceTranslated) ?event) ?ans)
     :test (isa ?event MovementEvent)
     :subgoals ((fromLocation ?event ?start)
                (toLocation ?event ?end)
                (valueOf ((QPQuantityFn distanceBetween) ?start ?end) ?ans)))
   
   (defSuggestion ScaleModelQuantityStrategy
       (valueOf ((QPQuantityFn ?quantity) 
                 (ScaleModelAnalogueFn ?model ?base-object-1)
                 (ScaleModelAnalogueFn ?model ?base-object-2))
                ?ans)
     :test (isa ?model ScaleModel)
     :subgoals ((valueOf ((QPQuantityFn ?quantity) ?base-object-1 ?base-
object-2) ?base-value)
                (valueOf ((QPQuantityFn scalingFactor) ?model) ?scaling-
factor))
     :result-step (evaluate ?ans (TimesFn ?scaling-factor ?base-value)))
   
   (defSuggestion ScalingFactorViaRatioStrategy
       (valueOf ((QPQuantityFn scalingFactor) ?model) ?ans)
     :test (isa ?model ScaleModel)
     :subgoals ((scaledObject ?model ?base-object)
                (correspondsInMapping ?model ?base-object ?target-object)
                (scaleModelQuantity ?model ?quantity)
                (valueOf ((QPQuantityFn ?quantity) ?base-object) ?base-val) 
                (valueOf ((QPQuantityFn ?quantity) ?target-object) ?target-
val))
     :result-step (evaluate ?ans (QuotientFn ?target-val ?base-val)))
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Appendix B: Sample Case from Basketball Domain

 
(ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd
   (LowValueContextualizedFn heightOfObject
    BasketballPlayers)))
 (ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd
   (LowValueContextualizedFn seasonFreeThrowPercent
    BasketballPlayers)))
 (ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd
   (HighValueContextualizedFn seasonThreePointsPercent
    BasketballPlayers)))
 (ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd
   (MediumValueContextualizedFn seasonReboundsPerGame
    BasketballPlayers)))
 (ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd
   (MediumValueContextualizedFn seasonAssistsPerGame
    BasketballPlayers)))
 (ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd
   (MediumValueContextualizedFn seasonPointsPerGame
    BasketballPlayers)))
 (isa JasonKiddDescription-Enriched Case)
 (ist-Information JasonKiddDescription-Enriched
  (isa JasonKidd BasketballPointGuard))
 (ist-Information JasonKiddDescription-Enriched
  (seasonPointsPerGame JasonKidd 13.5))
 (ist-Information JasonKiddDescription-Enriched
  (seasonAssistsPerGame JasonKidd 7.1))
 (ist-Information JasonKiddDescription-Enriched
  (seasonReboundsPerGame JasonKidd 6.8))
 (ist-Information JasonKiddDescription-Enriched
  (seasonThreePointsPercent JasonKidd 0.404))
 (ist-Information JasonKiddDescription-Enriched
  (seasonFreeThrowPercent JasonKidd 0.718))
 (ist-Information JasonKiddDescription-Enriched
  (heightOfObject JasonKidd 1.93))
 (ist-Information JasonKiddDescription-Enriched
  (qprop heightOfObject seasonReboundsPerGame
   BasketballPlayers))
 (ist-Information JasonKiddDescription-Enriched
  (qprop seasonThreePointPercent seasonFreeThrowPercent
   BasketballPlayers))
 (elementOf JasonKiddDescription-Enriched
  (CaseLibraryFn BasketballPlayers-Enriched))


