AWARD NUMBER: W81XWH-14-1-0504

TITLE: The Oviduct and Serous Cancer Risk Assessment

PRINCIPAL INVESTIGATOR: Christopher P. Crum, MD

CONTRACTING ORGANIZATION:

The Brigham and Women's Hospital, Inc Boston, MA 02115

REPORT DATE: October 2015

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

					Form Approved		
REPORT DOCUMENTATION PAGE					COMB NO. 0/04-0188		
data needed, and completing a this burden to Department of E 4302. Respondents should be valid OMB control number. PL	and reviewing this collection of i befense, Washington Headquard a aware that notwithstanding any CASE DO NOT RETURN YOU	nformation. Send comments rega ers Services, Directorate for Info o other provision of law, no perso R FORM TO THE ABOVE ADDR	arding this burden estimate or a mation Operations and Reports n shall be subject to any penalty RESS.	y other aspect of this (0704-0188), 1215 Je for failing to comply w	Sollection of information, including suggestions for reducing fferson Davis Highway, Suite 1204, Arlington, VA 22202- th a collection of information if it does not display a currently		
1. REPORT DATE		2. REPORT TYPE		3.	DATES COVERED		
October 2015		Annual			30 Sep 2014 - 29 Sep 2015		
4. TITLE AND SUBTIT	LE			5a	. CONTRACT NUMBER		
The Oviduct a	nd Serous Canc	er Risk Assessm	nent	5b W8	. GRANT NUMBER 31XWH-14-1-0504		
				5c.	PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)	MD			5d	. PROJECT NUMBER		
Christopher P. Crun	I, MD			5e	5e. TASK NUMBER		
			5f.	WORK UNIT NUMBER			
E-Mail: ccrum@pa	Inthers.org			0			
7. PERFORMING ORC	JANIZATION NAME(3)	AND ADDRESS(ES)		0.	NUMBER		
The Brigham ar	nd Women's						
Hospital, Inc	a a t						
Boston MA 021	15-61110						
9 SPONSORING / MC		IAME(S) AND ADDRES	S(FS)	10	SPONSOR/MONITOR'S ACRONYM(S)		
			0(20)				
U.S. Army Medica	I Research and Ma	teriel Command					
Fort Detrick, Maryland 21702-5012				11	. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION / A		IENT					
Approved for Public Release: Distribution Unlimited							
·							
13. SUPPLEMENTAR	Y NOTES						
14. ABSTRACT							
The proposal w	vas designed to	o address three	15sues. First	could we	identify stem cells from		
the fallopian tube, including from patients with high grade serous cancer (HGSC). Second,							
could we link the molecular abnormalities in cancer associated stem cells and validate them							
third could we identify molecular alterations that would place the oviduct or the patient at							
risk for HGSC	. In essence we	e wished to dri	ll down to the	cell of c	rigin and link it to cancer		
risk, identify	ying an assay [.]	that could pred	lict the presen	ce of canc	er by analyzing lower		
genital tract fluids or other samples.							
15. SUBJECT TERMS							
HGSC = high gr	ade serous car	ncer; Fallopian	u tube; BRCA; Tj	p53, SCOUI	<pre>stem cell outgrowth; introopitholial recordance</pre>		
AC SECURITY OF ACC		LUNEIIAI Carcin	10ma; SIIN = Se	LOUS CUDAL			
TO. SECURITY CLASS	DIFICATION OF:		OF ABSTRACT	OF PAGES	USAMRMC		
a. REPORT	b. ABSTRACT	c. THIS PAGE	1		19b. TELEPHONE NUMBER (include area		
l la che e 10 - 1	Line and the second second	l la chere i fin d	Unclassified	293	code)		
Unclassified	Unclassified	Unclassified					

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

Table of Contents

Page

1. Introduction	4
2. Keywords	4
3. Accomplishments	4
4. Impact	7
5. Changes/Problems	8
6. Products	8
7. Participants & Other Collaborating Organizations	9
8. Special Reporting Requirements	10
9. Appendices	11

1. INTRODUCTION: The proposal was designed to address three issues. First could we identify stem cells from the fallopian tube, including from patients with high grade serous cancer (HGSC). Second, could we link the molecular abnormalities in cancer associated stem cells and validate them in pathologic material, specifically in what we feel are stem cell outgrowths or SCOUTs and third could we identify molecular alterations that would place the oviduct or the patient at risk for HGSC. In essence we wished to drill down to the cell of origin and link it to cancer risk, identifying an assay that could predict the presence of cancer by analyzing lower genital tract fluids or other samples.

KEYWORDS: HGSC = high grade serous cancer ; Fallopian tube; BRCA; Tp53, SCOUT = stem cell outgrowth; STIC = serous tubal intraepithelial carcinoma; STIN = serous tubal intraepithelial neoplasia.

2. ACCOMPLISHMENTS: All three goals were addressed in the past year with some modifications that will be addressed under part 5.

What were the major goals of the project?

The specific aims were as follows:

AIM 1: To grow stem cells from the tubes in culture from patients with and without malignancy and compare them.

AIM 2: Link the molecular disturbances seen in cancer associated stem cells and validate them in pathologic material specifically an entity we have described called the stem cell outgrowth or SCOUT.

AIM 3: Exploit the molecular alterations to make molecular probes that will detect those alterations that place women at risk for the disease, either in the fallopian tubes or lower genital tract fluids.

What was accomplished under these goals?

AIM 1: 1) Major activity: grow and identify fallopian stem cells in culture. 2) The specific objective was to identify stem cell characteristics that distinguished tumor associated (but normal appearing) stem cells from normal controls. 3) Significant results: a) We successfully cloned stem cells from normal fallopian tubes and showed that these cells were capable of both ciliated and squamous differentiation, in parallel with the histology of the fallopian tube (Figure 1). b) We generated a "stem cell" specific signature by comparing gene expression between undifferentiated stem cells and those grown on an air-liquid interface, which permitted ciliated differentiation. This was the first ever successful cloning, propagation and maturation of fallopian tube stem cells (Ning et al 2015). What we have not accomplished is to show that stem cells from normal tubal epithelium in cancers can be distinguished from epithelium from normal controls. b) An additional achievement, however, was to identify potential stem cell markers that were novel and might be used to unearth potential stem cells in the general pool of non-ciliated tubal epithelium (Yamamoto et al 2015). Moreover, we showed remarkable parallels between stem cells

Figure 1. In-vivo propagation of fallopian tube stem cells with tissue correlates (See Ning 2015).

and putative stem cell outgrowths as well as HGSC precursors. c) Another added achievement was to demonstrate a parallel between immortalized and transformed stem cells and precursor and malignant HGSCs in the fallopian tube (Figures 2&3). D) Still another added achievement was a successful experiment focusing on propagating potential cancer stem cells. In this study we identified subpopulations that were Taxane resistant and were able to identify the same cells in Taxane naive cell cultures (Ning et al, submitted). This suggests that there is a small population of chemo-resistant cells that is inborn and not created by chemotherapy per se.

AIM 2 1) Major activity: Translating the *in vitro* findings to histopathology. 2) Objective : To link the disturbances in cancer associated stem cells and validate them in pathologic material. 3) Significant results: Although we have not yet shown that stem cells in cancer-associated tubes differ from normal, the expression profile of normal stem

Figure 2. Upper panels show demonstrate differences in expression between putative stem cells and cell undergoing ciliated differentiation in vitro. Lower panel depicts progressive change of gene expression among FTSC, and immortalized and transformed FTSCs (See Yamamoto 2015).

primary predecessor. Second, we showed that were associated with specific gene mutations (Ritterhouse et al submitted) again

HGSC. Third, we recently sequenced cases with bilateral STICs and have shown them to contain *identical* p53 mutations. This raises the critical question that not all STICs develop de novo but may signify mucosal metastases from either the opposite tube or another site (Meserve et al unpublished). Fourth, we have concluded the preliminary phase of an ambitious project that has exhaustively

analyzed fallopian tubes of women with HGSC but no STIC. In these tubes we have seen non-cancerous epithelium

Figure 4. Mild tubal atypia (A) associated staining for p53 (B) is associated with a pelvic HGSC (C). Both lesions shared the same Tp53 mutation.

cells closely resembles what we are seeing in so-called stem cell outgrowths (SCOUTs) as well as serous cancer precursors (STICs). This was shown in the papers by Ning et al and Yamamoto et al. Additional achievements: During these studies we took the opportunity to address an issue fundamental to the aims, which is the origin of HGSC. Because a high grade precancerous process (or STIC) can only be uncovered in subset of cancers, we felt it important to address this issue, the goal being to better understand the potential origins of these neoplasms. This was

done in series of studies. First, we showed a potential dualistic model for HGSC with a lower association with STIC seen for tumors with certain morphologic features (Howitt 2015). This suggests that there could be more than one pathway to HGSC including one where STIC is not the

> certain histologic patterns suggesting more than one pathogenetic route to

AIM3: 1) Major activity: To develop a means to detect the presence of biomarkers unique to serous cancer or serous cancer risk in the uterus or lower genital tract. Objective: To employ second generation sequencing (deep sequencing) to identify p53 mutations in the lower genital tract tissues or fluids that would

indicate the presence of an upper genital tract neoplasm. Significant results: We decided to use a novel approach to this problem by first identifying cases of HGSC and then searching the archive for prior formalin-fixed, paraffin embedded endometrial specimens from diagnostic procedures. DNA from serial sections of this material was extracted and then analyzed on a platform targeting p53 mutations. These mutations were compared to those found in the tumors at a later date. We identified 5 samples in which inform ation was available. In two (40%) we detected p53 mutation in prior endometrial samples that matched those found in the subsequent tumor (Figure 5). The intervals from detecting the mutations to the diagnosis of the tumors were 2 weeks and 2 months.

Figure 3. Overlapping gene expression between immortalized fallopian tube stem cells and serous carcinoma (See Yamamoto 2015).

What opportunities for training and professional development has the project provided?

This project has provided extensive training opportunities. Dr. Brooke Howitt, a co-investigator, is a junior attending (instructor) who was actively involved in study design and execution. Moreover, she was engaged in project planning with four resident/fellows (Kyle Strickland, Lauren Ritterhouse, Emily Meserve, Rinda Soong) and supervised them on these projects. Fellows were introduced to DNA extraction, data analysis, second generation sequencing etc. and three are interested in a career in academic gynecologic pathology. All of these individuals have presented their data at the USCAP meeting (in Boston in 2015) and/or have abstracts submitted on the above projects to the USCAP meeting scheduled for Seattle in 2016. They also will present their results in a departmental seminar scheduled for February 2016. The list of abstracts presented and planned is below. The contributions of two additional members of the team were supported partially by this grant. The first was a summer college (From Washington University) student, Brennan Beeler, who is planning a career in research. A second is a Danish medical student taking a year

Figure 5. (A) An endometrial sample contains mostly mucus and a few cells. Extracted DNA from this archival sample revealed a p53 mutation identical to that found in a HGSC diagnosed over 2 months later.

off for research, Helena Dietzel. She has been working closely with Dr. Howitt, creating an important opportunity for Ms Dietzel as well as for Dr. Howitt to mentor a younger colleague.

How were the results disseminated to communities of interest?

The PI has participated in an outreach program to disseminate information on ovarian cancer. (<u>http://www.brighamandwomens.org/Departments_and_Services/obgyn/Services/ovarian-cancer-treatment.aspx</u>) Dr. Howitt has spent time in both Rwanda and Haiti performing outreach activities in the past year.

What do you plan to do during the next reporting period to accomplish the goals?

For year two the following projects are planned.

AIM1: We have a series of stem cell markers that have been unearthed by the in vitro comparison of FTSCs and FTSCs in an air-liquid interface. The protein atlas will be surveyed and 20 candidates will be identified and used to probe normal fallopian tube mucosa. We will focus primarily on markers that overlap in the same cells or region in an effort to find a consistently reproducible putative stem cell signature. Once we accomplish this we will do the following: 1) Map the distribution of putative stem cells in the fallopian tube as a function of location and age including reproductive status. The goal will be to determine if putative stem cells concentrate in particular areas of the fallopian tube and whether their distribution and frequency are altered by factors such as hormones, pregnancy, and menopause. 2) Confirm the presence of stem cell markers in lesions at variable stages of serous carcinogenesis. This will entail analysis of p53 signatures, tubal intraepithelial neoplasms and STICs.

AIM2: We are going to further explore the concept that early atypias in the fallopian tube are capable of spreading to the peritoneum. Our plan will be to analyze 25 cases of HGSC with negative fallopian tubes and concentrate on identifying early p53 mutations signatures that can be linked to HGSC. To accomplish this we will 1) microdissect non-malignant p53 positive clonal expansions in the tube and determine the nature of their mutations by next generation sequencing. The mutations will be compared to those of the concurrent serous carcinomas. 2) We will compare this group with 25 cases of HGSC associated with STICs that co-exist with less marked atypias, i.e. STICs most likely to represent primary tubal precursors. The goal will be to determine if BRCA status, the age of tumor presentation and distribution of tumor between the two groups highlights important differences.

AIM3: We will further expand the concept that archival material can be probed for p53 mutations to predict the presence of an intraabdominal HGSC. We will expand the pilot to 30 cases of HGSC that were preceded by a normal curetting and assess both HGSC and the prior material for matching mutations. This will be accomplished by next generation sequencing.

4. IMPACT: The PI and his colleagues were the first to provide solid evidence that a high percentage of high-grade serous carcinomas (HGSC) in the pelvis arise in the fallopian tube. This work began in 2005 and has been associated with a paradigm shift in this field. A testimony to the extent and speed of this evolution can be seen in the sudden increase in programs targeting the fallopian tube and funding opportunities (many from the DOD) that have been placed on this conceptual framework. This pilot project was designed specifically to address the concept that there is an underpinning of unique stem cell biology that confers risk of HGSC. If such is true, we would expect to see unique differences between normal tubes associated with HGSCs and controls. We have yet to answer this particular question but we have made major advances in our understanding of the stem cell populations in the fallopian tube, which is a necessary prerequisite to any such endeavors. Taking into account the additional studies supported by this pilot, the areas of potential impact can be summarized as follows.

Impact on the principle and other disciplines

1. <u>Stem cell biology</u>: If we assume that stem cells are the vulnerable targets in serous carcinogenesis we must identify them and then determine if their numbers are increased in patients with cancer and map their distribution in the fallopian tubes throughout reproductive and postmenopausal life. The recent papers by Ning et al and Yamamoto et al provide the research community ("the principle discipline") with abundant evidence for further development of this concept. Other disciplines have clearly received benefit as evidenced by the parallel studies performed in the pulmonary and gastrointestinal tract by our collaborators Wa Xian and Frank McKeon. This concept of "stem cell" has been re-named "ground state" cells in their studies.

2. <u>The origins of HGSC</u>: The additional projects that query the role of the fallopian tube in the genesis of a serous carcinogenic sequence are vital to our understanding of where these tumors come from. The questions we pose are <u>STICs really a primary process or an intramucosal metastasis</u> and <u>are we overestimating the importance of STICs?</u>" and is there some other source of HGSC that we need to understand before we pursue prophylactic <u>salpingectomy?</u> It is highly likely that not all STICS are primary tubal neoplasm (i.e. they could in some instances represent tumor that migrates from another site) but this re-emphasized the need to determine where in the carcinogenic sequence that *tumorigenesis* initiates. The general assumption is that STICs develop and then invade or spread to pelvic surfaces. Another possibility is that <u>altered stem cells invade or spread prior to becoming STICs</u> and emerge suddenly in an *extra-ovarian* site. We have initiated studies to answer both of these questions and the answers to both are germane to the notion that prophylactic salpingectomy will have the desired effect of preventing HGSC.

3. <u>The potential discovery of gene mutations in archival material prior to the onset of HGSC</u>: We have preliminary data that supports the possibility that the simple screening of an archival specimen will detect mutations that indicate the presence of an undiagnosed HGSC. The degree to which this will interrupt the natural history of this disease remains unclear but it adds to emerging data indicating that early diagnosis of HGSC is possible by analyzing routine specimens from the lower genital tract.

What was the impact on technology transfer?

Nothing to report

What was the impact on society beyond science and technology?

2. <u>Origins of HGSC:</u> The management of women with germ-line mutations in BRCA1 and BRCA2 is in a state of flux as the question remains as to the degree of benefit that can be expected from prophylactic salpingooophorectomy. This population has been keenly aware of the data emerging in this field and is making decisions about cancer prevention around the concept that most of these tumors could originate from the fallopian tube.

3. <u>The potential discovery of gene mutations in archival material prior to the onset of HGSC:</u> Any lay person can imagine the potential value of a test for ovarian cancer that can be applied to their endometrial biopsy.

5. CHANGES/PROBLEMS:

Changes in the direction and scope of the projects

AIM 1: No significant changes. The original goal was to identify alterations in fallopian tube stem cells that distinguish tubes associated with HGSCs from those of control fallopian tubes. We did not demonstrate this in the data obtained so far but we have identified a stem-cell signature (albeit one that will require pruning). While it is unlikely that we will identify differences in stem cell between cancer associated and control tubes, we have the tools to more precisely morphologically define stem or "ground state" cells in the tube. If we accomplish this then we can determine whether these cells are in greater abundance in the fimbria. If not we will be positioned to retrieve genetic information from these disparate stem cell populations and search for factors that influence stem cell vulnerability. No delays or problems are anticipated and there will be no change in expenditures.

AIM2: We have succeeded in translating in vitro fallopian tube stem cells to histopathology for the most part. We will plan to shift our emphasis to address whether early precursor lesions that emerge from these stem cell are able to initiate a progression sequence to HGSC in or beyond the tube. There will be no delays or human subject issues. We do however anticipate some increase in costs that were incurred in the first year of funding. Because of the exhaustive sampling of multiple fallopian tubes to unearth the small foci suspected of being precursors to HGSC we have incurred considerable costs for tissue sectioning.

AIM3: This is essentially unchanged other than the novel approach to detecting mutations in *archival* material. This material is readily available and we anticipate no changes in cost.

Changes in funding for which we are requesting approval

No changes in funding are anticipated.

6. PRODUCTS: List any products resulting from the project during the reporting period. Examples of products include:

Publications

Yamamoto Y, Ning G, Howitt BE, Mehra K, Wu L, Wang X, Hong Y, Kern F, Wei TS, Zhang T, Nagarajan N, Basuli D, Torti S, Brewer M, Choolani M, McKeon F, Crum CP, Xian W. In Vitro and In Vivo Correlates of Physiologic and Neoplastic Human Fallopian Tube Stem Cells. J Pathol. 2015 Sep 28. [Epub ahead of print]

Novak M, Lester J, Karst AM, Parkash V, Hirsch MS, Crum CP, Karlan BY, Drapkin R. Stathmin 1 and p16INK4A are sensitive adjunct biomarkers for serous tubal intraepithelial carcinoma. Gynecol Oncol. 2015 Jul 20.. [Epub ahead of print]

Worley MJ Jr, Liu S, Hua Y, Kwok JS, Samuel A, Hou L, Shoni M, Lu S, Sandberg EM, Keryan A, Wu D, Ng SK, Kuo WP, Parra-Herran CE, Tsui SK, Welch W, Crum C, Berkowitz RS, Ng SW. Molecular changes in endometriosis-associated ovarian clear cell carcinoma. Eur J Cancer. 2015 Sep;51(13):1831-42.

Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester FA, Hyams JS, Devers T, Bronson R, Lacy DB, Ho KY, Crum CP, McKeon F, Xian W. Cloning and variation of ground state intestinal stem cells. Nature. 2015 Jun 11;522(7555):173-8.

Ivanova A, Loo A, Tworoger S, Crum CP, Fan I, McLaughlin JR, Rosen B, Risch H, Narod SA, Kotsopoulos J. Ovarian cancer survival by tumor dominance, a surrogate for site of origin. Gynecol Oncol, in press.

Howitt BE, Hanamornroongruang S, Lin DI, Conner JE, Schulte S, Horowitz N, Crum CP, Meserve EE. Evidence for a Dualistic Model of High-grade Serous Carcinoma: BRCA Mutation Status, Histology, and Tubal Intraepithelial Carcinoma. Am J Surg Pathol. 2015 Mar;39(3):287-93. PMID:25581732

Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, Wang X, Lim SJ, Vincent M, Lessard M, Crum CP, Xian W, McKeon F. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015 Jan 29;517(7536):616-20. PMID:25383540

Ning G, Bijron JG, Yamamoto Y, Wang X, Howitt BE, Herfs M, Yang E, Hong Y, Cornille M, Wu L, Hanamornroongruang S, McKeon FD, Crum CP, Xian W. The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium. J Pathol. 2014 Dec;234(4):478-87. PMID:25130537

Books or non-periodical publications

Berek JS, Crum C, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2015 Oct;131 Suppl 2:S111-22.

Poole EM, Rice MS, Crum CP, Tworoger SS. Salpingectomy as a potential ovarian cancer risk-reducing procedure. J Natl Cancer Inst. 2015 Jan 27;107(2). PMID:25628373

Kaspar HG, Crum CP. The utility of immunohistochemistry in the differential diagnosis of gynecologic disorders. Arch Pathol Lab Med. 2015 Jan;139(1):39-54. PMID:25549143 Review

Presentations, conference publications

Past presentations

Jelena Mirkovic, Amy DiVasta, Stacey Missmer, Brooke Howitt, Christopher Crum, Marc Laufer, Sara Vargas. The Histologic Spectrum of Adolescent Endometriosis. USCAP meeting, Boston, March 2015

Andre Pinto, Brooke Howitt, Christopher Crum. The Variable Spectrum of Tubal Intraepithelial Neoplasia in Women With High Grade Serous Carcinoma. USCAP meeting, Boston, March 2015

Lauren Ritterhouse, Christopher Crum, Lynette Sholl, Neal Lindeman, Brooke Howitt. Morphologic and Molecular Evaluation of Extra-Uterine Mullerian Carcinoma. USCAP meeting, Boston, March 2015

Submitted presentations for the USCAP 2016 meeting

Kyle C Strickland, Emily Meserve, Helena M Ditzel, Frank Campbell, Alexander Miron, Christopher P Crum, and Brooke E Howitt. Detection of Tumor Specific TP53 Signatures from Archival Endometrial Biopsies Prior to the Diagnosis of HighGrade Serous Carcinoma.

Emily E Meserve, Alexander Miron, Helena Ditzel, Andre Pinto, Frank Campbell, Brooke E Howitt, Christopher P Crum. Identical TP53 mutation in "bilateral" serous tubal intraepithelial carcinoma (STIC)

Emily E Meserve, Jelena Mirkovic, James R Conner, Eric Yang, Brooke E Howitt, Christopher P Crum. Detection of serous tubal intraepithelial carcinoma (STIC) in incidentally removed fallopian tubes from low-risk women.

Thing Rinda Soong, Christopher P Crum, Brooke E Howitt. Serial Sectioning of Distal Fallopian Tubes and its Role in the Discovery of Occult Serous Tubal Intraepithelial Carcinoma in Women with High Grade Ovarian Serous Carcinoma.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Individuals who worked on the project

Collaboration with Wa Xian at the Jackson Laboratory: We have a long-standing collaboration with Wa Xian who was at the Jackson Laboratory the past year. Her group received de-identified specimens for cell culture under an IRB approved protocol (included). Her laboratory was funded by the Jackson Laboratory and she did not receive

funds from this grant. She has now moved to the University of Texas at Houston. We are currently not sending specimens pending the approval of an MTA, after which an amendment will be issued to the IRB.

Changes in active other support of the PD/PI(s) or senior/key personnel since the last reporting period?

None

What other organizations were involved as partners? Nothing to report.

8. SPECIAL REPORTING REQUIREMENTS: None

9. APPENDIX:

Selected Manuscripts:

Yamamoto Y, Ning G, Howitt BE, Mehra K, Wu L, Wang X, Hong Y, Kern F, Wei TS, Zhang T, Nagarajan N, Basuli D, Torti S, Brewer M, Choolani M, McKeon F, Crum CP, Xian W. In Vitro and In Vivo Correlates of Physiologic and Neoplastic Human Fallopian Tube Stem Cells. J Pathol. 2015 Sep 28. [Epub ahead of print]

Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester FA, Hyams JS, Devers T, Bronson R, Lacy DB, Ho KY, Crum CP, McKeon F, Xian W. Cloning and variation of ground state intestinal stem cells. Nature. 2015 Jun 11;522(7555):173-8.

Howitt BE, Hanamornroongruang S, Lin DI, Conner JE, Schulte S, Horowitz N, Crum CP, Meserve EE. Evidence for a Dualistic Model of High-grade Serous Carcinoma: BRCA Mutation Status, Histology, and Tubal Intraepithelial Carcinoma. Am J Surg Pathol. 2015 Mar;39(3):287-93. PMID:25581732

Ning G, Bijron JG, Yamamoto Y, Wang X, Howitt BE, Herfs M, Yang E, Hong Y, Cornille M, Wu L, Hanamornroongruang S, McKeon FD, Crum CP, Xian W. The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium. J Pathol. 2014 Dec;234(4):478-87. PMID:25130537

The Journal of Pathology

In Vitro and In Vivo Correlates of Physiologic and Neoplastic Human Fallopian Tube Stem Cells

Journal:	The Journal of Pathology
Manuscript ID:	Draft
Wiley - Manuscript type:	Original Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Crum, Christopher; Brigham and Women's Hospital, Pathology yamamoto, yusuke; Jackson laboratory, Genomic Medicine Ning, Gang; Jackson laboratory, Genomic Medicein; Jackson laboratory, Genomic Medicine Howitt, Brooke; Brigham and Women's Hospital, Pathology Mehra, Karishma; Yale University Hospital, Medicine Wu, Lingyan; Genome Institute of Singapore, Stem Cell Biology Wang, Xia; Jackson Laboratory, Genomic Medicine Hong, Yue; Jackson Laboratory, Genomic Medicine Kern, Florian; Genome Institute of Singapore, Stem Cell Biology Wei, Tay; Genome Institute of Singapore, Stem Cell Biology Zhang, Ting; Genome Institute of Singapore, Stem Cell Biology Nagarajan, Niranjan ; Genome Institute of Singapore, Stem Cell Biology Torti, Suzy; UCONN Health Center, Molecular microbial and structural biology Brewer, Mollie; UCONN Health Center, OB GYN Choolani, Mahesh; National University of Singapore, Stem Cell Biology Xian, Wa; UCONN Health Center, Genetics and Developmental Biology
Tissue:	
Pathology:	
Technique:	

SCHOLARONE[™] Manuscripts

In Vitro and *In Vivo* Correlates of Physiologic and Neoplastic Human Fallopian Tube Stem Cells

Yusuke Yamamoto^{1,10*}, Gang Ning^{1,10}, Brooke E. Howitt², Karishma Mehra², Lingyan Wu³, Xia Wang¹, Yue Hong¹, Florian Kern³, Tay Seok Wei³, Ting Zhang³, Niranjan Nagarajan³, Suzy Torti⁴, Molly Brewer⁵, Mahesh Choolani⁶, Frank McKeon^{1,3,7,8}, Christopher P. Crum^{2,^} and Wa Xian^{1,2,7,9,^}

¹The Jackson Laboratory for Genomic Medicine, Farmington, CT USA; ²Department of Pathology, Brigham and Women's Hospital, Boston, MA USA; ³Genome Institute of Singapore, A-STAR, Singapore; ⁴Departments of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA; ⁵Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA; ⁶Division of Obstetrics and Gynecology, National University of Singapore; ⁷MultiClonal Therapeutics, Inc., Farmington, CT, USA; ⁸Department of Microbiology, National University of Singapore; ⁹Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA;

¹⁰these authors contributed equally to this work.

^{*}present affiliation: Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan [^]senior authors

Word count: 3819; pages 11, Figures 5, Supplemental Figures 2, Supplemental Tables 2

Abstract

High-grade serous cancer (HGSC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and fallopian tubes in patients with BRCA1 or BRCA2 mutations have documented a pre-metastatic intramucosal neoplasm that is found almost exclusively in the fallopian tube termed "serous tubal intraepithelial carcinoma" or STIC. Moreover, other proliferations, termed p53 signatures, secretory cell outgrowths (SCOUTs) and lower grade serous tubal intraepithelial neoplasms (STINs) fall short of STIC but share similar alterations in expression, in keeping with an underpinning of genomic disturbances involved in - or occurring in parallel with serous carcinogenesis. To gain insight into the cellular origins of this unique tubal pathway to high-grade serous cancer, we cloned and both immortalized and transformed fallopian tube stem cells (FTSC). We demonstrated that pedigrees of FTSCs were capable of multi-potent differentiation and that the tumors derived from the transformed FTSC shared the same histological and molecular features with HGSC. We also demonstrated that altered expression of some biomarkers seen in transformed FTSCs and HGSCs (Stathmin, EZH2, CXCR4, CXCL12 and FOXM1) could be seen as well in immortalized cells and their in vivo counterparts SCOUTs and STINs. Thus, a whole-genome transcriptome analysis comparing FTSC, immortalized FTSC, and transformed FTSC showed a clear molecular progression sequence that is recapitulated by the spectrum of accumulated perturbations characterizing the range of proliferations seen in vivo. Biomarkers unique to STIC relative to normal tubal epithelium provide a basis for novel detection approaches to early HGSC, but must be viewed critically given their potential expression in lesser proliferations. Perturbations shared by both immortalized and transformed FTSCs may provide unique early targets for prevention strategies. Central to these efforts has been the ability to clone and perpetuate multi-potent FTSCs.

Introduction

Epithelial ovarian cancer (EOC) is the fifth most common cause of death from cancer in women, and the most common type – high grade serous carcinoma or HGSC – is the most lethal. One in 200 women will develop ovarian cancer between their 50th and 70th birthday. Worldwide, there are 225,000 new cases of ovarian cancer diagnosed annually, and an estimated 140,163 disease-related deaths¹. Up to 80% of women present with Stages III/IV disease, and the 5-year survival rate is a dismal 30%. Mortality for this disease has not markedly changed since the 1930s² and this is because ovarian cancer cannot be detected at low stage by current screening programs. Resolving this dilemma will require effective tools and methods to interrupt the carcinogenic sequence at a point that permits either cure or prevention of tumor-specific mortality.

There is cogent clinical and molecular evidence to suggest that many if not all cases of HGSCs arise from the fallopian tube. From the clinical end, it has been known that reducing risk of BRCA1 and BRCA2 patients required removing the fallopian tube in addition to the ovary³. Molecular analyses have shown that HGSC has gene expression profiles more akin to those of fallopian tube epithelium than to ovarian surface epithelium⁴. Finally, and most significantly, the pathological examination of risk reduction salpingo-oophorectomies for germ-line BRCA1 and BRCA2 mutations has uncovered pre-metastatic stages of HGSC (serous tubal intraepithelial carcinoma or STIC) as well as premalignant tubal intraepithelial neoplasia (or serous tubal intraepithelial lesions) ^{5 6}. In the fallopian tube model, STIC is considered the earliest morphologic manifestation of serous carcinoma. STICs are composed of "secretory cells," the non-ciliated population of the endosalpinx. These cells, when neoplastic, exhibit features including variable stratification, increased proliferation and loss of nuclear polarity⁷.

Most STICs are marked by mutant p53, same as their metastatic form, highgrade serous cancer. Further analyses of BRCA1/BRCA2 mutation-associated fallopian tubes have revealed the presence as well of a "latent precancer" - the "p53 signature", which has mutant p53 overexpression but retains cell polarity and lacks excessive cell proliferation. Interestingly, p53 signatures have been found adjacent to STICs and in several revealing examples have been shown to share the same p53 mutation as HGSC suggesting a lineage relationship⁸. These compelling results demonstrate that the fallopian tube is a site of origin of HGSC, the development of which follows the classic multi-step carcinogenesis model. Importantly, latent precancers are common in tubes of women who are not at genetic risk and between 40-60% of the serous cancers in BRCA mutation-negative women also co-exist with STIC⁷⁸ with a genetic link between the two^{9 10}. Thus, STIC represents the earliest phase of most pelvic serous cancers and targeted treatment or prevention of STIC is a valid goal in cancer prevention. In parallel with the serous carcinogenic sequence is the one characterized by putative stem cell outgrowths or SCOUTs. These proliferations lack p53 mutations but share many attributes with intraepithelial neoplasms, altered expression levels of certain genes, including ALDH1, PAX2, EZH2, LEF1 and others. The impression from these collective entities is that the tube is prone to both self-limited and potentially malignant intraepithelial proliferations.

HGSCs presumably arise from non-ciliated cells of the fallopian tube (secretory cells) but the precise relationship between these cells and stem cells in the tube is not understood, in part because of a lack of detailed *in vitro* studies of putative stem cells. Herein, we report a fallopian tube stem cell model based on a cell culture paradigm of both limited (immortalization) and aggressive (transformation) cell outgrowth. This model is superimposed on a similar *in vivo* paradigm of proliferative lesions seen in the fallopian tube. The goal of this exercise is to not only divine molecular perturbations marking the transition from STIC to metastatic disease but also those that highlight the loss of growth control in the early phases of neoplasia.

Methods

Case material

The Journal of Pathology

This study was approved by the Brigham and Women's Human Investigation Committee and involved the use of discarded fresh and archived tissues. Case material for gene expression analysis and histology consisted of the following epithelia/lesions: (1) normal oviduct and HGSC paired samples (n = 10) and (2) normal oviduct, STIC and invasive HGSC lesions from each patient section (n = 6). Cases for immunohistochemistry were selected by one of us (CPC) using criteria that have been previously described¹⁰.

Stem cell culture and differentiation

Fallopian tube tissue was obtained from discarded surgical specimens of women undergoing benign procedures. Discarded fetal fallopian tube tissues were obtained under an approved IRB protocol. Disaggregated cells were cultivated onto a feeder layer of lethally irradiated 3 T3-J2 cells in stem cell culturing media (SCM-6F8)¹¹. Clonal analysis and *in vitro* ALI differentiation were based on previously described methods for lung epithelial stem cells¹².

Xenografts of transformed FTSCs

Fallopian tube stem cells were infected with retroviruses expressing c-Myc, hTERT, and SV40 large T antigen (SV40 large T and hTERT for immortalization, and SV40 large T, hTERT and c-Myc for transformation). In brief, 200,000 stem cells were plated onto a lawn of feeder cells in 3cm culture dishes and transduced three days later. After 48hr, cells were split 1:5 onto new lawns and grown and passaged for four weeks before plating onto culture plates without feeder cells for an additional four weeks. Individual colonies were selected and tested for growth in soft agar, and positive colonies selected for expansion and transplantation. Two thousand transformed cells (expressing SV40 large T antigen, hTERT and c-myc) were injected subcutaneously into six-week-old female NSG (NOD.Cg-*Prkdc^{scid} ll2rg^{tm1Wil}*/SzJ) mice following the protocols approved by BRC IACUC #110643 at the Agency for Science Technology and Research (A*STAR) Singapore. Visible tumors appeared typically at two weeks and were harvested following euthanasia and analyzed by histology and expression microarray.

Histology and immunofluorescence

Histology, immunohistochemistry (IHC), and immunofluorescence (IF) were performed following standard lab protocols. For IF and IHC staining, 4% paraformaldehyde-fixed slides were subjected to antigen retrieval in citrate buffer (pH 6.0, Sigma-Aldrich, USA) at 120 °C for 20 min, and blocking procedure was performed with 5 % bovine serum albumin (BSA, Sigma-Aldrich, USA) and 0.05 % Triton X-100 (Sigma-Aldrich, USA) in DPBS(-) (Gibco, USA) at room temperature for 1 hr. Cells cultured on 3T3 and air-liquid interface culture were fixed with 4% formaldehyde at 4°C overnight and directly used in staining. All primary antibodies used in this study and staining condition were summarized in Supplemental Table 1. For IHC, detection was completed with the Vectastain ABC kit (Cat No PK-6102; Vector Laboratories, Inc, Burlingame, CA, USA) with a liquid DAB-plus substrate kit (Cat No 00-2020). Slides were counterstained with Hematoxylin Stain 3 (Cat No CS402-1D). Stained slides were stored at 4 °C in the dark and all images for section slides were captured by using the Inverted Eclipse Ti-Series (Nikon, Japan) microscope with Lumencor SOLA light engine and Andor Technology Clara Interline CCD camera and NIS-Elements Advanced Research v.4.13 software (Nikon, Japan) or LSM 780 confocal microscope (Carl Zeiss, Germany) with LSM software. Bright field cell culture images were obtained on an Eclipse TS100 microscope (Nikon, Japan) with Digital Sight DSFi1camera (Nikon, Japan) and NIS-Elements F3.0 software (Nikon, Japan).

Laser captured microdissection

Fresh surgical specimens from 10 independent women for normal oviduct and HGSC and 6 independent women for normal, STIC and invasive STIC were embedded in OCT, sectioned on a cryostat, and stained with hematoxylin to morphologically identify each region. Twelve serial frozen sections of each tissue sample were microdissected using a PALM microbeam instrument (Carl Zeiss, Germany), and each selected cell population from different slides of the same patient were pooled. Total RNAs were extracted using the Pico Pure RNA extraction kit (Life technologies, USA).

Microarray

The Journal of Pathology

For normal fallopian tube epithelium and paired HGSC samples from 10 patients and FTSC (stem cells, immortalized, transformed and xenograft) samples, total RNA processing and hybridization were performed on Affymetrix human U133 plus 2.0 Array chips (Affymetrix, CA, USA). For normal fallopian tube epithelium, STIC and invasive STIC from 6 patients, total RNAs were amplified using the WT Pico RNA Amplification System V2 and Encore Biotin Module (NuGEN Technologies, USA). Amplified DNA samples were prepared according to manufacturer's instructions and hybridized onto GeneChip Human Exon 1.0 ST Array (Affymetrix, CA, USA). GeneChip operating software was used to process all the Cel files and calculate probe intensity values. To validate sample quality, quality check was conducted using Affymetrix Expression Console software. The intensity values were log2-transformed and imported into the Partek Genomics Suite 6.6 (Partek Incorporated, MO, USA). For GeneChip Human Exon 1.0 ST Array, exons were summarized to genes and a 1-way ANOVA was performed to identify differentially expressed genes. P-values and fold-change numbers were calculated for each analysis.

Bioinformatics for gene expression

Unsupervised clustering and heatmap generation were performed with sorted datasets by Euclidean distance on average linkage clustering with selected probe sets by Partek Genomics Suite 6.6. Gene Set Enrichment Analysis (GSEA; Subramanian et al., 2005) was performed to compare 1) STIC with invasive STIC, and 2) immortalized FTSC and FTSC, respectively. To find enriched pathways, DAVID bioinformatics resources (http://david.abcc.ncifcrf.gov/) were used¹³.

Accession numbers

Datasets generated for this study have been submitted to the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database under GSE69428 for normal oviduct and HGSC from 10 patients, GSE69453 for FTSC-ALI, and transformed FTSCs (stem cell, immortalized, transformed and xenografts) and GSE69429 for normal fallopian tubal epithelium, STIC and invasive STIC from 6 patients.

Results

Cloning, immortalizing and transforming the fallopian tube stem cells.

If the fallopian tube is the origin of serous cancer, one possible mechanism for the evolution of cancer is a dysregulation of indigenous stem cells. We therefore set out to clone the stem cells of the fallopian tube using methods to clone columnar epithelial stem cells such as human intestinal stem cells¹¹. Using this method, we were able to generate clones of fallopian tube stem cells that contain many small, undifferentiated and highly proliferative (Ki67 +) cells that can propagate through multiple passages

(Figure 1a). These stem cell clones show strong and consistent staining with markers of fallopian tube epithelial cells (PAX8) (Figure 2a). In our recent work on cloning adult stem cells from human airway and human intestine^{11 12}, we established a pedigree analysis method to examine the multipotential differentiation ability from a single stem cell. The high clonogenic capacity of fallopian tube stem cells allowed us to use the same approach to rapidly generate single cell "pedigree" lines of expansion and characterization of their lineage fates upon induced differentiation in air-liquid interface (ALI) cultures. Following FTSC differentiation, we found through immune-staining with specific antibodies and RT-PCR with specific primers that one single fallopian tube stem cell (Foxi1-, acetylated tubulin-, TAp73-, Sall2-, BCL2-, PAX2-) can give rise to both ciliated cells (Foxi1+, acetylated tubulin+, TAp73+, Sall2+) and secretory cells (Foxi1-, acetylated tubulin-, BCL2+, PAX2+)¹⁴ (Figure 1b and c). Moreover, the same FTSC pedigree line can be induced to differentiate into squamous metaplasia (p63+/Krt5+) in 3D Matrigel assay¹⁵. We next compared the FTSCs and their differentiated structure in ALI by gene expression. FTSCs showed high expression of several known adult stem cell markers such as Lrig1¹⁶, Lgr6¹⁷ and regulators of self-renewal such as EZH2¹⁸ and FOXM1¹⁹, TCF4²⁰. Interestingly, we did not find high expression of Lgr5²¹ in FTSCs. While the differentiated cells lost the expression of stem cell markers, they showed significantly increased expression of genes associated with ciliated cell and secretory cell differentiation such as genes in the Dynein family²² and MUC13²³ (Figure 1d).

To examine whether the fallopian tube stem cells are the cell of origin of highgrade serous cancer, we introduced SV40/ hTERT or SV40/hTERT/c-MYC into these

The Journal of Pathology

cells by retroviral infection to induce immortalization or transformation of these cells (Figure 1e). We showed while both immortalized and transformed FTSCs gained the new property of growing without the support of irradiated 3T3-J2 fibroblast feeder, the transformed FTSCs lost contact inhibition and showed fibroblast like morphology in the petri dish (Figure 1f, upper). Moreover, both immortalized and transformed FTSCs formed sphere structures in growth-factor-reduced Matrigel in 5 days, but transformed FTSCs generated the irregular structures around 10 times larger in comparison with small and round spheres derived from immortalized FTSCs (Figure 1f, lower). A heat map of differentially expressed genes in wholegenome transcriptome analysis of FTSCs, immortalized and transformed FTSCs showed distinct expression profile differences between normal FTSCs and transformed FTSCs (Figure 1d and supplementary table 2). Interestingly, immortalized FTSCs expressed at the moderate level many genes that are highly expressed in transformed FTSCs (Figure 1g). Gene ontology Analysis was performed to identify the gene pathways significantly enriched in transformed cells including DNA replication and DNA repair (Supplemental Figure 1a). In addition, a highly amplified gene in ovarian cancer, c-MYC was used as the transforming agent²⁴. Consistently, we observed that downstream genes of c-MYC are highly enriched in transformed FTSCs but not in immortalized FTSCs (Supplemental Figure 1b).

Transformed fallopian tube stem cells gave rise to high-grade serous cancer.

In order to examine whether the transformed fallopian tube stem cells belong in the serous carcinogenic pathway, we injected subcutaneously two thousand transformed fallopian tube stem cells into the immunodeficient (NOD.Cg-Prkdc^{scid} II2rg^{tm1WjI}/SzJ) mice²⁵ and observed the formation of palpable tumor in two weeks. The xenografted tumors demonstrate all the pathological and immunological hallmarks of human high-grade serous cancer, such as gain of p53, EZH2 and MUC4 expression

(Figure 2a) ^{15 26 27}. To understand whether FTSC^t xenograft tumors resemble human highgrade serous cancer at the level of gene expression, we first compared RNA from ten microdissected histologically normal fallopian tube epithelium and paired high-grade serous cancer tumor samples on expression microarray chips. These data revealed a significant twoor-more-fold alteration (P<0.5) of the expression in 2395 genes that is presented in a heatmap (Figure 2b and supplementary table 3). Of the 2395 genes, 1017 genes are up-regulated, and in contrast, 1378 genes are down regulated in tumor samples. The further analysis showed that FTSC^t xenograft tumors, just like HGSC, also expressed these HGSC related genes in a similar manner.

To clarify the function of the genes that we identified in the study and uncover the pathways that conceivably could be targeted to lead to tumor cell death for the therapeutic purpose, we uncovered a number of druggable targets in HGSC such as Enhancer of Zeste Homolog 2. (EZH2). EZH2 is a histone methyl transferase (HMT) and a member of the polycomb group of genes (PcG) regulating (suppressing) transcription through nucleosome modification, chromatin remodeling, and interaction with other transcription factors. Several studies have demonstrated that EZH2 is involved in oncogenesis and consistently, high EZH2 transcript and protein levels have been associated with aggressive tumor behavior, chemo-resistant tumor stem-like side populations and overall poor clinical outcome in ovarian, breast, prostate and bladder cancer patients²⁸. We showed that the protein expression of EZH2 is upregulated in precancerous lesion of HSGC (p53 signature²⁹, STIC, invasive serous cancer and FTSC^t xenograft tumors (Figure 2c). Consistent with the increased expression of EZH2 in HGSC and xenograft tumor, the expression of downstream targets of EZH2 was significantly down regulated compared with normal fallopian tube epithelium (Figure 2d). Moreover, treating the transformed fallopian tube stem cells with EZH2 inhibitor that specifically blocks EZH2 activity³⁰ led to dramatically decreased cell proliferation based on the diminished Ki67 antibody staining and drastic decreased structure size in the Matrigel (Figure 2e).

Resolving molecular alterations in STIC and its progression to invasive serous cancer.

Although advanced serous cancer has been proposed to result from STIC progression, there has not been transcriptome analysis to demonstrate the molecular progression from STIC to advanced serous cancer. To better understand potential links between these entities via markers of progression, we used the LCM approach to isolate normal fallopian tube epithelium, STIC and advance serous cancer from the same patient (Figure 3a). A heatmap of differentially expressed genes in these datasets

The Journal of Pathology

showed distinct expression profile between normal fallopian tubal epithelium and advanced serous cancer among six patients. In contrast, STIC showed significant overlap with both normal epithelium and advanced cancer (Figure 3b). Gene Set Enrichment Analysis (GSEA) was performed to identify the gene pathways significantly enriched in both STIC and advanced cancer or uniquely changed in advanced serous cancer. The pathways involved in cell proliferation, genomic instability and survival are aberrantly expressed at the early stage of serous carcinogenesis and are followed by deregulation of the pathways involved in angiogenesis and cell adhesion (Figure 3c).

Furthermore, we particularly focused on the secreted proteins that are highly expressed in STIC or invasive serous cancer with the goal to use them as biomarkers for early detection of HGSC. We identified eight genes significantly upregulated in invasive cancer and three of them are already upregulated in the localized tubal tumor (STIC) (Figure 3d). Among them, SPP1 (osteopontin), SPARC (Osteonectin) and VCAN (Versican) have been reported to be overexpressed in various human cancers. Particularly, osteopontin levels in plasma were significantly higher in patients with epithelial ovarian cancer compared with those of healthy controls and patients with other gynecologic cancers³¹.

Uncovering early molecular changes associated with STIC

The data presented here support the existing hypothesis that the fallopian tube is the site of origin of high-grade serous cancer and the STIC is the non-invasive, premetastatic form of high-grade serous cancer. A heatmap including 62 genes (>2 folds, p<0.05) was generated to show the genes that were aberrantly upregulated in common between STIC and matched invasive cancer (Figure 4a and supplementary table 4). Among these 62 genes, Pituitary tumor transforming gene (PTTG1) and Cyclin E1 (CCNE1) (Supplemental Figure 2a) are particularly interesting because they have been implicated in early oncogenesis through their driving role in cellular transformation^{32 33}. In order to validate some of these genes, we next performed the immunohistochemistry using the specific antibodies for PTTG1 and CCNE1 on patient-matched sections of normal fallopian tube epithelium, STIC and invasive cancer. While the protein expression of these two markers is barely detectable in normal fallopian tube epithelium, they are highly expressed in STIC and invasive cancer (Figure 4b). We next hypothesized that among aberrantly expressed genes in STIC, there is a group of genes expressing during cellular immortalization, which is the first step towards malignancy³⁴. In order to test this hypothesis, we compared upregulated genes in immortalized FTSCs and STIC and uncovered 123 genes (>2 folds, p<0.05) that overlap in these two entities (Figure 4c and supplementary table 5). Among them, genes such as Stathmin1, a microtubule destabilizing protein³⁵, Ect2, a Rho guanine nucleotide exchange factor³⁶, Forkhead Box M1 (FOXM1), a transcription factor regulating cell cycle³⁷ have been suggested playing critical roles in tumor initiation of HGSC (Figure 4d and supplementary Figure 2b).

Discussion

The perception of ovarian epithelial carcinogenesis is changing rapidly since the proposal of the hypothesis that many of these tumors appear to originate in the fallopian tube²⁹. In 2012, Gilbert and colleagues further supported this hypothesis. Among their patients with "early" HGSC 78% the cancer had originated from the fallopian tube, peritoneum, or both³⁸. Recently another report noted that in the general patient population, incidentally discovered non-uterine high-grade serous carcinomas arise in the fallopian tube in most cases: further evidence for the tubal origin of high-grade serous carcinomas³⁹.

In this study, we cloned stem cells from human fallopian tube and demonstrated that transformed fallopian tube stem cells can develop to aggressive HGSC in mouse xenograft models in a short time. The xenografted tumor shared all the hallmark features with HGSC, further supporting the fallopian tube as the site of origin of serous cancer (Figure 5). Attempts to culture oviductal epithelial cells have been made previously, including efforts to model HGSC^{14 40 41}. However this study is the first to show that stem cells of fallopian tube can be maintained in culture in their elemental state and using the pedigree approach, are capable of multipotent differentiation from one single stem cell in the fallopian tube. Importantly, this platform of culturing FTSCs faithfully and robustly *in vitro* provided us a unique opportunity of functionally studying putative oncogenes or tumor suppressors discovered in recent cancer genome analysis through genetic editing of patient-derived FTSCs. Moreover, in this study we found that

The Journal of Pathology

several putative oncogenes were significantly overexpressed at the step of FTSC immortalization <u>prior to</u> the occurrence of transformation. Among them, Stathmin 1 has been proposed as a marker expressed in early pelvic serous cacinomas³⁵; CXCR4 and its ligand CXCL12 have been suggested as the key determinants of tumor initiation and metastasis of ovarian cancer⁴²; Forkhead Box M1 (FOXM1) has been reported as a key regulator of tumorigenesis by increasing proliferative activity and leading to uncontrolled cell division³⁷. EZH2, a negative regulator of transcription was also upregulated two-fold with immortalization. Interestingly, our previous study showed the PAX2-null progenitor

cell growth (secretory cell outgrowth, SCOUTs) in the fallopian tube also expressed strongly both EZH2 and Stathmin 1¹⁵. This correlation led us to propose the link between FTSC immortalization and the development of early proliferations in the tube, either SCOUTs or lower grade STINs. Based on these correlations it appears that these gene perturbations associated with immortalization might occur prior to or even in the absence of the serous cancer, in which case their value as predictors of malignancy could be limited by their lack of specificity as actionable values. However, they could conceivably be targeted as co-determinants of neoplastic progression with the goal of depriving the serous carcinogenic sequence of a participating pathway.

The stage at which an ovarian cancer is detected is the single most important factor influencing outcome and interrupting ovarian cancer when it is curable will require addressing early disease in the distal fallopian tube. Early molecular signatures that are specific for these neoplasms are of paramount importance given their potential value in detecting neoplasia via analysis of fluids in the lower genital tract ⁴³. Given the fact that many STICs do not have a HGSC outcome, we believe that there is a window of opportunity where patients with potentially lethal precursors can be identified through screening and spared a death from this malignancy.

It would be hoped that a molecular analysis of early lesions might provide an array of targets that are either secreted by these cells or presented on the cell surface for screening and therapeutic value, respectively. Monoclonal antibodies to secreted proteins have the potential to form the basis of population-wide screening methods from blood or cervical fluid for those at risk who might benefit from salpingectomy. Monoclonal antibodies to cell surface markers in these lesions might assist in alternative detection via imaging technologies as the technology evolves. An important question that must be addressed is whether the parallels between immortalized cells *in vitro* and proliferations *in vivo* signify a background of accrued biologic events that both precede - and are needed for - progression to malignancy. Thus the challenge will be to tease out those molecular events that are biologically significant and when intervened will prevent subsequent malignancy.

Acknowledgements

This work was supported by grants from Connecticut Innovations (WX, FM), the Joint Council Office of the Agency for Science Technology Research Agency (ASTAR), Singapore (WX, FM), the National Medical Research Council, Singapore (BnB11dec063 to NN, MC, FM and WX), the Department of Defense (W81XWH-10-1-0289 to CPC) and NIH (R01 CA188025 to ZT). We thank J. Hammer for assistance of figure preparation and the Division of Gynecologic Oncology at Brigham and Women's Hospital and Dana Farber Cancer Institute for their contribution to the study. We also thank Drs. Ju Yuan and In Young Hwang for the assistance in cell culture. This paper has not been previously published. Preliminary findings with clonogenic tubal epithelial cells have been previously described by Ning et al¹⁵. The authors have no conflicts of interest or relevant financial relationships. This study was approved by the Brigham and Women's Hospital Institutional Review Board. Array data is displayed in Supplemental Figure 2.

Abbreviations

STIC - serous tubal intraepithelial carcinoma; FTSC - fallopian tube stem cells; HGSC – high grade serous cancer; ALI – air-liquid interface culture

Contribution of the coauthors are as follows:

Author	Design	Data	Data	Data	Literature	Figures	Manuscript
		collection	analysis	Interpretation	search		writing

The Journal of Pathology

Yamamoto	Х	Х	Х	X	Х		X
Ning	Х	Х	X	X			
Howitt		Х	Х	Х			
Mehra		Х	X	X			
Wu		Х	Х	X			
Wang		Х	Х	Х			
Hong		Х	X	Х			
Тау		Х	X	Х			
Zhang		Х	X	X			
Kern		X	X	X			
Nagarajan			X	X			
Choolani	Х		X	X	Х		Х
Torti			X	X			Х
Brewer			X	X			Х
McKeon	Х		X	X	Х	X	Х
Crum	X		X	X	Х	X	Х
Xian	X	X	Х	X	x	X	X

Illustrations

Figure 1. Cloning, immortalization and transformation of the fallopian tube stem cells. a. Cloned FTSC marked with proliferation marker Ki67 (green) and occasional expression of ciliated marker FOXJ1 (red). b ALI differentiation culture of FTSC stained with FOXJ1 (red) and acetylated tubulin (green). c. RT-PCR of selected markers. d. Heatmap of selected genes from whole-genome transcriptome analysis. e. Schematic of FTSC immortalization and transformation *in vitro*. f. Morphological difference of FTSCⁱ and FTSC^t on plastic culture dishes and in 3D Matrigel assay. g. Progressive change of gene expression among FTSC, FTSCⁱ and FTSC^t (n = 2, each). Genes with increased expression (>1.5 fold and p < 0.05 in each, 654 genes) following transformation were selected for heatmap production.

Figure 2. FTSC^t xenograft tumor resembles human high-grade serous cancer. a. *Upper panel*, 2K FTSC^t cells (PAX8, red) were injected into NSG mice and palpable tumor was observed in two weeks. *Lower panel*, Xenograft tumor expressed HGSC hallmark genes MUC4, p53 and PAX8. b. A heatmap showing FTSC^t xenograft tumors and invasive SC

shared similar gene expression profile (FTSC^t tumor: n = 3; invasive SC: n = 10 and paired normal oviduct: n = 10; 2395 genes selected, > 2 folds and p < 0.05). c. EZH2 protein expressed in multiple stages of HGSC development including lower grade serous tubal intraepithelial neoplasia and secretory cell outgrowths¹⁵. d. EZH2 target genes were downregulated in FTSC^t xenograft tumors and invasive SC. e. Selective inhibition of EZH2 by its inhibitor (3-Deazaneplanocin A) blocked FTSC^t cell proliferation in a matrigel culture. Ki67 (red) stained for proliferating cells. Dapi (blue) stained nuclei.

Figure 3. Molecular correlates of progression from STIC to invasive cancer. a. *Left*, Histology of the sections used for Laser captured microdissection (LCM) of normal fallopian tube epithelium, STIC and invasive cancer; *Right*, p53 antibody staining showing prominent expression of p53 protein in STIC and invasive cancer. b. Six heatmaps showing the progressive gene expression from STIC to invasive cancer in individual patients (genes differentially expressed in invasive cancer compared with normal FT epithelium were selected, >2 folds and p<0.05). c. Gene set enrichment analysis (GSEA) of invasive cancer vs. STIC highlighting angiogenesis and regulation of cell adhesion in invasive cancer. d. Dot plots of selected genes highly expressed in STIC and invasive cancer (normal fallopian tube: n = 6; STIC: n = 6; invasive SC: n = 6).

Figure 4. Early molecular changes associated with FTSC immortalization and STIC. a. A heatmap showing 62 genes (>2 folds, p<0.05) commonly overexpressed between STIC and matched invasive serous cancer. b. Representative images of CCNE1 and PTTG1 immunostaining on normal FT epithelium, STIC and invasive serous cancer. c. Venn diagram of genes overexpressed in STIC (>1.5 fold, p<0.05) and immortalized FTSC (>2 fold, p < 0.05). 123 genes were overlapped. d. Selected overlapping genes and fold change.

Figure 5. *In vitro* and *in vivo* correlations proposing a model of multi-step development of HGSC originated from fallopian tube stem cells.

 Supplementary Figure 1. a. Pathways enriched in immortalized and transformed FTSCs compared with normal FTSC (p < 0.05) are listed in the table. b. GSEA showed enrichment of MYC target genes in transformed nut not immortalized FTSC.

Supplementary figure 2. a. Dot plots of PTTG1 and CCNE1 expression in normal fallopian tube epithelium, STIC and invasive SC. b. Pathway analysis showed significantly enriched pathways (p < 0.05) in immortalized FTSCs and STIC.

References

- 1. Auersperg N, Wong AS, Choi KC, *et al.* Ovarian surface epithelium: biology, endocrinology, and pathology. *Endocr Rev* 2001; **22:** 255–288.
- 2. Vaughan S, Coward JI, Bast RC Jr, *et al.* Rethinking ovarian cancer: recommendations for improving outcomes. *Nat Rev Cancer* 2011; **11:** 719–725.
- Piek JM, van Diest PJ, Zweemer RP, *et al.* Dysplastic changes in prophylactically removed fallopian tubes of women predisposed to developing ovarian cancer. *J Pathol* 2001; **195:** 451–456.
- Marquez RT, Baggerly KA, Patterson AP, *et al.* Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. *Clin Cancer Res* 2005; **11:** 6116-6126.
- Finch A, Shaw P, Rosen B, *et al.* Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. *Gynecol Oncol* 2006; **100:** 58–64.
- Lowell CB, Swisher EM, Cass I, *et al.* Long term follow up of BRCA1 and BRCA2 mutation carriers with unsuspected neoplasia identified at risk reducing salpingooophorectomy. *Gynecol Oncol* 2013; **129:** 364-371.
- Carlson JW, Miron A, Jarboe EA, *et al.* Serous tubal intraepithelial carcinoma: Its potential role in primaryperitoneal serous carcinoma and serous cancer prevention. *J Clin Oncol* 2008; 26: 4160–4165.

 Kindelberger DW, Lee Y, Miron A, *et al.* Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. *Am J Surg Pathol* 2007; 31: 161–169.

- Salvador S, Rempel A, Soslow RA, *et al.* Chromosomal instability in fallopian tube precursor lesions of serous carcinoma and frequent monoclonality of synchronous ovarian and fallopian tube mucosal serous carcinoma. *Gynecol Oncol* 2008; **110**: 408-417.
- 10. Mehrad M, Ning G, Chen EY, *et al.* A pathologist's road map to benign, precancerous, and malignant intraepithelial proliferations in the fallopian tube. *Adv Anat Pathol* 2010; **17:** 293-302.
- 11. Wang X, Yamamoto Y, Wilson LH, et al. Cloning and variation of ground state intestinal stem cells. *Nature* 2015; DOI 10.1038/nature14484
- 12. Kumar PA, Hu Y, Yamamoto Y, *et al*. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. *Cell* 2011; **147:** 525-538.
- 13. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 2009; **4:** 44-57.
- Levanon K, Ng V, Piao HY, *et al.* Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. *Oncogene* 2010; **29:** 1103-1113.
- 15. Ning G, Bijron J, Yamamoto Y, *et al.* The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium. *J Pathol* 2014; **234:** 478-87.
- 16. Wong VW, Stange DE, Page ME, *et al.* Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. *Nat Cell Biol* 2012; **14:** 401-408.
- 17. Oeztuerk-Winder F, Guinot A, Ochalek A, *et al.* Regulation of human lung alveolar multipotent cells by a novel p38α MAPK/miR-17-92 axis. *EMBO J* 2012; **31:** 3431-3441.
- Juan AH, Derfoul A, Feng X, *et al.* Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. *Genes Dev* 2011; **25:** 789-794.

Page 19 of 246

The Journal of Pathology

1	
2	
3	
4	
5	
6	
6	
7	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
20	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
40	
46	
47	
48	
10	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
50	
20	
59	
60	

19. Bella L, Zona S, Nestal de Moraes G, *et al.* FOXM1: A key oncofoetal transcription factor in health and disease. *Semin Cancer Biol* 2014; **29**: 32-39.

20. van Es JH, Haegebarth A, Kujala P, *et al.* A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. *Mol Cell Biol* 2012; **32:** 1918-1927.

21. Ng A, Tan S, Singh G, *et al.* Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. *Nat Cell Biol* 2014; **16:** 745-757.

22. Kikkawa M. Big steps toward understanding dynein. J Cell Biol 2013; 202: 15-23.

23. Chauhan SC, Vannatta K, Ebeling MC, *et al.* Expression and functions of transmembrane mucin MUC13 in ovarian cancer. *Cancer Res* 2009; **69:** 765-774.

24. Hahn WC1, Counter CM, Lundberg AS, *et al*. Creation of human tumour cells with defined genetic elements. *Nature* 1999; 400: 464-468.

25. Shultz LD, Goodwin N, Ishikawa F, *et al.* Human cancer growth and therapy in immunodeficient mouse models. *Cold Spring Harb Protoc* 2014; **7:** 694-708.

26. Crum CP, Herfs M, Gang N, *et al.* Through the glass darkly: intraepithelial neoplasia, top down differentiation, and the road to ovarian cancer. *J Pathol* 2013; **231**: 402-412.

 Chauhan SC, Singh AP, Ruiz F, *et al.* Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). *Mod Pathol* 2006; **9:**1386-1394.

28. Rizzo S, Hersey JM, Mellor P, *et al.* Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. *Mol Cancer Ther* 2011; 10: 325-335.

29. Lee Y, Miron A, Drapkin R, *et al.* A candidate precursor to serous carcinoma that originates in the distal fallopian tube. *J Pathol* 2007; **211:** 26–35.

30. Sun F, Chan E, Wu Z, *et al.* Combinatorial pharmacologic approaches target EZH2mediated gene repression in breast cancer cells. *Mol Cancer Ther* 2009; **8:** 3191-3202.

31. Kim JH, Skates SJ, Uede T, *et al.* Osteopontin as a potential diagnostic biomarker for ovarian cancer. *JAMA* 2002; **287:** 1671-1679.

32. Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). *Mol Endocrinol* 1997; **11:** 433–441.

- 33. Karst AM, Jones PM, Vena N, *et al.* Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. *Cancer Res* 2014; **74:** 1141-1152.
- 34. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011; **144:** 646-674.
- 35. Karst AM, Levanon K, Duraisamy S, *et al.* Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. *Gynecol Oncol* 2011; **123:** 5-12.
- 36. Huff LP, Decristo MJ, Trembath D, *et al.* The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation. *Genes Cancer* 2013; **4:** 460-475.
- 37. Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor. *Biol Chem* 2007; **388:** 1257–1274.
- 38. Gilbert L, Basso O, Sampalis J, *et al.* Assessment of symptomatic women for early diagnosis of ovarian cancer: results from the prospective DOvE pilot project. *Lancet Oncol* 2012; **13**: 285-291.
- 39. Gilks CB, Irving J, Köbel M, *et al.* Incidental nonuterine high-grade serous carcinomas arise in the fallopian tube in most cases: further evidence for the tubal origin of high-grade serous carcinomas. *Am J Surg Pathol* 2015; **39:** 357-364.
- 40. Kervancioglu ME, Saridogan E, Martin JE *et al.* A simple technique for the long-term non-polarised and polarised culture of human fallopian tube epithelial cells. *Biol Cell* 1994; **82:** 103–107.
- 41. Karst AM, Levanon K, Drapkin R. Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. *Proc Natl Acad Sci U S A* 2011; **108**: 7547-7552.
- 42. Kajiyama H, Shibata K, Terauchi M, *et al.* Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. *Int J Cancer* 2008; **122:** 91-99.
- 43. Kinde I, Bettegowda C, Wang Y, *et al.* Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. *Sci Transl Med* 2013; **5:** 167ra4

Figure 1. Cloning, immortalization and transformation of the fallopian tube stem cells. a. Cloned FTSC marked with proliferation marker Ki67 (green) and occasional expression of ciliated marker FOXJ1 (red). b ALI differentiation culture of FTSC stained with FOXJ1 (red) and acetylated tubulin (green). c. RT-PCR of selected markers. d. Heatmap of selected genes from whole-genome transcriptome analysis. e. Schematic of FTSC immortalization and transformation in vitro. f. Morphological difference of FTSCi and FTSCt on plastic culture dishes and in 3D Matrigel assay. g. Progressive change of gene expression among FTSC, FTSCi and FTSCt (n = 2, each). Genes with increased expression (>1.5 fold and p < 0.05 in each, 654 genes) following transformation were selected for heatmap production. 571x762mm (96 x 96 DPI)

Figure 2. FTSCt xenograft tumor resembles human high-grade serous cancer. a. Upper panel, 2K FTSCt cells (PAX8, red) were injected into NSG mice and palpable tumor was observed in two weeks. Lower panel, Xenograft tumor expressed HGSC hallmark genes MUC4, p53 and PAX8. b. A heatmap showing FTSCt xenograft tumors and invasive SC shared similar gene expression profile (FTSCt tumor: n = 3; invasive SC: n = 10 and paired normal oviduct: n = 10; 2395 genes selected, > 2 folds and p < 0.05). c. EZH2 protein expressed in multiple stages of HGSC development including lower grade serous tubal intraepithelial neoplasia and secretory cell outgrowths15. d. EZH2 target genes were downregulated in FTSCt xenograft tumors and invasive SC. e. Selective inhibition of EZH2 by its inhibitor (3-Deazaneplanocin A) blocked FTSCt cell proliferation in a matrigel culture. Ki67 (red) stained for proliferating cells. Dapi (blue) stained nuclei.

571x762mm (96 x 96 DPI)

Figure 3. . Molecular correlates of progression from STIC to invasive cancer. a. Left, Histology of the sections used for Laser captured microdissection (LCM) of normal fallopian tube epithelium, STIC and invasive cancer; Right, p53 antibody staining showing prominent expression of p53 protein in STIC and invasive cancer. b. Six heatmaps showing the progressive gene expression from STIC to invasive cancer in individual patients (genes differentially expressed in invasive cancer compared with normal FT epithelium were selected, >2 folds and p<0.05). c. Gene set enrichment analysis (GSEA) of invasive cancer vs. STIC highlighting angiogenesis and regulation of cell adhesion in invasive cancer. d. Dot plots of selected genes highly expressed in STIC and invasive cancer (normal fallopian tube: n = 6; STIC: n = 6; invasive SC: n = 6).

571x762mm (96 x 96 DPI)

Figure 4. Figure 4. Early molecular changes associated with FTSC immortalization and STIC. a. A neatmap showing 62 genes (>2 folds, p<0.05) commonly overexpressed between STIC and matched invasive serous cancer. b. Representative images of CCNE1 and PTTG1 immunostaining on normal FT epithelium, STIC and invasive serous cancer. c. Venn diagram of genes overexpressed in STIC (>1.5 fold, p<0.05) and immortalized FTSC (>2 fold, p < 0.05). 123 genes were overlapped. d. Selected overlapping genes and fold change.</p>
E711/262/PMI (20.05)

571x762mm (96 x 96 DPI)
Supplemental Figure 1

Category	Count	PValue
DNA replication	10	1.52E-0
Cell cycle	14	1.13E-0
Aminoacyl-tRNA biosynthesis	8	5 70E-0
One carbon pool by folate	4	0.00671
Mismatch repair	4	0.01870
TGF-beta signaling pathway	7	0.02095
Nucleofide excision repair	5	0.02331
Glycine, serine and threonine metabolism	4	0.04112

b

Immortalized FTSC vs. FTSC

Transformed FTSC vs. FTSC

Supplemenatary Figure 1. a. Pathways enriched in immortalized and transformed FTSCs compared with normal FTSC (p < 0.05) are listed in the table. b. GSEA showed enrichment of MYC target genes in transformed nut not immortalized FTSC. 571x762mm (96 x 96 DPI)

Term	1/n	PValue
Cell cycle	5.93	2.36E-05
Mismatch repair	2.54	0.005512
Progesterone-mediated oocyte maturation	3.39	0,008211
Oocyte meiosis	3.39	0.016025
Pathways in cancer	5.08	0.019728
p53 signaling pathway	2/54	0.04338

Supplementary Figure 2. a. Dot plots of PTTG1 and CCNE1 expression in normal fallopian tube epithelium, STIC and invasive SC. b. Pathway analysis showed significantly enriched pathways (p < 0.05) in immortalized FTSCs and STIC. 571x762mm (96 x 96 DPI)

http://mc.manuscriptcentral.com/jpath

Supplemental Table 1. Antibodies used

Antibody	Manufacturers	Cat. No.	Working Dilution
Alpha-Tubulin	Sigma-Aldrich	Т9026	1:3000
CyclinE1	Abcam	ab3927	1:1600
EZH2	Leica Biosystems	NCL-L-EZH2	1:500
Foxj1	Sigma-Aldrich	HPA005714	1:500
MUC4	Invitrogen	18-2322	1:800
Р53	Caibiochem	OP43	1:500
PAX8	Protein Tech	10336-1-AP	1:400
PTTG1	Sigma-Aldrich	HPA008890	1:1000

1	
2	2
3	;
4	ŀ
5	;
6	;
7	,
8	;
ŝ)
1	(
1	,
1	1
1	;
1	•
1	ļ
1	(
1	•
1	ł
1	9
~	

2	Supplementary Table 2 incrementally expressed	
4	Probacat ID	Cana Sumbol
5		
6	210587_at	INHBE
/	203548_s_at	LPL
9	1554242_a_at	СОСН
10	235020_at	TAF4B
11	239352_at	SLC6A15
12	219295_s_at	PCOLCE2
13	226695_at	PRRX1
14	219911 s at	SLCO4A1
15 16	240419 at	SLC6A15
17		ΗΟΧΑ10-ΗΟΧΑ9 /// ΗΟΧΑ9
18	204394 at	SI C43A1
19	204794 at	DLISP2
20	204734_at	SI C6A15
21	200370_at	
22	203367_3_dl	
24	219965_at	
25	210143_at	
26	232263_at	SLC6A15
27	203386_at	TBC1D4
28	205885_s_at	ITGA4
29 30	223721_s_at	DNAJC12
31	1558404_at	LOC644242
32	207536_s_at	TNFRSF9
33	213113_s_at	SLC43A3
34	206261_at	ZNF239
35		PPM1E
37	220615 s at	FAR2
38	223722 at	DNAIC12
39	212813 at	IAM3
40	212013_at	
41	203664_at	
4Z 13	200172_at	
44	238681_at	GDPDI
45	235343_at	VASH2
46	218976_at	DNAJC12
47	201578_at	PODXL
48	225516_at	SLC7A2
49 50	204521_at	FAM216A
51	235548_at	APCDD1L
52	1569582_at	LOC201651
53	207219_at	ZNF643
54	242931_at	LONRF3
55 56		ABCC4
00 57	218541 s at	C8orf4
58	228956 at	LIGT8
59	220330_at	
60		

2	219969_at	TXLNG
3	200841_s_at	EPRS
4	210692 s at	SLC43A3
5	232291 at	MIR17HG /// MIR18A /// M
6 7	202201_ut	
/ 8	250051_dl	
9	1554640_at	PALM2
10	213416_at	ITGA4
11	1555606_a_at	GDPD1
12	230763_at	SPATA17
13	226890_at	WDR35
14		CDKN2B
15	205429 s at	MPP6
16 17	218590 at	C10orf2
18	210000_at	
19	221048_S_dl	
20	222062_at	IL27RA
21	221586_s_at	E2F5
22	225285_at	BCAT1
23	229437_at	MIR155 /// MIR155HG
24	231984_at	MTAP
25		CCDC138
20 27	238990 x at	TRIM61
28	210262 at	
29	219202_at	
30	204950_dl	
31	229596_at	AMDHD1
32	206085_s_at	СТН
33	225421_at	PM20D2
34	229715_at	B7H6
30	209406_at	BAG2
37	212816 s at	CBS
38	236219 at	SLC35G1
39	209892 at	
40	209052_{ut}	
41	200204_5_dl	
42	227892_at	PRKAAZ
43	1553972_a_at	CBS
44 45	227607_at	STAMBPL1
45 46	236075_s_at	LOC100506676
47	202684_s_at	RNMT
48	212706 at	RASA4 /// RASA4B
49		BCAT1
50	220251 at	DIFXE
51	220231_ut	
52 52	220302_dl	
୦୦ 54	227896_at	
54 55	219616_at	ACSS3
56	227932_at	ARIH2
57	242905_at	PNO1
58	235177_at	METTL21A
59	235733 at	GXYLT2
60		

1		
2	202920_at	ANK2
3	220346_at	MTHFD2L
4		PPP1R9A
5	2/3502_2t	GIC1
6	243302_at	
/	228494_dl	PPPIR9A
0	233737_s_at	LOC284561
9 10	242037_at	ASPH
10	212894_at	SUPV3L1
12	226517 at	BCAT1
13		FCRI B
14	226017_at	
15	250917_dt	
16	1555882_at	SPIN3
17	212290_at	SLC7A1
18	218599_at	REC8
19	218936_s_at	CCDC59
20	217127 at	СТН
21	203163_at	KATNB1
22	203105_at	
23	207057_at	SLC16A7
25	229435_at	GLIS3
26	219731_at	CC2D2B
27	205047_s_at	ASNS
28	1559993 at	SFXN3
29		EXOSC3
30	220370 s at	
31	220370_3_at	03F30
32	222305_at	HK2
33	205541_s_at	GSPT2
34 25	212036_s_at	PNN
36	220698_at	MGC4294
37	205668 at	LY75
38		FBXO45
39	220100_ut	GART
40	230097_at	
41	204700_x_at	DIEXF
42	1552430_at	WDR17
43	224873_s_at	MRPS25
44	227606_s_at	STAMBPL1
45	233655 s at	HAUS6
46	200790 at	ODC1
47 78	1555562 a at	700407
40	1000012_a_at	
50	206613_s_at	TAFIA
51	1569183_a_at	СНМ
52	228378_at	C12orf29
53	222624_s_at	ZNF639
54	201228 s at	ARIH2
55	225142 at	IHDM1D
56	201101 2+	
57	204491_dl	
58	1552625_a_at	IKNI1
59 60	235610_at	ALKBH8
00		

2	203622_s_at	PNO1
3	227856 at	C4orf32
4	 226876_at	FAM101B
5	2/1866_at	SI C16A7
6	241000_at	
/	206204_at	GRB14
0	230258_at	GLIS3
9 10	223700_at	MND1
10	200975_at	PPT1
12	230166 at	KIAA1958
13		PI D6
14	219E01 c of	NOI 10
15	210J91_5_dt	
16	222736_s_at	TIMEINI38B
17	208541_x_at	TFAM
18	231973_s_at	ANAPC1 /// LOC100653327
19	204603_at	EXO1
20	236609 at	PMS1
21		RAREP1
22	222095 v ot	
24	200177 x at	
25	2031//_x_at	
26	242294_at	FBXO45
27	210188_at	GABPA
28	223221_at	SCO1
29	238576_at	MOCOS
30	242370 at	MTHFD2L
31		PRIM1
33	200000_{at}	GART
34	277022_at	MCM10
35	225570_dl	
36	219751_at	SEID6
37	228434_at	BTNL9
38	1554249_a_at	ZNF638
39	220651_s_at	MCM10
40	231292 at	EID3
41		ZBED3
43	221540 x at	GTE2H2 /// GTE2H2B /// GT
44	202100 c at	MTDD
45	203199_5_at	CTEQUID
46	223758_s_at	GIFZHZ
47	220265_at	GPR107
48	235949_at	TTC26
49	238441_at	PRKAA2
50	226905_at	FAM101B
52	241985 at	JMY
53		POU2E2
54	223092 at	ΔΝΚΗ
55	223032_at	
56	209892_8_8[
57	230954_at	C200rt112
58	206847_s_at	HOXA7
59	241908_at	BROX
60		

1		
2	206112_at	ANKRD7
3	221020_s_at	SLC25A32
4	229975 at	BMPR1B
5	209676_at	TEPI
6	203070_at	
/ 0	201065_5_at	DULAFI
0	214507_s_at	EXOSC2
10	204128_s_at	RFC3
11	219983_at	HRASLS
12	1560579 s at	LOC100506392
13	228402 at	ZBFD3
14	21/300 s at	BCAT1
15	214550_5_at	DOUDED
16	227749_at	POUZFZ
17	235371_at	GXYLT2
18	228343_at	POU2F2
19	222528_s_at	SLC25A37
20	235707 at	C6orf228
21	226875 at	
22	220075_at	
23	235406_x_at	INIEINI1018-AST
25	204042_at	WASF3
26	235779_at	ZNF790-AS1
27	1559942_at	MDFIC
28	242663 at	LOC148189
29	228702 at	EL 1/13663
30	220/02_at	
31	220481_dl	VPRBP
32	226446_at	HES6
33	230047_at	ARHGAP42
34	235977_at	LONRF2
35	207891 s at	HAUS7 /// TREX2
30 27	242579 at	BMPR1B
38	230177_at	GTE2H2B
39	200220 at	
40	209239_at	NFKB1
41	203176_s_at	TFAM
42	220512_at	DLC1
43	226901_at	C17orf58
44	207039 at	CDKN2A
45	220841 s at	ΔΗΙ1
46	220041_5_ut	
47	255755_dl	
48	225996_at	LONRF2
49 50	205282_at	LRP8
50	1555167_s_at	NAMPT
52	1554155_at	MCPH1
53	207038 at	SLC16A6
54	210080 s at	
55	210003_3_dl	
56	230518_at	KIAA1984
57	205969_at	AADAC
58	226881_at	GRPEL2
59	202510_s at	TNFAIP2
60		

2	219634_at	CHST11
3	220892 s at	PSAT1
4	 226179_at	SI C25A37
5	2201/3_at	
6	230443_at	
/ 0	221021_dl	LINCOUSS8 /// SCARNAID
0 Q	205909_at	POLE2
10	228416_at	ACVR2A
11	1557945_at	TCTE3
12	228191_at	FLVCR1
13	229141 at	SFT2D3 /// WDR33
14		ALG10B
15	219880 at	100100507619
16	221000_ut	SI C 25 A 27
17	221920_3_at	
19	202637_S_at	
20	227699_at	C14orf149
21	211575_s_at	UBE3A
22	218794_s_at	TXNL4B
23	1552306_at	ALG10
24	215223_s_at	LOC100129518 /// SOD2
25	226135 at	UHRF1BP1
20 27	208795 s at	MCM7
28	210000 s at	DSCC1
29	21000_3_at	
30	205710_S_dt	DPP4
31	1559052_s_at	PAK2
32	213262_at	SACS
33	225550_at	CNST
34	209644_x_at	CDKN2A
30	202780_at	OXCT1
37	231894 at	SARS
38		GABPB1
39	1564651 at	Chorf228
40	220752 at	EECADAD
41	220732_dl	
42	204699_S_at	DIEXF
43	233234_at	KCID16
44 45	225472_at	GPANK1
46	204327_s_at	ZNF202
47	210807_s_at	SLC16A7
48	232899_at	RPL23AP7 /// RPL23AP82
49		LRP8
50	219595 at	LOC100287515 /// 7NE26
51	230588 s at	
52	230305_3_at	
53 54	228245_S_dl	
55	215/22_s_at	SNKPA1
56	227514_at	ITPRIPL2
57	240239_at	ZNF566
58	233827_s_at	SUPT16H
59	210664_s at	TFPI
60		

1		
2	1557217_a_at	FANCB
3	1555760_a_at	RBM15
4	223595 at	TMEM133
5	155500/ a at	RBI 1
6	100004_a_at	
/	204059_S_at	
0	227954_at	ITPRIPL2
9 10	200956_s_at	SSRP1
11	214193_s_at	DIEXF
12	226368 at	CHST11
13		CHAC2
14	225021, _ut	
15	255951_at	
16	220399_at	LINCOUIIS
17	201869_s_at	TBL1X
18	218579_s_at	DHX35
19	213556_at	LOC390940
20	210983 s at	MCM7
21	222251 s at	
22	223231_3_{at}	
23	220094_s_at	CCDC90A
25	223296_at	SLC25A33
26	1552822_at	TMX3
27	221778_at	JHDM1D
28	212110 at	SLC39A14
29	37433 at	PIAS2
30	204127 of	PEC2
31	204127_dl	
32	219558_at	ATP13A3
33	1554572_a_at	SUV39H2
34	238069_at	LOC100506090
30 36	232063_x_at	FARSB
37	202453 s at	GTF2H1
38	227406 at	GABPR1-AS1
39	227400_at	NACS
40	229452_dl	
41	214913_at	ADAMIS3
42	213608_s_at	SRRD
43	214552_s_at	RABEP1
44	242690_at	ATP11C
45	1568597 at	LOC646762
46	218866 s at	POLB3K
47	220202_5_dt	
40 /0	259502_5_dl	100100306922
- -50	1553528_a_at	TAF5
51	240983_s_at	CARS
52	1554660_a_at	CNST
53	202345_s_at	FABP5
54	208931 s at	ILF3
55	1557755 at	CFP128
56	1007,700_at	
57	220300_dl	
58	204695_at	CDC25A
59 60	209754_s_at	ТМРО
00		

49
49
49
49
49
49
49
49
49
49
49
49
49
49

1		
2	241661_at	JMJD1C
3	229855_at	RNF34
4	222748 s at	TXNL4B
5	227623 at	CACNA2D1
0 7	205085_at	ORC1
8	200000_at	
9	200092_S_at	
10	223211_at	HACLI
11	208447_s_at	PRPS1
12	242230_at	ATXN1
13	224200_s_at	RAD18
14	1553169_at	LRRN4
15	234942 s at	DNTTIP1
10	220885 s at	CENPI
18	223808 at	ZNE670
19	223030_at	
20	204492_dl	
21	21//6/_at	63
22	210541_s_at	TRIM27
23	243531_at	ORAOV1
24 25	204510_at	CDC7
20	236918_s_at	LRRC34
27	228341_at	NUDT16
28	1567013 at	NFE2L2
29	207528 s at	SI C7A11
30	218331 s at	FAM208B
31	201705 of	
3Z 22	201795_at	
34	219110_al	
35	221909_at	RNF12
36	201229_s_at	ARIH2
37	225551_at	CNST
38	1555803_a_at	C11orf57
39	241024_at	C6orf147 /// KHDC1
40	227101_at	ZNF800
41	218517 at	PHF17
43	 214144_at	POLR2D
44	213157 s at	IOC339166 /// WSCD1
45	229297_5_ut	
46	230040_at	MTCD1
47	244790_at	
48	222891_s_at	BCLIIA
49 50	226372_at	CHST11
51	221571_at	TRAF3
52	209421_at	MSH2
53	209799_at	PRKAA1
54	214962_s_at	NUP160
55	212118_at	TRIM27
วง 57		RPRD1A
58	 212022_s_at	MKI67
59	233255 s at	BIVM
60	233233_3_at	

2	241706_at	CPNE8
3	203358 s at	EZH2
4	 210555_s_at	NFATC3
5	222632 s at	LZTFL1
0 7	215101 s at	CXCI 5
8	202534 x at	DHER
9	202004_x_ut	EBXO5
10	234803_X_at	MGA
11	233409_at	
1Z 13	210237_5_dl	
14	203843_at	RPS6KA3
15	210813_s_at	XRCC4
16	228902_at	NUP214
17	201489_at	PPIF
18	223195_s_at	SESN2
19 20	41469_at	PI3
20	219270_at	CHAC1
22	235791_x_at	CHD1
23	228365_at	CPNE8
24	226315 at	ZNF830
25		СНКА
20 27	210665 at	TFPI
28	229751 s at	PUS7
29	223731_3_ut	TMFM38B
30	65402 at	
31	00495_at	
32	200628_S_dl	WARS
33 34	235356_at	NHLRC2
35	23338/_s_at	PCNI
36	212654_at	TPM2
37	225786_at	HNRNPU-AS1
38	1565149_at	DYNC2H1
39	219178_at	QTRTD1
40	213373_s_at	CASP8
42	212142_at	MCM4
43	233924_s_at	EXOC6
44	1555834_at	UCHL1
45	219660 s at	ATP8A2
40 47	202034 x at	RB1CC1
48	225237 s at	MSI2
49	237005 at	100442075
50	155/661 s at	CNST
51	1354001_3_0t	
52 52	230020_at	
53 54	220947_dl	GUSBP1 /// GUSBP4
55	22/164_at	SKSF1
56	226475_at	FAMIII8A
57	219117_s_at	FKBP11
58	204258_at	CHD1
59 60	231791_at	ASAH2B
50		

1		
2	219258_at	TIPIN
3	227767_at	CSNK1G3
4	219576 at	MAP7D3
5	219637 at	
6	213037_at	
/	212092_at	PEGIO
8	201791_s_at	DHCR7
9 10	206288_at	PGGT1B
10	221025_x_at	PUS7L
12	203115 at	FECH
13	218/168 s at	GREM1
14	210400_{3}	
15	209418_S_at	
16	235315_at	ISC22D1
17	201101_s_at	BCLAF1
18	204977_at	DDX10
19	234759 at	LOC100287497 /// LOC1002
20	_ 211478_s_at	DPP4
21	211470_3_dt	
22	200308_at	
23	234976_x_at	MTHFD2
24 25	217508_s_at	C18orf25
25	235158_at	TMEM209
27	1553171 x at	LRRN4
28	233970 s at	TRMT6
29	233570_3_ut	
30	227030_at	DD54
31	204244_s_at	DBF4
32	1554036_at	ZBTB24
33	1555384_a_at	LARP4
34	201867_s_at	TBL1X
35	223305 at	TMEM216
36	209257 s at	SMC3
31	1557237_3_dt	
30	1557216_5_dl	FANCE
39 40	228868_x_at	CDT1
40	225577_at	HCG18
42	242866_x_at	POU2F2
43	201555 at	MCM3
44	_ 226980_at	DEPDC1B
45	220300_at	
46	225759_5_dl	
47	215985_at	ZNRD1-AS1
48	208875_s_at	PAK2
49	234701_at	ANKRD11
50	235333 at	B4GALT6
51		MCM4
52 53	204058 at	ME1
54	204030_at	
55	229429_x_at	LUC/28855 /// LUC/28875
56	220060_s_at	РАКРВР
57	219056_at	RNASEH2B
58	213155_at	LOC339166 /// WSCD1
59		GOPC
60		

2	218469_at	GREM1
3	1552978_a_at	SCAMP1
4	209753 s at	ТМРО
5	203804 s at	100713
0 7	210255 at	RAD51B
8	222/07_at	C16orf48
9	223407_at	
10	223530_dl	
11	1554020_at	BICDI
12	208693_s_at	GARS
13	219130_at	TRMT13
14	1555450_a_at	NAA16
16	206232_s_at	B4GALT6
17	1554037_a_at	ZBTB24
18	214446_at	ELL2
19	201266_at	TXNRD1
20 21	208103_s_at	ANP32E
22	238867 at	TMEM182
23		DDR2
24	207564 x at	OGT
25	203234 at	
26	200201_ut	C11orf74
28	226245_at	
29	220524_at	NP2C1
30	210330_3_at	
31	229622_at	FAMI132B
32	226352_at	
33 34	221925_s_at	CSPP1
35	203526_s_at	APC
36	202003_s_at	ACAA2
37	209017_s_at	LONP1
38	204640_s_at	SPOP
39	204033_at	TRIP13
40 41	222680_s_at	DTL
42	202124_s_at	TRAK2
43	223988_x_at	METTL17
44	230629 s at	EP400
45	239579 at	EPHX4
46	228287 at	ING5
47 48	211376 s at	NSMCF4A
49	211970_5_ut	METTIA
50	219090_3_dt	MKKS
51	210138_at	
52 52	223004_at	
53 54	212655_at	
55	205655_at	MDM4
56	241/13_s_at	DYX1C1 /// DYX1C1-CCPG1
57	241820_at	RIF1
58	203068_at	KLHL21
59 60	218772_x_at	TMEM38B
UU		

1		
2	232504_at	LOC285628 /// MIR146A
3	230721_at	C16orf52
4 5	225399_at	TSEN15
5 6	218754 at	NOL9
7		GOLM1
8	209693 at	ASTN2
9	200000_ut	
10	219399_at	
11	210075_5_at	FBAUS
12	203378_at	PCF11
13	223172_s_at	MTFP1
14	204224_s_at	GCH1
16	207147_at	DLX2
17	221701_s_at	STRA6
18	203210_s_at	RFC5
19	233245 at	UHRF1BP1
20		CPSF2
21	1559393 at	
22	222275 at	DPMT6
24	223275_at	
25	1505209_5_al	AIFI
26	212945_s_at	MGA
27	222626_at	RBM26
28	203496_s_at	MED1
29	1558093_s_at	MATR3 /// SNHG4
30 31	1559064_at	NUP153
32	1552812_a_at	SENP1
33	217739 s at	NAMPT
34	204080 at	TOE1
35	242916 at	CNTRI
36	276000 at	7NE518B
37 38	220505_at	
39	220374_at	
40	218366_x_at	METTL17
41	203194_s_at	NUP98
42	212133_at	NIPA2
43	222685_at	HAUS6
44	212116_at	TRIM27
45 46	202147_s_at	IFRD1
40 47	211220_s_at	HSF2
48	206108 s at	SRSF6
49	214729 at	TWISTNB
50	238821 at	CSTE2
51	200021_at	
52	222097_5_at	
53 54	205588_S_at	FGFRIOP
55	241343_at	KNASEH1
56	1556308_at	PRRT3
57	223686_at	ТРК1
58	242996_at	MTRF1
59	222001_x_at	LOC728855 /// LOC728875
60		

2	227633_at	RHEB
3	200690 at	HSPA9
4		MGC21881
5	225538 at	70000
0 7	220744 s at	IFT122
8	220711_ <u>3_</u> ut	ARI 6
9	225755_ut	C5orf44
10	230320_X_at	
11	210395_at	
12	239345_dl	
14	217405_5_dl	
15	202638_S_al	
16	239282_at	
17	214881_s_at	UBIF
18	226576_at	ARHGAP26
20	228597_at	MIS18A
21	219004_s_at	MIS18A
22	220397_at	MDM1
23	239835_at	KBTBD8
24	1555125_at	GCFC1
26	225030_at	BOD1
27	226335_at	RPS6KA3
28	226284_at	ZBTB2
29	214095_at	SHMT2
30 31	235089_at	FBXL20
32	243092_at	PAN3-AS1
33	228367_at	ALPK2
34	226229_s_at	SSU72
35	1556361 s at	ANKRD13C
30 37	210298 x at	FHL1
38	209281 s at	ATP2B1
39	212317 at	TNPO3
40	235119 at	TAF3
41	231999 at	ANKRD11
42 43	231149 s at	
44	231145_3_4t	
45	230300_at	
46	210920_at	
47 49	229795_at	
40 49	210250_5_dl	
50	2014/5_x_at	MARS
51	205068_s_at	AKHGAP26
52	242639_at	NARG2
53 54	223575_at	KIAA1549
54 55	225887_at	PROSER1
56	201962_s_at	KNF41
57	224740_at	C5orf43
58	213672_at	MARS
59 60	238526_at	RAB3IP
00		

	Gene Title
-	nhibin, beta E
	ipoprotein lipase
	coagulation factor C homolog, cochlin (Limulus polyphemus)
	TAF4b RNA polymerase II. TATA box binding protein (TBP)-associated factor. 105kDa
	solute carrier family 6 (neutral amino acid transporter), member 15
	orocollagen C-endopeptidase enhancer 2
	paired related homeobox 1
	solute carrier organic anion transporter family, member 4A1
	solute carrier family 6 (neutral amino acid transporter), member 15
	HOXA10-HOXA9 readthrough /// homeobox A9 /// microRNA 196b
	solute carrier family 43 member 1
	dual specificity phosphatase 2
	solute carrier family 6 (neutral amino acid transporter), member 15
	TBC1 domain family, member 4
	henaran sulfate (glucosamine) 3-0-sulfotransferase 3A1
	annexin A10
	solute carrier family 6 (neutral amino acid transporter) member 15
	TBC1 domain family, member 4
	integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VI A-4 recentor)
	Dnal (Hsn40) homolog subfamily C member 12
	uncharacterized LOC644242
	tumor necrosis factor recentor superfamily, member 9
	solute carrier family 43 member 3
	zinc finger protein 239
	nrotein nhosnhatase Mg2+/Mn2+ dependent 1F
	fatty acyl CoA reductase 2
	Dnal (Hsp40) homolog, subfamily C, member 12
	junctional adhesion molecule 3
	integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VI A-4 receptor)
	interleukin 13 receptor, alpha 2
	glycerophosphodiester phosphodiesterase domain containing 1
	vasohibin 2
	DnaJ (Hsp40) homolog, subfamily C, member 12
	oodocalvxin-like
	solute carrier family 7 (cationic amino acid transporter, v+ system), member 2
	family with sequence similarity 216. member A
	adenomatosis polyposis coli down-regulated 1-like
	arvlacetamide deacetylase (esterase) pseudogene
	zinc finger protein 643
	LON peptidase N-terminal domain and ring finger 3
	ATP-binding cassette, sub-family C (CFTR/MRP), member 4
	chromosome 8 open reading frame 4
	IDP glycosyltransferase 8

1	
2	taxilin gamma
3	glutamyl-prolyl-tRNA synthetase
4	solute carrier family 43, member 3
5	miR-17-92 cluster host gene (non-protein coding) /// microRNA 18a /// microRNA 19a ///
7	transmembrane protein 33
8	naralemmin 2
9	integrin, alpha A (antigen CD49D, alpha 4 subunit of VLA-4 recentor)
10	alveerenheenhedigeter nheenhedigeterese demain containing 1
11	giverophosphoulester phosphoulesterase domain containing 1
12	spermatogenesis associated 17
13	WD repeat domain 35
15	cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)
16	membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)
17	chromosome 10 open reading frame 2
18	agmatine ureohydrolase (agmatinase)
19	interleukin 27 receptor, alpha
20	E2F transcription factor 5. p130-binding
21	branched chain amino-acid transaminase 1, cytosolic
23	microRNA 155 /// MIR155 host gene (non-protein coding)
24	methylthiadenosine phosphorylase
25	coiled coil domain containing 129
26	
27	tripartite motif containing 61
28	suppressor of variegation 3-9 homolog 2 (Drosophila)
29 30	methylthioadenosine phosphorylase
31	amidohydrolase domain containing 1
32	cystathionase (cystathionine gamma-lyase)
33	peptidase M20 domain containing 2
34	B7 homolog 6
35	BCL2-associated athanogene 2
37	cystathionine-beta-synthase
38	solute carrier family 35. member G1
39	fucosyltransferase 4 (alpha (1.3) fucosyltransferase, myeloid-specific)
40	eukaryotic translation initiation factor 3 subunit I
41	nrotein kinase AMP-activated alpha 2 catalytic subunit
42	protein kinase, Aivir-activated, alpha 2 catalytic subdinit
43 44	
45	STAIN binding protein-like 1
46	uncharacterized LOC100506676
47	RNA (guanine-7-) methyltransferase
48	RAS p21 protein activator 4 /// RAS p21 protein activator 4B
49	branched chain amino-acid transaminase 1, cytosolic
50 51	digestive organ expansion factor homolog (zebrafish)
52	phosphodiesterase 4D, cAMP-specific
53	BRCA2 and CDKN1A interacting protein
54	acvl-CoA synthetase short-chain family member 3
55	ariadne homolog 2 (Drosophila)
56	nartner of NOB1 homolog (S. cerevisiae)
5/ 59	mathultransferase like 21A
50 59	nieurymansielase like 21A
60	giucosiue xylosyllialisielase z

1 2 ankyrin 2, neuronal 3 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like 4 protein phosphatase 1, regulatory subunit 9A 5 gap junction protein, gamma 1, 45kDa 6 7 protein phosphatase 1, regulatory subunit 9A 8 uncharacterized LOC284561 9 aspartate beta-hydroxylase 10 suppressor of var1, 3-like 1 (S. cerevisiae) 11 branched chain amino-acid transaminase 1, cytosolic 12 13 Fc receptor-like B 14 leucine rich repeat containing 34 15 spindlin family, member 3 16 solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 17 18 REC8 homolog (yeast) 19 coiled-coil domain containing 59 20 cystathionase (cystathionine gamma-lyase) 21 katanin p80 (WD repeat containing) subunit B 1 22 23 solute carrier family 16, member 7 (monocarboxylic acid transporter 2) 24 GLIS family zinc finger 3 25 Coiled-coil and C2 domain containing 2B 26 asparagine synthetase (glutamine-hydrolyzing) 27 28 Sideroflexin 3 29 exosome component 3 30 ubiquitin specific peptidase 36 31 hexokinase 2 32 33 G1 to S phase transition 2 34 pinin, desmosome associated protein 35 uncharacterized MGC4294 36 lymphocyte antigen 75 37 38 F-box protein 45 39 phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phos 40 digestive organ expansion factor homolog (zebrafish) 41 WD repeat domain 17 42 43 mitochondrial ribosomal protein S25 44 STAM binding protein-like 1 45 HAUS augmin-like complex, subunit 6 46 ornithine decarboxylase 1 47 48 zinc finger, CCHC domain containing 7 49 TATA box binding protein (TBP)-associated factor, RNA polymerase I, A, 48kDa 50 choroideremia (Rab escort protein 1) 51 chromosome 12 open reading frame 29 52 53 zinc finger protein 639 54 ariadne homolog 2 (Drosophila) 55 jumonji C domain containing histone demethylase 1 homolog D (S. cerevisiae) 56 phosphodiesterase 4D, cAMP-specific 57 58 tRNA nucleotidyl transferase, CCA-adding, 1 59 alkB, alkylation repair homolog 8 (E. coli) 60

3 chromosome 4 open reading frame 32 4 family with sequence similarity 101, member B 5 solute carrier family 16, member 7 (monocarboxylic acid transporter 2) 6 7 growth factor receptor-bound protein 14 8 GLIS family zinc finger 3 9 meiotic nuclear divisions 1 homolog (S. cerevisiae) 10 palmitoyl-protein thioesterase 1 11 **KIAA1958** 12 13 phospholipase D family, member 6 14 nucleolar protein 10 15 transmembrane protein 38B 16 transcription factor A, mitochondrial 17 18 anaphase promoting complex subunit 1 /// anaphase-promoting complex subunit 1-like /// 19 exonuclease 1 20 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) 21 rabaptin, RAB GTPase binding effector protein 1 22 23 protein phosphatase 1, regulatory subunit 9A 24 transcription factor A, mitochondrial 25 F-box protein 45 26 GA binding protein transcription factor, alpha subunit 60kDa 27 28 SCO cytochrome oxidase deficient homolog 1 (yeast) 29 molybdenum cofactor sulfurase 30 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like 31 primase, DNA, polypeptide 1 (49kDa) 32 33 phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phos 34 minichromosome maintenance complex component 10 35 SET domain containing 6 36 butyrophilin-like 9 37 38 zinc finger protein 638 39 minichromosome maintenance complex component 10 40 EP300 interacting inhibitor of differentiation 3 41 zinc finger, BED-type containing 3 42 general transcription factor IIH, polypeptide 2, 44kDa /// general transcription factor 43 44 5-methyltetrahydrofolate-homocysteine methyltransferase reductase 45 general transcription factor IIH, polypeptide 2, 44kDa 46 G protein-coupled receptor 107 47 48 tetratricopeptide repeat domain 26 49 protein kinase, AMP-activated, alpha 2 catalytic subunit 50 family with sequence similarity 101, member B 51 junction mediating and regulatory protein, p53 cofactor 52 53 POU class 2 homeobox 2 54 ankylosis, progressive homolog (mouse) 55 fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific) 56 chromosome 20 open reading frame 112 57 58 homeobox A7 59 BRO1 domain and CAAX motif containing 60 http://mc.manuscriptcentral.com/jpath

1

2

partner of NOB1 homolog (S. cerevisiae)

- 2 ankyrin repeat domain 7
- 3 solute carrier family 25 (mitochondrial folate carrier) , member 32
- 4 bone morphogenetic protein receptor, type IB
- tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)
- 7 BCL2-associated transcription factor 1
- 8 exosome component 2
- 9 replication factor C (activator 1) 3, 38kDa
- 11 HRAS-like suppressor
- 12 uncharacterized LOC100506392
- 13 zinc finger, BED-type containing 3
- branched chain amino-acid transaminase 1, cytosolic
- POU class 2 homeobox 2
- 17 glucoside xylosyltransferase 2
- 18 POU class 2 homeobox 2
- solute carrier family 25 (mitochondrial iron transporter), member 37
- chromosome 6 open reading frame 228
- dedicator of cytokinesis 11
- 23 TMEM161B antisense RNA 1 (non-protein coding)
- WAS protein family, member 3
- 26 ZNF790 antisense RNA 1 (non-protein coding)
- 27 MyoD family inhibitor domain containing
- 28 Uncharacterized LOC148189
- uncharacterized LOC378805
- 30
31Vpr (HIV-1) binding protein
- hairy and enhancer of split 6 (Drosophila)
- 33 Rho GTPase activating protein 42
- LON peptidase N-terminal domain and ring finger 2
- HAUS augmin-like complex, subunit 7 /// three prime repair exonuclease 2
- bone morphogenetic protein receptor, type IB
- 38 general transcription factor IIH, polypeptide 2B (pseudogene)
- ³⁹ nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- 40 41 transcription factor A, mitochondrial
- 42 deleted in liver cancer 1
- 43 chromosome 17 open reading frame 58
- 44 cyclin-dependent kinase inhibitor 2A
- 45 46 Abelson helper integration site 1
- 47 homeobox A7
- 48 LON peptidase N-terminal domain and ring finger 2
- 49 low density lipoprotein receptor-related protein 8, apolipoprotein e receptor
- 50 nicotinamide phosphoribosyltransferase
- 52 microcephalin 1
- 53 solute carrier family 16, member 6 (monocarboxylic acid transporter 7)
- 54 laminin, alpha 4 55 kita a 1004
 - KIAA1984
- 56 arylacetamide deacetylase (esterase)
- 58 GrpE-like 2, mitochondrial (E. coli)
- 59 tumor necrosis factor, alpha-induced protein 2 60

carbohydrate (chondroitin 4) sulfotransferase 11 phosphoserine aminotransferase 1 solute carrier family 25 (mitochondrial iron transporter), member 37 transcription factor A, mitochondrial long intergenic non-protein coding RNA 338 /// small Cajal body-specific RNA 16 polymerase (DNA directed), epsilon 2, accessory subunit activin A receptor, type IIA T-complex-associated-testis-expressed 3 feline leukemia virus subgroup C cellular receptor 1 SFT2 domain containing 3 /// WD repeat domain 33 asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog B (yeast) uncharacterized LOC100507619 solute carrier family 25 (mitochondrial iron transporter), member 37 intercellular adhesion molecule 1 chromosome 14 open reading frame 149 ubiquitin protein ligase E3A thioredoxin-like 4B asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog (S. pombe) uncharacterized LOC100129518 /// superoxide dismutase 2, mitochondrial UHRF1 binding protein 1 minichromosome maintenance complex component 7 defective in sister chromatid cohesion 1 homolog (S. cerevisiae) dipeptidyl-peptidase 4 p21 protein (Cdc42/Rac)-activated kinase 2 spastic ataxia of Charlevoix-Saguenay (sacsin) consortin, connexin sorting protein cyclin-dependent kinase inhibitor 2A 3-oxoacid CoA transferase 1 seryl-tRNA synthetase GA binding protein transcription factor, beta subunit 1 chromosome 6 open reading frame 228 EF-hand calcium binding domain 4B digestive organ expansion factor homolog (zebrafish) potassium channel tetramerisation domain containing 16 G patch domain and ankyrin repeats 1 zinc finger protein 202 solute carrier family 16, member 7 (monocarboxylic acid transporter 2) ribosomal protein L23a pseudogene 7 /// ribosomal protein L23a pseudogene 82 low density lipoprotein receptor-related protein 8, apolipoprotein e receptor zinc finger protein 26-like /// zinc finger protein 26 anaphase promoting complex subunit 1 pseudogene uncharacterized LOC100509445 /// ovostatin homolog 2-like /// ovostatin 2 small nuclear ribonucleoprotein polypeptide A' inositol 1,4,5-trisphosphate receptor interacting protein-like 2 zinc finger protein 566 suppressor of Ty 16 homolog (S. cerevisiae) tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)

1 2

3

4

5

6 7

8

9

10

11

12 13

14

15

16

17 18

19

20

21

22 23

24

25

26

27 28

29

30

31

32 33

34

35

36

37 38

39

40

41

42 43

44

45

46

47 48

49

50

51

52

53 54

55

56

57 58

59

1	
2	Fanconi anemia, complementation group B
3	RNA binding motif protein 15
4	transmembrane protein 133
5	ratiochlastoma like 1 (n107)
6	
7	malic enzyme 1, NADP(+)-dependent, cytosolic
8	inositol 1,4,5-trisphosphate receptor interacting protein-like 2
9 10	structure specific recognition protein 1
10	digestive organ expansion factor homolog (zebrafish)
12	carbohydrate (chondroitin 4) sulfotransferase 11
13	ChaC. cation transport regulator homolog 2 (F. coli)
14	uncharacterized LOC100506290 /// uncharacterized LOC100653153 /// methyltransferase lik
15	long intergonic non-protoin coding DNA 11E
16	
17	transducin (beta)-like 1X-linked
18	DEAH (Asp-Glu-Ala-His) box polypeptide 35
19 20	uncharacterized protein ENSP00000244321
20	minichromosome maintenance complex component 7
22	ankyrin repeat domain 10
23	coiled-coil domain containing 90A
24	solute carrier family 25 (pyrimidine nucleotide carrier), member 33
25	thioredoxin-related transmembrane protein 3
26	iumonii C domain containing historie demethylase 1 homolog D (S. cereviciae)
21	salute carrier family 20 (zing transporter), member 14
20	solute carrier family 39 (zinc transporter), member 14
30	protein inhibitor of activated STAT, 2
31	replication factor C (activator 1) 3, 38kDa
32	ATPase type 13A3
33	suppressor of variegation 3-9 homolog 2 (Drosophila)
34	uncharacterized LOC100506090
35 26	phenylalanyl-tRNA synthetase, beta subunit
37	general transcription factor IIH, polypeptide 1, 62kDa
38	GABPB1 antisense RNA 1 (non-protein coding)
39	N-acetyldutamate synthase
40	ADAM metallonantidace with thrombosnandin type 1 metif 2
41	SPD1 demain containing
42	
43	rabaptin, RAB GTPase binding effector protein 1
44 15	ATPase, class VI, type 11C
46	uncharacterized LOC646762
47	polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa
48	uncharacterized LOC100506922
49	TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa
50	cysteinyl-tRNA synthetase
51	consortin connexin sorting protein
52	fatty acid hinding protein E (neoriacic accociated)
53 54	interleulin en hennen hindin e fersten 2. 00kDe
55	Interleukin ennancer binding factor 3, 90kDa
56	centrosomal protein 128kDa
57	FK506 binding protein 11, 19 kDa
58	cell division cycle 25 homolog A (S. pombe)
59	thymopoietin
60	

- 1 Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase 2 3 CREB/ATF bZIP transcription factor 4 UbiA prenyltransferase domain containing 1 5 FIP1 like 1 (S. cerevisiae) 6 7 TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa 8 helicase, lymphoid-specific 9 SDE2 telomere maintenance homolog (S. pombe) 10 NADH dehydrogenase (ubiquinone) complex I, assembly factor 4 11 IKAROS family zinc finger 5 (Pegasus) 12 13 tubulin, delta 1 14 general transcription factor IIH, polypeptide 1, 62kDa 15 helicase, lymphoid-specific 16 peptidylprolyl isomerase F 17 18 uncharacterized LOC100505549 19 activin A receptor, type IIB 20 ZEB1 antisense RNA 1 (non-protein coding) 21 cleavage and polyadenylation specific factor 6, 68kDa 22 23 nucleoporin 107kDa 24 TATA box binding protein (TBP)-associated factor, RNA polymerase I, B, 63kDa 25 chromosome 1 open reading frame 43 26 importin 11 27 28 zinc finger, AN1-type domain 4 29 U2 snRNP-associated SURP domain containing 30 U2 snRNP-associated SURP domain containing 31 centrosome and spindle pole associated protein 1 32 33 cysteinyl-tRNA synthetase 34 periphilin 1 35 HEN1 methyltransferase homolog 1 (Arabidopsis) 36 cvclin J 37 38 tubulin, delta 1 39 nucleoporin 35kDa 40 DNA cross-link repair 1A 41 chromosome 9 open reading frame 72 42 43 dual specificity phosphatase 5 44 solute carrier family 25 (mitochondrial iron transporter), member 37 45 DDHD domain containing 1 46 serine/arginine-rich splicing factor 7 47 48 zinc finger protein 644 49 tRNA methyltransferase 13 homolog (S. cerevisiae) 50 transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A) 51 cell division cycle 45 homolog (S. cerevisiae) 52 53 chromosome 17 open reading frame 80 54 regulator of G-protein signaling 5 55 high mobility group nucleosome binding domain 5 56 deoxynucleotidyltransferase, terminal, interacting protein 1 57 58 spindlin family, member 3 59 dihydrofolate reductase
- 59 60

1	
2	jumonji domain containing 1C
3	ring finger protein 34. F3 ubiquitin protein ligase
4	thioredoxin-like /B
5	calcium channel voltage dependent alpha 2/delta cubunit 1
6	calcium chamiel, voltage-dependent, alpha 27 delta subunit 1
/ 0	
o Q	heat shock /0kDa protein 9 (mortalin)
10	2-hydroxyacyl-CoA lyase 1
11	phosphoribosyl pyrophosphate synthetase 1
12	ataxin 1
13	RAD18 homolog (S. cerevisiae)
14	leucine rich repeat neuronal 4
15 16	deoxynucleotidyltransferase, terminal, interacting protein 1
10	centromere protein J
18	zinc finger protein 670
19	Rho GTPase activating protain 11A
20	complement component 2
21	tripertite metil component 5
22	tripartite motif containing 27
23 24	oral cancer overexpressed 1
25	cell division cycle 7 homolog (S. cerevisiae)
26	leucine rich repeat containing 34
27	nudix (nucleoside diphosphate linked moiety X)-type motif 16
28	nuclear factor (erythroid-derived 2)-like 2
29	solute carrier family 7 (anionic amino acid transporter light chain, xc- system), membe
30	family with sequence similarity 208, member B
32	lamin B receptor
33	FK506 binding protein 11, 19 kDa
34	ring finger protein transmembrane 2
35	ariadha homolog 2 (Drosophila)
36	consertine connecting protein
37	consortin, connexin sorting protein
30 30	chromosome 11 open reading frame 57
40	chromosome 6 open reading frame 147 /// KH homology domain containing 1
41	zinc finger protein 800
42	PHD finger protein 17
43	polymerase (RNA) II (DNA directed) polypeptide D
44	uncharacterized LOC339166 /// WSC domain containing 1
45 46	OTU domain containing 4
40 47	mature T-cell proliferation 1
48	B-cell CLL/lymphoma 11A (zinc finger protein)
49	carbohydrate (chondroitin 4) sulfotransferase 11
50	TNE recentor-associated factor 3
51	muts homolog 2 colon cancer, nonnolynosis type 1 (E, coli)
52 52	nats homolog 2, color cancer, hompolyposis type 1 (E. coli)
53 54	
55	
56	tripartite motif containing 27
57	Regulation of nuclear pre-mRNA domain containing 1A
58	antigen identified by monoclonal antibody Ki-67
59 60	basic, immunoglobulin-like variable motif containing
00	

1	
2	copine VIII
3	enhancer of zeste homolog 2 (Drosophila)
4	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3
5	Jouring zinner transcription factor like 1
6	
7	chemokine (C-X-C motif) ligand 5
8	dihydrofolate reductase
9	F-box protein 5
10	MAX gene associated
12	minichromosome maintenance complex component 5
13	ribosomal protein S6 kinase 90kDa, polypentide 3
14	V ray repair complementing defective repair in Chinese hamster cells 4
15	
16	nucleoporin 214kDa
17	peptidylprolyl isomerase F
18	sestrin 2
19	peptidase inhibitor 3, skin-derived
20	ChaC, cation transport regulator homolog 1 (E. coli)
21	chromodomain helicase DNA binding protein 1
22	conine VIII
24	zine finger protein 820
25	
26	choline kinase alpha
27	tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) pseudouridylate synthase 7
28	homolog (S. cerevisiae)-like
29	transmembrane protein 38B
30	HEAT repeat containing 6
32	tryptophanyl-tRNA synthetase
33	NHI repeat containing 2
34	noricontrin
35	periceritini transmussia 2 (kata)
36	tropomyosin 2 (beta)
37	HNRNPU antisense RNA 1 (non-protein coding)
38	dynein, cytoplasmic 2, heavy chain 1
39	queuine tRNA-ribosyltransferase domain containing 1
40	caspase 8, apoptosis-related cysteine peptidase
41 42	minichromosome maintenance complex component 4
42	exocyst complex component 6
44	Ubiquitin carboxyl-terminal esterase 11 (ubiquitin thiolecterase)
45	ATDasa, analogu haan halinid taanaa ataa, alaas hituna 00, maanahan 2
46	A Pase, aminophospholipid transporter, class I, type 8A, member 2
47	RB1-inducible coiled-coil 1
48	musashi homolog 2 (Drosophila)
49	uncharacterized LOC442075
50 51	consortin, connexin sorting protein
51	asparagine-linked glycosylation 1. beta-1.4-mannosyltransferase homolog (S. cerevisiae) glucuronidase, beta
52 53	nseudogene 1 /// glucuronidase beta nseudogene 4
54	serine /arginine_rich splicing factor 1
55	familieurith an anna a similarity 110, maan han A
56	rammy with sequence similarity 118, member A
57	FK506 binding protein 11, 19 kDa
58	chromodomain helicase DNA binding protein 1
59 60	N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2B
00	

- 2 TIMELESS interacting protein
- 3 casein kinase 1, gamma 3
- 4 MAP7 domain containing 3
- 5 6 armadillo repeat containing 9
- 7 paternally expressed 10
- 8 7-dehydrocholesterol reductase
- 9 protein geranylgeranyltransferase type I, beta subunit
- pseudouridylate synthase 7 homolog (S. cerevisiae)-like
- 12 ferrochelatase
- 13 gremlin 1
- 14 THO complex 5
- TSC22 domain family, member 1
- 17 BCL2-associated transcription factor 1
- 18 DEAD (Asp-Glu-Ala-Asp) box polypeptide 10
- 19 uncharacterized LOC100287497 /// uncharacterized LOC100287934
- 20 21 dipeptidyl-peptidase 4
- tRNA aspartic acid methyltransferase 1
- 23 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate c
- chromosome 18 open reading frame 25
- transmembrane protein 209
- 27 leucine rich repeat neuronal 4
- 28 tRNA methyltransferase 6 homolog (S. cerevisiae)
- heat shock 70kDa protein 14
- 30 31 DBF4 homolog (S. cerevisiae)
- zinc finger and BTB domain containing 24
- 33 La ribonucleoprotein domain family, member 4
- 34 transducin (beta)-like 1X-linked
- 35 36 transmembrane protein 216
- 37 structural maintenance of chromosomes 3
- 38 Fanconi anemia, complementation group B
- 39 Chromatin licensing and DNA replication factor 1
- 40 41 HLA complex group 18 (non-protein coding)
- 42 POU class 2 homeobox 2
- 43 minichromosome maintenance complex component 3
- 44 DEP domain containing 1B
- 45 46 germ cell associated 2 (haspin)
- ZNRD1 antisense RNA 1 (non-protein coding)
- 48 p21 protein (Cdc42/Rac)-activated kinase 2
- ⁴⁹ ankyrin repeat domain 11
- 50 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6
- 52 minichromosome maintenance complex component 4
- 53 malic enzyme 1, NADP(+)-dependent, cytosolic
- ⁵⁴ uncharacterized LOC728855 /// uncharacterized LOC728875
- 55 PARP1 binding protein
- 57 ribonuclease H2, subunit B
- 58 uncharacterized LOC339166 /// WSC domain containing 1
- 59 golgi-associated PDZ and coiled-coil motif containing 60

2	gremlin 1
3	secretory carrier membrane protein 1
4	thymopoletin
5	III(7-like 3 (S. cerevisiae)
6	PADE1 homolog P (C. corrections)
/	RAD51 nomolog B (S. cerevisiae)
8	chromosome 16 open reading frame 48
9	tudor and KH domain containing
10	bicaudal D homolog 1 (Drosophila)
12	glycyl-tRNA synthetase
13	tRNA methyltransferase 13 homolog (S. cerevisiae)
14	N(alpha) asatultransferase 16. NatA auxiliaru subunit
15	N(alpha)-acetylitalisterase 10, NatA auxiliary suburit
16	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6
17	zinc finger and BTB domain containing 24
18	elongation factor, RNA polymerase II, 2
19	thioredoxin reductase 1
20	acidic (leucine-rich) nuclear phosphoprotein 32 family, member F
21	transmembrane protein 182
22	
23	discoldin domain receptor tyrosine kinase 2
25	O-linked N-acetylglucosamine (GlcNAc) transferase
26	uridine phosphorylase 1
27	chromosome 11 open reading frame 74
28	uncharacterized LOC400657
29	nuclear receptor subfamily 2, group C, member 1
30	family with sequence similarity 132 member B
31	iunation mediating and regulatery anatoin, a 52 sefector
32	Junction mediating and regulatory protein, p53 cofactor
33	centrosome and spindle pole associated protein 1
34 25	adenomatous polyposis coli
36	acetyl-CoA acyltransferase 2
37	lon peptidase 1, mitochondrial
38	speckle-type POZ protein
39	thyroid hormone recentor interactor 13
40	dentialeless E2 ubiguitin protein ligge hemolog (Dresenhile)
41	denticieless E3 ubiquitin protein ligase nomolog (Drosophila)
42	trafficking protein, kinesin binding 2
43	methyltransferase like 17
44	E1A binding protein p400
45	epoxide hydrolase 4
40 47	inhibitor of growth family, member 5
48	non-SMC element 4 homolog A (S. cerevisiae)
49	methyltransforace like A
50	Methylualisterase like 4
51	Wickusick-Kaufman syndrome
52	rabaptin, RAB GTPase binding effector protein 1
53	zinc finger, CCHC domain containing 14
54	Mdm4 p53 binding protein homolog (mouse)
55	dyslexia susceptibility 1 candidate 1 /// DYX1C1-CCPG1 readthrough (non-protein coding)
56	RAP1 interacting factor homolog (veast)
5/ 59	kelch-like 21 (Drosonhila)
50 50	
60	transmembrane protein 388

1 uncharacterized LOC285628 /// microRNA 146a 2 3 chromosome 16 open reading frame 52 4 tRNA splicing endonuclease 15 homolog (S. cerevisiae) 5 nucleolar protein 9 6 7 golgi membrane protein 1 8 astrotactin 2 9 lin-7 homolog C (C. elegans) 10 F-box protein 5 11 PCF11, cleavage and polyadenylation factor subunit, homolog (S. cerevisiae) 12 13 mitochondrial fission process 1 14 GTP cyclohydrolase 1 15 distal-less homeobox 2 16 stimulated by retinoic acid gene 6 homolog (mouse) 17 18 replication factor C (activator 1) 5, 36.5kDa 19 UHRF1 binding protein 1 20 cleavage and polyadenylation specific factor 2, 100kDa 21 aldehyde dehydrogenase 1 family, member L2 22 23 protein arginine methyltransferase 6 24 activating transcription factor 1 25 MAX gene associated 26 RNA binding motif protein 26 27 28 mediator complex subunit 1 29 matrin 3 /// small nucleolar RNA host gene 4 (non-protein coding) 30 nucleoporin 153kDa 31 SUMO1/sentrin specific peptidase 1 32 33 nicotinamide phosphoribosyltransferase 34 target of EGR1, member 1 (nuclear) 35 centriolin 36 zinc finger protein 518B 37 38 paraspeckle component 1 39 methyltransferase like 17 40 nucleoporin 98kDa 41 non imprinted in Prader-Willi/Angelman syndrome 2 42 43 HAUS augmin-like complex, subunit 6 44 tripartite motif containing 27 45 interferon-related developmental regulator 1 46 heat shock transcription factor 2 47 48 serine/arginine-rich splicing factor 6 49 **TWIST** neighbor 50 cleavage stimulation factor, 3' pre-RNA, subunit 2, 64kDa 51 abhydrolase domain containing 10 52 53 FGFR1 oncogene partner 54 Ribonuclease H1 55 proline-rich transmembrane protein 3 56 thiamin pyrophosphokinase 1 57 58 mitochondrial translational release factor 1 59 uncharacterized LOC728855 /// uncharacterized LOC728875 60

1 Ras homolog enriched in brain 2 3 heat shock 70kDa protein 9 (mortalin) 4 uncharacterized locus MGC21881 5 zinc finger, CCHC domain containing 9 6 7 intraflagellar transport 122 homolog (Chlamydomonas) 8 ADP-ribosylation factor-like 6 9 chromosome 5 open reading frame 44 10 ARP6 actin-related protein 6 homolog (yeast) 11 uncharacterized LOC728705 12 13 zinc finger protein 227 14 intercellular adhesion molecule 1 15 coiled-coil domain containing 41 16 upstream binding transcription factor, RNA polymerase I 17 18 Rho GTPase activating protein 26 19 MIS18 kinetochore protein homolog A (S. pombe) 20 MIS18 kinetochore protein homolog A (S. pombe) 21 Mdm1 nuclear protein homolog (mouse) 22 23 kelch repeat and BTB (POZ) domain containing 8 24 GC-rich sequence DNA-binding factor 1 25 biorientation of chromosomes in cell division 1 26 ribosomal protein S6 kinase, 90kDa, polypeptide 3 27 28 zinc finger and BTB domain containing 2 29 serine hydroxymethyltransferase 2 (mitochondrial) 30 F-box and leucine-rich repeat protein 20 31 PAN3 antisense RNA 1 (non-protein coding) 32 33 alpha-kinase 2 34 SSU72 RNA polymerase II CTD phosphatase homolog (S. cerevisiae) 35 ankyrin repeat domain 13C 36 four and a half LIM domains 1 37 38 ATPase, Ca++ transporting, plasma membrane 1 39 transportin 3 40 TAF3 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 140kDa 41 ankyrin repeat domain 11 42 43 unc-51-like kinase 4 (C. elegans) 44 leucine rich repeat containing 58 45 myoneurin 46 N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2B 47 48 nucleoporin 54kDa 49 methionyl-tRNA synthetase 50 Rho GTPase activating protein 26 51 NMDA receptor regulated 2 52 53 **KIAA1549** 54 proline and serine rich 1 55 ring finger protein 41 56 chromosome 5 open reading frame 43 57 58 methionyl-tRNA synthetase 59 RAB3A interacting protein (rabin3) 60

Page 57 of 246

1
2
3
4
5
6
-
1
8
9
10
11
12
13
14
15
16
17

	FTSCi v	/s. FTSC	FTSCi vs. FTSCt	
RefSeq Transcript ID	p-value	Fold-Change	p-value	Fold-Change
NM_031479	0.00063466	4.47907	0.00011722	-14.045
NM_000237	0.0131274	1.76946	0.000156224	-13.439
NM_001135058 /// NM_004	0 0.0162055	1.61273	0.000153534	-10.620
NM_005640 /// XM_003403	6! 0.0191241	1.58515	0.000178229	-10.001
NM_001146335 /// NM_018	0.0105459	2.59215	0.00102089	-8.4396
NM_013363	0.00305735	2.05335	0.00013755	-7.7664
NM_006902 /// NM_022716	0.00180276	1.87496	5.79E-05	-7.3589
NM_016354	0.000204472	3.5843	5.84E-05	-6.9652
NM_001146335 /// NM_018	0.037793	3.59134	0.0127751	-6.826
NM_152739 /// NR_029911	// 0.00976867	2.11093	0.000667088	-6.5498
NM 001198810 /// NM 003	0.00449467	2.75125	0.000787765	-6.253
NM 004418	0.00106929	1.67057	2.40E-05	-6.241
	0.000211709	11.0668	0.000549682	-5.726
NM 014832	0.0106757	1.93074	0.000634044	-5.6840
NM 006042	0.0122319	2.26689	0.00148915	-5.477
NM 007193	0.00132816	3 27592	0.000495115	-5 236
NM 001146335 /// NM 018	6 25F-05	7 98439	0.000152631	-4 671
NM 01/832	0.232 03	1 69076	3.07F-05	-4 505
NM 000885	0.000711087	3 6754	0 00192927	-4.303
NM 021800 /// NM 201262	5 35F_05	1 00336	4 53E-05	-1 138
NP 026540	. 5.55L-05 0.012274	4.05550	4.552-05	-4.430
NM 001561	0.012274	5 11282	0.00333301	-4.342
NM_014096 /// NM_017611	6 19F-05	6 4 4 1 2 2	0.00114373	-4.339
	0.192-03	0.44123	0.000127031	-4.318
NNA_014006 /// NID_048561	0.000241625	2.40805	0.000594205	-4.260
NM_012000	0.000575009	4.27940	0.000581963	-4.250
NNA_0218099	0.000320981	8.40914	0.0010498	-4.193
NM_021800 /// NM_201262	0.00428/15	2.17319	0.000/10089	-4.188
NM_001205329 /// NM_032	.8 0.00415698	1.60154	0.000168486	-4.030
NM_000885	0.000555189	2.75336	0.000222183	-3.964
NM_000640	0.000156605	17.5483	0.00148009	-3.839
NM_001165993 /// NM_001	.1 0.00291364	2.87/24	0.00149129	-3.//
NM_001136474 /// NM_001	.1 0.00194104	2.15487	0.000383515	-3.773
NM_021800 /// NM_201262	0.000769521	5.86935	0.0018147	-3.756
NM_001018111 /// NM_005	0.000516371	1.67003	3.09E-05	-3.73
NM_001008539 /// NM_001	.1 0.000240162	1.74941	1.89E-05	-3.695
NM_013300	0.000539073	2.23343	0.00012699	-3.687
NM_153360	0.00363714	1.82295	0.000372349	-3.672
NR_026915	0.000325162	4.23953	0.000453272	-3.639
NM_023070	0.000189272	3.33401	0.000155038	-3.62
NM_001031855 /// NM_024	7 2.13E-06	6.24795	6.21E-06	-3.603
NM_001105515 /// NM_005	0.0310334	1.56143	0.00161066	-3.575
NM_020130	0.00166867	2.637	0.000750887	-3.56
NM_001128174 /// NM_003	0.0140875	1.92193	0.00211459	-3.553

1					
2	NM_001168683 /// NM_0183	0.0191046	1.78848	0.00210053	-3.54116
3	NM_004446	0.0331087	1.70171	0.00311908	-3.46836
4 5	NM_014096 /// NM_017611 /	0.000822018	2.98108	0.000560762	-3.46446
6	NR_027349 /// NR_027350 //,	0.00408478	3.68229	0.00503027	-3.36273
7	NM_018126	0.000693866	1.77011	7.43E-05	-3.34663
8	NM_001037293 /// NM_0530	0.000726468	3.8613	0.00101561	-3.34174
9	NM_000885	7.92E-05	11.8713	0.000704556	-3.28298
10	NM_001165993 /// NM_0011	0.0315555	1.62724	0.00261211	-3.28091
12	NM_138796	0.0113527	1.68461	0.00105663	-3.27148
13	NM_001006657 /// NM_0207	0.00772359	2.54	0.00416161	-3.17951
14	NM 004936 /// NM 078487	0.000250821	2.32403	9.85E-05	-3.16758
15 16	NM 016447	0.0279302	1.99346	0.00701231	-3.12972
17		0.0210729	1.52625	0.00138443	-3.00133
18	 NM_024758	0.000398925	3.28164	0.000503589	-3.00067
19	NM 004843	0.000288241	2.427	0.000154511	-2.98216
20	NM 001083588 /// NM 0010	0.0220728	1.8732	0.00483948	-2.94767
21	NM_001178091 /// NM_0011	0.00173067	2.39224	0.00092015	-2.94618
22	NB 001458 /// NB 030784	0.000105734	10 8253	0.00119618	-2 86971
24	NM_002451	0.000105754	1 66505	0.00019010	-2 8675
25	NM 14/978	0.00410702	1 68121	0.000405005	-2 86529
26		0.00800037	2 0 2 0 2 0 2	0.00111323	-2.00323
27		0.00112834	3.02007	0.00131713	-2.60223
29	NN1_001193424 /// NN1_0011	0.010505	1.92782	0.0043000	-2.65159
30		0.00909205	1.7700	0.00175004	-2.04099
31	NNI_132433	0.00877474	1.55224	0.000710225	-2.65016
32	NIM_001010852	0.000498040	14.2110	0.00771832	-2.82880
33 34	NIM_001010853	0.0146196	1.79481	0.00284339	-2.82851
35	NIM_001009913 /// NIM_0012	0.000772337	2.98865	0.000901498	-2.82678
36	NM_004282	0.00473948	1.90698	0.00118131	-2.82492
37	NM_0000/1/// NM_0011/80	0.000188095	3.88182	0.000417843	-2.8229
38	NM_001134658 /// NM_1532	0.00486072	2.618//	0.00391508	-2.82248
40	NM_002033	0.0110379	1.90883	0.00286235	-2.81807
41	NM_003758	0.00505745	1.68683	0.000726672	-2.75615
42	NM_006252	0.000467916	1.9408	0.000131903	-2.75601
43	NM_000071 /// NM_0011780	0.00119818	3.01119	0.00156242	-2.73851
44 45	NM_020799	5.38E-05	6.6908	0.000360185	-2.73436
46	XR_109352 /// XR_109353 ///	0.009435	2.35498	0.00613506	-2.70979
47	NM_003799	0.00204196	2.23351	0.00108856	-2.70467
48	NM_001079877 /// NM_0069	0.0107778	1.58535	0.00118858	-2.68527
49 50	NM_001178091 /// NM_0011	0.000187637	6.60506	0.0013051	-2.67214
50 51	NM_014388	0.00306528	1.82265	0.000719961	-2.67015
52	NM_001104631 /// NM_0011	0.00816016	2.02134	0.00318482	-2.65505
53	NM_016567 /// NM_078468 /	0.00057257	2.18437	0.000296402	-2.65058
54	NM_024560	0.00644622	1.58069	0.000708264	-2.65027
55 56	NM_006321	0.00864154	1.57502	0.000952046	-2.63875
57	NM_020143	0.00823243	1.69414	0.0014386	-2.61813
58	NM_001127395 /// NM_1452	0.0433475	1.71245	0.00952125	-2.58109
59	NM_001080393	0.000330274	2.29404	0.000225712	-2.56861
60					

1					
2	NM_001127493 /// NM_0011	0.000125647	15.3348	0.00295129	-2.56258
3	NM_001004346 /// NM_0011	0.000227211	3.99391	0.000723962	-2.55525
4 5	NM_001166160 /// NM_0011	0.00349031	3.42279	0.0077023	-2.54484
6	NM_001080383 /// NM_0054	0.0124754	2.11209	0.0067535	-2.53415
7	NM_001166160 /// NM_0011	0.00145068	7.27677	0.0129271	-2.52925
8	XR_110828 /// XR_112106	0.00311139	1.85646	0.00095139	-2.52454
9 10	NM_001164750 /// NM_0011	0.0469918	1.85414	0.0164046	-2.51949
10	NM_003171	0.0369583	1.53649	0.0046082	-2.50101
12	NM_001178091 /// NM_0011	0.000450889	2.48127	0.00044943	-2.48373
13	NM_001002901	0.0101577	1.61988	0.00165711	-2.47034
14	NM_001172779 /// NM_0011	0.00571494	3.54471	0.0147565	-2.46736
15 16	NM_001010862 /// NR_02713	0.019748	1.79838	0.00610417	-2.44583
17	NM_003045	0.000313056	1.84303	0.000101403	-2.43956
18	NM_001048205 /// NM_0051	0.0197574	1.79332	0.00612467	-2.43318
19	NM_014167 /// NR_033192	0.0181265	1.53603	0.00230098	-2.42905
20	NM 001190463 /// NM 0019	0.000483805	26.5228	0.0210033	-2.42389
21	NM 005886	0.043365	1.75362	0.0131283	-2.41703
23	 NM_004731	0.00252403	6.45052	0.0210054	-2.41337
24		0.00547258	7.32928	0.0495364	-2.41334
25	NM 001001732 /// NM 0011	0.00452493	1.59394	0.000717432	-2.3953
20 27	NM 001178075 /// NM 0011	0.000135484	4.54944	0.000719672	-2.37491
28	NM 030971	0.0079964	1.60354	0.00139542	-2.3683
29	NM 001002269 /// NM 0160	0.0165645	1.56152	0.00258135	-2.35638
30	NM 025090	0.0123931	2.01927	0.00721546	-2.34397
31	NM 000189	0.00285691	2.0464	0.00172109	-2.34294
33	NM 018094	0.00265826	2.69731	0.00416898	-2.33937
34	NM 002687	0.0114346	2,13188	0.00827534	-2.33822
35	XR 109628 /// XR 112170	0.0179112	1.64274	0.0039839	-2.3309
36	NM 002349	0.00905109	1 81287	0.00333536	-2 32285
38	NM 001105573	0.0164246	1.82426	0.0063852	-2.32243
39	NM 000819 /// NM 0011360	0.000353907	2,16532	0.000273583	-2.32162
40	NM 014388	0.000115198	2.10552	0.000230481	-2 31745
41	NM 170710 /// NM 181265	0.00790502	1 73697	0.00235919	-2 3155
42 43	NM 022497	0.0119601	2 6073	0.00233315	-2 31115
44	NM 020799	0.00115001	3 52234	0.00790851	-2 30453
45	NM 017645	0.00241750	2 32179	0.02/15577	-2 30192
46	NM 002539	0.0250507	1 93659	0.0243377	-2 30165
47 48	NM 032226	0.00433041	1.53035	0.00234230	-2 297/13
49	NM 001201536 /// NM 0056	0.043073	2 2027	0.00115649	-2 29631
50	NM_000390 /// NM_0010373	0.00417257	1 66308	0.00413043	-2.29031
51		0.0301232	1.00508	0.01710233	-2.25255
52 52	NM_016221	0.0107222	1.55	0.00171921	-2.28709
53 54		0.00206408	1.09344	0.000723994	-2.27913
55	NM_000521	0.0140745	1.0/100	0.00305564	-2.27202
56		0.0002200	3.3337/	0.00223304	-2.20440
57 59	NIM 016000 /// NIM 192010	0.023319	1 02605	0.00401270	-2.20290
50 59	NIVI_UTOUUU /// NIVI_182916	0.00443/91	1.03005	0.00188298	-2.201/3
60	10101 10170	10/0020010	2.38345	0.000/52/5	-2.25843

2	NM_020143	3.14E-05	1.64671	7.23E-06	-2.25694
3	NM_152400	0.000981883	2.118	0.000786039	-2.24573
4	NM_182705	0.00130802	4.63123	0.00841306	-2.2405
5 6	NM 004731	0.00644407	3.02676	0.0156829	-2.23941
7	 NM_004490	0.000596815	2.45693	0.000828983	-2.23592
8		0.000702157	4.83719	0.00504626	-2.23493
9	NM 001253861 /// NM 0321	0.00425605	2.45158	0.00583942	-2.23304
10 11	NM 000310 /// NM 0011426	0.00428146	1.54817	0.000728238	-2.22407
12	NM 133465	0.0205419	2.42117	0.02691	-2.22294
13	NM 178836	0.000219836	3.52614	0.000853994	-2.22242
14		0.0211745	1.69503	0.00678305	-2.21529
15 16	NM_018112	0.00526977	2.20697	0.00520709	-2.21427
17	NM 003201	0.00197535	1.84649	0.000935911	-2.20381
18		9.72E-05	1.96184	6.05E-05	-2.20326
19	NM 003686 /// NM 006027 /	0.00254318	1.8947	0.00137272	-2.19998
20	NM 000534 /// NM 0011281	0.0108343	1.68593	0.00336926	-2.195
21	NM 001083585 /// NM 0047	0.00725004	2.66306	0.0136936	-2.18305
23	NM 001166160 /// NM 0011	0.0293561	1.6864	0.00986797	-2.1829
24	NM 003201	0.000383644	2.36409	0.000513794	-2.18133
25 26	 NM_001105573	0.00580465	2.10916	0.00511808	-2.18094
20		0.0357147	1.7551	0.0150079	-2.18066
28	NM 004589	0.00870461	1.66539	0.00257087	-2.17989
29	 NM_017947	0.0145637	2.36319	0.0190643	-2.17961
30	NM 001004346 /// NM 0011	0.0441356	1.81415	0.0221481	-2.17653
32	NM 000946	0.00113159	1.94073	0.000712531	-2.17103
33		0.0132359	2.04685	0.0106446	-2.16986
34	NM 018518 /// NM 182751	0.00384356	1.5335	0.000671021	-2.16921
35	NM 001160305 /// NM 0248	0.000518084	1.78333	0.000217428	-2.16889
30 37	NM 152547	0.0258773	1.55856	0.00563067	-2.15939
38		0.00515123	2.42339	0.0076992	-2.15755
39	NM 018518 /// NM 182751	0.000594626	2.05625	0.000491883	-2.15631
40	NM 001008394	0.00112389	2.50578	0.00190546	-2.15513
41 42	 NM_032367	0.000582068	2.56049	0.0010679	-2.15137
43		0.00354691	1.72248	0.00129999	-2.15133
44	NM 002454 /// NM 024010	0.00890394	1.63759	0.00251837	-2.14901
45	NM 001515	0.000776009	2.0234	0.000616353	-2.14186
46 47		0.0054936	2.33577	0.00753759	-2.13686
48	NM 001144920 /// NM 0011	0.00636774	2.90437	0.0164916	-2.13581
49	NM 006252	0.00218389	3.17969	0.0073931	-2.13527
50	 NM_182705	3.13E-05	10.8573	0.000955389	-2.13526
51	 NM_152405	0.00448527	5.04529	0.0363281	-2.13041
53		2.09E-05	9.71903	0.000561762	-2.12836
54	NM 054027	0.00282206	2.14022	0.00289069	-2.12689
55	NM_002033	0.00186109	2.20711	0.00216835	-2.12016
50 57		0.00134455	2.0951	0.00130972	-2.109
58	NM 006896	0.00355725	2.76325	0.00866587	-2.10634
59	 NM_144695	0.0119262	1.74609	0.00528927	-2.10196
60	-				

1					
2	NM_001077708 /// NM_0196	0.00417888	2.19327	0.00491402	-2.10115
3	NM_030780	0.00276938	1.80031	0.00139815	-2.10067
4 5	NM_001203 /// NM_0012567	0.00038466	2.29274	0.000545195	-2.09164
6	NM_001032281 /// NM_0062	0.000200654	4.82939	0.00190125	-2.09143
7	NM_001077440 /// NM_0010	0.0274594	2.19617	0.0324525	-2.09126
8	NM_014285	0.0241844	1.68482	0.00937035	-2.09035
9 10	NM_002915 /// NM_181558	0.00933654	2.13383	0.0101011	-2.08961
10	NM_020386	0.0313722	1.64809	0.0109988	-2.08874
12	XR_110490 /// XR_133252	0.00680193	1.8571	0.00413322	-2.08819
13	NM_032367	8.40E-05	2.62677	0.000191925	-2.0804
14 15	NM_001178091 /// NM_0011	0.000144623	2.90728	0.000445728	-2.0787
15	NM_001207025 /// NM_0012	9.21E-05	5.97117	0.0013153	-2.07795
17	NM_001080393	0.0126859	2.64536	0.027539	-2.07554
18	NM_001207025 /// NM_0012	0.00680063	2.29608	0.00989971	-2.07066
19	NM_016612	0.000559677	2.28797	0.000820848	-2.06978
20 21	NM_001135575	0.00504942	1.85077	0.00315126	-2.0638
22	NM_144658	0.00324889	2.96744	0.0104124	-2.06236
23	NR_039993 /// NR_039994 //,	0.000798802	1.7685	0.000394067	-2.06104
24	NM_006646	0.00208229	2.47422	0.00401489	-2.0609
25 26	NR_040027 /// NR_040028	0.0273336	2.30729	0.0397199	-2.06071
27	NM_001166345 /// NM_0011	0.00200686	2.23524	0.00274159	-2.06057
28	NR_027301	0.00227337	1.89306	0.00159857	-2.05352
29	NM_001085379 /// NR_01543	0.00239448	3.83693	0.0143804	-2.04928
30 31	NM_001171904 /// NM_0147	0.00685567	1.73514	0.00324132	-2.04376
32	NM_001142853 /// NM_0186	0.0261356	2.3132	0.0395846	-2.04209
33	NM_152432	0.00693117	2.37481	0.0119164	-2.04114
34	NM_198461	4.92E-05	6.3997	0.000865848	-2.03385
30 36	NM_017518 /// NM_080701 /	0.0171989	1.70603	0.00780566	-2.03308
37	NM_001203 /// NM_0012567	3.37E-05	3.30775	0.000161656	-2.03033
38	NM_001098729 /// NR_03341	0.013009	1.67437	0.00534859	-2.02602
39	NM_001165412 /// NM_0039	0.0263847	1.53305	0.00662263	-2.02483
40 41	NM_003201	0.000256245	2.32318	0.000440958	-2.01887
42	NM_001164271 /// NM_0060	0.0106211	2.59132	0.0243686	-2.0186
43	NM_181655 /// NM_181656	0.0167084	1.75939	0.00913869	-2.01825
44	NM_000077 /// NM_0011951	0.000168763	7.01954	0.00354181	-2.0063
40 46	NM_001134830 /// NM_0011	0.00869819	1.55571	0.00235448	-2.00496
47	NM_006896	0.000201778	2.67862	0.000572769	-2.00204
48	NM_198461	3.84E-05	22.0423	0.00325389	-2.00145
49	NM_001018054 /// NM_0046	0.000560213	3.37963	0.00294346	-2.00087
50 51	NM_005746 /// NM_182790	0.00119964	1.84134	0.000823987	-2.00003
52	NM_001172574 /// NM_0011	0.00357842	2.64825	0.00961033	-1.99265
53	NM_001174166 /// NM_0046	0.000282538	10.8481	0.0106255	-1.99179
54	NM_001105206 /// NM_0011	0.000932597	3.98443	0.00713946	-1.98873
55 56	NM_001039374 /// NM_0328	0.0484309	1.60599	0.0184728	-1.98795
57	NM_001086	0.00117923	2.56199	0.00296999	-1.98723
58	NM_152407	0.00584519	1.9184	0.00503191	-1.98656
59	NM_006291	0.0239911	1.69711	0.0118079	-1.98624
60					
1					
----------	----------------------------	-------------	---------	-------------	----------
2	NM_001173982 /// NM_0184	0.00309543	2.4425	0.00666285	-1.98279
3	NM_021154 /// NM_058179	0.000333293	3.97112	0.00267196	-1.97768
4 5	NM_016612	0.000586904	2.4747	0.00136289	-1.97719
6	NM_003201	0.0439704	1.88703	0.0370734	-1.97305
7	NR_003013 /// NR_027058	0.0257217	1.50758	0.00648756	-1.96633
8	NM_001197330 /// NM_0011	0.00482758	1.92208	0.00439507	-1.96409
9	NM_001616	0.00350817	2.24288	0.00594764	-1.95935
10	NM_174910	0.0200911	2.20908	0.0312244	-1.95576
12	NM_014053	0.0186546	1.68485	0.0093172	-1.95549
13	NM_001006622 /// NM_0010	0.00107238	2.42015	0.0024207	-1.95444
14 15	NM_001013620	0.00217616	1.73438	0.00122479	-1.95327
15 16	XR_110082 /// XR_112807	0.0221781	1.60864	0.00865756	-1.95219
17	NM_016612	0.00773949	2.00224	0.00862817	-1.95053
18	NM_000201	0.00309128	2.79164	0.0106017	-1.94901
19	NM_144581	0.000102546	3.54868	0.000693825	-1.94833
20 21	NM_000462 /// NM_130838 /	0.00704445	1.61659	0.00273909	-1.94722
22	NM_001142317 /// NM_0011	0.0383444	1.66657	0.0191852	-1.94489
23	NM_032834	0.0274376	1.84453	0.0220436	-1.94446
24	NM_000636 /// NM_0010244	3.77E-05	2.85524	0.000147745	-1.94376
25 26	NM 017754	0.000488602	1.98071	0.000531843	-1.943
20	NM 005916 /// NM 182776	0.00779986	2.03222	0.00943362	-1.94049
28	NM 024094	0.017065	1.89181	0.0153526	-1.94001
29	NM_001935	0.00455235	2.67987	0.0140541	-1.93798
30	NM_002577	0.00377446	1.6124	0.00146981	-1.93398
32	 NM_014363	0.0013257	2.31108	0.00268266	-1.93257
33	NM_001139459 /// NM_1526	0.00617942	2.5087	0.0158372	-1.92984
34	NM 000077 /// NM 0011951	0.000190417	7.25995	0.00494034	-1.92962
35	NM 000436	0.000651287	2.86629	0.00263556	-1.92577
37	NM_006513 /// NR_034072 //	0.0056111	1.79146	0.00402468	-1.92384
38	NM_002041 /// NM_005254 /	0.000100156	2.26795	0.000196162	-1.92308
39	NM_001135575	0.0193521	1.85311	0.0165331	-1.92265
40	NM_001144958 /// NM_0011	0.000697593	5.25193	0.0105706	-1.91701
41	NM_014388	0.000936701	1.88016	0.000858169	-1.91614
43	NM_020768	0.00272467	3.71416	0.0199622	-1.9132
44	NM_001199237 /// NM_0011	0.000926021	2.5158	0.00261223	-1.91269
45	NM_003455	0.013143	1.57998	0.00489996	-1.91243
40 47	NM_004731	0.0130712	2.43743	0.0308082	-1.91089
48	NM 203302 /// NM 203477 /	0.000159165	1.7799	0.000113582	-1.90687
49	NM 001018054 /// NM 0046	0.00616657	3.4043	0.0354931	-1.9068
50	NM 001256279 /// NM 0012	6.05E-05	2.02469	8.00E-05	-1.90118
51	NM 001012626 /// NR 02684	0.000870614	1.76875	0.000611444	-1.90111
53	NM 001080502 /// NM 1734	0.000408825	3.92294	0.00380936	-1.89794
54	NM 003090	0.0108517	1.61247	0.00472607	-1.89672
55		0.00298622	2.0228	0.00395149	-1.89592
50 57	NM_001145343 /// NM_0011	0.00200145	2.08265	0.00299097	-1.8954
58	 NM_007192	0.000705093	2.23633	0.00139672	-1.89411
59		3.02E-05	6.08242	0.000673972	-1.89288
60					-

1					
2	NM_001018113 /// NM_1526	0.00150255	1.99361	0.00189164	-1.89263
3	NM_001201545 /// NM_0227	0.0119035	1.625	0.00550624	-1.892
4 5	NM_032021	0.0154009	1.58713	0.00624072	-1.8917
6	NM_002895 /// NM_183404	0.0183636	2.13769	0.0294375	-1.88929
7	NM_002395	3.00E-05	2.60211	0.000102531	-1.88592
8	NM_001034841 /// NR_02802	0.0259175	1.55097	0.00953271	-1.88309
9	NM_003146	0.000209737	1.50377	5.65E-05	-1.88245
10	NM_014388	0.00113928	3.37772	0.00764186	-1.88216
12	NM_001173982 /// NM_0184	0.00572589	2.3187	0.0128437	-1.88065
13	NM 001008708	0.00334497	1.65398	0.00172212	-1.88037
14		0.00128205	3.74853	0.0109021	-1.87733
15 16	NM 024796 /// NR 024321	0.031931	1.86897	0.031635	-1.8732
17	NM 001139466 /// NM 0011	0.017598	1.6328	0.00890239	-1.87189
18	NM 001190809 /// NM 0219	0.0463433	1.53892	0.0174776	-1.87163
19	NM 001193621 /// NM 0011	0.0126846	1.99025	0.0164528	-1.87045
20	NM_005916 /// NM_182776	0.000992709	2,45556	0.00287333	-1.86959
21 22	NM_017664	0.000370882	2.00879	0.000516562	-1 86644
22	NM_001031713 /// NM_0221	0.000370002	1 96/81	0.00058/1997	-1 86333
24	NM_032315	0.000430701	4 02767	0.000304337	-1 86118
25	NM_019022	0.0000000000000000000000000000000000000	1 86152	0.00045507	-1 85971
26	NM_020647	0.0245520	2 17000	0.0240348	1 95614
27 28	NNA 001128421 /// NNA 0011	0.00028182 6 405 05	2.17909	0.000339878	-1.63014
20	NIM_001128431/// NIM_0011	0.49E-05	2.7230	0.000274985	-1.85559
30	NM_002015 /// NM_1/3206	0.0183079	1.78304	0.0153033	-1.85452
31	NM_002915 /// NM_181558	0.000594384	1.82594	0.000551192	-1.85444
32	NM_024524	0.00873766	1.78379	0.00733656	-1.85074
33 34	NM_001193424 /// NM_0011	0.00226284	2.00991	0.00326604	-1.85073
35	XR_110202 /// XR_112909	0.0413879	1.74915	0.0325229	-1.84912
36	NM_005687	0.0042141	1.69261	0.00269165	-1.84/99
37	NM_001142307 /// NM_0053	0.0282895	2.01099	0.0395128	-1.84677
38	NR_024490	0.00434356	2.43428	0.0125446	-1.84438
39 40	NM_153006	0.00761652	1.75613	0.00601922	-1.84339
41	NM_014243	5.44E-05	16.2957	0.00488404	-1.84266
42	NM_001013694	0.0299976	1.6025	0.0150155	-1.84165
43	NM_001083585 /// NM_0047	0.00365219	1.69364	0.00238021	-1.84099
44 45	NM_001010986 /// NM_1736	0.0125925	1.66801	0.00767837	-1.8409
46	NR_024278	0.00323011	3.55994	0.0253577	-1.83766
47	NM_016310	0.00147305	1.77277	0.00123507	-1.83639
48	XR_109888 /// XR_112387	0.00900851	2.28238	0.0210662	-1.83364
49	NM_006951	0.00115453	2.97818	0.0064552	-1.8301
50 51	NM_001014437 /// NM_0010	0.00103995	2.93184	0.00563151	-1.82776
52	NM_001139459 /// NM_1526	0.00119169	1.94527	0.00159693	-1.82667
53	NM_001444	0.0036916	1.74034	0.00290451	-1.82528
54	NM_001137673 /// NM_0045	0.0130936	1.73643	0.0104308	-1.81992
55 56	NM_152446	0.000827576	1.65327	0.000493012	-1.81957
50 57	NM_001143781 /// NM_0011	0.00365265	1.81068	0.00357012	-1.81921
58	NM_001789 /// NM 201567	0.00535963	1.87875	0.00623226	-1.81894
59	NM 001032283 /// NM 0010	0.0099983	2.48869	0.0313207	-1.81869
60	_ ,,,				

1					
2	NM_001159728 /// NM_0169	0.00504254	2.07935	0.00900596	-1.81704
3	NM_001039618 /// NM_0212	0.0036308	1.59194	0.00174923	-1.81671
4 5	NM_013319	0.00141553	2.47236	0.00477727	-1.81593
6	NM_001134937 /// NM_0011	0.0175268	1.96028	0.0247206	-1.80784
7	NM_006951	0.000491373	1.82314	0.000512932	-1.80751
8	NM_018063	0.00159234	2.03713	0.00273354	-1.80709
9	NM_152608	0.00640093	1.52105	0.00237011	-1.80619
10	NM_014165	0.00232924	2.56104	0.00887638	-1.80577
12	NM 022466	0.00381566	2.21183	0.0088876	-1.80533
13		0.00045316	2.03874	0.000790303	-1.80521
14	NM 001142307 /// NM 0053	0.00156257	1.96614	0.00233356	-1.80347
15 16	NM 018063	0.000368249	2.99828	0.0023154	-1.80338
17	 NM_005729	0.000146035	2.67279	0.000670943	-1.80276
18	NM 001242804	0.0133752	1.69119	0.0097206	-1.80251
19	NM 001106	0.00312453	1.8511	0.00356913	-1.80079
20	NR 024284	0.0152437	1.96773	0.0223481	-1.79982
21	NM_007007	0.00529879	1 60638	0.00285093	-1 79886
23	NM 020401	0.000500381	1 51046	0.000174783	-1 79845
24	NM_005680	0.00746063	1 72308	0.00601599	-1 79821
25	NM_001098616 /// NM_0154	0.00216243	1 79763	0.0021704	-1 79631
26	NM 00113/779 /// NM 0163	0.00210249	2 0/8/2	0.0021704	-1 79577
28	NM 001128324 /// NM 1748	0.00742520	1 7582/	0.0131233	-1 79567
29	NIM_001080415	0.00387238	1 72988	0.0034822	-1.79507
30	NM_001080415	0.00135207	1 70059	0.00133403	-1 79207
31		0.0275171	1.70033	0.0014421	-1.79207
32 33	NIM_00101//204 /// NIM_024/	0.000414550	1.03822	0.00023334	-1.79010
34		0.00147774	1 52260	0.00232027	1 70050
35	NNA_001102502 /// NNA_1445	0.0373943	2 20266	0.0139001	-1.70030
36	NNA_00112427E /// NNA_0011	0.0131374	2.39300	0.036500	-1.70000
37	NM_001102600 /// NM_0011	0.00463070	2.27121	0.0129339	-1.76307
39	NN1_001193609 /// NN1_0011	0.000059120	1.70237	0.000000234	-1.70303
40	NIVI_001008544 /// NIVI_1382	0.00179313	1.57872	0.000895030	-1.78204
41		0.0083243	1.55125	0.0037942	-1.78174
42	NIVI_001238034 /// NIVI_0183	0.0250250	1.57874	0.0135148	-1.77418
43 44	NW1_004419	0.00363267	1.01007	0.00216495	-1.77401
45		0.00112256	1.72073	0.000955853	-1.//3/2
46	NM_00102160147 /// NM_0011	0.000472704	4.05912	0.00653089	-1.//135
47	NM_001031684 /// NM_0011	0.00210986	1.51413	0.000821038	-1.77068
48 40	NM_016620 /// NM_032186 /	0.00989997	2.08/11	0.019963	-1./688/
49 50	NM_019083	0.0114498	1.60526	0.00688425	-1.76279
51	NM_003198	0.0165819	1.55885	0.00842437	-1./6188
52	NM_001178010 /// NM_0011	0.0092612	1.91559	0.0136506	-1.76051
53	NM_001100621 /// NM_0011	0.0346992	1.74329	0.0334822	-1.75693
54 55	NM_001195303 /// NM_0012	0.0253672	1.68584	0.0209954	-1.75193
56	NM_030763	0.00369573	4.0031	0.0442541	-1.75154
57	NM_052951	0.00136162	2.18801	0.00363971	-1.7499
58	NM_001010862 /// NR_02713	0.00169036	1.52532	0.000735697	-1.74987
59 60	NM_000791	0.00642775	2.07509	0.0137892	-1.74437
~~					

1					
2	NM_004241 /// NM_032776	0.00166799	1.93903	0.00278747	-1.74316
3	NM_001256858 /// NM_0251	0.0404806	1.52725	0.0199748	-1.74217
4	NM_001142317 /// NM_0011	0.00924718	1.95634	0.0156716	-1.74199
6	NM_000722	1.30E-05	38.0977	0.00348667	-1.74171
7	NM_001190818 /// NM_0011	0.00860468	1.5317	0.00405029	-1.7417
8	NM_004134	0.0117181	1.55151	0.00606868	-1.74101
9	NM_012260	0.00290217	2.14489	0.00729344	-1.74057
10	NM_001204402 /// NM_0027	0.00853284	2.00231	0.0160781	-1.73828
12	NM_000332 /// NM_0011281	0.00269869	2.28074	0.00853174	-1.73781
13	NM_020165	0.0315474	1.69728	0.0282551	-1.73659
14	NM_152611	4.59E-05	4.52487	0.000923935	-1.73649
15 16	 NM_052951	0.00606517	2.67105	0.029733	-1.73537
17		0.0175583	1.74854	0.0182311	-1.73515
18	NM 001204220 /// NM 0332	0.0125593	2.44709	0.0453621	-1.73403
19	NM 014783 /// NM 199357	0.00769013	2.5401	0.0324139	-1.73299
20	NM_000064	0.00355541	1.96417	0.006431	-1.73237
21	NM_006510 /// NM_030950	0.00211844	3 23793	0 0184004	-1 73212
23	NM 153451	0.0289648	1 89263	0.0429436	-1 72773
24	NM_1001134/19 /// NM_0011	5 65F-05	2 63167	0.0425450	-1 72739
25	NM_001172779 /// NM_0011	0.000528157	5 2077	0.000311352	-1 72735
26	NM_001172005 /// NM_0011	0.000328137	1 70725	0.013033	-1.72721
27	NM_001171903 /// NM_0011	0.00707307	1.70233	0.00633093	-1.72335
20	NM_001143412 /// NM_0011	0.00832441	1.04225	0.00038450	-1.72395
30	NM_017782	0.02E-05	4.30096	0.00124993	-1.72278
31	NM_017782	0.00010423	1.60986	7.01E-05	-1.72223
32	NM_002296 /// NM_194442	0.000411947	2.02286	0.000889547	-1./2223
33 34	NM_001143781/// NM_0011	0.00260635	2.18932	0.00754754	-1./1933
35	NM_001109903 /// NM_0328	0.003/1185	2.50893	0.0165883	-1./18/1
36	NM_006321	0.00109128	2.18544	0.00321099	-1./181
37	NM_001139459 /// NM_1526	0.00244859	2.99384	0.0182448	-1.71669
38	NM_001082969 /// NM_0010	0.00438994	1.69415	0.00409822	-1.7158
39 40	NM_001251874 /// NM_0305	0.00492145	2.24465	0.0154618	-1.71352
41	NM_176814	0.00516958	2.31341	0.0179284	-1.71303
42	NM_024900 /// NM_199320	0.000255248	2.5024	0.00124823	-1.71168
43	NM_004805	0.005666	1.85344	0.00840095	-1.71141
44 45	NM_015253 /// NR_040000	0.00142723	4.60425	0.0274714	-1.71101
46	NM_001102653 /// NM_0174	0.00131332	1.86767	0.00205051	-1.71065
47	NM_001018025 /// NM_0142	0.0157457	1.71212	0.0159134	-1.70857
48	NM_018014 /// NM_022893 /	0.00211537	1.78254	0.00264463	-1.70839
49	NM_001173982 /// NM_0184	0.0012245	1.94519	0.00232428	-1.70749
50 51	NM_001199427 /// NM_0033	0.00263809	2.81082	0.0171842	-1.70595
52	NM_000251 /// NM_0012582	0.00106095	3.04204	0.00894201	-1.70535
53	NM_006251 /// NM_206907	0.019139	1.53015	0.0102487	-1.70508
54	NM_015231	0.0163949	1.67072	0.0148802	-1.7019
55 56	NM_006510 /// NM_030950	0.00218253	1.92518	0.00400657	-1.70183
57	NM_018170	0.0177584	1.5139	0.00894518	-1.70086
58	NM_001145966 /// NM_0024	0.00185411	2.00857	0.00410547	-1.70064
59	NM 001159596 /// NM 0176	0.00363329	1.80339	0.00494098	-1.69919
60	,				

2	NM_153634	0.0221291	1.61245	0.0167226	-1.69891
3	NM_001203247 /// NM_0012	0.00237953	2.07387	0.00603748	-1.69697
4	NM 004555 /// NM 173163 /	0.0152631	1.50384	0.00739849	-1.69673
5	NM 020347	0.000918209	3.37897	0.0103347	-1.69619
7	NM 002994	2.71E-06	12.0184	0.000280904	-1.69515
8	NM_000791	0.00441778	1.61409	0.00333263	-1.69505
9	NM 001142522 /// NM 0121	6 01F-05	3 38543	0 000731044	-1 69497
10	NM_001080541 /// NM_0011	0.0129366	1 68203	0 0124364	-1 69461
11 12	NM_006739	0.00320447	2 72489	0.0196566	-1 69389
12	NM_004586	0.00320447	2.72403	0.0190500	-1 60380
14	NM_003401 /// NM_023406 /	0.00100508	1 68864	0.00040502	-1 6022
15		0.0530555	2.00649	0.0331092	-1.0952
16		0.0123232	2.00040	0.0203021	-1.09214
17 18	NIVI_003729	0.00357951	2.03123	0.00841882	-1.69191
19	NM_002629	8./3E-Ub	3.27526	9.98E-05	-1.6919
20	NM_002638	0.00254981	1.81461	0.00367393	-1.69147
21	NM_001142776 /// NM_0241	0.000829706	2.80573	0.00597604	-1.69036
22	NM_001270	0.0135032	1.55468	0.00832783	-1.68966
23	NM_153634	0.00130352	1.59953	0.00094246	-1.68912
25	NM_052857	0.000598746	2.08272	0.00161825	-1.68909
26	NM_001277 /// NM_212469	0.0174426	1.71927	0.0191285	-1.68837
27	NM_001032281 /// NM_0062	0.000188797	7.88497	0.0105257	-1.68736
28	NM_001098614 /// NM_0010	0.00523292	1.95401	0.0105624	-1.68713
29	NM_018112	0.000860555	3.93473	0.0139011	-1.68668
31	NM_022070	0.00282419	2.05795	0.00719791	-1.68489
32	NM_004184 /// NM_173701 /	0.00113803	2.47219	0.00570311	-1.68353
33	NM_198514	0.019546	1.79881	0.0269358	-1.6829
34	NM_006031	0.000130649	1.86546	0.000224709	-1.682
36	NM_001145822 /// NM_0032	0.00512921	1.64219	0.00449919	-1.68056
37	NR_026778	1.61E-05	2.83353	0.000130566	-1.6784
38	NM_001080463 /// NM_0013	0.0131662	2.06531	0.0325128	-1.67807
39	NM_001256835 /// NM_0012	0.0202259	1.57991	0.0145372	-1.67595
40 /1	NM_001080124 /// NM_0010	0.00757413	1.59597	0.00571781	-1.67517
42	NM_005914 /// NM_182746	0.00224807	2.55083	0.012417	-1.67476
43	NM_001013848 /// NM_0190	0.00507779	2.79705	0.0340014	-1.6736
44	NM_004181	0.000509403	6.333	0.0202006	-1.67308
45	NM_016529	0.00148143	4.27085	0.0280921	-1.66988
40 47		0.00470432	2.04435	0.0120891	-1.66964
48	NM 138962 /// NM 170721	0.00327522	1.76125	0.00436779	-1.66944
49	NM 001013730 /// XR 11003	0.00108092	1.82484	0.00173326	-1.66939
50	NM 001139459 /// NM 1526	0.00103627	2.0421	0.00276046	-1.66789
51 52	NM NM_019109	0.0104462	1.66241	0.0102678	-1.66763
53		0.00309836	3.4743	0.036553	-1.66696
54	NM_001078166 /// NM_0069	0.00596351	2,72094	0.0373696	-1.66662
55	NM 001104595 /// NM 0179	0.040242	1.50648	0.02288	-1.66433
56 57	NM 001143781 /// NM 0011	0.000119242	2,22396	0.000460359	-1.66234
ว/ 58	NM 001270	0 010/605	1 56989	0.00751516	-1 66051
59	NM_001079516	0.010702/5	1 51207	0.00695521	-1 65077
60	MMI_0010/3010	0.0122343	1.31327	0.00093321	-1.03922

1					
2	NM_017858	8.36E-05	2.8939	0.00076407	-1.65855
3	NM_001031812 /// NM_0010	0.007085	1.58938	0.00553073	-1.65749
4	NM_001173516 /// NM_0011	0.00301623	1.68215	0.00329285	-1.65636
6	NM_025139	0.000522525	2.39766	0.00265146	-1.6558
7	NM_001040152 /// NM_0011	0.00889404	1.52309	0.00534599	-1.65388
8	NM_001163817 /// NM_0013	0.00103094	1.7197	0.00128769	-1.65338
9	NM_005023	0.0499922	1.50536	0.0297021	-1.65308
10	NM_001098614 /// NM_0010	0.0283779	1.75716	0.0382835	-1.65168
12	NM 000140 /// NM 0010125	0.00551416	2.68166	0.0351708	-1.65136
13	NM 001191322 /// NM 0011	0.000106886	50.8321	0.0397859	-1.64969
14	NM 001002877 /// NM 0010	0.000192821	1.64532	0.000190454	-1.64872
15	NM 001243797 /// NM 0012	0.000941362	1.94697	0.00219855	-1.64798
10	NM 001077440 /// NM 0010	0.0013272	1.53702	0.00085622	-1.64634
18	NM 004398	0.00052048	1 62292	0 000478289	-1 64575
19	XR 108279 /// XR 112047 ///	0 0104249	1 57177	0.00798216	-1 64406
20	NM 001935	7 91F-05	6 11185	0.00736534	-1 64306
21	NM 004412 /// NM 176081 /	0.00711540	1 82/72	0.0050554	-1 64014
22		0.00711349	2 1/296	0.01232	-1.04014
24	NM_00100220 /// NM_0000	0.000031878	2.14200	0.00220337	-1.03936
25	NM_001008239/// NM_1430	0.0137383	1.05560	0.0143337	-1.03900
26	NM_032842	0.0107478	1.74907	0.015105	-1.03894
27	NM_152611	0.000666062	5.40575	0.0226232	-1.63829
20 29	NM_015939	0.00057903	2.36385	0.00297932	-1.63/89
30	NM_016299	0.000109506	2.23/72	0.000472804	-1.63/74
31	NM_006/16	0.0123603	1.9703	0.0293555	-1.63582
32	NM_001164313 /// NM_0147	0.0137991	1./4063	0.0191052	-1.63559
33	NM_001170803 /// NM_0011	0.0037431	1.63921	0.00381259	-1.63409
35	NM_001139466 /// NM_0011	0.00357547	2.1757	0.0132659	-1.63248
36	NM_001173990 /// NM_0011	0.01664	1.84696	0.0304416	-1.63091
37	NM_005445	0.00537066	1.7746	0.00848283	-1.62995
38	NM_001018113 /// NM_1526	0.00367366	2.27655	0.0160643	-1.6296
39 40	NM_030928	0.0152226	1.98623	0.037632	-1.62838
41	NR_024052 /// NR_024053	0.00537728	1.97238	0.0138662	-1.62488
42	NM_001207025 /// NM_0012	0.0107659	1.95274	0.025965	-1.62306
43	NM_001270472 /// NM_0023	0.000600553	1.65122	0.000667928	-1.62234
44	NM_001145208 /// NM_0183	0.000118241	2.01724	0.000359774	-1.6215
45 46	NM_031965	0.0252189	1.74973	0.0369458	-1.62073
47	NR_026751	0.00237003	1.7446	0.0036181	-1.61818
48	NM_002577	0.00495906	1.94867	0.0125831	-1.61625
49	NM_001256182 /// NM_0012	6.41E-05	1.89987	0.000152827	-1.61621
50 51	NM_004775	0.0223901	1.76316	0.0347124	-1.61546
52	NM_005914 /// NM_182746	0.00283966	1.72623	0.00414281	-1.61503
53	NM 002395	0.002179	2.6167	0.0158853	-1.61491
54		0.00172778	1.51711	0.00114811	-1.61417
55	NM 017915	0.00130469	2.75527	0.0114425	-1.61225
56 57		0.0229905	1.70632	0.0309477	-1.61157
58	NM 015253 /// NR 040000	8.54F-05	26.9902	0.0236274	-1.61027
59	NM 001017408 /// NM 0203	0.0115488	1.80308	0.0207582	-1,6094
60		0.0110.00	1.00000	2.0207.002	1.0004

1					
2	NM_001191322 /// NM_0011	5.15E-05	76.117	0.0311946	-1.60915
3	NM_004866 /// NM_052822	4.40E-05	1.93861	0.000118744	-1.608
4 5	NM_001032283 /// NM_0010	0.00227181	2.71931	0.0188701	-1.60735
6	NM_006107 /// NM_016424	0.000386463	2.20595	0.00175654	-1.60715
7	NM_002877 /// NM_133509 /	0.018019	1.97662	0.0464021	-1.60588
8	NM_032140	0.00916668	1.93274	0.0227439	-1.6054
9 10	NM_001083963 /// NM_0010	0.00501599	2.09443	0.0175528	-1.60507
10	NM_001003398 /// NM_0017	0.000280885	3.36166	0.00449885	-1.60494
12	NM_002047	0.000946222	2.11967	0.00367965	-1.60458
13	NM_019083	0.00423235	1.78707	0.00764793	-1.60358
14	NM 001110798 /// NM 0185	0.000832492	1.59086	0.000795325	-1.60237
15 16	NM 004775	0.000362299	1.90075	0.000928323	-1.59658
10		0.0255384	1.59839	0.0257641	-1.5959
18	NM 012081	0.00323475	2.11084	0.0123573	-1.59498
19	NM 001093771 /// NM 0012	4.13E-05	8.99296	0.00407913	-1.59493
20	NM 001136478 /// NM 0011	0.000734595	2.82448	0.0075681	-1.59478
21	NM 144632	0 00240364	2 35309	0.0136059	-1 59436
22	NM 001014796 /// NM 0061	0.000520656	6 27733	0.0264631	-1 59393
24	NM_003605 /// NM_181672 /	0.000520050	1 6757	0.0204031	-1 59386
25	NM_003364 /// NM_181597	0.00265557	2 3/03/	0.000007834	-1 59332
26	NIM_000004 /// NIM_101000	0.00205557	1 62022	0.0145272	1 50276
21	NIM 001009224 /// NIP 02449	0.00230121	2 52015	0.00552025	-1.39270
29	NNI_001022287 /// NR_0244c	0.000320413	2.22012	0.00001655	-1.59170
30	NNI_001032287 /// NNI_0011		2.07751	0.00101405	-1.59105
31	XIVI_001/14385 /// XIVI_00313	2.885-05	9.15728	0.00303332	-1.5878
32	NIVI_152405	8.15E-05	9.1873	0.00828246	-1.58706
33 34	NM_0010/7204 /// NM_0247	0.0145693	1.76857	0.0259793	-1.58421
35	NM_000038 /// NM_0011275	0.00674162	1.92199	0.01/96/3	-1.58359
36	NM_006111	0.00156352	2.04789	0.005/2152	-1.58239
37	NM_004793	0.00346314	1./2581	0.005//156	-1.5/95/
38	NM_001007226 /// NM_0010	0.0026938	2.03545	0.00957133	-1.57937
39 40	NM_001166260 /// NM_0042	0.00529259	1.67224	0.00745869	-1.57771
41	NM_016448	0.00135977	3.98727	0.03116	-1.57769
42	NM_015049	0.00124878	2.95563	0.0150773	-1.57685
43	NM_001029991 /// NM_0010	0.0171706	1.55831	0.0160766	-1.57529
44 45	NM_015409	2.42E-05	1.78756	5.05E-05	-1.57484
46	NM_173567	6.23E-06	9.4035	0.000737304	-1.57438
47	NM_032329	0.00612027	1.80054	0.0127157	-1.57413
48	NM_001167865 /// NM_0176	0.000546436	1.58533	0.000578037	-1.5717
49	NM_022840	0.00643627	2.62669	0.0498256	-1.56984
50 51	NM_018848 /// NM_170784 /	0.0013799	1.54533	0.0012515	-1.56814
52	NM_001083585 /// NM_0047	0.00193077	2.00724	0.0068685	-1.56769
53	NM_015144	0.00255357	2.18269	0.0124072	-1.56692
54	NM_001204171 /// NM_0012	0.0214313	1.66534	0.0300506	-1.56633
55 56	NM_001033559 /// NM_0010	0.00112725	2.62133	0.0103144	-1.56606
50 57	NM_001177663 /// NM_0011	0.00764503	2.01539	0.0260536	-1.56604
58	NM_014851	0.00106237	2.05077	0.00424374	-1.5644
59	NM_018112	0.000131887	2.47014	0.001073	-1.56375
60	-				

1					
2	NR_029701	1.41E-05	58.2943	0.00964676	-1.56329
3	NM_001164579 /// NM_1735	0.00210682	1.64981	0.0029661	-1.56104
4	NM_001127394 /// NM_0529	0.000982904	2.50736	0.00810435	-1.5605
6	NM_024654	0.00250936	1.56349	0.00254453	-1.56017
7	NM_001099268 /// NM_0165	0.00624792	1.61565	0.00780779	-1.55831
8	NM_001184734 /// NM_0011	0.00366277	1.68807	0.00592798	-1.55741
9	NM_018362	0.0115955	1.60991	0.0141787	-1.55711
10	NM_001142522 /// NM_0121	0.000286638	3.54316	0.00627161	-1.55686
12	NM_015885	0.0139305	1.51452	0.0117431	-1.55502
13	NM 001003704 /// NM 0164	0.00488028	1.75017	0.00960255	-1.55469
14	NM 000161 /// NM 0010240	3.25E-05	4.40449	0.00121078	-1.55398
15 16	 NM_004405	0.000328844	11.3929	0.0423437	-1.55369
17		0.0193205	1.63007	0.0255378	-1.55294
18	NM_001130112 /// NM_0011	0.00960025	1.67088	0.0147588	-1.55238
19	NM 017754	0.00116627	1,70545	0.00206285	-1.55238
20	NM 017437	0.00931561	1 55905	0.00962078	-1 55118
21	NM 001034173 /// NR 02775	0.000001001	2 11529	0.011880/	-1 55096
22	NM_018127	0.00257100	2.11323	0.0226556	-1 54860
24	NM_005171	6 87E-05	2.004	0.0230330	-1.54605
25	NNA_001080E41 /// NNA_0011	0.871-05	2.10211	0.000337483	-1.54072
26	NNI_001080341/// NNI_0011	0.00905555	1.55047	0.00644666	-1.5407
27	NIVI_022118	0.0157332	1.02151	0.0208901	-1.54554
20 29	NM_004774	0.0150562	1.76034	0.0303409	-1.5453
30	NM_001194954 /// NM_0011	0.00468483	2.0151	0.0178779	-1.54495
31	NM_005124	0.00608477	2.36448	0.0390852	-1.54415
32	NM_001267594 /// NM_0012	0.0013/404	2.09255	0.00651288	-1.54098
33 34	NM_005746 /// NM_182790	0.0198042	1.56894	0.0221287	-1.54057
35	NM_025077	0.00251074	2.17736	0.0135262	-1.53949
36	NM_007018	0.00322467	2.18952	0.0174981	-1.53886
37	NM_053042	0.00340985	1.71443	0.00653773	-1.53731
38	NM_001042414 /// NR_00327	0.00583941	1.62296	0.00823651	-1.53593
39 40	NM_001029991 /// NM_0010	0.0141427	1.53537	0.0141223	-1.53572
41	NM_005387 /// NM_016320 /	0.00521122	2.3762	0.0358977	-1.53432
42	NM_001008860 /// NM_0010	0.00606597	2.48342	0.0464787	-1.5342
43	NM_017645	6.30E-05	1.55578	6.93E-05	-1.53418
44 45	NM_006510 /// NM_030950	5.12E-05	2.58906	0.000557933	-1.53327
40	NM_001007245 /// NM_0011	0.000265623	2.3617	0.00210355	-1.53321
47	NM_001135564 /// NM_0012	0.00149043	2.01742	0.00631119	-1.53294
48	NM_006275 /// NR_034009	0.00248658	2.58237	0.0236104	-1.53261
49	NM_001002926	0.0162128	1.82016	0.0395544	-1.5326
50 51	NM_001325	0.0133177	2.00652	0.0482491	-1.5322
52	NM_018394	0.00215987	2.62227	0.0217775	-1.53143
53	NM_007045 /// NM_194429	0.00145344	2.6646	0.0158825	-1.53031
54	NM 002936	0.00430173	1.63612	0.00655438	-1.52984
55		0.0088731	1.6194	0.012691	-1.5283
50 57		0.00189085	2.62079	0.0195715	-1.52741
58	NM 004294	0.000117305	3.47015	0.00286971	-1.52677
59	NR 024510 /// NR 024511 //	0.00537526	1.54171	0.00573942	-1.5267
60		0.00007020	1.0 11/1	0.00070012	1.5207

1					
2	NM_005614	0.00900041	2.14371	0.0436455	-1.52633
3	NM_004134	0.00263756	1.6808	0.00479532	-1.52588
4 5	NM_203448 /// NR_015363 //	0.00222292	2.8346	0.0281515	-1.52526
6	NM_001131035 /// NM_0011	0.00439763	1.53897	0.00468902	-1.52444
7	NM_018262 /// NM_052985 /	0.00811568	1.50966	0.00761447	-1.52387
8	NM_032146 /// NM_177976	0.000410802	5.15095	0.0207473	-1.52344
9 10	NM_001093755 /// NM_0010	0.00303905	2.92645	0.0403626	-1.52327
11	NM_022496 /// NR_048568 //	0.00193208	1.5153	0.00186756	-1.52265
12	XM_001128243	0.00821763	1.983	0.0311206	-1.52187
13	NM_182490	0.00205733	3.20374	0.0355332	-1.52179
14 15	NM_000201	0.000193245	5.24269	0.0107858	-1.52101
15	NM_001042399 /// NM_0161	0.00123215	1.83209	0.00362418	-1.52027
17	NM_001076683 /// NM_0010	0.000847391	2.00637	0.00376811	-1.52014
18	NM_001135608 /// NM_0150	0.00129219	3.40105	0.0270508	-1.52002
19	NM_018944	0.00690302	1.69472	0.0132329	-1.51959
20	NM_018944	0.013868	1.52903	0.0144487	-1.51946
22	NM_001205028 /// NM_0012	0.000806137	3.88096	0.0233597	-1.51896
23	NM_032505	0.000290064	2.78984	0.00410738	-1.51836
24	NM_013329 /// NM_016631 /	0.0035214	1.61198	0.00518583	-1.51829
25 26	NM_001159651 /// NM_1383	0.000973825	1.60086	0.00138723	-1.51802
20	NM_004586	0.00247377	1.69696	0.00493951	-1.51695
28	 NM_020861	0.00233154	2.60135	0.024314	-1.51629
29	NM_001166356 /// NM_0011	0.000740403	1.82066	0.00216895	-1.51619
30 21	NM 001184906 /// NM 0328	0.0130097	1.73211	0.0276551	-1.51506
32	NR 029383	0.000949192	3.29063	0.019486	-1.5146
33	 NM_052947	0.000163412	2.18989	0.00108344	-1.51437
34	 NM_014188	0.0015565	1.89382	0.00546204	-1.51421
35	 NM_030816	0.0215313	1.64863	0.0351374	-1.51391
37		0.000348314	1.66204	0.000639741	-1.51304
38	NM 001001323 /// NM 0016	0.00233429	2.18538	0.0144113	-1.51166
39	NM 001191028 /// NM 0124	0.00378685	1.57763	0.00507527	-1.50975
40	NM 031923	0.00253032	2.31691	0.0191888	-1.50836
41 42		0.00729822	1.60509	0.0109011	-1.50742
43	NM 017886	0.0246132	1.66862	0.0436872	-1.50629
44	NM 001099678	0.00323749	1.88534	0.0112836	-1.50612
45		0.007014	1.71625	0.0152516	-1.50564
46 47	NM 001079516	0.00380819	2.6807	0.0426792	-1.50456
48	NM 017426	0.00232302	1.89509	0.00844907	-1.50448
49	 NM_004990	0.000464368	2.13904	0.00290521	-1.50442
50		0.00194909	2.71141	0.0243845	-1.50396
51 52	NM 001018089 /// NM 0246	0.0026262	2.09044	0.0141982	-1.50376
53	NM 001164665 /// NM 0209	0.00287405	1.89886	0.010594	-1.50175
54	NM 025138 /// NM 170719	0.00306428	1.67878	0.00617387	-1.50145
55	NM 001242826 /// NM 0057	0.00280012	2.11769	0.0160058	-1.50115
56 57	NM 001048249	0.00146558	1.54246	0.00177517	-1.50087
58	 NM_004990	0.000991115	2.85147	0.01523	-1.5004
59		0.00325009	2.08984	0.0176104	-1.50013
60					

Page 71 of 246

Supplementary Table 3 highly expressed genes in both xenograft FTSCT and HGSC (2 fold and $n < 0.0$	5 2395

Probeset ID	Gene Symbol	Gene Title
223278_at	GJB2	gap junction protein, beta 2, 26kDa
211719_x_at	FN1	fibronectin 1
207039_at	CDKN2A	cyclin-dependent kinase inhibitor 2A
225681_at	CTHRC1	collagen triple helix repeat containing 1
	FN1	fibronectin 1
216442 x at	FN1	fibronectin 1
204268 at	S100A2	S100 calcium binding protein A2
	FN1	fibronectin 1
219918 s at	ASPM	asp (abnormal spindle) homolog, microcephaly associate
203186 s at	S100A4	S100 calcium binding protein A4
228335 at	CLDN11	claudin 11
222608 s at	ANLN	anillin, actin binding protein
201387 s at	UCHI 1	ubiquitin carboxyl-terminal esterase 11 (ubiquitin thiolest
208025 s at	HMGA2	high mobility group AT-hook 2
209773 s at	RRM2	ribonucleotide reductase M2
219148 at	PRK	PD7 hinding kinase
213140_{at}	FARD5	fatty acid hinding protain 5 (psoriasis-associated)
202343_3at		topassin C
201043_{al}		non SMC condensin L complex, subunit G
210002_5_dl		disco large (Drecenbile) hemeleg associated protein F
203704_dl	DLGAPS	CDC28 metain kinese regulatory suburit 2
204170_s_at		CDC28 protein kinase regulatory subunit 2
204331_s_at	MRPS12	mitochondrial ribosomal protein S12
218585_s_at		denticieless E3 ubiquitin protein ligase nomolog (Drosopr
222958_s_at	DEPDC1	DEP domain containing 1
AFFX-HUMGAPD	OH/GAPDH /// GAPDH	glyceraldehyde-3-phosphate dehydrogenase /// glycerald
204822_at	ттк	TTK protein kinase
218663_at	NCAPG	non-SMC condensin I complex, subunit G
201890_at	RRM2	ribonucleotide reductase M2
201291_s_at	TOP2A	topoisomerase (DNA) II alpha 170kDa
210559_s_at	CDK1	cyclin-dependent kinase 1
236313_at	CDKN2B	cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)
206445_s_at	PRMT1	protein arginine methyltransferase 1
201292_at	TOP2A	topoisomerase (DNA) II alpha 170kDa
202503_s_at	KIAA0101	KIAA0101
223490_s_at	EXOSC3	exosome component 3
209714_s_at	CDKN3	cyclin-dependent kinase inhibitor 3
228273_at	PRR11	proline rich 11
203554_x_at	PTTG1	pituitary tumor-transforming 1
211071_s_at	MLLT11	myeloid/lymphoid or mixed-lineage leukemia (trithorax h
202870_s_at	CDC20	cell division cycle 20 homolog (S. cerevisiae)
219493_at	SHCBP1	SHC SH2-domain binding protein 1
	BIRC5	baculoviral IAP repeat containing 5

1			
2	235545_at	DEPDC1	DEP domain containing 1
3	228053_s_at	TOMM5	translocase of outer mitochondrial membrane 5 homolog (yeast)
4 5	218542_at	CEP55	centrosomal protein 55kDa
6	218009_s_at	PRC1	protein regulator of cytokinesis 1
7	209642_at	BUB1	budding uninhibited by benzimidazoles 1 homolog (yeast)
8	209644_x_at	CDKN2A	cyclin-dependent kinase inhibitor 2A
9	223381 at	NUF2	NUF2, NDC80 kinetochore complex component, homolog (S. cere
10		CDCA7	cell division cycle associated 7
12	222680 s at	DTL	, denticleless E3 ubiguitin protein ligase homolog (Drosophila)
13	203276 at	I MNB1	lamin B1
14	222037 at	MCM4	minichromosome maintenance complex component 4
15	222037_ut 218039_at		nucleolar and spindle associated protein 1
16	210000_at		nrocollagon C ondepentidase enhancer 2
17 18	219295_5_at		biolurenen medieted metility recenter (DUANANA)
19	207105_at		
20	205046_at	CENPE	centromere protein E, 312kDa
21	206884_s_at	SCEL	sciellin
22	223229_at	UBE2T	ubiquitin-conjugating enzyme E2T (putative)
23	218755_at	KIF20A	kinesin family member 20A
24 25	201105_at	LGALS1	lectin, galactoside-binding, soluble, 1
26	201505_at	LAMB1	laminin, beta 1
27	202954_at	UBE2C	ubiquitin-conjugating enzyme E2C
28	218883_s_at	MLF1IP	MLF1 interacting protein
29	214437_s_at	SHMT2	serine hydroxymethyltransferase 2 (mitochondrial)
30 31	203214_x_at	CDK1	cyclin-dependent kinase 1
32	209709_s_at	HMMR	hyaluronan-mediated motility receptor (RHAMM)
33	220651_s_at	MCM10	minichromosome maintenance complex component 10
34	208002 s at	ACOT7	acyl-CoA thioesterase 7
35	207828 s at	CENPF	centromere protein F, 350/400kDa (mitosin)
30 37	 208079_s_at	AURKA	aurora kinase A
38	238756 at	GAS2L3	growth arrest-specific 2 like 3
39	209825 s at	MIR3658 /// UCK2	microRNA 3658 /// uridine-cytidine kinase 2
40	203560 at	GGH	gamma-glutamyl hydrolase (conjugase folyloolygammaglutamyl k
41	20000_ut	нрпі	
4Z 13	223332_at		7W/10 interactor
44	204020_3_at		One interaction
45	215599_dl		DED domain containing 1
46	220295_x_al		DEP domain containing 1
47	220083_x_at	UCHL5	ubiquitin carboxyi-terminal hydrolase L5
48	225655_at	UHRF1	ubiquitin-like with PHD and ring finger domains 1
49 50	225834_at	FAM72A /// FAM72B ,	/family with sequence similarity 72, member A /// family with sequ
51	205394_at	CHEK1	checkpoint kinase 1
52	204092_s_at	AURKA	aurora kinase A
53	203213_at	CDK1	cyclin-dependent kinase 1
54	225687_at	FAM83D	family with sequence similarity 83, member D
50 56	209679_s_at	SMAGP	small cell adhesion glycoprotein
57	239579_at	EPHX4	epoxide hydrolase 4
58	230165_at	SGOL2	shugoshin-like 2 (S. pombe)
59	206550_s_at	NUP155	nucleoporin 155kDa
60			

1			
2	201577_at	NME1	NME/NM23 nucleoside diphosphate kinase 1
3	213007_at	FANCI	Fanconi anemia, complementation group I
4 5	236641_at	KIF14	kinesin family member 14
5 6	201714 at	TUBG1	tubulin, gamma 1
7		DEPDC1B	DEP domain containing 1B
8		SLC43A3	solute carrier family 43, member 3
9	209900 s at	SI C16A1	solute carrier family 16, member 1 (monocarboxylic acid transpor
10	203500_5_at	SMCA	structural maintenance of chromosomes A
11	201005_3_{at}		transmombrano protoin 49
12	210075_5_dl		DADD1 binding protein
14	227928_at	PARPBP	PARPI binding protein
15	221521_s_at	GINS2	GINS complex subunit 2 (Psf2 homolog)
16	202718_at	IGFBP2	insulin-like growth factor binding protein 2, 36kDa
17	204962_s_at	C2orf18 /// CENPA	chromosome 2 open reading frame 18 /// centromere protein A
18	209434_s_at	PPAT	phosphoribosyl pyrophosphate amidotransferase
19 20	218336_at	PFDN2	prefoldin subunit 2
20	222077_s_at	RACGAP1	Rac GTPase activating protein 1
22	202705_at	CCNB2	cyclin B2
23	205034_at	CCNE2	cyclin E2
24	203755_at	BUB1B	budding uninhibited by benzimidazoles 1 homolog beta (yeast)
25 26	232231_at	RUNX2	runt-related transcription factor 2
20	204444 at	KIF11	kinesin family member 11
28		C11orf73	chromosome 11 open reading frame 73
29	209891 at	SPC25	SPC25. NDC80 kinetochore complex component, homolog (S. cere
30	217755 at	HN1	hematological and neurological expressed 1
31	205129 at	NPM3	nucleonhosmin/nucleonlasmin 3
33	200125_at	RAD51AP1	RAD51 associated protein 1
34	235609_at	RRIP1	BRCA1 interacting protein C-terminal belicase 1
35	210052 s at		TRY2 microtubule-associated homolog (Yenonus laevis)
36	210032_3_at		solute carrier family 16 member 1 (menocarboyulic acid transpor
37	202234_3_dl	SCEL	
39	232030_at		sellagen tyme V elehe 2
40	221730_at	CULSAZ	
41	219306_at	KIF15	kinesin family member 15
42	204709_s_at	KIF23	kinesin family member 23
43	222036_s_at	MCM4	minichromosome maintenance complex component 4
44 45	219555_s_at	CENPN	centromere protein N
46	226237_at	COL8A1	collagen, type VIII, alpha 1
47	228323_at	CASC5	cancer susceptibility candidate 5
48	204825_at	MELK	maternal embryonic leucine zipper kinase
49	228069_at	FAM54A	family with sequence similarity 54, member A
50 51	224870_at	DANCR	differentiation antagonizing non-protein coding RNA
52	201742_x_at	SRSF1	serine/arginine-rich splicing factor 1
53	205361_s_at	PFDN4	prefoldin subunit 4
54	235022_at	FAM210A	family with sequence similarity 210, member A
55 50		CKAP2	cytoskeleton associated protein 2
ЭФ 57		LINC00152 /// LOC54	11 long intergenic non-protein coding RNA 152 /// uncharacterized L
58		TMEM45A	transmembrane protein 45A
59	213226 at	CCNA2	cvclin A2
60	<u>-</u>	-	,

1			
2	1555772_a_at	CDC25A	cell division cycle 25 homolog A (S. pombe)
3	201202_at	PCNA	proliferating cell nuclear antigen
4 5	202206_at	ARL4C	ADP-ribosylation factor-like 4C
6	223570_at	MCM10	minichromosome maintenance complex component 10
7	227211_at	PHF19	PHD finger protein 19
8	1555225_at	C1orf43	chromosome 1 open reading frame 43
9	200634_at	PFN1	profilin 1
10	226661 at	CDCA2	cell division cycle associated 2
12		PLK4	polo-like kinase 4
13	 218726_at	HJURP	, Holliday junction recognition protein
14	224913 s at	TIMM50	translocase of inner mitochondrial membrane 50 homolog (S. cere
15	218235 s at	LITP11I	UTP11-like U3 small nucleolar ribonucleonrotein (veast)
16	$155/1572 \rightarrow 2^{+}$		suppressor of variagation 3-9 homolog 2 (Drosonhila)
18	1334372_a_at		reactive evygen species modulator 1
19	224972_at		canony 2 homolog (zobrafish)
20	209790_s_at		DNA hinding matif protain 84
21	222443_S_at	RBIVISA	RNA binding motil protein 8A
22	223403_s_at	POLRIB	polymerase (RNA) i polypeptide B, 128kDa
23 24	22/212_s_at	PHF19	PHD finger protein 19
25	211981_at	COL4A1	collagen, type IV, alpha 1
26	220865_s_at	PDSS1	prenyl (decaprenyl) diphosphate synthase, subunit 1
27	212364_at	MYO1B	myosin IB
28	221987_s_at	TSR1	TSR1, 20S rRNA accumulation, homolog (S. cerevisiae)
29	207507_s_at	ATP5G3	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit
31	223307_at	CDCA3	cell division cycle associated 3
32	202246_s_at	CDK4	cyclin-dependent kinase 4
33	213011_s_at	TPI1	triosephosphate isomerase 1
34	204836_at	GLDC	glycine dehydrogenase (decarboxylating)
35	206364_at	KIF14	kinesin family member 14
37	217728 at	S100A6	S100 calcium binding protein A6
38		NCAPH	non-SMC condensin I complex, subunit H
39		LOXL2	lysyl oxidase-like 2
40	226936 at	CENPW	centromere protein W
41	229551 x at	ZNF367	zinc finger protein 367
42	222740 at		ATPase family AAA domain containing 2
44	210/66 s at	SFRRP1	SERPINE1 mRNA binding protein 1
45	210400_3_dt		phosphorihosyl transferase domain containing 1
46	222803_at		ribonuclosso H2, subunit A
47	203022_dl		ATPase family AAA domain containing 2
40 49	218/82_5_dl		ATPase family, AAA uomain containing 2
50	202613_at		CIP synthase 1
51	219978_s_at	NUSAP1	nucleolar and spindle associated protein 1
52	212094_at	PEG10	paternally expressed 10
53	223032_x_at	PRELID1	PRELI domain containing 1
54 55	214512_s_at	SUB1	SUB1 homolog (S. cerevisiae)
56	228977_at	LOC729680	uncharacterized LOC729680
57	201014_s_at	PAICS	phosphoribosylaminoimidazole carboxylase, phosphoribosylamine
58	228729_at	CCNB1	cyclin B1
59	223556_at	HELLS	helicase, lymphoid-specific
00			

1			
2	212022_s_at	MKI67	antigen identified by monoclonal antibody Ki-67
3	221685_s_at	CCDC99	coiled-coil domain containing 99
4 5	210983_s_at	MCM7	minichromosome maintenance complex component 7
6	205909_at	POLE2	polymerase (DNA directed), epsilon 2, accessory subunit
7	208627_s_at	YBX1	Y box binding protein 1
8	206102_at	GINS1	GINS complex subunit 1 (Psf1 homolog)
9	225161 at	GFM1	G elongation factor, mitochondrial 1
10		SPAG5	sperm associated antigen 5
12		C15orf23	chromosome 15 open reading frame 23
13	206632 s at	APOREC3R	anolinoprotein B mRNA editing enzyme catalytic polypentide-like
14	200032_3_ut	MCM6	minichromosome maintenance complex component 6
15	201550_at		nolymerase (RNA) II (DNA directed) polynentide K. 7.0kDa
16	$202035_{3}at$		baculouiral IAD repeat containing 5
17 18	202094_at		baculovilal IAP Tepeat containing 5
10	209026_x_at	IOBB	tubulin, beta class i
20	201138_s_at	SSR	Sjogren syndrome antigen B (autoantigen La)
21	208767_s_at	LAPTM4B	lysosomal protein transmembrane 4 beta
22	204886_at	PLK4	polo-like kinase 4
23	209408_at	KIF2C	kinesin family member 2C
24 25	224345_x_at	FAM162A	family with sequence similarity 162, member A
26	202589_at	TYMS	thymidylate synthetase
27	208758_at	ATIC	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferas
28	202207_at	ARL4C	ADP-ribosylation factor-like 4C
29	206074_s_at	HMGA1	high mobility group AT-hook 1
30 31	212782_x_at	POLR2J	polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa
32	204126 s at	CDC45	cell division cycle 45 homolog (S. cerevisiae)
33	 201478 s at	DKC1 /// SNORA56	dyskeratosis congenita 1, dyskerin /// small nucleolar RNA, H/ACA
34	224637 at	OST4	oligosaccharyltransferase 4 homolog (S. cerevisiae)
35	200039 s at	PSMB2	proteasome (prosome, macronain) subunit, beta type, 2
36	201072 s at	SMARCC1	SWI/SNE related matrix associated actin dependent regulator of
37 38	201072_3_at		tumor protein D52
39	201000_3_{at}		cell division cycle associated 5
40	224735_at		
41	211714_X_dl		CUMO1 activating any manufacture to the second se
42	217946_S_al		Solviol activating enzyme subunit 1
43 44	212891_s_at	GADD45GIP1	growth arrest and DNA-damage-inducible, gamma interacting pro
45	212694_s_at	РССВ	propionyl CoA carboxylase, beta polypeptide
46	203931_s_at	MRPL12	mitochondrial ribosomal protein L12
47	223193_x_at	FAM162A	family with sequence similarity 162, member A
48	1554667_s_at	METTL8	methyltransferase like 8
49 50	208103_s_at	ANP32E	acidic (leucine-rich) nuclear phosphoprotein 32 family, member E
50 51	221437_s_at	MRPS15	mitochondrial ribosomal protein S15
52	228597_at	MIS18A	MIS18 kinetochore protein homolog A (S. pombe)
53	202647_s_at	NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog
54	208628_s_at	YBX1	Y box binding protein 1
55	204510_at	CDC7	cell division cycle 7 homolog (S. cerevisiae)
50 57		BOP1	block of proliferation 1
58	200822 x at	TPI1	triosephosphate isomerase 1
59	222883 at	SELRC1	Sel1 repeat containing 1
60	222003_at	JENGI	

2	201725_at	CDC123	cell division cycle 123 homolog (S. cerevisiae)
3		TP53RK	TP53 regulating kinase
4		MCM3	minichromosome maintenance complex component 3
5	211519 s at	KIF2C	kinesin family member 2C
0 7	209053 s at	WHSC1	Wolf-Hirschhorn syndrome candidate 1
8	209099 <u>-</u> 9_ut	FCT2	enithelial cell transforming sequence 2 oncogene
9	215767_5_dt		CD100 moloculo
10	220345_at		CD109 molecule
11	200003_s_at		timelase hemelas (Dreserbile)
12	203046_5_at		Unerest and UNC has DNA binding metric 1
14	216228_s_at	WDHDI	wD repeat and HIVIG-box DIVA binding protein 1
15	208967_s_at	AK2	adenylate kinase 2
16	200832_s_at	SCD	stearoyl-CoA desaturase (delta-9-desaturase)
17	205680_at	MMP10	matrix metallopeptidase 10 (stromelysin 2)
18	203358_s_at	EZH2	enhancer of zeste homolog 2 (Drosophila)
20	219000_s_at	DSCC1	defective in sister chromatid cohesion 1 homolog (S. cerevisiae)
21	226835_s_at	ZNFX1-AS1	ZNFX1 antisense RNA 1 (non-protein coding)
22	204023_at	RFC4	replication factor C (activator 1) 4, 37kDa
23	218605_at	TFB2M	transcription factor B2, mitochondrial
24	218027_at	MRPL15	mitochondrial ribosomal protein L15
25 26	203511_s_at	TRAPPC3	trafficking protein particle complex 3
20	201112 s at	CSE1L	CSE1 chromosome segregation 1-like (yeast)
28	204127 at	RFC3	replication factor C (activator 1) 3, 38kDa
29		MTHFD1	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1
30		WDR12	WD repeat domain 12
31	223774 at	SNHG12 /// SNORA16	small nucleolar RNA host gene 12 (non-protein coding) /// small n
33	222216 s at	MRPI 17	mitochondrial ribosomal protein 117
34	$222210_{-}3_{-}$ ut 21//31_at	GMPS	guanine monnhosnhate synthetase
35	214451_{at}		leucine_rich pentatricopentide repeat containing
36	$211971_{3}at$		PMI2 BacO modiated gapama instability 2 hamalag (S. corovisia)
37	220430_dl		Li2A histone family, member V
30 39	205430_5_dl		HZA historie family, member X
40	224/52_at	C/OFT/3 /// LUC10028	Chromosome / open reading frame /3 /// chromosome / open re
41	221922_at	GPSM2	G-protein signaling modulator 2
42	21/949_s_at	VKORC1	vitamin K epoxide reductase complex, subunit 1
43	218051_s_at	NT5DC2	5'-nucleotidase domain containing 2
44 45	203889_at	SCG5	secretogranin V (7B2 protein)
46	201689_s_at	TPD52	tumor protein D52
47	218355_at	KIF4A	kinesin family member 4A
48	223993_s_at	CNIH4	cornichon homolog 4 (Drosophila)
49	202856_s_at	SLC16A3	solute carrier family 16, member 3 (monocarboxylic acid transpor
50 51	202690_s_at	SNRPD1	small nuclear ribonucleoprotein D1 polypeptide 16kDa
52	225099_at	FBXO45	F-box protein 45
53	238075_at	CHEK1	checkpoint kinase 1
54		CHCHD7	coiled-coil-helix-coiled-coil-helix domain containing 7
55	 212320 at	TUBB	tubulin, beta class I
56 57	228559 at	CENPN	centromere protein N
57 58	212013 at	PXDN	peroxidasin homolog (Drosonhila)
59	224217 s at	FAF1	Fas (TNERSE6) associated factor 1
60	<u>~~</u> ~~		

1			
2	202580_x_at	FOXM1	forkhead box M1
3	201629_s_at	ACP1	acid phosphatase 1, soluble
4 5	223062_s_at	PSAT1	phosphoserine aminotransferase 1
6	201096_s_at	ARF4	ADP-ribosylation factor 4
7	201897_s_at	CKS1B	CDC28 protein kinase regulatory subunit 1B
8	225827 at	EIF2C2	eukaryotic translation initiation factor 2C, 2
9		HELLS	helicase. lymphoid-specific
10	208581 x at	MT1X	metallothionein 1X
11	224523 s at	C3orf26	chromosome 3 open reading frame 26
13	221020_0_ut		asn (abnormal snindle) bomolog, microcentaly associated (Drosou
14	233002_at	KIAA1524	
15	231035_at		churachin like 2 (S. nombe)
16	255425_dl		shugoshiii-like 2 (S. pollibe)
1/ 10	222039_at	KIF18B	
10	213133_s_at	GCSH	glycine cleavage system protein H (aminomethyl carrier)
20	229442_at	C180rf54	chromosome 18 open reading frame 54
21	204165_at	WASF1	WAS protein family, member 1
22	224320_s_at	MCM8	minichromosome maintenance complex component 8
23	203119_at	CCDC86	coiled-coil domain containing 86
24 25	213427_at	RPP40	ribonuclease P/MRP 40kDa subunit
26	218586_at	C20orf20	chromosome 20 open reading frame 20
27	205024_s_at	RAD51	RAD51 homolog (S. cerevisiae)
28	212141_at	MCM4	minichromosome maintenance complex component 4
29	1555878_at	RPS24	Ribosomal protein S24
30	207508_at	ATP5G3	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit
32	218695_at	EXOSC4	exosome component 4
33	203270_at	DTYMK	deoxythymidylate kinase (thymidylate kinase)
34	225943 at	NLN	neurolysin (metallopeptidase M3 family)
35		MIR5096 /// SSBP1	microRNA 5096 /// single-stranded DNA binding protein 1, mitoch
30 37	229305 at	MLF1IP	MLF1 interacting protein
38	202296 s at	RER1	RER1 retention in endoplasmic reticulum 1 homolog (S. cerevisiae
39	221520 s at	CDCA8	cell division cycle associated 8
40	204641 at	NFK2	NIMA (never in mitosis gene a)-related kinase 2
41	1553984 s at	DTYMK	deoxythymidylate kinase (thymidylate kinase)
42 43	228868 x at	CDT1	Chromatin licensing and DNA replication factor 1
44	228560_x_ut	100375295	uncharacterized I OC375205
45	228304_at		nalmitovi protoin thioastorase 1
46	200975_at		Pallintoyi-protein thoesterase 1
47	201848_S_at		BCL2/adenovirus ETB 19kDa interacting protein 3
48 49	201263_at		threonyl-trivia synthetase
- 50	212458_at	SPRED2	sprouty-related, EVH1 domain containing 2
51	222843_at	FIGNL1	fidgetin-like 1
52	204695_at	CDC25A	cell division cycle 25 homolog A (S. pombe)
53	201231_s_at	ENO1	enolase 1, (alpha)
54 55	205402_x_at	PRSS2	protease, serine, 2 (trypsin 2)
56	212789_at	NCAPD3	non-SMC condensin II complex, subunit D3
57	211762_s_at	KPNA2	karyopherin alpha 2 (RAG cohort 1, importin alpha 1)
58	216470_x_at	PRSS2	protease, serine, 2 (trypsin 2)
59 60	200658_s_at	РНВ	prohibitin
00			

1			
2	227942_s_at	CRIPT	cysteine-rich PDZ-binding protein
3	220011_at	C1orf135	chromosome 1 open reading frame 135
4 5	228931_at	COQ4	coenzyme Q4 homolog (S. cerevisiae)
6	223480_s_at	MRPL47	mitochondrial ribosomal protein L47
7	219544_at	BORA	bora, aurora kinase A activator
8	204610_s_at	CCDC85B	coiled-coil domain containing 85B
9	221692_s_at	MRPL34	mitochondrial ribosomal protein L34
10	205499_at	SRPX2	sushi-repeat containing protein, X-linked 2
12	238996 x at	ALDOA	aldolase A, fructose-bisphosphate
13	223055 s at	XPO5	exportin 5
14	202666 s at	ACTL6A	actin-like 6A
15	205167 s at	CDC25C	cell division cycle 25 homolog C (S. pombe)
16 17	225439 at		NudC domain containing 1
18	213008 at	FANCI	Fanconi anemia, complementation group I
19			glyceraldehyde-3-phosphate dehydrogenase /// glyceraldehyde-3
20	22/71/ at		MKI67 (EHA domain) interacting nucleolar phosphoprotein
21	224714_at		S phase kinase associated protein 2, E2 ubiquitin protein ligase
22	203025_X_at		S-pridse kindse-dssociated protein 2, ES ubiquitin protein igase
23	212080_X_al		NDC20 kinetechare complex component hemolog (C. correvision)
25	204162_at		NDC80 kinetochore complex component nomolog (S. cerevisiae)
26	202310_s_at	COLIAI	collagen, type I, alpha 1
27	203818_s_at	SF3A3	splicing factor 3a, subunit 3, 60kDa
28	225853_at	GNPNAT1	glucosamine-phosphate N-acetyltransferase 1
30	212816_s_at	CBS	cystathionine-beta-synthase
31	205122_at	MSANTD3-TMEFF1 ///	/MSANTD3-TMEFF1 readthrough /// transmembrane protein with
32	228468_at	MASTL	microtubule associated serine/threonine kinase-like
33	205733_at	BLM	Bloom syndrome, RecQ helicase-like
34 35	214095_at	SHMT2	serine hydroxymethyltransferase 2 (mitochondrial)
36	200744_s_at	GNB1	guanine nucleotide binding protein (G protein), beta polypeptide
37	201664_at	SMC4	structural maintenance of chromosomes 4
38	224376_s_at	C20orf24 /// TGIF2-C2	chromosome 20 open reading frame 24 /// TGIF2-C20orf24 readt
39	213647_at	DNA2	DNA replication helicase 2 homolog (yeast)
40 41	219311_at	CEP76	centrosomal protein 76kDa
42	211980_at	COL4A1	collagen, type IV, alpha 1
43	200925_at	COX6A1	cytochrome c oxidase subunit VIa polypeptide 1
44	226943_at	C12orf73	chromosome 12 open reading frame 73
45	227477 at	ZMYND19	zinc finger, MYND-type containing 19
40 47		MCM2	minichromosome maintenance complex component 2
48	218984 at	PUS7	pseudouridylate synthase 7 homolog (S. cerevisiae)
49		KHDRBS3	KH domain containing. RNA binding, signal transduction associate
50	229742 at	C15orf61	chromosome 15 open reading frame 61
51	208875 s at	РАК2	p21 protein (Cdc42/Rac)-activated kinase 2
52 53	2200073_s_at		PRELL domain containing 1
54	224232_3_at	MRDI 36	mitochondrial ribosomal protein 136
55	224331_3_at	C8orf33	chromosome 8 open reading frame 33
56	210107_3_at		NADH dehydrogenase (ubiguinone) 1 heta subcomplay, 7, 19kDa
57 59	202033_3_dl		drobrin 1
50 59	202000_dl		SAC2 domain containing 1
60	205449_al	SAC3D1	SACS UOMAIN CONTAINING T

1			
2	204584_at	L1CAM	L1 cell adhesion molecule
3 4	225036_at	TOMM5	translocase of outer mitochondrial membrane 5 homolog (yeast)
5	203417_at	MFAP2	microfibrillar-associated protein 2
6	222702_x_at	CRIPT	cysteine-rich PDZ-binding protein
7	236075_s_at	LOC100506676	uncharacterized LOC100506676
8	212296_at	PSMD14	proteasome (prosome, macropain) 26S subunit, non-ATPase, 14
9	201564_s_at	FSCN1 /// LOC1006	53: fascin homolog 1, actin-bundling protein (Strongylocentrotus purp
10	227165 at	SKA3	spindle and kinetochore associated complex subunit 3
12		DIAPH3	diaphanous homolog 3 (Drosophila)
13		CORO1C	coronin, actin binding protein, 1C
14	220060 s at	PARPRP	PARP1 hinding protein
15	220000_3_ut	ΔSPM	asn (abnormal snindle) homolog microcenhaly associated (Droso
16	202667 c of		solute carrier family 20 (zinc transporter), member 7
17	202007_5_at	SLCSSA7	solute carrier family 59 (zinc transporter), member 7
10	201774_S_dt		non-sivic condensin i complex, subunit D2
20	211456_X_at	MT1P2	metanotnionein 1 pseudogene 2
21	202715_at	CAD	carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, a
22	218479_s_at	XPO4	exportin 4
23	223020_at	CLPTM1L	CLPTM1-like
24 25	223839_s_at	SCD	stearoyl-CoA desaturase (delta-9-desaturase)
26	203347_s_at	MTF2	metal response element binding transcription factor 2
27	217829_s_at	USP39	ubiquitin specific peptidase 39
28	223413_s_at	LYAR	Ly1 antibody reactive homolog (mouse)
29	211318_s_at	RAE1	RAE1 RNA export 1 homolog (S. pombe)
30 31	1558750_a_at	LOC100288637	OTU domain containing 7A pseudogene
32	225291_at	PNPT1	polyribonucleotide nucleotidyltransferase 1
33	217398_x_at	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
34	203577 at	GTF2H4	general transcription factor IIH, polypeptide 4, 52kDa
35	202016 at	MEST	mesoderm specific transcript homolog (mouse)
30 37		EME1	essential meiotic endonuclease 1 homolog 1 (S. pombe)
38	213088 s at	DNAJC9	DnaJ (Hsp40) homolog, subfamily C, member 9
39	204033_at	TRIP13	thyroid hormone receptor interactor 13
40	223461 at	TBC1D7	TBC1 domain family, member 7
41	$223 102_{at}$		cell division cycle associated 3
42 43	$221430_{3}ut$		coiled-coil domain containing 90A
44	220034_3_at		laminin gamma 1 (formorly LAMP2)
45	200770_3_at		collagon tuno Lalnha 1
46	202311_5_at		collagen, type I, alpha I
47	218982_S_at	MRPS17	
48 40	228281_at	C11orf82	chromosome 11 open reading frame 82
49 50	2016/2_s_at	USP14	ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase)
51	222497_x_at	NMD3	NMD3 homolog (S. cerevisiae)
52	221845_s_at	CLPB	ClpB caseinolytic peptidase B homolog (E. coli)
53	225788_at	RRP36	ribosomal RNA processing 36 homolog (S. cerevisiae)
54 55	218193_s_at	GOLT1B	golgi transport 1B
55 56	204724_s_at	COL9A3	collagen, type IX, alpha 3
57	218080_x_at	FAF1	Fas (TNFRSF6) associated factor 1
58	229886_at	C5orf34	chromosome 5 open reading frame 34
59	225593_at	LSM10	LSM10, U7 small nuclear RNA associated
60	—		

2	200657_at	SLC25A5	solute carrier family 25 (mitochondrial carrier; adenine nucleotide
3	200910_at	CCT3	chaperonin containing TCP1, subunit 3 (gamma)
4	202706 s at	UMPS	uridine monophosphate synthetase
5	205339 at	STIL	SCL/TAL1 interrupting locus
7		WDHD1	WD repeat and HMG-box DNA binding protein 1
8	 228990_at	SNHG12 /// SNORA16	small nucleolar RNA host gene 12 (non-protein coding) /// small n
9	200966 x at	ALDOA	aldolase A. fructose-bisphosphate
10	224623 at	LOC728554 /// THOC3	THO complex 3 pseudogene /// THO complex 3
11 12	218399 s at	CDCA4	cell division cycle associated 4
13	20107/ at	SMARCC1	SWI/SNE related matrix associated actin dependent regulator of
14	201074_at	SOX4	SRV (sex determining region V)-box 4
15	201417_{at}		transmembrane and tetratriconentide repeat containing A
16	220790 c st		α small nucleolar PNA H/ACA box EP /// transforming growth facto
17	220709_5_dl		transforming asidia called call containing protain 2
19	218308_dl		transforming, actual colled-coll containing protein 3
20	223880_x_at	C200fT24 /// TGIF2-C2	contromosome 20 open reading frame 24 /// TGIF2-C200ff24 readt
21	206461_x_at	MITH	
22	232065_x_at	CENPL	centromere protein L
23	241937_s_at	WDR4	WD repeat domain 4
24 25	204957_at	ORC5	origin recognition complex, subunit 5
26	211576_s_at	SLC19A1	solute carrier family 19 (folate transporter), member 1
27	222714_s_at	LACTB2	lactamase, beta 2
28	210766_s_at	CSE1L	CSE1 chromosome segregation 1-like (yeast)
29	211594_s_at	MRPL9	mitochondrial ribosomal protein L9
30 31	213523_at	CCNE1	cyclin E1
32	203502_at	BPGM	2,3-bisphosphoglycerate mutase
33	235509_at	LOC100506538 /// ND	uncharacterized LOC100506538 /// NADH dehydrogenase (ubiqui
34	210976_s_at	PFKM	phosphofructokinase, muscle
35	219510_at	POLQ	polymerase (DNA directed), theta
37		PUSL1	pseudouridylate synthase-like 1
38		MCM5	minichromosome maintenance complex component 5
39	 204853 at	ORC2	origin recognition complex. subunit 2
40	217834 s at	SYNCRIP	synaptotagmin binding, cytoplasmic RNA interacting protein
41	58696 at	FXOSC4	exosome component 4
42 43	1568873 at	ZNE519	zinc finger protein 519
44	23570/ at	ΠΔ7ΔΡ2	DA7 associated protein 2
45	230704_at		TH1-like (Drosonhila)
46	220007_A_at		calmodulin hinding transcription activator 1
47	220053_5_at	C20orf112	chromosomo 20 opon roading framo 112
40 49	250954_dl	C2001112	
50	216222_S_at		
51	200644_at		
52	208308_s_at	GPI	glucose-6-phosphate isomerase
53	219420_s_at	SELRC1	Sel1 repeat containing 1
54 55	225657_at	LOC152217	uncharacterized LOC152217
56	225638_at	C1orf31	chromosome 1 open reading frame 31
57	201322_at	ATP5B	ATP synthase, H+ transporting, mitochondrial F1 complex, beta pc
58	210933_s_at	FSCN1 /// LOC100653	fascin homolog 1, actin-bundling protein (Strongylocentrotus purg
59 60	200818_at	ATP5O	ATP synthase, H+ transporting, mitochondrial F1 complex, O subu

1			
2	227896_at	BCCIP	BRCA2 and CDKN1A interacting protein
3	201757_at	NDUFS5	NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-
4 5	224579_at	SLC38A1	solute carrier family 38, member 1
6	209482_at	POP7	processing of precursor 7, ribonuclease P/MRP subunit (S. cerevis
7	229139_at	JPH1	junctophilin 1
8	201976_s_at	MYO10	myosin X
9	200607_s_at	RAD21	RAD21 homolog (S. pombe)
10	1553956_at	TMEM237	transmembrane protein 237
12	217165_x_at	MT1F	metallothionein 1F
13	214687 x at	ALDOA	aldolase A, fructose-bisphosphate
14	223452 s at	ATL3	atlastin GTPase 3
15 16	202598 at	S100A13	S100 calcium binding protein A13
17		PARP2	poly (ADP-ribose) polymerase 2
18	204767 s at	FFN1	flap structure-specific endonuclease 1
19	219105 x at	ORC6	origin recognition complex subunit 6
20	227545 at	BARD1	BRCA1 associated RING domain 1
21	212023 s at	MK167	antigen identified by monoclonal antibody Ki-67
22	212025_5_at	KBI1	KRI1 homolog (S. cerevisiae)
24	227307_at	C19orf/18	chromosome 19 open reading frame 18
25	224408_3_at		translosase of outer mitechandrial membrane 40 homolog (veast)
26	220039_at		coiled coil domain containing 127
27	225955_dl		coned-con domain containing 157
20 29	211042_x_at		THA like (Dresechile)
30	225261_x_at		THI-like (Drosophila)
31	202190_at	CSIFI	cleavage stimulation factor, 3 pre-RNA, subunit 1, 50kDa
32	213453_x_at	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
33 34	218580_x_at	AURKAIP1	aurora kinase A interacting protein 1
35	222417_s_at	SNX5	sorting nexin 5
36	209172_s_at	CENPF	centromere protein F, 350/400kDa (mitosin)
37	202679_at	NPC1	Niemann-Pick disease, type C1
38	204315_s_at	GTSE1	G-2 and S-phase expressed 1
39 40	221535_at	LSG1	large subunit GTPase 1 homolog (S. cerevisiae)
41	226909_at	ZNF518B	zinc finger protein 518B
42	211960_s_at	RAB7A	RAB7A, member RAS oncogene family
43	52285_f_at	CEP76	centrosomal protein 76kDa
44	200783_s_at	STMN1	stathmin 1
40 46	1555501_s_at	RSRC1	arginine/serine-rich coiled-coil 1
47	223491_at	COMMD2	COMM domain containing 2
48	209836_x_at	BOLA2 /// BOLA2B	bolA homolog 2 (E. coli) /// bolA homolog 2B (E. coli)
49	212581_x_at	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
50 51	219217_at	NARS2	asparaginyl-tRNA synthetase 2, mitochondrial (putative)
52	226006_at	PET100	PET100 homolog (S. cerevisiae)
53	226296 s at	MRPS15	mitochondrial ribosomal protein S15
54	222989 s at	UBQLN1	ubiquilin 1
55	200846 s at	PPP1CA	protein phosphatase 1, catalytic subunit, alpha isozyme
56 57	235253 at	RAD1	RAD1 homolog (S. pombe)
58	222622 at	PGP	phosphoglycolate phosphatase
59	202514 at	DLG1	discs, large homolog 1 (Drosonhila)
60	202011_00	5101	

1			
2	225100_at	FBXO45	F-box protein 45
3	213175_s_at	SNRPB	small nuclear ribonucleoprotein polypeptides B and B1
4	209609_s_at	MRPL9	mitochondrial ribosomal protein L9
6	208962_s_at	FADS1 /// MIR1908	fatty acid desaturase 1 /// microRNA 1908
7	201818_at	LPCAT1	lysophosphatidylcholine acyltransferase 1
8	233588_x_at	PFDN6	prefoldin subunit 6
9	203039 s at	NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-
10	222593 s at	SPATS2	spermatogenesis associated, serine-rich 2
12	225401 at	C1orf85	chromosome 1 open reading frame 85
13	213787 s at	FRP	emonamil hinding protein (sterol isomerase)
14	215707_5_at		kinetochore associated 1
15	200310_3_at		ankyrin rangat domain 27 (V/DSQ domain)
16	221322_at		All D2 mitotic crucot deficient like 2 (vesst)
1/	223234_al		WADZ mitotic arrest dencient-like 2 (yeast)
10	225841_at	HENMIII	HEN1 methyltransferase nomolog 1 (Arabidopsis)
20	220642_x_at	GPR89A /// GPR89B //	G protein-coupled receptor 89A /// G protein-coupled receptor 8
21	203209_at	RFC5	replication factor C (activator 1) 5, 36.5kDa
22	202183_s_at	KIF22	kinesin family member 22
23	222700_at	ATL2	atlastin GTPase 2
24 25	223231_at	TATDN1	TatD DNase domain containing 1
26	204326_x_at	MT1X	metallothionein 1X
27	218712_at	C1orf109	chromosome 1 open reading frame 109
28	201896_s_at	PSRC1	proline/serine-rich coiled-coil 1
29	204700_x_at	DIEXF	digestive organ expansion factor homolog (zebrafish)
30	200075_s_at	GUK1	guanylate kinase 1
32	235572 at	SPC24	SPC24, NDC80 kinetochore complex component, homolog (S. cere
33		CCDC77	coiled-coil domain containing 77
34	204173 at	MYL6B	myosin, light chain 6B, alkali, smooth muscle and non-muscle
35		GAS5 /// SNORD44 ///	growth arrest-specific 5 (non-protein coding) /// small nucleolar R
30 27	38158 at	FSPI 1	extra spindle pole bodies homolog 1 (S. cerevisiae)
38	217025 s at	DBN1	drehrin 1
39	216088 s at	ΡςΜΔ7	proteasome (prosome macronain) subunit alpha type 7
40	210000_{-5} at $221/39$ x at	RNF7	ring finger protein 7
41	224455_x_at	EADS1 /// MIR1908	fatty acid desaturase 1 /// microRNA 1908
42 43	200004_3_{at}		uridino mononhosnhato synthetaso
43	215105_X_dl		Linume monophosphate synthetase
45	202737_S_dl		LSIVIA HOMOIOG, OO SMAII HUCIEAR RIVA ASSOCIATED (S. CEREVISIAE)
46	225018_at	SPIRE1	spire nomolog 1 (Drosophila)
47	202857_at	CNPY2	canopy 2 nomolog (zebrafish)
48	201180_s_at	GNAI3	guanine nucleotide binding protein (G protein), alpha inhibiting ac
49 50	225552_x_at	AURKAIP1	aurora kinase A interacting protein 1
51	239413_at	CEP152	centrosomal protein 152kDa
52	228970_at	ZBTB8OS	zinc finger and BTB domain containing 8 opposite strand
53	202330_s_at	UNG	uracil-DNA glycosylase
54 55	201853_s_at	CDC25B	cell division cycle 25 homolog B (S. pombe)
ວວ 56	222981_s_at	RAB10	RAB10, member RAS oncogene family
57	222029_x_at	PFDN6	prefoldin subunit 6
58	225880_at	TOR1AIP2	torsin A interacting protein 2
59	202128_at	KIAA0317	KIAA0317
60	-		

1			
2	201790_s_at	DHCR7	7-dehydrocholesterol reductase
3	212654_at	TPM2	tropomyosin 2 (beta)
4 5	201584_s_at	DDX39A	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39A
6	230060_at	CDCA7	cell division cycle associated 7
° 7	1554390_s_at	ACTR2	ARP2 actin-related protein 2 homolog (yeast)
8	235463 s at	CERS6	ceramide synthase 6
9	 221538 s at	PLXNA1	plexin A1
10	 204558 at	RAD54L	RAD54-like (S. cerevisiae)
12	217943 s at	MAP7D1	MAP7 domain containing 1
13	203190 at	MIR4691 /// NDUES8	microRNA 4691 /// NADH dehydrogenase (ubiquinone) Fe-S prote
14	203105 s at		dynamin 1-like
15	$203105_{3}at$		translocase of inner mitechandrial membrane 10 homolog (veast)
16	1333704_5_at		naly (ADD ribese) nelymetrese 2
1/ 19	204752_x_at	PARPZ	poly (ADP-ribose) polymerase 2
10	215227_x_at	ACP1	acid phosphatase 1, soluble
20	213334_x_at	HAUS/	HAUS augmin-like complex, subunit 7
21	206032_at	DSC3	desmocollin 3
22	203234_at	UPP1	uridine phosphorylase 1
23	202824_s_at	TCEB1	transcription elongation factor B (SIII), polypeptide 1 (15kDa, elon
24 25	201970_s_at	NASP	nuclear autoantigenic sperm protein (histone-binding)
26	212165_at	TMEM183A /// TMEN	1 transmembrane protein 183A /// transmembrane protein 183B
27	222992_s_at	NDUFB9	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa
28	201587_s_at	IRAK1	interleukin-1 receptor-associated kinase 1
29	219402_s_at	DERL1	derlin 1
30	223524 s at	TMEM108	transmembrane protein 108
31 32	 234311 s at	GTPBP10	GTP-binding protein 10 (putative)
33	200980 s at	PDHA1	pyruvate dehydrogenase (lipoamide) alpha 1
34	201433 s at	PTDSS1	phosphatidylserine synthase 1
35	238964 at	FIGN	fidgetin
36	238304_at		(uncharacterized LOC100509445 /// ovostatin homolog 2-like /// c
37	$220243_{3}at$		colononhosphato sunthotase 1
30 39	206941_5_at		The synthetase 1
40	225006_x_at	IHIL	
41	218286_s_at		ring finger protein 7
42	21//33_s_at	IMSB10	thymosin beta 10
43	203228_at	PAFAH1B3	platelet-activating factor acetylhydrolase 1b, catalytic subunit 3 (2
44 15	226473_at	CBX2	chromobox homolog 2
45 46	202961_s_at	ATP5J2	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit
47	209744_x_at	ITCH	itchy E3 ubiquitin protein ligase
48	224932_at	CHCHD10	coiled-coil-helix-coiled-coil-helix domain containing 10
49	221711_s_at	BABAM1	BRISC and BRCA1 A complex member 1
50	213843_x_at	SLC6A8	solute carrier family 6 (neurotransmitter transporter, creatine), m
51 52	235266 at	ATAD2	ATPase family, AAA domain containing 2
53		RNFT2	ring finger protein, transmembrane 2
54	201114 x at	PSMA7	proteasome (prosome, macropain) subunit, alpha type, 7
55	214096 s at	SHMT2	serine hydroxymethyltransferase 2 (mitochondrial)
56	210115 of	RDI 391	rihosomal protein I 39-like
5/	210113_at		kinosin family momber C1
50 59	203000_5_dl		kincon failing member CI
60	201390_2_at	CONKZB	casem kinase z, beta porypeptide

1			
2	209882_at	RIT1	Ras-like without CAAX 1
3	226616_s_at	NDUFV3	NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa
5	226947_at	GUSBP1 /// GUSBP4	glucuronidase, beta pseudogene 1 /// glucuronidase, beta pseudc
6	204839_at	POP5	processing of precursor 5, ribonuclease P/MRP subunit (S. cerevis
7	204745_x_at	MT1G	metallothionein 1G
8	201064_s_at	PABPC4	poly(A) binding protein, cytoplasmic 4 (inducible form)
9 10	225317_at	ACBD6	acyl-CoA binding domain containing 6
10	210854_x_at	SLC6A8	solute carrier family 6 (neurotransmitter transporter, creatine), m
12	218590_at	C10orf2	chromosome 10 open reading frame 2
13		FIGN	fidgetin
14		TOPBP1	topoisomerase (DNA) II binding protein 1
15	227455 at	C6orf136	chromosome 6 open reading frame 136
16 17	213906 at	MVRI 1	v-myh myelohlastosis viral oncogene homolog (avian)-like 1
18	213300_dt		NADH debydrogenase (ubiguinone) complex Lassembly factor 5
19	222094_x_a		cutochromo c oxidaso subunit VIb polypoptido 1 (ubiguitous)
20	201441_at		ring finger protein 220
21	206261_at		zinc inger protein 239
22	2013/9_s_at	TPD52L2	tumor protein D52-like 2
23 24	226161_at	SLC30A6	solute carrier family 30 (zinc transporter), member 6
25	201727_s_at	ELAVL1	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu ar
26	235694_at	TCFL5	transcription factor-like 5 (basic helix-loop-helix)
27	221591_s_at	FAM64A	family with sequence similarity 64, member A
28	222640_at	DNMT3A	DNA (cytosine-5-)-methyltransferase 3 alpha
29	228049_x_at	LOC100507303	uncharacterized LOC100507303
3U 31	203025_at	NAA10	N(alpha)-acetyltransferase 10, NatA catalytic subunit
32	210213_s_at	EIF6	eukaryotic translation initiation factor 6
33	225865 x at	TH1L	TH1-like (Drosophila)
34	201310 s at	NREP	neuronal regeneration related protein homolog (rat)
35	223374 s at	B3GALNT1	beta-1.3-N-acetylgalactosaminyltransferase 1 (globoside blood gr
36	222763 s at	SET2D3 /// WDR33	SET2 domain containing 3 /// WD reneat domain 33
38	222705_5_at	NDUFA12	NADH dehvdrogenase (ubiquinone) 1 alpha subcomplex 12
39	223244_3_ut	C1/orf2	chromosome 1/ open reading frame 2
40	202275_at		pontidularelul isomorase H (cyclonhilin H)
41	204228_at		
42	204256_al		ELOVE fatty actu elongase 6
43 44	200625_s_at	CAPI	CAP, adenyiate cyclase-associated protein 1 (yeast)
45	209015_s_at	DNAJB6	DnaJ (Hsp40) homolog, subfamily B, member 6
46	1555241_at	C8orf59	chromosome 8 open reading frame 59
47	225427_s_at	APOA1BP	apolipoprotein A-I binding protein
48	226452_at	PDK1	pyruvate dehydrogenase kinase, isozyme 1
49	218408_at	TIMM10	translocase of inner mitochondrial membrane 10 homolog (yeast)
5U 51	209589_s_at	EPHB2	EPH receptor B2
52	208029_s_at	LAPTM4B	lysosomal protein transmembrane 4 beta
53	212175_s_at	AK2	adenylate kinase 2
54	218770 s at	TMEM39B	transmembrane protein 39B
55	212791 at	C1orf216	chromosome 1 open reading frame 216
56	 202059_s_at	KPNA1	karvopherin alpha 1 (importin alpha 5)
58	201091 s at	CBX3	chromobox homolog 3
59	201318 c 2t	ΔΚΔ ///ΙΟΓ10050795	adenvlate kinase 4 /// adenvlate kinase iscenzyme 1. mitochondri
60	207070_3_at	,	

1			
2	212058_at	U2SURP	U2 snRNP-associated SURP domain containing
3	212411_at	IMP4	IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast)
4 5	216026_s_at	POLE	polymerase (DNA directed), epsilon, catalytic subunit
6	208795_s_at	MCM7	minichromosome maintenance complex component 7
7	204817_at	ESPL1	extra spindle pole bodies homolog 1 (S. cerevisiae)
8	235029 at	GINS4	GINS complex subunit 4 (Sld5 homolog)
9		RP9	retinitis pigmentosa 9 (autosomal dominant)
10	207714 s at	SERPINH1	serpin peptidase inhibitor, clade H (heat shock protein 47), memb
11 12	222606 at	7WII CH	Zwilch kinetochore associated homolog (Drosonhila)
13	222000_ut 219119_at	NAA38	N(alpha)-acetyltransferase 38 NatC auxiliary subunit
14	219119_at		non-POLL domain containing octamer-binding
15	$208098_{3}at$		turesine 2 meneovygenese (trustenban E meneovygenese estivat
16	200745_5_at		whigh the conjugating and
17 19	221962_S_at		
19	225963_at	KLHDC5	keich domain containing 5
20	223024_at	AP1M1	adaptor-related protein complex 1, mu 1 subunit
21	204766_s_at	NUDT1	nudix (nucleoside diphosphate linked molety X)-type motif 1
22	218897_at	TMEM177	transmembrane protein 177
23	218481_at	EXOSC5	exosome component 5
24 25	200771_at	LAMC1	laminin, gamma 1 (formerly LAMB2)
26	220864_s_at	NDUFA13	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13
27	40148_at	APBB2	amyloid beta (A4) precursor protein-binding, family B, member 2
28	217835_x_at	C20orf24 /// TGIF2-C2	chromosome 20 open reading frame 24 /// TGIF2-C20orf24 readt
29	229666_s_at	CSTF3	cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kDa
30 31	224578_at	RCC2	regulator of chromosome condensation 2
32	204668_at	RNF24	ring finger protein 24
33	201770_at	SNRPA	small nuclear ribonucleoprotein polypeptide A
34	214005_at	GGCX	gamma-glutamyl carboxylase
35	223560 s at	C2orf56	chromosome 2 open reading frame 56
37	202475 at	TMEM147	transmembrane protein 147
38		C1orf85	chromosome 1 open reading frame 85
39		PIF1	PIF1 5'-to-3' DNA helicase homolog (S. cerevisiae)
40	200692 s at	HSPA9	heat shock 70kDa protein 9 (mortalin)
41 42	220942 x at	FAM162A	family with sequence similarity 162, member A
42	219522 at	FIX1	four jointed box 1 (Drosonhila)
44	1557945 at	TCTF3	T-complex-associated-testis-expressed 3
45	13373943_ut		coiled-coil domain containing 150
46	20200_at		small nuclear ribonucleon rate in polypentides R and R1
47	200821_dl		24 debudrosbelesterel reductore
40 49	200802_at		ATDass family AAA domain containing 5
50	220223_at	ATAD5	A Pase family, AAA domain containing 5
51	218507_at	HILPDA	nypoxía inducible lipid droplet-associated
52	1553972_a_at	CBS	cystathionine-beta-synthase
53 54	202219_at	SLC6A8	solute carrier family 6 (neurotransmitter transporter, creatine), m
54 55	212621_at	TMEM194A	transmembrane protein 194A
56	236718_at	MYO10	myosin X
57	203736_s_at	PPFIBP1	PTPRF interacting protein, binding protein 1 (liprin beta 1)
58	223690_at	LTBP2	latent transforming growth factor beta binding protein 2
59 60	200608_s_at	RAD21	RAD21 homolog (S. pombe)

2	209104_s_at	NHP2	NHP2 ribonucleoprotein homolog (yeast)
3	213696_s_at	MED8	mediator complex subunit 8
4	214804 at	CENPI	centromere protein l
5		C20orf43	chromosome 20 open reading frame 43
7	228671 at	TMEM201	transmembrane protein 201
8		KLC1	kinesin light chain 1
9	228401 at	ATAD2	ATPase family AAA domain containing 2
10	201111 at	CSF1I	CSF1 chromosome segregation 1-like (veast)
11 12	201111_ut 215812_s_at		sodium- and chloride-dependent creatine transporter 1-like /// sc
12	213012_3_dt		interloukin 17 recenter D
14	22/99/_dt		The field with 17 feedboord D
15	231517_dl		Zyg-11 homolog A (C. elegans)
16	1554020_at	BICD1	bicaudal D nomolog 1 (Drosophila)
17	222514_at	RRAGC	Ras-related GTP binding C
18	213671_s_at	MARS	methionyl-tRNA synthetase
20	225991_at	TMEM41A	transmembrane protein 41A
21	201264_at	COPE	coatomer protein complex, subunit epsilon
22	224448_s_at	MNF1	mitochondrial nucleoid factor 1
23	201692_at	SIGMAR1	sigma non-opioid intracellular receptor 1
24	214321_at	NOV	nephroblastoma overexpressed
25	212625 at	STX10	syntaxin 10
20 27		NUDT19	nudix (nucleoside diphosphate linked mojety X)-type motif 19
28	224610 at	SNHG1 /// SNORD22 /	small nucleolar RNA host gene 1 (non-protein coding) /// small nu
29	224791 at	ASAP1	ArfGAP with SH3 domain, ankyrin repeat and PH domain 1
30	201521 s at	NCRP2	nuclear can hinding protein subunit 2 20kDa
31	201021_3_ut	CTTN	cortactin
32 33	214075_at	NIRED	neuronal regeneration related protein homolog (rat)
34	230424_at		microtubula accessized protein 2
35	225540_al		DEAD (Ass. Chu Ale Ass.) have a shreat ide 40
36	210811_s_at	DDX49	DEAD (Asp-Giu-Ala-Asp) box polypeptide 49
37	212985_at	APBB2	amyloid beta (A4) precursor protein-binding, family B, member 2
38	202208_s_at	ARL4C	ADP-ribosylation factor-like 4C
39 40	203578_s_at	SLC7A6	solute carrier family 7 (amino acid transporter light chain, y+L syst
41	218237_s_at	SLC38A1	solute carrier family 38, member 1
42	225676_s_at	DCAF13	DDB1 and CUL4 associated factor 13
43	203536_s_at	CIAO1	cytosolic iron-sulfur protein assembly 1
44	214039_s_at	LAPTM4B	lysosomal protein transmembrane 4 beta
45 46	236565_s_at	LARP6	La ribonucleoprotein domain family, member 6
47	226255_at	ZBTB33	zinc finger and BTB domain containing 33
48	207746_at	POLQ	polymerase (DNA directed), theta
49	201298 s at	MOB1A	MOB kinase activator 1A
50	204649 at	TROAP	trophinin associated protein (tastin)
51 52		CHEK2	checkpoint kinase 2
53	226847 at	FST	follistatin
54	224564 s at	RTN3	reticulon 3
55	225424 at	GPAM	glycerol-3-phosphate acyltransferase mitochondrial
56	220727_01 220606_st		uncharacterized LOC100280002
57 59	230030_{al}		prolactin regulatory element hinding
50 59	21/001_5_dl		Protactin regulatory element binding
60	244427_dl	ΝΓΖΟ	

2	212800_at	STX6	syntaxin 6
3	241453_at	LOC100653024 /// LO	(uncharacterized LOC100653024 /// uncharacterized LOC1006531)
4	217094 s at	ITCH	itchy E3 ubiquitin protein ligase
5	227651 at	NACC1	nucleus accumbens associated 1, BEN and BTB (POZ) domain cont
7		POLD1	polymerase (DNA directed), delta 1, catalytic subunit
8		SNX12	sorting nexin 12
9	228238 at	GAS5 /// SNORD44 //	/growth arrest-specific 5 (non-protein coding) /// small nucleolar R
10	229647 at	NDUFS1	NADH dehvdrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-
11 12	220051 at	PRSS21	nrotease serine 21 (testisin)
12	220091_at	METTI 13	methyltransferase like 13
14	$212405_{3}at$		cideroflovin A
15	223145_at		NIE2 NGC1 interacting factor 2 like 1 (S. corovisiae)
16	210155_5_dl		NIFS NGG1 Interacting factor 5-like 1 (5. cereviside)
1/ 19	213310_at		Eukaryotic translation initiation factor 2C, 2 /// Uncharacterized L
10	204480_s_at	C90rt16	chromosome 9 open reading frame 16
20	204608_at	ASL	argininosuccinate lyase
21	217926_at	C19orf53	chromosome 19 open reading frame 53
22	225081_s_at	CDCA7L	cell division cycle associated 7-like
23	201250_s_at	SLC2A1	solute carrier family 2 (facilitated glucose transporter), member 1
24 25	200827_at	PLOD1	procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1
26	226938_at	DCAF4	DDB1 and CUL4 associated factor 4
27	202918_s_at	HSPE1-MOB4 /// MOE	BHSPE1-MOB4 readthrough /// MOB family member 4, phocein
28	225468_at	PATL1	protein associated with topoisomerase II homolog 1 (yeast)
29	202804_at	ABCC1	ATP-binding cassette, sub-family C (CFTR/MRP), member 1
30	226355 at	POC1A	POC1 centriolar protein homolog A (Chlamydomonas)
32		MKKS	McKusick-Kaufman syndrome
33	 224598 at	MGAT4B	mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminy
34		ҮКТ6	YKT6 v-SNARE homolog (S. cerevisiae)
35	229671 s at	MIS18A	MIS18 kinetochore protein homolog A (S. pombe)
36	219348 at	USF1	unconventional SNARE in the ER 1 homolog (S. cerevisiae)
38	217860 at	NDUFA10	NADH dehvdrogenase (ubiquinone) 1 alpha subcomplex 10 42kD
39	223389 s at	7NF581	zinc finger protein 581
40	225505_5_{at}		family with sequence similarity 84 member B
41	223804_at		ring finger protoin 114
42	200808_{s_at}		DDP1 and CIUA associated factor 12
43 44	251764_5_dl		bbb1 and COL4 associated factor 15
45	203588_S_at		transcription factor Dp-2 (E2F dimenzation partner 2)
46	22/103_s_at	ECE2	endothelin converting enzyme 2
47	218388_at	PGLS	6-phosphogluconolactonase
48	204407_at	TTF2	transcription termination factor, RNA polymerase II
49 50	201791_s_at	DHCR7	7-dehydrocholesterol reductase
51	232596_at	DIAPH3	diaphanous homolog 3 (Drosophila)
52	224615_x_at	HM13	histocompatibility (minor) 13
53	224890_s_at	C7orf59	chromosome 7 open reading frame 59
54	222451_s_at	ZDHHC9	zinc finger, DHHC-type containing 9
ວວ 56	201066_at	CYC1	cytochrome c-1
57	202888_s_at	ANPEP	alanyl (membrane) aminopeptidase
58	200979_at	PDHA1	pyruvate dehydrogenase (lipoamide) alpha 1
59	230032_at	OSGEPL1	O-sialoglycoprotein endopeptidase-like 1
60	_		

1			
2	211964_at	COL4A2	collagen, type IV, alpha 2
3	204717_s_at	SLC29A2	solute carrier family 29 (nucleoside transporters), member 2
4 5	212020_s_at	MKI67	antigen identified by monoclonal antibody Ki-67
6	218003_s_at	FKBP3 /// LOC1006528	FK506 binding protein 3, 25kDa /// uncharacterized LOC10065286
7	220189_s_at	MGAT4B	mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminy
8	201690_s_at	TPD52	tumor protein D52
9	219531 at	CEP72	centrosomal protein 72kDa
10		FIGN	fidgetin
12		MYBL2	v-myb myeloblastosis viral oncogene homolog (avian)-like 2
13	211031 s at	CLIP2	CAP-GLY domain containing linker protein 2
14	2220052_5_0C	EAM105B	family with sequence similarity 105 member B
15	225200_at	7NIE567	zinc finger protein 567
16	233048_{at}		general transcription factor IIIC polynomide 2, 102kDa
17 18	210545_5_dl		SAD1 flaving adapting discusses tide surtherange have leg (C. serevici)
10	212541_at	FLADI	FAD1 flavin adenine dinucleotide synthetase nomolog (S. cerevisia
20	226032_at	CASP2	caspase 2, apoptosis-related cysteine peptidase
21	201754_at	COX6C	cytochrome c oxidase subunit VIc
22	222155_s_at	SLC52A2	solute carrier family 52, riboflavin transporter, member 2
23	230249_at	KHDRBS3	KH domain containing, RNA binding, signal transduction associate
24 25	213127_s_at	MED8	mediator complex subunit 8
26	241908_at	BROX	BRO1 domain and CAAX motif containing
27	229665_at	CSTF3	cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kDa
28	201479_at	DKC1 /// SNORA56	dyskeratosis congenita 1, dyskerin /// small nucleolar RNA, H/ACA
29	201275_at	FDPS	farnesyl diphosphate synthase
30 31	238273_at	C7orf73 /// LOC10028	chromosome 7 open reading frame 73 /// chromosome 7 open re
32	243531_at	ORAOV1	oral cancer overexpressed 1
33	222987_s_at	TMEM9	transmembrane protein 9
34	209054 s at	WHSC1	Wolf-Hirschhorn syndrome candidate 1
35	226649 at	PANK1	pantothenate kinase 1
30 37		MRE11A	MRE11 meiotic recombination 11 homolog A (S. cerevisiae)
38	39729 at	PRDX2	peroxiredoxin 2
39	208934 s at	IGALS8	lectin galactoside-binding soluble 8
40	203167 at	TIMP2	TIMP metallonentidase inhibitor 2
41	200107_at	7NF17/	zinc finger protein 17/
42 43	210200_at		WD repeat containing anticense to TD52
44	224105_at		MIS19 hinding protoin 1
45	220030_at		DITENIA entirennee DNA 1 (nen mutain anding)
46	228972_dl		vibicuiting factor FAD
47	210685_s_at	UBE4B	ubiquitination factor E4B
48	213/54_s_at		poly(A) binding protein interacting protein 1
49 50	225196_s_at	MRPS26	mitochondrial ribosomal protein S26
51	202847_at	PCK2	phosphoenolpyruvate carboxykinase 2 (mitochondrial)
52	219004_s_at	MIS18A	MIS18 kinetochore protein homolog A (S. pombe)
53	227160_s_at	NDUFAF5	NADH dehydrogenase (ubiquinone) complex I, assembly factor 5
54 55	200734_s_at	ARF3	ADP-ribosylation factor 3
56	210418_s_at	IDH3B	isocitrate dehydrogenase 3 (NAD+) beta
57	210470_x_at	NONO	non-POU domain containing, octamer-binding
58	65588_at	LOC388796	uncharacterized LOC388796
59	206273_at	SLMO1	slowmo homolog 1 (Drosophila)
60			

1			
2	222018_at	NACA	nascent polypeptide-associated complex alpha subunit
3 ∕I	212072_s_at	CSNK2A1 /// CSNK2A1	L casein kinase 2, alpha 1 polypeptide /// casein kinase 2, alpha 1 p
5	201068_s_at	PSMC2	proteasome (prosome, macropain) 26S subunit, ATPase, 2
6	213419_at	APBB2	amyloid beta (A4) precursor protein-binding, family B, member 2
7	32723_at	CSTF1	cleavage stimulation factor, 3' pre-RNA, subunit 1, 50kDa
8	211056_s_at	SRD5A1	steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-ste
9	225303_at	KIRREL	kin of IRRE like (Drosophila)
10	218829_s_at	CHD7	chromodomain helicase DNA binding protein 7
12	203728 at	BAK1	BCL2-antagonist/killer 1
13		GSTM3	glutathione S-transferase mu 3 (brain)
14	1555760 a at	RBM15	RNA binding motif protein 15
15	213610 s at		kelch-like 23 (Drosonhila) /// PHOSPHO2-KI HI 23 readthrough
16 17	219910_9_0t	RCI Δ1	hold homolog 1 (F. coli)
18	2220E9_at	CDSM2	C protoin signaling modulator 2
19	233036_at		CNAS anticance DNA 1 (non protein coding)
20	232881_dl	GIVAS-ASI	GNAS antisense RNA 1 (non-protein coung)
21	224580_at	SLC38A1	solute carrier family 38, member 1
22	225925_s_at	USP48	ubiquitin specific peptidase 48
23	209171_at	ITPA	inosine triphosphatase (nucleoside triphosphate pyrophosphatase
24 25	218497_s_at	RNASEH1	ribonuclease H1
26	1553099_at	TIGD1	tigger transposable element derived 1
27	225777_at	SAPCD2	suppressor APC domain containing 2
28	227385_at	PPAPDC2	phosphatidic acid phosphatase type 2 domain containing 2
29	57703_at	SENP5	SUMO1/sentrin specific peptidase 5
30	217895_at	PTCD3	pentatricopeptide repeat domain 3
32		C1orf53	chromosome 1 open reading frame 53
33	214173 x at	URI1	URI1, prefoldin-like chaperone
34	204514 at	DPH2	DPH2 homolog (S. cerevisiae)
35	219880 at	LOC100507619	uncharacterized LOC100507619
36	203550 s at	E00100507015	family with sequence similarity 189 member B
37 38	203330_3_ut		glucosamine-6-nhosnhate deaminase 1
39	202302_3_at		MPS2 magnesium homoostasis factor homolog (S. corovisiao)
40	210550_5_dl		wiksz magnesium nomeosiasis factor nomolog (s. cerevisiae)
41	220525_s_at		ancient ubiquitous protein 1
42	220399_at	LINCOUTTS	long intergenic non-protein coding RNA 115
43	219491_at	LRFN4	leucine rich repeat and fibronectin type III domain containing 4
44 45	222233_s_at	DCLRE1C	DNA cross-link repair 1C
46	214700_x_at	RIF1	RAP1 interacting factor homolog (yeast)
47	220160_s_at	KPTN	kaptin (actin binding protein)
48	223513_at	CENPJ	centromere protein J
49	1554408_a_at	TK1	thymidine kinase 1, soluble
50 51	212832_s_at	СКАР5	cytoskeleton associated protein 5
52	213571_s_at	EIF4E2 /// LOC100507	eukaryotic translation initiation factor 4E family member 2 /// unc
53	212008 at	UBXN4	UBX domain protein 4
54		ZHX1-C8ORF76	ZHX1-C8ORE76 readthrough
55	204849 at	DPH3P1 /// TCFI 5	DPH3, KTI11 homolog (S. cerevisiae) pseudogene 1 /// transcriptic
56	219002 at	FASTKD1	FAST kinase domains 1
57 58	219002_ut	IAGE3	Lantigen family member 3
59	213001_3_al		c antigen family, member 3
60	201309_dl	סכחשו	isociti ale ueliyul ogellase 5 (NAD+) Dela

2	237005_at	LOC442075	uncharacterized LOC442075
3		FAM195A	family with sequence similarity 195, member A
4		MTERF	mitochondrial transcription termination factor
5		KIF3C	kinesin family member 3C
7	223811 s at	GET4 /// SUN1	golgi to ER traffic protein 4 homolog (S. cerevisiae) /// Sad1 and U
8	222654 at		inositol mononhosphatase domain containing 1
9	202528_at	GALE	LIDP-galactose_1_enimerase
10	202328_at	MEN1	multiple endocrine peoplesia l
11	$2020+3_3_a$		calmodulin hinding transcription activator 1
12 13	1554026 a at	MVO10	
14	1554020_a_al		$\frac{1}{1000}$
15	227094_al		denydrogenase E1 and transketolase domain containing 1
16	209797_at		canopy 2 nomolog (zebratisn)
17	228987_at	FAM49B	family with sequence similarity 49, member B
10 19	21/950_at	NOSIP	nitric oxide synthase interacting protein
20	201558_at	RAE1	RAE1 RNA export 1 homolog (S. pombe)
21	230521_at	C9orf100	chromosome 9 open reading frame 100
22	217208_s_at	DLG1	discs, large homolog 1 (Drosophila)
23	218617_at	TRIT1	tRNA isopentenyltransferase 1
24 25	227724_at	LOC728190	uncharacterized LOC728190
26	212012_at	PXDN	peroxidasin homolog (Drosophila)
27	228543_at	PET117	PET117 homolog (S. cerevisiae)
28	209899_s_at	PUF60	poly-U binding splicing factor 60KDa
29	203706_s_at	FZD7	frizzled family receptor 7
30	226346_at	MEX3A	mex-3 homolog A (C. elegans)
32	208952_s_at	LARP4B	La ribonucleoprotein domain family, member 4B
33	227818 at	CEP85	centrosomal protein 85kDa
34		SNX5	sorting nexin 5
35		VEGFA	vascular endothelial growth factor A
30 37	229538 s at	IOGAP3	IO motif containing GTPase activating protein 3
38	202338 at	TK1	thymidine kinase 1. soluble
39	221908 at	RNFT2	ring finger protein, transmembrane 2
40	217043 s at	MEN1	mitofusin 1
41	/571/ at	HCEC1R1	host cell factor C1 regulator 1 (XPO1 dependent)
42 43	1552715 c of		family with sequence similarity 195, member A
44	1000710_5_at		C protoin sounled recenter 1270
45	242392_dl	GFRIS/C	shramasama 17 anan raading frama 06
46	228000_al	C1701190	Chromosome 17 open reading frame 96
47	213668_s_at	SUX4	SRY (sex determining region Y)-box 4
48	226086_at	SY113	synaptotagmin XIII
49 50	224790_at	ASAP1	ArtGAP with SH3 domain, ankyrin repeat and PH domain 1
51	211165_x_at	EPHB2	EPH receptor B2
52	238768_at	C2orf68	chromosome 2 open reading frame 68
53	212757_s_at	CAMK2G	calcium/calmodulin-dependent protein kinase II gamma
54 55	218567_x_at	DPP3	dipeptidyl-peptidase 3
56	31807_at	DDX49	DEAD (Asp-Glu-Ala-Asp) box polypeptide 49
57	1555274_a_at	EPT1	ethanolaminephosphotransferase 1 (CDP-ethanolamine-specific)
58	202261_at	VPS72	vacuolar protein sorting 72 homolog (S. cerevisiae)
59	207098_s_at	MFN1	mitofusin 1
60			

1			
2	214264_s_at	EFCAB11	EF-hand calcium binding domain 11
3 4	223530_at	TDRKH	tudor and KH domain containing
5	221649_s_at	PPAN /// PPAN-P2RY	1 peter pan homolog (Drosophila) /// PPAN-P2RY11 readthrough
6	209588_at	EPHB2	EPH receptor B2
7	210014_x_at	IDH3B	isocitrate dehydrogenase 3 (NAD+) beta
8	202486_at	AFG3L2	AFG3 ATPase family gene 3-like 2 (S. cerevisiae)
9 10	229980_s_at	SNX5	sorting nexin 5
11	212858_at	PAQR4	progestin and adipoQ receptor family member IV
12	210785_s_at	C1orf38	chromosome 1 open reading frame 38
13	202758_s_at	RFXANK	regulatory factor X-associated ankyrin-containing protein
14 15	218522_s_at	MAP1S	microtubule-associated protein 1S
16	231967_at	PHF20L1	PHD finger protein 20-like 1
17	227456_s_at	C6orf136	chromosome 6 open reading frame 136
18	218016_s_at	POLR3E	polymerase (RNA) III (DNA directed) polypeptide E (80kD)
19	222759_at	SUV420H1	suppressor of variegation 4-20 homolog 1 (Drosophila)
20 21	200778_s_at	SEPT2	septin 2
22	232740_at	MCM3AP-AS1	MCM3AP antisense RNA 1 (non-protein coding)
23	217310_s_at	FOXJ3	forkhead box J3
24	219984_s_at	HRASLS	HRAS-like suppressor
25 26	203805 s at	FANCA	Fanconi anemia, complementation group A
20	203438 at	STC2	stanniocalcin 2
28		EBP	emopamil binding protein (sterol isomerase)
29		ENC1	ectodermal-neural cortex 1 (with BTB-like domain)
30		RTKN	rhotekin
31	213526 s at	LIN37	lin-37 homolog (C. elegans)
33	201548 s at	KDM5B	lysine (K)-specific demethylase 5B
34	221082 s at	NDRG3	NDRG family member 3
35	228499 at	PFKFB4	6-phosphofructo-2-kinase/fructose-2.6-biphosphatase 4
36 37	232652 x at	SCAND1	SCAN domain containing 1
38	207571 x at	C1orf38	chromosome 1 open reading frame 38
39	1555500 s at	SI C2A4RG	SI C2A4 regulator
40	1554348 s at		CDKN2A interacting protein N-terminal like
41	213378 s at		/ DEAD/H (Asn-Glu-Ala-Asn/His) hox helicase 11 /// DEAD/H (Asn-G
42 43	1555797 a at	ARPC5	actin related protein 2/3 complex subunit 5 16kDa
44	219556 at	C16orf59	chromosome 16 open reading frame 59
45	203806 s at	FANCA	Eanconi anemia, complementation group A
46	205000_5_at	RUSC1	RUN and SH3 domain containing 1
47 78	200545_5_a	CHTE18	CTE18 chromosome transmission fidelity factor 18 homolog (S
49	220305_3_at		lenrocan like A
50	1558320 at		tonsoku-like DNA renzir protein
51	200709 at		EK506 binding protein 14, 12kDa
52 52	200709_at		mothyltransforase like 17
53 54	223326_3_{dl}		tPNA mathyltransforase 1 homolog (S. corovision)
55	210403_X_dl		family with sequence similarity 24 member P
56	201122 of		SPV (cov dotormining ragion V) how 12
57	204432_dl		SAT (Sex determining region r)-DOX 12
วช 59	210205 c+		SCAN UOMIAM CONTAINING 1
60	209705_at	IVIIFZ	metal response element binding transcription factor 2

1			
2	227348_at	PARS2	prolyl-tRNA synthetase 2, mitochondrial (putative)
3	226775_at	ENY2	enhancer of yellow 2 homolog (Drosophila)
4	1553015_a_at	RECQL4	RecQ protein-like 4
6	225362_at	FAM122B	family with sequence similarity 122B
7	228906_at	TET1	tet methylcytosine dioxygenase 1
8	1558143_a_at	BCL2L11	BCL2-like 11 (apoptosis facilitator)
9	238333 s at	MTG1	Mitochondrial GTPase 1 homolog (S. cerevisiae)
10	 34868 at	SMG5	smg-5 homolog, nonsense mediated mRNA decay factor (C. elega
12	200990 at	TRIM28	trinartite motif containing 28
13	219080 s at	CTPS2	CTP synthase 2
14	213000 <u>5</u> ut	G2F3	G2/M-nhase specific F3 uhiquitin protein ligase
15	223235_at		ombruenic estadorm development
16	210030_at		
17	219015_S_at		internal mentance, subraining K, member 5
10	221004_s_at	TIM2C	integral membrane protein 2C
20	209205_s_at	LMO4	LIM domain only 4
21	214185_at	KHDRBS1	KH domain containing, RNA binding, signal transduction associate
22	221906_at	TXNRD3 /// TXNRD3N	thioredoxin reductase 3 /// thioredoxin reductase 3 neighbor
23	217714_x_at	MIR3917 /// STMN1	microRNA 3917 /// stathmin 1
24	207812_s_at	GORASP2	golgi reassembly stacking protein 2, 55kDa
26	203262_s_at	FAM50A	family with sequence similarity 50, member A
27	212809_at	NFATC2IP	nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen
28	201948_at	GNL2	guanine nucleotide binding protein-like 2 (nucleolar)
29	44669_at	SDHAF1	succinate dehydrogenase complex assembly factor 1
30	200661_at	CTSA	cathepsin A
32	242560 at	FANCD2	Fanconi anemia, complementation group D2
33		HSD17B10	hydroxysteroid (17-beta) dehydrogenase 10
34		LPIN1	lipin 1
35		FAM117B	family with sequence similarity 117, member B
36	224652 at	CCNY	cyclin Y
38	41047 at	C9orf16	chromosome 9 open reading frame 16
39	222343 at	BCI 2I 11	BCI 2-like 11 (anontosis facilitator)
40	222345_at	54556	spindle assembly 6 homolog (C elegans)
41	231895_at	C11orf92	chromosomo 11 opon roading framo 92
42	229099_at		ubiquinel suteshrome s reductase complex chanerene
43 44	229072_dl		intrafic seller transmert 74 benefic seles (Chlerender seles)
45	61732_r_at		EDB 411 4A auticus DNA 4 (ana auticus di autoria)
46	228259_s_at	EPB41L4A-AS1	EPB41L4A antisense RNA 1 (non-protein coding)
47	240228_at	CSMD3	CUB and Sushi multiple domains 3
48	204301_at	KBTBD11	kelch repeat and BTB (POZ) domain containing 11
49 50	210791_s_at	ARHGAP32	Rho GTPase activating protein 32
51	1563502_at	ZDHHC2	Zinc finger, DHHC-type containing 2
52	1569262_x_at	UBE3D	ubiquitin protein ligase E3D
53	206030_at	ASPA	aspartoacylase
54	1564372_s_at	CASC2	cancer susceptibility candidate 2 (non-protein coding)
55 56	1555352_at	FOXP2	forkhead box P2
57	205116_at	LAMA2	laminin, alpha 2
58	219332_at	MICALL2	MICAL-like 2
59	218483 s at	IFT46	intraflagellar transport 46 homolog (Chlamydomonas)
60			

1			
2	225539_at	ZNF295	zinc finger protein 295
3	219415_at	TTYH1	tweety homolog 1 (Drosophila)
4 5	213519_s_at	LAMA2	laminin, alpha 2
6	203233_at	IL4R	interleukin 4 receptor
7	225999_at	RIMKLB	ribosomal modification protein rimK-like family member B
8	238484_s_at	SSBP2	single-stranded DNA binding protein 2
9	213228 at	PDE8B	phosphodiesterase 8B
10		WDR17	WD repeat domain 17
12		LITAF	lipopolysaccharide-induced TNF factor
13	235335 at	ABCA9	ATP-binding cassette, sub-family A (ABC1), member 9
14	219954 s at	GBA3	glucosidase beta acid 3 (cytosolic)
15	155/117 at		coiled-coil domain containing 60
16 17	205241 at	SCO2	SCO cutochrome oxidase deficient homolog 2 (veast)
17	203241_{al}		family with convorse similarity 12, member A
19	202972_S_dl		anning with sequence similarity 13, member A
20	205632_S_at	PIPSKIB	phosphalidyinositoi-4-phosphale 5-kinase, type i, beta
21	201042_at	I GIVIZ	transgiutaminase 2 (C polypeptide, protein-giutamine-gamma-giu
22	203151_at	MAP1A	microtubule-associated protein 1A
23	231434_at	LOC100505841	zinc finger protein 474-like
24 25	224648_at	GPBP1	GC-rich promoter binding protein 1
26	1561928_s_at	ANKUB1	ankyrin repeat and ubiquitin domain containing 1
27	238810_at	RFX3	regulatory factor X, 3 (influences HLA class II expression)
28	201924_at	AFF1	AF4/FMR2 family, member 1
29	1553798_a_at	FBXL13	F-box and leucine-rich repeat protein 13
30 31	242323_at	PLA2G12A	phospholipase A2, group XIIA
32	234605_at	CDC14B	CDC14 cell division cycle 14 homolog B (S. cerevisiae)
33	229956_at	NR2C1	nuclear receptor subfamily 2, group C, member 1
34		RABL2A /// RABL2B	RAB, member of RAS oncogene family-like 2A /// RAB, member of
35	 1552993 at	DYDC1	DPY30 domain containing 1
30 37	208866 at	CSNK1A1	casein kinase 1. alpha 1
38	1559067 a at	LOC158402	Uncharacterized LOC158402
39	230351 at	100283481	uncharacterized LOC283481
40	1557285 at	AREGR	Amphiregulin B
41	238/183 at	SSRD2	single-stranded DNA hinding protein 2
42	200405_{at}		single-stranded DNA binding protein 2 $\alpha_{\rm cuclin}$ dependent kinase inhibitor 1A (n21, Cin1)
43	202204_5_dl	CDANIA CRowf24	cyclin-dependent kinase minibitor IA (p21, Cip1)
45	1502301_dl	C801134	Chromosome 8 open reading frame 34
46	208070_s_at	REV3L	REV3-like, polymerase (DNA directed), zeta, catalytic subunit
47	204497_at	ADCY9	adenyiate cyclase 9
48	209612_s_at	ADH1B	alcohol dehydrogenase 1B (class I), beta polypeptide
49 50	1553228_at	CCDC89	coiled-coil domain containing 89
51	219970_at	GIPC2	GIPC PDZ domain containing family, member 2
52	204874_x_at	BAIAP3	BAI1-associated protein 3
53	202552_s_at	CRIM1	cysteine rich transmembrane BMP regulator 1 (chordin-like)
54	231961_at	RBPMS	RNA binding protein with multiple splicing
55 56	210176_at	TLR1	toll-like receptor 1
57	235328_at	PLXNC1	Plexin C1
58	45288_at	ABHD6	abhydrolase domain containing 6
59	240303 at	TMC5	transmembrane channel-like 5
60			

3 215321_at RUNDC3B RUN domain containing 3B 4 218730_s_at OGN osteoglycin 7 201983_s_at EGFR epidermal growth factor receptor 8 220060_at CSorf9 chromosome 9 open reading frame 9 11 220973_at USP9X ubiquitin specific peptidase 9, X-linked 12 206914_at CRTAM cytoxic and regulatory T cell molecule 12 225747_at COQ10A coenzyme Q10 homolog A (S. cerevisiae) 14 237298_at FU26850 FU26850 protein 1559097_at Claorf64 chromosome 14 open reading frame 64 17 55321_at ANKCH1 metyrin-repeat and fibronectin type III domain containing 1 18 230824_at MARCH10 membrane-associated ing finger (C314C4) 10, E3 ubiquitin proteir 19 1554708_s_at SPATA6L spermatogenesis associated 6-like 21 242069_at UFM1 Ubiquitin-fold modifier 1 22 242664_at KLF2 Kruppel-like factor 2 (lung) 22 224775_s_at TRIM34 family with sequence similarity 46, member A 21 204755_s_at TRIM36A family with sequence similarity 46, member A 21 204756_s_at TRIM3A family wit	2	224165_s_at	IQCH	IQ motif containing H
4218730 s_atOGNosteoglycin6202588_atAK1ademylate kinase 17201988_s_atEGFRepidermal growth factor receptor8220050_atC90rf9chromosome 9 open reading frame 91220573_atUSPXubiquitin specific peptidase 9, X-linked1220573_atCRTAMcytotoxic and regulatory T cell molecule122573_atCRTAMcytotoxic and regulatory T cell molecule122573_atCAQ10Aconcryme Q10 homolog A (S. cerevisiae)14237298_atFU26850FU26850 protein151559097_atC14orf64chromosome 14 open reading frame 64155321_atANKFN1ankyrin-repet at and fibronectin type III domain containing 1153846_atTHRAthyroid hormone receptor, alpha242609_atUSC644solute carrier family 61 (neurotransmitter transporter, serotonin), i242669_atUFM1Ubiquitin-fold modifier 1222646_atKL22KruppeHilke factor 2 (lung)2221766_s_atTRIM34 // TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough2221765_s_atSRP1secreted frizled-related protein 12221765_s_atSRC13asparagine-linked glycosylation 13 homolog (S. cerevisiae)2221765_s_atTAM6A6family with sequence similarity 13, member A2222264_atLC23850uncharacterized LOC100506668223854_atLOC238508uncharacterized LOC238508224748_atCD59CD59 molecule, complement regulatory protein223854_atLROMT <t< td=""><td>3</td><td>215321_at</td><td>RUNDC3B</td><td>RUN domain containing 3B</td></t<>	3	215321_at	RUNDC3B	RUN domain containing 3B
6 202588_at AK1 ademylate kinase 1 7 201983_s_at EGFR epidermal growth factor receptor 8 220060_st CRAN3 RCAN family member 3 9 220050_at C9orf9 chromsome 9 open reading frame 9 11 229573_at USP9X ubiquitin specific peptidase 9,X-linked 12 205914_at CRTAM cotoxic and regulatory T cell molecule 13 225747_at COQ10A coenzyme Q10 homolog A (S. cerevisiae) 14 237298_at FU26850 FU26850 protein 1555097_at Claorf64 chromosome 14 open reading frame 64 1553211_at ANKFN1 ankyrin-repeat and fibronectin type III domain containing 1 1554708_s_at SPATA6L spermatogenesis associated 6-like 21 242069_at UFM1 Ubiquitin-fold modifier 1 2242669_at UFM1 Ubiquitin-fold modifier 1 2242664_at KLP2 Kruppel-like factor 2 (lung) 224765_s_at FAM13A family with sequence similarity 46, member A 30 204526_s_at FAM46A family with sequence similarity 46, member A <td< td=""><td>4</td><td>218730 s at</td><td>OGN</td><td>osteoglycin</td></td<>	4	218730 s at	OGN	osteoglycin
9201983_s_atEGFRepidermal growth factor receptor8229064_s_atRCAN3RCAN family member 39220050_atCSOrd9chromosome 9 open reading frame 911229573_atUSP9Xubiquitin specific peptidase 9, X-linked12220614_atCRTAMcytotoxic and regulatory T cell molecule1222574_atCO010Aconexyme Q10 homolog A (S. cerevisiae)14237298_atFU26850FU26850 protein151555097_atC140f64chromosome 14 open reading frame 641555211_atANKFN1ankyrin-repeat and fhomectin type III domain containing 118230824_atMARCH10membrane-associated fring finger (C3HC4) 10, E3 ubiquitin protein19155407.8_s_atSPATA6Lspurmatogenesis associated 6-like21242009_atSLC6A4solute carrier family (neurotransmitter transporter, serotonin), I2235846_atTHRAthyroid hormone receptor, alpha23242666_atLF12Kruppel-like factor 2 (lung)24220646_atKLF2Kruppel-like factor 2 (lung)2524175_s_atTRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough2721766_s_atFAM46Afamily with sequence similarity 46, member A28202035_s.atSFRP1scereterized IO22835082920583_s_atALG100506668uncharacterized LOC205066820583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)215264_0_atHOXA-AS2	5	202588 at	AK1	adenvlate kinase 1
8 220064_s_at RCAN 3 RCAN family member 3 9 220050_at C9orf9 chromosome 9 open reading frame 9 11 220573_at USP9X ubiquitin specific peptidase 9, X-linked 12 206914_at CRTAM cytotxic and regulatory T cell molecule 13 225747_at COQ10A coenzyme Q10 homolog A (S. cerevisiae) 14 237298_at FLJ26850 FLJ26850 protein 15 1553097_at C14orf64 chromosome 14 open reading frame 64 17 1553211_at ANKFN1 ankyrin-repeat and fibronectin type III domain containing 1 18 20824_at MARCH10 membrane-associated oring finger (C3HC4) 10, E3 ubiquitin proteir 19 1554708_s_at SPATA6L spermatogenesis associated 6-like 2000_att SIC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), I 21 242069_at UFM1 Ubiquitin-fold modifier 1 22 226664_at KLF2 Kruppel-like factor 2 (ung) 22 217047_s_at FAM13A family with sequence similarity 13, member A 20 2035_s_att UGC100506668 uncharacterize	7		EGFR	epidermal growth factor receptor
g Loss of the normosome 9 open reading frame 9 220050_att COord9 ubiquitin specific peptidase 9, X-linked 11 229573_att USP9X ubiquitin specific peptidase 9, X-linked 12 206914_att CRTAM cytotoxic and regulatory T cell molecule 12 205914_att COQ10A coenzyme Q10 homolog A (S. cerevisiae) 14 237298_att FL/26850 FL/26850 protein 15 1559097_att C14orl64 chromosome 14 open reading frame 64 15 155908_s_att MARCH10 membrane-associated f-ilke 20020a_st SLC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), I 21 242009_att USC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), I 22 242669_att UFM1 Ubiquitin-fold modifier 1 24 KL72 Kruppel-like factor 2 (lung) 21 24075_s_att FAM46A family with sequence similarity 43, member A 20 21766_s_s_att FAM46A family with sequence similarity 46, member A 20 204526_s_att UC10050	8	229064 s at	RCAN3	BCAN family member 3
10 220573_at USP9X ubiquition specific peptidase 9, Xlinked 12 206914_at CRTAM cytotoxic and regulatory T cell molecule 13 225747_at COQ10A coenzyme Q10 homolog A (5, cerevisiae) 14 23728_at FLI26850 FLI26850 protein 15 59097_at C14orf64 chromosome 14 open reading frame 64 17 1553211_at ANKFN1 ankyrin-repeat and fibroactin trype III domain containing 1 15 30284_at MARCH10 membrane-associated ring finger (C3HC4) 10, E3 ubiquitin proteir 15 54708_s_at SPATA6L spermatogenesis associated 6-like 242009_at SLC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), I 242669_at UFM1 Ubiquitin-fold modifier 1 242664_at KLF2 Kruppel-like factor 2 (lung) 22 217047_s_at FAM13A family with sequence similarity 13, member A 20203_s_at SPR1 scereted frizzled-related protein 1 20203_s_at CCD050668 uncharacterized LOC100506668 204583_s_at LOC10050	9	220050 at	C9orf9	chromosome 9 onen reading frame 9
11 22537_at COFA Ubiquiting spin depicting spin depiction spin depictin depictin depiction spin depiction spin depiction spin	10	220050_at		ubiquitin specific pentidase 9. V-linked
12200314_aitCKNWCKNOW1222574_atCOQUAcoenzyme Q10 homolog A (S. cerevisiae)14237298_atFLJ26850FLJ26850 protein151559097_atC140rf64chromosome 14 open reading frame 641553097_atC140rf64chromosome 14 open reading frame 641553097_atSPATAELspermatogenesis associated ring finger (C3HC4) 10, E3 ubiquitin protein18230824_atMARCH10membrane-associated ring finger (C3HC4) 10, E3 ubiquitin protein191554708_s_atSPATAELspermatogenesis associated 6-like204209_atSLC6A4solute carrier family 6 (neurotransmitter transporter, serotonin), I235846_atTHRAthyroid hormone receptor, alpha23242669_atUFM1Ubiquitin-fold modifier 124226646_atKLF2Krupel-like factor 2 (lung)224765_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 12921766_s_atTBC108TBC1 domain family, member 8 (with GRAM domain)20238854_atLOC10050668uncharacterized LOC2035083025583_s_atLG283508uncharacterized LOC203508312652640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)32227415_atLOC283508uncharacterized LOC203508312652640_atKIF3Kinestin family member 2, BEN and BTB (PO2) domain containing32226717_atLRTOMTleucine rich transm	11	225575_at		cutatovic and regulatory T coll malocula
225/4/_ait CUCLUDA CoEnzyme QUI nomoga (S. Cerevisae) 14 23728_at FLJ26850 FLJ26850 15 1559097_at C14orf64 chromosome 14 open reading frame 64 17 1553211_at ANKFN1 ankyrin-repeat and fibronectin type III domain containing 1 18 230824_at MARCH10 membrane-associated ring finger (C3HC4) 10, E3 ubiquitin protein 19 1554708_s_at SPATA6L spermatogenesis associated 6-like 20 242009_at SLC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), 1 21 32846_at THRA thyroid hormone receptor, alpha 22 26646_at KLF2 Kruppel-like factor 2 (lung) 22 24175_s_at FRM13A family with sequence similarity 13, member A 23 202035_s_at FRP1 secreted fizzled-related protein 1 29 221766_s_at FAM46A family with sequence similarity 46, member A 30 204526_s_at TBC108 TBC1 domain family, member 8 (with GRAM domain) 31 22766_s_at LOC10050668 uncharacterized LOC10050668 32 228748_at CD59 <	1Z 13	200914_at		cytotoxic and regulatory i cell molecule
16237/298_aitFL2/6850FL2/6850FL2/6850161553097_atC140rf64chromosome 14 open reading frame 64171553211_atANKFN1ankyrin-repeat and fibronectin type III domain containing 118230824_atMARCH10membrane-associated ing finger (C3HC4) 10, E3 ubiquitin protein191554708_s_atSPATA6Lspermatogenesis associated 6-like20242009_atSLC6A4solute carrier family 6 (neurotransmitter transporter, serotonin), I2123846_atTHRAthyroid hormone receptor, alpha22242666_atKLF2Kruppe-like factor 2 (lung)23244669_atKLF2Kruppe-like factor 2 (lung)2420035_s_atSFRP1secreted frizized-related protein 129217047_s_atFAM13Afamily with sequence similarity 13, member A2020235_s_atTBC108TBC1 domain family, member 8 (with GRAM domain)21243854_atLOC100506668uncharacterized LOC100506683205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)21228748_atCD59CD59 molecule, complement regulatory protein22226717_atLRTOMTleucine rich transmersme and 0-methyltransferase domain con2320452_atKIF13Bkinesin family member 2, BEN and BTB (PO2) domain containing41204707_atEIF5eukaryotic translation initiation factor 542217415_atTACC1transforming, acidic coiled-coil containing protein 1432047	13	225747_at	CUQIUA	coenzyme Q10 nomolog A (S. cerevisiae)
161559097_attC140rb4Chromosome 14 open reading frame 6411553211_atANKFN1ankyrin-repeat and fibronectin type III domain containing 118230824_atMARCH10membrane-associated fing finger (C3HC4) 10, E3 ubiquitin proteir191554708_s_atSPATA6Lspermatogenesis associated 6-like242009_atSLC6A4solute carrier family 6 (neurotransmitter transporter, serotonin), i23242669_atUFM1Ubiquitin-fold modifier 124226646_atKLF2Kruppel-like factor 2 (lung)25224175_s_atFRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, member A2022035_s_atSFRP1secreted frizzled-related protein 129221766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC100sof668uncharacterized LOC10050666831204526_s_atLOC100506668uncharacterized LOC235083225583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC235083522640_atHOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con3921293_atNACC1NACC140028707_atEIF5eukaryotic translio	15	237298_at	FLJ26850	FLJ26850 protein
171553211_atANK FM1ankyrin-repeat and fibronectin type III domain containing 118230824_atMARCH10membrane-associated ring finger (C3HC4) 10, E3 ubiquitin proteir191554708_s_atSPATA6Lspermatogenesis associated 6-like20242009_atSLC6A4solute carrier family 6 (neurotransmitter transporter, serotonin), I2135846_atTHRAthyroid hormone receptor, alpha22226646_atKLF2Kruppel-like factor 2 (lung)23224669_atVFM1Ubiquitin-fold modifier 124226646_atKLF2Kruppel-like factor 2 (lung)26224175_s_atFAM13Afamily with sequence similarity 13, member A202035_s_atFRP1secreted frizzled-related protein 129217047_s_atFAM46Afamily with sequence similarity 14, member A30204526_s_atTBC100506668uncharacterized LOC10050666831204526_s_atLOC100506668uncharacterized LOC2835083225745_atLOC283508uncharacterized LOC2835083320553_s_atCD59CD59 molecule, complement regulatory protein3422674_atCD59CD59 molecule, complement regulatory protein coding)3221745_atLRTOMTLeucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC1 transforming, acidic coiled-coil containing protein 1204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesi	16	1559097_at	C14ort64	chromosome 14 open reading frame 64
18 230824_at MARCH10 membrane-associated fring finger (C3HC4) 10, E3 ubiquitin protein 19 1554708_s_at SPATAGL spermatogenesis associated 6-like 20 1554708_s_at SPATAGL spermatogenesis associated 6-like 21 24209_at SLC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), i 22 35846_at THRA thyroid hormone receptor, alpha 242669_at UFM1 Ubiquitin-fold modifier 1 242665_s_at TRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough 27 217047_s_at FAM13A family with sequence similarity 13, member A 28 20035_s_at SFRP1 secreted frizzled-related protein 1 201766_s_at TBC108 TBC1 domain family, member 8 (with GRAM domain) 21232640_at LOC20050668 uncharacterized LOC100506668 2264715_at LOC283508 uncharacterized LOC283508 32 2267415_at LOC28308 33 20583_s_at ALG13 asparagine-linked glycosylation 13 homolog (S. cerevisiae) 34 227415_at LOC28308 uncharacterized LOC20506668 35 1	17	1553211_at	ANKFN1	ankyrin-repeat and fibronectin type III domain containing 1
191554708_s_atSPATA6Lspermatogenesis associated 6-like242009_atSLC6A4solute carrier family 6 (neurotransmitter transporter, serotonin), 123242669_atUFM1Ubiquitin-fold modifier 124226646_atKLF2Kruppel-like factor 2 (lung)25224175_s_atTRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 129221766_s_atFAM46Afamily with sequence similarity 46, member A20204526_s_atTBC108TBC1 domain family, member 8 (with GRAM domain)2128854_atLOC100506668uncharacterized LOC10050666833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212933_atNACC2NACC1transforming, acidic coiled-coil containing protein 141208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atSIAEsialic acid acetylesterase4420	18	230824_at	MARCH10	membrane-associated ring finger (C3HC4) 10, E3 ubiquitin proteir
24242009_atSLC6A4solute carrier family 6 (neurotransmitter transporter, serotonin), i2235846_atTHRAthyroid hormone receptor, alpha23242669_atUFM1Ubiquitin-fold modifier 124226646_atKLF2Kruppel-like factor 2 (lung)25224175_s_atTRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, nember A28202035_s_atSFRP1secreted frizzled-related protein 12921766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC108TBC1 domain family, member 8 (with GRAM domain)32238854_atLOC100506668uncharacterized LOC20850833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508361562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and O-methyltransferase domain con39212993_atNACC1transforming, acidic coiled-coil containing protein 141208707_atEIF5cukaryoti translation initiation factor 544204713_s_atFScoagulation factor V (proaccelerin, labile factor)45224391_s_atSIAEsialic acid acetylesterase46224391_s_at <td>19</td> <td>1554708_s_at</td> <td>SPATA6L</td> <td>spermatogenesis associated 6-like</td>	19	1554708_s_at	SPATA6L	spermatogenesis associated 6-like
2235846_atTHRAthyroid hormone receptor, alpha23242669_atUFM1Ubiquitin-fold modifier 1242669_atKLF2Kruppel-like factor 2 (lung)25224175_s_atTRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 12921766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC1 Damain family, member 8 (with GRAM domain)21786_s_atLOC100506668uncharacterized LOC10050666831205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA clust antisense RNA 2 (non-protein coding)36226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con3921293_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing41208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atFScoagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B4524388_atXISTX (inactive)-specific transcript (non-protein coding)4624391_s_atSIAEsialic acid acetylest	20	242009_at	SLC6A4	solute carrier family 6 (neurotransmitter transporter, serotonin),
23242669_atUFM1Ubiquitin-fold modifier 124226646_atKLF2Kruppel-like factor 2 (lung)25224175_s_atTRIM34 ///TRIM6-TRI tripartite motif containing 34 ///TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 129221766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC1D8TBC1 domain family, member 8 (with GRAM domain)31204526_s_atLOC100506668uncharacterized LOC1005066683220583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508361562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con3921293_atNACC2NACC family member 2, BEN and BT8 (PO2) domain containing41208707_atEIF5eukaryotic translation initiation factor 542217437_s_s.atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)4420262_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47 <td< td=""><td>22</td><td>35846_at</td><td>THRA</td><td>thyroid hormone receptor, alpha</td></td<>	22	35846_at	THRA	thyroid hormone receptor, alpha
24226646_atKLF2Kruppel-like factor 2 (lung)25224175_s_atTRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 12921766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC108TBC1 domain family, member 8 (with GRAM domain)31204526_s_atLOC100506668uncharacterized LOC10050666833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508361562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con3921293_atNACC2NACC family member 12B41208707_atEIF5eukaryotic transforming, acidic coiled-coil containing protein 143204713_s_atTScoagulation factor V (proaccelerin, labile factor)4420296_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase49 <t< td=""><td>23</td><td>242669_at</td><td>UFM1</td><td>Ubiquitin-fold modifier 1</td></t<>	23	242669_at	UFM1	Ubiquitin-fold modifier 1
22224175_s_atTRIM34 /// TRIM6-TRI tripartite motif containing 34 /// TRIM6-TRIM34 readthrough27217047_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 129221766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC108TBC1 domain family, member 8 (with GRAM domain)31204526_s_atLOC100506668uncharacterized LOC10050666833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)36226717_atLRTOMTleucine rich transmebrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing41208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atCloorf93chromosome 16 open reading frame 9351219795_atSLC6A14solute carrier family 6 (amino acid transporter), me	24	226646 at	KLF2	Kruppel-like factor 2 (lung)
2017047_s_atFAM13Afamily with sequence similarity 13, member A28202035_s_atSFRP1secreted frizzled-related protein 12921766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC1D8TBC1 domain family, member 8 (with GRAM domain)31204526_s_atLOC100506668uncharacterized LOC10050666832238854_atLOC100506668uncharacterized LOC28350833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508361562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing41208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase49<	25		TRIM34 /// TRIM6-TRI	tripartite motif containing 34 /// TRIM6-TRIM34 readthrough
28202035_s_atSRP1secreted frizzled-related protein 129221766_s_atFAM46Afamily with sequence similarity 46, member A30204526_s_atTBC1D8TBC1 domain family, member 8 (with GRAM domain)31204526_s_atLOC100506668uncharacterized LOC10050666833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing41208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 935221358_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454 <t< td=""><td>20 27</td><td>217047 s at</td><td>FAM13A</td><td>family with sequence similarity 13, member A</td></t<>	20 27	217047 s at	FAM13A	family with sequence similarity 13, member A
29221766_s_atFAM46AFamily with sequence similarity 46, member A30204526_s_atTBC1D8TBC1 domain family, member 8 (with GRAM domain)32238854_atLOC100506668uncharacterized LOC10050666833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508361562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38216717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing40208707_atEIF5eukaryotic translation initiation factor 541208707_atEIF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224388_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 25121300_atC16orf93chromosome 16 open reading frame 9352213558_atPCL0piccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 14 </td <td>28</td> <td>202035 s at</td> <td>SERP1</td> <td>secreted frizzled-related protein 1</td>	28	202035 s at	SERP1	secreted frizzled-related protein 1
30212100_011101101110110131204326_s_atTBC1D8TBC1 domain family, member 8 (with GRAM domain)32238854_atLOC100506668uncharacterized LOC1005066833205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembera and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (POZ) domain containing40208707_atEIF5eukaryotic translation initiation factor 541208707_atEIF5coagulation factor V (proaccelerin, labile factor)42217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 93511563961_	29	221766 s at	FAM46A	family with sequence similarity 46 member A
31204322_3_210210001021000102100010210001021000102100010210001021000102100010210001021000102100010210001021000102100010210000102	30	201526 s at		TBC1 domain family, member 8 (with GRAM domain)
3223833-atColorosousanticipate for Colorosous33205583_s_atALG13asparagine-linked glycosylation 13 homolog (S. cerevisiae)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)36228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (POZ) domain containing40208707_atEIF5eukaryotic translation initiation factor 541208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 14 <td>31</td> <td>$204920_{-}3_{-}$</td> <td>100100506668</td> <td>uncharacterized LOC100506668</td>	31	$204920_{-}3_{-}$	100100506668	uncharacterized LOC100506668
3420338_s_atAtorsasparagine-inited grossylation is infining (3. cerevisite)34227415_atLOC283508uncharacterized LOC283508351562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing40208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phospho	32 33	238834_at	ALC12	acharaging linked glycosylation 12 homolog (S. corovisiag)
127415_at10023308Uncharacterized LOC23308361562640_atHOXA-AS2HOXA cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing40208707_atEIF5eukaryotic translation initiation factor 541208707_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9352213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 156231051_atM1uncharacterized LOC100507027	34	203365_5_at		uncharacterized LOC282E08
361562640_atHOXA-AS2HOXA Cluster antisense RNA 2 (non-protein coding)37228748_atCD59CD59 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing40208707_atEIF5eukaryotic translation initiation factor 54120873_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 935221358_atPCLOpiccolo (presynaptic cytomatrix protein)5321979_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 1561560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	35	227415_dl		Uncharacterized LOC283508
37228/48_atCDS9CDS9 molecule, complement regulatory protein38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (POZ) domain containing41208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 935121975_atSLC6A14solute carrier family of (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 1581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	36	1562640_at	HUXA-ASZ	HOXA cluster antisense RNA 2 (non-protein coding)
38226717_atLRTOMTleucine rich transmembrane and 0-methyltransferase domain con39212993_atNACC2NACC family member 2, BEN and BTB (POZ) domain containing40208707_atEIF5eukaryotic translation initiation factor 541217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 145420263_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 1561560458_s_atCAPS2calcyphosine 2581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	37	228/48_at	CD59	CD59 molecule, complement regulatory protein
35212993_atNACC2NACC family member 2, BEN and BTB (PO2) domain containing40208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 155156045a_s_atCAPS2calcyphosine 2581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	38	226717_at	LRTOMT	leucine rich transmembrane and 0-methyltransferase domain con
208707_atEIF5eukaryotic translation initiation factor 542217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 935221358_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 1561560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	39 40	212993_at	NACC2	NACC family member 2, BEN and BTB (POZ) domain containing
42217437_s_atTACC1transforming, acidic coiled-coil containing protein 143204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9352213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 157243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	41	208707_at	EIF5	eukaryotic translation initiation factor 5
43204713_s_atF5coagulation factor V (proaccelerin, labile factor)44202962_atKIF13Bkinesin family member 13B45224588_atXISTX (inactive)-specific transcript (non-protein coding)47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 25023130_atC16orf93chromosome 16 open reading frame 935121358_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 157243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	42	217437_s_at	TACC1	transforming, acidic coiled-coil containing protein 1
44 45 46 47202962_atKIF13Bkinesin family member 13B45 46 47 47236016_atXISTX (inactive)-specific transcript (non-protein coding)47 48 49 49 50 51 51 	43	204713_s_at	F5	coagulation factor V (proaccelerin, labile factor)
45 46 47224588_atXISTX (inactive)-specific transcript (non-protein coding)47 47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48 49 50 51 51 51 51 52 52 51 52 51 52 51 52 51 52 51 52 51 52 51 52 52 51 52 52 52 53 52 53 52 54 55 56 56 56 56 57 57 56 56 57 57 56 56 56 57 57 58 58 59 58 58 58 58 58 58 58 58 58 58 58 58 56 58 58 58 58 58 58 58 58 58 56 59 59 59 51 51 51 51 56 56 56 56 58 58 58 560458_s_at 59 59 59 51 59 50 51 50 51 56 56 56 56 56 56 56 58 58 560458_s_at 58 58 58 58 58 58 58 58 58 58 58 58 58 58 560458_s_at 58 58 58 58 58 58 58 58 58 58 58 58 59 59 59 50 50 50 51 56 56 56 56 56 56 56 58 58 560458_s_at 58 <b< td=""><td>44</td><td>202962_at</td><td>KIF13B</td><td>kinesin family member 13B</td></b<>	44	202962_at	KIF13B	kinesin family member 13B
47236016_atSMARCE1SWI/SNF related, matrix associated, actin dependent regulator of48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 157243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	45 46	224588_at	XIST	X (inactive)-specific transcript (non-protein coding)
48224391_s_atSIAEsialic acid acetylesterase491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 157243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	47	236016_at	SMARCE1	SWI/SNF related, matrix associated, actin dependent regulator of
491557122_s_atGABRB2gamma-aminobutyric acid (GABA) A receptor, beta 250231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 157243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	48	224391_s_at	SIAE	sialic acid acetylesterase
50231300_atC16orf93chromosome 16 open reading frame 9351213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 156243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	49	1557122 s at	GABRB2	gamma-aminobutyric acid (GABA) A receptor, beta 2
5152213558_atPCLOpiccolo (presynaptic cytomatrix protein)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 1561560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	50	231300 at	C16orf93	chromosome 16 open reading frame 93
5210000_attNoteprocess (prosynaptic cycliniatian process)53219795_atSLC6A14solute carrier family 6 (amino acid transporter), member 1454202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 156243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	51 52		PCLO	piccolo (presynaptic cytomatrix protein)
54202663_atWIPF1WAS/WASL interacting protein family, member 1551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 156243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	53	219795 at	SIC6A14	solute carrier family 6 (amino acid transporter) member 14
551563961_atFHAD1forkhead-associated (FHA) phosphopeptide binding domain 156243413_atTTC30Btetratricopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC100507027	54	202663 at	WIPF1	WAS/WASI interacting protein family member 1
561505501_atTTC30Btetratricopeptide repeat domain 30B57243413_atTTC30Bcalcyphosine 2581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC10050702760606060	55	1563961 st	ΕΗΔΟ1	forkhead-associated (EHA) phosphonentide hinding domain 1
57243415_at11050Btetraticopeptide repeat domain 30B581560458_s_atCAPS2calcyphosine 259231051_atM1uncharacterized LOC10050702760	56	100001_at		totratriconontido ronoat domain 200
581560458_S_atCAPS2Calcyphosine 259231051_atM1uncharacterized LOC10050702760	57	243413_dl		colourbasing 2
60 231051_at M1 uncharacterized LOC100507027	50 50	1500458_S_at	CAPSZ	calcyphosine 2
	60	231021_gt		

1			
2	220218_at	SPATA6L	spermatogenesis associated 6-like
3	209977_at	PLG	plasminogen
4	202551_s_at	CRIM1	cysteine rich transmembrane BMP regulator 1 (chordin-like)
5 6	220272_at	BNC2	basonuclin 2
7	228905 at	PCM1	pericentriolar material 1
8		TARP /// TRGC2	TCR gamma alternate reading frame protein /// T cell receptor ga
9	230964 at	FREM2	ERAS1 related extracellular matrix protein 2
10	1556007 at	7NE/17/	zinc finger protein 474
11	100007_at		microPNA 20c 2
1Z 13	251150_at		HILLIONNA SUC-2
13	206010_at	HABPZ	nyaluronan binding protein 2
15	1556325_at	FILIP1	filamin A interacting protein 1
16	241705_at	ABCA5	ATP-binding cassette, sub-family A (ABC1), member 5
17	214607_at	РАКЗ	p21 protein (Cdc42/Rac)-activated kinase 3
18	205337_at	DCT	dopachrome tautomerase (dopachrome delta-isomerase, tyrosine
19	1562321_at	PDK4	pyruvate dehydrogenase kinase, isozyme 4
20 21	202995_s_at	FBLN1	fibulin 1
22	233915 at	KIAA0825	KIAA0825
23		ΑΤΡ7Α	ATPase, Cu++ transporting, alpha polypeptide
24	226228 at	AOP4	aquaporin 4
25	243423 at	TNIP1	TNFAIP3 interacting protein 1
26	231103 at		notassium intermediate/small conductance calcium-activated cha
21	231105_at		SET binding protoin 1
29	227470_dl		SET billioning protein 1
30	212225_dl		
31	206834_at	HRD	nemoglobin, delta
32	225102_at	MGLL	monoglyceride lipase
33	225250_at	STIM2	stromal interaction molecule 2
34 35	223905_at	CCDC135	coiled-coil domain containing 135
36	203787_at	SSBP2	single-stranded DNA binding protein 2
37	214438_at	HLX	H2.0-like homeobox
38	1565544_at	RNF141	ring finger protein 141
39	204674_at	LRMP	lymphoid-restricted membrane protein
40	225212 at	SLC25A25	solute carrier family 25 (mitochondrial carrier; phosphate carrier)
41 42		EHD4	EH-domain containing 4
43	227934 at	KPNA5	karvopherin alpha 5 (importin alpha 6)
44	205798 at	II 7R	interleukin 7 recentor
45	1558815 of	SOPRS2	sorbin and SH2 domain containing 2
46	1000010_at		transmombrano protoin 40
47	222092_3_al		craited exil demain containing 20
48 70	233326_al		
- -50	235723_at	BNC2	basonuclin 2
51	205291_at	IL2RB	interleukin 2 receptor, beta
52	236745_at	CCDC78	coiled-coil domain containing 78
53	226956_at	MTMR3	myotubularin related protein 3
54	202393_s_at	KLF10	Kruppel-like factor 10
55 56	230891_at	TUBE1	Tubulin, epsilon 1
57	200911_s_at	TACC1	transforming, acidic coiled-coil containing protein 1
58	226992_at	NOSTRIN	nitric oxide synthase trafficker
59		ARHGAP26	Rho GTPase activating protein 26
60		-	0,

3223348_x.atMUM1melanoma associated antigen (mutated) 145225624_atSNX29sorting nexin 2971553134_s_atCOrf72chromosome 9 open reading frame 72824681_atGKglycerol kinase9230772_atHNF4Ahepatocyte nuclear factor 4, alpha11228442_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen213572_s_atZNF688zinc finger protein 68812202747_s_atITM2Aintegral membrane protein 2A203508_atTNFK5F1Btumor necrosis factor receptor superfamily, member 1B12203507_atKARadenylate kinase 8202363_atTTC16tetratricopeptide repeat domain 16203845_atKARDBKNo 5DP oblissociation inhibitor (GD1) beta1220364_atKARDBK(lysine) acetyltransferase 2B215046_atKANSLILKATB regulatory NSL complex subunit 1-like22234420_atODF2Louter dense fiber of spern tails 2-like22234420_atCOS64433uncharacterized LOC65443322234420_atKASSF5Ras association (RaG0S/Ar6-6) domain family member 523216109_atMED31Lmethyl-CpG binding domain protein 3-like 12222432_atRASSF5Ras associated 1323216109_atMED31Lmethyl-CpG binding domain protein 3-like 123215245_a_atDOFYLouter dense member 12422439_atREL11REL1*2222	2	1553202_at	STOX1	storkhead box 1
4225624_atSNX29sorting nexin 295219093_atPID1phosphotyrosine interaction domain containing 11553134_s_atGKglycerol kinase9230772_atHNF4Ahepatocyte nuclear factor 4, alpha1228442_atNFATC2nuclear factor of activated 1-cells, cytoplasmic, calcineurin-depen12213577_s_atZNF688zinc finger protein 688202747_s_atTNFRSF1Btumor necrosis factor receptor superfamily, member 1812203747_s_atRNESF1Btumor necrosis factor receptor superfamily, member 181220394_atNFIANuclear factor /A1223693_atTTC16tetratricopeptide repeat domain 16230976_atAK8adenylate kinase 8215046_atKANS1LLKAT8 regulatory NSL complex subunit 1-like2223442_atLOC654433uncharacterized LOC65443323633_atLOC654433uncharacterized LOC654433237420_atODF2Louter dense fiber of sperm tails 2-like23931_atANOSanoctamin 522322_atRAS5F5Ras association (RaiGDS/AF-6) domain family member 5232322_atRAS5F5Ras association ifainity 13, member A22564_atSPATA13spermatogenesis associated 13226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen7723561_atTXNL178226991_atNFATC27922691_atTXNL170227554_at71CorrI4-SGK3 ///SGK:C	3	223348_x_at	MUM1	melanoma associated antigen (mutated) 1
5219093_atPID1phosphotyrosine interaction domain containing 171553134_s_atC9of7Zchromosome 9 open reading frame 728214681_atGKglycerol kinase9320772_atHNF4Ahepatocyte nuclear factor 4, alpha11228442_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen213527_s_at27074_s_atITMZAintegral membrane protein 2A11228432_atNFRSF1Btumor necrosis factor receptor superfamily, member 1B201288_atARHCDIBRho GDP dissociation inhibtor (GD) beta12239076_atAK8adenylate kinase 82013076_atKAN2adenylate kinase 821215046_atKAN21LKAT8 regulatory NSL complex subunit 1-like2223945_atCOC54433uncharacterized LOC5544332223420_atODF2Louter dense fiber of sperm tails 2-like2223425_atLOC654433uncharacterized LOC55443322237420_atODF2Louter dense fiber of sperm tails 2-like2223425_atLOC654433uncharacterized LOC554433222373_z_atFAM13Afamily with sequence similarity 13, member A222322_atRAS575Ras555232663_atSPATA13spermatogenesis associated 13246430_atREL1RELT-like 1222699_atREL1RELT-like 1222699_atEFRepidermal growth factor receptor222699_atREV14dopey family member 1	4	225624 at	SNX29	sorting nexin 29
71553134_s.atC9orf72chromosome 9 open reading frame 728214681_atGKglycerol kinase920772_atHNFAAhepatocyte nuclear factor 4, alpha10228442_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen11213527_s.atZNF688zin finger protein 688202747_s.atTNVERSF1Btumor necrosis factor receptor superfamily, member 1812203508_atTNVERSF1Btumor necrosis factor receptor superfamily, member 181220394_atNFIANuclear factor 1/A1223994_atNFIANuclear factor 1/A1223994_atNFIANuclear factor 1/A1223994_atNFIANuclear factor 1/A12230976_atAK8adenylate kinase 8201246_atKANSL1LKAT8 guilatory NSL complex subunit 1-like22237420_atODF2Louter dense fiber of sperm tails 2-like233720_atODF2Louter dense fiber of sperm tails 2-like23322_atRASSF5Ras association (RalGDS/AF-6) domain family member 5231215046_atKAN131Mediator complex subunit 13.ike23524_atLOC654433uncharacterized LOC654433216109_atMED131Mediator conflex subunit 13.ike231152459_a.atRADS14232529_atRASSF523322_atRASSF5243322_atRASSF5243322_atRASSF52443_atSPATA1325254_atSPATA13 <tr< td=""><td>5</td><td>219093 at</td><td>PID1</td><td>phosphotyrosine interaction domain containing 1</td></tr<>	5	219093 at	PID1	phosphotyrosine interaction domain containing 1
8214681_atGKglycerol kinase90230772_atHNF4Ahepatocyte nuclear factor 4, alpha128442_atNFATC2nuclear factor 7 activated T-cells, cytoplasmic, calcineurin-depen12213527_5_atZNF688zinc finger protein 68813202747_5_atTITN2Aintegral membrane protein 2A14203508_atTNFRSF1Btumor necrosis factor creeptor superfamily, member 1B15201288_atARHGDIBRho GDP dissociation inhibitor (GDI) beta1722994_atNFIANuclear factor / A1823683_atTTC16tetratricopetide repeat domain 1619230976_atAK8adenylate kinase 821215046_atKANSLILKAT8 regulatory NSL complex subunit 1-like2223845_atKAT2BK(lysine) acetyltransferase 2B23237420_atODF2Louter dense fiber of sperm tails 2-like23237420_atCOC654433uncharacterized LOC654433271558334_a_atC200715chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29216109_atMED13LMediator complex subunit 13-like2125564_atSPATA13spermatogenesia sasociated 13225561_atTXNL1thioredoxin-like 122699_atREGRepidermal growth factor receptor223252_s_atCBorH4-5GK3 /// SGK:C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir213572_s_atSERPINB1serpin peptida	7	_ 1553134 s at	C9orf72	chromosome 9 open reading frame 72
9 230772_at HNF4A hepatocyte nuclear factor 4, alpha 11 228442_at NFATC2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen 213527_s_at ZNF688 zin Ginger protein 688 zin GDP dissociation inhibitor GDN 12 202747_s_at TIM2A integral membrane protein 2A 14 203508_at TNFRSF1B tumor necrosis factor receptor superfamily, member 1B 15 20128_at ARHGDIB Rho GDP dissociation inhibitor (GDI) beta 12 29994_at NFIA Nuclear factor I/A 12 29994_at KANSLIL KATS etytopidate kinase 8 20 2445_at KANSLIL KATS regulatory NSL complex subunit 1-like 21 15046_at KANSLIL KATS regulatory NSL complex subunit 1-like 22 20345_at KATZ K(lysine) acetyltransferase 2B court dissign aceta 23 2740_at ODF2L outer dense fiber of sperm tails 2-like course 23 23420_at CO2075_at FAM13A family with sequence similarity 13,	8	 214681 at	GK	glycerol kinase
10 The second secon	9	230772 at	HNF4A	hepatocyte nuclear factor 4, alpha
11 213527_s_at ZNF688 zinc finger protein 688 13 202747_s_at ITMZA integral membrane protein 2A 14 203508_at TNFRSF1B tumor necrosis factor receptor superfamily, member 1B 16 201288_at ARHGDIB Rho GDP dissociation inhibitor (GDI) beta 17 22994_at NFIA Nuclear factor I/A 18 236833_at TTC16 tetratricopeptide repeat domain 16 19 230506_at KANS1LL KAT8 regulatory NSL complex subunit 1-like 21 203645_at KANS1LL KAT2B K(lysine) acetyltransferase 2B 2373420_at ODF2L outer dense fiber of sperm tails 2-like 24 229313_at ANO5 anoctamin 5 25 228425_at LOC654433 uncharacterized LOC654433 21554534_a.at C22orf15 chromosome 22 open reading frame 15 22 23322_at RASSF5 Ras association (RaIGDS/AF-6) domain family member 5 216109_at MED13L Mediator complex subunit 13-like 22 226991_at NFATC2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen 23	10	228442 at	NFATC2	nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen
121000	11	213527 s at	7NF688	zinc finger protein 688
14DescriptionIntegro infection for vectors is factor receptor superfamily, member 1815201288_atARHGDIBRho GDP dissociation inhibitor (GDI) beta16201288_atARHGDIBRho GDP dissociation inhibitor (GDI) beta17229994_atNFIANuclear factor I/A18206833_atTTC16tetratricopeptide repeat domain 1619230976_atAK8adenylate kinase 821215046_atKANSLILKAT8 regulatory NSL complex subunit 1-like22203845_atKAT2BK(lysine) acetyltransferase 28237420_atODF2Louter dense fiber of sperm tails 2-like24229313_atANO5anoctamin 525228425_atLOC654433uncharacterized LOC6544332622973_x_atFAM13Afamily with sequence similarity 13, member A28202973_x_atFAM13Afamily with sequence similarity 13, member A2923322_atRASSF5Ra association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like31226430_atRELL1RELT-like 132226430_atRELL1RUCer factor of activated T-cells, cytoplasmic, calcineurin-depen32213271_s_atDOPEY1doper family member 133224699_atEGFRepidermal growth factor receptor44213271_s_atCBorHA-SGK3 ///SGK:CBorHA-SGK3 readthrough /// serum/glucocorticoid regulated kir32219252_s_atLAMA2laminin, alpha 23	13	202747 s at		integral membrane protein 24
162003 TechnologyThis ADChild and the analysis16201288_atARHGDBRho GDP dissociation inhibitor (GDI) beta17229994_atNFIANuclear factor I/A1823683_atTTC16tetratricopeptide repeat domain 161920076_atAK8adenylate kinase 820215046_atKANSLILKAT8 regulatory NSL complex subunit 1-like21203845_atKAT2BK(lysine) acetyltransferase 2822203845_atKAT2BK(lysine) acetyltransferase 2822203845_atLOC654433uncharacterized LOC65443327155834_a_atC220r115chromosome 22 open reading frame 152822372_atRASSF5Ras association (RalGDS/AF-6) domain family member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 5211552459_a_atMED311methyl-Cp6 binding domain protein 3-like 123225564_atSPATA13spermatogenesis associated 132222490_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen2323561_atTXNL1thioredoxin-like 12422499_atEGFRepidermal growth factor receptor2422499_atLAMA2laminin, alpha 2215272_s_atGEMIN8gern (nuclear organelle) associated protein 8213572_s_atCAST12Afamily with sequence similarity 153, member 1223492_atKIAA1841KIAA184124359_atKIAA1841KIAA1841<	14	2027 17_3_0t	TNERSE1B	tumor necrosis factor recentor superfamily member 1B
16201202FiniteSite17229994_atNFIANuclear factor I/A18236833_atTTC16tetratricopeptide repeat domain 1620230976_atAK8adenylate kinase 821215046_atKANSLILKAT8 regulatory NSL complex subunit 1-like22203845_atKANSLILKAT8 regulatory NSL complex subunit 1-like22203845_atKANSLILKAT8 regulatory NSL complex subunit 1-like22203845_atKANSLKAT8 regulatory NSL complex subunit 1-like23223425_atLOC654433uncharacterized LOC654433271558334_a_atC220r15chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 1-like31116109_atMED13Lmethyl-CpG binding domain protein 3-like 132226430_atSPATA13spermatogenesia associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atCEM14SGK3 ///SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41215345_at<	15	203308_at		Rho GDP dissociation inhibitor (GDI) heta
1722593-2.aiIn MInduct and table 1/41823683.atTTC16tetratricopeptide repeat domain 1619230976.atAK8adenylate kinase 821215046.atKANSL1LKAT8 regulatory NSL complex subunit 1-like22203845.atKAT2BK(lysine) acetyltransferase 2B237420.atODF2Louter dense fiber of sperm tails 2-like24229313.atANO5anoctamin 525228425.atLOC654433uncharacterized LOC654433271558334.a.atFAM13Afamily with sequence similarity 13, member A2820373.x.atFAM13Afamily with sequence similarity 13, member A29223322.atRASSF5Ras association (RalGDS/AF-6) domain family member 531216109.atMED13LMediator complex subunit 13-like322564.atSPATA13spermatogenesis associated 1334226430.atRELL1RELT-like 135226991.atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen3723561.atTXNL1thioredoxin-like 13821271.5.atDOPEY1dope family member 139224999.atEGFRepidermal growth factor receptor40227627.atGEM14-SGK3 /// SGK: C80744-SGK3 readthrough /// serum/glucocorticoid regulated kir4121572.5.atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 136156345.atFAM133family with sequence similarity 123, member 8 // uncharacterize<	16	201200_at		Nuclear factor I/A
236835_aitFieldCell anticipate Unitarial Dispection Piper Dispective Piper Unitarial Dispective	17	223334_at		totratricopontido ropost domain 16
20230976_aitANSaddenyate killage a21215046_atKANSLILKATB regulatory NSL complex subunit 1-like22203845_atKANSLIKATB regulatory NSL complex subunit 1-like23237420_atODF2Louter dense fiber of sperm tails 2-like2429313_atANO5anoctamin 525228425_atLOC654433uncharacterized LOC6544332622973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like31225564_atSPATA13spermatogenesis associated 1332226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen3322561_atTXNL1thioredoxin-like 134226991_atLAMA2laminin, alpha 235561_atTXNL1thioredoxin-like 136213271_5_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor41227627_atC8o744-SGK3 ///SGK: C8o744-SGK3 readthrough /// serum/glucocorticoid regulated kir421563845_atFAM1538gem (nuclear organelle) associated protein 84423572_5_atSERNINB1serpin peptidase inhibitor, clade B (valbumin), member 1451563845_atFAM1538family with sequence similarity 153, member 8// uncharacterize46243539_atKIAA1841KIAA1841 <td>19</td> <td>230635_dl</td> <td></td> <td>adapulata kinasa 8</td>	19	230635_dl		adapulata kinasa 8
21215046_atKANSLITKATS regulatory NSL Complex Subult 1-inke22203845_atKAT2BK(lysine) acetyltransferase 2B23237420_atODF2Louter dense fiber of sperm tails 2-like24229313_atANO5anoctamin 525228425_atLOC654433uncharacterized LOC654433271558334_a_atC22orf15chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like311552459_a_atMBD3L1methyl-CpG binding domain protein 3-like 133225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOFY1dopey family member 13922499_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41213572_s_atFAM133gem (nuclear organelle) associated protein 842214840_s_atFAM153B // LOC1005 family with sequence similarity 153, member 8 // uncharacterize43235455_atFAM153B // LOC1005 family with sequence similarity 123A44235465_at	20	230976_at		duenyiale kinase o
22203845_atKI/2BKI/VSINE) acetyItransferase 2B23237420_atODF2Louter dense fiber of sperm tails 2-like24229313_atANOSanoctamin 525228425_atLOC654433uncharacterized LOC654433271558334_a_atC22or15chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Rassociation (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like312155459_a.atMBD311methyl-CpG binding domain protein 3-like 133225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_5_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor41227627_atC8oft44-SGK3 /// SGK: C8oft44-SGK3 readthrough /// serum/glucocorticoid regulated kir42216840_s_atLAMA2laminin, alpha 243219252_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumi), member 144213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumi), member 145156345_atFAM123Afamily with sequence similarity 123A46243539_atKIAA1841KIAA1841	21	215046_at	KANSLIL	KATS regulatory INSL complex subunit 1-like
2323/420_atODF2LOuter dense fiber of sperm tails 2-like24229313_atANOSanoctamin 525228425_atLOC654433uncharacterized LOC654433271558334_a_atC22orf15chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like311552459_a_atMBD311methyl-Cp6 binding domain protein 3-like 133225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 242123572_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalburnin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 123A44243539_atKIAA1841KIAA184145235465_atFAM123Afamily with sequence similarity	22	203845_at	KATZB	K(lysine) acetyltransferase 2B
22229313_atANOSanoctamin 526228425_atLOC654433uncharacterized LOC654433271558334_a_attC22orf15chromosome 22 open reading frame 1528202973_x_attFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like3121654.9aSPATA13spermatogenesis associated 1332226391_atREL11RELT-like 133226591_atTXNL1thioredoxin-like 134226430_atREL11RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor41227627_atC8off44-SGK3///SGK: C8off44-SGK3 readthrough // serum/glucocorticoid regulated kir42216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM1538 //LOC100E family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogen 148235365_atFAM123Afamily with sequence similarity 123A<	23 24	237420_at	ODF2L	outer dense fiber of sperm tails 2-like
26228425_atLOC654433uncharacterized LOC65433271558334_a_atC22orf15chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like311552459_a_atMB03L1methyl-CpG binding domain protein 3-like 13222564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 136226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir4121654_atFAM153B /// LOC1005 family with sequence similarity 153, member 1421563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 14823539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54<	25	229313_at	ANO5	anoctamin 5
271558334_a_atC22orf15chromosome 22 open reading frame 1528202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like311552459_a_atMBD3L1methyl-CpG binding domain protein 3-like 133225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41215872_s_atGEMIN8gem (nuclear organelle) associated protein 842216840_s_atLAMA2laminin, alpha 243213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 14421562_atFAM123Afamily with sequence similarity 123, member B // uncharacterize47244289_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A40235455_atFAM123Afamily with sequence similarity 123A4121569_atAH11Abelson helper integration site family, member 5842	26	228425_at	LOC654433	uncharacterized LOC654433
28202973_x_atFAM13Afamily with sequence similarity 13, member A29223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like311552459_a_atMBD3L1methyl-CpG binding domain protein 3-like 133225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir4121552_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin petidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 123, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 14823539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atClorf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site 153221029_s_atKIAAspermatogenesis associated 454 <td>27</td> <td>1558334_a_at</td> <td>C22orf15</td> <td>chromosome 22 open reading frame 15</td>	27	1558334_a_at	C22orf15	chromosome 22 open reading frame 15
223223322_atRASSF5Ras association (RalGDS/AF-6) domain family member 530216109_atMED13LMediator complex subunit 13-like311552459_aatMBD3L1methyl-CpG binding domain protein 3-like 13225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen36235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 242216840_s_atCBMN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC100E family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA18414923565_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site 152212029_s_atWNT5Bwingless-type MMTV integration site 15322320_a_at <td>28</td> <td>202973_x_at</td> <td>FAM13A</td> <td>family with sequence similarity 13, member A</td>	28	202973_x_at	FAM13A	family with sequence similarity 13, member A
31216109_atMED13LMediator complex subunit 13-like321552459_a_atMBD3L1methyl-CpG binding domain protein 3-like 13322554_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen36226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 242216840_s_atEGFNserpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM1538 // LOC100E family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA18414923565_atFAM123Afamily with sequence similarity 123A50240771_atClorf101chromosome 1 open reading frame 10151240771_atClorf101chromosome 1 open reading frame 10152221629_s_atWNT5Bwingless-type MMTV integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54	29 30	223322_at	RASSF5	Ras association (RalGDS/AF-6) domain family member 5
321552459_a_atMBD3L1methyl-CpG binding domain protein 3-like 133225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC100E family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atClorf101chromosome 1 open reading frame 10151221029_s_atWINT5Bwingless-type MMTV integration site 15222356_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A56155232_atARHGAP44Rho GTPase activating protein 4456209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	31	216109_at	MED13L	Mediator complex subunit 13-like
33225564_atSPATA13spermatogenesis associated 1334226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atClorf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site 15222366_s_atFPB41L4Aspermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A5821523_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1B	32	1552459_a_at	MBD3L1	methyl-CpG binding domain protein 3-like 1
34226430_atRELL1RELT-like 135226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC100E family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site 15222169_atAHI1Abelson helper integration site 1541552320_a_atCCDC65coiled-coil domain containing 6556155232_a_atCPB41L4Aerythrocyte membrane protein band 4.1 like 4A5821523_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	33	225564_at	SPATA13	spermatogenesis associated 13
35 36226991_atNFATC2nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 1015222169_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCDC65coiled-coil domain containing 6557228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypep	34	226430_at	RELL1	RELT-like 1
37235561_atTXNL1thioredoxin-like 138213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atClorf101chromosome 1 open reading frame 10152221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 655615232_atARHGAP44Rho GTPase activating protein 445821523_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class l), beta polypeptide	35 36	226991_at	NFATC2	nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen
38213271_s_atDOPEY1dopey family member 139224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 242219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site 153221029_s_atCCDC65coiled-coil domain containing 65541552320_a_atCCDC65coiled-coil domain containing 6555228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A56155232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	37	235561_at	TXNL1	thioredoxin-like 1
39224999_atEGFRepidermal growth factor receptor40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir42216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC100E family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221029_s_atWNT5Bwingless-type MMTV integration site 153221029_s_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6557228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A5821523_atAHIBalcohol dehydrogenase 1B (class I), beta polypeptide	38	213271_s_at	DOPEY1	dopey family member 1
40227627_atC8orf44-SGK3 /// SGK: C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir41216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	39	224999 at	EGFR	epidermal growth factor receptor
412101010101010101042216840_s_atLAMA2laminin, alpha 243219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	40		C8orf44-SGK3 /// SGK	C8orf44-SGK3 readthrough /// serum/glucocorticoid regulated kir
43219252_s_atGEMIN8gem (nuclear organelle) associated protein 844213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B // uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	41 42		LAMA2	laminin, alpha 2
44213572_s_atSERPINB1serpin peptidase inhibitor, clade B (ovalbumin), member 1451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	43	219252 s at	GEMIN8	gem (nuclear organelle) associated protein 8
451563845_atFAM153B /// LOC1005 family with sequence similarity 153, member B /// uncharacterize47244289_atZNF300P1zinc finger protein 300 pseudogene 148243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCDC65coiled-coil domain containing 6556215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	44	213572 s at	SERPINB1	serpin peptidase inhibitor, clade B (ovalbumin), member 1
4610000 H2 (1)10000 (1)	45	1563845 at	FAM153B /// LOC1005	family with sequence similarity 153, member B /// uncharacterize
47EntropyEntropy48243539_atKIAA1841KIAA184149235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	46	244289 at	7NF300P1	zinc finger protein 300 pseudogene 1
49235465_atFAM123Afamily with sequence similarity 123A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	47 48	243539 at	κιδα1841	
50233405_atFAMI23Afamily with sequence similarity 125A50240771_atC1orf101chromosome 1 open reading frame 10151221569_atAHI1Abelson helper integration site 152221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	49	235465 at	FAM123A	family with sequence similarity 123A
51240771_atClorifolChoricol52221569_atAHI1Abelson helper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	50	233403_at	C1orf101	chromosome 1 open reading frame 101
52221309_atAminAberson heiper integration site 153221029_s_atWNT5Bwingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	51	240771_at		Abalson balgor integration site 1
53221029_s_atWNTSBWingless-type MMTV integration site family, member 5B54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	52	221509_al		Aberson heiper integration site family, member FD
54231178_atSPATA4spermatogenesis associated 4551552320_a_atCCDC65coiled-coil domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A57228232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide	53 54	221029_s_at	VVINT5B	wingless-type wiwit v integration site ramity, member 58
1552320_a_atCCDC65colled-coll domain containing 6556228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide60	55	231178_at	SPATA4	spermatogenesis associated 4
57228256_s_atEPB41L4Aerythrocyte membrane protein band 4.1 like 4A58215232_atARHGAP44Rho GTPase activating protein 4459209613_s_atADH1Balcohol dehydrogenase 1B (class I), beta polypeptide60	56	1552320_a_at		colled-coll domain containing 65
58 215232_at ARHGAP44 Rho GTPase activating protein 44 59 209613_s_at ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide 60	57	228256_s_at	EPB41L4A	erythrocyte membrane protein band 4.1 like 4A
209613_s_at ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide	58 50	215232_at	AKHGAP44	Rho G l Pase activating protein 44
	60	209613_s_at	ADH1B	alconol denydrogenase 1B (class I), beta polypeptide

1			
2	209960_at	HGF	hepatocyte growth factor (hepapoietin A; scatter factor)
3	230511_at	CREM	cAMP responsive element modulator
4	213003_s_at	KIAA0146	KIAA0146
6	237282_s_at	AKAP14	A kinase (PRKA) anchor protein 14
7	213908_at	WHAMMP2 /// WHAN	WAS protein homolog associated with actin, golgi membranes and
8	220324 at	LINC00472	long intergenic non-protein coding RNA 472
9		BBS9	Bardet-Biedl syndrome 9
10		CXorf22	chromosome X open reading frame 22
12	212268 at	SERPINB1	serpin pentidase inhibitor, clade B (ovalbumin), member 1
13	205419 at	GPR183	G protein-coupled receptor 183
14	203413_ut		CD59 molecule, complement regulatory protein
15	212403_at		notacsium voltage gated channel. Shal related subfamily membe
16	215052_dl		potassium voitage-gateu channel, shai-relateu subranniy, membe
1/	1569225_a_al	SCIVIL4	sex comb on midleg-like 4 (Drosophila)
10	213400_s_at	TBL1X	transducin (beta)-like 1X-linked
20	220150_s_at	FAM184A	family with sequence similarity 184, member A
21	209723_at	SERPINB9	serpin peptidase inhibitor, clade B (ovalbumin), member 9
22	227747_at	MPZL3	myelin protein zero-like 3
23	207546_at	ATP4B	ATPase, H+/K+ exchanging, beta polypeptide
24	1555197_a_at	C21orf58	chromosome 21 open reading frame 58
25	208305_at	PGR	progesterone receptor
27	236009_at	PERP	PERP, TP53 apoptosis effector
28	225656_at	EFHC1	EF-hand domain (C-terminal) containing 1
29	239468 at	МКХ	mohawk homeobox
30		CSMD1	CUB and Sushi multiple domains 1
31		WDR66	WD repeat domain 66
33	229266 at	SHISA6	shisa homolog 6 (Xenopus laevis)
34	204037 at		lysonhosnhatidic acid recentor 1
35	2388/0_at		leucine rich repeat (in EUII) interacting protein 1
36	236040_at		galactoso mutarotaso (aldoso 1 onimoraso)
37	233230_3_at		badgabag acultransferaça lika
39	225572_dl		neugenog acylitatisterase-like
40	205406_s_at	SPA17	sperm autoantigenic protein 17
41	1554545_at	APOBEC4	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like
42	242013_at	BCL2L15	BCL2-like 15
43	209539_at	ARHGEF6	Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6
44 45	223753_s_at	CFC1 /// CFC1B	cripto, FRL-1, cryptic family 1 /// cripto, FRL-1, cryptic family 1B
45	224110_at	PRO1804	uncharacterized LOC100133319
47	220648_at	ADARB2	adenosine deaminase, RNA-specific, B2
48	235764_at	PRDM5	PR domain containing 5
49	232311_at	B2M	Beta-2-microglobulin
50	209442 x_at	ANK3	ankyrin 3, node of Ranvier (ankyrin G)
51	209487 at	RBPMS	RNA binding protein with multiple splicing
53		CCDC67	coiled-coil domain containing 67
54	215239 x at	7NF273	zinc finger protein 273
55	205298 s at	BTN2A2	hutvronhilin, subfamily 2 member A2
56	2202200_5_at	SAMSN1	SAM domain SH3 domain and nuclear localization signals 1
57	220330_3_al		microtubula accoriated protein 6
50 59	20072_dl	IVIAPO	dene shreme toutomeness (dene shreme della incomenza i
60	205338_S_at	DCI	uopachrome tautomerase (dopachrome delta-isomerase, tyrosine
1			
----------	---------------	----------------------	---
2	222520_s_at	IFT57	intraflagellar transport 57 homolog (Chlamydomonas)
3	244485_at	HLA-DPB1	major histocompatibility complex, class II, DP beta 1
4 5	213684_s_at	PDLIM5	PDZ and LIM domain 5
6	230839_at	PRMT8	protein arginine methyltransferase 8
7	201525_at	APOD	apolipoprotein D
8	230744_at	FSTL1	follistatin-like 1
9	204202 at	IQCE	IQ motif containing E
10		C22orf23	chromosome 22 open reading frame 23
12	235048 at	FAM169A	family with sequence similarity 169, member A
13	229941 at	FAM166B	family with sequence similarity 166 member B
14	1556630 at		cancer suscentibility candidate 2 (non-protein coding)
15	202002 c at	CTSS	cathonsin S
16	202902_5_dl		duncin autoplaamia 2. haavuu shain 1
1/	1565149_at	DINCZHI	dynein, cytopiasmic 2, neavy chain 1
10	211696_x_at	HBR	nemoglobin, beta
20	209655_s_at	I MEM47	transmembrane protein 47
21	202727_s_at	IFNGR1	interferon gamma receptor 1
22	206465_at	ACSBG1	acyl-CoA synthetase bubblegum family member 1
23	203969_at	PEX3	peroxisomal biogenesis factor 3
24 25	215342_s_at	RABGAP1L	RAB GTPase activating protein 1-like
26	206932_at	CH25H	cholesterol 25-hydroxylase
27	223059_s_at	FAM107B	family with sequence similarity 107, member B
28	232262_at	PIGL	phosphatidylinositol glycan anchor biosynthesis, class L
29	1556579_s_at	IGSF10	immunoglobulin superfamily, member 10
30	236098_at	C17orf110	chromosome 17 open reading frame 110
32	206194 at	HOXC4	homeobox C4
33		ANKRD37	ankyrin repeat domain 37
34		SLFN13	schlafen family member 13
35	202157 s at	CELF2	CUGBP. Elav-like family member 2
36	229430 at	C8orf46	chromosome 8 open reading frame 46
38	206335 at	GALNS	galactosamine (N-acetyl)-6-sulfate sulfatase
39	212486 s at	FYN	EVN oncogene related to SRC_EGR_VES
40	210390 s at		chemokine (C-C motif) ligand 14 /// CCI 14-CCI 15 readthrough ///
41	210330_3_at		
42	200070_3_at		apply growth response 1
43	201094_5_at		early growth response 1
45	1556950_S_at	SERPINED	serpin peptidase initiator, ciade B (ovalburnin), member 6
46	230552_at		uncharacterized LOC100134317 /// uncharacterized LOC284412
47	211776_s_at	EPB41L3	erythrocyte membrane protein band 4.1-like 3
48	1559496_at	PPA2	pyrophosphatase (inorganic) 2
49 50	236029_at	FAT3	FAT tumor suppressor homolog 3 (Drosophila)
51	232109_at	UBXN10	UBX domain protein 10
52	203074_at	ANXA8 /// ANXA8L1 //	annexin A8 /// annexin A8-like 1 /// annexin A8-like 2
53	226653_at	MARK1	MAP/microtubule affinity-regulating kinase 1
54	236031_x_at	FREM1	FRAS1 related extracellular matrix 1
55 56	1552705_at	DUSP19	dual specificity phosphatase 19
57	223047_at	CMTM6	CKLF-like MARVEL transmembrane domain containing 6
58	241843_at	EIF5 /// SNORA28	eukaryotic translation initiation factor 5 /// small nucleolar RNA, H
59	219864 s at	RCAN3	RCAN family member 3
60			

1			
2	212779_at	KIAA1109	KIAA1109
3 1	219736_at	TRIM36	tripartite motif containing 36
5	231930_at	ELMOD1 /// LOC6439	ELMO/CED-12 domain containing 1 /// uncharacterized LOC64392
6	210345_s_at	DNAH9	dynein, axonemal, heavy chain 9
7	204179_at	MB	myoglobin
8	1562336_at	CASC2	cancer susceptibility candidate 2 (non-protein coding)
9 10	205651_x_at	RAPGEF4	Rap guanine nucleotide exchange factor (GEF) 4
10	231909_x_at	ODF2L	outer dense fiber of sperm tails 2-like
12	230722_at	BNC2	basonuclin 2
13	215092_s_at	NFAT5	nuclear factor of activated T-cells 5, tonicity-responsive
14	223786 at	CHST6	carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6
15 16		HLA-DQB1 /// LOC100	major histocompatibility complex, class II, DQ beta 1 /// HLA class
10	239151 at	LOC399753	uncharacterized LOC399753
18	1564474 at	ZBFD3-AS1	ZBED3 antisense RNA 1 (non-protein coding)
19	205251 at	PFR2	period homolog 2 (Drosophila)
20	220539 at	TTC40	tetratricopentide repeat domain 40
21	21869/ at		armadillo repeat containing X-linked 1
22	210094_{at}		nrotein kinase cAMP-dependent regulatory type Lalpha (tissue
24	242402_at		arrestin domain containing A
25	223203_{al}		muosin hoovu choin 11 cmooth musclo
26	201490_X_dl		myosin, neavy chain 11, shooth muscle
27	238138_dl		There are the set of t
20 29	243649_al	FBXU7	F-box protein 7
30	218764_at	PRKCH	protein kinase C, eta
31	221207_s_at	NBEA	neuropeachin
32	241808_at	ZC2HC1A	zinc finger, C2HC-type containing 1A
33	201739_at	SGK1	serum/glucocorticoid regulated kinase 1
35	242344_at	GABRB2	gamma-aminobutyric acid (GABA) A receptor, beta 2
36	201721_s_at	LAPTM5	lysosomal protein transmembrane 5
37	1555112_a_at	C1orf114	chromosome 1 open reading frame 114
38	202018_s_at	LTF	lactotransferrin
39	216663_s_at	ZMYND10	zinc finger, MYND-type containing 10
40	205597_at	SLC44A4	solute carrier family 44, member 4
42	220908_at	CCDC33	coiled-coil domain containing 33
43	210538_s_at	BIRC3	baculoviral IAP repeat containing 3
44	205831_at	CD2	CD2 molecule
45 46	237755_s_at	WDR16	WD repeat domain 16
40	231875_at	KIF21A	kinesin family member 21A
48	241950_at	WWC1	WW and C2 domain containing 1
49	232731 x at	LOC100190938	uncharacterized LOC100190938
50	212651 at	RHOBTB1	Rho-related BTB domain containing 1
51		SEMA4A	sema domain, immunoglobulin domain (Ig), transmembrane dom
52 53		GABRB3	gamma-aminobutyric acid (GABA) A receptor, beta 3
54	232461 at	AHI1	Abelson helper integration site 1
55	228577 x at	ODF2I	outer dense fiber of sperm tails 2-like
56	220105 at	RTDR1	rhabdoid tumor deletion region gene 1
୦/ 58	213910 at	IGFRP7	insulin-like growth factor hinding protein 7
59	215510_at		interlaukin 7
60	200033_at		

2	1556493_a_at	KDM4C	lysine (K)-specific demethylase 4C
3	236083_at	BCL2L15	BCL2-like 15
4	1559322 at	LOC727916	uncharacterized LOC727916
5	36711 at	MAFF	v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (av
7		LOC100507557	uncharacterized LOC100507557
8		EIF4E3	eukarvotic translation initiation factor 4E family member 3
9		RBKS	ribokinase
10	207624 s at	RPGR	retinitis pigmentosa GTPase regulator
11 12	237690 at	GPR115	G protein-coupled recentor 115
12	237030_{u}	7NE440	zinc finger protein 440
14	241731_{a}	2N1 + 40	chromosomo 8 opon roading framo 12
15	1332440_a_al		dual specificity phosphatase 19
16	227098_at		and specificity prospiratase 18
1/	201693_s_at	EGRI	early growth response 1
10	204249_s_at	LMO2	LIM domain only 2 (rhombotin-like 1)
20	221180_at	YSK4	YSK4 Sps1/Ste20-related kinase homolog (S. cerevisiae)
21	1552950_at	C15orf26	chromosome 15 open reading frame 26
22	243582_at	SH3RF2	SH3 domain containing ring finger 2
23	223608_at	EFCAB2	EF-hand calcium binding domain 2
24 25	220003_at	LRRC36	leucine rich repeat containing 36
26	228476_at	KIAA1407	KIAA1407
27	210650_s_at	PCLO	piccolo (presynaptic cytomatrix protein)
28	213888_s_at	TRAF3IP3	TRAF3 interacting protein 3
29	228448_at	MAP6	microtubule-associated protein 6
30	212441 at	KIAA0232	KIAA0232
32		CASP1	caspase 1, apoptosis-related cysteine peptidase
33	 1556378 a at	LOC440896	uncharacterized LOC440896
34	 216979 at	NR4A3	nuclear receptor subfamily 4, group A, member 3
35	231026 at	FFHC1	EE-hand domain (C-terminal) containing 1
36	35974 at	IRMP	lymphoid-restricted membrane protein
38	205308 at	7C2HC1A	zinc finger C2HC-type containing 1A
39	2000_ut		homeodomain interacting protein kinase 1
40	212251_{at}		KAT9 rogulatory NSL complex subunit 1 like
41	230301_5_at		dipontidul pontidase 6
42	207769_5_at		upperior period LOC282177
43 44	1557207_5_al		ADAM metallen entiden en uith thremhennen die true 1 metif 1
45	222486_s_at		ADAM metallopeptidase with thrombospondin type 1 motif, 1
46	238/78_at		membrane protein, palmitoylated 7 (MAGUK p55 subfamily mem
47	1552384_a_at	FAM71A	family with sequence similarity 71, member A
48	220769_s_at	WDR78	WD repeat domain 78
49 50	1559756_at	DKFZp667F0711	uncharacterized protein DKFZp667F0711
51	228642_at	HOTAIRM1	HOXA transcript antisense RNA, myeloid-specific 1 (non-protein co
52	217671_at	DSERG1	Down syndrome encephalopathy related protein 1
53	205650_s_at	FGA	fibrinogen alpha chain
54	205366_s_at	HOXB6	homeobox B6
55 56	216356_x_at	BAIAP3	BAI1-associated protein 3
57	217995_at	SQRDL	sulfide quinone reductase-like (yeast)
58	232639_at	C3orf25	chromosome 3 open reading frame 25
59		IQCG	IQ motif containing G
60			č

1			
2	219777_at	GIMAP6	GTPase, IMAP family member 6
3	210839_s_at	ENPP2	ectonucleotide pyrophosphatase/phosphodiesterase 2
4	206363_at	MAF	v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avia
5 6	1554980_a_at	ATF3	activating transcription factor 3
7	218584_at	TCTN1	tectonic family member 1
8		IRF8	interferon regulatory factor 8
9		LOC285084	uncharacterized LOC285084
10	 219563 at	LINC00341	long intergenic non-protein coding RNA 341
12	219584 at	PLA1A	phospholipase A1 member A
13	207797 s at	I RP2RP	I RP2 hinding protein
14	204703 at	IFT88	intraflagellar transport 88 homolog (Chlamydomonas)
15	155556/ a at	CEL	complement factor I
16	1333304_a_at		complement factor i
17	220086_dl		Complement component Salleceptor 1
10	220271_x_at		EF-hand calcium binding domain 6
20	219597_s_at		dual oxidase 1
21	223611_s_at		ligand of numb-protein X 1, E3 ubiquitin protein ligase
22	238326_at	ODF3B	outer dense fiber of sperm tails 3B
23	204731_at	TGFBR3	transforming growth factor, beta receptor III
24 25	221290_s_at	MUM1	melanoma associated antigen (mutated) 1
26	230763_at	SPATA17	spermatogenesis associated 17
27	206974_at	CXCR6	chemokine (C-X-C motif) receptor 6
28	223731_at	MYCBPAP	MYCBP associated protein
29	226066_at	MITF	microphthalmia-associated transcription factor
30 31	213006_at	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta
32	242268_at	CELF2	CUGBP, Elav-like family member 2
33	209616_s_at	CES1 /// LOC1006530	carboxylesterase 1 /// liver carboxylesterase 1-like
34	1564238 a at	WDR49	WD repeat domain 49
35	226553 at	TMPRSS2	transmembrane protease, serine 2
30 37		IGFBP1	insulin-like growth factor binding protein 1
38	230261 at	ST8SIA4	ST8 alpha-N-acetyl-neuraminide alpha-2.8-sialyltransferase 4
39	1553630 at	C10orf107	chromosome 10 open reading frame 107
40	236674 at	100388780	uncharacterized LOC388780
41	223940 x at	LOC100507645 /// M	Auncharacterized LOC100507645 /// metastasis associated lung ad
4Z 43	$2233 + 0_{-}^{-}ut$		CNDP dipentidase 2 (metallopentidase M20 family)
44	217732_3_{01}		retinoblactoma-like 2 (netanopeptidase W20 family)
45	212331_at	C16orfE4	shromosomo 16 opon roading framo E4
46	1559564_a_al		family with sequence similarity 172 member A
47	223882_at		Tamily with sequence similarity 172, member A
48 40	241495_at		
49 50	224021_at	RP1	retinitis pigmentosa 1 (autosomal dominant)
51	242979_at	IRS1	insulin receptor substrate 1
52	213784_at	IFT27	intraflagellar transport 27 homolog (Chlamydomonas)
53	225557_at	CSRNP1	cysteine-serine-rich nuclear protein 1
54 55	214734_at	EXPH5	exophilin 5
50 56	240033_at	PLG	plasminogen
57	236965_at	UBQLNL	ubiquilin-like
58	213186_at	DZIP3	DAZ interacting protein 3, zinc finger
59	231029_at	F5	coagulation factor V (proaccelerin, labile factor)
60	—		

1			
2	233057_at	HSPB8	heat shock 22kDa protein 8
3	221491_x_at	HLA-DRB1 /// HLA-DR	I major histocompatibility complex, class II, DR beta 1 /// major hist
4 5	231081_at	C2orf73	chromosome 2 open reading frame 73
6	230903_s_at	C8orf42	chromosome 8 open reading frame 42
7	214211_at	FTH1	ferritin, heavy polypeptide 1
8	228850_s_at	SLIT2	slit homolog 2 (Drosophila)
9	228316_at	C2orf63	chromosome 2 open reading frame 63
10	205011 at	VWA5A	von Willebrand factor A domain containing 5A
12		S100A10	S100 calcium binding protein A10
13		ALS2CR12	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, can
14	213998 s at		DFAD (Asn-Glu-Ala-Asn) hox helicase 17
15	215550_5_ut	MR1	major histocompatibility complex class L-related
16	233352_at		kringle containing transmombrane protein 1
17 18	227230_at		Custoine vieb transmersbrane DMD regulator 1 (cherdia like)
10	228496_S_at		Cysteine fich transmembrane BiviP regulator 1 (chordin-like)
20	1557432_at	RASALZ	RAS protein activator like 2
21	205568_at	AQP9	aquaporin 9
22	1566079_at	RPS16P5	ribosomal protein S16 pseudogene 5
23	236166_at	LOC285147	uncharacterized LOC285147
24 25	214043_at	PTPRD	protein tyrosine phosphatase, receptor type, D
26	215133_s_at	FAM153A /// FAM153	B family with sequence similarity 153, member A /// family with sec
27	229953_x_at	LCA5	Leber congenital amaurosis 5
28	211795_s_at	FYB	FYN binding protein
29	213142_x_at	PION	pigeon homolog (Drosophila)
30	209821 at	IL33	interleukin 33
31		STOX1	storkhead box 1
33	227265 at	FGL2	fibringen-like 2
34	238900 at		Imaior histocompatibility complex class II DR beta 1 /// maior hist
35	200300_at	CETN2	centrin FE-hand protein 2
36	200104_at		nucleosome assembly protein 1 like 2
37	204749_dl		Sam like with four mht domains 2
30 39	227210_at	SFIVIBIZ	Schlanke with four high domains 2
40	23/328_at	C140ff105	chromosome 14 open reading frame 105
41	214/48_at	N4BP2L2	NEDD4 binding protein 2-like 2
42	239458_at	ALS2CR12	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, can
43	204783_at	MLF1	myeloid leukemia factor 1
44 45	228461_at	SH3RF3	SH3 domain containing ring finger 3
45 46	1553674_at	LRRIQ3	leucine-rich repeats and IQ motif containing 3
47	1557261_at	WHAMMP2 /// WHAM	WAS protein homolog associated with actin, golgi membranes and
48	238494_at	TRAF3IP1	TNF receptor-associated factor 3 interacting protein 1
49	212192 at	KCTD12	potassium channel tetramerisation domain containing 12
50		C11orf63	chromosome 11 open reading frame 63
51	229254 at	MFSD4	major facilitator superfamily domain containing 4
52 53	203881 s at		dystronhin
54	203001_3_0		family with sequence similarity 160, member A
55	213334_dl		ianny with sequence similarity 109, Member A
56	204000_dl		filsenestis type III and CDDV devices contributes 4. III a
57	242586_at	FSDIL	TIDFONECTIN TYPE III and SPKY domain containing 1-like
58	217623_at	MYLK3	myosin light chain kinase 3
ວອ 60	226226_at	TMEM45B	transmembrane protein 45B

Page 103 of 246

1			
2	230496_at	FAM123A	family with sequence similarity 123A
3	201843_s_at	EFEMP1	EGF containing fibulin-like extracellular matrix protein 1
4 5	242086_at	SPATA6	spermatogenesis associated 6
5 6	237285_at	SORBS2	sorbin and SH3 domain containing 2
7		TMEM231	transmembrane protein 231
8		MFTTL20	methyltransferase like 20
9	236981 at	C17orf99	chromosome 17 open reading frame 99
10	230301_{at}	SCURE2	signal pentide CUB domain EGE-like 2
11	210107_3_at		signal peptide, cob domain, col-ince z
1Z 13	1555705_a_al		N/D reasest deresis 27
13	235298_at	WDR27	wD repeat domain 27
15	1564093_at	NEK1	NIMA (never in mitosis gene a)-related kinase 1
16	204759_at	RCBTB2	regulator of chromosome condensation (RCC1) and BTB (POZ) dor
17	1556608_a_at	EHD4	EH-domain containing 4
18	219578_s_at	CPEB1	cytoplasmic polyadenylation element binding protein 1
19	238447_at	RBMS3	RNA binding motif, single stranded interacting protein 3
20 21	1560119_at	LOC389634	uncharacterized LOC389634
22	236175 at	TRIM55	tripartite motif containing 55
23		SOX3	SRY (sex determining region Y)-box 3
24		SLIT2	slit homolog 2 (Drosophila)
25	244710 at	IRGUK	leucine-rich repeats and guanylate kinase domain containing
26	220244 at		long intergenic non-protein coding RNA 312
28	20244_ut	MVH11	myosin heavy chain 11 smooth myscle
29	207901_A_at		
30	232300_al		NIAAU232
31	239870_at	SPAISI /// INTENTISI	Ispermatogenesis associated, serine-rich 1 /// transmembrane pro
32	236325_at	KIAA13//	KIAA13//
33	206076_at	LRRC23	leucine rich repeat containing 23
34 35	203518_at	LYST	lysosomal trafficking regulator
36	210800_at	TIMM8A	translocase of inner mitochondrial membrane 8 homolog A (yeast
37	208078_s_at	SIK1	salt-inducible kinase 1
38	1561200_at	VWA3B	von Willebrand factor A domain containing 3B
39	201328_at	ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)
40 41	220252_x_at	CXorf21	chromosome X open reading frame 21
41	201301_s_at	ANXA4	annexin A4
43	1556477 a at	LOC283485	uncharacterized LOC283485
44	231549 at	C1orf158	chromosome 1 open reading frame 158
45	205529 s at	RUNX1T1	runt-related transcription factor 1: translocated to 1 (cyclin D-rel;
46	2255223_3_ut	DOCK8	dedicator of cytokinesis 8
47 78	223302_ut		collagen type XX//III alpha 1
40 49	242345_a		iun proto opcogono
50	201400_3_at		juli proto-oncogene
51	210222_s_at	KINI CODDI	
52	220072_at	CSPP1	centrosome and spindle pole associated protein 1
53	1568924_a_at	IQUB	IQ motif and ubiquitin domain containing
04 55	211143_x_at	NR4A1	nuclear receptor subfamily 4, group A, member 1
56	241368_at	PLIN5	perilipin 5
57	203758_at	CTSO	cathepsin O
58	203474_at	IQGAP2	IQ motif containing GTPase activating protein 2
59	202587_s_at	AK1	adenylate kinase 1
60			

1			
2	207231_at	DZIP3	DAZ interacting protein 3, zinc finger
3	240282_at	WDR1	WD repeat domain 1
4 5	205948_at	PTPRT	protein tyrosine phosphatase, receptor type, T
6	222253_s_at	POM121L9P	POM121 transmembrane nucleoporin-like 9, pseudogene
7	227081_at	DNALI1	dynein, axonemal, light intermediate chain 1
8	243896_at	WDR96	WD repeat domain 96
9	233971 at	FAM166A	family with sequence similarity 166, member A
10		CCDC37	coiled-coil domain containing 37
12		SRD5A2	steroid-5-alpha-reductase, alpha polypeptide 2 (3-oxo-5 alpha-ste
13	226856 at	MUSTN1 /// TMFM11	(musculoskeletal, embryonic nuclear protein 1 /// TMEM110-MUS
14	220030_ut	C/orf/7	chromosome A open reading frame A7
15	237305_at		guanylate hinding protein 2 interforen inducible
16	242907_at		
1/ 10	225344_al	NCOA7	
10 10	214192_at	NUP88	nucleoporin 88kDa
20	205476_at	CCL20	chemokine (C-C motif) ligand 20
21	222150_s_at	PION	pigeon homolog (Drosophila)
22	228600_x_at	FAM221A	family with sequence similarity 221, member A
23	201473_at	JUNB	jun B proto-oncogene
24	227690_at	GABRB3	gamma-aminobutyric acid (GABA) A receptor, beta 3
25 26	213922_at	ТТВК2	tau tubulin kinase 2
27	206526_at	RIBC2	RIB43A domain with coiled-coils 2
28	213934 s at	ZNF23	zinc finger protein 23 (KOX 16)
29	228056 s at	NAPSB	napsin B aspartic peptidase pseudogene
30	240898 at	SPAG16	sperm associated antigen 16
31	57540 at	RBKS	ribokinase
ऽ∠ 33	206115 at	FGR3	early growth response 3
34	200115_a		Kruppel like factor 0
35	203343_3_at		chandraitin sulfate N asstulates at some inultransformer 1
36	219049_at		chondroitin suitate N-acetyigalactosaminyitransierase 1
37	214811_at		RIMS binding protein 2
38	242036_x_at	ATP2B3	Al Pase, Ca++ transporting, plasma membrane 3
39 40	200904_at	HLA-E	major histocompatibility complex, class I, E
41	230142_s_at	CIRBP	cold inducible RNA binding protein
42	236519_at	C9orf135	chromosome 9 open reading frame 135
43	207075_at	NLRP3	NLR family, pyrin domain containing 3
44	238127_at	GAS6-AS1	GAS6 antisense RNA 1 (non-protein coding)
45 46	232777_s_at	C6orf118	chromosome 6 open reading frame 118
40 47	238430_x_at	SLFN5	schlafen family member 5
48	231043 at	PCDP1	primary ciliary dyskinesia protein 1
49		ZNF404	zinc finger protein 404
50	205528 s at	RUNX1T1	runt-related transcription factor 1: translocated to 1 (cyclin D-rel;
51	205520_5_ut		adenvlate cyclase 8 (brain)
52 53	200011_u	SDAGE	sherm associated antigen 6
53 54	210032_3_at	JFAU0	forkhood how A2
55	40264_dl		TOTRITEdu DOX AZ
56	210011C		have alabia hata
57	209116_x_at	нвв	nemoglobin, beta
58	221524_s_at	RRAGD	Ras-related GTP binding D
59 60	1559333_at	SRGAP3-AS2	SRGAP3 antisense RNA 2 (non-protein coding)

1			
2	211200_s_at	EFCAB2	EF-hand calcium binding domain 2
3	239785_at	DZIP1L	DAZ interacting protein 1-like
4	1553684_at	PPIL6	peptidylprolyl isomerase (cyclophilin)-like 6
с С	225328 at	FBXO32	F-box protein 32
7		CD74	CD74 molecule, major histocompatibility complex, class II invariar
8	205068 s at	ARHGAP26	Rho GTPase activating protein 26
9	$200000_{-}3_{-}$ ut	C11orf16	chromosome 11 open reading frame 16
10	220344_{at}		interloukin 6 signal transdusor (gn120, ansastatin M recentor)
11	204005_5_dl		interieukin o signal transducer (gp150, oncostatin miteceptor)
12	209921_at	SLC/AII	solute carrier family 7 (anionic amino acid transporter light chain,
13	229369_at	VSIG2	V-set and immunoglobulin domain containing 2
15	236421_at	ANKRD45	ankyrin repeat domain 45
16	231073_at	C1orf168	chromosome 1 open reading frame 168
17	222904_s_at	TMC5	transmembrane channel-like 5
18	220293_at	CATSPERB	catsper channel auxiliary subunit beta
19	1561096_at	LOC285419	uncharacterized LOC285419
20 21	224400_s_at	CHST9	carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 9
21	204002 s at	ICA1	islet cell autoantigen 1. 69kDa
23	205860 x at	FOLH1 /// FOLH1B	folate hydrolase (prostate-specific membrane antigen) 1 /// folate
24	1555246 a at	SCN1A	sodium channel voltage-gated type L alpha subunit
25	222240_{u}	FGOT	eosinophil grapule optogeny transcript (pop-protein coding)
26	222314_A_dt		coiled coil domain containing 170
27	220501_dl		fibre estis tres III and CDDV densin containing 1 libr
20 29	242807_at	FSDIL	Tibronectin type III and SPRY domain containing 1-like
30	207072_at	IL18RAP	interleukin 18 receptor accessory protein
31	1556666_a_at	LOC100652860 /// LO	tetratricopeptide repeat protein 6-like /// tetratricopeptide repea
32	209966_x_at	ESRRG	estrogen-related receptor gamma
33	228969_at	AGR2	anterior gradient 2 homolog (Xenopus laevis)
34	222220_s_at	TSNAXIP1	translin-associated factor X interacting protein 1
36	240830_at	SCARNA17	small Cajal body-specific RNA 17
37	1552325_at	CCDC11	coiled-coil domain containing 11
38	211471_s_at	RAB36	RAB36, member RAS oncogene family
39	221886 at	DENND2A	DENN/MADD domain containing 2A
40		GZMA	granzyme A (granzyme 1. cytotoxic T-lymphocyte-associated serin
41 42	225516 at	SLC7A2	solute carrier family 7 (cationic amino acid transporter, v+ system
42 43	243352 at		alnha-kinase 1
44	238581 at	GBP5	guanylate hinding protein 5
45	20067E at		pusloohindin 2
46	203075_dl		trinortite metif containing 2
47	202341_S_at		
48	205518_s_at	СМАНР	cytidine monophospho-N-acetylneuraminic acid hydroxylase, psei
49 50	1560396_at	KLHL6	kelch-like 6 (Drosophila)
51	230180_at	DDX17	DEAD (Asp-Glu-Ala-Asp) box helicase 17
52	205016_at	TGFA	transforming growth factor, alpha
53	219583_s_at	SPATA7	spermatogenesis associated 7
54	232027_at	SYNE1	spectrin repeat containing, nuclear envelope 1
55	211105_s_at	NFATC1	nuclear factor of activated T-cells, cytoplasmic, calcineurin-depen
วง 57	213217 at	ADCY2	adenylate cyclase 2 (brain)
58		DNAJA4	DnaJ (Hsp40) homolog, subfamily A, member 4
59	200811 at	CIRBP	cold inducible RNA hinding protein
60	200011_ut	CALDI	

1			
2	211654_x_at	HLA-DQB1	major histocompatibility complex, class II, DQ beta 1
3	205101_at	CIITA	class II, major histocompatibility complex, transactivator
4 5	226187_at	CDS1	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) :
6	1557718_at	PPP2R5C	protein phosphatase 2, regulatory subunit B', gamma
7	1560426_at	C12orf55 /// C12orf63	chromosome 12 open reading frame 55 /// chromosome 12 open
8	205821_at	KLRC4-KLRK1 /// KLRK	KLRC4-KLRK1 readthrough /// killer cell lectin-like receptor subfan
9	230931 at	PLG	plasminogen
10		C14orf105	chromosome 14 open reading frame 105
12	229724 at	GABRB3	gamma-aminobutyric acid (GABA) A recentor, beta 3
13	210943 s at	LYST	lysosomal trafficking regulator
14	210345_3_0t		idak gluconokinase homolog (F. coli)
15	227805_at		alaba kinaso 1
16	227450_dl		
1/	22/72/_at		MAS-related GPR, member F
10	204363_at	F3	coagulation factor III (thromboplastin, tissue factor)
20	202036_s_at	SFRP1	secreted frizzled-related protein 1
21	215692_s_at	MPPED2	metallophosphoesterase domain containing 2
22	207584_at	LPA	lipoprotein, Lp(a)
23	206552_s_at	TAC1	tachykinin, precursor 1
24 25	229723_at	TAGAP	T-cell activation RhoGTPase activating protein
26	1553159_at	DNAH11	dynein, axonemal, heavy chain 11
27	205399_at	DCLK1	doublecortin-like kinase 1
28	216920_s_at	TARP /// TRGC2	TCR gamma alternate reading frame protein /// T cell receptor ga
29	202191_s_at	GAS7	growth arrest-specific 7
30	1570289_at	LOC646736	uncharacterized LOC646736
32	203896_s_at	PLCB4	phospholipase C, beta 4
33	206169_x_at	ZC3H7B	zinc finger CCCH-type containing 7B
34	1555993 at	CACNA1D	calcium channel, voltage-dependent, L type, alpha 1D subunit
35		MAPK10	mitogen-activated protein kinase 10
30 37		RRAGD	Ras-related GTP binding D
38	1552825 at	ZNF396	zinc finger protein 396
39	222336 at	C4orf34	chromosome 4 open reading frame 34
40	235350 at	C4orf19	chromosome 4 open reading frame 19
41	233350_ut 213451_x_at		tenascin XA (nseudogene) /// tenascin XB
4Z 43	213451_x_ut 242162_at	W/DR69	WD reneat domain 69
44	242102_{at}		servin pentidase inhibitor, clade B (ovalhumin), member 9
45	242014_dl		multical lineage loukemin (tritheray homolog
46	1309032_at		CTDasa IMAD family member 7
47	228071_at		GTPase, IMAP family member 7
48 70	211656_x_at	HLA-DUBI /// LOCIOU	major histocompatibility complex, class II, DQ beta 1 /// HLA class
49 50	1562255_at	SYIL3	synaptotagmin-like 3
51	203996_s_at	C21ort2	chromosome 21 open reading frame 2
52	206011_at	CASP1	caspase 1, apoptosis-related cysteine peptidase
53	209785_s_at	PLA2G4C	phospholipase A2, group IVC (cytosolic, calcium-independent)
54 55	1559413_at	TCP11L2	t-complex 11 (mouse)-like 2
56	204103_at	CCL4	chemokine (C-C motif) ligand 4
57	214696_at	MIR22 /// MIR22HG	microRNA 22 /// MIR22 host gene (non-protein coding)
58	223504_at	DNAJC27	DnaJ (Hsp40) homolog, subfamily C, member 27
59	242916_at	CNTRL	centriolin
60			

1			
2	228903_at	CES4A	carboxylesterase 4A
3	212249_at	PIK3R1	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
4 5	229740_at	C17orf109	chromosome 17 open reading frame 109
6	220361_at	IQCH	IQ motif containing H
7	220102_at	FOXL2	forkhead box L2
8	206721_at	C1orf114	chromosome 1 open reading frame 114
9 10	213988_s_at	SAT1	spermidine/spermine N1-acetyltransferase 1
10	227148_at	PLEKHH2	pleckstrin homology domain containing, family H (with MyTH4 do
12	215078_at	LOC100129518 /// SO	uncharacterized LOC100129518 /// superoxide dismutase 2, mito
13	207330_at	PZP	pregnancy-zone protein
14	206496 at	FMO3	flavin containing monooxygenase 3
15 16		KCNN3	potassium intermediate/small conductance calcium-activated cha
10		CEBPD	CCAAT/enhancer binding protein (C/EBP), delta
18	201952 at	ALCAM	activated leukocyte cell adhesion molecule
19	211006 s at	KCNB1	potassium voltage-gated channel. Shab-related subfamily, member
20	206417 at	CNGA1	cvclic nucleotide gated channel alpha 1
21	20011,_at		claudin 1
22	203868 s at	VCAM1	vascular cell adhesion molecule 1
24	203000_3_0t	DRSS12	protesse serine 12 (neurotrypsin motonsin)
25	215802_at		killer cell lectin-like recentor subfamily C member 1 /// killer cell
26	200763_s_at	KLRCI /// KLRCZ	kiner cen lectri-like receptor subranny C, member 1/// kiner cen l
27	230339_at		dual specificity phoenhotose 9
20 29	206374_at	DUSP8	dual specificity phosphatase 8
30	213508_al	USR2	V (in a sting) and side to a constraint (and masterial and in a)
31	224590_at	XISI	X (inactive)-specific transcript (non-protein coding)
32	204440_at	CD83	CD83 molecule
33 34	221874_at	KIAA1324	KIAA1324
35	1554988_at	SLC9C2	solute carrier family 9, member C2 (putative)
36	206325_at	SERPINA6	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitry
37	206541_at	KLKB1	kallikrein B, plasma (Fletcher factor) 1
38	228097_at	MYLIP	myosin regulatory light chain interacting protein
39 40	209304_x_at	GADD45B	growth arrest and DNA-damage-inducible, beta
40	235946_at	RIBC1	RIB43A domain with coiled-coils 1
42	234732_s_at	EFCAB6	EF-hand calcium binding domain 6
43	227359_at	OSCP1	organic solute carrier partner 1
44 45	239213_at	SERPINB1	serpin peptidase inhibitor, clade B (ovalbumin), member 1
45 46	215363_x_at	FOLH1 /// FOLH1B	folate hydrolase (prostate-specific membrane antigen) 1 /// folate
47	205922_at	VNN2	vanin 2
48	224568_x_at	LOC100507645 /// M/	Auncharacterized LOC100507645 /// metastasis associated lung ad
49	1553605_a_at	ABCA13	ATP-binding cassette, sub-family A (ABC1), member 13
50	209687_at	CXCL12	chemokine (C-X-C motif) ligand 12
51 52	244144 at	SYNE1	spectrin repeat containing, nuclear envelope 1
53		VWA3B	von Willebrand factor A domain containing 3B
54	 235649 at	ADAMTS8	ADAM metallopeptidase with thrombospondin type 1 motif. 8
55	229530 at	GUCY1A3	guanylate cyclase 1, soluble, alpha 3
56 57	224215 s at	DLL1	delta-like 1 (Drosophila)
57 58	228128 x at	PAPPA	pregnancy-associated plasma protein A. pappalysin 1
59	223794 at	ARMC4	armadillo reneat containing 4
60	223734_at		

2	213900_at	FAM189A2	family with sequence similarity 189, member A2
3		DAPP1	dual adaptor of phosphotyrosine and 3-phosphoinositides
4	235638 at	RASSF6	Ras association (RalGDS/AF-6) domain family member 6
5		TUB	tubby homolog (mouse)
0 7	221834 at	LOC100507577 /// LO	Iuncharacterized LOC100507577 /// Ion peptidase 2. peroxisomal
8	1566480 x at	C17orf104	Chromosome 17 open reading frame 104
9	244401 at	ICA5	Leber congenital amaurosis 5
10	239123 at	TSC22D1	TSC22 domain family, member 1
11 12	2285220_ut	C1orf162	chromosome 1 open reading frame 162
12	220352_ut		TIC domain containing 2
14	241555_ut		major histocompatibility complex class II DP alpha 1
15	210007_at		microRNA 631 /// nei endonuclease VIII-like 1 (E. coli)
16	21000_3_at		selectin D ligand
18	203879_at		dynain ayanamal haayyy chain 2
19	213200_at		insulin like growth factor hinding protoin 7
20	201102_dl		ribanuelaasa DNasa A family 4
21	213397_x_at	RNASE4	ribonuclease, Rivase A family, 4
22	219014_at		
23 24	206093_x_at		tenascin XA (pseudogene) /// tenascin XB
25	1562/43_at	ZNF33B	zinc finger protein 33B
26	206710_s_at	EPB41L3	erythrocyte membrane protein band 4.1-like 3
27	236710_at	C1orf87	chromosome 1 open reading frame 87
28	1558792_x_at	AP2A1	Adaptor-related protein complex 2, alpha 1 subunit
29 30	243087_at	WDR63	WD repeat domain 63
31	230924_at	TTLL6	tubulin tyrosine ligase-like family, member 6
32	205383_s_at	ZBTB20	zinc finger and BTB domain containing 20
33	242290_at	TACC1	transforming, acidic coiled-coil containing protein 1
34	230378_at	SCGB3A1	secretoglobin, family 3A, member 1
30 36	230391_at	CD84	CD84 molecule
37	207808_s_at	PROS1	protein S (alpha)
38	237227_at	NEK10	NIMA (never in mitosis gene a)- related kinase 10
39	215322_at	LONRF1	LON peptidase N-terminal domain and ring finger 1
40	229233_at	NRG3	neuregulin 3
42	209447_at	SYNE1	spectrin repeat containing, nuclear envelope 1
43	1559400_s_at	PAPPA	pregnancy-associated plasma protein A, pappalysin 1
44	236331 at	CDKL2	cyclin-dependent kinase-like 2 (CDC2-related kinase)
45		UMODL1	uromodulin-like 1
46 47		FAM134B	family with sequence similarity 134, member B
48	213309 at	PLCL2	phospholipase C-like 2
49		ETS2	V-ets erythroblastosis virus E26 oncogene homolog 2 (avian)
50	1552321 a at	CCDC65	coiled-coil domain containing 65
51	204487 s at	KCNO1	potassium voltage-gated channel. KOT-like subfamily, member 1
52 53	206017 at	KIAA0319	KIAA0319
54	219687 at	ннат	hedgehog acyltransferase
55	229041 s at	LOC100505746	uncharacterized LOC100505746
56	203924 at	GSTA1	glutathione S-transferase alpha 1
ว/ 58	237719 v st	RGS7RP	regulator of G-protein signaling 7 hinding protein
59	237713_{at}	СНСТО	c_{2} carbohydrata (N-acetylgalactosamine 4-0) sulfetransferase 0
60	223/3/_X_al		carbonyunale (IN-acelyigaiaclosainine 4-0) sunoli ansieldse 9

1			
2	226917_s_at	ANAPC4	anaphase promoting complex subunit 4
3	216333_x_at	TNXA /// TNXB	tenascin XA (pseudogene) /// tenascin XB
4 5	227346_at	IKZF1	IKAROS family zinc finger 1 (Ikaros)
6	204894_s_at	AOC3	amine oxidase, copper containing 3 (vascular adhesion protein 1)
7	64900_at	TMEM231	transmembrane protein 231
8	216119_s_at	SPEF1	sperm flagellar 1
9	1552296_at	BEST4	bestrophin 4
10	221698_s_at	CLEC7A	C-type lectin domain family 7, member A
12	206483 at	LRRC6	leucine rich repeat containing 6
13		ECM2	extracellular matrix protein 2, female organ and adipocyte specific
14		AR	androgen receptor
15	204655 at	CCL5	chemokine (C-C motif) ligand 5
16 17	1554919 s at	C7orf63	chromosome 7 open reading frame 63
18	239336 at	THRS1	thrombosnondin 1
19	2333350_at	KIAA0556	
20	210100_at	SGSM1	small G protein signaling modulator 1
21	230207_at		
22	231720_al		calute carrier family 22 (nucleobase transporters), member 1
24	223732_dl		solute carrier family 25 (fucleobase trainsporters), member 1
25	21/302_X_dl		major histocompatibility complex, class II, DR beta 6 (pseudogene
26	238423_at	SYIL3	synaptotagmin-like 3
27	209606_at	CYTIP	cytonesin 1 interacting protein
28 29	243868_at	RFX3	regulatory factor X, 3 (influences HLA class II expression)
30	226872_at	RFX2	regulatory factor X, 2 (influences HLA class II expression)
31	232617_at	CTSS	cathepsin S
32	224916_at	TMEM173	transmembrane protein 173
33	219371_s_at	KLF2	Kruppel-like factor 2 (lung)
34 35	233312_at	ROPN1L	rhophilin associated tail protein 1-like
36	209114_at	TSPAN1	tetraspanin 1
37	219734_at	SIDT1	SID1 transmembrane family, member 1
38	219455_at	C7orf63	chromosome 7 open reading frame 63
39	215418_at	PARVA	parvin, alpha
40 41	1405_i_at	CCL5	chemokine (C-C motif) ligand 5
42	234476_at	DNAH7	dynein, axonemal, heavy chain 7
43	1552957_at	DNAH6	dynein, axonemal, heavy chain 6
44	202158_s_at	CELF2	CUGBP, Elav-like family member 2
45 46	243334_at	CACNA1D	calcium channel, voltage-dependent, L type, alpha 1D subunit
40 47	209173_at	AGR2	anterior gradient 2 homolog (Xenopus laevis)
48	1553789_a_at	C21orf58	chromosome 21 open reading frame 58
49	237238 at	WWC1	WW and C2 domain containing 1
50		EIF4E3	eukaryotic translation initiation factor 4E family member 3
51 52		CCL3 /// CCL3L1 /// C	C chemokine (C-C motif) ligand 3 /// chemokine (C-C motif) ligand 3
53	 1560397 s at	KLHL6	kelch-like 6 (Drosophila)
54	242342 at	GUCY1A2	guanylate cyclase 1, soluble, alpha 2
55	238763 at	RBM20	RNA binding motif protein 20
56	1568906 at	100728196	uncharacterized LOC728196
୦/ 58	237251 at	LBRC71	leucine rich repeat containing 71
59	237231_at	GRIN2A	glutamate recentor ionotronic N-methyl D-aspartate 24
60	242200_at		אינמווומנכ וכנכףנטו, וטווטנוטאול, איוווכנוואו ש-משמו נמנע בא

2	205890_s_at	GABBR1 /// UBD	gamma-aminobutyric acid (GABA) B receptor, 1 /// ubiquitin D
3	211726 s at	FMO2	flavin containing monooxygenase 2 (non-functional)
4	222102 at	GSTA3	glutathione S-transferase alpha 3
5	228086 at	STK33	serine/threonine kinase 33
0 7	210136 at	MRP	myelin basic protein
8	228111 s at	DNAH1	dynein axonemal heavy chain 1
9	220111_3_ut	C14orf45	chromosome 14 open reading frame 45
10	220175_at		chimerin (chimperin) 2
11	213305_at		dual adaptor of phoenhotyrosing and 2 phoenhoingsitides
1Z 13	222030_s_dl		acided eacid domain containing 10
14	220308_at		
15	207651_at	GPR1/1	G protein-coupled receptor 1/1
16	243495_s_at	ZNF652	Zinc finger protein 652
17	230807_at	CCDC151	coiled-coil domain containing 151
18	211896_s_at	DCN	decorin
20	226218_at	IL7R	interleukin 7 receptor
21	233463_at	RASSF6	Ras association (RalGDS/AF-6) domain family member 6
22	206043_s_at	ATP2C2	ATPase, Ca++ transporting, type 2C, member 2
23	220475_at	SLC28A3	solute carrier family 28 (sodium-coupled nucleoside transporter),
24	219508_at	GCNT3	glucosaminyl (N-acetyl) transferase 3, mucin type
25 26	226248_s_at	KIAA1324	KIAA1324
27	232099_at	PCDHB16	protocadherin beta 16
28	228885 at	MAMDC2	MAM domain containing 2
29		KBTBD10	kelch repeat and BTB (POZ) domain containing 10
30	219147 s at	NMRK1	nicotinamide riboside kinase 1
31	220064 at	LOC100506124 /// TT	(uncharacterized LOC100506124 /// tetratricopeptide repeat dom)
33	223343 at	MS4A7	membrane-spanning 4-domains, subfamily A, member 7
34	226878 at		major histocompatibility complex class IL DO alpha
35	205896_at	SIC22A/	solute carrier family 22 (organic cation/ergothioneine transporter
36	1562815 at	FECARA	EE-band calcium hinding domain 6
37	$1562377 \times 2^{+}$		defensin beta 124
39	1300377_A_at		durasidasa hata asid 2 (autasalis)
40	222945_dl	UDAS KLEO	giucosidase, bela, acid 5 (cytosolic)
41	203542_s_at	KLF9	kruppel-like lactor 9
42	1553729_s_at		leucine rich repeat containing 43
43	223636_at	ZMIYND12	zinc finger, MYND-type containing 12
44	201951_at	ALCAM	activated leukocyte cell adhesion molecule
46	225299_at	MYO5B	myosin VB
47	1563814_at	C2orf50	chromosome 2 open reading frame 50
48	1557417_s_at	RSPH10B /// RSPH10	B radial spoke head 10 homolog B (Chlamydomonas) /// radial spok
49	205656_at	PCDH17	protocadherin 17
50 51	213464_at	SHC2	SHC (Src homology 2 domain containing) transforming protein 2
52	214798_at	ATP2C2	ATPase, Ca++ transporting, type 2C, member 2
53	228943_at	MAP6	microtubule-associated protein 6
54	1553133_at	C9orf72	chromosome 9 open reading frame 72
55 50	202376_at	SERPINA3	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitry
วง 57		PLEKHA6	pleckstrin homology domain containing, family A member 6
58		DNAAF3	dynein, axonemal, assembly factor 3
59	220528 at	VNN3	vanin 3
60			

1			
2	233198_at	GOLGA2P5	golgin A2 pseudogene 5
3	237439_at	USP43	ubiquitin specific peptidase 43
4 5	224941_at	PAPPA	pregnancy-associated plasma protein A, pappalysin 1
6	219857_at	PLEKHS1	pleckstrin homology domain containing, family S member 1
7	210592_s_at	SAT1	spermidine/spermine N1-acetyltransferase 1
8	205654_at	C4BPA	complement component 4 binding protein, alpha
9 10	234974_at	GALM	galactose mutarotase (aldose 1-epimerase)
10	225207_at	PDK4	pyruvate dehydrogenase kinase, isozyme 4
12	227775_at	CELF6	CUGBP, Elav-like family member 6
13	236407 at	KCNE1	potassium voltage-gated channel, Isk-related family, member 1
14		LOC654433	uncharacterized LOC654433
15	1560147 at	WDR86-AS1	WDR86 antisense RNA 1 (non-protein coding)
10 17	212451 at	SECISBP21	SECIS binding protein 2-like
18	227226 at	MRAP2	melanocortin 2 recentor accessory protein 2
19	230499 at	BIRC3	haculoviral IAP repeat containing 3
20	238720 at		uncharacterized LOC100506582
21	201742 of	CD14	
22 23	201745_dt		CD14 molecule
23	1552540_5_dl		
25	23/303_dl	SPATAOL	spermatogenesis associated 6-like
26	214/35_at		Interaction protein for cytonesin exchange factors 1
27	212188_at	KCID12	potassium channel tetramerisation domain containing 12
28	202643_s_at	TNFAIP3	tumor necrosis factor, alpha-induced protein 3
29 30	227812_at	TNFRSF19	tumor necrosis factor receptor superfamily, member 19
31	201497_x_at	MYH11	myosin, heavy chain 11, smooth muscle
32	220724_at	CWH43	cell wall biogenesis 43 C-terminal homolog (S. cerevisiae)
33	231149_s_at	ULK4	unc-51-like kinase 4 (C. elegans)
34 35	205945_at	IL6R	interleukin 6 receptor
36	201289_at	CYR61	cysteine-rich, angiogenic inducer, 61
37	235308_at	ZBTB20	zinc finger and BTB domain containing 20
38	228946_at	INTU	inturned planar cell polarity effector homolog (Drosophila)
39	205714_s_at	ZMYND10	zinc finger, MYND-type containing 10
40 41	212327_at	LIMCH1	LIM and calponin homology domains 1
42	205044_at	GABRP	gamma-aminobutyric acid (GABA) A receptor, pi
43	230828_at	GRAMD2	GRAM domain containing 2
44	202435 s at	CYP1B1	cytochrome P450, family 1, subfamily B, polypeptide 1
45	 1564160 at	DTHD1	death domain containing 1
46 ⊿7		MDH1B	malate dehydrogenase 1B, NAD (soluble)
48		RHOH	ras homolog family member H
49	230451 at	LOC100506974	uncharacterized I OC100506974
50	242287 at	CLIP1	CAP-GLY domain containing linker protein 1
51	272207_ut	SI CAAA3	solute carrier family <i>M</i> , member 3
52 53	220221_ut		Inosital-trisnhosnhate 3-kinase B
53 54	233213_at		hostor-trisphosphate S-kinase B
55	252449_dl		adenacina mananhashhata daaminasa 2
56	20/992_5_al		auenosine monophosphale Gedininase 3
57	220822_at		Storkneau DOX Z
58 59	226690_at		adenyiate cyclase activating polypeptide 1 (pituitary) receptor typ
60	230505_at	LUC145474	uncharacterized LUC145474

2	232972_at	C17orf72	chromosome 17 open reading frame 72
3	220920_at	ATP10B	ATPase, class V, type 10B
4	224209 s at	GDA	guanine deaminase
5	205898 at	CX3CR1	chemokine (C-X3-C motif) receptor 1
0 7	205288 at		CDC14 cell division cycle 14 homolog A (S. cerevisiae)
8	200200_ut		alcohol dohudrogonaso 6 (class V)
9	214201_3_dl		Alconol deliver ogenase o (class v)
10	229849_at	WIPF3	was/wasLinteracting protein family, member 3
11	2302/3_at	C6orf165	chromosome 6 open reading frame 165
12	224559_at	LOC100507645 /// MA	uncharacterized LOC100507645 /// metastasis associated lung ad
13	223217_s_at	NFKBIZ	nuclear factor of kappa light polypeptide gene enhancer in B-cells
14	204793_at	GPRASP1	G protein-coupled receptor associated sorting protein 1
16	233375_at	EFCAB2	EF-hand calcium binding domain 2
17	223623 at	C2orf40	chromosome 2 open reading frame 40
18	200810 s at	CIRBP	cold inducible RNA binding protein
19	232417 x at	ZDHHC11	zinc finger. DHHC-type containing 11
20	230092 at		LIBX domain protein 10
21	220022_at	COLCARDE	golgin A2 proudogono 5
22	232011_at	GOLGAZEJ	golgin Az pseudogene 5
23	228214_at	SUXD	SKY (sex determining region Y)-box 6
25	1556474_a_at	FLJ38379	uncharacterized FLJ38379
26	238008_at	PRR18	proline rich 18
27	1556421_at	LOC286189	uncharacterized LOC286189
28	238657_at	UBXN10	UBX domain protein 10
29	228338_at	C11orf93	chromosome 11 open reading frame 93
30	204714_s_at	F5	coagulation factor V (proaccelerin, labile factor)
32	204070_at	RARRES3	retinoic acid receptor responder (tazarotene induced) 3
33	235945_at	SRD5A2	Steroid-5-alpha-reductase, alpha polypeptide 2 (3-oxo-5 alpha-ste
34	230132 at	LOC100505495	uncharacterized LOC100505495
35		CDC14A	CDC14 cell division cycle 14 homolog A (S. cerevisiae)
30 37		RFLN	reelin
38	202746 at	ITM2A	integral membrane protein 2A
39	202, 10_ut	FSRRG	ectrogen-related recentor gamma
40	207301_3_at		protocodborin 17
41	227269_dl		protocauterin 17
42	208131_S_dt		prostagianum iz (prostacycim) synthase
43 11	244655_at	LUC100507311	uncharacterized LOC100507311
45	203932_at	HLA-DMB	major histocompatibility complex, class II, DM beta
46	204365_s_at	REEP1	receptor accessory protein 1
47	223218_s_at	NFKBIZ	nuclear factor of kappa light polypeptide gene enhancer in B-cells
48	211368_s_at	CASP1	caspase 1, apoptosis-related cysteine peptidase
49	220184_at	NANOG	Nanog homeobox
50 51	235421_at	MAP3K8	mitogen-activated protein kinase kinase kinase 8
52	205249_at	EGR2	early growth response 2
53	231133 at	CCDC164	coiled-coil domain containing 164
54		PRRG4	proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)
55	215341 at	DNAH6	dynein, axonemal, heavy chain 6
56	235746 s at	PLA2R1	nhospholipase A2 recentor 1 180kDa
ว/ 58	$2007 10_{0}$		hemoglohin alpha 1 /// hemoglohin alpha 2
59	2177106 of		
60	232130_al	LCAJL	

1			
2	217478_s_at	HLA-DMA	major histocompatibility complex, class II, DM alpha
3	214889_at	FAM149A	family with sequence similarity 149, member A
4 5	223866_at	ARMC2	armadillo repeat containing 2
6	218510_x_at	FAM134B	family with sequence similarity 134, member B
7	205269_at	LCP2	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte
8	40665_at	FMO3	flavin containing monooxygenase 3
9		KIAA0146	KIAA0146
10		РАРРА	pregnancy-associated plasma protein A. pappalysin 1
12	1568606 at	C11orf88	chromosome 11 open reading frame 88
13	228503 at	RPS6KA6	ribosomal protein S6 kinase 90kDa, polypentide 6
14	220303_at		IGABA(A) recentor-associated protein like 1 /// GABA(A) recentors
15	211450_5_dt		antorior pharway defactive 1 homolog P (C. alegans)
16	220536_at		CLCDD. Flow like family member 2
1/ 19	202156_S_at	CELFZ	CUGBP, Elav-like family member 2
19	212914_at		chromobox nomolog /
20	1568698_at	IMEM232	transmembrane protein 232
21	227404_s_at	LOC100653132	uncharacterized LOC100653132
22	229918_at	CCDC40	coiled-coil domain containing 40
23	239722_at	C5orf49	chromosome 5 open reading frame 49
24 25	228035_at	STK33	serine/threonine kinase 33
26	225345_s_at	FBXO32	F-box protein 32
27	229147_at	RASSF6	Ras association (RalGDS/AF-6) domain family member 6
28	220232_at	SCD5	stearoyl-CoA desaturase 5
29	203131_at	PDGFRA	platelet-derived growth factor receptor, alpha polypeptide
30 31	239098_at	KCNRG	potassium channel regulator
32	205997_at	ADAM28	ADAM metallopeptidase domain 28
33	219833_s_at	EFHC1	EF-hand domain (C-terminal) containing 1
34	214890 s at	FAM149A	family with sequence similarity 149, member A
35	236575 at	ARHGEF26-AS1	ARHGEF26 antisense RNA 1 (non-protein coding)
30 37		C1orf194	chromosome 1 open reading frame 194
38		COL28A1	collagen, type XXVIII, alpha 1
39	239185 at	ABCA9	ATP-binding cassette, sub-family A (ABC1), member 9
40	231565 at	C4orf22	chromosome 4 open reading frame 22
41	203455 s at	SAT1	spermidine/spermine N1-acetyltransferase 1
42 43	240288 at	KCNRG /// TRIM13	notassium channel regulator /// trinartite motif containing 13
44	155/1/1 c at		WD repeat domain 78
45	227420 at		tumor necrosis factor, alpha-induced protein 8-like 1
46	227420_at		CKLE like MARVEL transmombrane domain containing 4
47	223009_at		tubulin polymorization promoting protoin
48 49	230104_s_at		tubuin polymerization promoting protein
4 0 50	241600_at	WIPF3	WAS/WASL Interacting protein family, member 3
51	226439_s_at	NBEA	neurobeachin
52	228195_at	C2ort88	chromosome 2 open reading frame 88
53	226333_at	IL6R	interleukin 6 receptor
54 55	226778_at	C8orf42	chromosome 8 open reading frame 42
56	228546_at	DPP6	dipeptidyl-peptidase 6
57	223609_at	ROPN1L	rhophilin associated tail protein 1-like
58	236335_at	GUCY1A2	guanylate cyclase 1, soluble, alpha 2
59 60	239828_at	AKD1	adenylate kinase domain containing 1

1			
2	209959_at	NR4A3	nuclear receptor subfamily 4, group A, member 3
3	205363_at	BBOX1	butyrobetaine (gamma), 2-oxoglutarate dioxygenase (gamma-but
4 5	220156_at	EFCAB1	EF-hand calcium binding domain 1
6	231710_at	CAPS	calcyphosine
7	209160_at	AKR1C3	aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid
8	243296_at	NAMPT	Nicotinamide phosphoribosyltransferase
9	233071 at	RSPH4A	radial spoke head 4 homolog A (Chlamydomonas)
10		SCIN	scinderin
12		CTSS	cathepsin S
13	230792 at	FAAH2	fatty acid amide hydrolase 2
14	227088 at		nhosnhodiesterase 54 cGMP-specific
15	155370/ at	STOMI 3	stomatin (EDB72)-like 3
16	1333734_at		Dedicator of outokingsis E
17	230200_at		Dedicator of cytokinesis 5
19	238864_at	VWA3A	von Willebrand factor A domain containing 3A
20	225286_at	ARSD	aryisultatase D
21	220125_at	DNAI1	dynein, axonemal, intermediate chain 1
22	220030_at	STYK1	serine/threonine/tyrosine kinase 1
23	200974_at	ACTA2	actin, alpha 2, smooth muscle, aorta
24 25	202340_x_at	NR4A1	nuclear receptor subfamily 4, group A, member 1
26	219511_s_at	SNCAIP	synuclein, alpha interacting protein
27	209795_at	CD69	CD69 molecule
28	1569675_at	POU2AF1	POU class 2 associating factor 1
29	1555804_a_at	YSK4	YSK4 Sps1/Ste20-related kinase homolog (S. cerevisiae)
30 31	209071_s_at	RGS5	regulator of G-protein signaling 5
32	213172 at	TTC9	tetratricopeptide repeat domain 9
33	227758 at	RERG	RAS-like, estrogen-regulated, growth inhibitor
34		EFCAB1	EF-hand calcium binding domain 1
35		C18orf1	chromosome 18 open reading frame 1
30 37	220389 at	CCDC81	coiled-coil domain containing 81
38	240809 at	ZNF295-AS1	ZNF295 antisense RNA 1 (non-protein coding)
39	215085 x at	DIFC1	deleted in lung and esonhageal cancer 1
40	207655 s at	BLNK	B-cell linker
41	207035_3_at		coiled-coil domain containing 30
42 43	243030_{at}		PAP11 family interacting protoin 1 (class I)
43 44	219001_5_dl		RABII failing interacting protein I (class I)
45	219747_dl		
46	229628_s_at	C90rf1/4 /// LOC1004	chromosome 9 open reading frame 1/4 /// LOC100499484-C9orf.
47	209074_s_at	FAM10/A /// LOC1005	family with sequence similarity 107, member A /// uncharacterize
48	224227_s_at	BDP1	B double prime 1, subunit of RNA polymerase III transcription initi
49 50	221103_s_at	WDR52	WD repeat domain 52
51	1557544_at	CCDC147	coiled-coil domain containing 147
52	1552733_at	KLHDC1	kelch domain containing 1
53	212999_x_at	HLA-DQB1 /// LOC100	major histocompatibility complex, class II, DQ beta 1 /// HLA class
54	224929_at	TMEM173	transmembrane protein 173
55 56	203029_s_at	PTPRN2	protein tyrosine phosphatase, receptor type, N polypeptide 2
50 57	237131_at	RIIAD1	regulatory subunit of type II PKA R-subunit (RIIa) domain containi
58	231389 at	CXorf41	chromosome X open reading frame 41
59		ANK3	ankyrin 3, node of Ranvier (ankyrin G)
60		-	, -,

1			
2	1554528_at	C3orf15 /// LOC10065	chromosome 3 open reading frame 15 /// uncharacterized LOC10
3	204621_s_at	NR4A2	nuclear receptor subfamily 4, group A, member 2
4 5	223867_at	ТЕКТЗ	tektin 3
6	210108_at	CACNA1D	calcium channel, voltage-dependent, L type, alpha 1D subunit
7	241365_at	SATB1	SATB homeobox 1
8	220623 s at	TSGA10	testis specific, 10
9	 237151 s at	PCDP1	primary ciliary dyskinesia protein 1
10	205768 s at	SLC27A2	solute carrier family 27 (fatty acid transporter), member 2
11 12	214234 s at	CYP3A5	cvtochrome P450 family 3 subfamily A polypentide 5
12	217297_5_at		protein tyrosing phosphatase, recentor type C
14	212307_3_at	EDI NI1	fibulin 1
15	202994_5_dl		family with convence similarity 12, member C
16	1554547_dl	FAIVI13C	Taining with sequence similarity 13, member C
1/	1552594_at		transmembrane protein 190
10	207850_at	CXCL3	chemokine (C-X-C motif) ligand 3
20	213375_s_at	N4BP2L1	NEDD4 binding protein 2-like 1
21	229021_at	MCTP2	multiple C2 domains, transmembrane 2
22	210033_s_at	SPAG6	sperm associated antigen 6
23	203408_s_at	SATB1	SATB homeobox 1
24 25	214070_s_at	ATP10B	ATPase, class V, type 10B
26	214719_at	SLC46A3	solute carrier family 46, member 3
27	201859_at	SRGN	serglycin
28	1553734_at	AK7	adenylate kinase 7
29	232357_at	TTLL9	tubulin tyrosine ligase-like family, member 9
30	214823_at	ZNF204P	zinc finger protein 204, pseudogene
32	223695 s at	ARSD	arylsulfatase D
33	 220351 at	CCRL1	chemokine (C-C motif) receptor-like 1
34		SERPINI2	serpin peptidase inhibitor, clade I (pancpin), member 2
35		TMEM232	transmembrane protein 232
30 37	1567627 at	CD74	CD74 molecule, major histocompatibility complex, class II invariar
38	214222 at	DNAH7	dynein, axonemal, heavy chain 7
39	228806 at	RORC	RAR-related orphan recentor C
40	220000_at	ENKLIR	enkurin TRPC channel interacting protein
41	237314_at	WDR38	WD reneat domain 38
42 43	243500_at		acyl CoA cynthotaco long chain family momber E
43 44	222392_5_dl		ALVI-COA synthetase long-chain failing member 5
45	219542_dl		Ninvia (never in millosis gene a)- related kinase 11
46	207547_s_at		Family with sequence similarity 107, member A /// uncharacterize
47	203240_at	FCGBP	Fc fragment of IgG binding protein
48	230454_at	ICA1L	islet cell autoantigen 1,69kDa-like
49 50	212224_at	ALDH1A1	aldehyde dehydrogenase 1 family, member A1
51	1556711_at	FAM216B	family with sequence similarity 216, member B
52	204748_at	PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synth
53	205769_at	SLC27A2	solute carrier family 27 (fatty acid transporter), member 2
54	227497_at	SOX6	SRY (sex determining region Y)-box 6
55 56	236915_at	C4orf47	chromosome 4 open reading frame 47
57	221841_s_at	KLF4	Kruppel-like factor 4 (gut)
58	235956_at	KIAA1377	KIAA1377
59 60	1557275_a_at	TLCD2	TLC domain containing 2

1			
2	230131_x_at	ARSD	arylsulfatase D
3	201236_s_at	BTG2	BTG family, member 2
4 5	225919_s_at	C9orf72	chromosome 9 open reading frame 72
6	238049_at	GRAMD3	GRAM domain containing 3
7	223691_at	RGS22	regulator of G-protein signaling 22
8	1557867_s_at	C9orf117	chromosome 9 open reading frame 117
9	203824 at	TSPAN8	tetraspanin 8
10		TTC21A	tetratricopeptide repeat domain 21A
12	232568 at	MGC24103	uncharacterized MGC24103
13	1558077 s at	MDH1B	malate dehydrogenase 1B_NAD (soluble)
14	200077_5_00 202823_at	KCNMB2	notassium large conductance calcium-activated channel subfamil
15	223025_at		colourbasina 2
16	224370_3_at		dual ana sificity phoephotoco 1
1/ 19	201041_S_at	DUSPI	dual specificity phosphatase 1
19	1559640_at	ANKFN1	Ankyrin-repeat and fibronectin type III domain containing 1
20	223467_at	RASD1	RAS, dexamethasone-induced 1
21	212067_s_at	C1R	complement component 1, r subcomponent
22	206197_at	NME5	NME/NM23 family member 5
23	213661_at	PAMR1	peptidase domain containing associated with muscle regeneration
24 25	206798_x_at	DLEC1	deleted in lung and esophageal cancer 1
26	210982_s_at	HLA-DRA	major histocompatibility complex, class II, DR alpha
27	218380_at	LOC728392	uncharacterized LOC728392
28	205844_at	VNN1	vanin 1
29	222722_at	OGN	osteoglycin
30	201893_x_at	DCN	decorin
32	220302 at	МАК	male germ cell-associated kinase
33		LOC100653229	uncharacterized LOC100653229
34	228731 at	GUCY1A2	guanvlate cyclase 1. soluble, alpha 2
35		CXorf30	chromosome X open reading frame 30
30	230695 s at	RSPH9	radial spoke head 9 homolog (Chlamydomonas)
38	217757 at	A2M	alpha-2-macroglobulin
39	210809 s at	POSTN	neriostin, osteoblast specific factor
40	20880/_3_ut		major histocompatibility complex class II DR alpha
41	200094_at		major histocompatibility complex, class II, DR alpha
42	201157_5_dl		rupt related transcription factor 1, translagated to 1 (audin D rol)
43 44	228827_dl		runt-related transcription factor 1; translocated to, 1 (cyclin D-rela
45	223475_at		cysteine-rich secretory protein LCCL domain containing 1
46	1556003_a_at	LOC100506///	uncharacterized LOC100506///
47	200878_at	EPAS1 /// LOC1006528	endothelial PAS domain protein 1 /// uncharacterized LOC100652
48	205590_at	RASGRP1	RAS guanyl releasing protein 1 (calcium and DAG-regulated)
49 50	236430_at	TMED6	transmembrane emp24 protein transport domain containing 6
50 51	221646_s_at	ZDHHC11	zinc finger, DHHC-type containing 11
52	221667_s_at	HSPB8	heat shock 22kDa protein 8
53	225280_x_at	ARSD	arylsulfatase D
54	233011_at	ANXA1	Annexin A1
55	237020_at	CATSPERD	catsper channel auxiliary subunit delta
00 57	202437_s_at	CYP1B1	cytochrome P450, family 1, subfamily B, polypeptide 1
58	226164 x at	RIMKLB	ribosomal modification protein rimK-like family member B
59	205414 s at	ARHGAP44	Rho GTPase activating protein 44
60			

1			
2	242903_at	IFNGR1	interferon gamma receptor 1
3	232166_at	KIAA1377	KIAA1377
4 5	239216_at	TEKT1	tektin 1
6	212671_s_at	HLA-DQA1 /// HLA-DO	Q major histocompatibility complex, class II, DQ alpha 1 /// major hi
/ 8	204041_at		
0 9	216248_s_at	NR4A2	nuclear receptor subfamily 4, group A, member 2
10	206228_at	PAX2	paired box 2
11	212998_x_at	HLA-DQB1 /// LOC10	0 major histocompatibility complex, class II, DQ beta 1 /// HLA class
12	219505_at	CECR1	cat eye syndrome chromosome region, candidate 1
13	240293_at	CCDC153	coiled-coil domain containing 153
14 15	229096_at	LIMS3 /// LIMS3-LOC4	4 LIM and senescent cell antigen-like domains 3 /// LIMS3-LOC4408
16	227194_at	FAM3B	family with sequence similarity 3, member B
17	230193_at	WDR66	WD repeat domain 66
18	243109_at	MCTP2	multiple C2 domains, transmembrane 2
19	230152_at	WDR52	WD repeat domain 52
20	202295 s at	СТЅН	cathepsin H
22	207959 s at	DNAH9	dynein, axonemal, heavy chain 9
23	213849 s at	PPP2R2B	protein phosphatase 2. regulatory subunit B. beta
24	207574 s at	GADD45B	growth arrest and DNA-damage-inducible, beta
25	228648 at	LRG1	leucine-rich alpha-2-glycoprotein 1
26 27	228482 at	CDRT4 /// FAM18B2-	CCMT1A duplicated region transcript 4 /// FAM18B2-CDBT4 readth
28	235086 at	THRS1	thrombospondin 1
29	230130 at	SUIT2	Slit homolog 2 (Drosonhila)
30	205042 at		cystic fibrosis transmembrane conductance regulator (ATD-bindin
31	203043_at		lousing rich repeat containing 10P
32	230000_{s_at}		nuclear recenter subfamily 4 group 4 member 2
33 34	204022_X_dl		nuclear receptor subranning 4, group A, member 2
35	22/91/_at		uncharacterized LOC100506990
36	220168_at	CASCI	cancer susceptibility candidate 1
37	209550_at		necdin homolog (mouse)
38	204803_s_at	RRAD	Ras-related associated with diabetes
40	226682_at	RORA	RAR-related orphan receptor A
41	239499_at	DNAH2	dynein, axonemal, heavy chain 2
42	222068_s_at	DNAAF1	dynein, axonemal, assembly factor 1
43	225895_at	SYNPO2	synaptopodin 2
44 45	214204_at	PACRG	PARK2 co-regulated
46	212681_at	EPB41L3	erythrocyte membrane protein band 4.1-like 3
47	238327_at	ODF3B	outer dense fiber of sperm tails 3B
48	1554140_at	WDR78	WD repeat domain 78
49	239733_at	DYDC2	DPY30 domain containing 2
50 51	213975_s_at	LYZ	lysozyme
52	222162_s_at	ADAMTS1	ADAM metallopeptidase with thrombospondin type 1 motif, 1
53	235527_at	DLGAP1	discs, large (Drosophila) homolog-associated protein 1
54	229976 at	MORN5	MORN repeat containing 5
55		LOC643037	uncharacterized LOC643037
50 57		DLEC1	deleted in lung and esophageal cancer 1
58	219564 at	KCNJ16	potassium inwardly-rectifying channel, subfamily 1, member 16
59	222291 at	FAM149A	family with sequence similarity 149 member A
60			

2	204072_s_at	FRY	furry homolog (Drosophila)
3	236118_at	LOC100128893	uncharacterized LOC100128893
4	226197 at	AR	androgen receptor
5		EFHC2	EF-hand domain (C-terminal) containing 2
7	229802 at	WISP1	WNT1 inducible signaling pathway protein 1
8		C11orf52 /// HSPB2 //	chromosome 11 open reading frame 52 /// heat shock 27kDa pro
9	221541 at	CRISPI D2	cysteine-rich secretory protein LCCL domain containing 2
10	1556026 at	100100131434	uncharacterized LOC100131434
11 12	231172 at	C9orf117	chromosome 9 open reading frame 117
12	$2026/1/s_at$	τηεδίρα	tumor pecrosis factor, alpha-induced protein 3
14	202044_3_at		coiled coil domain containing 06
15	238082_at		R coll CLL //wmphoma 2
16	203085_at		b-cell CLL/lympholina z
1/	234970_at		tandem C2 domains, nuclear
10	243386_at	CASZ1	castor zinc finger 1
20	208147_s_at	CYP2C8	cytochrome P450, family 2, subfamily C, polypeptide 8
21	232968_at	FANK1	fibronectin type III and ankyrin repeat domains 1
22	218353_at	RGS5	regulator of G-protein signaling 5
23	236203_at	HLA-DQA1 /// LOC100	major histocompatibility complex, class II, DQ alpha 1 /// HLA clas
24	219871_at	FLJ13197	uncharacterized FLJ13197
26	237654_at	PPP1R36	protein phosphatase 1, regulatory subunit 36
27	204364_s_at	REEP1	receptor accessory protein 1
28	229738_at	DNAH10	dynein, axonemal, heavy chain 10
29	208323_s_at	ANXA13	annexin A13
30	231380 at	C8orf34	chromosome 8 open reading frame 34
32		DCDC5	doublecortin domain containing 5
33	230624 at	SLC25A27	solute carrier family 25. member 27
34	208140 s at	LRRC48	leucine rich repeat containing 48
35	205765 at	СҮРЗАБ	cytochrome P450 family 3 subfamily A polypentide 5
36	15690/0 s at		ankyrin reneat domain 36B nseudogene 2
37	228726 at	SERDINR1	sernin pentidase inhibitor, clade B (ovalhumin), member 1
39	220720_at		tubulin, alpha (h (nseudogene)
40	207490_at		nrung homolog 2 (Drosenhila)
41	212605_dl		ring finger protein 26, C211 type, homolog (mayse)
42	201531_dl		zinc inger protein 36, C3H type, homolog (mouse)
43 44	231729_S_at		calcyphosine
45	230323_s_at	IMEM45B	transmembrane protein 45B
46	219932_at	SLC27A6	solute carrier family 27 (fatty acid transporter), member 6
47	227091_at	CCDC146	coiled-coil domain containing 146
48	210002_at	GATA6	GATA binding protein 6
49 50	205432_at	OVGP1	oviductal glycoprotein 1, 120kDa
51	226147_s_at	PIGR	polymeric immunoglobulin receptor
52	220723_s_at	CWH43	cell wall biogenesis 43 C-terminal homolog (S. cerevisiae)
53	203413_at	LOC100653018 /// LO	uncharacterized LOC100653018 /// uncharacterized LOC1006532
54	232381_s_at	DNAH5	dynein, axonemal, heavy chain 5
55 56	227697_at	SOCS3	suppressor of cytokine signaling 3
57	227498_at	SOX6	SRY (sex determining region Y)-box 6
58	227742_at	CLIC6	chloride intracellular channel 6
59 60	218876_at	ТРРРЗ	tubulin polymerization-promoting protein family member 3

1			
2	229616_s_at	GRAMD2	GRAM domain containing 2
3 1	204051_s_at	SFRP4	secreted frizzled-related protein 4
5	208306_x_at	HLA-DRB1 /// LOC100	major histocompatibility complex, class II, DR beta 1 /// HLA class
6	213293_s_at	TRIM22	tripartite motif containing 22
7	1552390_a_at	C8orf47	chromosome 8 open reading frame 47
8	232984_at	HYDIN	HYDIN, axonemal central pair apparatus protein
9 10	214235_at	CYP3A5	cytochrome P450, family 3, subfamily A, polypeptide 5
10	1557636_a_at	C7orf57	chromosome 7 open reading frame 57
12	226192_at	AR	androgen receptor
13	208791_at	CLU	clusterin
14	239297_at	KIAA1456	KIAA1456
15 16	1554298_a_at	WDR49	WD repeat domain 49
17	218322 s at	ACSL5	acyl-CoA synthetase long-chain family member 5
18	240857 at	DNAH9	dvnein, axonemal, heavy chain 9
19		MPZL2	myelin protein zero-like 2
20	223962 at	TTC29	tetratricopeptide repeat domain 29
21	39248 at	AOP3	aquaporin 3 (Gill blood group)
23	1552283 s at		zinc finger DHHC-type containing 11
24	22205_5_4t	SMOC2	SPARC related modular calcium hinding 2
25	223233_3_at	RRAD	Bas-related associated with diabates
26	204002_at		SH2 and multiple and vito repeat domains 2
27 28	215500_at	Clarf77	shome come 2 ener reading frame 77
29	230909_al		circomosome z open reduing name //
30	255050_at		telitin 2 (testiouler)
31	210323_at		tektin z (testicular)
32	237281_at	AKAP14	A kinase (PRKA) anchor protein 14
33 34	206815_at	SPAG8	sperm associated antigen 8
35	236320_at	CCDC1/	colled-coll domain containing 1/
36	220636_at	DNAI2	dynein, axonemal, intermediate chain 2
37	200986_at	SERPING1	serpin peptidase inhibitor, clade G (C1 inhibitor), member 1
38	209189_at	FOS	FBJ murine osteosarcoma viral oncogene homolog
39 40	230601_s_at	LRRC46	leucine rich repeat containing 46
40	228167_at	KLHL6	kelch-like 6 (Drosophila)
42	227238_at	MUC15	mucin 15, cell surface associated
43	239477_at	EFHB	EF-hand domain family, member B
44 45	204670_x_at	HLA-DRB1 /// HLA-DR	I major histocompatibility complex, class II, DR beta 1 /// major hist
40 46	208096_s_at	COL21A1	collagen, type XXI, alpha 1
47	209335_at	DCN	decorin
48	230600_at	LRRC46	leucine rich repeat containing 46
49	213307_at	SHANK2	SH3 and multiple ankyrin repeat domains 2
50	209774_x_at	CXCL2	chemokine (C-X-C motif) ligand 2
51 52	231582 at	CDHR3 /// LOC100652	2 cadherin-related family member 3 /// uncharacterized LOC10065
53		MS4A8B	membrane-spanning 4-domains, subfamily A, member 8B
54	207016 s at	ALDH1A2	aldehvde dehvdrogenase 1 family, member A2
55	209312 x at	HLA-DRB1 /// HLA-DR	Imajor histocompatibility complex, class II. DR beta 1 /// major histo
56	222043 at	CLU	clusterin
ว <i>า</i> 58	0 232277at	SI C28A3	solute carrier family 28 (sodium-coupled nucleoside transporter)
59	209392 at	FNPP2	ectonucleotide nyronhosnhatase/nhosnhodiesterase 2
60	200002_ut		cetonacicottae pyrophosphatase/phosphoticsterase z

1			
2	228067_at	C2orf55	chromosome 2 open reading frame 55
3	208268_at	ADAM28	ADAM metallopeptidase domain 28
4	231969_at	STOX2	storkhead box 2
6	236717_at	FAM179A	family with sequence similarity 179, member A
7	205709_s_at	CDS1	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) :
8	228100 at	C1orf88	chromosome 1 open reading frame 88
9		TMC5	transmembrane channel-like 5
10	226424 at	CAPS	calcynhosine
11	203/85_at	RTN1	reticulon 1
12	1552625 c ot		Tetevil domain containing 1
14	1000000_5_dl		CDD diagulahusaral sunthasa (ahasahatidata sutiduk kransferrasa) (
15	220185_at	CDST	CDP-diacyigiycerol synthase (phosphatidate cytidyiyitransferase)
16	243681_at	SHANK2	SH3 and multiple ankyrin repeat domains 2
17	235004_at	RBM24	RNA binding motif protein 24
18	208451_s_at	C4A /// C4B /// LOC10	complement component 4A (Rodgers blood group) /// compleme
19 20	212328_at	LIMCH1	LIM and calponin homology domains 1
21	231472_at	FBXO15	F-box protein 15
22	238983_at	NSUN7	NOP2/Sun domain family, member 7
23	240275_at	ARMC3	armadillo repeat containing 3
24	1552439 s at	MEGF11	multiple EGF-like-domains 11
25	215193 x at	HLA-DRB1 /// HLA-DRI	major histocompatibility complex. class II. DR beta 1 /// major histo
20 27	223838 at	TSGA10	testis specific. 10
28	231077 at	C1orf192	chromosome 1 open reading frame 192
29	208792 s at		clusterin
30	200752_5_at		socrated frizzled related protein 4
31	204032_5_at		ATD binding assette, sub family A (ADC1) member 9
32	204719_dl		ATP-binding cassette, sub-raining A (ABC1), member 8
33 34	212588_at	PIPRC	protein tyrosine phosphatase, receptor type, C
35	203397_s_at	GALN13	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalacto
36	229095_s_at	LIMS3 /// LIMS3-LOC4	LIM and senescent cell antigen-like domains 3 /// LIMS3-LOC4408
37	211991_s_at	HLA-DPA1	major histocompatibility complex, class II, DP alpha 1
38	233516_s_at	SPAG17	sperm associated antigen 17
39	227188_at	FAM176C	family with sequence similarity 176, member C
40	228554_at	PGR	progesterone receptor
42	215695_s_at	GYG2	glycogenin 2
43	228771_at	ADRBK2	adrenergic, beta, receptor kinase 2
44	1562371_s_at	VWA3B	von Willebrand factor A domain containing 3B
45	222890 at	CCDC113	coiled-coil domain containing 113
46 47		MAP3K8	mitogen-activated protein kinase kinase kinase 8
48	202436 s at	CYP1B1	cytochrome P450, family 1, subfamily 8, polypeptide 1
49	202150_5_ut	SVNPO2	synantonodin 2
50	227002_ut		spermatogenesis associated 18
51	220012 of	Clorf 24	shermatogenesis associated 10
52	229012_dt	C901124	MD repeat demain 79
53 54	229816_at	WDR/8	wD repeat domain 78
55	203854_at		complement factor i
56	219313_at	GRAMD1C	GRAIVI domain containing 1C
57	210168_at	C6	complement component 6
58	229169_at	TTC18	tetratricopeptide repeat domain 18
59 60	205413_at	MPPED2	metallophosphoesterase domain containing 2
00			

1			
2	240304_s_at	TMC5	transmembrane channel-like 5
3	223924_at	TTC25	tetratricopeptide repeat domain 25
4 5	209829_at	FAM65B	family with sequence similarity 65, member B
6	210445_at	FABP6	fatty acid binding protein 6, ileal
7	220614 s at	ADGB	androglobin
8	202768 at	FOSB	FBJ murine osteosarcoma viral oncogene homolog B
9	202672 s at	ATF3	activating transcription factor 3
10	227099 s at	C11orf96	chromosome 11 open reading frame 96
11	227035_{3}		complement component 1A (Rodgers blood group) /// compleme
12	214420_A_at	C4A /// C4B /// LOCIC	colled coll domain containing 11
14	1552520_a_al		
15	239150_at	SINTIN	sentan, cilia apical structure protein
16	236222_at	C30rf15 /// LOC10065	chromosome 3 open reading frame 15 /// uncharacterized LOC10
17	220269_at	ZBBX	zinc finger, B-box domain containing
18	226863_at	FAM110C	family with sequence similarity 110, member C
19	220110_s_at	NXF3	nuclear RNA export factor 3
20	218901_at	PLSCR4	phospholipid scramblase 4
22	213792_s_at	INSR	insulin receptor
23	243610 at	C9orf135	chromosome 9 open reading frame 135
24		FAM154B	family with sequence similarity 154, member B
25		NTN4	netrin 4
26 27	228692 at	PRFX2	nhosnhatidylinositol-3 4 5-trisnhosnhate-dependent Rac exchange
28	228032_at	AGR3	factor 2 anterior gradient 3 homolog (Xenonus Jaevis)
29	220241_{at}		insulin-like growth factor hinding protein 7
30	201105_5_81		ATD/CTD binding protoin like 2
31	220590_at		
32	229542_at	C2001185	chromosome 20 open reading frame 85
33 34	238116_at		dynein, light chain, roadblock-type 2
35	233157_x_at	CCDC114	colled-coil domain containing 114
36	232745_x_at	SPEF2	sperm flagellar 2
37	217767_at	C3	complement component 3
38	226344_at	ZMAT1	zinc finger, matrin-type 1
39	229831_at	CNTN3	contactin 3 (plasmacytoma associated)
40 41	210383_at	SCN1A	sodium channel, voltage-gated, type I, alpha subunit
42	236085_at	CAPSL	calcyphosine-like
43	227450_at	ERP27	endoplasmic reticulum protein 27
44	239916_at	WDR16	WD repeat domain 16
45		DNAH12	dynein, axonemal, heavy chain 12
46 47		IL1R1	interleukin 1 receptor, type I
47 48	238625 at	C1orf168	chromosome 1 open reading frame 168
49	240065_at	EAM81B	family with sequence similarity 81, member B
50	240005_at		WD repeat domain 96
51	231004_at		systeine rich socratory protein 2
52 52	210202_dt		totratuice neutide report domain 19
53 54	229170_s_at		
55	208498_s_at	ACIGIP4 /// AMY1A /	actin, gamma 1 pseudogene 4 /// amylase, alpha 1A (salivary) ///
56	230093_at	KSPH1	radial spoke head 1 homolog (Chlamydomonas)
57	214945_at	FAM153A /// FAM153	I family with sequence similarity 153, member A /// family with sec
58	200795_at	SPARCL1	SPARC-like 1 (hevin)
59 60	211990_at	HLA-DPA1	major histocompatibility complex, class II, DP alpha 1
00			

	223044_at	SLC40A1	solute carrier family 40 (iron-regulated transporter), member 1		
	207802_at	CRISP3	cysteine-rich secretory protein 3		
0					
1					
2					
3					
4 5					
с 6					
7					
, 8					
9					
0					
1					
2					
3					
4					
с 6					
7					
8					
9					
0					
1					
2					
3					
+					
5					
7					
5					
)					
2					
5 1					
5					
5					
7					
3					
9					
0					
1					
∠ 2					
ر 1					
5					
, }					
•					
ł					
)					

	Xend	Xenografted tumor vs. Normal oviduct		Serous cancer vs
RefSeq Transcript ID p-value		Fold-Change	p-value	e
NM_004004		5.87E-07	194.15	0.0446097
NM_002026 /// NM_05	5403	1.82E-07	150.943	0.0001132
NM_000077 /// NM_00	0119	2.20E-09	146.365	2.63E-06
NM_001256099 /// NM	1_13	1.41E-06	136.964	1.65E-05
NM_002026 /// NM_05	5403	2.58E-07	129.223	0.000228229
NM_002026 /// NM_05	5403	1.11E-07	122.519	0.000212078
NM_005978		1.97E-06	111.322	0.000336779
NM_002026 /// NM_05	5403	5.67E-08	102.878	0.000180865
NM_001206846 /// NM	1_01	4.07E-10	86.748	1.19E-07
NM_002961 /// NM_02	1955	5.57E-07	86.1008	0.000314175
NM_001185056 /// NM	1_00	7.77E-08	84.8932	0.000783687
NM_018685	_	4.17E-07	82.5849	2.17E-06
NM_004181		4.39E-07	79.0854	0.0176215
	1_00	3.20E-08	76.9694	0.00244253
NM_001034 /// NM_00		8.27E-08	73.2436	9.71E-06
NM_018492		7.62E-07	71.9627	4.81E-05
NM 001444		6.05E-11	70.4237	1.20E-07
 NM_002160		7.24E-06	67.1956	0.0413871
 NM_022346		1.06E-09	63.5059	6.73E-08
	1_01	5.23E-09	62.5462	4.50E-08
NM 001827	_	1.07E-08	59.8806	3.97E-06
NM 021107 /// NM 03	3336	1.42E-10	58.6994	7.24E-05
NM 016448		6.18E-11	55.1857	1.36E-08
NM 001114120 /// NM	1 01	3.66E-08	54.8264	2.75E-05
NM 001256799 /// NM	1 00	8.01E-09	54.8252	0.00313461
NM 001166691 /// NM	1 00	2.20E-12	53.1695	2.02E-11
NM 022346	-	4.94E-10	53.1519	2.04E-05
NM 001034 /// NM 00	0116	3.02E-05	52.5865	0.00140245
NM 001067		7.37E-09	52.3716	9.75E-10
	1 00	3.71E-09	51.1075	8.02E-06
NM 004936 /// NM 07	_ 7848	7.46E-10	50.3667	0.00496907
NM 001207042 /// NM	1 00	8.29E-16	47.9748	5.91E-06
NM 001067		2.56E-08	47.6484	1.61E-07
NM 001029989 /// NM	1 01	4.21E-07	46.8959	9.42F-06
NM 001002269 /// NM	1 01	3.63E-09	45.9372	0.0134098
NM 001130851 /// NM	1 00	9.15F-11	45,0968	8,25F-07
NM 018304	00	6.11F-09	44,7991	2 18F-06
NM 004219		7.83F-12	44,0016	7 45F-08
NM 006818		2.38F-12	43 8789	0 000328096
NM 001255		2.84F-06	43,7721	6 30F-06
NM 024745		7.16F-13	42 6672	5.67F-07
NM 001012270 /// NM	1 00	3 35F-08	42 0438	2 00F-05
NM 031966	00	7 24F-08	41 2069	2.00E 05 4 /2F-06
14141_031300		7.24L-00	41.3003	4.4ZE-00

1		C 405 00	40.0050	
2	NM_001114120 /// NM_01	6.40E-09	40.6658	4.96E-05
4	NM_001001790 /// NM_00	4.47E-09	40.4379	0.0009/1516
5	NM_001127182 /// NM_01	9.34E-08	40.3811	1.95E-07
6	NM_001267580 /// NM_00	1.99E-08	40.1021	1.97E-08
/ 8	NIM_0004336	3.89E-09	39.5809	8.46E-08
9	NM_0000777/7 NM_00119	1.83E-11	39.4114	1.06E-05
10	NM_031423 /// NM_14569	2.02E-11	39.2024	4.90E-12
11	NM_031942 /// NM_14581	3.29E-06	38.0567	0.000915955
12	NM_016448	3.02E-12	37.4461	2.2/E-U/
13	NM_001198557/// NM_00	9.62E-09	37.416	2.96E-05
15	NM_005914 /// NM_18274	2.02E-12	37.0746	2.03E-06
16	NM_001129897 //7 NM_00	2.86E-08	36.6682	9.65E-09
17	NM_013363	1.18E-08	36.1554	0.004/4/35
10	NM_001142556 /// NM_00	3.19E-07	35.3182	9.70E-06
20	NM_001813	5.33E-14	34./2/	1.20E-06
21	NM_001160706 /// NM_00	6.52E-07	34.0245	0.00658233
22	NM_014176	1.09E-11	33.933	8.95E-05
23 24	NM_005733	6.54E-10	33.0866	1.8/E-10
25	NM_002305	2.75E-10	32.4/13	0.0008352
26	NM_002291	2.63E-06	32.3/16	0.0311/21
27	NM_00/019 /// NM_181/9	1.29E-10	32.3393	5.21E-10
28	NM_024629	3.85E-10	32.1917	6.61E-08
30	NM_001166356 /// NM_00	1.40E-08	32.095	0.00011338
31	NM_001130829 /// NM_00	1.60E-08	32.0495	3.35E-05
32	NM_001142556 /// NM_00	1.16E-07	32.0253	0.0032725
33	NM_018518 /// NM_18275	3.75E-07	31.5499	0.0160453
35	NM_007274 /// NM_18186	1.37E-10	31.3961	5.81E-05
36	NM_016343	7.88E-10	31.0042	6.16E-09
37	NM_003600 // NM_19843	5.10E-10	30.9649	5.60E-12
38	NM_1/4942	1.14E-08	30.7088	1.24E-08
40	NM_012474 /// NR_037432	1.64E-10	30.3586	3.09E-05
41	NM_003878	1.69E-06	30.2673	1.3/E-06
42	NM_032756	2.97E-10	30.2069	0.000433131
43 44	NM_001005413 /// NM_00	6.99E-07	30.1462	2.9/E-0/
45	NM_007280	7.48E-11	29.4258	0.0002/30/9
46	NM_001114120 /// NM_01	2.03E-09	29.2812	0.00113718
47	NM_001199261 /// NM_00	2.50E-12	28./3//	0.000110883
48 70	NM_001048201 /// NM_01	3.96E-07	28.549	0.00232417
- 50	NM_001100910 /// NM_00	4.01E-07	28.5277	5.61E-05
51	NM_001114121 /// NM_00	1.37E-08	28.0585	5.47E-05
52	NM_003600 /// NM_19843	5.43E-11	28.0358	2.02E-10
53 54	NM_001130829 /// NM_00	8.16E-06	27.4298	2.37E-05
55	NM_030919	7.86E-06	27.3062	1.31E-06
56	NM_001031628 /// NM_00	2.76E-09	27.2913	0.000736861
57	NM_173567	4.29E-09	27.0949	0.000395683
58	NM_001160033 /// NM_00	7.74E-10	26.9468	5.10E-05
60	NM_004298 /// NM_15348	7.69E-08	26.9426	0.000149792

1				
2	NM_000269 /// NM_19817	3.63E-09	26.9322	0.000135352
3 4	NM_001113378 /// NM_01	6.21E-11	26.6319	4.80E-09
5	NM_014875	2.47E-08	25.8864	1.88E-08
6	NM_001070	7.31E-10	25.7397	2.19E-05
7	NM_001145208 /// NM_01	1.69E-09	25.2949	6.04E-05
o 9	NM_014096 /// NM_01761	8.44E-10	25.2498	1.46E-05
10	NM_001166496 /// NM_00	8.86E-07	25.105	0.00371699
11	NM_001002799 /// NM_00	6.76E-07	24.856	4.87E-05
12	NM_001168551 /// NM_01	1.01E-13	24.8376	1.34E-08
13 14	NM_017915	2.45E-11	24.7816	5.54E-05
15	NM_016095	2.53E-10	24.7519	9.86E-07
16	NM_000597	2.69E-05	24.5338	0.000196035
17	NM_001042426 /// NM_00	2.44E-06	24.3145	3.35E-06
18 10	NM_002703	9.13E-08	24.1661	0.016957
20	NM_012394	2.89E-11	24.1376	1.71E-05
21	NM_001126103 /// NM_00	7.42E-08	23.9965	2.53E-07
22	NM_004701	2.06E-08	23.9216	2.23E-08
23	NM_004702 /// NM_05773	3.81E-09	23.6354	9.74E-05
25	NM_001211	1.79E-06	23.536	4.08E-07
26	NM_001015051 /// NM_00	5.99E-05	23.5275	0.0275818
27	NM_004523	1.37E-07	23.4655	1.38E-07
28	NM_016401 /// NR_02459(2.69E-08	23.4505	0.00973226
29 30	NM_020675	8.28E-08	23.1727	0.00090201
31	NM_001002032 /// NM_00	3.93E-12	23.0821	1.32E-05
32	NM_006993	8.56E-13	22.6309	3.16E-05
33	NM_001130862 /// NM_00	3.27E-07	22.4118	2.47E-07
34 35	NM_032043	1.75E-10	22.2716	1.48E-07
36	NM_012112	1.01E-08	22.0444	4.57E-08
37	NM_001166496 /// NM_00	8.99E-06	21.9351	0.0150149
38	NM_001160706 /// NM_00	1.62E-06	21.8339	0.0190539
39 40	NM_000393	2.96E-06	21.0731	0.00302529
41	NM_020242	2.49E-07	20.9965	2.29E-07
42	NM_004856 /// NM_13855	1.31E-06	20.7476	4.18E-07
43	NM_005914 /// NM_18274	1.05E-09	20.6468	1.07E-06
44 45	NM_001100624 /// NM_00	5.47E-11	20.4814	2.73E-05
46	NM_001850 /// NM_02035	0.000880386	20.4601	6.14E-05
47	NM_144508 /// NM_17058	3.88E-08	20.1857	0.000110029
48	NM_001256685 /// NM_00	9.76E-06	20.0948	1.34E-06
49 50	NM_001099286 /// NM_13	1.34E-10	20.0666	6.90E-08
51	NR_024031	6.39E-09	20.059	0.00119736
52	NM_001078166 /// NM_00	8.54E-08	19.9533	0.00791754
53	NM_002623	5.11E-12	19.8218	6.53E-07
54 55	NM_001098801 /// NM_15	7.14E-08	19.7903	0.00104351
56	NM_001098525 /// NM_01	1.29E-05	19.5518	0.0112875
57	NM_052871 /// NR_015395	2.08E-09	19.5471	0.000430063
58	NM_018004	5.17E-06	19.3835	0.000980456
59 60	NM_001237	4.02E-07	19.3134	0.00679371

1				
2	NM_001789 /// NM_20156	1.09E-11	19.2628	3.18E-05
3	NM_002592 /// NM_18264	4.53E-07	18.8156	0.000115791
4 5	NM_005737	6.60E-07	18.7673	9.58E-05
6	NM_018518 /// NM_18275	3.46E-07	18.7542	1.77E-05
7	NM_001009936 /// NM_01	3.10E-08	18.653	7.99E-05
8	NM_001098616 /// NM_01	2.79E-09	18.6266	0.0016783
9 10	NM_005022	5.24E-07	18.4364	0.0110857
11	NM_152562	2.38E-09	18.3738	1.65E-05
12	NM_001190799 /// NM_00	5.06E-08	18.2961	0.000671851
13	NM_018410	2.13E-09	18.1974	1.72E-08
14 15	NM_001001563	2.11E-10	18.0096	3.16E-06
16	NM_016037	4.08E-13	17.9771	6.73E-06
17	NM_001193424 /// NM_00	8.83E-09	17.9541	0.000703176
18	NM_080748	1.06E-10	17.7752	1.45E-05
19	NM_001190991 /// NM_01	7.34E-10	17.6389	1.83E-07
20 21	NM_005105	9.79E-08	17.6105	0.000230946
22	NM_001137604 /// NM_01	6.23E-08	17.3881	0.000295671
23	NM_001009936 /// NM_01	8.28E-08	17.3775	0.00128462
24	NM_001845	6.97E-08	17.3746	0.000269278
25	NM_014317	1.31E-09	17.1415	1.23E-05
27	NM_001130158 /// NM_00	9.23E-08	17.1188	0.000107932
28	NM_018128	2.90E-10	17.1172	0.000402458
29	NM_001002258 /// NM_00	3.20E-06	17.0082	0.00480524
30	NM_031299	7.19E-10	16.983	2.36E-10
32	NM_000075 /// NM_05298	2.16E-07	16.9684	0.000317706
33	NM_000365 /// NM_00115	9.12E-07	16.8595	0.000575207
34	NM_000170	1.17E-05	16.8509	1.20E-05
35	NM_014875	1.96E-11	16.8499	1.83E-07
37	NM_014624	5.41E-08	16.8	0.00135819
38	NM_015341	3.64E-09	16.7458	1.06E-05
39	NM_002318	2.15E-08	16.7454	0.000458976
40 ⊿1	NM_001012507	4.81E-08	16.6607	0.000166421
42	NM_153695	3.45E-06	16.4385	0.00105107
43	NM_014109	3.24E-06	16.4375	4.00E-07
44	NM_001018067 /// NM_00	1.21E-08	16.4358	0.000556296
45 46	NM_020200	3.18E-05	16.4146	0.0238651
40 47	NM_006397	3.67E-08	16.3791	1.50E-05
48	NM_014109	6.72E-08	16.2747	0.000150378
49	NM_001905	1.22E-06	16.2653	0.000494056
50	NM_001129897 /// NM_00	1.36E-08	16.2319	9.28E-08
52	NM_001040152 /// NM_00	4.71E-06	16.0033	0.000524252
53	NM_013237	8.13E-11	15.9216	6.79E-06
54	NM_006713	9.97E-12	15.8889	1.36E-05
55 56	XR_040503	2.12E-06	15.8533	0.00269906
50 57	NM_001079524 /// NM_00	8.87E-05	15.7932	0.0454423
58	NM_031966	4.68E-08	15.7874	1.83E-07
59	NM_018063	7.39E-10	15.6299	7.06E-06
60				

1				
2	NM_001145966 /// NM_00	1.64E-06	15.6074	0.000354249
3	NM_017785	2.19E-09	15.5705	9.00E-06
- 5	NM_005916 /// NM_18277	1.45E-06	15.552	7.44E-05
6	NM_001197330 /// NM_00	1.16E-12	15.5076	1.56E-07
7	NM_004559	1.20E-07	15.4581	0.000587199
8	NM_021067	3.76E-10	15.2466	3.13E-11
9 10	NM_024996	5.33E-07	15.2306	0.00110486
11	NM_006461	5.65E-10	15.1867	3.72E-07
12	NM_001142761 /// NM_00	2.22E-10	15.1837	2.66E-05
13	NM_001270411 /// NM_00	1.97E-05	15.1138	0.0183959
14 15	NM_005915	1.02E-07	15.095	1.02E-06
16	NM_005034	1.22E-07	15.0357	0.000152316
17	NM_001012270 /// NM_00	1.15E-10	14.8851	6.12E-06
18	NM_178014	2.15E-06	14.8738	0.000549977
19	NM_003142	4.83E-07	14.8137	0.00818877
20 21	NM_018407	2.49E-05	14.7292	0.000931545
22	NM_001190799 /// NM_00	1.29E-07	14.6136	0.000138719
23	NM_006845	1.38E-07	14.4754	3.21E-09
24	NM_014367	9.32E-09	14.2675	2.14E-06
25 26	NM_001071	0.000297954	14.1616	0.0022331
20	NM 004044	1.36E-08	14.1593	0.00112029
28	NM 005737	3.97E-07	14.1323	2.96E-05
29		7.37E-09	14.1193	0.000307272
30	NM 006234	4.29E-12	14.0097	4.55E-06
32		4.14E-08	13.9065	0.00132257
33	NM 001142463 /// NM 00	7.73E-08	13.9015	0.000569094
34	NM_001134693	1.68E-09	13.8741	0.00036413
35		1.00E-07	13.8076	1.17E-05
30 37	 NM_003074	3.08E-09	13.7237	0.000515849
38	NM 001025252 /// NM 00	1.15E-07	13.6939	0.00095701
39	NM 080668	3.72E-08	13.6521	1.19E-06
40	NM 178014	1.22E-06	13.5373	0.000454097
41 42	NM 001145713 /// NM 00	4.16E-08	13.4628	0.000552009
42	NM 052850	2.11F-06	13.4536	0.0150484
44	NM 000532 /// NM 00117	2.03E-06	13.3138	4.07E-05
45	NM 002949	1.30E-08	13,2763	3.17E-05
46	NM_014367	1.76F-09	13,1732	7.67F-07
47 48	NM 024770	1,11E-06	13,1079	0.00413249
49	NM_001136478 /// NM_00	3 78F-07	13 0845	0.00360709
50	NM_031280	4.87F-08	13,0801	5.72F-06
51	NM_018944	1 45E-06	13.0689	0 000586995
52 53	NM_002524	1 26F-06	12 8581	0.000355187
54	NM_002524	5 71E-06	12.856	0.00023310/
55	NM_001134419 /// NM_00	9 285-05	12.0230	0.000382104
56	NM_015201	7 NGF_NA	12.7200	7 QQF_NG
57 58	NM 000365 /// NM 00115	3 235-07	12.07.54	0 0007750/2
59	NM 023077	3.23L-07 3 56F_10	12.3024	۵.000775345 ۵.۸۲۲-۵۲
60	1111-023077	2.JUL-10	12.4333	0.041-03

1	NNA 200222	4 225 06	12 1622	0.00407442
2	NM_006023	1.33E-06	12.4622	0.00497142
4	NIVI_033550	9.45E-07	12.4162	0.00570171
5	NM_0012704727/7 NM_00	4.41E-07	12.3988	0.00158603
6	NNA 001042424 /// NNA 00	1.92E-08	12.3000	9.41E-05
/ 8	NM_001042424 /// NM_00	2.05E-09	12.2890	3.90E-07
9	NIM_001258315 /// NIM_00	0.000167362	12.2313	0.57E-05
10	NM_001159587 /// NM_00	0.00017269	12.2247	0.0167102
11	NM_003118/// XK_11031/	4 125 06	12.1374	0.000505162
12 13	NM_003920	4.122-08	12.1209	8.45E-00
14	NM_001008396 /// NM_00	7.065.05	12.1103	0.48E-07
15	NM_00E063	7.90E-05	12.0047	0.0177409
16	NM_003085	0.000303744	12.0557	0.000107554
17 18	NIM_002425	9.39E-00	12.0139	1 805 00
19	NM_001203247 /// NMI_00	5:43E-07	11.9025	1.60E-09
20	NR 002604 /// NR 002605	2.182-00	11.9511	4.07E-05
21	NR_003004 /// NR_003005	1.31E-08	11.8510	0.000314589
22	NM_022266	1.27E-07	11.8242	2.54E-00
23	NIVI_022366	3.03E-06	11.7808	0.0155641
25	NM_014175	1.022-00	11.7514	0.00120517
26	NM_01256125 /// NM_00	9.05E-07	11.7113	0.000158005
27	NM_001230135 /// NMI_00	1.03E-00	11.7008	0.000156905
20	NM_002915 /// NM_18155	0.70E-07	11.0909	0.000203007
30	NM_003936	2.412-07	11.041	2 565 06
31	NM_018230	9 EOE 09	11.0251	0.00226022
32 33	NM_022061	2.50E-08	11.0224	0.00230033
34	NM_022001	1 285-10	11.3007	0.00147004 7 80E-07
35	NM 132250	2.475-08	11.4372	0.00108183
36	NM 152308	2.47L-00 1 51E-12	11.3777	0.00108183 2 18E-08
37 38	NM_002105	1.312-12	11.3304	0.0010/35
39	NM_001130929 /// XM_00	2 30F-09	11.2502	0.0010455 1 0/1F-05
40	NM_013296	5 21F-05	11.2023	1.04E 05 3 89E-05
41	NM_024006 /// NM_20682	5.21E 05	11.2010	0.0030102
42 43	NM_001134231 /// NM_02	5.342 07	11 2389	0.00030102
44	NM_001144757 /// NM_00	0.00100541	11.2303	0.002042246
45	NM_001025252 /// NM_00	0.00013749	11 1891	0.00985254
46	NM_012310	4 60F-06	11.1871	0.00255567
47 48	NM 014184	3 35E-06	11,1588	0.0101764
49	NM_001042422 /// NM_00	1.63E-05	11.087	0.0021603
50	NM 006938	1.64F-09	11.0352	0.000221657
51	NM_001105573	7.20E-06	11.0227	0.000616816
52 53	NM 001114121 /// NM 00	1.32F-09	10.9517	4.31F-05
54	NM 001011667 /// NM 00	1.73E-08	10.9288	2.72F-07
55	NM 178014	1.78E-05	10.9233	0.00886206
56 57	NM 001100624 /// NM 00	6.40E-13	10.8984	7.32F-09
58	NM 012293	7.96E-07	10.8981	0.000182296
59	NM 007051 /// NM 13191	8.42E-08	10.8434	0.000304594
60				

1				
2	NM_001243088 /// NM_00	2.40E-07	10.7614	6.21E-07
3	NM_001040649 /// NM_00	9.07E-08	10.7344	0.000572196
4 5	NM_021154 /// NM_05817	0.000254735	10.7297	0.000131146
6	NM_001660	4.70E-05	10.7063	0.00280085
7	NM_001826 /// NR_02416:	1.32E-05	10.6633	0.000441453
8	NM_001164623 /// NM_01	7.34E-07	10.5899	0.00420544
9	NM_018063	3.11E-07	10.5898	0.000117132
10	NM_005952	2.42E-05	10.5687	0.0159862
12	NM 001167924 /// NM 03	7.54E-09	10.5548	0.000392885
13	NM 001206846 /// NM 01	2.27E-06	10.5212	5.67E-07
14	NM 020890	8.46E-08	10.4803	0.00138424
15	NM 001160033 /// NM 00	5.81E-08	10.4519	1.86E-06
10	NM 001080443 /// NM 00	1.10E-09	10.3847	1.92E-10
18	NM 004483 /// NR 033249	3.42F-06	10.3334	0.0113283
19	NM 173529	3 41F-05	10.2641	0.00716291
20	NM 001024934 /// NM 00	6.25E-06	10 264	0.00762005
21	NM 032485 /// NM 18280	7 89F-08	10.201	3 27F-07
22	NM 024098	4.66E-10	10.1812	8 28E-05
24	NM_006638	4.00L-10 1 34E-06	10.1612	0.202-05
25	NM_000038	6 765 00	10.1058	2 175 06
26	NM_01164260 /// NM_00	4 205 08	10.1304	2 925 05
27	NM_00F014 // NM_100	4.202-08	10.1240	2.82E-03
20	NIM_00102C // NIM_18274	1.01E-10	10.0515	0.40E-00
30	NM_00102378 /// NM_00114	9.982-05	10.0476	0.00511145
31	NIM_001002258 /// NIM_00	5.20E-05	10.0301	0.00130069
32	NIM_019037	1.19E-06	9.97758	0.000644199
33 34	NIM_001165031/// NIM_01	3.69E-08	9.944	0.000920281
35	NM_020726	1.80E-07	9.89334	0.00028814
36	NM_001256510 /// NM_00	2.81E-05	9.88044	0.0177325
37	NM_024629	3.14E-05	9.77945	0.000903816
38	NM_007033	7.05E-07	9.76743	0.00400491
40	NM_001256875 /// NM_01	1.44E-07	9.72026	5.91E-07
41	NM_001204182 /// NM_00	1.50E-05	9.69364	0.000669006
42	NM_001165031 /// NM_01	1.33E-07	9.67846	0.000107569
43	NM_030928	1.31E-09	9.67761	6.13E-05
44 45	NR_040001	0.000351759	9.62634	0.0307327
46	NM_000310 /// NM_00114	1.35E-05	9.58299	0.00594439
47	NM_004052	1.94E-05	9.57858	0.000262759
48	NM_001258437 /// NM_00	2.28E-07	9.549	0.00116143
49 50	NM_001128210 /// NM_18	5.02E-07	9.53261	0.00192102
50 51	NM_001042762 /// NM_02	0.000115937	9.51958	0.00954669
52	NM_001789 /// NM_20156	4.62E-08	9.50461	8.79E-06
53	NM_001201483 /// NM_00	2.81E-05	9.46185	0.00372617
54	NM_002770	2.17E-06	9.39128	0.00123976
55 56	NM_015261	2.81E-06	9.38803	0.00212995
57	NM_002266	5.93E-05	9.37303	0.00253773
58	NM_002770	3.25E-07	9.35325	0.00232863
59	NM_002634	1.56E-05	9.3495	0.0059617
60	—			

1		1 475 00	0 32103	0 000 433 403
2	NM_014171	1.4/E-U6	9.32183	
4	NM_024037	1.22E-09	9.31114	1.25E-08
5	NM_016035	4./3E-0/	9.2694	0.000566425
6	NM_020409 /// NM_17798	5.03E-10	9.24512	1.54E-05
/ 8	NM_024808	9.40E-05	9.22064	0.00248125
9	NM_006848	7.36E-06	9.21135	0.00219912
10	NM_023937	1.62E-06	9.2026	0.000107653
11	NM_014467	7.17E-06	9.20018	0.000399589
12	NM_000034 /// NM_00112	7.70E-05	9.18701	0.00699727
13	NM_020750	2.23E-10	9.1/21/	1.34E-05
15	NM_004301 /// NM_1798	7.08E-06	9.09358	0.000389137
16	NM_001/90 /// NM_02280	2.22E-07	9.09056	8.9/E-0/
17	NM_001128211 /// NM_03	0.000131978	9.01149	0.000773952
18	NM_001113378 /// NM_01	3.34E-08	9.00985	1.35E-06
20	NM_001256799 /// NM_00	1.02E-05	8.97219	0.0014149
21	NM_032390	4.34E-08	8.95564	0.0002534
22	NM_001243120 /// NM_00	6.47E-05	8.95344	0.00283373
23	NM_138689	8.39E-06	8.94943	0.000496815
24 25	NM_006101	6.12E-05	8.92635	8.00E-07
26	NM_000088	2.26E-06	8.85924	0.000476974
27	NM_006802	8.37E-06	8.82491	0.00489482
28	NM_198066	7.52E-05	8.76015	0.0136224
29 30	NM_000071 /// NM_00117	0.000147148	8.71307	0.00222914
31	NM_001198812 /// NM_00	0.000206951	8.6928	6.60E-05
32	NM_001172303 /// NM_00	3.05E-06	8.68226	0.000455216
33	NM_000057	9.78E-08	8.62648	6.11E-07
34 35	NM_001166356 /// NM_00	1.93E-08	8.62202	2.23E-07
36	NM_002074	1.65E-06	8.5927	0.000583086
37	NM_001002799 /// NM_00	0.000298024	8.57285	0.00463527
38	NM_001199534 /// NM_00	6.24E-06	8.555	0.000130516
39 40	NM_001080449	1.15E-07	8.55234	2.96E-06
41	NM_024899	1.54E-07	8.54779	0.0010084
42	NM_001845	3.80E-06	8.54282	0.00113215
43	NM_004373	4.36E-05	8.52075	0.00972443
44 45	NM_001135570 /// NR_024	1.96E-05	8.4784	0.00198926
46	NM_138462	2.29E-06	8.47374	0.00147492
47	NM_004526	8.53E-06	8.4658	2.18E-05
48	NM_019042	4.77E-07	8.4411	0.000125268
49	NM_006558	8.51E-05	8.4241	0.00655065
50 51	NM_001143936	4.75E-05	8.36492	0.00347382
52	NM_002577	2.05E-06	8.36449	0.000121671
53	NM_013237	6.65E-06	8.3348	0.00303712
54 55	NM_032479	2.94E-08	8.32468	0.000156817
ວວ 56	NM_023080	0.000396559	8.30749	0.00271216
57	NM_004146	7.75E-06	8.2795	0.00141556
58	NM_004395 /// NM_08088	1.17E-06	8.26667	4.92E-07
59 60	NM_013299	1.31E-05	8.23892	2.29E-06

1				
2	NM_000425 /// NM_00114	0.000999044	8.22723	2.98E-06
3	NM_001001790 /// NM_00	1.92E-05	8.21173	0.0101217
4 5	NM_001135247 /// NM_00	0.000278273	8.20701	7.93E-06
6	NM_014171	5.88E-06	8.18042	0.00073109
7	XR_109352 /// XR_109353	9.78E-07	8.17968	0.00285912
8	NM_005805	3.09E-05	8.17548	0.0171708
9 10	NM_003088 /// XR_132832	1.61E-06	8.17253	3.45E-05
10	NM_001166017 /// NM_14	2.13E-08	8.07039	1.66E-05
12	NM_001042517 /// NM_00	1.93E-05	8.06941	0.0020882
13	NM_001105237 /// NM_01	1.69E-07	8.05712	0.00030664
14 15	NM_017915	1.65E-08	8.01621	6.43E-07
15	NM_001206846 /// NM_01	2.16E-07	7.994	1.21E-07
17	NM_001077516 /// NM_00	1.02E-07	7.93906	0.000241526
18	NM_014865	0.000353321	7.92715	0.00263073
19	NM_001039954	3.93E-05	7.92352	0.011369
20 21	NM_004341	1.84E-08	7.87212	3.94E-06
22	NM_022459	2.02E-09	7.82015	1.36E-05
23	NM_030782	0.000133018	7.80414	0.00200008
24	NM_005063	0.000574103	7.77791	0.000179549
25 26	NM_001164391 /// NM_00	1.72E-06	7.77559	4.92E-05
27	NM_001256725 /// NM_00	4.62E-08	7.76835	0.000269761
28	NM_001145725 /// NM_01	3.65E-06	7.76108	0.00234654
29	NM_001015885 /// NM_00	4.21E-07	7.72119	1.81E-05
30 31	NR_038253 /// NR_038254	4.06E-08	7.69968	7.03E-08
32	NM_033109	4.23E-06	7.69736	0.000326574
33	NM_001256799 /// NM_00	1.51E-05	7.55735	0.00179303
34	NM_001517	2.72E-05	7.54978	0.000790678
35	NM_001253900 /// NM_00	0.000322274	7.54569	2.91E-06
30 37	NM_001166131 /// NM_15	9.92E-08	7.53626	7.36E-09
38	NM_015190	2.04E-05	7.51883	0.000304021
39		0.000229685	7.50922	0.033416
40	NM 001143964 /// NM 00	2.38E-05	7.47162	2.92E-05
41 42	NM 031299	1.14E-09	7.46256	1.91E-06
43	NM 001031713 /// NM 02	1.88E-07	7.4542	0.000410814
44	NM 002293	3.05E-06	7.43828	7.75E-05
45	 NM_000088	4.72E-05	7.3991	0.0110042
40 47	 NM_015969	5.38E-06	7.38655	0.000944154
48	 NM_145018	4.42E-07	7.37207	0.000315027
49		4.23E-07	7.36338	0.000583764
50	NM 015938	7.45E-05	7.35618	0.0176771
51 52		1.27E-08	7.34386	1.27E-05
53	NM 033112	5.84E-05	7.30934	0.00584353
54	 NM_016072	4.01E-05	7.30295	0.000507433
55	NM 001853	0.0354386	7.23274	0.0176609
56 57		1.39E-07	7.23199	0.000299323
58	NMNMNMNMNMNM	1.46E-06	7.22182	1.38E-06
59	 NM_032881	8.63E-07	7.21584	0.000892514
60				

1		0.000501444	7 40700	0.0107750
2	NM_001152	0.000501444	7.18788	0.0197753
4	NIM_001008800 /// NIM_00	1.14E-05	7.10841	0.00399018
5	NIM_0003737/7 NR_033432	4.21E-05	7.14078	0.00284915
6	NM_001048166 /// NM_00	6.40E-06	7.11008	2.08E-05
/ 8	NM_001008396 /// NM_00	2.61E-05	7.10511	0.000499648
9	NM_053040 /// NR_00297	9.64E-05	7.09943	0.0127575
10	NM_000034 /// NM_00112	6.29E-05	7.09628	0.00233028
11	NM_032361 /// NR_00361	7.56E-07	7.08486	0.00013073
12	NM_01/955 /// NM_145/0	7.97E-08	7.05468	1.16E-05
13 14	NM_003074	3.33E-05	7.05221	0.00421035
15	NM_003107	0.00148803	7.02416	0.00721192
16	NM_001079669 /// NM_03	0.000100412	7.01266	0.000502035
17	NM_001261834 /// NM_00	1.01E-05	7.01071	0.000271263
18 10	NM_006342	7.19E-05	7.00201	2.40E-06
20	NM_001199534 /// NM_00	5.99E-05	6.98841	0.000265874
21	NM_005951	0.000211003	6.98674	0.0150353
22	NM_001127181 /// NM_00	6.96E-08	6.94256	7.34E-06
23	NM_001260474 /// NM_00	4.27E-07	6.93479	0.00012781
24 25	NM_001197292 /// NM_00	2.94E-05	6.89855	0.00112758
26	NM_001205206 /// NM_00	9.93E-07	6.86303	1.66E-05
27	NM_016027	0.00199933	6.84894	0.0306835
28	NM_001256135 /// NM_00	0.000472848	6.81957	0.00039836
29	NM_031420	4.62E-07	6.8019	0.000218683
31	NM_001238 /// NM_05718	0.000150381	6.79781	1.32E-07
32	NM_001724 /// NM_19918	0.000186928	6.79582	0.0217445
33	NM_152416 /// XR_108868	0.000501907	6.77023	0.00641851
34	NM_000289 /// NM_00116	1.30E-07	6.76725	1.18E-05
30 36	NM_199420	1.94E-05	6.74497	7.39E-08
37	NM_153339	1.41E-09	6.74433	1.38E-05
38	NM_006739	0.00019922	6.73184	0.00668764
39	NM_006190 /// NR_03391!	8.31E-07	6.67255	0.000164614
40 11	NM_001159673 /// NM_00	0.00076998	6.66992	0.00464664
42	NM_019037	4.01E-05	6.66003	0.000618947
43	NM_145287 /// NR_033354	6.05E-07	6.65597	0.000434341
44	NM_001136264 /// NM_00	2.69E-05	6.64854	0.00733811
45 46	NM_016397 /// NM_19897	2.65E-06	6.63588	0.000426956
40 47	NM_001195563 /// NM_00	0.000142545	6.63498	0.0019235
48	NM_001256798 /// NM_08	0.000184458	6.63222	7.34E-05
49	NM 012334	0.000581262	6.61682	3.34E-05
50	NM 023009 /// NR 052852	1.02E-05	6.61307	2.95E-06
51 52	NM 000175 /// NM 00118	4.02E-06	6.61233	1.52E-05
53	NM 023077	3.64E-09	6.58166	4.89E-06
54	 NR 024388	1.38E-05	6.56947	3.33E-05
55		2.17E-05	6.56895	0.00195446
56 57	 NM_001686	3.29E-05	6.55901	0.00416093
58		1.69E-07	6.55675	0.000238847
59	 NM 001697	0.00160362	6.53291	0.022597
60				

1				
2	NM_016567 /// NM_07846	4.56E-05	6.52492	0.00152445
3 1	NM_001184979 /// NM_00	9.65E-08	6.50628	9.47E-06
- 5	NM_001077484 /// NM_03	7.58E-07	6.4934	8.53E-06
6	NM_005837	6.90E-07	6.4787	0.000928026
7	NM_020647	0.000236816	6.47645	0.000937137
8	NM_012334	2.69E-05	6.45122	1.61E-06
9 10	NM_006265	9.51E-06	6.44537	0.000288851
11	NM_001044385 /// NM_15	7.24E-07	6.43354	0.000365912
12	NM_005949	0.000213695	6.37279	0.00367584
13	NM_000034 /// NM_00112	8.17E-05	6.37069	0.00251322
14 15	NM_015459	6.26E-06	6.33627	0.000121874
16	NM_001024210 /// NM_00	3.55E-06	6.30081	0.00142175
17	NM_001042618 /// NM_00	7.95E-07	6.29112	4.86E-05
18	NM_004111	3.04E-06	6.28725	7.00E-06
19	NM_014321 /// NR_03762(1.09E-07	6.28132	4.69E-08
20 21	NM_000465	5.83E-06	6.25735	7.29E-05
22	NM_001145966 /// NM_00	1.96E-07	6.25572	2.05E-06
23	NM_023008 /// NM_17815	3.68E-05	6.24466	0.00157128
24	NM_199249 /// NM_19925	9.85E-06	6.23958	0.0026748
25 26	NM_032174	2.37E-07	6.23803	0.000126517
27	NM_199287	2.80E-05	6.23668	0.00194555
28	NM_006500	0.000104543	6.22565	0.00215916
29	NM_016397 /// NM_19897	1.89E-05	6.18913	0.00109841
30	NM_001033521 /// NM_00	1.53E-08	6.18674	1.81E-06
32	NM 001256799 /// NM 00	2.94E-05	6.17178	0.00301906
33	NM 001127229 /// NM 00	2.60E-06	6.14899	0.000315268
34	NM 014426 /// NM 15222	1.03E-07	6.14198	4.02E-05
35	NM 016343	2.15E-05	6.12622	2.01E-09
30 37	NM 000271	1.96E-05	6.11955	0.000115787
38	NM 016426	1.85E-06	6.11924	7.25E-07
39	 NM_018385	1.42E-05	6.10364	0.000414676
40	 NM_053042	2.24E-05	6.10015	0.00324768
41 42	 NM_004637	5.73E-05	6.0792	0.00207881
43	 NM_024899	0.000205455	6.07861	0.000727947
44		8.25E-08	6.0742	2.79E-10
45	NM 016625	1.13E-06	6.06727	1.59E-06
46 47	NM 016094	2.22E-05	6.06613	4.14E-05
48	NM 001031827 /// NM 00	1.66E-07	6.05419	2.13E-05
49	NM 001256799 /// NM 00	7.52E-06	6.02815	0.00118694
50	NM 001243251 /// NM 02	5.13E-06	5.9996	0.000355568
51	NM_001171155 /// NR_03	1.37F-07	5,99665	1.30F-05
52 53	NM 031280	6.93F-05	5.99322	8.62F-05
54	NM_013438 /// NM_05306	2 50E-05	5.97406	0.00463059
55	NM 001008709 /// NM 00	2.95F-06	5.97162	0.000511441
56 57	NM 001033673 /// NM 00	2.88F-05	5.93668	0.00316105
57 58	NM 001042371	3.74F-05	5,9311	0.000643163
59	NM 001098424 /// NM 00	1.78F-05	5,92098	0.00138084
60		1.702 05	5.52050	0.00100004
1			F 00000	
----------	-------------------------	-------------	---------	-------------
2	NM_001105573	1.94E-05	5.89083	4.67E-05
3	NM_003091 /// NM_19821	1.10E-06	5.88461	1.03E-07
5	NM_031420	5.57E-06	5.86508	0.000312334
6	NM_013402 /// NR_031729	0.000139097	5.86504	0.00074102
7	NM_024830	5.94E-08	5.8642	1.62E-07
8	NM_001185181 /// NM_00	5.44E-06	5.85736	0.000466613
10	NM_001199981 /// NM_00	7.61E-06	5.85331	0.00227409
11	NM_023071	0.000469537	5.84458	0.00661612
12	NM_001256604 /// NM_00	5.52E-05	5.82965	0.000376833
13	NM_006579	1.42E-05	5.82412	0.000343645
14	NM_014708	2.47E-05	5.82197	6.83E-05
16	NM_032139	0.000760409	5.78694	0.00218295
17	NM_001127325 /// NM_00	2.12E-05	5.75812	0.000319226
18	NM_001102592 /// NM_14	3.14E-05	5.75529	3.19E-06
19 20	NM_001097612 /// NM_00	1.36E-05	5.75482	0.0026755
20	NM_001130112 /// NM_00	0.000531852	5.74619	0.00802145
22	NM_001256269 /// NM_00	7.97E-07	5.72946	1.05E-06
23	NM_001135673 /// NM_02	0.00086081	5.72457	0.00603027
24	NM_001146160 /// NM_03	0.000723107	5.70399	0.00878637
25 26	NM_005952	0.000328415	5.69946	0.0162433
27	NM_017850	6.47E-05	5.6586	0.000911804
28	NM_001005290 /// NM_00	3.95E-05	5.65156	6.50E-07
29	NM_014388	2.10E-05	5.64937	0.00391551
30	NM_000858 /// NM_00115	0.00061228	5.64545	0.0203927
32	NM_182513	1.25E-05	5.63859	1.21E-07
33	NM_001130146 /// NM_00	0.000529636	5.63543	0.000248397
34	NM_001199629 /// NM_00	0.000843475	5.60946	0.0014778
35	NR_002578 /// NR_002746	7.02E-05	5.60451	0.000726355
37	NM_012291	1.39E-06	5.60136	4.31E-10
38	NM_004395 /// NM_08088	1.28E-09	5.59309	2.53E-07
39	NM 002792 /// NM 15225	0.000340561	5.58533	0.00275967
40	NM 001201370 /// NM 01	0.000328632	5.5474	0.00423544
41 42	NM 013402 /// NR 031729	2.65E-06	5.5437	0.000927845
43	NM 000373 /// NR 033434	5.23E-06	5.51858	0.000184773
44	NM 001252129 /// NM 01	0.000476606	5.48928	0.000184469
45	NM 001128626 /// NM 00	0.000157649	5.4872	0.0048277
46 47	NM 001190991 /// NM 01	0.00122084	5.47546	0.00236218
48	 NM_006496	9.93E-05	5.42951	0.00473491
49		5.38E-06	5.41598	0.000606432
50	NM 001194998 /// NM 01	0.000100559	5.41331	0.00223947
51 52	 NM 178547	9.70E-06	5.41213	0.00195664
53		0.000502259	5.41189	0.000998251
54	NM_004358 /// NM_02187	1.39F-05	5.40257	0.000244301
55	NM 016131	0.00052409	5.40102	0.00525616
56 57	NM 001185181 /// NM 00	2.15F-05	5.38559	0.00130755
58	NM 001199260 /// NM 02	0.00191061	5.37128	0.0350817
59	NM 001039479 /// NM 01	0.000704058	5 3604	0.00675486
60		0.000704000	5.5004	0.00070-00

1				
2	NM_001163817 /// NM_00	0.000335869	5.33585	0.00104173
3 ⊿	NM_001145822 /// NM_00	1.27E-05	5.33326	0.000904834
4 5	NM_001204057 /// NM_00	1.11E-07	5.31753	9.52E-08
6	NM_031942 /// NM_14581	0.000140473	5.3091	0.00800785
7	NM_001005386 /// NM_00	4.18E-10	5.30506	9.56E-07
8	NM_001256126 /// NM_20	0.000168436	5.30129	0.000714218
9 10	NM_032242	2.00E-07	5.2971	5.67E-08
10	NM_001142548 /// NM_00	4.25E-05	5.2934	1.34E-07
12	NM_018067	2.74E-05	5.2867	0.00160911
13	NM_002496 /// NR_03984(2.78E-05	5.27343	0.000189932
14	NM_005690 /// NM_01206	0.00267635	5.26332	0.0259922
15	NM 012456	0.000201598	5.2469	0.00170441
17	NM_001042618 /// NM_00	6.70E-08	5.22448	1.46E-05
18	NM 001040649 /// NM 00	6.79E-07	5.22343	1.85E-05
19	NM 017518 /// NM 20710	4.32E-05	5.2036	0.00378857
20	NM 001941 /// NM 02442	0.011172	5.19978	0.0293705
21	NM 003364 /// NM 18159	0.000227056	5.19762	0.00495893
23	NM 001204857 /// NM 00	0.000991926	5,18454	0.00488547
24	NM_001195193 /// NM_00	0.00147273	5.17843	0.0182266
25	NM_001079809 /// NM_13	1.44F-07	5.16837	1.42F-05
26 27	NM_005005	2 81F-05	5 16582	7 90F-05
28	NM_001025242 /// NM_00	1 61E-05	5.16302	0 000303783
29	NM_001134671 /// NM_02	2 605-06	5.16127	3 65F-05
30	NM_001136469 /// NM_02	0.00108724	5 15656	0.00306273
31	NM_001042717 // NM_03	2 585-06	5.13050	0.00000275
32 33	NM_000284 /// NM_00117	0.000205223	5 13/179	0.000107551
34	NM_014754	8 07E-06	5.13279	5 09F-05
35	NM_018086	0.024518	5 11025	0.0028863
36	NM_01080502 /// NM_17	0.00155633	5 10011	6.64E-07
37 38	NM_001195602 /// NM_00	4 21E-05	5 0070	0.042-07
39	NM_016307 /// NM_10207	4.212-05	5.00/28	0.0025557
40	NM_01201270 /// NM_12857		5.09428	0.00010455
41	NM_0012013707/7 NM_01	9 515 07	5.06733	6 055 05
42 43	NM_021105	5.31L-07 5.725.09	5.07527	0.95L-05
43 44	NM_0011439397/7 NM_00	5.72E-06	5.00950	2.01E-07
45	NIM_005189 // NIM_03264	0.000302825	5.06819	8.24E-00
46	NM_001003713 /// NM_00	0.000947057	5.06489	0.00519154
47	NM_001257137 /// NM_00	1.24E-06	5.06193	5.28E-07
48 49	NM_213720	0.000391168	5.05791	0.000721802
43 50	NM_001033549 /// NM_01	3.76E-07	5.05617	3.06E-07
51	NM_001142805 /// NM_00	6.68E-05	5.04308	1.44E-05
52	NM_014109	0.000206317	5.01992	4.22E-06
53	NM_001109903 /// NM_03	6.18E-05	5.0035	8.61E-06
04 55	NM_002792 /// NM_15225	9.93E-05	4.97334	0.00206053
56	NM_001166356 /// NM_00	1.54E-06	4.95916	1.04E-06
57	NM_052969	2.13E-05	4.94927	1.31E-06
58	NM_002263	5.84E-08	4.93289	1.29E-05
59 60	NM_001320	0.000892431	4.88716	0.00380502

1		0.000140406	4 00005	0.00054640
2	NM_001256820 /// NM_00	0.000113106	4.88295	0.00054642
4	NIM_001001503 // NIM_02	7.71E-05	4.88047	0.000517602
5	NM_206908 /// NM_20691	0.000346198	4.86471	0.000187654
6	NM_015918 /// NM_19820	0.000390257	4.8601	0.00602586
7	NM_005950	0.000833189	4.85811	0.011175
0 9	NM_001135653 /// NM_00	2.53E-06	4.8568	1.41E-05
10	NM_032360	8.42E-07	4.8521	0.00011461
11	NM_001142805 /// NM_00	9.88E-05	4.84444	2.50E-05
12	NM_001163812 /// NM_00	8.38E-06	4.84332	5.09E-05
13	NM_018086	0.00175667	4.84128	8.40E-06
14	NM_007027	0.000116507	4.79756	0.000939402
16	NM_001109938 /// NM_00	0.000113216	4.79159	0.00147271
17	NM_001080416 /// NM_00	0.00668883	4.78242	0.00465192
18	NM_001039375 /// NM_02	7.12E-08	4.78017	2.88E-06
19	NM_001863	3.55E-05	4.77496	5.15E-05
20 21	NM_001099282 /// NM_00	6.88E-06	4.76683	0.000328413
22	NM_001243891 /// NM_00	1.46E-05	4.76119	0.000267633
23	NM 001193513 /// NM 00	4.83E-06	4.74797	0.000300147
24	NM 001419	0.0014129	4.74714	0.010918
25	 NM_006602	0.000317217	4.72465	0.00304931
20 27		1.05E-05	4.71578	3.96E-05
28	NM 022552 /// NM 15375	2.18E-05	4.71459	8.02E-07
29	XR 109242 /// XR 111621	0.000768167	4.69198	0.00349431
30	NM 001256119 /// NM 00	4.83F-06	4.68907	0.000103507
31	NM_001267810 /// NM_00	6 51E-05	4 68609	0.000655966
33	NM_016397 /// NM_19897	8.76F-06	4 68536	0.0000000000000000000000000000000000000
34	NM 001142474 /// NM 00	/ 18E-05	4 67286	7 54F-06
35	NM_001038628 /// NM_00	0.0161805	4.07200	0.0/10936
36	NM_001006622 /// NM_00	0.0101005	4.00305	0.0410550
37	NM_001258328 /// NM_00	0.00207397	4.00445	0.00489509
39	NM_001238338/// NM_01	0.00824855	4.03703	0.00035004
40	NM_006247	0.00106905	4.04720	0.00957958
41	NIM_000347	7.33E-U3	4.01/0/	0.000600879
42	NM_001130721/// NM_02	0.000564557	4.0157	0.00157262
43 44	NM_001105530 // NM_00	0.000600325	4.602	0.00847569
45	NM_005494 /// NM_05824	0.00106173	4.59975	0.00180/18
46	NM_001099670777 NM_00	9.88E-05	4.59401	0.000548429
47	NM_144772	2.54E-05	4.59303	0.000100701
48	NM_002610	0.00581303	4.58019	0.0021737
49 50	NM_012456	3.55E-05	4.57541	0.000597544
51	NM_004442 /// NM_01744	0.000957439	4.56973	6.68E-05
52	NM_018407	0.0251241	4.55202	0.0232763
53	NM_001199199 /// NM_00	0.00226781	4.51892	0.00931295
54 55	NM_018056	2.47E-07	4.51874	2.10E-06
56	NM_152374	0.000100738	4.49951	2.31E-05
57	NM_002264 /// NR_026698	0.000103389	4.49679	0.000988337
58	NM_007276 /// NM_01658	7.49E-05	4.49486	0.000505177
59 60	NM_001005353 /// NM_01	0.0017267	4.49043	0.00294586

1				
2	NM_001080415	0.000354379	4.48641	0.00138196
3 1	NM_033416	4.01E-08	4.48041	4.99E-06
5	NM_006231	5.61E-05	4.47592	0.00181557
6	NM_005916 /// NM_18277	9.15E-05	4.47235	2.14E-05
7	NM_012291	1.46E-05	4.47167	5.86E-09
8	NM_032336	1.06E-07	4.45557	8.53E-06
10	NM_203288	0.00176833	4.45219	0.0181816
11	NM_001207014 /// NM_00	0.00585986	4.41797	0.0156035
12	NM_017975 /// NR_00310!	0.00317661	4.40978	0.0033077
13 17	NM_016200	4.25E-06	4.4049	0.00012479
15	NM_001145408 /// NM_00	3.39E-05	4.39734	3.51E-05
16	NM_003404 /// NM_13932	0.00124982	4.39501	0.00852163
17	NM_001202498 /// NM_00	0.000147282	4.36429	0.00122068
18 10	NM_020782	0.0102134	4.36405	0.0162177
20	NM_001130524 /// NM_03	0.000562233	4.36168	0.00950217
21	NM_002452 /// NM_19894	1.85E-05	4.34971	1.14E-05
22	NM_001105198 /// NM_00	0.00103893	4.34851	0.0102236
23	NM_020158	1.54E-05	4.33987	0.000523834
24 25	NM_002293	0.000319123	4.32336	0.00611505
26	NM_015965	0.00205367	4.31309	0.0222284
27	NM_001166050 /// NM_00	0.000100017	4.30342	0.00283825
28	NM_001199534 /// NM_00	0.000104392	4.30284	7.89E-05
29 30	NM_001033505 /// NM_00	3.00E-05	4.30096	1.39E-05
31	NM_001136204 /// NM_01	2.34E-08	4.29256	8.45E-07
32	NM_001134337 /// NM_00	1.09E-05	4.28757	0.000140258
33	NM_004596	0.000360833	4.28481	0.000805824
34 35	NM_000821 /// NM_00114	0.0018421	4.28171	0.000106338
36	NM_001083946 /// NM_01	7.35E-06	4.2756	0.000215406
37	NM_001242597 /// NM_00	2.74E-05	4.25308	3.74E-05
38	NM_001256604 /// NM_00	0.000593889	4.25261	3.63E-05
39 40	NM_025049	8.13E-05	4.228	7.04E-05
41	NM_004134	0.000510516	4.22615	0.00644384
42	NM_014367	1.16E-06	4.21649	2.10E-06
43	NM_014344	4.93E-05	4.21249	0.000121087
44 45	NM_174910	0.00147292	4.20814	0.00202614
46	NM_001080539 /// NM_17	0.000973746	4.20396	2.81E-06
47	NM_003091 /// NM_19821	0.00010551	4.18839	1.07E-05
48	NM_014762	0.000349551	4.18403	0.00331796
49 50	NM_024857	4.80E-05	4.18331	0.000264878
50 51	NM_001098786 /// NM_01	0.00437713	4.18323	0.00926028
52	NM_000071 /// NM_00117	0.00291774	4.18081	0.00115307
53	NM_001142805 /// NM_00	0.00012772	4.15564	0.000406182
54	NM_001130963 /// NM_01	0.000544423	4.1472	0.00666539
วว 56	NM_012334	0.00153584	4.12942	0.00267541
57	NM_001198915 /// NM_00	1.81E-05	4.07757	2.07E-05
58	NM_000428	6.19E-05	4.07363	0.000335661
59	NM_006265	0.00506101	4.07123	0.00832928
60				

1		2 405 05	4.0555	0.00000001
2	NM_001034833 /// NM_01	3.49E-05	4.0555	0.00088001
4	NM_001001653 /// NM_05	3.28E-05	4.03528	8.01E-05
5	NIM_006733	2.17E-05	4.01095	2.82E-U7
6	NM_01010866 (// NNA_06	0.000517893	3.99772	0.00413558
/ 8	NM_001010866 /// NM_00	3.02E-06	3.97999	9.40E-05
9	NM_001130107 //7 NM_00	0.000117498	3.9/915	0.000589247
10	NM_014109	0.000439593	3.94904	1.9/E-05
11	NM_001256135 /// NM_00	0.00850796	3.94753	0.00109158
12 13	NM_001142805 /// NM_00	6.60E-05	3.94337	2.36E-05
14	NM_01/563	0.00778659	3.93357	0.00292281
15	NM_001004339	0.00153929	3.92957	0.00169458
16	NM_001003398/// NM_00	0.0244205	3.92839	0.00798458
17 18	NM_022157	0.000393388	3.92035	0.00195498
10	NM_0004990	1.29E-05	3.92607	0.000259271
20	NNA 007262 /// NNA 10044	8.23E-00	3.8937	2.08E-05
21	NM_007263 /// NM_19944	0.000908682	3.88505	0.00145926
22		7.13E-06	3.8/50/	2.69E-05
23	NM_005866 /// NM_14715	9.62E-06	3.86621	0.000125989
25	NM_002514	0.01322//	3.85987	0.00118288
26	NM_003765	4.37E-06	3.85792	3.44E-06
27	NM_001105570	0.00221634	3.84693	0.00188982
20 29	NR_000008 /// NR_002559	1.48E-05	3.83405	3.08E-05
30	NM_001247996/// NM_01	0.0045165	3.80707	0.00361469
31	NM_001042540 /// NM_00	0.00118579	3.80292	2.50E-06
32	NM_001184740 /// NM_00	0.000376322	3.79496	9.94E-05
34	NM_001020528 /// NM_00	0.00407783	3.78233	0.000969146
35	NM_010070 /// NR_02267	0.000543518	3.78101	0.000122042
36	NM_0190707/7 NR_03367	0.000103849	3.77741	0.000048795
37	NM_0011000507/7 NM_00	0.00830175	3.77474	0.00331500
39	NNA 001076785 /// NNA 00	0.000400599	5.75506	0.000105140
40		0.000227049	2 7/220	0.00108341
41	NM_015420	0.00112177	2 72862	0.00180000
42 43	NM_013420	0.000049702 4 505-06	2 72211	0.00232091 2.27E_05
44	NM_019407	4.502-00	2 72076	0.00701790
45	NM_018407	0.0140217	2 72052	0.00791789
46	NM_01184742 // NM_00	0.0302004	2 77792	0.00379027
47 48	NM_0011847427/7 NM_00	0.00894000 1 00E-05	2 71527	0.0318331 0.81E_08
49	NM 019221	0.000460104	2 71210	0.00162049
50	NM_018221	0.000409104	2 70764	0.00103048 6.05E-08
51	NM_001006726 /// NM_00	0.000114220	2.70704	0.03E-08
52 52	NM_001003/33/// NM_00		2,62002	1.25E-00
53 54		0.00125097	3.07347 3.67733	0.00210039
55	UU_UU_UU_UU_UU_UU_UU_UU_UU_UU_UU_UU_UU_	0.00110000	3.07/33	0.000285780
56	NR 046287 /// ND 046289		2.01202	0.0443120 0.00000100
57 59	NIA 012299	0.000666656	3.00042	0.000232183
50 59	NNA 004056 /// NNA 13055		3.00013	0.00132941
60	CC85T_IAIN /// 0C94007	0.000208324	3.00129	0.000224262

1				
2	NM_005819	0.000763565	3.64823	0.000662148
3 ⊿	NM_001199649 /// NM_00	0.0071631	3.64413	0.00126765
5	NM_001257137 /// NM_00	0.0001007	3.61911	0.000929619
6	NM_052876	9.22E-06	3.61701	1.55E-05
7	NM_001256849 /// NM_00	0.00244029	3.61364	0.00236615
8	NM_001256185 /// NM_00	0.00405359	3.61167	0.0131277
9 10	NR_002578 /// NR_002746	0.00179328	3.5859	0.00173266
10	NM_001199981 /// NM_00	0.0022315	3.58393	0.00210703
12	NM_001270452 /// NM_00	0.00256241	3.58208	0.00752918
13	NM_001007239 /// NM_01	0.000654022	3.58025	0.00064355
14	NM_178867 /// NM_21364	0.00412522	3.57936	0.00453457
15 16	NM_001136039 /// NM_00	0.00654641	3.57469	0.00577675
17	NM_001164623 /// NM_01	0.0011101	3.57295	0.0038238
18	NM 024112	0.00028847	3.55273	0.00119623
19	NM 000048 /// NM 00102	0.00243993	3.55115	0.00827966
20	NM 014047	0.00016116	3.54972	0.000184363
21		0.0193097	3.54048	0.0018076
23	NM 006516	0.0106671	3.53324	0.000592474
24	NM 000302	0.00308366	3.52355	0.00770414
25	NM_001163508 /// NM_00	5.94F-05	3.52333	2.88F-05
26 27	NM_001100819 /// NM_00	0.01127	3,52331	0.0201716
28	NM 152716	1 66F-07	3 50536	7 75F-08
29	NM 004996 /// NM 01986	0.000112803	3 50169	4 92F-06
30	NM_001161580 /// NM_00	0.00104991	3 50164	0.000679653
31	NM_018848 /// NM_17078	0.00463129	3 50042	0.00200076
32 33	NM_01/275 /// NM_05/01	0.0206346	3.00042	0.00200070
34	NM 006555	0.000215756	3 / 9/169	0.00325501
35	NM_018944	0.000108524	3,49000	0.00133022
36	NM_018444	0.000108524	2 / 21/10	0.000178405
37	NM_004544	0.000144735	3.48105	0.0256726
39	NM_004344	0.0223121	2 47210	0.0550720
40	NM_010555	0.000302132	2 16600	0.00124492
41	NM_174911	1.005.05	3.40088	0.0370889
42	NM_015430	1.99E-05	2.40222	9.952-05
43 44	NM_015420	0.0134292	3.45882	0.0331003
45	NM_001178138 /// NM_00	0.00106433	3.44781	0.0003/144/
46	NM_001037324 /// NM_00	0.000447193	3.44758	2.80E-05
47	NM_012088	0.000336541	3.4384	0.00168568
48 40	NM_003594	0.000844199	3.42969	9.07E-05
49 50	NM_001163817 /// NM_00	2.46E-05	3.42/24	1.56E-07
51	NM_001042517 /// NM_00	0.0031/186	3.42663	0.00568695
52	NM_030789 /// NM_17858	4.33E-06	3.41915	1.63E-05
53	NM_001008395	0.00018411	3.41671	0.000435812
54 55	NM_001008222 /// NM_01	0.000478019	3.40444	0.000967503
56	NM_001916	0.0143152	3.40363	0.00118378
57	NM_001150	0.0115668	3.38867	0.0136652
58	NM_000284 /// NM_00117	0.00131395	3.38663	0.00198428
59 60	NM_022353	0.00676363	3.38459	0.00267575

1		0.00502024	2 2 2 2 0 0	0.0102056
2	NM_001846	0.00593924	3.36398	0.0132856
4	NM_001532	9.61E-05	3.36004	7.60E-05
5	NM_001145966 /// NM_00	0.000289329	3.34907	0.000118902
6	NM_002013 /// XR_132760	0.00821376	3.34168	0.0166502
7	NM_014275 /// NM_05401	0.00230893	3.31765	0.00157398
8 9	NM_001025252 /// NM_00	0.0313241	3.30743	0.0242991
10	NM_018140	0.000390393	3.30506	9.62E-05
11	NM_018086	0.0192802	3.30374	0.00096048
12	NM_002466	0.00120771	3.2807	7.90E-06
13 14	NM_003388 /// NM_03242	0.000553297	3.27964	0.00102942
14	NM_138348	0.00131764	3.27353	0.00177182
16	NM_152603	0.00514507	3.27021	0.0013994
17	NM_001206774 /// NM_01	0.0109649	3.25535	0.0229978
18	NM_001184891 /// NM_00	0.000115734	3.25179	0.000217532
19 20	NM_001224 /// NM_03298	0.0148698	3.25024	0.0108862
20	NM_004374	0.0193182	3.23094	0.00432976
22	NM_001253815 /// NM_00	0.0134921	3.22236	0.000191046
23	NM_006558	0.00358896	3.2208	0.00827964
24	NM_001001653 /// NM_05	0.000295956	3.21842	0.000284403
25 26	NM_144695	0.0006344	3.21764	0.000134017
27	NM_001033505 /// NM_00	3.45E-06	3.21672	1.06E-06
28	NM_001142463 /// NM_00	0.00114118	3.21032	0.00326772
29	NM_001135821 /// NM_00	0.0141858	3.20757	0.00198235
30 31	NM_001130929 /// NM_01	0.0105507	3.20589	0.00211917
32	NM_153451	0.000614091	3.20157	1.31E-05
33	NM_016456	0.000102669	3.18957	0.000219801
34	NM_001042424 /// NM_00	0.0052781	3.17253	0.0112546
35	NM_138316 /// NM_14897	0.0167124	3.1543	0.00139965
37	NM 005590 /// NM 00559	0.00172831	3.13267	0.00159819
38	NM_005809 /// NM_18173	0.039234	3.12964	0.0206651
39	NM 006499 /// NM 20154	0.0190645	3.12106	0.0170701
40	NM 003255	0.00219103	3.11962	6.15E-05
41	NM 001032292 /// NM 00	0.00172857	3.11864	0.00327552
43	NM 001143990 /// NM 00	0.00342365	3.10646	4.59E-05
44	NM 018353	0.00583957	3.10313	0.00250215
45	 NR 028514	0.000174282	3.09571	0.000490317
46 47		5.51E-05	3.09297	0.000165919
48	NM 006451 /// NM 18278	0.0321267	3.06377	0.0411293
49	NM 030811	0.000281967	3.06279	4.76E-05
50	NM 001018073 /// NM 00	1.61E-05	3.05986	3.54E-05
51 52	NM 018944	0.00299447	3.05795	4.69E-05
53	NM 001039375 /// NM 02	1.10F-05	3.05588	5.25F-06
54	NM 001659	0.0321961	3.04171	0.00273872
55	NM 001258384 /// NM 00	0.00400723	3.03777	0.000419124
56 57	NM 001145408 /// NM 00	0.00011052	3.02218	0.000134114
57 58	NR 015366 /// NR 027241	0.0039025	3.01953	0.00220251
59	NM 001142405 /// NM 00	0.0033023	2 0152	6 07F-05
60	001142403777 10101_00	0.00401313	5.0130	0.072-05

1				
2	NM_001113201 /// NM_00	0.00166535	3.0123	2.94E-05
3	NM_001256686 /// NM_00	0.00294171	3.01074	4.36E-05
5	NM_001204453 /// NM_00	0.00454375	3.00992	0.00327254
6	NM_001166050 /// NM_00	0.00229139	3.00662	0.00347887
7 0	NM_001033521 /// NM_00	0.00035384	3.00447	0.000143115
o 9	NM_001047	0.00131137	2.99422	0.000111034
10	NM_018240	0.0055355	2.99391	0.000313931
11	NM_01//80	0.00536157	2.99378	0.000449695
12	NM_001188	0.000237903	2.99255	0.000155987
13 14	NM_000849 /// NR_02453	0.000167988	2.96459	0.000112618
15	NM_001201545 /// NM_02	2.37E-05	2.94882	1.03E-05
16	NM_001199290 /// NM_14	0.00668348	2.93066	0.0013151
17	NM_016074	5.61E-05	2.92846	0.000101123
18 10	NM_013296	0.000451888	2.92813	0.000118344
20	NR_002785	0.0102791	2.92578	0.000237128
21	NM_001077484 /// NM_03	0.00355477	2.92286	0.00139389
22	NM_001032730 /// NM_03	0.0140734	2.92055	0.0040458
23	NM_001267623 /// NM_03	1.07E-05	2.9203	3.43E-06
24 25	NM_002936	0.000851502	2.91909	3.62E-05
26	NM_145702	0.0320349	2.91717	0.000122838
27	NM_178448	0.000888349	2.90077	7.16E-06
28	NM_203453	0.0151376	2.88725	0.00558055
29 30	NM_152699	0.000556353	2.87658	5.01E-05
31	NM_017952	0.0165647	2.86986	0.0141862
32	NM_001024594	0.00966714	2.86602	0.00226845
33	NM_001252641 /// NM_00	0.0121026	2.85767	0.00439137
34 35	NM_001039589 /// NM_00	0.000562666	2.85665	0.000196377
36	XR_110082 /// XR_112807	0.0112509	2.85571	0.000167397
37	NM_001267608 /// NM_00	4.59E-05	2.84765	6.33E-06
38	NM_005471	0.000387656	2.84327	0.000372697
39 40	NM_020662	0.0186444	2.84285	0.014838
41	NM_012103 /// NM_18157	0.00881065	2.8407	0.000673517
42	NM_024796 /// NR_024321	0.0213211	2.83935	0.00218459
43	NM_024036	0.00231287	2.82618	0.00157086
44 45	NM_001033855 /// NM_00	0.00541553	2.81772	0.00149735
46	NM_001177663 /// NM_00	0.00747536	2.80211	0.00319688
47	NM_007059	0.000151459	2.78874	4.24E-05
48	NM_018451 /// NR_047594	0.0111651	2.78487	6.72E-05
49 50	NM_003258	6.16E-05	2.7837	4.50E-05
51	NM_001008938 /// NM_01	7.71E-05	2.78214	5.96E-05
52	NM_004846 /// XR_112445	0.000351805	2.77611	8.18E-05
53	NM_014607	0.0161466	2.77176	0.00685515
54 55	NM_001204180	8.18E-06	2.76864	3.07E-09
56	NM_006602 /// NM_08075	0.0120047	2.76808	0.00688017
57	NM_024622	0.0172903	2.75812	0.00265831
58	NM_006014	0.00242948	2.75613	3.22E-06
59 60	NM_001258384 /// NM_00	0.00322608	2.75029	7.93E-05

1				
2	NM_001013730 /// XR_110	0.0111702	2.74382	0.00270185
3	NM_032371 /// NM_13841	0.00424538	2.74347	0.000141242
4 5	NM_006980	0.00285433	2.7377	0.000794649
6	NM_002254	0.00067988	2.73741	0.000111307
7	NM_001130965 /// NM_00	0.00278601	2.7372	0.00025803
8	NM_017813	0.0245251	2.73693	0.00110693
9	NM_000403 /// NM_00100	0.00243563	2.73429	0.00209677
10	NM_000244 /// NM_13079	0.00116467	2.72882	0.000441238
12	NM_001195563 /// NM_00	0.0051406	2.71723	0.00241004
13	NM 012334	0.0134123	2.71605	0.000745807
14	NM 018706	0.00521769	2.70574	0.000153549
15 16		0.00369265	2.68758	4.61E-05
17	NM 001256763 /// NM 01	0.0115766	2.68394	0.00234919
18	NM 015953	0.03592	2.67958	0.01475
19	NM 001015885 /// NM 00	0.000233815	2.67287	3.36E-05
20	NM 032818	0.00147199	2.67203	8.79E-05
21	NM 001098424 /// NM 00	0.0433555	2 65653	0.0305176
22	NM_017646	0.0410256	2.65042	0.0009690/13
24	NR 02/397	0.00496486	2.03042	2 97E-05
25	NM_012202	0.00455923	2:04575	0.000557154
26	NM_012293	0.00403933	2.0478	0.0000007104
27	NN_001126022 /// NNA_01	0.017088	2.03001	0.00213088
20	NIM_001136033 /// NIM_01	0.00584748	2.03507	0.00110982
30	NIM_003007	0.0175755	2.03009	0.32E-05
31	NM_001093725	0.000402474	2.62669	3.23E-06
32	NM_015155	0.00493799	2.61596	0.000848966
33 34	NM_022778	0.00502312	2.61428	0.00267398
35	NM_014426 /// NM_15222	0.0100988	2.6111/	0.000130803
36	NM_001025366 /// NM_00	0.00695236	2.60121	0.000133257
37	NM_178229	3.40E-05	2.59576	5.07E-13
38	NM_003258	0.00106387	2.59367	3.31E-06
39 40	NM_001109903 /// NM_03	0.0012575	2.59044	8.32E-05
41	NM_017927 /// NM_03354	0.00961541	2.58194	0.00566464
42	NM_001002017 /// NM_00	0.000475587	2.57779	0.000147877
43	NM_032371 /// NM_13841	0.0122843	2.57704	0.000372989
44 45	NM_001099652	0.0260202	2.57227	1.90E-05
46	NM_001130677	0.00466091	2.56175	0.000306874
47	NM_003107	0.0259326	2.55389	0.000636005
48	NM_001247987 /// NM_02	0.0349408	2.55176	3.78E-05
49	NM_001247996 /// NM_01	7.54E-05	2.54405	2.32E-05
50 51	NM_004442 /// NM_01744	0.00208323	2.54234	3.34E-05
52	NM_001013649	0.0222945	2.53611	0.00302361
53	NM_001204492 /// NM_00	0.0013481	2.52247	6.43E-05
54	NM_001256670 /// NM_00	5.76E-05	2.50841	8.24E-06
55 56	NM_019070 /// NR_03367	0.000125246	2.50682	1.91E-05
50 57	NM_033505	0.0122216	2.50652	0.00269497
58	NM_005997	0.0105441	2.49721	0.000441109
59		0.0227395	2.48932	0.00208488
60				

1				
2	NM_145231	0.0240059	2.48596	0.00549941
3	NM_001083963 /// NM_00	0.0131973	2.48034	0.000433102
5	NM_001040664 /// NM_00	0.00719132	2.46782	0.000152061
6	NM_004442 /// NM_01744	0.000231369	2.44636	2.24E-05
7	NM_001258384 /// NM_00	0.00525099	2.44141	0.000134695
8	NM_006796	0.00587978	2.42822	0.000496276
9 10	NM_014426 /// NM_15222	0.00895797	2.40945	0.00234194
11	NM_152341	0.00757604	2.40877	0.000986576
12	NM_001039477 /// NM_00	0.0443508	2.40365	0.0174253
13	NM_003721 /// NM_13444	0.0143483	2.40016	0.00254392
14 15	NM_018174	0.0289731	2.39212	0.00606325
16	NM_016018 /// NM_02487	0.00547544	2.38855	0.000141053
17	NM_001109938 /// NM_00	0.00994332	2.38565	0.00051123
18	NM_001258033 /// NM_00	0.00680477	2.37989	0.00150437
19	NM_016028 /// NM_01763	0.0241129	2.37215	0.00109897
20 21	NM_001008491 /// NM_00	0.00794681	2.37142	0.00012502
22	NR_002776	0.00248674	2.35634	0.000118334
23	NM_001198850 /// NM_00	0.00175653	2.35092	0.000179211
24	NM_020386	0.0282001	2.34524	0.00102848
25	NM 000135 /// NM 00101	0.00016353	2.34484	3.49E-06
20	NM 003714	0.0483855	2.34211	0.00522508
28	 NM_006579	0.00117407	2.33231	3.11E-06
29		0.00700322	2.32804	5.11E-05
30	NM 001015055 /// NM 00	0.0307408	2.32518	2.08E-05
32	NM019104	0.0372472	2.3192	0.00101841
33	 NM_006618	0.0372274	2.31711	0.00197485
34		0.00150349	2.31636	0.000143866
35	 NM_004567	0.0109774	2.31533	3.30E-05
30 37		0.0205612	2.31225	0.00187022
38	NM 001039477 /// NM 00	0.0349297	2.3087	0.00279409
39	NM 020062	0.047564	2.30708	0.00121847
40	 NM_080656	0.00537181	2.30643	0.0010731
41 42	NM 001257144 /// NM 00	0.00886148	2.3019	1.65E-05
43	NM 001270439 /// NM 00	0.0014331	2.301	6.79E-05
44	NM 025108	0.000179554	2.29448	1.77E-07
45	NM 000135 /// NM 00101	0.00222142	2.28841	8.74E-05
46	NM 001105203 /// NM 00	0.000306743	2.28819	6.11F-08
47	NM 022092	0.0308305	2,28732	2.70F-06
49	NM_006455	0.00239734	2.28175	5.20F-05
50	NM_013432	0.00252919	2.27734	1.45F-05
51	NM_000801 /// NM_00119	0 0181998	2 27205	0.00296202
52 53	NM_001029991 /// NM_00	0.0281712	2 26914	0.00700075
54	NM_001136035 /// NM_00	0.0251712	2.26911	0.00133049
55	NM 001204364 /// NM 15	0.000360152	2.20000	9 55F-N9
56	NM 006943	0 00170733	2.20125	1 18F-05
ว/ 58	NM 016558 /// NM 03363	0.0120044	2.25025	0 00312224
59	NM 001164391 /// NM 00	0.0100044	2.23-43	0.00312224
60		0.0202009	2.24301	0.00400333

1	NINA 153269	0 001 92071	2 2462	7 405 05
2	NIVI_152208	0.00183071	2.2403	7.49E-05
4	NWI_001193557 /// NWI_02	0.0169498	2.23782	0.000355252
5	NM_004260	0.0114038	2.23154	5.42E-05
6	NM_001166599 /// NM_00	0.04///4/	2.22489	0.000377973
7	NM_030625	0.0140239	2.20846	0.000120588
0 9	NM_001204106 /// NM_00	0.00166686	2.20688	1.90E-05
10	NM_138384	0.0118147	2.19766	0.000285136
11	NM_015327	0.00853369	2.1957	0.00027145
12	NM_005762	0.0110702	2.19206	0.00105357
13	NM_001144002 /// NM_01	0.00637082	2.19038	0.000698744
14	NM_017769	0.0171758	2.18996	0.0011136
16	NM_003797 /// NM_15299	0.0344162	2.18758	0.00194473
17	NM_003740	0.0149678	2.18163	0.000579025
18	NM_001012514 /// NM_00	0.0177222	2.18132	0.00116445
19 20	NM_006769	0.031934	2.17403	0.00644385
20	NM_006559	0.00071141	2.17389	3.39E-05
22	NM_001039783 /// NM_00	0.00230862	2.15553	0.000123408
23	NM_001145454 /// NM_00	0.000321074	2.14612	5.55E-06
24	NM_001201428 /// NM_01	0.0449453	2.13684	0.00689629
25 26	NM_004699	0.0435783	2.12711	0.00665859
27	NM_032815	0.000938462	2.11296	6.95E-06
28	NM_013285	0.00518732	2.09976	0.000189222
29	NM_001042631	0.00322677	2.09601	0.000151921
30	NM_000308 /// NM_00112	0.0147243	2.089	0.000470215
32	NM_001018115 /// NM_03	0.0117156	2.08041	1.23E-05
33	NM_001037811 /// NM_00	0.0198788	2.07201	0.000288306
34	NM_001261427 /// NM_00	0.0166277	2.06143	0.000223129
35	NM_173511	0.0101943	2.04909	5.60E-05
37	NM_145012 /// NM_18169	0.0197377	2.04867	0.000169142
38	NM_024112	0.0143324	2.04566	0.00033741
39	NM_001204106 /// NM_00	0.0200284	2.02366	0.00107473
40	NM 194292	0.00847605	2.02179	8.54E-05
41	 NM_001085372	0.0135665	2.01606	0.000147273
43	NM 001184977 /// NM 01	0.0143888	2.01505	1.05E-05
44	NM 001099222 /// NM 00	0.00137878	-2.02597	1.84E-05
45	NM 053000 /// NR 01537(0.0445363	-2.03801	0.00525927
46 47	NM 052900 /// NM 19812	0.043518	-2.03994	0.00306063
48	 NM_014867	0.0169534	-2.04477	0.000423071
49		0.0154126	-2.04805	0.000194133
50	 NM_016353	0.0330585	-2.05208	0.00188074
51 52	 NM_198920	0.0158044	-2.06049	0.000949583
53	NM 000049 /// NM 00112	0.0258824	-2.06347	0.000490738
54	NM 178816 /// NM 20137	0.00677375	-2.06863	5.56F-05
55	NM 001172766 /// NM 00	0.0491818	-2.0928	0.00110792
56 57	NM 000426 /// NM 00107	0.0156504	-2.09962	2.07F-06
58	NM 024723 /// NM 18292	0.0145025	-2,11112	9,77F-05
59	NM 001168618 /// NM 02	0.0205909	-2,12308	7 38F-05
60	001100010777 1101_02	0.0200300	2.12500	7.562 05

1				
2	NM_001098402 /// NM_00	0.0309385	-2.12643	0.000148795
3 ⊿	NM_001005367 /// NM_00	0.00186559	-2.12793	8.63E-05
5	NM_000426 /// NM_00107	0.0107995	-2.13707	8.13E-07
6	NM_000418 /// NM_00100	0.0485917	-2.13971	0.00371708
7	NM_020734	0.0185038	-2.14185	0.00112458
8	NM_001256732 /// NM_00	0.00103473	-2.14745	4.09E-05
9 10	NM_001029851 /// NM_00	0.0251409	-2.15436	1.30E-05
11	NM_170710 /// NM_18126	0.0379251	-2.15487	5.69E-06
12	NM_001136472 /// NM_00	0.0483293	-2.16212	3.13E-05
13	NM_080283 /// NM_17238	0.00169874	-2.18976	5.88E-05
14 15	NM_001128432 /// NM_02	0.00646131	-2.20278	0.000260008
16	NM_178499	0.0220811	-2.2066	0.00422569
17	NM_001169109 /// NM_00	0.0294738	-2.21427	1.32E-06
18	NM_001015045 /// NM_00	0.00677561	-2.22016	4.94E-05
19	NM_001031687 /// NM_00	0.0244229	-2.23129	0.000490266
20 21	NM_004613 /// NM_19895	0.022703	-2.23957	0.000120943
22	NM_002373	0.0010806	-2.24885	7.70E-05
23	NM 001195535	0.000156656	-2.26989	1.39E-07
24	NM_001127235 /// NM_00	0.0381493	-2.27382	0.0111832
25 26	NM 001144960	0.00386188	-2.275	0.000294867
20		0.0335753	-2.27714	3.68E-05
28	NM 001166693 /// NM 00	0.00202331	-2.28203	4.23E-06
29	NM 001111038 /// NM 14	0.00484257	-2.28782	1.97E-05
30	NM 030821	0.0248973	-2.28897	0.000871953
32		0.0472355	-2.30253	0.00393145
33	NM 001032287 /// NM 00	0.00428576	-2.30859	0.000253767
34	NM 001003789 /// NM 00	0.0124339	-2.31234	0.000465315
35	NM 001269053 /// NM 13	0.0227174	-2.31379	0.00162138
30 37	NM 001025105 /// NM 00	0.0392068	-2.31504	0.00222511
38		0.0276852	-2.32064	0.00404862
39	NR 036487	0.0305442	-2.32463	0.00148852
40	XM_001125684	0.00783062	-2.33546	0.000976223
41 42	NM 001256732 /// NM 00	0.00285295	-2.33693	0.000359917
43	NM 000389 /// NM 00122	0.0299391	-2.34269	4.22E-07
44	NM 001195639 /// NM 05	0.00606997	-2.35306	0.000885814
45	NM 002912	0.0117839	-2.38068	0.00037981
46	NM 001116	0.0490926	-2.38476	0.00257178
47 48	NM_000668	0.00351059	-2 38644	0.00054212
49	NM 152723	0.0396672	-2 38693	0.0116277
50	NM 017655	0.0282523	-2 40463	0.0076759
51	NM 001199096 /// NM 00	0.000267241	-2 40938	4 85F-05
52 53	NM_016441	0.0364096	-2 //2288	0.00586934
54	NM_001008710 /// NM_00	0.0110631	-7 47486	0.00000000
55	NM_003263	0.00142512	-7 47522	7 28E-UZ
56	NM 005761 /// NR 03768	0.00142010	-7 /1386/	0 00015353/
57 58	NM_020676	0.004,007,11	_7 <i>N</i> /07	2.000133334 2.6/1F_07
59	NM 001105248 /// NM 00	0.00013003	-2.4402 _7 /5/57	2.04L-07 0 000567050
60	NW_001103240777 NW_00	0.00703002	2.73437	0.000007938

1		0.0266400	2 46002	0.0004.64.00
2	NM_001031715 /// NM_02	0.0266489	-2.46802	0.00316198
4	NM_001134405 // NM_00	0.0100258	-2.47406	0.00146619
5	NM_014057 /// NM_02441	0.00468197	-2.4/425	0.00104327
6	NM_005228 /// NM_20128	2.48E-05	-2.4/43	4.1/E-U/
/ 8	NM_005228 /// NM_20128	0.0429253	-2.47705	0.0230957
9	NM_001251977 /// NM_00	0.0180001	-2.48141	0.00302333
10	NM_01030500 /// NM_00	0.000107207	-2.49192	0.00E-00
11	NM_001039590 /// NM_00	0.00425431	-2.49309	1.03E-05
12 13	NM_019004	0.00039002	-2.49351	0.0023804
14	NM_001099337 /// NM_14	0.0200813	-2.5002	0.00011079
15	NM_001001087 //7 NK_02.	0.010509	-2.50077	0.00196774
16	NR_013430	0.00109100	-2.30090	0.000505252
17	NM_133228	0.00449993	-2.30312	2 105 05
19	NM_001030305 /// NM_13	0.000703120	-2.50695	5.10E-05
20	NM_001035355777 NM_01	0.00132134	-2.50505	0.52E-05
21	NM_001100918 /// NM_00	0.000742373	-2.51447	3.88L-03
22	NM_016617	0.000171788	-2.5154	0.00294288
24	NM_016270	0.00883548	-2.54424	0.002 <i>3</i> 4288
25	NM_001003819 /// NM_00	0.000237341	-2 56968	0 000112429
26 27	NM_001015045 /// NM_00	0.00110773	-2 56976	0.000112429
28	NM_003012	0.0240001	-2 57452	0.0019259
29	NM_017633	0.0385296	-2 58067	7 68F-05
30	NM_001102426 /// NM_00	0.00961539	-2.58276	0.000865543
31	NR 038854	0.00241636	-2.59563	5.34F-05
33	NM 001039210 /// NM 00	0.00893351	-2.60249	7.77E-05
34		0.00398051	-2.60315	3.03E-06
35	XR 108755///XR 110657	0.00133221	-2.60334	1.88E-05
30 37	NM 000611 /// NM 00112	0.00420863	-2.60752	1.24E-05
38	NM_001145307 /// NM_00	0.0120613	-2.60864	0.00111323
39	NM_144653	0.0465689	-2.61154	0.00848512
40	NM_001969 /// NM_18300	0.0051714	-2.6191	0.00011993
42	NM_001122824 /// NM_00	0.0124609	-2.61958	4.25E-08
43	NM_000130	0.0267263	-2.62511	0.000625744
44	NM_015254	0.0114919	-2.63245	0.000649405
45 46	NR_001564	0.02612	-2.63685	0.0013639
47	NM_003079	0.000392276	-2.6371	9.73E-05
48	NM_001199922 /// NM_01	0.00494102	-2.63724	0.00203778
49	NM_000813 /// NM_02191	0.0179987	-2.64001	0.00938966
50 51	NM_001014979 /// NM_00	0.0306526	-2.64307	0.00244117
52	NM_014510 /// NM_03302	0.035616	-2.64545	0.0161402
53	NM_007231	0.0196991	-2.64765	0.00516841
54 55	NM_001077269 /// NM_00	0.0414693	-2.6501	0.00424409
55 56	NM_052929	0.000837951	-2.65631	0.00024625
57	NM_152517	0.0298479	-2.65969	0.0153386
58	NM_032606	0.00167317	-2.66027	0.000430781
59 60	NR_038199 /// NR_038200	0.000972902	-2.66277	7.25E-05

1				
2	NM_001039395 /// NM_01	0.00624734	-2.6687	0.00375484
3 ⊿	NM_000301 /// NM_00116	0.00994969	-2.66885	0.000458617
4 5	NM_016441	0.0102492	-2.67181	0.000215359
6	NM_017637	0.0038799	-2.68319	0.000316738
7	NM_006197	0.0285099	-2.68429	0.000695191
8	NM_001003799 /// NM_00	0.00183597	-2.68533	0.000220236
9 10	NM_207361	0.0128581	-2.68703	7.06E-05
11	NM_207317	0.00242821	-2.68784	0.000246677
12	NR_029598	0.0303698	-2.69971	0.0192733
13	NM_001177660 /// NM_00	0.00941352	-2.70221	0.00638033
14	NM_015687	0.00821967	-2.7089	0.00199869
15 16	NM_018672 /// NM_17223	0.00212933	-2.71344	0.000106954
17	NM_001128166 /// NM_00	0.0295043	-2.71892	0.0001756
18	NM 001129889 /// NM 00	0.00974221	-2.7366	0.000453927
19	NM_002612	0.00988604	-2.74059	0.00303132
20	NM 001996 /// NM 00648	0.00331138	-2.75126	0.000647835
22	NM 001145678 /// NM 17	0.000605818	-2.75864	0.00015825
23	NM 000052	0.0326828	-2.7616	0.0130274
24		0.0014983	-2.76213	0.000176097
25	NM 001252385 /// NM 00	0.00967559	-2.76658	0.00500005
20 27	NM 001204087 /// NM 00	0.0120163	-2.76838	0.00290836
28	NM 001130110 /// NM 01	0.0383273	-2.78419	0.00549803
29	NM 005801	0.00117396	-2.78552	8.32E-05
30	NM 000519	0.00424332	-2.79981	0.00194246
31	NM 001003794 /// NM 00	0.0129039	-2.80885	0.00154537
33	NM 001169117 /// NM 00	0.00034273	-2.80947	1.25E-06
34	NM 032269	0.00379675	-2.81194	0.00215773
35	NM 001256732 /// NM 00	0.00825622	-2.81518	0.00245099
36 37	NM 021958	0.028298	-2.82016	0.00635712
38	NM 016422	0.00011115	-2.82363	2.15E-05
39	NM 001204126 /// NM 00	0.000210152	-2.82394	5.98F-05
40	NM_001006641 /// NM_00	0.00181043	-2.83028	1.51E-05
41 42	NM 139265	0.00501849	-2.83173	5.14F-05
42 43	NM_002269	0.0378815	-2 8332	0.00332278
44	NM 002185	0.00943708	-2.83422	0.00319312
45	NM 001145670 /// NM 00	0.0291515	-2 83633	0.00250088
46	NM_018306	0.000595363	-2 83838	2 64F-05
47 48	NM 181426	0.00722633	-2 84441	0.000126199
49	NM_017637	0.00722055	-2 8/1535	0.000120133
50	NM_000878	2 08E-05	-2 84641	2 79F-05
51	NM_001031737 /// NM_17	0.00461125	-2 8/676	6.41E-05
52 53	NM_001013676 /// NM_02	0.000303016	-7 86887	0.41E 05 4 37E-05
53 54	NM_001032282 /// NM_00	0.0396145	-2.80882	4.572-05
55	NM 016262	0.0390143	-2.07433 _7 87767	0.001/030
56	NM 001122824 /// NM 00	0.00000000	-2.07707	A 70E 00
57 59	NIM_001020724 /// NIM_00	0.0010704	-2.000/3	4./0E-U0
59	NIM 00112E609 /// NIM 01	0.0000191	-2.00323	0.00203403
60	10_1011 /// 800551100_101	0.0402085	-2.89288	0.002/3028

1		0.00456400	2 00240	0.00010067
2	NM_001130159 /// NM_00	0.00456499	-2.90248	0.00210967
4	NIM_032853 /// NR_02424	0.000129613	-2.9032	8.10E-05
5	NM_001009607 /// NM_00	0.00351253	-2.90567	0.001/33/3
6	NM_001100818 /// NM_01	0.0053009	-2.91369	0.00111809
7	NM_001256054 /// NM_01	0.00101828	-2.915/5	0.000/8895/
o 9	NM_000167 /// NM_00112	0.00322117	-2.9168	6.55E-07
10	NM_000457 /// NM_00103	0.00048928	-2.91817	0.000110972
11	NM_001136021 /// NM_00	0.00293569	-2.928	2.43E-05
12	NM_001024683 /// NM_14	0.00220323	-2.92996	0.00297169
13 14	NM_001171581 /// NM_00	0.000858676	-2.93026	6.51E-05
14	NM_001066	0.000345323	-2.93921	0.000573525
16	NM_001175	0.00140092	-2.94108	0.00214931
17	NM_001134673 /// NM_00	0.0181315	-2.94696	0.0175473
18	NM_144965	0.00234123	-2.94736	0.00105662
19 20	NM_152572	0.000298359	-2.94925	0.000142115
20	NM_152519	0.00113734	-2.95148	0.000275563
22	NM_003884	0.0111061	-2.96145	0.000284311
23	NM_001007022 /// NM_00	0.0003816	-2.96489	6.71E-06
24	NM_001142649 /// NM_21	0.000420318	-2.96577	0.00017049
25 26	NR_015377 /// NR_047570	0.000700644	-2.97597	5.74E-05
27	NM_182520	1.96E-06	-2.97823	5.31E-07
28	NM_001015045 /// NM_00	0.0121261	-2.97912	0.00129819
29	NM_031437 /// NM_18266	0.023144	-2.99119	0.00190643
30 31	NM_015335	0.00754516	-2.99327	0.0059581
32	NM_145208	5.91E-05	-2.99634	1.94E-05
33	NM_001166271 /// NM_15	0.00193795	-2.99659	0.00021692
34	NM_001085399 /// NM_00	0.010774	-3.01618	0.000933156
35	NM_001136021 /// NM_00	0.0013851	-3.01902	1.20E-05
37	NM 004786 /// NR 02454(0.00515752	-3.01996	1.38E-06
38	NM 001199942 /// NM 01	0.000217755	-3.02883	8.37E-05
39	NM 005228 /// NM 20128	0.00448466	-3.03582	0.000156312
40	NM 001033578 /// NM 00	0.00685404	-3.04223	0.00176308
41 42	NM 000426 /// NM 00107	0.00565174	-3.04494	2.32E-06
43	NM 001042479 /// NM 00	0.00311048	-3.04686	0.00311775
44	NM 030666	0.00650493	-3.04938	9.68E-07
45		0.00017506	-3.04956	0.000138
46 47	NR 026867	0.0109684	-3.04998	0.000785492
48		0.011193	-3.05924	0.000644653
49	NM 152704 /// NM 19913	0.00397975	-3.05925	0.000843482
50	NM 001130957 /// NM 00	0.00830186	-3.07207	0.0106817
51	NM 001134830 /// NM 00	2.36F-05	-3.08181	1.69F-07
52 53	NM_030775 /// NM_03264	1 52F-05	-3 08196	3 26F-05
54	NM 144644	0 00404509	-3 0831	0 000340853
55	NM 033124	0.000123891	-3 08596	8 70F-05
56	NM 022140	0 00259995	-3 101/15	0.00512274
୦/ 58	NM 014859	0.00200000	-2 10282	0.00012274
59	NM 000668	0.020009	-2 11702	0.0200330
60		0.0103201	-3.11/93	0.0022039

1				
2	NM_000601 /// NM_00101	0.00394823	-3.12115	1.69E-05
3 1	NM_001267562 /// NM_00	0.0088958	-3.13076	0.00267395
5	NM_001080394 /// XM_00	4.86E-05	-3.13445	0.000141967
6	NM_001008534 /// NM_00	0.0112258	-3.13508	0.00386532
7	NR_003521 /// NR_026589	0.000591117	-3.14262	0.000312748
8	NM_024882 /// NR_026807	0.00287234	-3.15	0.0064445
9 10	NM_001033604 /// NM_00	0.0380569	-3.15085	0.00330918
11	NM_152632	0.000802097	-3.15375	0.000493507
12	NM_030666	0.00424478	-3.15464	2.16E-06
13	NM_004951	0.00304145	-3.16045	0.00353457
14	NM_000611 /// NM_00112	0.00096279	-3.1758	0.000667196
15 16	NM_004980 /// NM_17219	0.000846114	-3.1766	0.000244791
17	NM_198081	0.000166141	-3.17723	0.000100238
18	NM_001139466 /// NM_00	0.0232921	-3.17788	0.0364624
19	NM_001100411 /// NM_02	0.000864397	-3.17794	0.000108671
20	NM 004155	0.0113908	-3.18038	0.0140242
21	 NM_198275	0.00023492	-3.1998	2.71E-05
23	NM_000705	0.00376374	-3.20084	0.000139447
24	NM 058180 /// NM 19907	0.00479704	-3.20865	0.00428441
25	NM_000926 /// NM_00120	0.0259025	-3.20954	0.0377844
26	NM 022121	0.0356953	-3.21674	0.0348304
28	NM 001172420 /// NM 01	0.00446361	-3 22062	3 08F-05
29	NM 001242702 /// NM 17	0.0217416	-3 22082	0.0153753
30	NM 033225	0.00138195	-3 22701	0 000146969
31	NM 001178003 /// NM 14	5 925-05	-3 22772	2 06F-08
32 33	NM 001173461 /// NM 00	0.000107385	-3 22909	2.00E 00 7 51E-06
34	NM 001/01 /// NM 05715	0.00374625	-3 2303	2 09E-05
35	NM_001137550 /// NM_00	0.00195512	-3 23155	0.002/3561
36	NM 138801	0.00528187	-3 23723	0.00243301
37 38	NM 020707 /// NR 02775	5 <i>A</i> 1E-05	-3 239	2 88F-05
39	NM_017425	0.0392738	-3 2/207	2.88E 05 3.35E-05
40	NM 202454	0.00158472	-2.24237	5.55E-05
41	NM_203434 NM_001010922 /// NM_00	0.00138472	-2 257/1	0.00140152
42 43		0.00264062	-3.23741	0.00140132
43		0.00204003	-3.20134	2 275 05
45	NM_001716222 /// NM_00	4.122-05	-5.20591	5.57E-05
46	XIM_001716232 /// XIM_00.	1.79E-05	-3.20749	9.09E-06
47	NM_018600	0.000109457	-3.20897	5.00E-05
48 ⊿0	NM_018699	0.0323911	-3.2/198	0.000113896
5 0	NM_004048	0.013988	-3.2/33/	0.00857054
51	NM_001149 /// NM_00120	0.019022	-3.2/4/1	0.0232108
52	NM_001008/10/// NM_00	0.0100137	-3.2776	0.00288906
53 54	NM_181645	0.00168888	-3.28837	0.000674568
54 55	NM_021148 /// NM_03354	0.00157171	-3.29685	7.27E-05
56	NM_001197237 /// NM_00	3.90E-05	-3.29971	9.75E-05
57	NM_001256370 /// NM_02	0.0088917	-3.30424	0.0217077
58	NM_033063 /// NM_20757	4.70E-05	-3.30659	2.01E-05
59 60	NM_001129889 /// NM_00	3.50E-05	-3.31719	3.59E-05

1	NNA 040040	0.0011(117	2 24722	2 74 5 05
2	NM_018010	0.00116117	-3.31/23	2.71E-05
4	NM_002121	9.07E-06	-3.32203	7.73E-00
5	NM_001011513 // NM_00	0.0203459	-3.32085	0.000580662
6	NM_001256536 /// NM_00	0.000708269	-3.33509	0.00116863
/ 8	NM_001647	0.0030668	-3.33526	0.00020798
9	NM_007085	0.000355892	-3.33/52	0.001463
10	NM_001100390 /// NM_15	0.00446949	-3.33956	0.0134469
11	NM_001207062 /// NM_03	0.0008/322/	-3.34017	3.31E-Ub
12	NM_015566 /// NR_046464	0.0149607	-3.34682	0.0221374
13	NM_001099951 // NM_00	5.88E-05	-3.34861	2.76E-05
15	NM_1/8816 /// NM_20137	0.0045263	-3.35/91	9.36E-05
16	NM_001199739 /// NM_00	0.000141591	-3.35/95	7.95E-07
17	NM_001080463 /// NM_00	0.0330049	-3.36902	0.0109904
18	NM_000518	0.0145901	-3.37492	0.004776
20	NM_031442	0.00260268	-3.37879	0.000741198
21	NM_000416	4.98E-05	-3.38111	3.21E-06
22	NM_001199377 /// NM_01	0.00202949	-3.38528	8.50E-05
23	NM_003630	0.0027804	-3.38626	0.00567663
24	NM_001035230 /// NM_00	0.000832587	-3.38659	0.00243662
26	NM_003956	0.00214063	-3.3921	0.000404266
27	NM_031453	0.0453984	-3.39464	0.0313315
28	NM_004278	3.05E-05	-3.40219	8.21E-05
29 30	NM_001178145 /// NM_00	0.00211059	-3.40388	0.00326104
31	NM_001162997	0.000295133	-3.40432	8.12E-05
32	NM_014620 /// NM_15363	0.0150421	-3.41035	0.0191084
33	NM_181726	0.0038657	-3.41118	8.50E-05
34 35	NM_144682	0.0335177	-3.41287	0.0358805
36	NM_001025076 /// NM_00	0.013983	-3.41539	6.84E-05
37	NM_152765	0.000849764	-3.42442	0.00346325
38	NM_000512	9.76E-05	-3.42695	0.000302988
39 40	NM_001242779 /// NM_00	0.0317056	-3.43849	0.0155649
40	NM_004166 /// NM_00416	0.00720889	-3.45609	0.00062594
42	NM_000301 /// NM_00116	0.00155289	-3.45728	0.000151773
43	NM_001964	0.0247923	-3.45994	0.000316296
44 45	NM_001195291 /// NM_00	0.0127545	-3.46945	0.0297
45 46	NR_029389 /// NR_029390	0.000654931	-3.47246	0.00322143
47	NM_012307	2.17E-06	-3.48046	3.57E-07
48	NM_001034191 /// NM_00	0.00656107	-3.48352	0.00406649
49	NM_001008781	0.00311046	-3.48437	0.0111454
50 51	NM_152376	0.000357613	-3.49372	0.000482243
52	NM_001039801 /// NM_00	0.0103598	-3.49514	0.0162399
53	NM_018650	0.00141554	-3.50388	0.000572068
54	NM_001177704 /// NM_14	4.61E-05	-3.50469	0.000187852
55 56	NM_001142314 /// NM_08	0.0011214	-3.50519	0.000501277
57	NM_017801	0.011319	-3.5113	0.0102829
58	NM_001969 /// NM_18300	0.00973001	-3.51383	0.0183932
59 60	NM_001251977 /// NM_00	0.00359696	-3.53196	0.00186449

1				
2	NM_015312 /// NM_03220	0.000415735	-3.5361	0.000672093
3 ⊿	NM_001017397 /// NM_00	0.0243885	-3.54055	0.00229668
4 5	NM_001039772 /// NM_00	0.0419386	-3.54504	0.000174081
6	NM_001372 /// NM_00466	0.000175006	-3.54821	5.43E-07
7	NM_005368 /// NM_20337	0.000144167	-3.55225	0.000112826
8	NM_178816 /// NM_20137	0.000154848	-3.55609	0.000427459
9	NM_001100397 /// NM_00	0.00257821	-3.56029	0.000654504
10	NM_001007022 /// NM_00	0.00814151	-3.56306	0.00247264
12	NM_017637	0.0100937	-3.56969	0.0227163
13	NM 001113178 /// NM 00	0.0201723	-3.58225	0.025003
14	NM 021615	0.00557804	-3.58708	0.0021837
15		0.000259872	-3.59629	0.000388517
10	NR 029396	0.00112966	-3.59629	4.38F-05
18	NB 024398	0.000137823	-3.61354	1.35E-05
19	NM_003894 /// NM_02281	0.00450866	-3 62286	0.000278931
20	NM_001200049 /// NM_01	6 07F-08	-3 62376	3 39F-08
21	NM_016608	0.0085506	-3 62992	0 000789793
22	NM_002734 /// NM_21247	0.000269988	-3 6/053	0.000705755
24	NIM 182276	0.0201581	-3 65633	0.000200733
25	NM_103370	0.0201381	2 65052	0.00320503
26		0.00334108	-3.03935	0.00119302
27		1.745.05	-5.00005	4.062-05
20		1.74E-05	-3.00445	0.000215923
30	NIM_000255	0.0020497	-3.00812	0.0112418
31	NM_001204197 /// NM_01	0.00864645	-3.66881	3.84E-07
32	NM_016010	0.00493807	-3.66998	0.000297791
33 34	NM_001143676777 NM_00	0.0138485	-3.68213	0.0013566
35	NM_000813 /// NM_02191	0.00264215	-3.68318	0.00356944
36	NM_006762	0.0111879	-3.68501	0.0184213
37	NM_021179	0.0247234	-3.68944	4.59E-05
38	NM_001199149 /// NM_00	0.0141214	-3.68965	0.0333333
39 40	NM_015896	0.00123314	-3.69089	0.00511284
41	NM_001178044 /// NM_00	0.00945536	-3.69359	0.0088899
42	NM_025055 /// NM_18279	7.42E-06	-3.70033	2.32E-06
43	NM_001165 /// NM_18296	0.0299424	-3.70181	1.05E-05
44 45	NM_001767	0.00191039	-3.7071	0.00603769
46	NM_001080556 /// NM_14	0.00138298	-3.712	8.72E-05
47	NM_001173463 /// NM_00	0.00497476	-3.71624	3.82E-06
48	NM_001161661 /// NM_00	0.00128661	-3.71684	0.00103746
49	NR_024461 /// NR_024462	0.00881733	-3.72767	0.0175482
50 51	NM_001242359 /// NM_01	0.00479063	-3.73799	0.00942075
52	NM_001193300 /// NM_00	0.0142174	-3.74026	0.0351122
53	NM_000814 /// NM_00119	0.000198683	-3.74847	2.07E-05
54	NM_001134830 /// NM_00	0.000369873	-3.75242	0.000149332
55 56		0.00450849	-3.75487	0.000341879
วง 57	 NM_014433	0.000597239	-3.76579	8.13E-05
58	NM 001253835 /// NM 00	1.30E-05	-3.77893	4.36E-06
59	NM 000880 /// NM 00119	0.00377308	-3.78221	1.56E-06
60	_ ///		-	

1		2 745 05	2 70202	0 0004 470
2	NM_001146694 /// NM_00	2./4E-05	-3./8383	0.0001478
3	NM_001010922 /// NM_00	6.42E-05	-3./8/55	5.56E-06
5	XR_039953 /// XR_039955	0.00108855	-3.78984	2.88E-05
6	NM_001161572 /// NM_00	0.00614284	-3.79587	0.000336678
7	NR_038244 /// NR_038245	0.00192196	-3.80404	0.000668548
8	NM_001134649 /// NM_00	0.00505014	-3.8134	0.0244049
10	NM_022128	0.0021416	-3.81647	0.00661999
11	NM_000328 /// NM_00102	0.0154027	-3.81725	0.0392009
12	NM_153838	0.0108547	-3.81755	0.0108156
13	NM_152357	0.00336564	-3.82066	0.00163243
14 15	NM_054017 /// NR_026814	0.00151254	-3.82821	9.23E-05
16	NM_152511	0.00180342	-3.84185	0.000163325
17	NM_001964	0.0156642	-3.84403	8.92E-07
18	NM_001142315 /// NM_00	0.0164218	-3.84569	0.0352312
19	NM_001018046 /// NM_02	0.000154019	-3.86003	0.00012962
20	NM_173528	0.000612077	-3.86005	7.13E-05
22	NM_152550	0.0022749	-3.86274	0.00182443
23	NM_001143943 /// NM_03	0.0305517	-3.86321	0.00654536
24	NM_001161575 /// NM_01	4.79E-06	-3.87237	5.68E-07
25 26	NM_020817	0.00179929	-3.87281	0.0002602
27	NM_014510 /// NM_03302	0.00244303	-3.88575	0.00047226
28	NM_025228	0.000293792	-3.89512	0.000839743
29	NM_033063 /// NM_20757	4.63E-05	-3.8998	2.72E-06
30	NM_001100590 /// NM_01	0.00158276	-3.90781	0.00894831
32	NM_001223 /// NM_00125	0.000115027	-3.91012	0.000582117
33	NM_001039940 /// NR_01!	0.00680392	-3.91527	0.000583579
34	NM_006981 /// NM_17319	0.00123657	-3.93549	0.000178151
35	NM_001172420 /// NM_01	0.000423173	-3.93725	0.00346757
37	NM 001204126 /// NM 00	0.000420319	-3.93902	0.000379478
38	NM_016010	0.0034536	-3.95383	0.00722535
39		2.69E-05	-3.95853	3.32E-06
40	 NM 152519	0.00291701	-3.96173	4.50E-05
41 42	NM 001039350 /// NM 00	1.93E-05	-3.9661	0.000268673
43	NR 033852	0.000649266	-3.97421	0.00381958
44	 NM_006988	0.00477187	-3.99349	0.00551778
45	 NM_173496	0.00996594	-3.9945	0.0472841
46	NM 153606	0.000413434	-3.99712	8.10E-05
48		0.00439377	-3.99745	0.002315
49	XR 109003 /// XR 111042	5.25E-05	-4.00473	0.000362208
50	NR 038366 /// NR 038367	0.047945	-4.01447	0.00193089
51 52	XR 108924 /// XR 113209	0.000137848	-4.01881	1.33E-06
53	NM 000508 /// NM 02187	0.00332756	-4.02066	0.000891281
54	NM 018952 /// NM 15603	0.0375519	-4.02514	0.00658601
55	NM 001199096 /// NM 00	1.90F-05	-4.02637	9.47F-05
56 57	NM 021199	0.00100131	-4.02843	3.57F-05
58	NM 207307	0.00213771	-4 03458	0.00160178
59	NM 001134435 /// NM 03	0 0217994	-4 03818	0 000243271
60		0.0217334	4.03010	0.0002-5271

1				
2	NM_001007224 /// NM_00	0.000848599	-4.03941	0.00566033
3 4	NM_001040092 /// NM_00	0.0018771	-4.03981	0.000276799
5	NM_001031804 /// NM_00	0.000240587	-4.04146	0.000477452
6	NM_001030287 /// NM_00	0.000173567	-4.04687	0.00118708
7	NM_001082537 /// NM_00	1.97E-05	-4.06342	2.13E-05
8	NM_002163	0.000280131	-4.06471	0.000554786
9 10	NR_038897	0.00498786	-4.07033	0.011337
11	NM_024633 /// NR_026779	0.00759523	-4.07282	0.0194724
12	NM_001206960 /// NM_00	0.00180835	-4.07635	0.00375501
13	NM_018409	0.00593832	-4.09675	0.00138488
14 15	NM_006531 /// NM_17560	4.69E-05	-4.10484	1.15E-05
16	NM_000204	0.00177877	-4.10727	2.16E-05
17	NM_001736	2.93E-05	-4.11051	3.87E-06
18	NM_022785 /// NM_19885	3.15E-06	-4.11285	5.22E-07
19	NM_017434 /// NM_17594	0.00504833	-4.11949	0.00798345
20	NM_001126328 /// NM_03	0.0117871	-4.13137	0.0468996
22	NM_001014440	9.89E-06	-4.13357	3.10E-05
23	NM_001195683 /// NM_00	0.0068883	-4.14628	0.00766548
24	NM_032853 /// NR_024247	0.00262557	-4.14642	0.00396288
25 26	NM_138796	0.0273343	-4.14644	0.00123497
27	NM_006564	0.00240549	-4.14822	0.000726243
28	NM_032133	7.81E-05	-4.16062	8.73E-05
29	NM_000248 /// NM_00118	0.0183501	-4.16517	0.000773652
30 31	NM_005195	0.00118888	-4.16947	0.0027669
32	NM_001025076 /// NM_00	0.000168216	-4.17211	0.0034968
33	NM_001025194 /// NM_00	0.00143876	-4.17721	0.000399282
34	NM_178824	0.00166726	-4.17795	0.00181512
35	NM_001135099 /// NM_00	0.00427933	-4.18107	0.000323968
37	NM_000596 /// NM_00101	0.000397351	-4.18808	3.76E-05
38	NM_005668 /// NM_17505	0.00302595	-4.19683	0.00167188
39	NM_173554	0.00563538	-4.20916	0.000500207
40	XR_109642 /// XR_112116	0.00104287	-4.21005	0.000268213
41	NR_002819 /// XR_110915	0.00239333	-4.21338	0.019941
43	NM_001168499 /// NM_01	3.61E-05	-4.22583	0.000124703
44	NM 005611	2.69E-05	-4.2301	6.60E-05
45	 NM_175900	0.00263091	-4.23259	0.00108411
40 ⊿7		0.00252009	-4.2336	0.0139
48	NM 020307	0.00185241	-4.2411	0.0068424
49	 NM_006269	0.000437974	-4.24321	8.52E-05
50	 NM_005544	0.00218874	-4.24731	0.00284154
51 52		7.98E-06	-4.25722	1.26E-05
53	NM 033027	0.00226471	-4.26077	0.000343716
54		8.06E-06	-4.27037	0.000147844
55	NM 000301 /// NM 00116	4.58E-05	-4.27732	7.87E-06
56 57	NM 145053	4.07E-06	-4.27899	0.000104821
58	NM 014648	0.00204576	-4.28227	0.00029375
59	NM 000130	0.00258617	-4.28251	0.000106146
60				5.000100140

1				0.005.00
2	NM_014365	7.15E-05	-4.28681	3.08E-06
3	NM_001243965 /// NM_00	0.0318305	-4.316//	0.0197362
5	NM_001100396 /// NM_17	6.79E-08	-4.32014	7.98E-07
6	NM_001256113 /// NM_1/	0.000416623	-4.32357	7.75E-06
7	NM_002032	0.00754486	-4.33418	0.039198
o 9	NM_004787	0.0100181	-4.342/9	0.0190241
10	NM_001135598 /// NM_15	0.00568462	-4.34445	0.010658
11	NM_001130142 /// NM_01	0.000705083	-4.34749	4.42E-05
12	NM_002966	0.00847192	-4.34806	1.62E-05
13	NM_001127391 /// NM_13	0.00285967	-4.35209	0.00100155
15	NM_001098504 /// NM_00	0.00551148	-4.35362	0.00102084
16	NM_001194999 /// NM_00	0.000441865	-4.35844	0.00155664
17	NM_001039570 /// NM_03	0.000696121	-4.36018	0.00572805
18 19	NM_016441	0.013683	-4.36385	0.026032
20	NM_004841 /// NM_17069	0.000741931	-4.36991	0.00671701
21	NM_020980	0.000176838	-4.37247	0.00173405
22	NR_046241	0.000743327	-4.38519	0.00321328
23		0.000568013	-4.38789	0.000489016
24 25	NM_001040712 /// NM_00	0.00659747	-4.39742	0.00657142
26	NM_001079529 /// NM_00	0.000227811	-4.39869	8.43E-05
27	NM_001122769 /// NM_18	0.000734562	-4.40031	7.21E-06
28	NM_001243093 /// NM_00	0.000221426	-4.40242	6.64E-05
29 30	NM_017439	0.00544977	-4.40343	0.0022404
31	NM_001199640 /// NM_00	0.00046527	-4.40531	5.37E-08
32	NM_001130159 /// NM_00	7.92E-05	-4.40545	0.0017668
33	NM_006682	0.00585273	-4.41054	0.0064113
34 35	NM_001243965 /// NM_00	0.0223145	-4.41088	0.0116216
36	NM_004344	0.00275518	-4.42394	0.000540416
37	NM_004538	0.000410356	-4.43366	0.00842909
38	NM_001018039 /// NM_00	0.00210709	-4.4344	5.59E-05
39	NM_018168	0.0107874	-4.4398	8.43E-08
40	NM_014887 /// NM_03311	0.00118353	-4.44934	0.00155703
42	NM_001127391 /// NM_13	0.000412616	-4.45328	0.000396085
43	NM_001130156 /// NM_00	0.00579406	-4.46711	0.0218211
44 45	NM_001099289	0.000546782	-4.46982	0.00138534
46	NM_001105659 /// NM_14	3.93E-06	-4.47073	0.000277334
47	NR_003521 /// NR_026589	0.00219101	-4.47254	0.00845802
48	NM_001139490 /// NM_01	0.00133672	-4.48158	0.00113077
49 50	NM_138444	0.0426204	-4.48217	0.00336347
50 51	NM_024806 /// NM_19912	0.000123573	-4.48888	5.05E-05
52	NM_181644	0.00164057	-4.49092	0.00458706
53	NM_000109 /// NM_00400	0.00873171	-4.49839	7.05E-07
54 55	NM_015566 /// NR_046462	0.0042281	-4.50888	0.0152266
วว 56	NM_005544	0.040968	-4.5134	0.0339986
57	NM_001145313 /// NM_03	0.0141924	-4.51538	0.00144847
58	NM_182493	8.30E-06	-4.51563	8.76E-08
59 60	NM_138788	0.000107587	-4.52313	0.00029853

1		0.00011100	4 52 422	0.000454046
2	NM_152704 /// NM_19913	0.00214423	-4.52423	0.000154216
4	NM_001039348 /// NM_00	0.0293705	-4.52677	6.41E-05
5	NM_01145670 /// NMA_00	0.0109566	-4.53936	0.0010202
6	NM_001077416 /// NM_00	0.000447981	-4.54006	0.000864111
7 8	NM_001125862 /// NM_00			5.07E-05
9	NM_001135863 /// NM_00	2.49E-05	-4.54881	0.000351053
10	NIM_001170600 /// NIM_02	1.972-05	-4.5707	0.000468791
11	NN1_001170090777 NN1_02	0.000703498	-4.57152	9.10E-05
12	NNI_032904	4 505 05	-4.5/4/4	0.00020211
14	NM_001202330 /// NM_18	4.352-03	-4.37403	0.000774329
15		0.00430131	-4.50074	0.00416955
16	NM 120265	0.0048873	-4.39433	1 025 05
17	NNA 001070522 /// NNA 00	2 195 05	-4.3972	1.02E-03
19	NM 001003792 /// NM 00	0.00086027	-4.59612	0.000177502
20	NM_001012988 /// NR_02	0.00386927	-4.00107	0.000177552
21	NIM_022058 /// NIM_18408	0.0200927	-4.00399	0.0308087
22	NM_005634	0.00120238	-4.00482	0.000311005 2 17E-05
24	NM_00/787	0.00123238	-4.01052	0.01/1767
25	NM 144648	0.00217233	-4 61467	0.0141707
26 27	NM 013343 /// NR 02406	0.00562057	-/ 62091	0.000030451
28	NM 001040113 /// NM 00	0.00106682	-4 62527	0.00314341
29	NM_001100590 /// NM_01	0.00234087	-4.62842	0.0121944
30	NM_001039704 /// NM_00	6.72F-05	-4.62889	3.47F-06
31	NM 020802	0.000807606	-4.6441	1.68F-05
33	NM 001135217 /// NM 00	0.00128545	-4.65049	0.000149798
34	NM 000081 /// NM 00100	0.00527437	-4.65752	0.00518535
35	NM 001145951 /// NM 00	0.000360419	-4.6587	0.00614451
30 37	NM 173354	0.0186595	-4.67151	0.00184981
38		0.000575529	-4.67589	2.60E-05
39	NM_001256295 /// NM_00	9.73E-05	-4.69101	2.87E-07
40 41	NM_025159	4.56E-06	-4.69767	0.000402758
42	NM_001153	0.000889361	-4.71763	0.0184164
43		2.20E-05	-4.7197	4.31E-07
44	NM_152290	0.000109205	-4.7258	9.34E-06
45 46	NM_001198625 /// NM_00	8.82E-05	-4.74991	2.06E-07
47	NM_001190458 /// NM_00	0.0023706	-4.75442	0.0138735
48	NM_001037763	0.00113925	-4.76204	0.00462377
49	NM_002228	0.00337577	-4.76249	0.0371813
50 51	NM_001243115 /// NM_02	1.86E-05	-4.76913	2.30E-05
52	NM_001077204 /// NM_02	0.00014263	-4.76966	0.00251606
53	NM_178827	5.04E-05	-4.77658	3.30E-05
54 55	NM_001202233 /// NM_00	0.00100318	-4.79102	0.00191128
56	NM_001013706	2.03E-06	-4.8072	5.32E-05
57	NM_001334	0.004717	-4.81126	0.000273768
58	NM_006633	0.000554563	-4.82025	0.00566488
59 60	NM_000476	0.0010715	-4.82172	7.47E-05

1				
2	NM_014648	0.000732112	-4.82767	1.79E-05
3 4	NM_005112 /// NM_01749	0.000148107	-4.82951	0.00070615
5	NM_007050 /// NM_13317	0.000439522	-4.85087	0.00454172
6	NM_014549 /// NR_003714	0.00465514	-4.85284	0.0120334
7	NM_003462	0.024494	-4.85724	0.000691366
8 Q	NM_025145	0.000922987	-4.85748	8.14E-05
10	NM_001001710	0.0013085	-4.8582	0.02541
11	NM_182628	0.00296713	-4.86484	0.000117209
12	NM_000348	4.72E-05	-4.88426	1.46E-05
13 14	NM_001198974 /// NM_20	0.000344635	-4.88696	0.00995334
14	NM_001114357	0.000311083	-4.88886	6.30E-06
16	NM_004120	0.000165584	-4.90185	0.000179444
17	NM_001122842 /// NM_00	0.00055417	-4.90764	9.56E-06
18	NM_002532	0.000507381	-4.91971	0.00110595
19 20	NM_001130046 /// NM_00	0.0120346	-4.91989	0.010802
21	NM_017439	0.00255228	-4.94463	0.00269797
22	NM_001127364 /// NM_00	0.000820982	-4.954	0.000315707
23	NM_002229	0.000202334	-4.96489	0.000139706
24 25	NM_000814 /// NM_00119	9.00E-05	-4.96628	1.01E-05
25 26	NM_173500	0.0019169	-4.97612	0.000173886
27	NM_015653	0.00889078	-4.97825	0.00180413
28	NM_145911	0.000154028	-4.98241	5.24E-05
29	NR_002798	0.000115006	-4.98982	8.81E-05
30	NM_001025436 /// NM_02	8.07E-06	-5.0083	9.55E-07
32	NM 022128	0.0049274	-5.01675	0.0160084
33	NM_001199880 /// NM_00	0.0422614	-5.02108	5.07E-06
34	NM 001206	0.00975839	-5.02289	0.015092
35		0.002211	-5.03631	0.000803956
30 37	NM 015347	0.000267401	-5.03841	0.00023689
38		0.000150803	-5.03962	0.00621483
39	 NM_005516	0.000303639	-5.04804	0.0117163
40		6.74E-06	-5.04806	9.14E-05
41 42	NM 001010940	1.98E-05	-5.04922	9.98E-07
43		0.00846959	-5.05743	0.0271229
44	NM 001039799 /// NR 044	2.12E-07	-5.07092	8.64E-09
45	NM 144980	0.00117917	-5.08544	1.55E-06
46 47	NM 144975	2.39E-07	-5.09334	8.68E-05
47	NM 001029996	3.83F-05	-5.09559	0.000166108
49	NM_001033719	0.00552869	-5.10441	0.0217027
50	NM 001198625 /// NM 00	0.00108644	-5.10812	0.000776271
51	NM_001115	0.00363074	-5 12638	0.0129293
ວ∠ 53	NM 001253854 /// NM 00	0 000462172	-5 1253	4 55F-05
54	NM 021784 /// NM 15367	0.000702172	-5 1/251	
55	NM_033049	2 54F-N6	-5 14592	5.00L-00 2 1/IF_∩7
56	NM 000518	0.00/6/053	-5 1/020	
5/ 58	NM 021244	0.00404055	-5.14909	0.00301710
59	YR 110020 /// VD 122226	0.00770391	-2.12.202	
60	VU_TTOO73 /// VU_T33330	0.000303723	-2.1021	7.30E-U5

1				
2	NM_001143943 /// NM_03	0.010877	-5.20251	0.00283349
3 1	NM_001170538 /// NM_17	0.000608971	-5.20443	5.86E-06
4 5	NM_001111298 /// NM_17	0.0035917	-5.20746	0.000425257
6	NM_001242463 /// NM_05	0.0190955	-5.20912	0.00818638
7	NM_001025158 /// NM_00	4.89E-05	-5.23791	0.000252727
8	NM_001135608 /// NM_01	6.39E-05	-5.23951	0.00289677
9 10	NM_020643	1.45E-05	-5.24222	6.85E-05
11	NM_001190981 /// NM_00	7.89E-05	-5.24358	2.02E-06
12	NM_014331	0.00950634	-5.24409	0.000565266
13	NM_014312	0.000267384	-5.24596	0.00120336
14 15	NM_198493	0.000984614	-5.25696	0.000210136
16	NM_001004303	7.30E-06	-5.26	2.12E-06
17	NM_001105248 /// NM_00	0.000756173	-5.27187	0.000173885
18	NM_024764	0.000622845	-5.29344	0.0191701
19	NR_027105 /// NR_027106	0.007466	-5.30078	0.00106454
20	NM_001243848 /// NM_00	0.0046195	-5.30562	0.00524105
22	NM 001136020 /// NM 00	5.77E-09	-5.31628	6.52E-08
23	NM 001014986 /// NM 00	0.00156039	-5.32451	0.0056952
24	NM 001165963 /// NM 00	0.00260785	-5.33904	0.000446094
25	 NR 004428	0.00722085	-5.34236	0.0302119
20 27	NM 025059	0.000620275	-5.34311	0.000750364
28	NM 001145313 /// NM 03	0.000428908	-5.34432	1.14F-05
29	NM 003853	0.00143847	-5.34758	0.00586326
30	XM_003403521 /// XM_00	0.00104659	-5.35234	0.000181694
31	NM_001134285 /// NM_00	0.000588726	-5.35616	0.0017975
33	NM_006408	0.000647935	-5.35983	2.25E-05
34	NM_018430	0.0003474	-5 38496	0 00058328
35	NB 003003	0.00232105	-5 40097	0 024489
36	NM 145020	0.000360031	-5 40987	1 30F-05
38	NM_145020 NM_004914	1 42F-07	-5 42467	1.50E 05
39	NM_015689	0.000118019	-5 42731	0.000118217
40	NM_006144	0.000265617	-5 / 3601	0.000110217
41	NM 001008539 /// NM 00	0.001/07/2	-5 / 39/8	1 51F-08
42 43	NM_001102406 /// NM_00	6 51 F-05	-5 1/1016	8 71F-05
44	NM_001134486 /// NM_00	0.00442711	-5 11263	0.0380/87
45	NM_005013	0.0308436	-5 45252	0.0300407
46	NM_001130067 /// NM_01	0.00174365	-5.45252	0.0252575
47 18	NR 002174 /// NR 027626	0.000174303	-5.4071	0.000402701
49	NN_ 120446	1 265 05	-J.47354 E 17EE2	1 925 05
50	NIM_130440	0.00657282	-3.47332	0.00510242
51		0.00037283	-3.47075	0.00319342
52		0.00280448	-3.40330	0.00195654
55 54		0.00021/99	-2.49227	
55	NNA_006162 /// NNA_17228	0.000132947	-2.20108	5.5UE-U5
56	NNA 020546	0.001246279	-5.51283	0.00794414
57	INIVI_U2U546	0.00184036	-5.51/34	0.000141189
58 59	NIVI_UU113U182 /// NIM_UU	0.00291859	-5.518/5	2.22E-05
60	NIVI_UU1280 /// NK_U2331	1.69E-06	-5.5251	8.59E-06

1				
2	NM_001243961 /// NM_00	0.00581218	-5.52644	0.00417962
3 1	NM_000246	6.90E-05	-5.53138	0.00277493
5	NM_001263	8.64E-05	-5.54058	0.000719274
6	NM_001161725 /// NM_00	0.000959167	-5.54285	0.00708675
7	NM_198520 /// XM_00171	0.00200182	-5.5431	2.64E-05
8 Q	NM_001199805 /// NM_00	2.30E-06	-5.54685	0.000346706
10	NM_000301 /// NM_00116	0.000764418	-5.5663	2.68E-05
11	NM_018168	0.00257563	-5.59001	6.91E-08
12	NM_000814 /// NM_00119	0.000870233	-5.59069	6.32E-05
13 14	NM_000081 /// NM_00100	1.18E-05	-5.59524	0.000633885
15	NM_001001551 /// NM_00	0.00040087	-5.60619	0.00413702
16	NM_001102406 /// NM_00	3.18E-06	-5.61726	0.000169273
17	NM_001098515 /// NM_14	3.17E-06	-5.61828	0.00081076
18 19	NM_001178096 /// NM_00	0.00238816	-5.62334	0.000464495
20	NM_003012	0.000296682	-5.65041	1.19E-06
21	NM_001145399 /// NM_00	0.00294964	-5.65437	0.0418079
22	NM_005577	0.00418844	-5.67634	0.000452798
23	NM_003182 /// NM_01399	0.0185549	-5.69232	0.00319295
25	NM_054114 /// NM_13881	0.000692604	-5.70746	0.000805627
26	NM_003777	7.94E-07	-5.74836	8.94E-07
27	NM_001195415 /// NM_00	0.000649966	-5.75752	0.000582025
28	NM_001003799 /// NM_00	1.39E-05	-5.76143	1.51E-05
30	NM_001130831 /// NM_00	0.000228565	-5.76764	6.26E-05
31	NR_046102 /// XM_9338/2	0.00189241	-5.79165	0.000505536
32	NM_000933 /// NM_00117	0.00453076	-5.79639	0.00536709
33 34	NM_017590	0.000123797	-5.80309	0.00803/12
35	NM_000720 /// NM_00112	6.01E-06	-5.83835	0.000104439
36	NM_002753 // NM_13898	2.81E-05	-5.84239	6.78E-06
37	NM_021244	0.0282378	-5.84291	0.00140781
38 39	NM_174024	0.000265617	-5.84894	0.000725707
40	NM_174921	0.000139978	-5.8/923	0.00213052
41	NM_001104629 /// NM_01	1.81E-05	-5.88792	0.000112717
42	NM_007116/// NM_01910	0.000200396	-5.9039	4.12E-05
43 44	NVI_178821	0.000777094	-5.92402	4.37E-05
45	NIVI_004133	4.11E-00	-5.9273	1.73E-00
46	NIVI_004529	6.765.06	-5.93034	1.57E-05
47	NIVI_153230	6.76E-06	-5.93344	1.11E-U5
40 49	NIVI_001243961 /// NIVI_00	5.13E-00	-5.95048	1.55E-U5
50	NM 004038	0.000284387	-3.93843	0.00041191
51	NIVI_004928	9.492-07	-5.97752	2 705 05
52 52		1.14E-00 9.19E-06	-3.99441	5.70E-05
53 54	NIN 152772	0.100-00	-2.22042	T.01C-02
55	NIM 002984	0.00103030 1 07E-05	-0.00294	0.00403120 1 625-05
56	NIM 001001970 /// NIM 02	1.07E-05 2.01E_0E	-0.01200	1.05E-05 0 37E 07
57 59	NIM 001108EE0 /// NIM 01	2.UIE-UD	-0.02432 6 01313	5.2/E-U/ 0.000341706
50 59	NVV 002016 VIVI 002016 VIVI 002016	3.40E-U0 0.00011E972	-0.04212	
60	INIVI_007010	0.000113872	-0.04292	7.43E-00

1				
2	NM_001190201 /// NM_00	7.73E-07	-6.05325	6.05E-07
3 ⊿	NM_001242466 /// NM_18	0.00176049	-6.05958	0.0259266
4 5	NM_001162995 /// NR_015	6.59E-07	-6.07166	2.06E-05
6	NM_001031715 /// NM_02	0.00166765	-6.07213	4.36E-05
7	NM_023067	0.00283258	-6.07928	0.0301919
8	NM_021179	0.0111343	-6.08819	5.13E-05
9 10	NM_002970 /// NR_02778:	3.34E-07	-6.09032	5.50E-06
11	NM_172069	0.00382923	-6.09141	0.000833211
12	NM_000636 /// NM_00102	0.0123088	-6.09667	0.00457304
13	NM_002864	2.51E-05	-6.10775	1.25E-05
14	NM_001002294 /// NM_00	4.78E-06	-6.11156	1.04E-06
15	NM_001204087 /// NM_00	4.56E-06	-6.11375	0.00215298
17	NM_005195	0.000262881	-6.13322	0.0013861
18	NM_001243280 /// NM_00	0.0192131	-6.13397	0.0289767
19	NM 004975	0.000981399	-6.15255	0.0321825
20	NM 000087 /// NM 00114	3.64E-06	-6.159	2.29E-05
21	NM 021101	0.00227907	-6.16281	0.00035475
23		0.0220099	-6.16839	0.000906967
24	NM 003619	0.00201383	-6.16977	3.41E-05
25	NM 002259 /// NM 00226	4.91E-05	-6.19084	1.25E-06
20 27	NM 152643	3.32F-07	-6.20708	3.47F-07
28	NM 004420	3.60E-05	-6.22377	0.00363493
29	NM_001142462 /// NM_05	0.0109399	-6.27368	0.0028817
30	NB 001564	0.0103542	-6.30367	0.00125762
31	NM 001040280 /// NM 00	0.00026411	-6 3039	7 32F-06
32 33	NM_001267048 /// NM_00	0.0212537	-6 3162	0.0483302
34	NM 178527	0.000183459	-6 31871	6 15E-06
35	NM_001756	3 89F-05	-6 32156	2 31F-05
36	NM_000892	0.000247453	-6 33372	0.000557259
38 38	NM_013262	0.000805201	-6 34818	0.000337235
39	NM_015675	0.000977817	-6 3/899	0.0221313
40	NM_001031745 /// NM_00	4 725-05	-6 35907	1 71F-05
41	NM_022785 /// NM_19885	3 71E-05	-6 37722	9.03E-06
42 43	NM 145047 /// NM 20683	0.000916127	-6 38992	0.0225337
44	NM_030666	6.69F-08	-6 397/9	7 9/F-07
45	NM_001014986 /// NM_00	0.001227376	-6 30086	0.00420886
46	NM_001242350 /// NM_00	1.675-07	-6.40200	0.00439880 1.62E-07
47 19	NR 002810 /// VR 110015	0.000145618	6 40214	0.0172490
40 49	NK_002819 /// AK_110915	0.000143018	-0.40314	1 755 05
50	NM_152701	0.000387293	-0.4179	1.75E-05
51			-0.45155	4.49E-05
52	NNA 144002	1.80E-03	-0.45401	1.572-07
53 54	NM_144992	0.000180517	-0.4/120	2.51E-05
55	NM_007037	5.85E-07	-6.48673	9.17E-06
56	NIVI_UUU856 /// NIVI_UU113	0.000276251	-0.512/8	9.86E-06
57		0.00281377	-0.53253	0.0114133
58 50	NIVI_UU2581	0.00248966	-6.5339/	0.000437903
60	NMI_018076	0.00348075	-6.53445	8.16E-06

1		E 04 E 06	6 5 5 5 4	0.00242404
2	NM_001127608 /// NM_00	5.81E-06	-6.5351	0.00213401
4	NM_014395	2.12E-09	-6.53973	4.62E-06
5	NM_001270391/// NM_00	1.15E-05	-6.54251	1.32E-07
6	NM_003320 /// NM_17797	0.000509948	-6.54857	0.011/30/
/ 0	NM_031490 /// NR_04067	1./3E-06	-6.55/14	0.000204493
9	NM_001033659 /// NM_00	0.00152329	-6.56694	0.0186456
10	NM_001122769 /// NM_18	0.000556567	-6.56912	0.00105189
11	NM_001243797 /// NM_00	0.000409307	-6.59297	0.000555192
12	NM_174896	2.25E-05	-6.61814	0.00/18602
13	NM_001164407	0.00107983	-6.62037	0.00282217
15	NM_001242524 /// NM_00	7.99E-05	-6.62074	6.01E-05
16	NM_001256552 /// NM_02	1.16E-07	-6.63141	4.48E-05
17	NM_001206609 /// NM_00	5.50E-08	-6.63/83	4.02E-06
10	NM_017539	0.000199545	-6.66492	4.70E-05
20	NM_001253835 /// NM_00	5.66E-05	-6.68502	0.000198292
21	NM_002937 /// NM_19443	3.31E-05	-6.6881	0.000291652
22	NM_001130715 /// NM_00	0.00133595	-6.74603	2.10E-06
23 24	NM_007116 /// NM_01910	3.15E-05	-6.75806	8.18E-05
25	NM_006955	3.55E-06	-6.7602	0.000508887
26	NM_012307	0.000445881	-6.7709	9.49E-05
27	NM_152377	6.55E-05	-6.77116	6.20E-07
28	NM_014203 /// NM_13078	0.000343588	-6.78374	0.0064001
29 30	NM_145172	0.00145927	-6.78542	9.11E-06
31	NM_001130918 /// NM_17	2.05E-05	-6.82071	2.71E-06
32	NM_001164342 /// NM_00	6.25E-05	-6.83161	0.0141681
33	NM_001122824 /// NM_00	0.000166787	-6.83438	3.89E-05
35	NM_052863	0.00181971	-6.84023	0.0160659
36	NM_001184879 /// NM_00	2.45E-05	-6.85153	0.00306037
37	NM_000313	0.0076936	-6.85305	0.0336922
38	NM_001031741 /// NM_15	1.02E-05	-6.85413	1.58E-05
39 40	NM_152271	1.61E-05	-6.85792	8.10E-05
41	NM_001010848 /// NM_00	0.000352596	-6.8723	0.000143549
42	NM_001099267 /// NM_00	0.000511873	-6.89266	8.14E-08
43	NM_002581	0.0254171	-6.89681	0.00493725
44 45	NM_003948	0.00106683	-6.90512	0.0157673
46	NM_001004416 /// NM_00	0.000464768	-6.91989	0.000115634
47	NM_001034850 /// NM_01	0.00175417	-6.93	0.0032106
48	NM_001144382 /// NM_01	0.000645371	-6.93481	0.000146518
49 50	NM_001256295 /// NM_00	3.19E-07	-6.94979	2.50E-07
51	NM_033124	0.000137115	-6.95492	3.32E-05
52	NM_000218 /// NM_18179	1.38E-08	-6.97664	8.23E-05
53	NM_001168374 /// NM_00	9.86E-06	-6.9949	6.17E-07
04 55	NM_001122834 /// NM_00	2.31E-05	-7.00114	0.000281356
56	NR_038311 /// NR_038312	0.000120721	-7.00528	0.00813951
57	NM_145740	2.84E-05	-7.03298	7.27E-05
58	NM_001029875	1.00E-06	-7.03534	8.10E-08
59 60	NM_001243848 /// NM_00	0.00454913	-7.04702	0.00657549

1				
2	NM_013367	0.000290644	-7.04819	0.0014394
3 4	NM_007116 /// NM_01910	2.69E-05	-7.05831	8.62E-05
5	NM_001220765 /// NM_00	0.002131	-7.07456	0.0300976
6	NM_003734	0.000298491	-7.09585	0.0222615
7	NM_001077416 /// NM_00	0.000336895	-7.11867	8.57E-06
8	NM_015417	9.18E-05	-7.12947	0.000816937
9 10	NM_153274	0.0017085	-7.18313	0.00783475
11	NM_022570 /// NM_19794	5.97E-06	-7.19153	0.000857727
12	NM_012472	0.000519042	-7.19335	0.0171137
13	NM_001197295 /// NM_00	0.000322244	-7.19564	0.00286542
14 15	NM_000044 /// NM_00101	0.000100589	-7.20021	0.00351045
15 16	NM_002985	9.67E-06	-7.21984	0.000821151
17	NM_001039706 /// NM_00	6.91E-05	-7.24371	7.68E-05
18	NM_003246	0.000703866	-7.2513	0.0037798
19	NM_015202	1.96E-06	-7.28771	0.000130899
20	NM 001039948 /// NM 00	8.11E-06	-7.29193	3.45E-06
21	NM 004058 /// NM 08059	0.0116539	-7.30487	0.00767003
23	NM 005847 /// NM 15268	0.00143407	-7.3218	0.0023194
24	NR 001298	1.93E-05	-7.35774	0.000227348
25	NM 001009991 /// NM 00	3.50F-08	-7 37057	1.54F-05
26	NM 004288	0 000304692	-7 40166	0.00830185
28	NM 002919 /// NM 13442	0.00236768	-7 40225	0.00114519
29	NM_000635 /// NM_13443	0.00230700	-7 40223	1 55F-05
30	NM_001199739 /// NM_00	4 28F-06	-7 /1/16	2 30F-06
31	NM_001199739777 NM_00	4.20E 00	-7 /1975	2.30E 00
<i>उ</i> ∠ 33	NM_016270	1.52E 05	-7 /2316	2.01E 05
34	NM_01201466 /// NM_02	1.44L-05	-7.42510	1.382-05
35	NM_001201400 /// NM_03	0.00122627	7,42535	0.0105065
36	NM 017600		-7.43023	0.0103903
37	NM_010299	3.03E-00	-7.43/31	4.00E-00
39	NM 018222	2.71E-05	-7.4409	0.00103413
40	NM_018222	1.15E-00	-7.45192	0.000125391
41	NM_002985	7.44E-05	-7.46459	0.00147074
42		2.22E-U6	-7.46587	1.42E-06
43 44	NM_001370 /// NM_17364	0.000211815	-7.46769	1.34E-05
45	NM_0010250767/7 NM_00	0.000353146	-7.46918	0.000221836
46	NM_000/20 /// NM_00112	7.45E-05	-/.5016	0.00163536
47	NM_006408	0.00326004	-7.51037	7.37E-08
48	NM_058180 /// NM_19907	0.00176094	-7.51893	0.00583408
49 50	NM_001161661 /// NM_00	0.000196344	-7.52512	0.00905524
51	NM_001134649 /// NM_00	0.00198616	-7.54862	0.0282364
52	NM_001001437 /// NM_00	0.000679056	-7.55377	0.000747315
53	NM_130446	2.45E-06	-7.55487	1.35E-05
54 55	NM_000855 /// NM_00125	0.000451399	-7.5579	5.58E-05
55 56	NM_001134363	0.000636723	-7.55977	3.58E-05
57	XR_040780	1.30E-05	-7.57129	7.24E-06
58	NM_144702	3.98E-06	-7.5832	1.30E-07
59 60	NM_000833 /// NM_00113	0.00252652	-7.5878	0.0386345

1				
2	NM_001470 /// NM_00639	0.00564045	-7.6113	0.0438321
3 4	NM_001460	0.016143	-7.63329	0.0394321
5	NM_000847	1.57E-06	-7.63426	2.13E-07
6	NM_030906	0.000205467	-7.67853	2.82E-06
7	NM_001025081 /// NM_00	0.000822197	-7.68541	0.00420404
8	NM_015512	5.00E-05	-7.69301	0.000982024
9 10	NM_025057	0.00101255	-7.69324	0.000951393
11	NM_001039936 /// NM_00	0.00117187	-7.69936	0.000736467
12	NM_014395	8.45E-06	-7.71739	0.000201919
13	NM_012337	0.0015375	-7.73044	2.62E-05
14 15	NM_013308	0.000832605	-7.73066	0.00141214
16	NM_001145365 /// NM_01	0.000715293	-7.76748	0.0336268
17	NM_145045	0.000176067	-7.77734	0.0298979
18	NM_001920 /// NM_13350	0.00131874	-7.81523	0.00882708
19	NM_002185	0.000109863	-7.82528	5.75E-06
20	NM_001270391 /// NM_00	1.22E-06	-7.84599	3.01E-07
22	NM_014861	4.22E-06	-7.85372	9.88E-06
23	NM_001199633 /// NM_02	3.25E-05	-7.85924	7.40E-05
24	NM_004751	5.40E-06	-7.88014	4.36E-05
25 26	NM_001267048 /// NM_00	0.00797869	-7.88468	0.0174149
27	NM_020957	0.0003204	-7.89211	0.0311343
28	NM_153267	9.40E-05	-7.90797	6.19E-06
29	NM_006063	0.000885156	-7.98559	0.0107881
30	NM_001127603 /// NM_01	6.55E-05	-7.99949	0.0196598
32	NM_024753 /// NR_045375	2.83E-05	-8.00715	8.76E-05
33	NM_021201 /// NM_20693	0.000392632	-8.01056	0.0102077
34	NM_002119	2.26E-05	-8.01237	0.000152428
35	NM_003059	0.000346655	-8.05806	2.62E-06
37	NM 022785 /// NM 19885	0.000135295	-8.10895	1.17E-05
38	NM_001037500	1.35E-05	-8.12989	6.49E-05
39	NM 001128432 /// NM 02	0.00077688	-8.1565	0.000240739
40	NM 001206	0.000249108	-8.15894	0.0106346
41 42		4.28E-05	-8.17174	3.18E-06
43	NM 001146192 /// NM 03	0.000595417	-8.19358	0.00104437
44	NM 001243280 /// NM 00	0.00694336	-8.19971	0.00896409
45	NM_001080467	5.40E-07	-8.20601	6.99E-05
46 47	 NM_182500	8.08E-05	-8.20878	1.29E-05
48		7.30E-06	-8.22423	8.47E-07
49	NM 001040429 /// NM 01	0.000805889	-8.22896	0.00881614
50	NM 012435	1.77E-06	-8.25637	4.60E-05
51 52	NM 014861	8.12E-09	-8.26039	1.26E-07
52	NM_033063 /// NM_20757	1.47F-06	-8.27802	8.32F-08
54	NM 001256054 /// NM 01	0.00351451	-8,27995	0.00129025
55	NM 001085	0.00426915	-8.28422	1.12F-05
56 57	NM 014935 /// NM 13848	3.76F-05	-8.28598	0.00326299
ว7 58	NM 001031802 /// NM 00	1.84F-05	-8,28676	7,31F-05
59	NM 018399 /// NM 07862	9.62F-05	-8 3271	1 <u>4</u> 1F-06
60	010000 ///	5.022 05	0.3271	1.410 00

1				
2	NM_017600 /// NR_02426:	4.63E-05	-8.34882	0.00284749
3	NM_001267576 /// NM_15	0.000139566	-8.35442	0.000211626
5	NM_002581	7.41E-06	-8.38336	2.18E-05
6	NM_001193434 /// NM_00	0.00393152	-8.38953	0.048983
7	NM_002970 /// NR_02778:	2.06E-08	-8.42189	7.38E-07
8	NM_000715	1.95E-05	-8.43361	3.10E-05
9 10	NM_138801	7.54E-06	-8.43611	0.00114876
11	NM_002612	0.00121036	-8.45886	4.16E-06
12	NM_001172684 /// NM_00	3.10E-06	-8.46072	0.00133203
13	NM_000219 /// NM_00112	0.000988214	-8.46388	0.000112171
14	NR_015377 /// NR_047570	2.10E-05	-8.51364	0.000221521
15	NR_034012 /// NR_034013	0.000180003	-8.52589	4.70E-06
17	NM_001193489 /// NM_01	3.25E-05	-8.53102	0.00774004
18	NM_138409	0.00639711	-8.62206	0.002328
19	NM_001165 /// NM_18296	0.000172485	-8.63478	3.27E-06
20	XR_109454 /// XR_111677	0.00518014	-8.64842	0.000482511
22	NM 000591 /// NM 00104	0.000334983	-8.65813	0.0136641
23	 NM 138451	0.000444867	-8.67529	0.00223138
24	NM 001039395 /// NM 01	1.74E-06	-8.68129	1.11E-07
25	NM 001130699 /// NM 00	4.05E-05	-8.75233	0.0173095
26 27	NM 138444	0.00175791	-8.78668	0.00144355
28	NM 006290	5.71F-05	-8.80832	0.00040811
29	NM_001204458 /// NM_00	0.00143956	-8.83669	0.0226359
30	NM_001040113 /// NM_00	3 73F-06	-8 83787	0 000199129
31	NM_025087	0.000694501	-8 84041	1 34F-05
32 33	NM_017886	3 93F-05	-8 85287	0 00154039
34	NM_000565 /// NM_00120	0.000164036	-8 8565	0 0114806
35	NM_001554	0.00099024	-8 857/19	0.0114000
36	NM_001164342 /// NM_00	7 50E-05	-8 87015	0.00772664
37	NM_015693	0.00181615	-8 8873/	0.00772004
39	NM_015896	0.00145148	-8 92236	0.000100001
40	NM_01112717 // NM_00	0.000149148	-8 02602	0.000115304
41	NM_01/211	0.00423217	-8 93771	0.014512
42 43	NM_014211	9 245 05	-0.33771 9 04904	0.0300318
44	NM_001012042	1 225 06	-0.94094 9 OFEO/	2 445 05
45		1.53E-00	-0.95504	5.44E-05
46	NM_001030845 /// NM_00	0.84E-05	-8.97008	1.05E-00
47	NIM_001039845 /// NIVI_20	5.50E-00	-8.99984	2.04E-05
48 49	NM_004310	7.51E-05	-9.02095	0.000302279
50	XR_109365 /// XR_111668	6.80E-06	-9.03992	6.01E-05
51	NM_001247997/// NM_00	8.60E-06	-9.05639	0.00377279
52	NM_001114106 /// NM_00	5.13E-05	-9.13421	0.000109188
53 54	NM_002221	0.000234046	-9.13645	0.0235181
54 55	NM_001037290 /// NM_00	0.000178028	-9.14721	0.00029647
56	NM_000480 /// NM_00102	5.14E-05	-9.14962	0.000107298
57	NM_020225	4.32E-08	-9.15903	0.000731081
58	NM_001118 /// NM_00119	0.000693518	-9.26258	0.000263657
ว9 60	NR_027046	6.68E-08	-9.29354	0.000238534

1				
2	NM_001164257 /// NM_00	1.44E-07	-9.30234	8.37E-08
4	NM_025153	0.000198798	-9.30373	0.00051513
5	NM_001242505 /// NM_00	0.00880551	-9.32858	0.0448283
6	NM_001171171 /// NM_00	0.00151631	-9.39197	0.0126955
7	NM_003672 /// NM_03331	0.000255109	-9.39641	0.000150809
8	NM_000672 /// NM_00110	0.000438064	-9.40483	1.66E-05
9 10	NM_001080529	3.11E-05	-9.41658	0.000249196
11	NM_001031743 /// NM_17	2.59E-05	-9.41901	2.78E-05
12	NR_002819 /// XR_110915	5.07E-07	-9.42774	0.00237192
13	NM_001005474 /// NM_03	2.13E-06	-9.44188	1.07E-07
14 15	NM_001099410 /// NM_00	1.15E-05	-9.44342	0.00280929
16	NM_001143943 /// NM_03	0.000702769	-9.46255	0.00136054
17	NM_032411	0.00529664	-9.46871	0.0316644
18	NM_001280 /// NR_023312	9.24E-08	-9.51331	3.05E-05
19	NM_024786	1.74E-06	-9.52737	0.00340169
20	NM_152376	5.83E-06	-9.53705	3.29E-06
22	NM 017600 /// NR 02426:	2.49E-07	-9.5394	0.000454747
23	NM 001145811 /// NM 00	1.41E-06	-9.56269	0.00109777
24	 XR 108456	0.000781956	-9.56919	0.0091861
25	 NM 175922	0.000176543	-9.60043	1.09E-05
20 27	NR 038877	0.000919218	-9.62902	0.00217758
28	NM 152376	0.000450347	-9.64026	4.64F-05
29	NM 001136105	0.000820202	-9.64704	7.37E-05
30	NM 000130	6 40F-05	-9 68778	1 77E-06
31	NM 004585	4 87F-05	-9 70238	0.00108961
32 33	NM 000348	0.000234138	-9 70691	5 39F-06
34	NR 040109	0.000234130	-9 71612	1 91F-05
35	NM 003672 /// NM 03331	2 82F-05	-9 78083	0.00081219/
36	NIM_0050/2 /// NIM_03331	2.82L-05 9.70E.0E	-5.78085	0.01282194
37	NM 001171581 /// NM 00	0.792-03	-9.78255	6 305-05
39	NM_001124285 /// NM_00	0.000137834	-9.80801	0.392-03
40		0.00207943	-9.82210	0.00013408
41	NM_001040429 /// NM_01		-9.85095	0.00590040
42	NNI_000901	7.19E-05	-9.09195	0.00360389
43 44	XR_109227 /// XR_133091	0.000224925	-9.8948	0.0170891
45	NM_002118	6.60E-05	-9.93181	0.0124423
46	NM_001164730 /// NM_00	7.85E-05	-9.93633	1.79E-05
47	NM_001005474 /// NM_03	3.83E-06	-9.94885	4.53E-07
48	NM_001223 /// NM_00125	1.16E-05	-9.96	0.000414357
49 50	NM_024865	2.99E-05	-9.98179	0.00301072
51	NM_001244134 /// NM_00	1.57E-06	-9.99812	0.000109954
52	NM_000399 /// NM_00113	0.00141731	-10.074	0.00246235
53	NM_145038	5.51E-06	-10.151	1.63E-05
04 55	NM_024081	0.000338222	-10.1686	0.0103363
56	NM_001370 /// NM_17364	0.000104261	-10.2019	8.71E-06
57	NM_001007267 /// NM_00	0.0003687	-10.2544	0.0151942
58	NM_000517 /// NM_00055	0.007001	-10.3106	0.00740361
59 60	NM_152505	1.01E-06	-10.3119	4.92E-08

1		4 005 05	40,0000	0 00000070
2	NM_006120	4.08E-05	-10.3903	0.000390878
3	NM_001006655 /// NM_01	0.000221993	-10.4572	3.60E-05
5	NM_032131	0.000124519	-10.462	1.40E-05
6	NM_001034850 /// NM_01	4./1E-06	-10.4/18	6.02E-05
7	NM_005565	2.92E-06	-10.4786	6.91E-06
8 Q	NM_001002294 /// NM_00	6.74E-05	-10.4903	7.79E-06
10	NM_001080394 /// XM_00	5.12E-06	-10.4914	2.09E-05
11	NM_002581	0.000157011	-10.5359	0.000149268
12	NM_001100388 /// NM_20	3.09E-05	-10.612	4.35E-07
13	NM_014496	0.000225821	-10.6347	0.00432471
14	NM_031412 /// NR_028287	3.27E-07	-10.6496	0.00194191
16	NM_001145646 /// NM_03	5.25E-07	-10.7244	1.20E-05
17	NM_001025076 /// NM_00	1.06E-07	-10.7515	4.41E-05
18	NM_175709	1.95E-07	-10.7539	0.000145516
19	NM_001039763	2.30E-07	-10.7767	5.79E-09
20	XR_133404	2.77E-05	-10.8158	4.78E-06
22	NM_001243342 /// NM_01	3.77E-08	-10.8514	2.53E-08
23	NM_001089584	4.19E-05	-10.8864	3.80E-06
24	NM_030906	6.18E-05	-10.9275	3.25E-06
25	NM_001242463 /// NM_05	3.47E-05	-10.9832	0.00180351
20	NM_001270391 /// NM_00	0.000201336	-10.9923	3.69E-06
28	NM 001037582 /// NM 02	9.38E-06	-10.9976	0.000753929
29	NM 006206	0.000316829	-11.0029	0.000159065
30		0.000114696	-11.0742	1.27E-06
31	NM 014265 /// NM 02177	0.000563749	-11.0877	0.00108208
33	NM 001172420 /// NM 01	7.40E-07	-11.1177	1.82E-06
34	NM 001006655 /// NM 01	1.98E-05	-11.1543	2.85E-06
35	NR 037901	3.88E-05	-11.2077	3.38E-06
30 37	NM 001122961	1.81E-05	-11.218	1.34E-06
38	NM 001037763	0.000166335	-11.2275	1.44E-05
39	NM 080283 /// NM 17238	0.000240286	-11.2428	0.000213834
40	NM 001206997 /// NM 15	3.28F-05	-11.2519	2.20F-07
41 42	NM 002970 /// NB 02778	3.03F-10	-11.2949	9.14F-06
43	NM 001007278 /// NM 00	0.000151368	-11.3411	1.60F-06
44	NM 024763 /// NM 20701	8.88F-06	-11,4101	2.64E-05
45	NM 001167942 /// NM 15	0.000100698	-11 4266	6 92F-05
46	NM 178818 /// NM 18152	2 67E-07	-11 4758	0 0027691
47 48	NM 007030	3 45E-05	-11 4966	0.000530138
49	NM_001080529	1 33E-07	-11 5519	1 98F-07
50	NM_00120/197 /// NM_01	2 /8E-07	-11 55/15	1.56E 07
51	NM_001042519 /// NM_00	0.000667317	-11 57/	0.0224574
52 53	NM_000565 /// NM_00120	0.000198459	-11 6062	0.0224374
54	NM_001256112 // NM_17	6.005-06	-11 6104	0.00512000 2 12E-05
55	NM_001230113/// NM_1/	0.00297046	-11.6224	0.000222651
56		0.000237040	-11 6700	0.000222031
5/ 58	NIM 000855 /// NIM 00125	0.00100343	-11 6001	2 NOE NE
59	NIM_001001706 /// NIM_00123		-11.0001 11.7047	3.30E-U3 1 77E 07
60	NN_001001/00/// NNI_00	2.0/2-00	-11./04/	4.2/E-U/

1	NINA 006091 /// NINA 17210	0.000219501	11 7015	0 000212702
2	NM_005981/// NM_17319	0.000218591	-11./215	0.000313792
4	NIM_003986	0.000272156	-11.8011	0.00305906
5	NM_001142857 /// NM_02		-11.8081	5.14E-08
6	NM_004058 /// NM_08059	5.50E-U5	-11.8103	0.000109162
/ 8	NM_001253908 /// NM_00	0.000290037	-11.8301	1.80E-05
9	NM_005746 /// NM_18279	8.39E-05	-11.8341	5.//E-0/
10	NM_001010892 /// NM_00	0.000580144	-11.8/22	1.51E-05
11	NM_001112706 /// NM_03	0.00014107	-11.8956	8.60E-06
12	NM_001199739 /// NM_00	4.05E-06	-11.9055	6.66E-06
13	NM_174912	4.08E-09	-11.9698	4.33E-05
15	NM_001083 /// NM_03343	4.29E-06	-12.0119	1.05E-06
16	NM_001144033 /// NM_14	0.00114305	-12.0417	4.90E-05
17	NM_024940	4.53E-05	-12.1164	0.000259729
18	NM_173615 /// NM_17505	5.99E-07	-12.1508	2.07E-07
20	NM_001669 /// NM_00958	4.26E-07	-12.1734	0.000836802
21	NM_012144	1.97E-06	-12.2254	1.31E-07
22	NM_018423	0.000208879	-12.2304	0.00981492
23	NM_001141945 /// NM_00	0.000358753	-12.2508	0.0209401
24 25	NM_001202233 /// NM_00	0.000131522	-12.257	0.00130173
26	NM_001242935 /// NM_00	2.85E-06	-12.2946	6.96E-05
27	NM_001781 /// NR_02667:	2.46E-06	-12.3527	3.36E-09
28	NM_006235	0.000187704	-12.3623	4.97E-06
29	NM_001018046 /// NM_02	4.56E-05	-12.4587	2.51E-06
30 31	NM_001195303 /// NM_00	0.000191635	-12.515	0.00023016
32	NM_015351	1.09E-05	-12.582	0.00945982
33	NM_001190726 /// NM_03	1.30E-06	-12.6104	0.000567328
34	NM_001142857 /// NM_02	7.99E-06	-12.686	4.35E-07
30 36	NM_001003674 /// NM_00	9.39E-05	-12.6882	0.00711703
37	NM_001156474 /// NM_02	2.94E-07	-12.6941	8.64E-09
38	NM_198078 /// NR_02727:	0.000404714	-12.7773	0.00145459
39	NM_007335 /// NM_00733	5.90E-06	-12.7967	2.96E-06
40 41	NM_001114094 /// NM_00	1.27E-05	-12.8215	0.010032
42	NM_001080850	9.68E-06	-12.8285	0.0107224
43	NM_001002233 /// NM_00	3.54E-05	-12.8451	0.00163819
44	NM_024574	2.34E-05	-12.9495	1.69E-05
45 46	NM_020893 /// NR_036527	3.31E-05	-13.0256	0.000984417
40 47	NM_001076778 /// NM_00	6.93E-06	-13.0296	0.00979652
48	NM 018429	4.91E-05	-13.0447	0.0267189
49	NM 001164496 /// NM 01	1.44E-05	-13.0974	8.53E-05
50	NM 001008723	6.40E-05	-13.0985	1.33E-06
51	 NM_172193	0.0001053	-13.1863	0.00135122
53		0.0024713	-13.2167	0.00464605
54	 NM 198282	2.39E-07	-13.2574	2.21E-05
55		3.26E-05	-13.3015	2.91E-05
50 57	 NM_001144956	7.54E-05	-13.3067	1.15E-06
58	NM 001169154 /// NM 17	4.84E-05	-13.3092	1.70E-06
59	NM 001149 /// NM 00120	1.31F-06	-13,3434	0.013086
60		1.012 00	10.0104	0.010000

1				
2	NM_033364 /// XR_132494	0.000112205	-13.3626	0.00557221
3 4	NM_006186 /// NM_17317	3.15E-06	-13.3741	8.19E-06
5	NM_031898	9.23E-05	-13.3787	1.90E-06
6	NM_000720 /// NM_00112	2.15E-05	-13.3978	0.0031304
7	NM_001131010 /// NM_00	0.000372	-13.4158	7.69E-06
8	NM_025244 /// NM_18291	4.73E-05	-13.468	8.61E-06
9 10	NM_001029996	1.34E-05	-13.6013	1.50E-06
11	NM_001159629 /// NM_00	0.000725818	-13.638	3.13E-06
12	NM_000777 /// NM_00119	3.26E-05	-13.6676	0.00109274
13	NM_001267798 /// NM_00	2.82E-06	-13.7008	0.000263889
14 15	NM_001996 /// NM_00648	1.37E-06	-13.7281	6.11E-05
16	NM_001001971 /// NM_00	7.08E-05	-13.7371	1.93E-05
17	NM_139172	0.000576014	-13.8348	0.000451422
18	NM_002090	0.000304404	-13.852	4.51E-05
19	NM_001079691 /// NM_05	1.71E-07	-13.9109	6.59E-05
20 21	NM_001159643 /// NM_00	5.92E-08	-13.9194	2.65E-05
22	NM_001253854 /// NM_00	4.24E-05	-13.9721	1.72E-07
23	NM_001131010 /// NM_00	0.000246848	-14.0774	0.000113956
24	NM_025153	0.0016689	-14.0836	0.0193682
25	NM_001135919 /// NM_18	7.78E-07	-14.0897	0.000626824
20	NM 002727 /// NR 03643(0.000103262	-14.1337	0.00224487
28	NM 152327	2.13E-05	-14.1696	1.70E-05
29	 NM_001008409	0.000175302	-14.1922	0.0100234
30		4.76E-06	-14.1924	8.63E-06
31	NM 001669 /// NM 00958	2.75E-05	-14.197	0.00047441
33	NM 016557 /// NM 17844	2.15E-06	-14.2585	5.86E-08
34	NM 006217	0.000294616	-14.2621	0.000376125
35	NM 001039763	0.000755146	-14.3132	1.86E-05
36 37	NM 001025158 /// NM 00	7.33F-07	-14.3951	2.56F-06
38	NM 018897	1.59F-05	-14.4463	2.13F-06
39	NM 001001523 /// NM 00	5.00F-07	-14.557	2.66F-05
40	NM 001270383 /// NM 14	4 39E-05	-14,6823	1.17E-05
41 42	NM 001045476	5.89F-06	-14.6842	4.06F-07
42 43	NM 016234 /// NM 20337	2.26E-08	-14.6873	1.41F-05
44	NM_001146003 /// NM_02	3 55F-08	-14 8307	0 000139559
45	NM_001076778 /// NM_00	1 60F-06	-14 907	0 00945191
46	NM_003890	0.000100009	-14 9479	0.0291036
47 48	NM 138468 /// NM 17823	1 69F-05	-14 9814	0.00360393
49	NM_000689	2 70F-07	-14 9966	2 80F-08
50	NM 182508	0.000766464	-15 0216	2.80E 08 4 86E-05
51	NM_000963	5 38F-06	-15 0244	4.00E 05
52 53	NM_0000000	5.58L-00	-15 108/	2.47E-03
53 54	NM_001145811 /// NM_00	2 985-06	-15 1221	0.0112807
55	NM_0011143811777 NM_00	0.000117511	-15.1251	5 85E-05
56	NM 004225		-15 1767	J.0JL-0J 7 NEE N7
57 59	NIM 020802	2.55L-05 2.55L-05	-15 252	7.03E-07
59	NIM 001164407	0.JOE-UJ 2 615 05	-17.522	2./3E-UD
60	10101_001104407	2.01E-03	-10.0040	0.0051587

1				
2	NM_001669 /// NM_00958	5.42E-06	-15.4184	0.000525683
4	NM_006763	4.03E-05	-15.4279	0.000101711
5	NM_001256054 /// NM_01	3.02E-07	-15.4331	5.58E-07
6	NM_001146319 /// NM_00	6.65E-05	-15.4939	0.0433328
7	NM_015668	1.64E-05	-15.4969	4.29E-06
o 9	NM_001012502	1.14E-06	-15.5255	1.68E-07
10	NM_004616	0.000297612	-15.5514	0.0011123
11	NM_001105513 /// NM_14	7.58E-05	-15.6444	0.00943173
12	NM_152576 /// XR_108934	1.47E-05	-15.7815	0.00134501
13	NM_001039845 /// NM_20	2.91E-07	-15.8287	7.39E-05
15	NM_005832 /// NM_18136	0.000179821	-15.9058	7.01E-05
16	NM_032606	0.000124155	-15.9335	4.64E-07
17	NM_004417	1.08E-05	-15.9636	8.91E-06
18 10	NM_153228	3.00E-06	-16.0028	6.25E-08
20	NM_001199989 /// NM_01	4.86E-05	-16.0373	0.000120973
21	NM_001733	1.20E-07	-16.1295	0.00696591
22	NM_003551	3.07E-06	-16.1749	1.42E-06
23	NM_001001991 /// NM_01	3.12E-07	-16.2852	3.65E-06
24 25	NM_007335 /// NM_00733	6.27E-06	-16.2924	7.72E-07
26	NM_019111	1.79E-05	-16.2929	0.000945978
27	NM_001162371	0.000121315	-16.3053	0.00420868
28	NM_004666	4.42E-05	-16.3388	1.89E-07
29 30	NM_014057 /// NM_02441	0.000227999	-16.4164	7.12E-06
31	NM_001920 /// NM_13350	1.36E-05	-16.439	0.0118227
32	NM_001242385 /// NM_00	1.27E-07	-16.4699	9.21E-09
33	XR_133482	1.53E-05	-16.4744	2.82E-07
34 35	NM_000855 /// NM_00125	0.000129445	-16.5856	1.28E-05
36	NM_001098843	3.50E-05	-16.6306	5.26E-05
37	NM_001193341 /// NM_15	1.01E-06	-16.699	1.97E-07
38	NM_000014	1.22E-05	-16.827	0.0373429
39	NM_001135934 /// NM_00	0.00842392	-16.8567	0.0049334
40	NM_019111	3.55E-06	-16.9104	6.41E-05
42	NM_002121	1.76E-05	-16.9362	0.000522919
43	NM_001198625 /// NM_00	0.000133635	-16.9711	6.81E-05
44 45	NM_031461	0.000529161	-16.9816	0.000575821
45	XR_110232 /// XR_111449	2.30E-05	-16.9955	1.08E-06
47	NM_001430 /// XR_132707	8.36E-06	-17.1061	0.00609928
48	NM_001128602 /// NM_00	5.64E-05	-17.1151	0.00085383
49 50	NM_144676	2.09E-05	-17.1536	8.62E-08
50 51	NM_024786	2.99E-05	-17.2701	0.00575643
52	NM_014365	1.35E-06	-17.3629	1.67E-06
53	NM_001669 /// NM_00958	2.06E-06	-17.3701	0.000614037
54	NM_000700	0.000633163	-17.518	0.00453511
วว 56	NM_152784	2.01E-06	-17.5509	1.05E-08
57	NM_000104	1.10E-05	-17.5993	0.000564276
58	NM_020734	1.97E-05	-17.6179	0.0427005
59 60	NM_014859	1.18E-06	-17.6611	1.65E-05

1				
2	NM_000416	3.16E-06	-17.7704	0.000881786
3	NM_020802	6.89E-10	-17.8037	5.96E-12
4 5	NM_053285	0.000143758	-17.9309	2.58E-06
6	NM_002122 /// NM_02005	0.000281988	-17.9649	0.000211915
7	NM_000898	1.16E-05	-18.097	3.17E-05
8	NM_006186 /// NM_17317	0.000100252	-18.154	8.39E-05
9	NM_000278 /// NM_00398	0.00171176	-18.1782	0.00429549
10	NM 001243961 /// NM 00	7.68E-05	-18.1797	0.000469985
12	NM 017424 /// NM 17740	7.25E-08	-18.1844	8.40E-05
13	NM 001033658 /// NM 00	6.36E-05	-18.2079	0.000164184
14	NM_001205288 /// NM_03	0.00013309	-18,4945	0.0347131
15	NM_058186 /// NM_20696	2 48F-05	-18 5145	0.00136155
16 17	NM_001178003 /// NM_14	6 535-05	-18 5595	7 09F-06
18	NM_001150642 /// NM_14	2 295 05	10,5555	0.000150714
19	NM_001153043 /// NM_00	2.362-03	-10.0752	0.000139714
20	NM_001104496 /// NM_01	5.012-08	-10.0754	9.10E-00
21	NM_004390 /// NM_14897	5.15E-08	-18.9137	0.0025766
22	NM_001372/// NM_00466	1.98E-05	-19.0207	7.30E-08
23 24	NM_001127381 /// NM_00	0.000111362	-19.0272	0.000508613
25	NM_015675	3.94E-05	-19.0888	0.00643934
26	NM_052972	1.20E-06	-19.1217	6.96E-07
27	NM_001204477 /// NM_00	2.82E-05	-19.1404	0.0370612
28	NM_003246	4.50E-05	-19.1653	5.03E-06
29	NM_004787	9.76E-06	-19.3496	0.00292932
31	NM_000492	0.000204292	-19.3924	0.00459581
32	NM_001145077	1.93E-05	-19.3925	6.46E-07
33	NM_006186 /// NM_17317	5.59E-06	-19.5129	2.02E-05
34	NR_040091 /// NR_040092	3.02E-07	-19.6516	0.00016302
35	NM_001082972 /// NM_00	3.30E-05	-19.8039	0.00778541
37	NM 002487	3.01E-05	-19.8714	0.00866296
38	NM 001128850 /// NM 00	5.71E-05	-19.9522	3.55E-06
39	NM 002943 /// NM 13426	6.29E-06	-20.03	0.00867568
40	NM 020877	9.11E-06	-20.0778	4.82E-05
41 42	NM 178452	1.12F-07	-20.1865	7.69F-09
42	NM_001128933 /// NM_00	3 47F-07	-20 4688	1 91F-05
44	NM_001080378 /// NM_00	1.85E-06	-20 5181	4 96F-06
45	NM_012307	1 725-05	-20.5101	4.50E 00 2 53E-06
46	NM_012307	7.965-05	-20.7012	2.55E-00
4/	NIM_001014440	2.065.05	20.7504	4.141-03
40 49	NIM_024763 /// NIM_20701	3.002-03	-20.7507	0.000107718
50	NM_0012700417/7 NM_00	7.06E-05	-20.8905	1.15E-05
51	NM_000239	1.12E-05	-21.0375	0.00380823
52	NM_006988	1.42E-06	-21.4052	0.000328286
53	NM_001003809 /// NM_00	0.00026999	-21.6701	0.00126275
54 55	NM_198469	5.37E-06	-21.6727	8.95E-07
56	NM_001190462	3.05E-05	-21.6779	3.00E-07
57	NM_007335 /// NM_00733	6.15E-06	-21.6806	6.65E-07
58	NM_001270422 /// NM_01	5.85E-05	-21.7474	0.000139775
59 60	NM_001006655 /// NM_01	8.73E-06	-21.8827	2.75E-05
1	NNA 022027	2 225 05	24,0020	0.00075507
----------	-------------------------------------	----------------------	----------	-------------
2	NM_023037	2.33E-05	-21.8939	0.00275597
4	XR_109470777 XR_111780	4.65E-08	-21.904	0.00464667
5	NM_000044 /// NM_00101	3.34E-06	-22.012	0.000468651
6	NM_025184	1.03E-00	-22.1724	2.12E-00
/ 8	NM_001204869 /// NM_00	0.000224849	-22.2144	0.0347258
9	NM_001541 /// NM_08065	2.69E-05	-22.4809	0.00083085
10	NN/ 001020766 /// ND 02	0.10E-00	-22.003	0.00378904
11	NM_0010397607/7 NR_02	2.71E-05	-22.0252	2.605.06
12	NM_001012502	0.472-00	-22.7519	2.002-00
14	NM_000230	4.12E-06 2.11E.0E	-22.7000	5.92E-05
15	NM_100633 /// NM_00065	5.11E-05	-22.7796	1.44E-05
16	NM_001128595 /// NM_00	1.44L-05	-22.8031	0.0131311
18	NM_001039183 /// NM_00	1.18E-05 1.99E-06	-22.0312	0.0278002
19	NM_000770 /// NM_00119	0.00015386	-22.8807	0.0255071
20	NM_000770777 NM_00115	6 55F-07	-22.5275	9.61E-05
21	NM_145255 NM_001195303 /// NM_00	0.33E 07	-23 0136	0.0012.03
22	NM_002122 /// XM_00311	0.00426421	-23.0150	0.000303707
24	NM_024614 /// NR_026804	2 44F-06	-23.4758	0.00344101
25	NM 172365	2.44E 00	-23.4763	1 85F-06
26 27	NM_001164730 /// NM_00	4 14F-06	-23,4908	1.38F-07
28	NM 207437	2.47F-06	-23.7311	5.25F-07
29	NM 001003954 /// NM 00	9.10E-05	-24.0103	1.07E-05
30	NM 001195639 /// NM 05	4.40E-05	-24.305	1.57E-05
31	NM 020869 /// NM 19846	1.11E-05	-24,4379	2.35E-07
33	NM 001204051 /// NM 00	5.69E-06	-24.6319	0.0419278
34	NM 001130090 /// NM 00	1.36E-07	-24.634	9.11E-08
35	NM 000777 /// NM 00119	0.0010862	-24.8372	0.000319805
37	NR 015424	0.00030897	-24.8511	0.0024341
38	NM_030666	4.40E-10	-25.1235	1.03E-07
39	NR_003063	4.12E-06	-25.429	2.59E-07
40 41	NM_015225 /// NM_13881	3.79E-06	-25.7145	0.0156305
42	NM_003407	6.53E-09	-25.7647	5.09E-06
43	NM_004058 /// NM_08059	0.000412889	-25.9072	0.00291405
44	NM_138788	4.30E-06	-25.9593	3.93E-06
45 46	NM_001017372 /// NM_01	6.65E-05	-26.0132	6.81E-05
47	NM_020879	2.16E-05	-26.1866	0.0100483
48	NM_005257	9.38E-05	-26.2112	0.00150572
49	NM_002557	0.000513459	-26.2942	0.00016527
50 51	NM_002644	3.28E-07	-26.4569	3.91E-08
52	NM_025087	2.00E-06	-26.5114	2.82E-08
53	NM_001145107 /// NM_00	0.000698089	-26.9296	4.87E-05
54 55	NM_001369	4.42E-05	-27.3755	8.75E-07
56	NM_003955	8.38E-05	-27.4006	0.0206207
57	NM_001145811 /// NM_00	2.98E-06	-27.4444	0.0197473
58	NM_053277	0.000253537	-27.6267	0.000294613
59 60	NM_015964 /// NM_01614	1.59E-06	-27.6943	1.40E-06

1				
2	NM_001012642	5.95E-07	-27.7714	0.00733639
3	NM_003014	7.31E-06	-27.8494	0.000213931
4 5	NM_001243965 /// NM_00	3.56E-08	-28.0359	2.22E-05
6	NM_001199573 /// NM_00	3.62E-08	-28.2653	3.90E-05
7	NM_001170806 /// NM_17	6.41E-05	-28.6611	0.00129192
8	NM_001198542 /// NM_00	6.10E-07	-28.7687	3.42E-07
9	NM 000777 /// NM 00119	1.76E-05	-28.809	0.00068468
10	NM 001100159 /// NM 00	0.00043475	-28.9804	0.000125715
12	NM 000044 /// NM 00101	9.88E-06	-29.1522	0.000918005
13	NM 001831 /// NM 20333	3.62F-07	-29,1919	0.0183023
14	NM_001099677 /// NM_02	4 29E-05	-29 2517	3 17F-05
15	NM 178824	4 125-05	-29.2517	1 27F-06
16 17	NM_1/6024	1.285-09	-20 8750	1.27E 00
17	NM_001272 /// NM_20357	2 165 05	29.0759	4.34L-08
19	NM_005707 /// NM_00400	2.10E-05	-50.0155	5.00E-07
20	NM_00105797 //7 NMI_14476	9.782-06	-30.5129	0.0422581
21	NM_031956	1.35E-05	-30.5956	2.60E-07
22	NM_004925	1.13E-05	-30.6119	0.016608
23 24	NM_024786	1.70E-06	-31.0398	0.00246285
25	NM_001166412 /// NM_02	3.15E-06	-31.0535	0.00255329
26	NM_001128850 /// NM_00	4.47E-06	-31.0966	1.22E-07
27	NM_012309 /// NM_13326	2.87E-06	-31.4964	0.0207975
28	NM_001085447	1.22E-05	-32.1166	1.62E-06
29	NM_152750 /// XR_132543	1.35E-06	-32.1978	4.47E-08
31	NM_014466	4.39E-06	-32.3346	0.000140173
32	NM_001008534 /// NM_00	3.94E-05	-32.5418	4.75E-07
33	NM_001039592 /// NM_01	4.77E-06	-32.8687	3.66E-06
34	NM_001114938 /// NM_00	1.66E-06	-32.9932	4.25E-08
35	NM_001172810 /// NM_02	9.01E-07	-33.0847	3.60E-09
37	NM_000062 /// NM_00103	1.14E-07	-33.2161	0.0161282
38	NM_005252	8.72E-06	-33.2807	4.99E-05
39	NM 033413	2.41E-06	-33.4309	3.75E-08
40	 NM_130446	6.23E-06	-33.4314	1.62E-06
41 42	NM 001135091 /// NM 00	0.000217009	-33.4666	0.00264031
43	NM 144715	1.23E-05	-33.8252	6.20F-07
44	NM 001243965 /// NM 00	4 92F-07	-34 0139	0 000441615
45	NM_030820	1 355-05	-34 0542	4 09F-08
46	NM_001920 /// NM_13350	1.085-05	-31 212	0.00166842
47 48	NM 023413	2 385-07	-24.465	5 22E_00
40	NM_033413	1 225 06	-34.405	0.0022222
50	NM_002080	1.322-00	-54.4000	0.00675725
51		9.70E-03	-35.1840	5.U3E-U8
52	NIM_152750 /// XR_132543	5.10E-07	-35.7083	1.19E-08
53 54	NM_031457	1.81E-05	-35.8343	5.40E-07
54 55	NM_001206897 /// NM_00	3.92E-08	-35.8876	1.12E-07
56	NM_001243965 /// NM_00	2.22E-07	-35.8911	7.22E-05
57	NM_001831 /// NM_20333	1.10E-07	-36.0344	0.0210951
58 50	NM_001199633 /// NM_02	1.53E-06	-36.1055	5.00E-05
59 60	NM_001040092 /// NM_00	1.27E-06	-36.4716	3.39E-06

1	NNA 2072C2		26 5045	0.000073.40
2	NM_207362	5.U3E-U6	-36.5015	0.00607348
4	NM_014265 /// NM_02177	4.86E-06	-36.5621	0.000737601
5	NM_020225	2.21E-08	-36./186	0.00813845
6	NM_199280	5.33E-07	-37.0838	1.66E-07
7	NM_001263	2.27E-06	-37.7801	0.00143123
8 9	NM_181643	1.52E-07	-38.1709	1.99E-07
10	NM_001105248 /// NM_00	5.22E-06	-38.7019	1.16E-05
11	NM_004058 /// NM_08059	5.10E-06	-39.272	0.00103517
12	NM_001243115 /// NM_02	4.09E-05	-39.5179	7.72E-05
13 14	NM_152665	4.52E-05	-39.7574	8.98E-07
14	NM_001263	6.29E-06	-39.8588	0.00232381
16	NM_012309 /// NM_13326	0.000100395	-39.9057	0.0346321
17	NM_001143941 /// NM_00	6.65E-05	-40.2316	0.000299831
18	NM_001002029 /// NM_00	2.24E-06	-40.8773	0.000595415
19	NM_001112717 /// NM_00	1.11E-08	-41.7871	0.000474851
20	NM_001142958 /// NM_15	2.18E-06	-41.9092	4.97E-06
22	NM_024677	4.88E-06	-42.199	0.0427014
23	NM_173081	2.83E-05	-42.512	9.37E-06
24	NM_032445	3.85E-06	-43.5731	6.68E-08
25 26	NM_001243965 /// NM_00	2.00E-06	-44.0241	0.000469459
27	NM_025244 /// NM_18291	4.28E-06	-44.1898	1.90E-06
28	NM_001013625	3.54E-06	-44.643	3.04E-06
29	NM_001831 /// NM_20333	5.03E-08	-44.8306	0.013923
30 31	NM_003014	4.19E-05	-45.3445	8.18E-05
32	NM_007168	1.60E-05	-45.4576	2.43E-06
33	NM_001267798 /// NM_00	2.61E-06	-45.6727	0.000156118
34	NM_004482	3.82E-09	-45.9695	0.00568869
35	NM_001205288 /// NM_03	9.45E-06	-46.4919	0.0115039
37	NM 001242524 /// NM 00	6.61E-06	-46.963	0.000306226
38	NM 206996	1.21E-06	-47.0058	7.39E-06
39	NM 058187	9.06E-09	-47.0844	0.000165226
40		0.000292803	-47.2619	0.00060646
41	NM 001079855 /// NM 00	5.71E-06	-52.314	0.0432543
43	NM 005160	4.96E-08	-52.3613	0.0068473
44	 NM_144992	1.51E-05	-54.099	3.79E-07
45		0.000241993	-54.4723	0.0030382
46 47	NM 001244134 /// NM 00	8.86E-09	-54.751	0.000142616
48	NM 000104	1.76E-08	-56.7041	0.000120721
49	NM 001128933 /// NM 00	1.78E-06	-56.9467	5.37E-05
50	NM 145263	6.01E-05	-57.717	1.49E-06
51 52	NM 001252195 /// NM 03	3.07E-08	-58.5808	9.98E-10
53	NM 024763 /// NM 20701	4.44F-05	-58.9127	0.000443031
54	NM_000204	4 34F-09	-59 0591	5 13F-06
55	NM 001172105 /// NM 01	7,56F-07	-59,5388	0.0197709
56	NM 000065 /// NM 00111	4 16F-09	-61 4678	1 3ΔF-11
ວ/ 58	NM 145170	1 Q7F_05	-61 7/55	0 000133385
59	NM 001145399 /// NM 00	1.32E 05	-62 6275	0.000132303 0.01275 <i>/</i>
60		4.552-05	-02.027J	0.013234

1				
2	NM_001105248 /// NM_00	1.02E-06	-63.1097	3.08E-05
3 4	NM_031421	1.78E-08	-64.6176	1.50E-08
5	NM_014722 /// NM_01586	8.91E-08	-67.0458	7.24E-09
6	NM_001040442 /// NM_00	2.46E-07	-67.4431	1.80E-09
7	NM_024694	7.31E-07	-68.4132	5.15E-09
8	NM_001114171 /// NM_00	4.51E-05	-69.1993	6.43E-05
10	NM_001030287 /// NM_00	3.83E-05	-69.4149	0.000256797
11	NM_001145033	6.89E-06	-70.8927	0.000539685
12	NM_001002029 /// NM_00	2.50E-07	-71.1309	0.000477062
13	NM_145020	4.71E-08	-71.7648	7.54E-08
14	NM_001080537	1.92E-05	-72.0448	3.83E-07
16	NM_033364 /// XR_132494	6.16E-11	-73.0893	8.35E-06
17	NM_001199201 /// NM_00	7.94E-08	-73.1336	3.72E-09
18	NM_001077710	5.80E-11	-73.8673	2.78E-05
19 20	NM_022052	5.44E-07	-75.9611	5.53E-08
21	NM_001128304 /// NM_00	3.90E-07	-76.474	0.0283374
22	NM_000208 /// NM_00107	5.73E-12	-77.5206	0.00176242
23	NM_001010940	7.75E-05	-78.8243	2.95E-05
24 25	NM_001008226	3.10E-06	-82.7256	8.82E-08
25 26	NM_021229	1.08E-07	-84.3761	0.0396582
27	NM_024870 /// NM_02517	2.77E-06	-87.5465	0.00194562
28	NM_176813	2.85E-06	-87.8292	2.00E-07
29	NM_001253835 /// NM_00	1.84E-07	-90.9671	0.00610231
30 31	NM_024783	4.59E-07	-92.5521	2.49E-07
32	NM_178456	2.25E-07	-94.1098	6.78E-09
33	NM_130897	1.43E-06	-96.9537	2.21E-07
34	NM_001135193 /// NM_00	2.05E-08	-102.904	9.66E-06
35 36	NM_024867 /// NM_14472	3.58E-07	-106.666	1.10E-06
37	NM_000064	2.54E-08	-106.906	0.0205606
38	NM_001011657 /// NR_03(4.36E-09	-107.478	2.43E-05
39	NM_020872	2.96E-05	-113.843	4.16E-05
40 41	NM_001165963 /// NM_00	1.20E-08	-117.312	2.39E-11
41	NM_001042625 /// NM_14	2.82E-06	-117.775	3.40E-06
43	NM 152321	9.88E-07	-121.764	0.000221113
44	NM_001080556 /// NM_14	1.61E-07	-124.428	4.57E-09
45	NM 178504 /// NM 19856	1.23E-06	-132.326	1.06E-07
40 47	NM_000877	8.91E-09	-136.757	0.0123422
48	NM 001004303	3.19E-06	-143.205	6.02E-07
49	 NM_152548	1.78E-06	-151.774	1.86E-06
50	 NM_025145	9.34E-09	-161.152	1.33E-08
51 52		2.92E-10	-161.399	8.24E-13
53	NM 145170	2.01E-08	-176.685	0.000107506
54		2.94E-08	-222.123	0.00185847
55	NM 080860	3.27E-09	-232.023	3.07E-06
56 57		7.62E-08	-243.999	1.93E-05
58	NM 001128310 /// NM 00	9.43E-09	-287.173	0.000598448
59	NM 001242524 /// NM 00	2.62E-10	-294.793	0.000106144
60		·····		

NM_014585	2.69E-11	-713.82	2.39E-05
NM_001190986 /// NM_00	6.40E-16	-903.242	1.35E-18

The Journal of Pathology

	1
4	>
1	
3	3
2	1
Ę)
6	5
7	7
۶	2
ć	2
_	-
	1
-	1
	1
	1
	1
	1 1 1 1 1

3	. Normal oviduct	
4	Fold-Change	
5 6		2.90776
7		8.15329
8		8.53629
9 10		16.1364
11		7.02207
12		6.2772
13		8.10199
14 15		5.59313
16		8.57691
17		6.19469
18		4.27502
19 20		14.4994
20		2.85191
22		3.24572
23		8.10545
24 25		8.34569
25		6.28015
27		2.82505
28		8.95029
29		11.7229
30 31		6.53706
32		3.15972
33		7.30738
34 25		5.50563
36		2.62642
37		10.9219
38		3.81935
39		6.4262
40 41		20.7364
42		4.98484
43		2.1641
44 45		2.01537
45 46		10.3303
47		8.09866
48		2.03602
49 50		4.39391
50 51		5.82136
52		4.5038
53		2.09694
54		11.2508
55 56		3.14854
57		5.08233
58		6.74166
59		
60		

3.85846 2.69361 10.9712 12.305 7.89501 2.95426 14.7949 4.52821 3.56912 4.10717 2.90978 13.682 2.31192 6.66998 2.45095 2.76872 2.33207 12.8617 2.23721 2.33142 8.85718 5.64323 3.43079 3.97646 2.67078 2.29919 2.69176 7.89373 20.1327 10.1186 2.84284 10.5074 2.33652 11.6106 2.26008 2.33485 2.07614 2.93253 4.81095 3.53298 8.19024 7.91385 12.9448 2.42731 2.63586 2.87758 3.56001

1 2 3 4 5		
6 7 8 9 10 11		
12 13 14 15 16 17		
18 19 20 21 22 23		
24 25 26 27 28 29		
30 31 32 33 34 35		
36 37 38 39 40 41		
42 43 44 45 46 47		
48 49 50 51 52		
53 54 55 56 57 58		
59 60		

1	
2	2.89117
3	5.66424
4	9.47113
5 6	3.04742
7	2.91277
8	3.16869
9	2.79861
10	4.85297
12	3.0806
13	2,31881
14	3 6878
15	6 21/17
16	8 31057
17	2 00056
19	2.00050
20	2.52810
21	7.33961
22	8.55157
23 24	2.86738
25	10.7702
26	2.73922
27	8.52026
28	2.00895
29	2.76368
31	2.30818
32	2.04128
33	8.60267
34	4.07055
35	6.78027
37	2.57488
38	2.22097
39	2.97168
40	8.00009
41	9.28934
43	3.77684
44	2,40559
45	14 1848
46	3 12971
47 48	10 5791
49	10.5751
50	4.00501
51	2.22892
52	2.08546
53	2.733
55	2.56292
56	2.67064
57	2.29215
58	3.5341
59 60	2.27832
00	

2.17426 3.67454 3.88425 4.46772 3.08694 2.04475 2.14936 2.98806 2.56163 5.68553 2.91779 2.04939 2.30409 2.49308 4.01594 2.93966 2.76833 2.42928 2.81404 2.87452 3.13126 2.03709 2.60476 7.77779 2.96351 3.07965 6.79006 3.048 2.33526 3.08145 2.45801 2.83577 3.1522 9.04138 2.32865 2.38883 3.49427 2.90322 3.16162 5.35772 3.50483 2.50355 2.16787 2.6594 2.26638 5.56618 2.80373

1 2 3		
5 6 7		
8 9 10 11		
12 13 14		
15 16 17 18		
19 20 21		
22 23 24 25		
26 27 28		
29 30 31 32		
33 34 35		
36 37 38 39		
40 41 42		
43 44 45 46		
47 48 49		
50 51 52 53		
54 55 56		
57 58 59 60		

1	
2	3.31406
3	2.93539
4	3.94208
6	2.55273
7	2.58525
8	8.41011
9	2.64769
10	3.44956
12	2.35756
13	2.34762
14	4.86107
15	2.92915
16 17	2,50973
18	3 15028
19	2 09185
20	2.00100
21	2 02516
22	2.95510
24	9.90233
25	3.54325
26	4.2408
27	2.11126
28	3.70409
30	2.2794
31	2.15252
32	2.18239
33	2.43618
34 35	2.08934
36	3.58338
37	2.08372
38	2.36013
39	4.10414
40	2.9591
42	2.3358
43	2.0438
44	4.03697
45	2.77684
46 47	3.29953
48	2.27695
49	2,17679
50	3,52994
51	2 871/2
52 53	2.07142
54	2 25050
55	3.33U38
56	4.70255
57	5.52881
58 59	2.48489
60	2.07692
~ ~	

2.21824 2.14207 2.34547 2.52155 3.47214 6.36188 2.62523 4.96257 4.9845 2.77221 2.42417 7.28064 2.3456 11.1876 3.83157 2.21443 3.92703 2.01651 2.55104 2.56315 3.18529 2.82189 2.30259 3.11088 2.03477 2.00653 2.65146 2.04246 2.59546 2.1962 2.56696 5.40654 2.15914 2.03642 4.53589 2.70636 2.48587 2.0786 2.77553 2.0242 3.00932 2.23334 3.90591 2.32029 2.60609 2.87391 2.37226

1 2		
3 4 5		
6 7		
8 9		
10 11 12		
13 14		
15 16 17		
18 19		
20 21		
22 23 24		
25 26		
27 28 29		
30 31		
32 33 34		
35 36		
37 38 20		
39 40 41		
42 43		
44 45 46		
47 48		
49 50 51		
52 53		
54 55		
56 57 58		
59 60		

1	
2	4.54567
3	2.24972
4	5.56178
6	2.89205
7	3.25012
8	2.07832
9	2.77126
10	2.16473
12	2.04762
13	5.82274
14	2.06501
15	3.53903
17	5.80156
18	2.00857
19	2.44191
20	2.16764
21	4.22278
23	2 00026
24	2.00020
25	2.4212
26	2.60160
27	2.09801
29	2.17080
30	2.70908
31	3.1303
32	2.5145
34	2.02238
35	2.40477
36	2.10802
37	3.09144
38 39	2.03246
40	4.08093
41	2.98748
42	2.54502
43	2.09424
44 45	2.2988
46	2.28438
47	3.39286
48	2.13359
49	2.12279
50 51	2.50731
52	2.90231
53	2.53301
54	2.39093
55 56	2.30022
50 57	2.81613
58	2.03006
59	2.28419
60	

2.57579 3.73874 2.33737 2.1552 2.92442 2.42006 2.95041 2.90113 2.49558 2.09224 2.88995 3.91403 3.50265 3.22083 2.56915 2.17185 2.73942 2.83241 7.93509 2.57101 2.19996 2.23433 3.01529 5.1011 2.61354 3.65661 3.49873 2.43902 2.90096 3.11078 3.21465 2.04111 2.40758 2.22592 2.53347 2.26697 3.85046 2.5665 2.44776 2.52465 2.83289 2.23476 2.15021 3.18613 2.43561 4.58749 5.11672

1 2		
3 4		
5 6		
7		
8 9		
10 11		
12 13		
14 15		
16		
18		
19 20		
21 22		
23 24		
25 26		
20		
28 29		
30 31		
32 33		
34 35		
36 27		
38		
39 40		
41 42		
43 44		
45 46		
40 47 49		
40 49		
50 51		
52 53		
54 55		
56 57		
58 58		
59 60		

1	
2	10.8442
3 4	2.07629
5	6.94592
6	2.54265
7	2.01209
8 9	2.00053
10	3.09378
11	2.44982
12	2.46381
13	2.20494
15	3.05176
16	4.33384
17	2.17573
18	3.0785
19 20	2.11153
21	2.66279
22	2.17675
23	2.86255
24	4.77487
26	2.93115
27	2.06199
28	2.15497
29	2.87414
31	3.81605
32	2.61348
33	2.3921
34	2.72741
36	7.6443
37	5.02069
38	2.94363
39	2.01079
40 41	3.83237
42	2.34233
43	2.10516
44	2.86962
45	2.09134
47	2.35788
48	2.23612
49	2.12368
50 51	2.02573
52	2.33189
53	2.2751
54	2.90943
55 56	4.66852
57	2.09967
58	3.85098
59	2.11253
60	

2.26818 2.11871 2.38838 3.37313 2.76792 2.11787 2.51173 2.43342 2.55117 2.23875 2.9354 3.10825 2.70913 5.63242 3.1675 2.17711 2.59633 2.33446 2.5282 2.89329 2.35322 3.77039 2.23127 9.18114 2.03275 2.5963 2.57209 6.83977 2.02515 2.37057 2.33834 2.81988 2.71188 2.12833 2.0331 2.31167 2.66292 4.04398 5.32281 4.09166 3.18729 2.22051 3.29175 2.28691 2.17364 2.07518 2.37231

1 2		
3 4		
5 6		
7 8		
9		
11		
12 13		
14 15		
16 17		
18 19		
20 21		
22		
23 24 25		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
40		
42		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
57 58		
59 60		

1	
2	2.46604
3	2.51833
4	2.90544
6	2.00037
7	3.00982
8	4.79672
9	2.56954
10	2.14692
12	2.5025
13	2.41596
14	2.67092
15	2.077
16 17	2.077
18	2.43330
19	2 72//0
20	2,7,544,9
21	2.70227
22	2.88799
23	2.36955
25	2.06921
26	2.16232
27	2.27435
28	2.47766
29	2.33319
31	2.47074
32	2.17375
33	2.28839
34	2.22672
36	9.92961
37	2.88084
38	3.72025
39	2.48922
40	2.11184
41 42	2.34765
43	2.94299
44	5.61773
45	3.30689
46	3.2017
47 48	2 37022
49	2.37 622
50	2.1004
51	2.33374
52 52	2.41440 2 2001
54	3.2984
55	2.03565
56	2.18/79
57	2.12581
58	2.52798
วษ 60	2.22843
~ ~	

3.06639 4.09881 2.34835 2.76839 3.08526 2.26563 2.01808 2.38898 2.72645 2.47253 3.00101 2.87653 2.54779 4.1335 2.03987 2.33719 3.2019 2.53468 2.36585 2.04893 2.48697 4.96169 2.00316 2.07434 5.10006 3.55036 3.0034 2.5479 6.97602 2.32356 2.52246 2.38246 2.01092 2.37011 3.55997 2.20276 2.90938 2.12655 2.13841 2.29628 2.00633 2.90327 2.4457 2.38604 2.17095 2.06042 2.36661

1 2 2		
3 4 5		
6 7		
8 9 10		
11 12		
13 14 15		
16 17		
18 19 20		
20 21 22		
23 24 25		
25 26 27		
28 29		
30 31 32		
33 34		
35 36 37		
38 39		
40 41 42		
43 44		
45 46 47		
48 49		
50 51 52		
52 53 54		
55 56		
57 58 59		
60		

1	
2	2.74543
3	2.16102
4 5	3.14738
6	2.0382
7	2.01341
8	2.66745
9	3.41739
10	5.60172
12	2.14514
13	2.59735
14	2 20766
15	2.20700
16	2.45754
18	2.13377
19	2.41243
20	2.0244
21	2.56035
22	2.19977
23	2.50421
25	2.18114
26	2.23756
27	2.77901
28	2.36793
29	2.4806
31	2.67501
32	2.28256
33	2.85402
34	2.60647
35	4.69268
30 37	8.64878
38	2.07442
39	2 28064
40	2.20001
41	2.20227
42	2.13072
43	2.71094
45	4.49176
46	2.44176
47	3.2176
48	2.81047
49 50	3.05372
51	3.4813
52	4.54231
53	3.60923
54	2.2184
55	3.06008
วง 57	3.81687
58	2.10425
59	2 47193
60	2.7/100

2.52208 2.45673 3.12787 2.17237 2.14733 2.56824 2.07798 3.33647 2.5264 5.82414 2.37618 2.26975 3.06315 2.28649 2.79895 2.14235 2.27798 2.11001 2.23024 2.26788 2.57752 3.8422 2.40444 2.26698 2.32051 2.23112 3.32332 2.38681 2.62667 2.2515 2.19628 2.34029 2.52869 2.10498 2.65064 2.40712 2.51157 3.24602 2.21429 3.81001 2.84333 2.32324 2.42153 3.18351 2.26205 2.34459 2.59929

1 2		
3 4 5		
6 7		
8 9 10		
11 12		
13 14 15		
16 17		
18 19 20		
20 21 22		
23 24		
25 26 27		
28 29		
30 31 32		
33 34		
35 36 37		
38 39		
40 41 42		
43 44		
45 46 47		
47 48 49		
50 51 52		
52 53 54		
55 56		
57 58 50		
60		

1	
2	2.41431
3	2.08379
4	2.05254
6	3.15969
7	5.61431
8	2.11133
9	2.0626
10	2.37528
12	2.72583
13	2.14872
14	2.72718
15	2 18491
16 17	2 24074
18	2.24074
19	2.52557
20	2.0132
21	2.0229
22	2.09306
23	2.0692
25	2.01908
26	2.00405
27	2.00769
28	2.76302
29	2.86959
31	2.18844
32	2.22051
33	2.48249
34	3.76226
35 36	2.10062
37	2.60738
38	3.57764
39	2.69643
40	2.05413
41	2.55314
43	2.46675
44	2,5597
45	5.08666
46	3 2/1557
47	2 12/02
49	2.12490
50	2.30001
51	2.39113
52	2.96405
53	2.3///4
55	2.03739
56	2.46087
57	2.57228
58	2.2621
59	2.42763
60	

2.01597 2.40696 3.64538 2.09089 2.03971 2.23024 3.42987 3.38273 2.76246 2.90319 2.5074 3.08034 2.17915 2.04741 2.31941 2.39616 2.29127 2.09863 3.57865 2.54341 2.54271 2.36448 2.5494 4.75746 2.79433 2.93494 2.84081 2.12896 2.02389 2.775 2.14561 2.33672 2.16906 2.20238 2.6832 3.26812 2.03894 3.43044 2.17561 4.73044 3.22228 2.29907 2.78542 2.11908 2.18036 2.26539 2.40012

1 2 3		
4 5		
6 7 8		
9 10		
11 12 13		
14 15 16		
17 18		
19 20 21		
22 23		
24 25 26		
27 28		
29 30 31		
32 33 34		
35 36		
37 38 39		
40 41		
42 43 44		
45 46		
47 48 49		
50 51		
53 54		
55 56 57		
58 59		
60		

1	
2	2.44191
3	3.00265
4 5	2.01671
6	2.3133
7	2.40164
8	2.07872
9	2.3896
10	2.39483
12	2.11269
13	2.38207
14	2.35193
15	2.4138
16	2 1037
18	2.1037
19	2.03525
20	2.07034
21	2.55545
22	3.3039
23	3.450/2
25	2.12404
26	2.48217
27	2.16764
28	2.44751
30	3.00113
31	2.44193
32	2.58195
33	3.08677
34	2.01563
36	2.25075
37	2.41793
38	2.16154
39	2.07166
40	2.37354
41	2.08871
43	2.03723
44	2.55982
45	2,94927
46	2.0236
47 48	2 83423
49	3 33825
50	2 16608
51	2.10000
52 52	2.12095
55 54	2.154
55	2.10413
56	3.22/4/
57	2.24005
58	2.20198
60	2.5591

2.06989 2.31787 2.44199 2.07525 2.34734 2.35168 2.52737 3.43327 3.58427 2.1269 2.17746 2.58481 2.02235 2.12873 2.32435 2.73822 3.80869 2.02555 2.21933 2.52137 2.37136 2.00896 2.85169 2.68968 3.05455 2.08432 2.01322 3.02649 2.18799 2.41767 2.20069 3.03712 2.04138 3.32335 2.36694 2.00106 2.00421 2.0563 2.44405 2.03933 3.19579 2.23157 3.0689 2.6655 2.09232 2.24321 3.30583

1 2		
3 4		
5 6		
7 8		
9 10		
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
วง 54 55		
55 56		
57 58		
59 60		

1	
2	3.02974
3	3.15859
4	2.1862
6	2.03214
7	2.25918
8	2.60214
9	2.83294
10 11	2.718
12	2.17043
13	2.1509
14	2.19216
15	2.46238
10 17	2.0001
18	2 29355
19	3 15701
20	2 26575
21	2.20373
22	2.40747
24	2.21022
25	2.00025
26	4.47522
27	3.04645
28 29	2.32064
30	2.45809
31	2.08702
32	2.39787
33	2.29335
34 35	2.20691
36	3.24878
37	2.29901
38	2.03952
39	2.09389
40 41	2.67019
42	2.71073
43	2.09496
44	2.29271
45	2.19856
40	2.18037
48	3.47943
49	2.0431
50	2.03574
51 52	2.2145
53	2.21353
54	3.20886
55	2.12595
56	2 4856
ວ <i>າ</i> 58	2.4000
59	3.34024 3.7E034
60	2.73834

2.31494 2.70923 2.21427 2.26241 2.43251 2.91646 2.00593 2.13153 2.11798 2.70429 2.72806 2.87932 2.31734 2.2134 2.21143 2.42761 2.04705 2.20228 3.08261 2.34357 2.45212 2.24157 3.59208 2.68081 2.24932 2.03363 2.95542 2.76683 7.32628 2.93689 2.33398 2.00854 2.05576 2.71306 4.41855 2.39655 2.91691 4.39181 2.01484 2.59441 2.36528 2.3382 2.0775 2.08098 2.17216 2.52296 2.42841

1 2		
3 4		
5		
7		
o 9		
10 11		
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
20 24 25		
25 26		
27		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
40 47 49		
40 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

1	
2	2.19942
3	2.598
4 5	2.5982
6	2.10798
7	2.4885
8	2.25107
9	2.05233
10	2.17139
12	2.05385
13	2.14862
14	2.16564
15	2 43709
16 17	2.15705
18	2.55650
19	2.04092
20	2.49935
21	2.56837
22	2.23079
23	2.09206
24 25	2.55817
26	2.21029
27	2.36763
28	2.64427
29	2.66438
30	3.9068
32	2.67474
33	2.48413
34	2.06853
35	2,95227
36	2 24959
38	2 353/8
39	2.55540
40	2.75501
41	2.00288
42	3.00327
43	2.15305
44	2.60665
46	2.19295
47	2.93503
48	4.76875
49	2.28481
50 51	2.51306
52	2.08165
53	2.0276
54	2.6497
55	3,35383
56	2 41874
ວ <i>າ</i> 58	2.41074
59	2,00420
60	2.03372

2.13836 2.46388 2.71556 3.00121 2.58845 2.28037 2.33282 2.24225 2.07287 2.01353 2.18023 2.30465 2.2544 2.1726 2.00531 2.01603 2.03327 2.08037 2.06726 2.05532 2.20141 2.08111 2.01368 2.18627 2.81063 2.3558 2.32694 2.3975 2.42654 2.18623 2.0618 2.23358 2.27451 2.81676 -2.05655 -2.02691 -2.13156 -2.19641 -2.30919 -2.14529 -2.05666 -2.33831 -2.30003 -2.48857 -3.50863 -2.50776 -2.74772

1 2		
3 4		
5 6 7		
, 8 9		
10 11		
12 13		
14 15 16		
17 18		
19 20		
21 22		
23 24 25		
25 26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40		
41 42 43		
43 44 45		
46 47		
48 49		
50 51 52		
5∠ 53 54		
55 56		
57 58		
59 60		

1	
2	-2.80143
3	-2.01781
4 5	-3.63249
6	-2.24304
7	-2.15262
8	-2.02936
9	-3.43985
10	-4.19446
12	-3.78613
13	-2.10659
14	-2 18371
15	-2.10371
16	-2.01217
17	-4.78009
19	-2.51/31
20	-2.53599
21	-2.87233
22	-2.04263
23	-2.58244
24 25	-2.01905
26	-2.11154
27	-3.63911
28	-2.68362
29	-2.67801
30	-2.47601
32	-2.39466
33	-2.18769
34	-2 37729
35	-2 31857
36	-2 47462
37	2.47403
39	-2.1055
40	-2.47389
41	-2.12276
42	-2.06976
43	-6.16253
44 45	-2.09443
46	-2.47598
47	-2.63883
48	-2.08426
49	-2.10828
50	-2.11066
52	-2.00821
53	-2.28515
54	-2.01853
55	-2.33027
56	-2 44158
57 58	-2 7/1000
59	2.14333 7 27717
60	-2.32/4/

1	
2	-2.3636
3	-2.21984
4	-2.09805
6	-2.29557
7	-2.01649
8	-2.25576
9	-2.19301
10	-3.0789
12	-2.03149
13	-2.1372
14	-2.19036
15	-2.03777
17	-2.21266
18	-2.32388
19	-2.35834
20	-2.28655
22	-2.08782
23	-2.09695
24	-2.30789
25	-2.23992
20 27	-2.56739
28	-2.55287
29	-4.22011
30	-2.41251
32	-2.59648
33	-3.03398
34	-3.59323
35	-2.64213
30 37	-3.1933
38	-2.45344
39	-2.45304
40	-2.69601
41	-7.63736
43	-3.03568
44	-2.59443
45	-2.7705
40 47	-2.12051
48	-2.09411
49	-2.08639
50	-2.67484
51	-2.16109
53	-2.2683
54	-2.66463
55	-2.12189
50 57	-2.12392
58	-2.16227
59	-2.35743
60	1.007.10

2	-2.04553
3	-2.66348
4	-2.89109
5	-2.43936
7	-3.12089
8	-2.31859
9	-3.40851
10	-2 36698
11 12	-2 08949
12	-2 04643
14	-2.04045
15	-2.27010
16	-2.32208
17	-3.70704
19	-2.72474
20	-2.24837
21	-2.2986
22	-2.19671
23	-2.26953
24	-2.36894
26	-2.14299
27	-2.33717
28	-2.65406
29	-2.47228
31	-2.16618
32	-2.56359
33	-3.03715
34	-2.12755
30 36	-2.29551
37	-2.47921
38	-2.25016
39	-2.20357
40	-3.04757
41 42	-3.15919
43	-2.88725
44	-2.28312
45	-2.83308
46	-2 56911
47 48	-3 07966
49	-2 2527
50	-2.2327
51	2.00131
52	-3.00654
53 54	-2.34789
55	-3.23/53
56	-2.12096
57	-4.92681
58 50	-2.19331
59 60	-3.07821
~ ~	

1	
2	-2.22543
3	-2.12813
4	-2.20688
6	-2.41836
7	-2.11208
8	-4.71308
9	-2.31429
10	-3.24178
12	-2.02054
13	-2.55294
14	-2.00477
15	-2.00661
17	-2.09294
18	-2.23993
19	-2.19981
20	-2.3463
22	-3.17914
23	-2.84499
24	-2.23953
25	-2.5606
20 27	-2.25235
28	-2.73184
29	-2.94816
30	-2.16211
32	-2.26539
33	-2.56458
34	-2.81438
35	-3.21514
37	-5.04986
38	-2.27463
39	-2.98796
40	-2.47022
41 42	-4.91684
43	-2.13115
44	-5.64856
45	-2.16923
46 47	-2.90991
48	-2.9967
49	-2.49891
50	-2.08135
51 52	-2.97964
53	-2.05228
54	-2.76091
55	-2.20381
50 57	-2.01944
58	-2.14617
59	-2.8793
60	

1	
2	-3.79579
3	-2.50109
4 5	-2.02597
6	-2.47869
7	-2.29311
8	-2.01027
9	-3.223
10	-2.2737
12	-4.89308
13	-2.15244
14	-2.2635
15	-2 43879
16	-2 27602
18	-2.27002
19	-2.04605
20	-2.62243
21	-2.13684
22	-2.60138
23	-3.10131
24	-2.23537
26	-2.08005
27	-2.22098
28	-3.77149
29	-2.33019
30	-2.72337
32	-4.06718
33	-2.69505
34	-3.82397
35	-2.17199
36	-2 75086
38	-2 32059
39	-6 86108
40	-0.80108
41	-2.96931
42	-2.18295
43	-2.64418
45	-2.2651
46	-2.33561
47	-2.34794
48	-5.33611
49	-2.39135
50 51	-2.17376
52	-2.61656
53	-2.45094
54	-3.01374
55	-2.11544
50 57	-2.00881
58	-2.39007
59	-2 25/157
60	-2.23437

2	-3.20203
3	-2.28335
4	-3.75401
5	-2.16931
7	-3.00123
8	-2.02048
9	-2.00067
10	-3.79446
11	-2.1482
13	-2 39872
14	-3 49973
15	-3 44091
16	-2 7/507
18	-2.74507
19	-2.00002
20	-2.00382
21	-2.79074
22	-3.14809
23	-2.12302
25	-2.07791
26	-2.71316
27	-2.46165
28	-2.14806
29	-2.1984
30 31	-2.55506
32	-2.22289
33	-3.49966
34	-2.27478
35	-4.71094
30 37	-2.02814
38	-2.12261
39	-2.61308
40	-3 1284
41	-2 92163
42	_4 5203
44	-4.5203
45	-2.00152
46	-2.01771
47	-2.61182
48	-2.4/613
49 50	-2.02515
51	-2.28079
52	-2.20028
53	-2.5629
54 55	-2.1208
50 56	-2.53282
57	-2.37867
58	-2.15311
59	-2.53764
60	

1	
2	-2.2622
3	-3.42766
4	-6.16576
6	-3.86692
7	-2.41239
8	-2.18396
9	-2.74629
10	-2.76436
12	-2.1192
13	-2.29838
14	-2,66973
15	-2 3064
16 17	-3 287
18	-7 897/3
19	-2.09243
20	-3.32003
21	-2.47807
22	-2.41922
23 24	-2.46112
25	-3.20675
26	-3.2143
27	-2.78822
28	-2.03251
29 30	-2.00626
31	-9.42936
32	-3.39174
33	-3.38969
34	-2.34437
36	-2.25613
37	-6.62216
38	-2.12531
39	-2.09967
40	-2.45031
47	-2.63465
43	-9.19086
44	-2.14945
45	-3.24094
46	-5.92202
48	-2,49407
49	-2 21987
50	-2 25029
51	-2 12603
52	-2.12003
54	-2.30104
55	-2.00493 2.25502
56	-3.35582
57	-2.9/58/
50 50	-2.66/65
60	-6.37001

1			
2			
ა ⊿			
4 5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24 25			
20			
20			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44 45			
40 46			
40 17			
47			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			

-2.18409 -3.00712 -3.58763 -3.58527 -2.7811 -2.01984 -2.18716 -2.13413 -2.48585 -2.70816 -3.35352 -3.24165 -11.2264 -2.2013 -2.54026 -3.08511 -2.56785 -3.31049 -2.91628 -3.1007 -3.0335 -2.2907 -3.16892 -2.08336 -2.20655 -3.50354 -3.115 -2.0782 -2.56258 -2.32216 -2.99936 -4.18302 -2.10207 -2.13852 -2.51372 -2.01098 -2.9967 -2.7817 -2.20135 -4.94597 -3.91962 -3.02316 -3.62416 -2.28499 -3.67034 -2.66736 -5.46277

2	-2.11659
3	-3.20859
4	-2.4263
5	-2.1808
0 7	-2.57754
8	-2 /33//
9	-2 222/7
10	-2.52547
11	-2.20253
12	-2.38839
13	-3.17357
15	-2.93141
16	-4.33819
17	-3.07647
18	-2.97464
19	-2.45918
20	-2.08885
21	-2.41152
23	-2 58817
24	-2 /080/
25	4 50907
26	-4.59607
27	-3.0334
28	-2.60948
30	-4.45681
31	-2.40249
32	-2.00629
33	-3.05122
34	-2.61584
35	-3.69415
37	-3.34218
38	-2.85332
39	-3 68966
40	-3 07021
41	-3.07921
42	-2.03073
43 <i>AA</i>	-2.40841
45	-2.48089
46	-2.97171
47	-2.1504
48	-2.28304
49	-3.14694
50 51	-2.58822
52	-2.58546
53	-3.3609
54	-2,16763
55	-3 117/1
56	-2 12607
57	-2.1303/
50 50	-3.38/5/
60	-3.98218
1	
----------	----------
2	-3.55689
3	-2.97741
4	-2.32694
5 6	-4.07773
7	-2.09564
8	-2.44687
9	-2,47837
10	-3 65623
11	-6 87171
12	-3 10167
14	-2 /2/71
15	-3.43471
16	-2.59091
17	-2.10583
19	-2.43549
20	-2.14156
21	-2.20067
22	-2.32841
23	-2.77431
24 25	-2.73665
26	-3.01192
27	-4.56061
28	-3.07567
29	-3.10274
30 31	-7.59613
32	-2.08639
33	-2.70473
34	-3.0977
35	-3.37788
30 37	-2.01133
38	-4.30251
39	-18.9671
40	-2.67118
41	-2 77022
42	-2 26794
44	-2 50599
45	-2 03892
46	-2 33065
47	-2.33003
48	-2.02344
50	-4.76595
51	-3.01504
52	-2.44819
53 54	-12.1147
55	-2.32
56	-2.90518
57	-4.08351
58	-4.07764
59 60	-2.5387
00	

1	
2	-3.87319
3	-9.01821
4 5	-4.08671
6	-2.609
7	-4.97528
8	-2.25274
9	-2.17346
10	-3.51992
12	-3.88937
13	-2.20365
14	-2.82799
15	-2.10102
16	-3.57909
18	-4 44521
19	-5 30804
20	-2 02039
21	-7 202055
22	-7.30321
24	-4.014
25	-2.21195
26	-2.73426
27	-3.08293
28	-2.49353
30	-2.2/811
31	-3.7321
32	-4.42729
33	-3.67355
35	-2.85107
36	-2.11056
37	-4.33428
38	-4.02104
39	-5.11945
40 41	-2.04856
42	-2.00084
43	-4.08035
44	-3.64623
45 46	-5.30004
40	-2.27321
48	-2.43738
49	-2.03783
50	-2.83832
51	-2.18661
53	-3.00682
54	-2.68541
55	-2.28726
56	-4 3862
ว <i>เ</i> 58	-2 2/152
59	_/I 0101
60	-4.0101

1	
2	-4.48828
3	-2.50033
4	-2.26152
6	-2.53587
7	-5.86323
8	-3.90406
9	-2.0029
10	-4.55308
12	-3.2723
13	-2.03988
14	-4 49558
15	-2 92077
16 17	-1 7
18	-2 70525
19	-2.70333
20	-3.00699
21	-2.93950
22	-3.32041
23 24	-3.086
25	-3.68545
26	-4.07235
27	-3.86935
28	-3.32231
29	-3.05988
31	-3.58997
32	-2.49019
33	-22.5119
34	-2.77448
35	-3.43595
37	-3.03899
38	-2.05633
39	-2.01341
40	-2.43264
41	-3.95099
43	-2,4577
44	-3 85601
45	-7 12798
46	-2 0336
47	-2 64272
49	-2.04373
50	-2.42/30
51	-3.15/30
52	-2.50945
53	-3.96565
55	-5.45258
56	-3.7421
57	-3.00865
58	-4.63241
59	-3.80908
00	

1	
2	-3.88582
3	-5.37651
4 5	-4.19019
6	-3.63562
7	-2.63748
8	-2.13499
9	-2.69099
10	-4.49172
12	-4.98678
13	-2.6164
14	-3.7462
15	-3,43986
16 17	-3 7006
18	-2 03771
19	-2.03771
20	-4.20019
21	-3.04048
22	-2.656/5
23 24	-2.61542
25	-4.01009
26	-2.43004
27	-3.05146
28	-4.79217
29	-2.58786
31	-3.90696
32	-2.73557
33	-4.72031
34	-2.95901
35	-2.22399
37	-4.63871
38	-2.65825
39	-3.15483
40	-3.08765
41	-16.8947
42	-3 07
44	-2 219/13
45	-3 38204
46	2 20250
47	-3.00239
40 49	-3.20109
50	-3.0/14/
51	-3.30317
52	-3.35531
53	-2.54868
55	-3.49824
56	-2.15665
57	-4.55516
58	-6.56797
59	-2.80187
60	

1	
2	-3.37333
3	-2.20973
4	-2.57823
6	-2.46523
7	-5.90424
8	-2.15311
9	-4.91657
10	-16.6081
12	-4.51084
13	-2.26717
14	-2.44448
15	-2.33337
10	-2.06243
18	-4 09721
19	-6 31328
20	-2 13077
21	-1 61/00
22	-4.01403
24	-4.00550
25	-5.20556
26	-3.24919
27	-3.33061
28	-3.26091
30	-3.81554
31	-3.98297
32	-3.20919
33	-2.09801
35	-2.58371
36	-3.82321
37	-6.53691
38	-2.95383
39	-2.46945
40	-2.80523
42	-4.00969
43	-4.8915
44	-3.62348
40 46	-4.25467
47	-3.20427
48	-3.0435
49	-3.21783
50	-2.05196
52	-2.54474
53	-3.3112
54	-2.7418
55	-3.25195
56 57	-4.63363
58	-2 36094
59	- <u>/</u> 6277/
60	-4.03224

1	
2	-3.46934
3	-2.26244
4	-2.58659
6	-5.78349
7	-2.31894
8	-9.48554
9	-2.73815
10	-4.368
12	-4.15807
13	-3.6694
14	-3.94677
15	-2.00763
10	-2.81183
18	-3.12203
19	-2 08909
20	-2 92112
21	_/ 55085
22	-4.55985
24	-0.93602
25	-0.54965
26	-5.15859
27	-3.44397
28	-2.16891
30	-4.52482
31	-5.24979
32	-5.45674
33	-2.86761
34 35	-5.2739
36	-3.69679
37	-3.17736
38	-2.20261
39	-2.53088
40 41	-3.91864
42	-4.09314
43	-2.2286
44	-2.91694
45 46	-2.46646
40	-3.53836
48	-2.01508
49	-5.67151
50	-5.74747
51	-5.94584
53	-4.51051
54	-2.83324
55	-5,44916
56	-2 8387
ວ <i>1</i> 58	_/ 71001
59	-9 06010
60	-3.00343

1 2		
3 4		
5 6		
7 8		
9 10		
11 12		
13 14		
15 16 17		
17 18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35 26		
30 37 29		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56 57		
57 58 59		
60		

-2.08886 -2.16666 -5.74851 -2.35303 -2.38277 -2.44085 -3.29986 -3.46188 -2.01361 -3.1422 -3.72975 -2.29975 -2.6129 -4.33409 -3.16749 -2.89277 -9.85799 -3.30882 -2.33762 -4.50568 -6.37701 -2.50807 -8.00355 -4.58041 -2.00534 -4.41325 -2.60163 -2.24213 -2.73569 -3.53882 -3.13732 -4.16649 -13.412 -5.5613 -2.47479 -4.49089 -3.38685 -4.58474 -3.81387 -4.44024 -2.03369 -5.02787 -2.88634 -2.26343 -3.39992 -4.79227 -3.52237

1	
2	-3.06218
3	-3.32801
4 5	-2.41207
6	-2.12841
7	-6.23748
8	-2.93763
9	-2.9845
10	-2.36778
12	-2.32566
13	-2.85952
14	-2.50341
15	-2.46014
16 17	-3 7919
18	-3 01123
19	-3.01123
20	-2.0223
21	-4.21549
22	-4.23083
23 24	-3.58488
25	-2.98431
26	-2.43362
27	-2.4941
28	-4.40215
29	-7.08059
31	-4.15482
32	-3.60262
33	-3.86384
34	-4.26728
35	-2.77983
30 37	-6.53464
38	-2.46983
39	-2.56684
40	-2 75427
41	-4 09386
4Z /3	-5 65057
44	-5.05057
45	-4.1/034
46	-2.727
47	-29.3316
48	-3.23009
49 50	-2.39062
51	-2.49356
52	-3.895
53	-3.34757
54	-5.31024
55 56	-6.0288
57	-4.21487
58	-5.71079
59	-2.41857
60	22007

1	
2	-2.60359
3	-3.18412
4	-4.86758
5 6	-7.16003
7	-3.11899
8	-2.83052
9	-4.03804
10	-4.30425
12	-2.89081
13	-7.81395
14	-3 70378
15	-2 21592
16 17	-2 03251
17	-2.03231
19	-2.90314
20	-5.92408
21	-4.00348
22	-3./1/06
23 24	-3.69165
25	-3.28249
26	-3.43556
27	-2.11774
28	-5.77656
29 30	-2.76473
31	-2.04111
32	-3.6098
33	-2.5688
34 25	-3.31736
36	-8.42965
37	-5.73538
38	-3.49437
39	-4.98533
40	-2.46972
41	-5.74638
43	-3.8365
44	-3.95633
45	-2.68566
46 47	-5.28473
47 48	-5 32715
49	-2 869/2
50	-3 05003
51	-5.05005
52 52	-3.34/08
53 54	-5./0539
55	-5.0/298
56	-13.2752
57	-2.48829
58 50	-3.598
59 60	-7.43463
00	

1	
2	-2.57917
3	-4.00334
4	-3.77107
6	-2.53334
7	-3.14952
8	-4.03588
9	-2.50412
10	-11.1111
12	-2.33037
13	-6.06311
14	-3.26909
15 16	-7.16068
17	-2.24586
18	-5.34315
19	-7.58284
20	-6.98436
21	-2 50516
23	-3 40722
24	-5 85936
25	-2 07732
26	-1 52168
27	2 12621
29	-5.42054
30	-2.09118
31	-2.90412
32	-8.28424
33 34	-2.81542
35	-2.43972
36	-3.36/96
37	-2.42258
38	-6.51/3/
40	-6.81023
41	-2.58602
42	-2.92318
43	-2.17958
44	-3.20037
46	-7.33785
47	-3.74574
48	-3.71938
49 50	-3.50814
50	-2.28937
52	-4.082
53	-2.28014
54	-4.18715
วว 56	-4.09585
57	-2.02032
58	-5.30404
59	-2.25962
60	

1	
2	-4.80381
3	-3.97166
4	-3.06108
6	-3.11013
7	-4.95071
8	-7.67444
9	-3.54688
10	-4.54749
12	-2.07615
13	-6.47439
14	-2.4527
15	-4.1321
17	-3.08933
18	-2.74377
19	-2.14576
20	-4.94528
22	-2.32277
23	-2.37264
24	-3.06099
25	-6.99627
27	-4.02255
28	-6.68282
29	-6.99403
30	-7.69729
32	-3.13577
33	-8.32281
34	-7.6916
35	-3.10165
37	-2.37556
38	-5.26472
39	-3.8381
40	-3.97692
41 42	-2.63819
43	-2.46553
44	-2.34828
45	-5.84183
46 47	-6.13398
48	-3.12754
49	-2.67317
50	-3.05874
51	-4.34218
52 53	-4.25728
54	-2.81222
55	-6.93812
56	-2 669//
ວ <i>1</i> 58	- <u>1</u> 21611
59	-6 93370
60	-0.53375

1	
2	-3.64461
3	-6.51808
4 5	-6.80186
6	-3.67761
7	-4.46851
8	-6.70142
9	-4.1883
10	-4.98917
12	-9.02166
13	-3.16351
14	-2.15195
15	-3 61484
16	-7 83751
18	-2.05251
19	-2.05145
20	-7.05010
21	-6.39056
22	-5.26383
23	-7.08248
24	-7.77309
26	-3.01858
27	-9.63781
28	-3.00229
29	-5.6986
30	-10.2627
32	-4.58635
33	-4.647
34	-6.68062
35	-7 2877
36	-7 35039
37 38	-7.53035
39	-7.37240
40	-5.2/15/
41	-10.7093
42	-2.33229
43	-10.7396
44 45	-4.56133
46	-5.53203
47	-2.10919
48	-3.63087
49	-5.05278
50 51	-7.30433
52	-2.78164
53	-3.1653
54	-4.52561
55	-5.54884
56	-6 3/1961
57 58	-6 67701
59	-0.07704
60	-0.7482

1	
2	-5.02598
3	-3.6026
4	-9.77415
6	-4.85859
7	-8.51896
8	-11.6826
9	-10.3162
10	-8.3707
11	-5 06087
12	-2 /2601
14	-2.43091
15	-0.48134
16	-9.92224
17	-4.25278
18	-6.18278
20	-2.4785
21	-7.72966
22	-2.92714
23	-2.70475
24	-3.85011
25	-3.75825
20 27	-13.7095
28	-10.0701
29	-8.56266
30	-5 40367
31	-2 33728
3∠ 33	2.55720
34	-2.01/99
35	-8.3/418
36	-2.89674
37	-8.66041
38	-4.51347
39	-6.18674
41	-2.35849
42	-2.29616
43	-3.29615
44	-5.96406
45	-3.5394
40 47	-2.28649
48	-2.24985
49	-4 51386
50	-10 5795
51	-3 87254
52	-5.07254
55	-5.02538
55	-3.54211
56	-5.89977
57	-11.3787
58	-9.75288
59	-2.02462
00	

1	
2	-3.1347
3	-5.15855
4	-10.9625
6	-2.92829
7	-11.7747
8	-7.58469
9	-8.05264
10	-17.1728
12	-3.56489
13	-3.39107
14	-3.7686
15	-7.27372
10	-6.23608
18	-8 36463
19	-3 15865
20	-3 19034
21	-14 6072
22	-6 80672
24	-3.52155
25	2 00021
26	-2.00021
27	-5.09201
29	-0.25/32
30	-3.05104
31	-5.60158
32	-4.01894
33 34	-9.97779
35	-5.82587
36	-12.6708
37	-5.25309
38	-8.24779
39 40	-3.88252
41	-7.62074
42	-9.08547
43	-3.22816
44 45	-2.7088
46	-2.19468
47	-2.44226
48	-4.06751
49	-8.39812
50 51	-10.9419
52	-20.9978
53	-20.6669
54	-2.23362
55 56	-7.12423
57	-12.2011
58	-11.4198
59	-3.1529
60	

1	
2	-3.48986
3	-5.55932
4	-5.9517
5 6	-2.22771
7	-7.87148
8	-8.33464
9	-5.07089
10	-2.95132
12	-3.4143
13	-3.44602
14	-7 74177
15	-18 0799
16 17	-6 75795
18	-11 568
19	-5 69802
20	-3.03802
21	-2.03701
22	-7.3780
23	-4.93596
25	-9.06239
26	-3./1/23
27	-3.626
28	-16.9962
30	-12.7821
31	-2.51339
32	-9.42204
33	-12.6436
34 35	-10.1591
36	-6.32945
37	-8.4651
38	-2.10043
39	-7.96198
40 41	-4.60482
42	-4.12251
43	-7.71163
44	-6.73413
45 46	-11.2411
40	-2.70873
48	-4.4194
49	-17.3133
50	-3.05012
51	-6.75536
53	-3.30584
54	-4.65059
55	-15.5787
56 57	-3.94489
58	-2 13863
59	-1 96765
60	-4.50705

1	
2	-3.30612
3	-12.8576
4	-15.0847
6	-7.51613
7	-6.13772
8	-7.39525
9	-5.77283
10	-5.26059
11	-3 23385
12	-6 11/29
14	2 50279
15	-2.59270
16	-3.80928
17	-10.7456
10	-5.40015
20	-4.04617
21	-2.26056
22	-19.5594
23	-5.63467
24	-3.19754
26	-8.01816
27	-2.2956
28	-10.8716
29	-3.19729
30	-4.13208
32	-13.2933
33	-6.21678
34	-3.47443
35	-3.08787
36	-3 01041
38	-12 5906
39	-2 65582
40	-5 0201/
41	-5.55514
42	-11.1099
43	-4.02951
45	-6./5195
46	-10.8079
47	-8.83343
48	-5.90326
49 50	-10.9937
51	-3.21198
52	-3.78806
53	-5.91098
54	-10.7738
วว 56	-18.8052
57	-11.6044
58	-6.93282
59	-6.78194
60	

1	
2	-3.69471
3	-2,1977
4	_2 07150
5	-3.97133
6	-7.39190
7	-2.89616
ð A	-3.24869
9 10	-3.13056
11	-3.29406
12	-9.68062
13	-3.67871
14	-9 57/8/
15	-5.57464
16	-2.76337
17	-2.39194
18	-2.20618
19	-5.95769
20 21	-4.25723
22	-5.06867
23	-13,9633
24	-2 98504
25	0 76122
26	-6.70152
27	-15.0644
28	-10.998
29 30	-13.1549
31	-10.5642
32	-17.4251
33	-2.16912
34	-9.33924
35	-11 9614
36	-5 6008
37	-3.09088
30 30	-4.82721
40	-14.3919
41	-2.52315
42	-4.13866
43	-5.88451
44	-9.27319
45	-9.10774
46	-3 1422
47 70	5.1422 E 2429E
40 49	-3.34283
- 50	-11.9661
51	-12.8557
52	-19.205
53	-17.7798
54	-20.6404
55	-3.15996
56 57	-2 43405
ວ/ 59	
50 59	-5.22344
60	-9.74923
~ ~	

1	
2	-2.55623
3 1	-5.47351
5	-4.23174
6	-3.98335
7	-5.44473
8	-10.7333
9	-5.13259
10	-13.1548
12	-4.57081
13	-2.2105
14	-10.5071
15	-20.0412
17	-6.44956
18	-21.0681
19	-2.36128
20	-21.8568
21	-2.85197
23	-3 35524
24	-3 52584
25	-10 9669
26	-19.9009
21	-2.4973
29	-15.4090
30	-19.2026
31	-5.9201
32	-26.8247
33 34	-11.2401
35	-20.7405
36	-29.3964
37	-2.18266
38	-7.91718
39 40	-23.332
41	-13.8774
42	-6.15591
43	-19.5687
44	-3.9883
45	-36.0359
47	-4.47158
48	-22.7596
49	-2.79681
50	-67.3686
52	-22.0073
53	-23.2021
54	-9.73127
55	-4.84987
56 57	-2.13621
58	-6 44019
59	-9 75023
60	5.75025

1	
2	-3.37248
3	-4.82489
4	-2.24619
5 6	-14.2013
7	-4.03495
8	-11.3718
9	-10 3471
10	-4 72212
11	-10 6504
12	-10.0304
14	-29.0414
15	-4.21927
16	-3.23535
17	-8.89013
18	-4.79963
19	-3.12698
20	-10.9038
22	-2.43592
23	-16.1386
24	-29.3655
25	-5.0874
20 27	-15.3365
28	-13,5921
29	-2 28159
30	-11 5/83
31	10 9727
32	-19.0727
34	-0.445/5
35	-2.25/81
36	-3.43567
37	-6.58849
38	-9.903
39 40	-3.62583
41	-11.392
42	-2.58511
43	-2.61003
44	-34.4782
45 46	-7.80082
40	-3.87684
48	-4.25141
49	-8.23976
50	-39,1878
51	-29 9238
ວ∠ 53	23.3230
54	- J.30323 E 6000
55	-20909
56	-2.70711
57	-48.5907
58	-10.7525
59 60	-4.34965
~ ~	

1	
2	-8.83524
3	-17.5087
4 5	-28.2192
6	-48.5913
7	-51.3652
8	-16.3208
9	-11.3466
10	-7.22176
12	-4.88452
13	-16.7411
14	-47.7447
15	-3.97161
17	-33.851
18	-3.50127
19	-30.4949
20	-2.56689
22	-2.10632
23	-25.0385
24	-45.7399
25	-2.2821
20	-5.36778
28	-38.5578
29	-3.35219
30	-24.6396
32	-46.9619
33	-34.0703
34	-7.91715
35	-18.8878
30 37	-2.4743
38	-5.85672
39	-22.8112
40	-103.42
41 42	-24.4247
43	-8.29247
44	-59.8709
45	-50.073
46 47	-2.65885
48	-44.4051
49	-30.0183
50	-29.3218
51 52	-118.828
52	-6.61764
54	-4.51097
55	-10.7133
56 57	-12.4828
58	-5.31656
59	-4,99204
60	7.33207

-6.3995 -568.512

http://mc.manuscriptcentral.com/jpath

1	
∠ ۲	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	45
1	с А
1	7
1	'n
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1 2
ა ა	2
2 2	3 ∧
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	3
4	4

Supplementary Table 4 aberrantly upregulated in common between STIC and invasive cancer (2 fo	ld and
---	--------

3			Invasive SC vs.	Normal oviduct	STIC vs. Nor
4 5	Gene Symbol	RefSeq	p-value	Fold-Change	p-value
6	ASPM	NM_018136	2.60E-06	2.94409	1.33E-05
7	CCDC144A	ENST00000443444	0.00213885	5.32473	0.0243328
8	CCNE1	ENST00000262643	0.00572145	2.23008	0.0115957
9 10	CDH6	NM_004932	0.00283368	2.1433	0.000295215
10	CENPF	NM_016343	5.58E-07	3.37557	2.40E-06
12	CKS2	NM_001827	0.0022546	2.89973	0.001283
13	CLDN6	ENST00000396925	0.0104175	5.93699	0.00243631
14 15	CLIC5	NM_001114086	0.009439	2.46718	0.00139079
16	CRABP2	NM_001878	0.00755329	2.78862	0.0212031
17	DBN1	 NM_004395	2.24E-05	2.05241	2.64E-05
18	DEK		0.000384725	2.32674	0.000217432
19	DNAJB6	ENST0000262177	0.000272738	2.54209	0.00312649
20 21	ECT2	NM 001258316	0.000212608	2.53965	0.00013513
22	FIGN		0.0097029	2.50304	0.00128213
23	FN1	ENST00000354785	0.00215023	4.76499	0.0446495
24	GINS1	NM 021067	0.00684686	2.17969	0.0074439
25	HIST1H2AF	NM 021052	3.44F-05	3,19263	0.000221535
20 27	HIST1H2BC	NM_003526	0.0198544	2.24863	0.0371524
28	HIST1H2BC	NM_080593	0.000451902	2,85981	0.00053831
29	HIST1H2BR	NM_003527	0.00192634	2 62733	0 00989244
30	HIST1H2EG	NM_021018	0.00192091	3 10484	0.00305663
31		NM_003542	0.00440190	2 18377	0.00595323
33		NM_003546	0.00033858	2.10577	0.0000000000000000000000000000000000000
34		NM 175065	0.000245457	1 20247	0.000173070
35		NM 002266	0.000037138	4.20247	0.000722552
36		AK125166	0.00344030	2.34702 / 11755	0.0129578
38 38	LUC441208	NNA 192762	0.000374909	4.11755	0.000820112
39	MALEZ		0.0504047	2.55507	0.0362006
40			0.00059612	2.5419	0.000312702
41	MT1C	NIVI_000983	0.0129185	2.51607	0.00175544
42 43	MILE	ENST0000444837	0.0428614	2.35685	0.00461934
44		NIVI_001142481	0.000485486	3.15952	0.00240787
45	PHOSPHOZ-KLF	1L23 NM_001199290	0.000554576	2.64251	0.00116485
46	PRAIME	NIVI_206953	0.0297283	2.12296	0.00542624
47	PRC1	ENS100000361188	0.000336928	2.21306	0.000736568
40 49	PTH2R	NM_005048	0.00495188	2.23137	0.00544872
50	PTTG1	ENST00000352433	0.00451955	2.80642	0.0390721
51	PVRL3	NM_015480	0.00765987	2.68279	0.0137273
52	RPL39L	ENST00000296277	0.0055029	2.62684	0.00333233
53 54	RRM2	ENST00000360566	0.00383353	2.68346	0.0128528
04 55	SKIL	NM_005414	0.0130943	2.03889	0.00849818
56	SLC16A1	NM_001166496	0.00557925	2.30772	0.0072816
57	SLC38A1	NM_030674	0.0010424	2.31448	0.0024103
58 59	SMC4	NM_005496	4.93E-05	2.57383	0.000371199

1					
2	SPINT2	NM_021102	0.000296385	2.21178	0.000238397
3	STMN1	NM_203401	4.99E-06	3.48098	8.76E-07
4	TBL1XR1	ENST00000430069	0.0174733	2.05526	0.0189784
5 6	TIA1	NM_022037	0.00310822	2.37	0.00490998
7	TMSB10	NM_021103	3.32E-05	2.60096	2.32E-05
8	TOP2A	NM_001067	0.0001045	3.28641	0.000712484
9	TPMT	NM_000367	0.0107081	2.62068	0.0237245
10	TPX2	NM_012112	4.09E-05	3.27148	0.000258971
12	TXNDC9	NM_005783	0.00363903	2.0506	0.00286028
13	UBE2T	ENST0000367274	0.0043026	2.33065	0.00586935
14 15	URI1	ENST00000542441	0.0130175	2.43578	0.00507933
16	WRAP53	ENST00000316024	0.00287094	2.78275	0.00691762
17	ZC3HAV1L	BC020784	0.00870664	2.10747	0.0106318
18	ZIC1	ENST0000282928	0.0108722	2.60269	0.00477505
19	ZNF146	NM_007145	0.00509871	2.49424	0.00149398
20 21	ZNF345	NR_038362	0.00010634	2.33358	0.000569311
22	ZNF566	NM_001145345	0.000363159	2.17544	0.000559765
23	ZNF850	NM_001193552	0.000890238	2.03178	7.58E-05
24	ZNF93	NM_031218	0.00124937	3.25181	0.000421892
20 20					

1 2	1 p < 0.05. 62 genes)			
3	mal oviduct			
4	Fold-Change			
5	2 55218			
о 7	3 10055			
8	2 0/1568			
9	2.04508			
10	2.72504			
11 12	2.54555			
13	9.14103 9.14572			
14	3 27737			
15	2 35262			
16 17	2.33202			
18	2.05054			
19	2.40012			
20	2.65618			
21	3 40042			
23	2 52238			
24	2.52250			
25	2.137.02			
20 27	2.02537			
28	2.80158			
29	2,13867			
30	3,30768			
31	2,27842			
33	3.75505			
34	4.11536			
35 26	2.00124			
30 37	3.64794			
38	2.25771			
39	2.47644			
40 41	3.46765			
41	3.62657			
43	2.57426			
44	2.43506			
45 46	2.76631			
40 47	2.06902			
48	2.20613			
49	2.01265			
50 51	2.44664			
52	2.82552			
53	2.26102			
54	2.15188			
55 56	2.23131			
57	2.12583			
58	2.15717			
59 60				
00				

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\23\\14\\15\\16\\17\\18\\9\\20\\21\\20\\21\\20\\21\\20\\21\\20\\21\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\$		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
49 50		

2.25367 4.23057 2.03246 2.24393 2.68618 2.63066 2.29851 2.67713 2.10144 2.2434 2.81859 2.45958 2.05689 2.97193 2.94787 2.03043 2.09682 2.52018 3.8168 Page 231 of 246

Gene Symbol	Gene Title
STMN1	stathmin 1
ZNF93	zinc finger protein 93
DCDC2	doublecortin domain containing 2
CENPF	centromere protein F, 350/400kDa (mitosin)
RPL39L	ribosomal protein L39-like
CDH6	cadherin 6, type 2, K-cadherin (fetal kidney)
RBBP4	Retinoblastoma binding protein 4
TPX2	TPX2, microtubule-associated, homolog (Xenopus laevis)
ECT2	epithelial cell transforming sequence 2 oncogene
TOP2A	topoisomerase (DNA) II alpha 170kDa
NREP	neuronal regeneration related protein homolog (rat)
ASPM	asp (abnormal spindle) homolog, microcephaly associated
FN1	(Drosophila) fibronectin 1
CDH2	cadherin 2, type 1, N-cadherin (neuronal)
MKI67	antigen identified by monoclonal antibody Ki-67
ZC3H11A	zinc finger CCCH-type containing 11A
UBE2T	ubiquitin-conjugating enzyme E2T (putative)
SMC4	structural maintenance of chromosomes 4
SKIL	SKI-like oncogene
ARHGAP29	Rho GTPase activating protein 29
CXCR4	chemokine (C-X-C motif) receptor 4
ZNF644	zinc finger protein 644
PRC1	protein regulator of cytokinesis 1
EPB41L5	erythrocyte membrane protein band 4.1 like 5
MSH2	mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
UBE2C	ubiquitin-conjugating enzyme E2C
MASTL	microtubule associated serine/threonine kinase-like
KIF23	kinesin family member 23
BUB1	budding uninhibited by benzimidazoles 1 homolog (yeast)
STAT1	signal transducer and activator of transcription 1, 91kDa
NUSAP1	nucleolar and spindle associated protein 1
PARP14	poly (ADP-ribose) polymerase family, member 14
ТТК	TTK protein kinase
KPNA4	karyopherin alpha 4 (importin alpha 3)
ANP32E	acidic (leucine-rich) nuclear phosphoprotein 32 family, member E
CEP55	centrosomal protein 55kDa
CCDC88A	coiled-coil domain containing 88A
KIF20B	kinesin family member 20B
CREB1	cAMP responsive element binding protein 1
SYT11	synaptotagmin XI
IFIT2	interferon-induced protein with tetratricopeptide repeats 2
CDKN3	cyclin-dependent kinase inhibitor 3
PLEKHO1	pleckstrin homology domain containing, family O member 1

2	NDC80	NDC80 kinetochore complex component homolog (S. cerevisiae)
3	CHEK1	checkpoint kinase 1
4	PEA15	phosphoprotein enriched in astrocytes 15
5	FOXM1	forkhead box M1
0 7	KI HI 24	kelch-like 24 (Drosonhila)
7 8		kelinine DheCCE kinese
9	KALRN	Kalirin, Knoger Kinase
10	SKA3	spindle and kinetochore associated complex subunit 3
11	CARD16	caspase recruitment domain family, member 16
12	CKAP2	cytoskeleton associated protein 2
13	CGGBP1	CGG triplet repeat binding protein 1
14	IFI44	interferon-induced protein 44
15 16	ANLN	anillin, actin binding protein
10	STAT2	signal transducer and activator of transcription 2 113kDa
18	DA114	retinoic acid induced 14
19		anitheliel membrane protein 1
20	EIVIPI	
21	KIF11	kinesin family member 11
22	CDK1	Cyclin-dependent kinase 1
23	NUF2	NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae)
24	NABP1	nucleic acid binding protein 1
20 26	KIF18A	kinesin family member 18A
20	PRKD3	protein kinase D3
28	MTHED2	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2
29		narathymosin
30		sharm antigen with calconin hemology and called call domains 1
31	SPECCI	sperin antigen with carponin homology and colled-con domains 1
32	EIF2AK2	eukaryotic translation initiation factor 2-alpha kinase 2
33	PRTFDC1	phosphoribosyl transferase domain containing 1
34 35	KIAA1524	KIAA1524
36	PTBP2	polypyrimidine tract binding protein 2
37	KIAA0101	KIAA0101
38	PTPN14	protein tyrosine phosphatase, non-receptor type 14
39	FBXO28	F-box protein 28
40	MX2	myxovirus (influenza virus) resistance 2 (mouse)
41		non-SMC condensin L complex, subunit G
42		sontrosomal protain 90kDa
43 44	CEP89	
45	CNPY3	canopy 3 homolog (zebrafish)
46	RIF1	RAP1 interacting factor homolog (yeast)
47	ATAD2	ATPase family, AAA domain containing 2
48	CALU	calumenin
49	FADS2	fatty acid desaturase 2
50	SLC16A4	solute carrier family 16, member 4 (monocarboxylic acid transporter 5)
51	ENPP5	ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative)
52 53	BMPR2	hone morphogenetic protein recentor, type II (serine/threonine kinase)
54		colute carrier family 20 (zinc transporter), member 6
55		Source carrier family SU (zille trainsporter), member D
56	AKHGAPIIA	Kno Grease activating protein TTA
57	LMO4	LIM domain only 4
58	RAB23	RAB23, member RAS oncogene family
59 60	BCAP29	B-cell receptor-associated protein 29
00		

The Journal of Pathology

DTL	denticleless E3 ubiquitin protein ligase homolog (Drosophila)
CLIC4	chloride intracellular channel 4
TLK2	tousled-like kinase 2
CDC5L	CDC5 cell division cycle 5-like (S. pombe)
CDK2	cyclin-dependent kinase 2
KLHL14	kelch-like 14 (Drosophila)
C12orf4	chromosome 12 open reading frame 4
CCDC77	coiled-coil domain containing 77
DPYSL3	dihydropyrimidinase-like 3
CTHRC1	collagen triple helix repeat containing 1
MLF1IP	MLF1 interacting protein
TRMT6	tRNA methyltransferase 6 homolog (S. cerevisiae)
NCAPH	non-SMC condensin I complex, subunit H
ZNF302	zinc finger protein 302
ZBTB2	zinc finger and BTB domain containing 2
PLFKHG4B	pleckstrin homology domain containing, family G member 4B
SGOL2	shugoshin-like 2 (S. nombe)
FGF12	fibroblast growth factor 12
HFRC5	HECT and RLD domain containing F3 ubiquitin protein ligase 5
RFC3	replication factor C (activator 1) 3, 38kDa
FBXO5	F-box protein 5
PARPRP	PARP1 hinding protein
	dickkonf 3 homolog (Xenonus Jaevis)
	staufen BNA hinding protein homolog 2 (Drosonhila)
SEC22B	SEC22 vesicle trafficking protein, homolog B (S. cerevisiae) (gene/nseudogene)
	BAD1 homolog (S. nombe)
KIAA0355	KIAAN355
	cyclin A2
	ring finger protein 1440
	SCI /TAL1 interrupting locus
	muts homolog 6 (E. coli)
	minishromosomo maintenanco complex component 4
	thumanaiatin
TIVIPO	Inymopoletin

Immnortalized	d vs. normal SC	STIC vs. nor	mal oviduct
p-value	Fold-Change	p-value	Fold-Change
0.000283907	3.80725	8.76E-07	4.23057
0.0144245	2.87429	0.000421892	3.8168
0.00716298	13.1974	4.28E-06	2.99104
0.00282425	4.4932	2.40E-06	2.94353
0.0472861	2.37036	0.00333233	2.82552
0.000144791	16.6572	0.000295215	2.72304
0.0360557	2.07024	0.00182861	2.69556
0.0155442	3.41929	0.000258971	2.67713
0.000987003	2.69336	0.00013513	2.65618
0.0384599	3.66365	0.000712484	2.63066
0.049286	3.34473	0.00240787	2.57426
0.00995083	4.19182	1.33E-05	2.55218
0.000815221	7.51886	0.0446495	2.52238
0.00103662	26.8722	0.0442521	2.48339
0.00406514	2.92177	0.000512702	2.47644
0.0440437	2.07644	0.0102092	2.2883
0.0146618	2.60053	0.00586935	2.2434
0.021717	2.65716	0.000371199	2.15717
8.38E-06	6.69368	0.00849818	2.15188
0.000667348	6.11737	0.0160522	2.12452
0.000441767	12.0686	0.0203638	2.07604
0.00479026	2.08711	0.000646319	2.06913
0.0472451	3.40855	0.000736568	2.06902
0.0184493	3.71605	0.00312586	2.05776
0.0384693	3.04204	0.0062282	2.03844
0.00446833	3.63974	0.000282922	2.01489
0.0176956	3.4969	0.000964698	2.00404
0.0424054	3.89455	0.000618361	1.99464
0.00893113	4.51362	0.000357272	1.98425
0.0104007	12.2952	0.00151445	1.9638
0.00123492	4.91539	0.000469143	1.96106
0.000783412	7.93847	0.0084577	1.95012
0.0196974	2.55622	0.000316293	1.94746
0.00158105	3.71015	8.16E-05	1.94129
0.0462063	2.82448	0.00638506	1.91164
0.0390095	4.1117	0.00165101	1.90968
0.000140019	2.80443	2.09E-05	1.88932
0.000216432	2.09166	9.57E-05	1.88057
0.0314904	2.44408	0.00629166	1.87344
0.00807315	12.0806	0.000205062	1.8629
0.00426074	14.3947	0.0229778	1.84615
0.0101394	3.42749	0.0075941	1.84499
0.0253665	2.86124	0.00881319	1.84464

1				
2	0.0126441	5.27019	7.79E-05	1.83858
3	0.0191874	2.34074	0.00149298	1.83041
4	0.000268136	3.21355	0.00114403	1.82733
5	0.00369879	4.15964	0.00984894	1.8245
7	0.00407175	9.06502	0.00275194	1.82414
8	0.00083655	2 66607	0.000161309	1 80456
9	0.00530801	2.00007	1.075.05	1 90021
10	0.00520891	2.8180	0.0212276	1.80031
11	0.0423289	3.741	0.0312376	1.79989
12	0.00469199	2.15955	0.00958603	1.79114
13	0.00550966	3.07566	0.0131361	1.78867
15	0.00161764	29.8796	0.0440225	1.77371
16	0.0130951	3.04741	0.00422736	1.76301
17	0.00875975	3.33513	0.00664215	1.75298
18	0.030317	3.5904	0.0100821	1.75181
19	0.039396	2.08173	0.0327551	1.74284
20	0.0428742	3.36452	0.000875107	1.73854
21	0.000234549	2,73747	0.0112627	1,73794
23	0.00183276	3 972/19	0.00/12027	1 737
24	0.00105270	2 09255	0.00403133	1.757
25	0.00403330	3.08233	0.00530044	1.72237
26	0.00648228	2.47888	0.000/40851	1./2116
27	0.00201868	3.3178	0.00488377	1./1/06
28	0.00170041	2.14286	0.0218899	1.71534
29	0.0420002	2.24513	0.000834693	1.69995
31	0.0222086	2.49395	0.00973343	1.69965
32	5.14E-07	4.83426	0.00898711	1.6906
33	0.0209858	6.32114	5.02E-05	1.69015
34	0.000189528	6.15731	0.000338866	1.6883
35	0.00106914	2.11285	0.0205669	1.6871
30 37	0.0248471	3,29181	0.0408938	1.68567
38	0.000925396	2,37864	0.0244379	1.6841
39	0.0332968	2 00636	0.00621127	1 68318
40	4 11E-05	26 5634	0.0200/26	1.68007
41	4.112-05	4 40406	0.0399430	1.00097
42	0.00092782	4.49400	0.000777004	1.07455
43 44	0.00588523	2.36836	0.00/1196/	1.67311
45	0.0111908	2.40382	0.00215059	1.6/212
46	0.0335808	2.02439	0.00316773	1.67174
47	0.0230576	3.44623	0.00395446	1.66638
48	0.00520529	4.23804	0.0027015	1.64975
49	3.08E-06	3.2561	0.00322815	1.64855
50 51	1.07E-05	6.74615	0.00813651	1.64756
52	0.0200538	8.15037	0.0468952	1.64689
53	0.000752569	2.35956	0.0274736	1.6438
54	0.0188408	2.02722	0.0017683	1.64325
55	0.00178417	2,5401	0.00899648	1.63703
56	0 0476972	2 86426	0 000987487	1 6252
5/ 59	2 AAE OG	2,00420	0.000007706	1 62004
59	2.44E-UD	3.23004	0.00037200	1 (2202
60	0.0410158	2.72067	0.00775898	1.02293

http://mc.manuscriptcentral.com/jpath

0.000617135	3.98727	0.00333312	1.62264
0.000602153	2.56418	0.0415462	1.6206
0.0436593	2.17529	0.0317785	1.6142
0.00100088	2.80715	0.0137566	1.61287
0.00630406	3.30955	0.0152348	1.61234
0.00367269	7.16821	0.0129579	1.61218
0.00724886	2.49163	0.0120534	1.61084
0.0465192	3.49878	0.000262927	1.60787
0.000118014	6.52417	0.0144391	1.59572
0.00549029	23.5167	0.0435348	1.58698
0.00074259	5.44894	0.00331259	1.57913
0.0147488	2.36385	0.0119903	1.57533
0.0109051	3.06047	0.00160924	1.57371
0.00872522	3.98681	0.00845558	1.57159
0.0254929	2.60135	0.0224159	1.56814
0.0150965	5.70056	0.00541019	1.55604
0.00666477	3.6087	1.00E-05	1.55527
0.0102868	2.52622	0.000725724	1.55182
1.57E-05	36.887	0.000644676	1.55154
0.0149205	2.13383	0.00265562	1.55106
0.046043	3.54316	0.00136405	1.54256
0.00316853	3.11433	0.000703062	1.53346
0.0339119	6.37923	0.0115379	1.52728
0.0387225	3.03602	0.00145672	1.52095
0.00153509	3.00068	0.0302589	1.51537
0.0113217	3.63938	0.00658345	1.51434
0.0117881	2.80383	0.00519076	1.51323
0.00595046	2.98481	0.0429142	1.51204
0.00866395	4.28053	0.00252979	1.51191
0.00235006	4.79982	0.00112532	1.51049
0.00172162	2.58461	0.0267306	1.50822
0.000521248	2.55083	0.0327635	1.50167
0.00251306	2.71931	0.00420601	1.50058

J Pathol 2014; 234: 478-487

Published online 30 September 2014 in Wiley Online Library (wileyonlinelibrary.com) D0I: 10.1002/path.4417

The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium

Gang Ning,^{1†} Jonathan G Bijron,^{2†} Yusuke Yamamoto,¹ Xia Wang,¹ Brooke E Howitt,³ Michael Herfs,⁴ Eric Yang,³ Yue Hong,¹ Maxence Cornille,¹ Lingyan Wu,⁵ Suchanan Hanamornroongruang,⁶ Frank D McKeon,^{1†} Christopher P Crum^{3†*} and Wa Xian^{1,†}

¹ Jackson Laboratory for Genomic Medicine, Farmington, CT, USA

- ² Department of Pathology, University of Utrecht, Utrecht, The Netherlands
- ³ Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA
- ⁴ Department of Pathology, University of Liège, Liège, Belgium
- ⁵ Genome Institute of Singapore, A*STAR, Singapore

⁶ Department of Pathology, Siriraj Hospital, Mahidol University, Bangkok, Thailand

*Correspondence to: Christopher P Crum, Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA. e-mail: ccrum@partners.org

[†]Shared equal responsibility as first and senior authors.

Abstract

The oviducts contain high-grade serous cancer (HGSC) precursors (serous tubal intraepithelial neoplasia or STINs), which are γ -H2AX^p- and TP53 mutation-positive. Although they express wild-type p53, secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer; moreover, both STINs and SCOUTs share a loss of PAX2 expression (PAX2ⁿ). We evaluated PAX2 expression in proliferating adult and embryonic oviductal cells, normal mucosa, SCOUTs, Walthard cell nests (WCNs), STINs, and HGSCs, and the expression of genes chosen empirically or from SCOUT expression arrays. Clones generated in vitro from embryonic gynaecological tract and adult Fallopian tube were Krt7^p/PAX2ⁿ/EZH2^p and underwent ciliated (PAX2ⁿ/EZH2ⁿ/FOXJ1^p) and basal (Krt7ⁿ/EZH2ⁿ/Krt5^p) differentiation. Similarly, non-ciliated cells in normal mucosa were PAX2^p but became PAX2ⁿ in multi-layered epithelium undergoing ciliated or basal (WCN) cell differentiation. PAX2ⁿ SCOUTs fell into two groups: type 1 were secretory or secretory/ciliated with a 'tubal' phenotype and were ALDH1ⁿ and β -catenin^{mem} (membraneous only). Type 2 displayed a columnar to pseudostratified (endometrioid) phenotype, with an EZH2^p, ALDH1^p, β -catenin^{nc} (nuclear and cytoplasmic), stathmin^p, LEF1^p, RCN1^p, and RUNX2^p expression signature. STINs and HGSCs shared the type 1 immunophenotype of PAX2ⁿ, ALDH1ⁿ, β -catenin^{mem}, but highly expressed EZH2^p, LEF1^p, RCN1^p, and stathmin^p. This study, for the first time, links PAX2ⁿ with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs, and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumour suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2), calcium binding (RCN1), and oncogenesis (stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target for early prevention.

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Keywords: Fallopian tube; serous carcinoma; stem cell; PAX2; ALDH1

Received 29 May 2014; Revised 24 July 2014; Accepted 29 July 2014

No conflicts of interest were declared.

Introduction

Recent discoveries have strengthened the relationship between the distal Fallopian tube and epithelial malignancies traditionally attributed to the ovary, specifically high-grade serous carcinomas (HGSCs), the most lethal of ovarian cancers [1-3]. With these discoveries has emerged a collective effort to resolve the sequence of histological and molecular events giving rise to these tumours in the Fallopian tube. The serous carcinogenic sequence involves not only frank malignancies with metastatic spread, but also serous cancer precursors, including latent precursors – the p53 signature – and serous tubal intraepithelial neoplasms (STINs). The latter include intramucosal carcinomas (STICs) and lesser but immunophenotypically similar atypias that are considered premalignant intraepithelial lesions (STILs) [4,5]. Virtually all serous cancer precursors

contain mutations in TP53, evidence of a DNA damage response (γ -H2AX^p), and predominate in the distal Fallopian tube [4]. Contiguous benign (p53 signatures) and malignant (STICs) epithelia have been documented with shared mutations in specific codons of TP53 [4,6]. In addition, further studies have unearthed other benign epithelial alterations, termed secretory cell outgrowths (SCOUTs), that do not contain TP53 mutations or evidence of a DNA damage response, yet share with precursors and carcinomas loss of PAX2 expression [7-9]. SCOUTs do not appear directly linked to HGSC, but have been documented at higher frequency in the normal tubes of postmenopausal women and those with HGSC [8,9]. Based on these properties, we have designated SCOUTs as 'surrogate precursors' and hypothesize that both SCOUTs and serous cancer precursors share properties or similar mechanisms in their pathogenesis, albeit with different potential outcomes.

Progenitor cells in the Fallopian tube

The shared loss of PAX2 expression in both SCOUTs and many 'true' serous cancer precursors suggests that inactivation of this gene, while integral to neoplasia, has a wider range of associations and may signify a generic pathway common to epithelial cell expansion. The goals of this study were, firstly, to determine the breadth of the PAX2ⁿ immunophenotype in the Fallopian tube by examining 'normal' cell growth and differentiation *in vitro* and *in vivo*. Secondly, we wanted to characterize more fully the alterations in expression that typified SCOUTs by array analysis and employ a biomarker profile to determine whether the SCOUT signature was recapitulated in STINs and HGSCs.

Materials and methods

Case material

This study was approved by the Brigham and Women's Human Investigation Committee and involved the use of discarded fresh and archived tissues. Case material for antibody staining consisted of the following epithelia/lesions: (1) normal salpingeal epithelium (n=15); (2) SCOUTs (n=44) and other outgrowths such as transitional-like metaplasia [Walthard cell nests (WCNs), n=5]; (3) serous tubal intraepithelial neoplasms (STINs) (n=18); and (4) metastatic or invasive serous carcinomas (n=39). In addition, cultured clonogenic cells from normal Fallopian tubes were examined for selected marker expression. Cases for immunohistochemistry were selected by one of us (CPC) using previously described criteria (Figure 1) [10].

Cell culture

Fimbrial tissue was obtained from discarded surgical specimens of women undergoing benign procedures. Discarded fetal oviductal tissues were obtained by parental consent under an approved IRB protocol. Disaggregated cells were cultivated onto a feeder layer

Figure 1. Entities associated with the PAX2ⁿ immunophenotype included (A) type 1 secretory cell outgrowths (SCOUTs), (B) type 2 SCOUTs, (C) Walthard cell nests, and (D) low- and (E) high- (serous tubal intraepithelial carcinoma) grade tubal intraepithelial neoplasia.

Copyright © 2014 Pathological Society of Grean Brissil/ and Infantuscriptcentral.com/jpath Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk

4

5

6

7 8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

of lethally irradiated 3 T3-J2 cells in stem cell culturing media (Jackson Laboratory, scm003). Clonal analysis and *in vitro* 3D differentiation were based on previously described methods for lung epithelial stem cells [11].

Microarray and bioinformatics

In order to identify genes expressed in PAX2ⁿ epithelium, expression arrays were generated from formalin-fixed, laser-capture-micro-dissected (LCM) PAX2ⁿ SCOUTs and benign control oviductal epithelium. RNAs obtained from the LCM procedure were amplified using the Ovation FFPE WTA System, WT-Ovation Exon Module, and Encore Biotin Module (NuGEN Technologies, San Carlos, CA, USA) and hybridized onto GeneChip® Human Exon 1.0 ST Arrays. GeneChip operating software was used to process all the Cel files and calculate probe intensity values. To validate sample quality, hybridization ratios were calculated using Affymetrix Expression Console software. The intensity values were log₂-transformed and imported into the Partek Genomics Suite. Exons were summarized to genes and a one-way ANOVA was performed to identify differentially expressed genes. p values and fold change were calculated for each analysis. Heat maps were generated using Pearson's correlation and Ward's method with selected genes based on p value. Pathway analyses were performed using Gene Set Enrichment Analysis (GSEA) software. Candidate biomarkers were culled from these arrays and are summarized in Supplementary Table 1.

Immunohistochemistry

Immunostaining was performed with attention to the biomarkers in Supplementary Table 1, in which product information and dilutions are included. When normal-appearing epithelia were scanned for putative PAX2ⁿ secretory cells, sections were immunostained with two antibodies concurrently: PAX2, which stains non-ciliated cells, and FOXJ1, a ciliated cell marker. Antibodies to leukocyte common antigen (LCA) for CD3, as well as FASCIN, were also used to track intraepithelial lymphocytes and dendritic cells, which are normally PAX2ⁿ. Detection was completed with the Vectastain ABC kit (Cat No PK-6102; Vector Laboratories, Inc, Burlingame, CA, USA) with a liquid DAB-plus substrate kit (Cat No 00-2020). Slides were counterstained with Hematoxylin Stain 3 (Cat No CS402-1D). Antibody information is summarized in Supplementary Table 1. Reaction to antibody staining is indicated by superscripted 'p' or 'n' for positive or negative (PAX2, ALDH1, FOXJ1, etc), superscripted 'm' or 'wt' for mutated or wild type (p53), and superscripted 'nc' or 'mem' for nuclear and cytoplasmic versus membrane localization (β -catenin). Immunohistochemistry, immunofluorescence staining, and image acquisition were performed as previously described [9,11]. Proliferating clones were identified and immunostained for PAX2, PAX8, FOXJ1, Krt7, Krt5, p63, EZH2,

and Ki67. Evidence of ciliated cell differentiation was identified by immunostaining for FOXJ1 and acetylated alpha-tubulin. Basal cells were identified by Krt5 or p63 immunostaining.

Results

Histological sub-classification of SCOUTs and STINs

The lesions under study are illustrated in Figure 1. Based on previous studies, SCOUTs were subdivided into two general histological categories [8,12]. The first, designated as type 1 SCOUTs, consisted of a typical monoor bi-phasic tubal epithelial composition with either single layers of tubal non-ciliated cells or (more commonly) a combination of non-ciliated and ciliated cells. The second, arbitrarily labelled type 2 SCOUTs, consisted of proliferations with mildly pseudostratified and closely arranged elongated fusiform nuclei, similar to endometrial epithelium, and also termed 'endometrioid' SCOUTs. Cells with ciliated differentiation (FOXJ1^p) were present, but were typically less than 30% of the cells and scattered throughout the epithelium. Walthard cell nests (WCNs), consisting of basal cell outgrowth with a squamo-transitional phenotype, were also studied because they signify another form of outgrowth derived from columnar epithelial cells, albeit metaplastic. STINs were sub-classified as previously described and contained strong p53 immunostaining and evidence of DNA damage by H2AX staining [5]. Those with mild or moderate atypia and preserved epithelial polarity were classified as low grade and are identical to lesions classified as 'STILs', 'TILTs', and atypical hyperplasia in other reports [13–15]. Those with conspicuous loss of epithelial polarity were classified as high grade, synonymous with serous tubal intraepithelial carcinoma (STIC). The latter have a 0-11% outcome risk of HGSC, based on recent studies [16–18]. The HGSC outcome risk of lower-grade STINs is unknown but presumed to be less than that of high-grade STINs.

In vitro and *in vivo* expression of PAX2 in the Fallopian tube mucosa

Cultured epithelial cells from the gynaecological tract, both in adults and at 20 weeks' gestation, were plated and colonies of clonogenic cells were characterized. The dominant immunophenotype associated with highly-proliferative clonogenic cell outgrowth was Krt7^p/PAX8^p/EZH2^p/ PAX2ⁿ/Krt5ⁿ/p63ⁿ (Figures 2A, 3A, and Supplementary Figure 2A). FOXJ1 expression indicating ciliated cell differentiation was also seen occasionally in the non-proliferative cells that were not stained positively with Ki67 (Figure 2A). To examine the differentiation ability of these cloned cells at the single-cell level, we established single-cell pedigree lines by subsequent rounds of plating and clone selection (Figure 2B). Pedigree lines of these cloned oviductal progenitor cells were differentiated

Figure 2. *In vitro* propagation and differentiation of oviductal progenitor cells. (A) The cells cloned from fetal or adult oviduct are PAX2ⁿ, PAX8^p and occasionally express differentiation marker (FOXJ1) in non-proliferative cells (Ki67ⁿ). (B) Schematic diagram of pedigree cell line establishment. (C) Upper panel: representative image of fetal (20-week) oviductal progenitor cells differentiated in 3D Matrigel culture system. Lower panel: immunofluoresence image of human adult oviduct epithelium. Acetyl-alpha-tubulin (green) indicates ciliated cell differentiation. PAX8 (red) indicates non-ciliated cells. DAPI stains nuclei (blue). (D1) Combined staining of histological sections of normal tube with both PAX2 and FOXJ1 reveals widespread nuclear staining, except occasional lymphocytes (arrows). (D2) Occasional foci of multi-layered epithelium undergoing ciliated cell differentiation (positive nuclei) consist of some cells negative for PAX2. (D3) Tubal intraepithelial carcinoma with focal FOXJ1 staining (arrowheads) indicating ciliated cell differentiation. Circled focus of normal ciliated cells is an internal positive control.

in either an air-liquid interface (ALI) cell culture system or 3D Matrigel cultures for 10-20 days. In 3D Matrigel cultures, PAX8^p oviductal progenitor cells differentiated into columnar epithelium consisting of acetylated tubulin^p/FOXJ1^p/PAX8ⁿ ciliated cells and PAX8^p non-ciliated cells, which resembles the human oviduct histology (Figure 2C). In the ALI culture system, a series of images of acetylated tubulin expression were taken at different time points during the differentiation and showed that the oviductal progenitor cells started to differentiate into ciliated cells at day 3 and became maturely differentiated at day 10 (Supplementary Figure 2B). At day 10 in the ALI culture system, the cloned oviductal progenitor cells formed a simple epithelium with ciliated cells marked by FOXJ1 and acetylated tubulin and non-ciliated cells marked by PAX2 (Supplementary Figure 2C). It is noteworthy that while the proliferating population is PAX2ⁿ (Figure 2A), PAX2 expression was reclaimed in some non-ciliated (secretory) cells. This further indicates that the progeny of a single oviductal progenitor cell can

give rise to all epithelial lineages typically found in the oviduct, including not only mature ciliated cells but also non-ciliated (secretory) cells.

Immunostaining of both fetal and adult Fallopian tubes was performed to ascertain the distribution of PAX2-expressing cells and address the possibility that the PAX2ⁿ immunophenotype was programmed earlier in development. Histological sections of fetal (at 21 weeks) and adult Fallopian tubes were examined. Fetal tubes contained an abundance of PAX2^p cells, with occasional interspersed ciliated cells (Supplementary Figure 1A). Expression of PAX8 was similar in distribution (Supplementary Figure 1B). Similarly, in normal adult tubes, PAX2 staining was extensive in cells that were not undergoing ciliated (tubulin^p) differentiation (Supplementary Figure 1C). A summary of immunophenotypes for progenitor and adult cells is displayed in Supplementary Table 2.

In the adult tubes, sections were also stained with FOXJ1, and/or LCA to account for other $PAX2^n$

cells that were either undergoing ciliated differentiation or were non-epithelial. Mono-layered or mildly pseudostratified normal Fallopian tube mucosa typically contained cells expressing either PAX2 or FOXJ1 (Figure 2D1). In occasional foci of prominent multi-layered epithelium with some cells staining positive with FOXJ1, loss of PAX2 nuclear staining could be seen (Figure 2D2), giving the impression that loss of PAX2 expression in non-ciliated cells was coordinated with cell growth in multi-layered epithelium. Albeit less so, FOXJ1 staining was also seen in STINs, supporting ciliated differentiation in PAX2ⁿ neoplastic growth (Figure 2D3).

Metaplastic (WCNs) differentiation of PAX2ⁿ columnar cells *in vitro* and *in vivo*

WCNs are foci of transitional-like metaplasia in the fimbria or adjacent peritoneal surface and are emblematic of basal cell outgrowth that can develop near the junctions of disparate epithelial types [19]. Other sites include the gastro-oesophageal and cervical squamo-columnar junctions. Both have been designated as sites harbouring residual embryonic cells and studies of the latter have suggested that basal or reserve cells emerge from the overlying columnar cells and then undergo squamous metaplasia [20,21]. This process has been termed 'top-down' differentiation, ie the progeny (basal cells) emerge from beneath the progenitor population. However, no study has ever displayed this sequence in vitro. Fetal tubal cells propagated in vitro were strongly positive for both Krt7 and PAX8, in keeping with Müllerian epithelium (Figures 2A and 3A). Moreover, these progenitor cells did not express Krt5 or p63 (Figure 3A). Interestingly, when pedigree lines of these cloned oviductal progenitor cells were differentiated in 3D Matrigel cultures for 10-20 days, in addition to the typical ciliated cell differentiation (Figure 2C), subjacent p63/Krt5^p basal cells emerged (Figure 3B1) and expanded (Figure 3B3) in a pattern similar to that

Figure 3. *In vitro* and *in vivo* basal cell differentiation in the oviduct. (A) Colonies of Krt7^p/Krt5ⁿ/p63ⁿ cells from a 20-week-old fetal oviduct. (B1, B3) Single (p63, green) and multi-layered (Krt5, red) basal cell outgrowth seen in Matrigel cultures. (B2, B4) Similar basal cell growth highlighted by p63 and Krt5 in the adult fimbria. (C) Walthard cell nest in the adult tube is typically PAX2 and ALDH1 negative. Residual Krt7-positive cells (arrows) are displaced from beneath by an expanding Krt5 population.

Figure 4. (A) Laser-captured micro-dissected SCOUTs (left) and a heat map comparison of SCOUTs and normal oviduct (right). (B) Arrays generated from PAX2ⁿ SCOUTs revealed genes differentially expressed across type 1 and type 2 SCOUTs, including ALDH1, LEF1, and RCN1 (right). (C) Coordinated expression of the above genes distinguish type 1 SCOUTs, which show membraneous β -catenin localization and absent ALDH1 staining plus negative or weak staining for LEF1 and RCN1 staining (left), from type 2 SCOUTs, with nuclear and cytoplasmic β -catenin, strong ALDH1, LEF1, and RCN1 staining (right).

seen in p63/Krt5^p cells in WCNs in the adult tube (Figures 3B2 and 3B4). In vitro, the Krt5 and p63 immunopositive cells were superimposed, although the Krt5 staining index was higher (Supplementary Figure 2E). Analysis of WCNs in tissue sections (Figure 3C) revealed a strikingly similar pattern of growth and differentiation, arising either from beneath Krt7^p epithelial cells or in continuity with columnar epithelium typical of type 1 SCOUTs. The result was a PAX2ⁿ/ALDH1ⁿ transitional-like outgrowth that was strongly Krt5^p but stathminⁿ (not shown). Taken in the context of the in vitro findings, this observation further linked the PAX2ⁿ immunophenotype to cell outgrowth and a Krt7^p progenitor cell to the development of not only terminal (FOXJ1⁺) but also metaplastic (Krt5⁺) differentiation in the Fallopian tube.

Altered gene expression in PAX2ⁿ proliferations (SCOUTs, STINs, and HGSCs)

Supplementary Table 3 is a list of genes selected for analysis and found to be differentially expressed in SCOUTs relative to normal-appearing epithelium. Arrays generated from RNA extracted from formalin-fixed laser-capture micro-dissected SCOUTs yielded differentially expressed genes, illustrated in the representative heat map (Figures 4A, 4B, and Supplementary Figures 4 and 5). When stained with selected markers, type 1 SCOUTs varied from strictly secretory to mixed secretory and ciliated, and were ALDH1ⁿ, β -catenin^{mem} and stained weakly or negative for LEF1, RCN1, RUNX2, and EZH2 (Figures 4C, 5, and Supplementary Figure 3). Type 2 SCOUTs stained variably for ciliated cell differentiation and were β -catenin^{nc} and ALDH1, LEF1, RCN1, EZH2, RUNX2 (not shown) and stathmin positive (Figures 4C, 5, and Supplementary Figure 3). Basal cell differentiation, signifying WCN development, was associated with PAX2ⁿ columnar epithelium, suggesting that this pathway of differentiation might initiate within type 1 PAX2ⁿ SCOUTs.

Figure 5 and Supplementary Figure 6 summarize the staining patterns observed in the different lesions. STINs and HGSCs shared expression of several markers with SCOUTs. Expression patterns for ALDH and β -catenin were identical to type 1 SCOUTs (ALDHⁿ and β -catenin^{mem}). In addition, like type 2 SCOUTs, there was increased staining for EZH2, stathmin, LEF1, RCN, Krt5, and RUNX2 (not shown). Not surprisingly, no marker in this group separated STINs or HGSCs from SCOUTs. This is in contrast to other published markers such as Ki67, cyclin E, p16, and others, which are significantly more commonly expressed in STINs and HGSCs relative to benign Fallopian tube mucosa [4,5,15,22].

Figure 5. Shared expression of SCOUT markers with low- (LSTIN) and high- (HSTIN or STIC) grade serous tubal intraepithelial neoplasia and high-grade serous carcinoma (HGSC). Neoplasms (STINs, HGSCs) share with type 1 SCOUTs loss of PAX2 and ALDH1, and with type 2 SCOUTs, increased LEF1, EZH2, and stathmin and other markers (see text).

Discussion

Analysis of arrays generated from high-grade serous cancer has confirmed a transcriptome that parallels oviductal epithelium [23]. Given that these tumours are strongly positive for biomarkers (such as PAX8) typically assigned to non-ciliated (so-called secretory) cells, the assumption has been that the secretory cell is the cell of origin [1]. Levanon *et al* showed that PAX8-expressing (secretory) cells of the tube were uniquely susceptible to DNA damage imposed by irradiation, a finding that parallels similar observations in latent precursors (p53 signatures) and STINs that contain p53 mutations [5,24]. However, with the discovery of PAX2ⁿ SCOUTs and a similar PAX2ⁿ expression pattern in many STINs, it became clear that there may be a relationship between the two entities, despite the fact that SCOUTs are more ubiquitous in the Fallopian tube and do not arise in the setting of a DNA damage response and loss of p53 function. Although altered PAX2 expression has been associated with neoplasia, we hypothesized that the PAX2ⁿ immunophenotype typified a 'generic' series of molecular events that were the underpinning of stem cell expansion common to many proliferations.

We addressed PAX2 expression or loss in the Fallopian tube from three perspectives. The first was by analysing expression and differentiation in proliferating normal adult and fetal cells propagated *in vitro*. The second was by comparing the *in vitro* findings to expression in tissue sections from fetal and adult tubes. The third was to look for shared expression across PAX2ⁿ cells in cell proliferation and expansion (SCOUTs, STINs, and HGSCs). We discovered that the PAX2ⁿ immunophenotype was particularly linked to *in vitro* and *in vivo* cell growth, not infrequently with an increase in EZH2 expression. Moreover, in highly clonogenic Krt7^p/FOXJ1ⁿ oviductal progenitor cells grown *in vitro*, we demonstrated for the first time that PAX2ⁿ expanding populations were capable of <u>both</u> ciliated (FOXJ1) and basal cell (Krt5) differentiation. This sequence of cell growth and differentiation was recapitulated in SCOUTs, STINs, and HGSCs, with progressively reduced ciliated differentiation in the type 2 SCOUTs, STINs, and HGSCs. We thus concluded that all of these entities were related to a similar progenitor cell.

The next goal was to determine if the cells involved in benign and neoplastic outgrowth shared common expression patterns and we chose to use the least proliferative lesions (SCOUTs) as the reference. One advantage of this approach is to identify events that occur prior to the more dramatic molecular changes that characterize malignancy that may have profound influences on expression. The study delineated two general groups of SCOUTs: the first (type 1) closely resembled normal tubal epithelium, histologically and in their expression profile (Figure 1D). The second (type 2) was composed of proliferations with less pronounced ciliated differentiation, many noticeably 'endometrial'-like (Figure 1E). Accordingly, there was minimal difference in expression between type 1 SCOUTs and control epithelium, although they were consistently ALDH1ⁿ. In contrast, type 2 SCOUTs demonstrated nuclear and cytoplasmic β -catenin staining plus increased BCL2 (see ref 7), ALDH1, and Krt5 staining. This diversity in phenotype underscores the complexity of cell growth

and differentiation that can occur in the Fallopian tubes with age. Type 1 SCOUTs appear to signify very minor genomic changes, as evidenced by the similarities in transcription to normal controls. Thus, the alterations in transcription are limited to absence of ALDH1 expression. In contrast, type 2 SCOUTs, which exhibit a more divergent histology, have a common biomarker signature – stathmin, EZH2, LEF1, RCN1, and RUNX2 – that is more similar to premalignant (STINs) and malignant (HGSCs) entities in the tube (Figure 5).

A fundamental question stemming from the above observation is the relevance of the gene signature found in SCOUTs, STINs, and HGSCs to both stem cell biology and neoplasia. ALDH1 has been identified as a marker of epithelial stem cells. Its expression can be both increased or absent, the latter more typical of STINs and HGSCs [25,26]. EZH2 is a polycomb suppressor that is implicated in stem cell maintenance and regulation of differentiation. It is noteworthy that EZH2 expression typically increased in areas of cell expansion, in keeping with the coordinated suppression of PAX2 expression [27]. EZH2 is also a potential suppressor of tumour suppressor genes [28]. LEF1 is likewise expressed during lineage differentiation [29]. The function of RCN1 is less clear but this gene product is a calcium binder that is weakly expressed in renal tubular cells and up-regulated in renal cell carcinomas [30]. RUNX2 is a gene involved in morphogenesis and osteoblastic differentiation [31]. Functions attributed to stathmin are multiple. It is a marker of P13 kinase activation that has been linked to serous neoplasia in some studies, tumour progression and metastases in others, and regulates p53 stability in still others [32–34]. Its range of expression, including normal epithelium, SCOUTs, and STINs, is similar to that of these other markers, several of which (ALDH1, PAX2, EZH2) have also been linked to not only stem cells but also outcome or resistance to chemotherapy [35–37]. The significance of the unique β -catenin staining in type 2 SCOUTs, with a shift in distribution from the membrane to the cytoplasm and nucleus, is unclear but it is emblematic of Wnt pathway activation, and mutations in β -catenin are commonly found in endometrial and colon carcinomas [38].

Walthard cell nests are a common benign condition seen in the distal Fallopian tube mucosa or the adjacent peritoneal reflection [19]. They bear a close resemblance to the cervical squamo-columnar junction, where columnar cells are undermined by p63-positive basal cells. These cells could be envisioned to either originate from the columnar epithelium or give rise to the overlying Krt7-positive epithelial cells. This study has made two novel observations. First, based on the Matrigel cell culture data, the basal cells emerge from the Krt7-positive columnar cells. Second, this process is marked by not only loss of PAX2 but also ALDH1 expression, similar to that seen in type 1 SCOUTs. The initiating cell, the Krt7^p non-ciliated epithelial cell, is remarkably similar to the cells seen in the squamo-columnar (SC) junction of the cervix from which squamous metaplasia is derived and this process is similar to so-called 'top-down' differentiation reported in the SC junction [21]. The fact that

Figure 6. A progenitor cell model for the Fallopian tube in which Krt7 identifies the progenitor cell and PAX2ⁿ defines progenitor cell expansion. Expanding PAX2ⁿ cells can differentiate into basal or ciliated cells in WCNs or type 1 SCOUTs, both of which approximate normal differentiation pathways, with loss of ALDH1 and normal or minimally increased expression of LEF1, RCN1, stathmin, and EZH2. In contrast, type 2 SCOUTs and STINs (right) share a different expression signature characterized by multiple genes, including EZH2, LEF1, RCN1, and stathmin and others, involved in a divergent pathway of progenitor cell growth.

Copyright © 2014 Pathological Society of Grean Reisely and International Comparison (Second Second S

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

WCNs are not considered direct precursors to malignancy is not surprising, in as much as they are terminally differentiated relative to their progenitors. This is similar to the cervix, where the progenitor cells in the SC junction are considered more vulnerable to neoplastic transformation than their metaplastic progeny [21]. What is interesting is the fact that WCNs underscore the existence of multi-potential cells in the distal Fallopian tube [12]. Given that 40-60% of HGSCs do not have a documented source (or STIN) in the Fallopian tube mucosa, coupled with the fact that a subset of HGSCs are strongly Krt5-positive, the possibility that cells involved in alternate differentiation pathways might contribute to a subset of these malignancies deserves further study (Hanamornroongruang S, Howitt BE, Crum CP, unpublished) [5,25].

Epithelia in virtually every organ (breast being a prime example) display a wide range of clonal expansions, some of which may be direct precursors to malignancy and others of which serve as risk factors for a malignant outcome. The model depicted in Figure 6 reflects a similar but novel scenario in the oviduct, with multiple categories of putative monoclonal cell outgrowth and striking similarities in expression across multiple genes between surrogate precursors and lesions that are considered premalignant or pre-metastatic. These findings emphasize the complexity of molecular and phenotypic perturbations that can take place in the Fallopian tubes during and following menopause. This complexity invites caution when considering the role (or diagnostic value) of newly discovered biomarkers as specific indicators of neoplasia. More importantly, it reveals a consistent disturbance in progenitor cell biology in keeping with a common pathway that is triggered by more than one initiating event. Thus, it introduces two approaches to cancer prevention, one directed at the initiating event and the other at the early perturbations in the pathway.

Acknowledgments

This work was supported by grants from the Department of Defense and National Cancer Institute (W81XWH-10-1-0289 and 5R21CA173190-02 to CC). We thank the Division of Gynecologic Oncology at Brigham and Women's Hospital and Dana Farber Cancer Institute for their contribution to the study, and Mei Zheng for assistance with the immunohistochemistry. We are also grateful for the support of this work by the Genome Institute of Singapore of the Agency for Science, Technology and Research, and a Bedside and Bench Grant from Singapore National Medical Research Council.

Author contribution statement

Contributions of the co-authors to design (1), data collection (2), data analysis (3), data interpretation (4), literature search (5), figures (6), and manuscript writing (7)

were as follows: GN (1–4, 6, 7); JGB (1–4, 6, 7); YY (1–3, 6); XW (2, 3); BEH (1, 2, 4, 5); MH (1–4); EY (1–3, 5); YH (2–4); MC (2–4); LW (2–4); SH (2–4); FDMcK (1, 4, 7); CPCr (1, 4, 7); and WX (1, 3, 4, 7).

Abbreviations

ALI, air–liquid interface culture; SCOUT, secretory cell outgrowth; STIN, serous tubal intraepithelial neoplasia; WCN, Walthard cell nest

References

- 1. Piek JM, van Diest PJ, Zweemer RP, *et al.* Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. *J Pathol* 2001; **195**: 451–456.
- 2. Kindelberger DW, Lee Y, Miron A, *et al.* Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. *Am J Surg Pathol* 2007; **31:** 161-169.
- 3. Finch A, Shaw P, Rosen B, *et al.* Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. *Gynecol Oncol* 2006; **100:** 58-64.
- Lee Y, Miron A, Drapkin R, *et al.* A candidate precursor to serous carcinoma that originates in the distal Fallopian tube. *J Pathol* 2007;211:26-35. Erratum in *J Pathol* 2007; **213**: 116.
- 5. Crum CP, Herfs M, Ning G, *et al.* Through the glass darkly: intraepithelial neoplasia, top-down differentiation and the road to ovarian cancer. *J Pathol* 2013; **231**: 402-412.
- Carlson JW, Miron A, Jarboe EA, *et al.* Serous tubal intraepithelial carcinoma: its potential role in primary peritoneal serous carcinoma and serous cancer prevention. *J Clin Oncol* 2008; 26: 4160-4165.
- Chen EY, Mehra K, Mehrad M, *et al.* Secretory cell outgrowth, PAX2 and serous carcinogenesis in the Fallopian tube. *J Pathol* 2010; 222: 110-116.
- Quick CM, Ning G, Bijron J, *et al.* PAX2-null secretory cell outgrowths in the oviduct and their relationship to pelvic serous cancer. *Mod Pathol* 2012; 25: 449-455.
- 9. Bijron JG, Ning G, Laury AR, *et al.* Digital quantification of precursor frequency in the Fallopian tube and its significance. *Mod Pathol* 2012; **25:** 1654-1661.
- 10. Mehrad M, Ning G, Chen EY, *et al.* A pathologist's road map to benign, precancerous, and malignant intraepithelial proliferations in the Fallopian tube. *Adv Anat Pathol* 2010; **17:** 293-302.
- 11. Kumar PA, Hu Y, Yamamoto Y, *et al.* Distal airway stem cells yield alveoli *in vitro* and during lung regeneration following H1N1 influenza infection. *Cell* 2011; **147:** 525-538.
- Laury AR, Ning G, Quick CM, *et al.* Fallopian tube correlates of ovarian serous borderline tumors. *Am J Surg Pathol* 2011; 35: 1759-1765.
- Vang R, Visvanathan K, Gross A, *et al.* Validation of an algorithm for the diagnosis of serous tubal intraepithelial carcinoma. *Int J Gynecol Pathol* 2012; 31: 243-253.
- Ning G, Bijron JG, Yuan J, *et al.* Differential expression of p-ERM, a marker of cell polarity, in benign and neoplastic oviductal epithelium. *Int J Gynecol Pathol* 2013; **32:** 345-352.
- Lee S, Nelson G, Duan Q, *et al.* Precursor lesions and prognostic factors in primary peritoneal serous carcinoma. *Int J Gynecol Pathol* 2013; **32:** 547-555.
- Wethington SL, Park KJ, Soslow RA, *et al.* Clinical outcome of isolated serous tubal intraepithelial carcinomas (STIC). *Int J Gynecol Cancer* 2013; 23: 1603-1611.

The Journal of Pathology

60

- 17. Lowell CB, Swisher EM, Cass I, *et al.* Long term follow up of *BRCA1* and *BRCA2* mutation carriers with unsuspected neoplasia identified at risk reducing salpingo-oophorectomy. *Gynecol Oncol* 2013; **129**: 364-371.
- Conner JR, Meserve E, Pizer E, *et al.* Outcome of unexpected adnexal neoplasia discovered during risk reduction salpingo-oophorectomy in women with germ-line *BRCA1* or *BRCA2* mutations. *Gynecol Oncol* 2014; **132**: 280-286.
- Seidman JD, Yemelyanova A, Zaino RJ, *et al.* The Fallopian tube-peritoneal junction: a potential site of carcinogenesis. *Int J Gynecol Pathol* 2011; 30: 4-11.
- Wang X, Ouyang H, Yamamoto Y, *et al.* Residual embryonic cells as precursors of a Barrett's-like metaplasia. *Cell* 2011; 145: 1023-1035.
- 21. Herfs M, Yamamoto Y, Laury A, *et al.* A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. *Proc Natl Acad Sci U S A* 2012; **109**: 10516-10521.
- 22. Sehdev AS, Kurman RJ, Kuhn E, *et al.* Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase. *Mod Pathol* 2010; **23:** 844-855.
- 23. Marquez RT, Baggerly KA, Patterson AP, *et al.* Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal Fallopian tube, endometrium, and colon. *Clin Cancer Res* 2005; **11:** 6116-6126.
- Levanon K, Ng V, Piao HY, *et al.* Primary *ex vivo* cultures of human Fallopian tube epithelium as a model for serous ovarian carcinogenesis. *Oncogene* 2010; **29:** 1103-1113.
- Deng S, Yang X, Lassus H, *et al.* Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. *PLoS One* 2010; 5: e10277.
- Flesken-Nikitin A, Hwang CI, Cheng CY, *et al.* Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. *Nature* 2013; **495**: 241-245.
- Chou RH, Yu YL, Hung MC. The roles of EZH2 in cell lineage commitment. *Am J Transl Res* 2011; 3: 243–250.

- Deb G, Singh AK, Gupta S. EZH2: not EZHY (easy) to deal. *Mol Cancer Res* 2014; 12: 639-653.
- Merrill BJ, Gat U, DasGupta R, *et al.* Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. *Genes Dev* 2001; 15: 1688-1705.
- Giribaldi G, Barbero G, Mandili G, *et al.* Proteomic identification of Reticulocalbin 1 as potential tumor marker in renal cell carcinoma. *J Proteomics* 2013; **91:** 385-392.
- Yoshida T, Kanegane H, Osato M, *et al.* Functional analysis of *RUNX2* mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype–phenotype correlations. *Am J Hum Genet* 2002; **71:** 724-738.
- Karst AM, Levanon K, Duraisamy S, *et al.* Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. *Gynecol Oncol* 2011; 123: 5-12.
- 33. Zheng P, Liu YX, Chen L, *et al.* Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. *J Proteome Res* 2010; 9: 4897-4905.
- Sonego M, Schiappacassi M, Lovisa S, *et al.* Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. *EMBO Mol Med* 2014; 6: 295.
- Hueber PA, Waters P, Clark P, *et al.* PAX2 inactivation enhances cisplatin-induced apoptosis in renal carcinoma cells. *Kidney Int* 2006; 69: 1139-1145.
- Han X, Du F, Jiang L, *et al.* A2780 human ovarian cancer cells with acquired paclitaxel resistance display cancer stem cell properties. *Oncol Lett* 2013; 6: 1295-1298.
- Rizzo S, Hersey JM, Mellor P, *et al.* Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. *Mol Cancer Ther* 2011; 10: 325-335.
- van der Zee M, Jia Y, Wang Y, *et al.* Alterations in Wnt-β-catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression. *J Pathol* 2013; 230: 48-58.

SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Figure S1. Pax2 and acetyl-alpha-tubulin (cilia) expression in fetal and adult Fallopian tubes.

Figure S2. In vitro differentiation of oviduct progenitor cells.

Figure S3. Two types of PAX2ⁿ SCOUTs are distinguished in these panels with β -catenin, keratin 5, and LEF1 staining.

Figure S4. Heat map comparing type 1 and type 2 SCOUTs with normal tubal epithelium and high-grade serous cancer.

Figure S5. A depiction, in tabular (A) and graphical format (B), of genes up-regulated with the two-fold change in type 2 relative to type 1 SCOUTs, several of which have been linked to STIN and HGSC.

Figure S6. H&E, p53, and PAX2 staining of cases under study (see Figure 5).

Table S1. Biomarkers selected for analysis of clonogenic cells, SCOUTs, and STINs.

Table S2. Summary of immunophenotypes in cultured progenitor cells and adult cells in tissue sections.

Table S3. Upregulated genes in Type 2 SCOUTs in comparison with Type 1 SCOUTs (3 fold and p < 0.05).

Cloning and variation of ground state intestinal stem cells

Xia Wang¹*, Yusuke Yamamoto¹*, Lane H. Wilson^{1,2}, Ting Zhang³, Brooke E. Howitt⁴, Melissa A. Farrow⁵, Florian Kern³, Gang Ning¹, Yue Hong¹, Chiea Chuen Khor^{3,6}, Benoit Chevalier¹, Denis Bertrand³, Lingyan Wu³, Niranjan Nagarajan³, Francisco A. Sylvester⁷, Jeffrey S. Hyams⁸, Thomas Devers⁹, Roderick Bronson¹⁰, D. Borden Lacy⁵, Khek Yu Ho¹¹, Christopher P. Crum⁴, Frank McKeon^{1,3,11,12} & Wa Xian^{1,2,4,11,12}

Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, 'ground state' stem cells of the human intestine and colon. We show that derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells is likely to enforce the functional specificity of the adult intestinal tract. Using clonally derived colonic epithelia, we show that toxins A or B of the enteric pathogen *Clostridium difficile* recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modelling and regenerative medicine.

While dominating prospective strategies for regenerative medicine, embryonic stem cells and induced pluripotent stem cells (iPSCs) face formidable challenges including risk of teratoma, complex guiding protocols for lineage specificity, and limited regenerative capacity of the lineages ultimately produced¹⁻⁸. The success and promise of iPSCs have largely overshadowed efforts to harness stem cells intrinsic to regenerative tissues. Green and colleagues developed methods for cloning epidermal stem cells9 that form a stratified epithelium upon engraftment, and these methods have been successfully applied to corneal, thymic and airway epithelia¹⁰⁻¹². However, stem cells of columnar epithelial tissues resist cloning in a manner that maintains their immaturity during proliferative expansion, and instead must be carried forward as regenerative, differentiating 'organoids'13-18. Despite their obvious potential in regenerative medicine and constant improvement¹⁹, the very low percentage of clonogenic cells in organoids limits the kinetics of their propagation as well as their utility for exploring the elemental stem cell.

The present study reports the cloning and propagation of 'ground state' human intestinal stem cells (ISC^{GS}). This technology offers insights into the molecular and functional features of columnar epithelial stem cells and their utility for disease modelling and regenerative medicine.

Cloning human fetal intestinal stem cells

We developed media (herein SCM-6F8) containing novel combinations of growth factors and regulators of TGF- β /BMP (transforming growth factor- β /bone morphogenetic protein), Wnt/ β -catenin, EGF (epidermal growth factor), IGF (insulin-like growth factor) and Notch pathways^{9,20,21} that supports the maintenance of human intestinal stem cells in a highly clonogenic, ground state form. Thus single-cell suspensions of intestinal epithelia derived from 20- to 21-week-old fetal demise cases yield colonies comprised of highly immature cells in which differentiation markers can be induced by Notch suppression (Fig. 1a). Following induced differentiation via Wnt withdrawal, we were unable to recover ground state stem cells by our methods (Extended Data Fig. 1a–c).

The clonogenicity of cells in the colonies was determined by singlecell transfer to be greater than 50% (Fig. 1b). This high clonogenicity permits the rapid generation of single-cell 'pedigree' lines for expansion and characterization of lineage fates upon differentiation¹² (Fig. 1b). Pedigree lines of ISC^{GS} and tracheobronchial stem cells (TBSC^{GŚ})¹² grown for several months in culture were differentiated in air-liquid interface (ALI) cultures for 10-30 days (Fig. 1c). The ISC^{GS} formed a highly uniform, 3D serpentine pattern, whereas TBSC^{GS} produced a stratified epithelium with apically positioned ciliated and goblet cells. Histological sections of differentiated ISC^{GS} revealed a columnar epithelium of villus-like structures marked by goblet (Muc2⁺), endocrine (chromogranin A⁺), and Paneth cells and polarized villin expression (Fig. 1d; Extended Data Fig. 1d), indicating that the progeny of a single ISC^{GS} can give rise to all epithelial lineages typically found in the small intestine. Importantly, differentiation of these ground state stem cells is accomplished by exposure to an ALI rather than a removal of factors such as Wnt that maintain immaturity.

While principal component analysis (PCA) of differentially expressed genes of ground state stem cells and ALI-differentiated

¹The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA. ²Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA. ³Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore. ⁴Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA. ⁵Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ⁶Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore. ⁷Department of Pediatrics, Division of Gastroenterology, The University of North Carolina at Chapel Hill, North Carolina 27599, USA. ⁸Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut 06106, USA. ⁹Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, USA. ¹⁰Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA. ¹¹Department of Medicine, National University of Singapore. ¹²Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA. ^{*}These authors contributed equally to this work.

Figure 1 | Cloning stem cells from fetal intestine. a, Left, Sox9 expression in fetal intestine, scale bar, 25 μ m; colonies from intestine (n = 10 biological replicates; colonies of ISC pedigree (n = 30 independent experiments). Scale bar, 75 μ m. Right, ISC colonies stained with indicated antibodies. n = 4technical replicates. Bottom, marker expression following Notch inhibition. n = 4 technical replicates. **b**, Left, ISC colony growth. Scale bar, 75 μ m. Right, clonogenicity of colony cells. n = 3 biological replicates. c, ISC and TBSC pedigrees and ALI differentiation (tubulin, green; Muc5AC, red). Scale bar, 50 μ m left, 25 μ m right top, 25 μ m bottom right; n = 7 biological replicates; n = 3 technical replicates; 3 independent experiments. **d**, ALI-differentiated ISC. Scale bar, 50 μ m. n = 7 biological replicates; n = 3 technical replicates; 3 independent experiments. H&E, haematoxylin and eosin staining. e, PCA using 2,158 genes (> twofold, P < 0.05 by Student's *t*-test) of ISC and TBSC and corresponding ALI-differentiated epithelia. f, Expression heat map of markers in ISC and TBSC. Scale, -2.5-fold (extreme blue) to +2.5-fold (extreme red). n = 3 technical replicates.

tissue showed great divergence as expected for columnar and stratified epithelia, the gene expression profiles of undifferentiated ISC^{GS} and TBSC^{GS} differed by less than 4% (>2.0-fold, P < 0.05) (Fig. 1e). ISC^{GS} showed high expression of intestinal stem-cell markers such as OLFM4, CD133 (ref. 22), Lgr5 (ref. 23) and Lrig1 (ref. 24), whereas those from the airways had the typical stem cells markers of stratified epithelia (Krt14, Krt5 and Tp63 (ref. 11)) (Fig. 1f).

Intestinal stem cell variation

Approximately one in 2,000 cells from duodenum (I^{du}SC), jejunum (I^{je}SC) and ileum (I^{il}SC) of a 21-week-old fetal intestine form a colony (Fig. 2a). Although these colonies were morphologically indistinguishable in culture, whole-genome expression analysis of multiple pedigrees showed a consistent, region-specific signature of 24–178 genes (>1.5-fold, P < 0.05; Fig. 2b; Extended Data Fig. 2a).

After 10 days at an ALI, I^{du}SC and I^{je}SC gave rise to a finer pattern of epithelial folds than that produced by I^{il}SC (Fig. 2c). By histology, villi appear progressively more robust along the anterior–posterior axis, with I^{il}SC producing the larger villi and more numerous goblet cells (Fig. 2d, e). Interestingly, the epithelia derived from I^{du}SC expressed markers more typical of gastric epithelium (for example,

Figure 2 | **Stem cells from fetal small intestine. a**, Depiction of small intestine and clones derived from each. Scale bar, 400 µm; n = 3 biological replicates. **b**, Heat map of pedigrees from duodenum (Duo), jejunum (Jej), and ileum (Ile). **c**, Surface views of ALI cultures. Scale bar, 200 µm; n = 30 technical replicates. **d**, **e**, Histological sections through ALI cultures at low (scale bar, 150 µm) and high (scale bar, 50 µm) magnification. **f**, Immunofluorescence on sections of ALI cultures with indicated antibodies. ECAD, E-cadherin. Scale bar, 75 µm; n = 3 technical replicates. **g**, PCA map of stem cell gene expression from the three major regions of the small intestine together with their corresponding ALI-differentiated epithelia.

PC1: 35.5%

TFF2 and Muc5AC), consistent with duodenum's location between the stomach and the small intestine (Extended Data Fig. 2b). I^{je}SC-derived epithelium, however, expressed Muc2, consistent with intestinal epithelium (Extended Data Fig. 2c), and I^{il}SC produced an epithelium more akin to colon (Fig. 2f). The pattern of proliferation in the ALI epithelia as measured by Ki67 staining was generally confined to cells proximal to the support membrane (Fig. 2e, f). PCA mapping of gene expression revealed more divergence among ALIdifferentiated tissue than among the intestinal stem cells (Fig. 2g).

Colon stem cells

We also generated single-cell pedigree lines from the ascending, transverse, and descending colon from the same 21-week fetal demise case (Fig. 3a). The variation in gene expression between the stem cells of these colonic segments was minimal with signatures of 19-28 genes (>1.5-fold, P < 0.05; Fig. 3b). As with pedigrees derived from the intestinal epithelium, those from the colon could be propagated for months without loss of clonogenicity (not shown). Differentiation of these colon pedigrees under identical ALI conditions employed for the intestinal stem cells resulted in networks of 3D, large-diameter structures (Fig. 3c). Consistently, the histology of these ALI cultures revealed patterns of broad intestinal glands dominated by goblet cells (Fig. 3d). These ALI-generated tissues showed strong staining for

Figure 3 Stem cells of fetal colon. **a**, Depiction of colon and clones derived from each. Scale bar, 75 μ m; n = 3 biological replicates. AC, TC and DC, ascending, transverse and descending colon, respectively. **b**, Expression heat map of pedigrees from the three major divisions of the colon. **c**, Surface images of ALI cultures. Scale bar, 100 μ m; n = 20 technical replicates. **d**, Histological sections through ALI cultures of colon stem cells. Scale bar, 75 μ m. **e**, Immunofluorescence on sections through ALI cultures with indicated antibodies. Scale bar, 50 μ m. **f**, PCA map of gene expression of colon and intestine stem cells. **g**, Expression heat map of stem cells of small intestine and colon. **h**, PCA map of gene expression profiles of intestinal stem cells and their corresponding ALI-differentiated epithelia.

intestinal goblet cell marker Muc2, as well as polarized villin and Krt20, typical of differentiated colonic epithelium (Fig. 3e). And while the colonic stem cells as a group showed minor differences in gene expression (see Figure 3b), they gave rise to epithelia with more distinct gene expression profiles (Extended Data Fig. 3). PCA mapping of these expression data showed a clustering of the colon stem cells relative to the intestinal stem cells, with increasingly distant spaces occupied by stem cells of the ileum, jejunum and duodenum, respectively (Fig. 3f). This distinction in global gene expression patterns is reflected, for instance, in the differential expression of transcription factors. In particular, *ONECUT2*, *NR0B2*, *TRPS1* and *ZNF503* show relatively high expression in the small intestine stem cells, whereas those of the colon showed a bias for *Hox* genes as well as the global chromatin organizer genes *SATB1* and *SATB2* (Fig. 3g, h).

Columnar versus stratified epithelia

The expression profiles of stem cells of human intestinal tract enabled a detailed comparison with those of stratified epithelia including human epidermis, corneal epithelium, mammary gland, prostate gland and upper airway. From this analysis it is clear that stratified epithelia, all of which depend on the p53-related stem-cell marker p63 for long-term self-renewal¹¹, occupy a distinct expression space from that of the intestinal stem cells or other columnar epithelial stem cells (Fig. 4a). A survey of genes whose expression is associated with stem cells of one of these two major classes of epithelia revealed a strong bias for *Olfm4*, *CD133* (ref. 22), *Lgr5* (ref. 23), *Nr5a2* (ref. 25), *Id2*, *Lrig1* (ref. 24), *EphB2*, *Ascl2* and *EphB3* in the intestinal stem cells, while the stratified epithelial stem cells expressed *ZNF750*, *TP63* and *KRT5* (Fig. 4b). Many of the markers differentially appearing in the intestinal stem cells, such as Olfm4, Lgr5 and Ascl2, are not general

factors differentially expressed in TBSC and ISC. **d**, ALI-differentiated adult terminal ileum stem cells derived from endoscopic biopsy. Scale bar, 50 μ m; n = 10 technical replicates. **e**, PCA map of stem cells of adult terminal ileum, colon, fetal ISCs, and stratified epithelia. **f**, Stem cell markers in adult terminal ileum stem cells and TBSCs.

Figure 5 Genomic stability of ISC in culture. a, Clone selection for pedigree generation. Scale bar, 200 µm. **b**, Serial passaging of pedigrees. **c**, CNV, BAF (B allele frequency) and LRR (log R ratio) profiles of pedigrees at P5 to P20 and trisomy 12 indicated (circle). **d**, ALI-differentiated pedigree 2 at P7, P17, and P27 stained with H&E (top), Alcian blue (middle), and periodic acid Schiff (bottom). Scale bar, 100 µm; *n* = 4 technical replicates. **e**, Clonogenicity assay revealing Rhodamine red-stained colonies grown 20 days following seeding 1,000 passaged cells. Scale bar, 10mm; *n* = 3 technical replicates.

f, Quantification of clonogenicity at indicated passage number of ground state stem cells from jejunum ($I^{Iej}SC$) and ileum ($I^{Ile}SC$). n = 3 biological replicates; error bars, s.d.

columnar epithelial stem cell markers as evidenced by their absence in fallopian tube stem cells, although Lrig1 is more highly expressed in fallopian tube stem cells than either those of the intestine or the colon (Extended Data Fig. 4a). Notably, Bmi1, a member of the Polycomb group (PcG) PRC1-like complex implicated in self-renewal in both haematopoietic²⁶ and as reserve cells for proliferating, Lgr5⁺ intestinal stem cells²⁷⁻²⁹, was not differentially expressed in the cloned intestinal versus stratified epithelial stem cells. And while many of the typical markers of intestinal stem cells such as Lgr5, CD44, Lrig1, EphB2 and ASCL2 show a decrease in expression as the intestinal stem cells are differentiated in ALI cultures, Bmi1 did not (Extended Data Fig. 4b, c). These findings suggest that we are cloning either crypt cells or so-called '+4' cells that have become crypt-like in their expression patterns. We also examined transcription factors differentially expressed in ISC compared to stratified epithelial stem cells in an effort to understand the regiospecificity of commitment programs of stem cells along the intestinal tract (Fig. 4c). In addition to six transcription factors that were uniformly highly expressed in stem cells of the intestinal tract (CREB3L1, Myb, NR5A2, IRF8, HNF4G and Msx2) versus tracheobronchial stem cells, this analysis revealed limited sets of transcription factors differentially expressed in stem cells along the anterior-posterior axis of the intestinal tract that conceivably function in maintaining commitment states. For instance, and consistent with previous observations³⁰, GATA4 and GATA6 were expressed most strongly in the anterior portions of the intestinal tract (Fig. 4c). Significantly, the selective deletion of GATA4

and GATA6 in the murine duodenum and jejunum promotes ileal properties and a detrimental phenotype^{30,31}, suggesting a role for these transcription factors in maintaining segmental identity acting at the level of the stem cell. Similarly, the requirement for Onecut2 in the duodenum³² might be at the level of the duodenal stem cells. It is likely that analyses of cloned stem cells from the various segments of the intestinal tract will help to unravel the roles of such segment-specific transcription factors in the establishment of commitment and differentiation programs. Importantly, the overall properties of ISCs from fetal sources are conserved in those derived from endo-scopic biopsies of paediatric and adult cases (Fig. 4d–f).

Genomic and lineage stability

Human embryonic stem cells and iPSC lines acquire with successive passages genomic structural variations, including some that confer a selective advantage^{33,34}. To assess the genomic stability of our ISC^{GS} we examined copy number (CNV) and single nucleotide variation (SNV) in two independent ISC^{GS} pedigrees derived from the ileum of one fetal demise case after 50 (passage 5; P5), 100 (P10), 150 (P15), and 200 days (P20) of continuous proliferation (Fig. 5a, b). At P5, when single ISC^{GS} pedigrees can be amplified to an estimated 300 million to 75 billion cells, no chromosomal aneuploidies were detected, although one pedigree showed three interstitial deletions affecting two genes (Fig. 5c; Extended Data Fig. 5a; Supplementary Information Table 1). This low level of structural variation was maintained though passage 10, although increased by P15 and at P20 one of the pedigrees showed a frank trisomy of chromosome 12 (Fig. 5c; Extended Data Fig. 5a; Supplementary Information Table 1). A similar upward trend in CNV as a function of passage number was observed in five intestinal pedigrees (pedigrees 3-7) derived from a separate fetal demise case (Extended Data Figs 5, 6; Supplementary Information Tables 1, 2).

By exome sequencing, our original two pedigrees showed few (0-1)non-synonymous mutations through passage 10, and these increased modestly (1-2 new non-synonymous mutations) through P15 and P20 (Extended Data Fig. 5a). None of these non-synonymous mutations have been reported as driver genes in human cancers. A similar trend was observed in the five pedigrees from the second fetal demise case followed through P5 and P25. By P25 the range of non-synonymous SNVs increased to 2-10 per clone, and while not involving obvious cancer driver genes, did include genes such as ECT2L and EP300 that might provide a selective growth advantage (Extended Data Fig. 5c). These data indicate that most pedigrees sustain few genomic changes within the first 100 days of proliferative expansion. By P15 and through P25, however, half the pedigrees showed evidence for aneuploidy as well as an increase in interstitial CNV and SNVs with allele frequencies nearing 0.5, suggesting the rise of an advantaged subclone. We asked how these late-passage genomic changes might affect differentiation by comparing early and late passages of pedigree 2 in ALI differentiation. By all histological criteria, including Alcian blue staining for goblet cells and intestinal marker staining, we could not distinguish the ALI-differentiated epithelia derived from P7, P17 and P27 (Fig. 5d; Extended Data Fig. 7). Similarly, we note that these intestinal stem cell pedigrees do not lose (or gain) clonogenicity when tested at P7 and P16, which remain stably above 50% (Fig. 5e, f). Lastly, we found no evidence of tumorigenicity by these ground state intestinal stem cells, including those at P25 harbouring aneuploidies, following their subcutaneous implantation to immunodeficient (NOD.Cg-Prkdc^{scid} Il2rg^{tm1Wjl}/SzJ) mice³⁵ (Extended Data Fig. 8).

Modelling Clostridium difficile infections

C. difficile is a Gram-positive, spore-forming bacterium and the primary cause of nosocomial diarrhoea and pseudomembranous colitis³⁶. The pathogenicity of *C. difficile* is linked to its production of two similar, high molecular weight toxins TcdA and TcdB. While together TcdA and TcdB cause fluid secretion, inflammation, and colonic

Figure 6 C. difficile toxin B effects on in vitro-generated colonic epithelia. **a**, TcdB effects on colonic stem cell-derived epithelia. Scale bar, 100 μ m. n = 4technical replicates. b, Tight junction protein claudin 3 (CLDN3; red) and adherens junction marker cadherin-17 (CDH17; green) in ALI colonic epithelium treated with TcdB. Scale bar, 50 μ m; n = 4 biological replicates. c, Dextran permeability assay on TcdB-treated ALI colonic epithelia. d, 3D plot

indicated. n = 2 technical replicates. tissue damage, their respective and possible synergistic roles have experiments in vivo or transplantation of cells from intestinal organoids^{23,43,44}. As stem cells comprise only a minor component been difficult to ascertain³⁷⁻³⁹. We therefore challenged colonic epiof organoids-perhaps less than 1%45-the molecular features of stem cells of columnar epithelia such as the intestinal tract have remained unclear. Therefore the selective cloning and proliferative expansion of highly clonogenic, ground state intestinal stem cells described here offers a first glimpse into the molecular properties of these cells. Our inability to convert differentiated cells to clonogenic cells supports the notion that we are cloning resident stem cells rather than somehow 'reprograming' differentiated enterocytes. These resident stem cells possess robust epigenetic programs of commitment to regiospecific intestinal differentiation that are stable despite more than six months of continuous propagation. This cellautonomous regiospecificity of stem cells along the intestinal tract argues against a unitary 'intestinal stem cell' or even one each for the histologically recognized segments, but rather a developmentally established spectrum of stem cells that ultimately maintains the histological and functional properties that define these segments. A heur-

istic deciphering of the commitment code from the regiospecific expression patterns presented here will guide parallel efforts with iPSCs to achieve appropriate lineage fates⁴⁶. Interestingly, many inductive signalling pathways and transcription factors implicated in embryonic gut formation⁴⁷ may act to reinforce commitment codes via continued expression in stem cells of the intestinal tract.

0-3 rating for colonic epithelial integrity. e, Heat map of 39 genes differentially expressed between TcdB (500 pM, 24 h) and controls (> threefold and P < 0.05

by Student's t-test). f, 3D plot of seven selected genes at time points and doses

We anticipate that the ability to maintain these stem cells in their elemental state will enable the discovery of epigenetic mechanisms that underlie properties of very long-term self-renewal, exquisitely precise lineage commitment, and the intrinsically directed, selfassembly of differentiated epithelia. Although we demonstrate the potential of clonally-derived colonic epithelia to model the pathogenesis of C. difficile toxins, we anticipate the need to restore complexity

thelia derived from cloned, ground state colonic stem cells with recombinant TcdB (Fig. 6a, b; Extended Data Fig. 9a, b). At higher concentrations or longer time points there is a loss of goblet cells, disruption of the crypt architecture, cell polarity, and a specific loss of tight versus adherens junction proteins that correlates with increased dextran permeability (Fig. 6c). These dose-response changes in the ALI colonic epithelium mirror those of C. difficile-associated pseudomembranous colitis (Fig. 6d, Extended Data Fig. 9a, b). Microarray analysis of ALI-generated colonic epithelia following nine TcdB treatment conditions revealed alterations in gene expression in a time- and dose-dependent manner (Fig. 6e, f; Extended Data Fig. 9c-f). Pathway analysis indicated that TcdB triggers changes in gene expression related to inflammation, RhoB-mediated actin regulation, and junctional dynamics previously implicated in C. difficile pathology^{40,41}. In addition, this analysis revealed that DUOX2 and DUOXA2 were consistently the two highest upregulated genes (Fig. 6e, f). These proteins form an enzyme capable of producing hydrogen peroxide and have been implicated in the inflammation of inflammatory bowel disease $(IBD)^{42}$. Finally, we also tested *C. difficile* TcdA in our model. TcdA is reported to be a specific enterotoxin^{36,37}, and indeed we found that it triggers similar cytopathic and permeability changes in ALI models of human colonic epithelium (Extended Data Fig. 10), albeit at lower doses than those effective for TcdB. Together these findings underscore the potential of this model system to recapitulate and elucidate C. difficile pathology.

Discussion

Adult stem cells of the highly regenerative intestinal tract remain largely defined by metabolic, marker profiling, or lineage tracing in the form of mesenchyme, immune cells, enteric neurons and perhaps components of the microbiome⁴⁸ to fully recapitulate disease dynamics. In particular, enteric maladies such as inflammatory bowel disease represent important medical challenges whose aetiologies most likely reside in interactions between the immune system, intestinal mucosa and intestinal flora^{49,50}. Finally, the ability to clone patient-specific, ground state stem cells from columnar epithelia via endoscopic biopsies, coupled with their orders-of-magnitude expansion kinetics over organoids, favours their use in regenerative medicine, pre-clinical trials and disease modelling.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 20 December 2014; accepted 14 April 2015. Published online 3 June 2015.

- 1. Tabar, V. & Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. *Nature Rev. Genet.* **15**, 82–92 (2014).
- Okano, H. & Yamanaka, S. iPS cell technologies: significance and applications to CNS regeneration and disease. *Mol. Brain* 7, 22 (2014).
- Müller, A. M. & Dzierzak, E. A. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. *Development* 118, 1343–1351 (1993).
- Helgason, C. D., Sauvageau, G., Lawrence, H. J., Largman, C. & Humphries, R. K. Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated *in vitro*. *Blood* 87, 2740–2749 (1996).
- Bonde, S., Dowden, A. M., Chan, K. M., Tabayoyong, W. B. & Zavazava, N. HOXB4 but not BMP4 confers self-renewal properties to ES-derived hematopoietic progenitor cells. *Transplantation* 86, 1803–1809 (2008).
- luchi, S., Dabelsteen, S., Easley, K., Rheinwald, J. G. & Green, H. Immortalized keratinocyte lines derived from human embryonic stem cells. *Proc. Natl Acad. Sci.* USA 103, 1792–1797 (2006).
- 7. Amabile, G. et al. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. *Blood* **121**, 1255–1264 (2013).
- Suzuki, N. *et al.* Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. *Mol. Ther.* **21**, 1424–1431 (2013).
- Rheinwatd, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. *Cell* 6, 331–343 (1975).
- Rama, P. et al. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 363, 147–155 (2010).
- Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells of stratified epithelia. *Cell* **129**, 523–536 (2007).
- Kumar, P. A. et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147, 525–538 (2011).
- Matsuura, R. et al. Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cells. Stem Cells 24, 624–630 (2006).
- Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
- 15. Ootani, A. *et al.* Sustained *in vitro* intestinal epithelial culture within a Wntdependent stem cell niche. *Nature Med.* **15**, 701–706 (2009).
- Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).
- 17. Fordham, R. P. *et al.* Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. *Cell Stem Cell* **13**, 734–744 (2013).
- Middenders & Coloring energies and rates in highly cell stellar cell as 199-144 (2013).
 Middenders, S. *et al.* Adult stem cells in the small intestine are intrinsically promemory with their leaving analysis function. Stem Color 22, 1092, 1091 (2014).
- grammed with their location-specific function. Stem Cells 32, 1083–1091 (2014).
 Yin, X. et al. Niche-independent high-purity cultures of Lgr5⁺ intestinal stem cells and their progeny. Nature Methods 11, 106–112 (2014).
- Kim, K. A. et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309, 1256–1259 (2005).
- Dreesen, O. & Brivanlou, A. H. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 3, 7–17 (2007).
- Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).
- Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
- Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012).
- 25. Botrugno, O. A. et al. Synergy between LRH-1 and beta-catenin induces G1 cyclinmediated cell proliferation. *Mol. Cell* **15**, 499–509 (2004).
- Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. *Nature* 423, 255–260 (2003).
- Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 40, 915–920 (2008).
- Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

- Metcalfe, C., Kljavin, N. M., Ybarra, R. & de Sauvage, F. J. Lgr5⁺ stem cells are indispensable for radiation-induced intestinal regeneration. *Cell Stem Cell* 14, 149–159 (2014).
- Battle, M. A. et al. GATA4 is essential for jejunal function in mice. Gastroenterology 135, 1676–1686 (2008).
- Walker, E. M., Thompson, C. A. & Battle, M. A. GATA4 and GATA6 regulate intestinal epithelial cytodifferentiation during development. *Dev. Biol.* 392, 283–294 (2014).
- Dusing, M. R., Maier, E. A., Aronow, B. J. & Wiginton, D. A. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. *Physiol. Genomics* 42, 115–125 (2010).
- International Stem Cell Initiative. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. *Nature Biotechnol.* 29, 1132–1144 (2011).
- Avery, S. et al. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. *Stem Cell Rep.* 1, 379–386 (2013).
- Shultz, L. D. et al. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc. http://dx.doi.org/10.1101/pdb.top073585 (2014).
- Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).
- Carter, G. P., Rood, J. I. & Lyras, D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol. 20, 21–29 (2012).
- Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).
- Farrow, M. A. et al. Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc. Natl Acad. Sci. USA 110, 18674–18679 (2013).
- Huelsenbeck, J. et al. Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile. Biochemistry 46, 4923–4931 (2007).
- Biochemistry 46, 4923–4931 (2007).
 Aktories, K., Schmidt, G. & Just, I. Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381, 421–426 (2000).
- MacFie, T. S. et al. DUOX2 and DÚOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. *Inflamm. Bowel Dis.* 20, 514–524 (2014).
- Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. *Am. J. Anat.* **141**, 537–561 (1974).
- Yui, S. *et al.* Functional engraftment of colon epithelium expanded *in vitro* from a single adult Lgr5⁺ stem cell. *Nature Med.* 18, 618–623 (2012).
- Wang, F. et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. *Gastroenterology* 145, 383–395 (2013).
- Watson, C. L. *et al*. An *in vivo* model of human small intestine using pluripotent stem cells. *Nature Med.* 20, 1310–1314 (2014).
- Sheaffer, K. L. & Kaestner, K. H. Transcriptional networks in liver and intestinal development. Cold Spring Harb. Perspect. Biol. 4, a008284 (2012).
- Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
- Brandl, K. & Beutler, B. Creating diseases to understand what prevents them: genetic analysis of inflammation in the gastrointestinal tract. *Curr. Opin. Immunol.* 24, 678–685 (2012).
- Lees, C. W., Barrett, J. C., Parkes, M. & Satsangi, J. New IBD genetics: common pathways with other diseases. Gut 60, 1739–1753 (2011).

Supplementary Information is available in the online version of the paper.

Acknowledgements This work was supported by grants from Connecticut Innovations (W.X., F.M.), the Joint Council Office of the Agency for Science Technology Research Agency (A*STAR), Singapore (W.X., F.M.), the National Medical Research Council, Singapore (BNB101677A to H.K.Y., F.M., and W.X.; BnB11dec063 to N.N., F.M. and W.X.), the Department of Defense (W81XWH-10-1-0289 to C.P.C.) and the National Institute of Health (Al09575504 to D.B.L.). We thank M. LaLande, B. Lane and B. Seet for support, B. Tennent, B. Knowles and T. McLaughlin for comments on the manuscript, J. Hammer for artwork, L. Lapierre and J. Franklin for histology evaluation. We thank H. Green for advice and support.

Author Contributions Experimental design and conception were done by W.X., F.M., D.B.L., K.Y.H. and C.P.C.; X.W. cloned and differentiated the intestinal stem cells with help from L.H.W., F.K., G.N., B.E.H. and Y.H.; Y.Y., X.W. prepared the genomic and gene expression analyses together with F.K., G.N., C.C.K. and L.W.; T.Z., D.B. and N.N. performed all computational and bioinformatics work. B.H. and C.P.C. obtained fetal tissues and F.A.S., J.S.H. and T.D. provided endoscopic biopsies, and R.B. analysed the xenografts. The C. *difficile* experiments were designed and executed by B.C., L.H.W., M.A.F. and D.B.L.; W.X. and F.M. wrote the manuscript with input from all other authors.

Author Information Data sets generated for this study have been submitted to the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database and the European Nucleotide Archive under accession numbers GSE66749 and SRP056402. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to W.X. (xianmckeon2014@gmail.com) or F.M. (mckeon.xian@gmail.com).

METHODS

In vitro culture of human small intestinal and colonic epithelial stem cells. Intestinal tissue from 20- to 21-week-old late fetal demise cases were obtained under parent consent as de-identified material under approved institutional review board protocols at the Brigham and Women's Hospital, Boston, MA, USA (2009P002281). Terminal ileum endoscopic biopsies were obtained under informed consent and institutional review board approval at the Connecticut Children's Medical Center, Hartford, Connecticut USA (15-047J-2). Fetal intestinal tissue or 1 mm endoscopic biopsies from terminal ileum were collected into cold F12 media (Gibco, USA) with 5% fetal bovine serum (HyClone, USA) and then minced by sterile scalpel into 0.2-0.5 mm³ sizes to a viscous and homogeneous appearance. The minced tissue was digested in 2 mg ml⁻¹ collagenase type IV (Gibco, USA) at 37 °C for 30-60 min with agitation. Dissociated cells were passed through a 70-µm Nylon mesh (Falcon, USA) to remove aggregates and then were washed four times in cold F12 media, and then seeded onto a feeder layer of lethally irradiated 3T3-J2 cells9,12 in c-FAD media9 modified to SCM-6F8 media by the addition of 125 ng ml⁻¹ R-spondin1 (R&D systems, USA), 1 μ M Jagged-1 (AnaSpec Inc., USA), 100 ng ml⁻¹ human Noggin (Peprotech, USA), 2.5 µM Rock-inhibitor (Calbiochem, USA), 2 µM SB431542 (Cavman chemical, USA), and 10 mM nicotinamide (Sigma-Aldrich, USA). Cells were cultured at 37 °C in a 7.5% CO2 incubator. The culture media was replaced every two days. Colonies were digested by 0.25% trypsin-EDTA solution (Gibco, USA) for 5-8 min and passaged every 7 to 10 days. To obtain single-cell suspensions colonies were trypsinized by TrypLE Express solution (Gibco, USA) for 8-15 min at 37 °C and cell suspensions were passed through 30-µm filters (Miltenyi Biotec, Germany). Approximately 20,000 epithelial cells were seeded to each well of 6-well plate. Cloning cylinder (Pyrex, USA) and high vacuum grease (Dow Corning, USA) were used to select single colonies for pedigrees. Gene expression analyses were performed on cells derived from passage 4-8 (P4-P8) cultures.

Histology and immunostaining. Histology, haematoxylin and eosin (H&E), Alcian blue, periodic acid-Schiff (PAS), rhodamine B staining, immunohistochemistry, and immunofluorescence were performed using standard techniques. For immunofluorescence and immunohistochemistry, 4% paraformaldehydefixed, paraffin-embedded tissue sections were subjected to antigen retrieval in citrate buffer (pH 6.0, Sigma-Aldrich, USA) at 120 °C for 20 min, and a blocking procedure was performed with 5% bovine serum albumin (BSA, Sigma-Aldrich, USA) and 0.05% Triton X-100 (Sigma-Aldrich, USA) in phosphate-buffered saline (PBS; Gibco, USA) at room temperature for 1 h. Primary antibodies used in this study and staining condition were listed in Supplementary Information Table 3. All images were captured by using the Inverted Eclipse Ti-Series (Nikon, Japan) microscope with Lumencor SOLA light engine and Andor Technology Clara Interline CCD camera and NIS-Elements Advanced Research v.4.13 software (Nikon, Japan) or LSM 780 confocal microscope (Carl Zeiss, Germany) with LSM software. Bright field cell culture images were obtained on an Eclipse TS100 microscope (Nikon, Japan) with Digital Sight DSFi1camera (Nikon, Japan) and NIS-Elements F3.0 software (Nikon, Japan).

Stem cell differentiation. Air–liquid interface (ALI) culture of TBSCs was performed as described^{12,51}. Briefly, for ALI culture of intestinal and colonic epithelial stem cells, Transwell inserts (Corning, USA) were coated with 20% Matrigel (BD Biosciences, USA) and incubated at 37 °C for 30 min to polymerize. 200,000 irradiated 3T3-J2 cells were seeded to each transwell insert and incubated at 37 °C, 7.5% CO₂ incubator overnight. QuadroMACS Starting Kit (LS) (Miltenyi Biotec, Germany) was used to purify the stem cells by removal of feeder cells. 200,000–300,000 stem cells were seeded into each Transwell insert and cultured with SCM-6F8. At confluency (3–7 days), the apical media was removed through careful pipetting and the cultures were continued for an additional 6–12 days before analysis.

Clostridium difficile toxin treatment and epithelial permeability assay. *Clostridium difficile* toxins A and B (TcdA, TcdB) were prepared as described⁵². Intestinal stem cells were differentiated in air–liquid interface cultures as described above and treated with 100, 250, 500 pM and 10 nM TcdA or TcdB for 0, 8, 16, and 24 h). At these time points, membranes with differentiated epithelia were collected for histology and microarray analysis. 4 kDa FITC-dex-tran (Sigma-Aldrich, USA) was added to the apical chamber of the Transwell chambers for a final concentration of 0.5 mg ml⁻¹. Media was removed from the bottom compartment after different incubation times and fluorescence was read by fluorometer (Infinite M1000 PRO, excitation 490 nm, emission 520 nm, Tecan, USA).

Implantation of intestinal stem cells. Intestinal stem cells (1.5 million cells) from different pedigrees with 50% of Matrigel (BD Bioscience, USA) were subcutaneously implanted into female, six- to eight-week-old immunodeficient (NOD.Cg-Prkdc^{scid} Il2rg^{tm1Wjl}/SzJ) mice³⁵ under IACUC approval (1005331115) To test spontaneous transformation of the stem cells, mice were monitored every month (up to 4 months).

RNA and genomic DNA sample preparation. For stem cell colonies, RNA was isolated using PicoPure RNA Isolation Kit (Life Technologies, USA). For ALI-differentiated epithelia, RNA was isolated using TRIzol RNA Isolation Kit (Life Technologies, USA). RNA quality (RNA integrity number, RIN) was measured by analysis Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (Agilent Technologies, USA). RNAs having a RIN > 8 were used for microarray analysis. Genomic DNA was extracted with DNeasy Blood & Tissue kit (Qiagen, Netherlands) from intestinal and colonic stem cells for CNV analysis and exome capture sequencing. For genomic DNA extraction, human intestinal and colonic stem cells were isolated from mouse 3T3 feeder layer using QuadroMACS Starting Kit (Miltenyi Biotec, Germany). Genomic DNA concentration was measured with Qubit dsDNA BR Assay Kit (Life Technologies, USA).

Expression microarray and bioinformatics. Total RNAs obtained from immature colonies and ALI-differentiated structure were used for microarray preparation with WT Pico RNA Amplification System V2 for amplification of DNA and Encore Biotin Module for fragmentation and biotin labelling (NuGEN Technologies, USA). RNA quality (RNA integrity number, RIN) was measured by analysis using an Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (Agilent Technologies, USA). RNAs having a RIN > 8 were used for microarray analysis. All samples were prepared according to manufacturer's instructions and hybridized onto GeneChip Human Exon 1.0 ST Array (Affymetrix, USA). GeneChip operating software was used to process all the Cel files and calculate probe intensity values. To validate sample quality, quality checks were conducted using Affymetrix Expression Console software. The intensity values were log2transformed and imported into the Partek Genomics Suite 6.6 (Partek Incorporated, USA). Exons were summarized to genes and a 1-way ANOVA was performed to identify differentially expressed genes. For two-sample statistics, P values were calculated by Student's t-test for each analysis. Unsupervised clustering and heat map generation were performed with sorted data sets by Euclidean distance based on average linkage clustering, and principal component analysis (PCA) map was conducted using all or selected probe sets by Partek Genomics Suite 6.6. Gene set enrichment analysis (GSEA)⁵³ was performed for C. difficile toxin B treatment. For the region-specific gene signature of small intestine and colon comparison (PD, PJ and MI for Fig. 2b and AC, TC and DC for Fig. 3b), differentially-expressed genes were selected with a cut-off value of 1.5-fold and P < 0.05 in each comparison (for example, (1) PD vs. PJ and (2) PD vs. MI) and then intersected genes in 2 gene lists of each comparison were taken as regiospecific gene sets. In the heat maps (Fig. 2b and 3b), 3 regiospecific gene sets (PD, PJ and MI, or AC, TC and DC) were combined, and the heat maps were made with Euclidean distance based on average linkage clustering. For C. difficile toxin B treatment data sets, samples from indicated time points and dosages were compared with control (untreated samples). Differentially-expressed genes (twofold upregulated and downregulated genes) were counted and plotted in 3D column plots (Extended Data Fig. 8c). In comparison of 500 pM 24 h toxin B treatment with control, 39 genes were significantly upregulated (cut-off value: 3-fold and P < 0.05) and a heat map (Fig. 6e) was made with 39 genes using all samples. The whole genome expression data of 500 pM 24 h toxin B treatment vs. control were applied to GSEA program to detect significantly enriched pathway in toxin B treatment. Selected pathways (from KEGG) were shown in Fig. 6d. Data sets generated for this study have been submitted to the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database under accession number GSE66749.

No statistical methods were used to predetermine sample size.

Copy number variation. For copy number variation analysis of stem cell pedigrees and passage 0 pooled sample, genomic DNA samples were genotyped with HumanOmniExpress BeadChip Kit for clone 1 and 2 (passage 5, 10, 15 and 20) (Illumina, USA) and Illumina HumanOmniZhonghua BeadChip Kit for clones 3 to 7 (passage 5 and 25) following the manufacturer's instructions. Analysis of BeadChip was performed using GenomeStudio Software (Illumina, USA). Illumina high-density SNP genotyping data was converted to kilobase-resolution detection of copy number variation. CNV detected in passage 0 pooled samples are considered as germline CNVs and removed in the analysis. The data was generated by PennCNV⁵⁴. Genes within 10 kb of CNV regions are reported. The parameter is set as "-expandleft 10k" and "-expandright 10k". Other parameters are default. Confidence score >10 was used as a cutoff. The call rates for CNV were all greater than 99%, and two larger CNV amplification and deletion events were validated by quantitative PCR.

Exome capture sequencing. For exome capture and high-throughput sequencing for intestinal stem cells (pedigree 1 and 2), 50 ng of genomic DNA was used to perform Nextera Expanded Exome Kit (Illumina, USA). For pedigree 3 to 7, 1 μ g of genomic DNA was sheared using a Covaris S1 Ultrasonicator (Covaris, USA),

end-repaired, A-tailed, and Adaptor-ligated. Exome capture was performed using a Tru-seq Exome Enrichment Kit (Illumina, USA) following the manufacturer's instructions. Multiplexed libraries were sequenced on an Illumina HiSeq sequencer using 101-bp paired-end reads. Reads were aligned to the reference genome (UCSC hg19) using Burrows Wheeler Aligner (BWA, 0.6.2)⁵⁵. PCR duplicates were removed using PICARD-1.94 (http://picard.sourceforge.net). The Genome Analysis Toolkit (GATK framework version 2.6.4)⁵⁶ was used to realign reads near indels and to recalibrate base quality values.

When running GATK, the minimum phred-scaled confidence threshold at which variants were called (-stand_call_conf) was 50, and the minimum phredscaled confidence threshold at which variants were emitted (-stand_emit_conf) is 30. The criteria of GATK Variant Filtration is as follows: --clusterWindowSize 10--filterExpression "MQ0 > 4 && ((MQ0/(1.0*DP)) > 0.1)"--filterName "HARD_ TO_VALIDATE"--filterExpression "DP < 5"--filterName "LowCoverage"-filterExpression "QUAL < 30"--filterName "VeryLowQual"--filterExpression "QUAL > 30 && QUAL < 50"--filterName "LowQual"--filterExpression "QD < 1.5"--filterName "LowQD"--filterExpression "FS > 150"--filterName "StrandBias". Potential mouse genomic DNA contaminant reads were detected by alignment to the mouse genome (UCSC mm10) and those containing less than 3 mismatches were removed from further analysis. SNVs were called in each sample separately using SAMtools v0.1.1957 and GATK in the exome capture targeted regions. Variants with at least Q50 confidence, phred-scaled quality score more than 40 and coverage higher than 10 were considered as true SNVs. Variants were annotated with ANNOVAR (version 11 Feb, 2013)58. Identical variant calls in intestinal stem cells (passage 5 and higher) when compared to passage 0 pooled samples were used to identify germline SNVs. Sanger sequencing validation was performed using primers designed with Primer3 software version 4.0 (http://frodo.wi.mit.edu/). Extracted genomic DNA was amplified with titanium Taq polymerase (Clontech Laboratories, CA, USA) and purified PCR products were sequenced in the forward directions using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction kits and an ABI PRISM 3730 Genetic Analyzer (Applied Biosystems, CA, USA). We validated by PCR and Sanger sequencing 13 of 14 non-synonymous mutations called by our sequencing efforts suggesting a false discovery rate of less than 10%. Other quality control parameters are shown in Supplementary Information Table 4.

- Schmidt, D., Hübsch, U., Wurzer, H., Heppt, W. & Aufderheide, M. Development of an *in vitro* human nasal epithelial (HNE) cell model. *Toxicol. Lett.* 88, 75–79 (1996).
- Chumbler, N. M. *et al. Clostridium difficile* toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. *PLoS Pathog.* 8, e1003072 (2012).
- Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
- Wang, K. et al. PennCNV: an integrated hidden Markov model designed for highresolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).
- Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. *Bioinformatics* 25, 1754–1760 (2009).
- McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303 (2010).
- Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
- Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 38, e164 (2010).

Extended Data Figure 1 | Loss of clonogenicity in differentiated ISC. a, Schematic of ISC differentiation using either the γ -secretase inhibitor dibenzazepine (DBZ) or withdrawal of the Wnt regulator R-spondin 1 (Rspo1). ISCs were plated on day 0, DBZ added or Rspo1 removed at day 2, and colonies passaged en masse at day 7. At day 14, after 7 days of continuous growth, colonies were counted. **b**, Micrographs show immunofluorescence at day 7 colonies grown without Rspo1 or in the presence of DBZ for 5 days using antibodies to Ki67, chromogranin A (CHGA), keratin 20 (Krt20), E-cadherin (E-cad), and mucin 2 (Muc2). Scale bar, 50 µm; n = 4 technical replicates. **c**, Histogram shows colony formation in each condition normalized to control ISCs. n = 4 biological replicates; error bars, s.d. **d**, Staining of ALI-differentiated intestinal stem cells with monoclonal antibody HD6 directed to Paneth cells. Scale bar, 50 µm; n = 4 technical replicates.

Gene

-		

Cell types	symbol											
Du-high	ABCB6	ABHD2	ABHD2	ACOX1	ADAM28	AHNAK	AKR1B10	ALDH3A1	ANXA1	ANXA10	ANXA5	ARHGAP24
133 genes	ARL4C	BACEZ	BCASI	BICCI	BID	Cilony	C4ort34	CAZ	CAPG	CAPNO	CD24	CD59
	CLDN18	CNOT7	CRIP1	CISD	CXCL17	CYP2C18	CYP3A5	CYSTMI	DNM2	DPCR1	EHDZ	EPB41L1
	FAMILOB	FAM177B	FAM189A2	FN1	FOSB	FSIPZ	FUI9	FXYD3	GALN13	GALN17	GNAQ	GPR87
	GPRC5B	HIPK2	HMGCS2	HOXB8	HS3ST5	HSPB1	HTR1B	IL18R1	IL2RA	KCNE3	KLF4	LEPREL1
	LGMN	LPAR1	LRP1	LYPD6B	MAOB	MEIS2	METTL7A	MFSD1	MITF	MLPH	MSMB	MUC1
	MXD1	MYEOV	NDUFB1P1	NEK6	NFAT5	NKX6-3	NTRK2	OASL	P4HA1	PART1	PCDH7	PGC
	PLA2G10	PLXNA2	PP7080	PPARGC1A	PSCA	PVRIG	PXDC1	QKI	RAB27B	RBMS1	RERG	RETSAT
	RGNEF	RHBDL2	RHOBTB1	RNF128	RNF183	ROBO1	S100P	SCIN	SFTA2	SGK2	SLC16A3	SLC19A3
	SLC26A9	SLC41A2	SLC44A4	SLC45A3	SLC4A4	SLC9A1	SLC9A2	SLC9A3	SMPDL3A	SPINK1	STEAP1	SULT1C2
_	SYT9 VSIG2	TFF1	TFF2	TFF3	TM4SF1	TPBG	TRAK1	TSHZ2	TSPAN1	TSPAN31	UGDH	VSIG1
Je-high	BDKRB2	C2CD4A	CCR1	CHRM3	CPVL	CYP2A13	EPHB1	FAM47B	FMOD	GLDC	HSD17B7P2	IFITM3
24 genes	LGR5	ODAM	OR8J1	PHYHIPL	RTP4	SESN1	SHPK	SLC26A2	STARD13	TPH1	UNC93A	ZRSR2
II-high	ABCB1	ABCC2	ABCG2	ACE2	ACOX2	ADH4	ADH6	AKAP7	ALDOB	ANPEP	ANXA2P2	APOB
178 genes	AREG	BTNL3	C17orf72	C1orf201	C1orf21	C3orf26	C3orf52	C4BPB	CACNA1E	CCL25	CCND2	CD52
	CDH17	CDX2	CEACAM1	CEACAM5	CELA3A	CELA3B	CHGA	CIDEC	CLCA1	CLIC5	CLRN3	CPE
	CSF1R	CYBRD1	CYP2A7	DACH1	DENND1A	DHRS11	DKK1	DMBT1	DOK3	DPP4	DSG3	DUSP5
	EFCAB4B	EGR2	EML1	EREG	F2R	FABP2	FABP6	FAM105A	FCGBP	FGF23	FITM2	FOLH1
	FRZB	GALNT8	GBA3	GCET2	GDAP1	GFOD1	GHRL	GIP	GJA1	GLS	GPA33	GSDMB
	GSTA2	GUCY2C	HEPACAM2	HHLA2	HLA-DRB1	HNF4G	HTR1D	IL18	IL2RG	IL32	INE1	IRF8
	ITLN1	JAG1	KIAA0226L	KIRREL	KLF7	KRT20	KRT33B	KRT80	L1TD1	LCT	LEAP2	LGALS2
	LGALS3	LINC00483	LOC100132099	MANBAL	MAOA	MARCH3	MARCH8	MB21D2	MEP1A	MEP1B	MICAL2	MIR17HG
	MLN	MOGAT3	MRPS18A	MUC13	MUC17	MYO1A	MYO1E	MYO7B	NABP1	NELL2	NIPAL1	NME5
	NODAL	NOX1	NPYER	NR1H4	O3FAR1	OSR2	OSTBETA	OSTalpha	OTC	PADI2	PAPSS2	PDE10A
	PDE3A	PDP1	PI3	PLA2G12B	PLK1S1	PMP22	PRAP1	RASGRF2	RBP2	RGS2	RHOB	RNF182
	RNF217	SARM1	SATB2	SEMA3D	SEMA6D	SERTAD1	SI	SIDT1	SLC17A4	SLC2A5	SLC30A2	SLC46A3
	SLC6A20 UGT2B15	SLC7A6 VTN	SNX10 XDH	TCEANC YAE1D1	TGFBI ZG16	THEM4 ZNF208	TM4SF20 ZNF347	TM6SF2 ZNF502	TMEM45B ZNF705G	TRIM36 ZYX	TUBAL3	TUFT1

b

Extended Data Figure 2 | **Intestinal stem cell expression profiles. a**, List of genes differentially expressed in ISC derived from duodenum, jejunum and ileum. These data correspond to heat map of Fig. 2b. **b**, Immunofluorescence labelling of ALI-differentiated ISCs from duodenum with antibodies against

Tff2, mucin 5AC, villin, E-cadherin, and mucin 2. **c**, Immunofluorescence labelling of ALI-differentiated epithelia from jejunum stem cells with antibodies to E-cadherin, mucin 2, villin, and mucin 5AC. Scale bar, 50 μ m; n = 10 technical replicates.

76 genes, 1.5 fold & p < 0.05

Extended Data Figure 3 | **Differential gene expression in epithelia derived from colonic stem cells.** Heat map of differentially expressed (>1.5-fold, P < 0.05) genes in ALI cultures derived from stem cell pedigrees of ascending, transverse, and descending colon.

RESEARCH ARTICLE

Extended Data Figure 4 | **Differential gene expression across columnar and stratified epithelial stem cells. a**, Histograms of expression microarray signal intensity of selected genes across averaged intestine and colon ISCs, stratified epithelial stem cells, and stem cells of the fallopian tube (FT). Biological replicas n = 2-6 (FT = 2, stratified epithelia = 3, colon, intestine = 6); error bars, s.d. **b**, Dot plot showing expression microarray data of indicated genes for stem cell pedigrees (ISC; Duo, duodenum; Jej, jejunum; Ile, ileum; AC, ascending colon; TC, transverse colon; DC, descending colon) derived from various regions of the intestinal tract before and after air–liquid interface (ALI) differentiation. Biological replicas n = 2 (total 12 data sets) for stem cells, technical replicas n = 2 for ALI. **c**, Chart of aggregate *P* values by Student's *t*-test for gene expression changes between ground state stem cells and their ALI-differentiated counterparts.

a CNVs and SNVs in 2 clones of Fetus-1

CNV .			Pedig	06 t				Pec	10062		
_		P5	P10	P15		P20	P5	Pt0	P1	6	P20
omp	0	(0)	0 (0)	0 (0)		0(0)	0(0)	0(0)	9 (4	4). 1 (1)	+ Chv12
del	- 1	1 (2)	0 (0)	2 (13)	K	4 (13)	0.00	1.(1)	1.0	0	1(1)
SNV	Note	(intected)	vot distocted	SPEF2 (ns) SP	EF2 (ns) 4	IRAP (ns)	a IRAP (ms)	IL IRAP CMYAS	(ns), IL1 5 (ns) CA	RAP (na) IVA5 (m)
Gene lis	t for	CNVs in	5 clones	of Fetu	15-2						-
Gones affect	ted by	Game symb	-								
Pedigree 3	P5	Nir genes					-		al more and	in the second	
Pedigrae-4	P25	ACAP2	CADIN	INGC	IRGE	PLAUR	SRHMS	2017-428	CNES76	MIR196A2 3	SALET
Dedices 6	P40	SEPSECS	itty.								
. confine a	P25	Chr 2.7.10	and 12 trister	les.							
Pedigree 6	P5	No general	Ch-13								_
Padimas 7	P45	Na néres	Chr 12	Construction in the							_
r sugres /	P25	LOC15222	5								_
Genera affor	ted by	Cana minut									-
Pedigree 3	P5	GPCRLTM	7 NCK1	RIM52					-		
	P25	ACAPY	APRR1IP	ASXI 2	RMPRO	BNIP2	CEL2	FAMINA	FANCA	FARS2	FHE
	-	HERCH	HEDEA	11.104	H DEM	Lingura	HADVE	AAADVEL DO	ANTIATIAN	LEVIDAL	ANDEAL
		HERLI	HERDA	LESA	Laton	LUCILE	MAPAD	MOSVELLIZ	MINCIZAN	MTPA	PREAL
		NCK1	NEATS	рнса	PIGL	RNF150	RNF216	RNF4	RPGRIPI	SIRT1	SKIL.
	-	SLC35F2	SNORA70	B SPPLZA	1MC07	TMEM116	1MEM22	TRPM/	WWOX	ZFR	
Pedigtes 4	P5	No genes									
Podigroe 5	PS	AGBL2	ARCN1	Giberi7.	S CLONS	CLPTM1	GABPB2	HERG4	(TFG)	LOC40110	MLLTT
		NCRNADO	ISA PIGL	PKD1L2	PTPRJ	SIRTI	WWP2	ZNFE04A			
	P25	IBNIP2	Clorit29	-C4orl34	CENPV	CFL2	CRVM	FANCA	GPR160	GTF2AZ	1.4
		NEM	LOCAN	6 MIR12A	NCKI	NCRNA0016	NEATS	PHCS	PIGL	SNORA23	TMEAK
		10047	ALC: N		(Sheet	the court of	10004	eres.	Come.		
Pedignie 6	P5	AQR	ASHIL	C110m6	S OSBPLIA	PNPTI	POUSE 1	P4 RAB39	RNF111	SAP30	SCRG
		SPPI 26	74543								
	P25	FHIT									
Pedignee 7	P5	No genes									
Gene list	for	SNVs in	5 clones	of Fetu	s-2						
Cinne No.	Passa	a Gare	aymbol of nor	synonime	un stal						_
Pedgee 3	Passa	#5 BSN		_							
	Passa	1 25 KIAA	0226 A1P7A								
Putgree 4	Passa	PES REM	XL1								
	Pontal	# 25 DOC	KIO CACR	FAI	MIJSA C	PHB2 PTDS	52	COHR KRITA	PA-5 PSM	C5 BPIFC	ANKRD
Pedigree 5	Passa	pe5 NoS	NVN								
1.1	Pansa	0 25 BAIT	CACN	ATE AS	UN LF	RC37A3					
Pidges 6	Pesse	and FAM	ETA KCNM	At							
	Pasilan	pe 26 TME	MAS CCTS	EC	EL1 EC	TZL CAM	(28	VIPR2 KCN	MA1 DTX4	PVRL2	
Pedgree 7	Passa	p=5 No S	NVs								
		-	BALL ADAL		Martin Ma	DAN NETA	DETA	COLOS			

Extended Data Figure 5 | Genes affected by CNV and SNV events in intestinal stem cell pedigrees during passaging. a, Summary of CNV (events (genes affected)) and non-synonymous SNV in pedigrees 1 and 2 at P5 to P20. b, Summary of genes altered by interstitial CNV amplifications (top) or deletions (bottom) in ISC pedigrees 3 to 7 at P5 and P25. c, Summary of genes sustaining non-synonymous SNV in five ISC pedigrees at P5 and P25.

Extended Data Figure 6 | Whole-genome CNV profiles for intestinal stem cell pedigrees 3–7 at P5 and P25. Regions marked by ovals represent aneuploidy.

Extended Data Figure 7 | **Impact of ISC**^{GS} **passaging on ALI differentiation.** ALI differentiation of intestinal pedigree 2 initiated from cells at the indicated passage number. As indicated, histological sections of differentiated epithelia were stained with antibodies to either E-cadherin (ECAD, green) and mucin 2 (Muc2, red), or Ki67 (green) and chromogranin A (CHGA, red). Scale bar, 75 μ m; n = 4 technical replicates.

Time	4	8	12	16
Name	wks	wks	wks	wks
Pedigree 3 P6	0/2	0/2	0/2	0/2
Pedigree 3 P25	0/2	0/2	0/2	0/2
Pedigree 5 P6	0/2	0/2	0/2	0/2
Pedigree 5 P25	0/2	0/2	0/2	0/2
Pedigree 7 P6	0/2	0/2	0/2	0/2
Pool	0/2	0/2	0/2	0/2
Cancer Cells	0/8	2/8	5/8	8/8

Extended Data Figure 8 | **ISC**^{GS} **tumorigenicity assays in immunodeficient mice. a**, Quantification of tumour formation assessments at 4–16 weeks following subcutaneous inoculation of two million cells of the indicated ISC pedigrees at passage 6 or passage 25 at 4–16 weeks. 'Pool' indicates total set of clones derived from P0 ileum culture before pedigree generation. 'Cancer cells' refers to propagating cells from case of high-grade serous ovarian cancer. **b**, Left, histological section through site of injection of 1 million cells from pedigree 3. Right, section of injection site stained with antibody (STEM121) to human epithelial cells (brown) revealing benign cysts. Scale bar, 15 µm.

Extended Data Figure 9 | Dose- and time-dependency of TcdB pathology in ALI-generated colonic epithelia. a, Immunofluorescence localization of adherens junction marker E-cadherin and tight junction marker claudin 3 in ALI-differentiated epithelia derived from transverse colon stem cells following exposure to 100 pM TcdB for the indicated durations. n = 4 technical replicates. Scale bar, 100 µm. b, Representative H&E images of ALI cultures at indicated times and concentration of TcdB exposure. Scale bar, 250 μ m; n = 4technical replicates. c, Gene set enrichment analysis of whole-genome expression data from colonic epithelia treated with 500pM TcdB for 24 h and control samples showing enriched KEGG pathway sets. NES, normalized enrichment score; NOM P value, nominal P value. d, 3D plot of upregulated genes at the indicated time points and dosages > twofold, P < 0.05). n = 2technical replicates. e, Heat map of upregulated genes in 500 pM TcdB samples. The genes (237 genes) were chosen by cutoff values (> twofold, P < 0.05). Three time points (8, 16 and 24 h) are shown. f, 3D plot of downregulated genes at the indicated time points and dosages > twofold, P < 0.05). n = 2technical replicates.

RESEARCH ARTICLE

Extended Data Figure 10 Dose- and time-dependency of TcdA pathology in ALI-generated colonic epithelia. a, Left, representative H&E images of ALI cultures at indicated times and concentration of TcdA exposure; right, immunofluorescence localization of adherens junction marker E-cadherin (ECAD; green) and mucin 2 (MUC2; red) in ALI-differentiated epithelia derived from transverse colon stem cells following incubation with 10 nM TcdA for the indicated durations. Scale bar, 100 μ m; n = 4 technical replicates. b, 3D plot of histological scoring of representative H&E time points and concentrations performed by a gastrointestinal pathologist according to a standard 0-3 rating for colonic epithelial integrity. c, Distribution of tight junction marker claudin 3 (Cldn3) and adherens junction marker (Cdh17) following treatment of ALI colonic epithelium with TcdA for the indicated times and doses. Scale bar, 50 μ m; n = 4 technical replicates. **d**, Histogram of permeability of ALI colonic epithelium (Papp) to small molecules (FD4, molecular mass 4,400 Da) following exposure to the indicated doses of TcdA for the indicated times.

AUTHOR QUERY FORM

LIPPINCOTT WILLIAMS AND WILKINS

JOURNAL NAME: PAS ARTICLE NO: AJSP_D_14_00447 QUERIES AND / OR REMARKS

QUERY NO.	Details Required	Author's Response	
Q1	A running head short title was not supplied; please check if this one is suitable and, if not, please supply a short title of up to 50 characters that can be used instead.	Please see edit	ed short title
Q2	Please confirm whether the conflict of interest statement is correct. If there are any conflicts of interest to be declared, please provide a statement to that effect.	correct.	
Q3	As per style all gene names should be in italics. Please italicize all occurrences of gene names in the article.	done.	
Q4	Key words included from he title page of the pdf, please confirm.	confirmed, wi	th edits.

ORIGINAL ARTICLE

1			
3	Evidence for a D	ualistic Model of	61
5			63
5	nign-grade ser	ous Carcinoma	65
7	BRCA Mutation Status, Histology, a	nd Tubal Intraepithelial Carcinoma	67
9	Prodec E Howitt MD * Suchanan Hanamorn	noonaniana MD + Douglas I Lin MD PhD*	60
11	James E. Conner. MD. PhD.* Stephanie S	Schulte. MD. PhD.* Neil Horowitz. MD.†8	09
13	Christopher P. Crum, MD,* and	Emily E. Meserve, MD, MPH^*	71
1.5			73
15			75
17	Abstract: Most early adnexal carcinomas detected in asympto-	women with HGSC. This model emphasizes the need for further study of HGSC precursors to determine their relevance to the	77
AQ3 19	matic women with germline BRCA mutations (BRCA ⁺) present as serous tubal intraepithelial carcinomas (STIC). However,	prevention of this lethal malignancy.	
21	STICs are found in $only 40\%$ of symptomatic high-grade serous	Key Words: fallopian tube, neoplasia, serous <u>carcinoma</u> BRCA, endometrioid tubal intraepithelial carcinoma risk-reduction	AQ4
22	variants of HGSC. Consecutive cases of untreated HGSC from	salpingo-oophorectomy	81
23	BRCA ⁺ and BRCA ⁻ women with detailed fallopian tube examination (SEE-FIM protocol) were compared STIC status (+/	(Am J Surg Pathol 2014;00:000-000)	83
25	-) was determined, and tumors were classified morphologically		85
27	as SE1 ("SE1", >50% solid, pseudoendometrioid, or transi- tional) or classic predominate ("Classic"). SET tumors trended	n the last decade, the origin of ovarian cancer has be-	07
29	toward a higher frequency in BRCA ⁺ versus BRCA ⁻ women $(50\% \text{ yr} 28\% P = 0.11)$ had a significantly younger mean are	tube has emerged as a potential origin for a significant	8/
31	than those with classic HGSC in-BRCA _x ⁻ women (mean 56.2 vs.	proportion of high-grade serous carcinomas (HGSCs). ^{1,2} Evidence in support of the distal fallonian tube as a site of	89
51	64.8 y, $P = 0.04$), and displayed a better clinical outcome in both groups combined ($P = 0.024$). STIC was significantly more	origin has been (1) the discovery of tubal epithelial atypia in	91
33	frequent in tumors from the BRCA- cohort (66% vs. 31%,	women with BRCA1 or BRCA2 mutations, (2) detection of high-grade serous tubal intraepithelial neoplasia (STIC) in	93
35	P = 0.017) and specifically the BRCA ² tumors with classic morphology (83%) versus those with SET morphology (22%,	risk-reducing salpingo-oophorectomies (RRSOs), (3) the finding of STIC in fallonian tubes of women with advanced	05
37	P = 0.003). Overall, several covariables—histology, BRCA status, age, coexisting STIC, and response to therapy—define 2	carcinoma, and (4) identification of a credible precursor	95
39	categories of HGSC with differences in precursor (STIC)	spectrum spanning both normal and neoplastic tubal mu- cosa. ^{1,3–5} The latter has been characterized by evidence of	97
41	HGSC model that could shed light on the differences in	DNA damage, p53 mutation, and progressive molecular	99
41	frequency of STIC between symptomatic and asymptomatic	ture and animal models. ^{6–8}	101
43		The percentage of HGSCs whose origins can be traced to the distal fallopian tube has increased in part attributable	103
45		to the use of sampling protocols (SEE-FIM) that more	105

- From the *Department of Pathology, Division of Women's and Perinatal Pathology; §Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brigham and Women's Hospital;
 ⁴⁹ ¹ ⁽¹⁾ ⁽²⁾
- Presented at the 103rd United States and Canadian Academy of Patho-51 logy Annual Meeting in San Diego, CA.
- C.P.C. and E.E.M. contributed equally.
- 53 Conflicts of Interest and Source of Funding: Supported by a grant from the Department of Defense (W81XWH-10-1-0289 to C.P.C.). The authors have disclosed that they have no significant relationships
- with, or financial interest in, any commercial companies pertaining to this article.
 Correspondence: Christopher P. Crum, MD, Department of Pathology,
- 57 Correspondence: Christopher P. Crum, MD, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 (e-mail: ccrum@partners.org).
- 59 Copyright © 2014 by Lippincott Williams & Wilkins

105

107

109

111

113

115

117

thoroughly examine the distal fallopian tube and fimbria.

Identification of STIC supports, if not confirms, a tubal

origin in 18% to 60% of cases of advanced or symptomatic

HGSCs.² Still, in a significant percentage of cases, a tubal

carcinogenic sequence has not been confirmed by detection

of an intramucosal carcinoma. In contrast, when HGSCs are

discovered early or in asymptomatic women (RRSO), ap-

been expanded to include endometrioid or endometrioid-

like (pseudoendometrioid) tumors, largely because of

the observation of an identical immunophenotype using

p53, PTEN, and Pax2 as well as similar rates of p53 mutation.¹² Of interest, Roh et al¹³ found that the

In recent publications, the spectrum of HGSC has

proximately 80% coexist with STIC.9-11

77

- endometrioid subset had a lower frequency of associated STIC. This finding was of borderline statistical sig nificance but raised the possibility that certain tumor
- 3 nificance but raised the possibility that certain tumor morphologies might be less likely to arise from STIC.
- 5 Recently, Soslow et al¹⁴ reported that particular patterns of HGSC-differentiation, namely solid, pseudoendome7 trioid, and transitional (SET; Fig. 1), were seen more
- commonly in association with BRCA1/2 mutations. This, 9 combined with the observations of Roh and colleagues,
- suggested that endometrioid or SET histology might not only be more commonly found in women with BRCA
- mutations but paradoxically less likely to be associated with a STIC as currently described. The purpose of this
- study was to examine this paradox from the perspective of symptomatic malignancies in women with $(BRCA_{+}^{+})$ and
- without (BRCA⁻) germline mutations in the BRCA1 or BRCA2 genes.

MATERIALS AND METHODS

Patient Samples and Case Selection

This study was approved by the institutional review 63 boards at Brigham and Women's Hospital (BWH) and Dana Farber Cancer Institute (DFCI). All cases of 65 HGSC resected at BWH from 2005 to 2013 were identified from archival records. Careful examination of the 67 tubes and ovaries, including the SEE-FIM protocol, was performed in all cases as previously described.³ This co-69 hort was cross-indexed with genetic testing records in the Center for Cancer Genetics and Prevention at DFCI to 71 identify 2 cohorts of women with HGSC: those who were confirmed to have BRCA1/2 germline mutations and 73 those documented to be negative for these mutations. Patients who received neoadjuvant chemotherapy were 75 excluded from this study. Between 2005 and 2013, 387

FIGURE 1. Histologic features of HGSC. Classic patterns include papillary (A), micropapillary (B), and infiltrative (C). SET patterns 117 include solid (D), endometrioid-like (E), and transitional (F).

.....

- 1 patients underwent surgery at BWH for a diagnosis of HGSC. Within this group, 116 underwent germline test-
- 3 ing for BRCA1 or BRCA2 mutations. A germline mutation in either BRCA1 or BRCA2 (BRCA⁺) was
- 5 detected by direct sequence analysis in 47 patients. No BRCA1 or BRCA2 germline mutation was detected in 69
- patients (BRCA⁻). Forty-one patients had undergone neoadjuvant chemotherapy treatment (10 BRCA⁺, 31 BRCA⁻) and were excluded from the study. Slides were
- unavailable for histologic review in 17 cases (11 $BRCA^+$,
- 11 6 BRCA⁻). Clinical outcome data including the time to last follow-up, and clinical status at last follow-up were 13 extracted from the electronic medical record.

15 Histologic Review and Classification

Invasive Tumors

17 Tumors were reviewed without knowledge of their BRCA mutation status and classified as previously de-

- 19 scribed into the following groups by 2 coauthors (B.E.H., C.P.C.):
- 21 • Classic Predominate HGSC Histology ("Classic"): >50% of the tumor demonstrates papillary, micro-23 papillary, or infiltrative architecture, and often desmoplastic stroma.
- 25 . SET Predominate HGSC Histology ("SET"): >50% of the tumor displays 1 or more variant features,
- 27 including solid growth, gland formation, and papillary transitional patterns.

29 The percentage of tumor containing SET versus classic histology was estimated in each case (in increments 31 of 10%).

33 STIC Diagnosis

STIC was identified and confirmed as previously described.^{4,5} 35

37 Statistical Analysis

Age and predominant morphologic pattern were 39 compared between BRCA⁺ and BRCA⁻ women by the Student t test and χ^2 test. Age was compared between

- 41 tumors with SET and classic predominant morphology by the Student t test. Subgroup analyses of frequency of
- 43 STIC were performed by the Fisher exact test. Analysis of survival using Kaplan-Meier curves and log rank tests 45 was performed.

47

RESULTS

49 Study Population

The study group comprised 26 BRCA⁺ cases in-51 cluding 21 advanced (stage 3-4) and 5 early (stage 1-2) carcinomas and 32 advanced BRCA⁻ cases, all of which

- 53 were evaluated by the SEE-FIM protocol. The 5 early carcinomas were all identified in RRSO specimens. Table 1
- 55 summarizes the 2 groups. In 16 (8 BRCA⁺ and 8 BRCA⁻) of the 58 cases, a
- 57 grossly normal-appearing portion of distal fallopian tube was sampled (one half of 1 fimbriated end) for research
- 59 immediately after excision and before processing. In 6, a

	Age (y)	No. STIC ⁺ Cases (%)
BRCA ⁺ (all; $n = 26$)	52.9*	8 (31)
SET $(n = 13)$	49.7	3 (23)
Classic $(n = 13)$	55.4	5 (38)
BRCA ^{$-$} (all; n = 32)	62.5*	21 (66)
SET $(n = 9)$	56.2**	2 (22)***
Classic $(n = 23)$	64.8**	19 (83)***

*P = 0.0007.

**P = 0.04.

***P = 0.003.STIC was ultimately identified in permanent sections from the main specimen. Ten samples taken for special studies were from specimens in which no STIC was identified in the permanent sections. Of these, 8 were examined by frozen section of the banked tissue, none of which revealed a STIC. No pathologic information was available on the re-

BRCA⁺ Women With HGSC Are Significantly Younger Than BRCA⁻ Women

maining 2 samples taken for special studies.

The study group included 17 women with BRCAL and 9 with BRCA2 mutations. The mean age of BRCA⁺ women was 52.9 years (range 42 to 76 y) and was significantly younger than that of the BRCA⁻ population (62.5 y; range 38 to 80 y, P = 0.0007).

BRCA⁺ Tumors Trend Toward a Higher Frequency of SET Morphology

Figure 2 and Table 1 summarize the comparison of **BRCA**⁺ and **BRCA**⁻ patients by predominant morphologic pattern. **BRCA**⁺ tumors were more likely to have SET morphology (50%) when compared with BRCAtumors, of which 28% were SET predominate (P = 0.11).

In BRCA⁻ Tumors, SET Morphology Is Seen in Younger Patients Compared With Those With Classic Morphology

Within the BRCA⁻ cohort, tumors with SET 101 morphology had a younger mean age compared with those with classic morphology (56.2 vs. 64.8 y_{e} P = 0.04). 103 The **BRCA**⁺ patients with SET morphology tended to be younger (mean 49.7 vs. 55.4 y), although this difference 105 was not statistically significant (P = 0.13).

SET Morphology in BRCA⁻ Tumors Is Less Likely 107 to be Associated With STIC

Figure 2 and Table 1 summarize and graphically 109 illustrate the frequency and morphology of STIC in **BRCA**⁺ and **BRCA**⁻ tumors. Eight of 26 (31%) 111 **BRCA**⁺ and 21 of 32 (66%) **BRCA**⁻ tumors contained STIC (P = 0.017). In the **BRCA**⁺ group, 38% and 23% 113 of classic and SET tumors, respectively, were associated with STIC (P = 0.3). In contrast, 83% and 22% of classic 115 and SET BRCA- tumors were associated with STIC, respectively (P = 0.003). When both **BRCA**⁺ and 117 **BRCA**⁻ groups were combined, the frequency of STIC in

87 89

91

93

95

97

99

71

73

75

77

79

81

83

85

AQ1 Howitt et al

 FIGURE 2. Comparison of BRCA⁺ and BRCA⁻ patients by predominant (> 50%) morphologic pattern and STIC status. Each
 83

 25 column represents a single patient's tumor, with percent tumor demonstrating SET morphology quantified in red and classic
 83

 27
 85

classic and SET tumors was 67% and 23%, respectively 29 (P = 0.003).

Although most STICs associated with SET tumors 31 were morphologically indistinguishable from those with classic tumors, 4, BRCA⁺ case revealed a STIC with a 33 more solid morphology similar to that seen in the asso-

ciated SET tumor (Fig. 3). The significance of this is 35 unclear at this point.

37 Clinical Outcome of Tumors With SET Versus Classic Morphology

Table 2 summarizes the clinical outcome of advanced 39 cases with SET versus classic morphology. In general, **BRCA**⁺ patients were less likely to be dead of disease 41 (DOD) at last clinical follow-up; however, 1 BRCA⁺ patient with SET morphology who died also had widely 43 metastatic breast carcinoma and so was excluded from this analysis. Five BRCA⁺ HGSCs were early stage and de-45 tected in RRSO and were also excluded from the clinical 47 outcome analysis. Of note, 4 of 5 (80%) early HGSCs demonstrated SET predominant morphology, whereas 1 of 49 5 (20%) demonstrated a predominantly classic pattern. All 5 of these **BRCA**⁺ patients were alive without evidence of disease (ANED) at last follow-up (mean 72.5 mo; range 51 48.3 to 106.5 mo). Of the BRCA⁺ patients with advanced disease (mean follow-up time 48.5 mo; range 6.4 to 53 107.2 mo), 5 of 9 (56%) patients with SET tumors were

ANED, in contrast to 3 of 12 (25%) patients with classic morphology who were ANED. Within the BRCA⁻ cohort

57 (mean follow-up time 30.4 mo; range 8.5 to 55.5 mo), a favorable effect on clinical outcome was seen in patients

59 with SET predominant tumors when compared with those

with classic morphology (1/12 [8%] DOD vs. 8/20 [40%] 87 DOD). After combining both BRCA⁺ and BRCA⁻ women, SET tumors were significantly more likely to trend 89 toward a less severe outcome (P = 0.024, χ^2 test for trend).

DISCUSSION

Beginning in 2000, a wealth of information has progressively linked the distal fallopian tube to the origin 95 of HGSC by the discovery of HGSC precursors in the tubal mucosa. This has produced a paradigm shift in the 97 field of ovarian cancer and prompted recent claims that this disease can be partially prevented by opportunistic 99 salpingectomy. The strongest endorsement of a tubal origin has been studies of early carcinomas, which are 101 discovered in approximately 5% to 10% of asymptomatic **BRCA**⁺ women; 80% are associated with a tubal intra-103 epithelial carcinoma (STIC). The distribution of disease in this early "snapshot" of HGSC was heavily weighted 105 toward the fimbria and prompted speculation that the tube was responsible for virtually all HGSCs. However, 2 107 subsequent observations suggested that the pathogenesis (and possibly origin) of HGSC is more complex. First, a 109 multitude of studies on average have detected STICs in only 40% (on average) of advanced HGSC. Second, a 111 study showed that "endometrioid" variants of HGSC had a lower frequency of STIC (8%) than HGSC with classic 113 morphology, albeit not significant (P = 0.09).¹³ Another study showed that tumors with SET morphology (solid, 115 pseudoendometrioid, transitional) were more likely to be associated with **BRCA**⁺ status.¹⁴ Taken together, these 117 studies raised the possibilities that the pathway to HGSC

91

93

FIGURE 3. Histology of intraepithelial carcinoma (A, C, E) and associated invasive tumor (B, D, F) in a BRCA⁻ (A and B) case and 53 BRCA⁺ (C–F) case. At higher magnification, the similarity in morphology of 1 BRCA⁺ STIC (E) and associated tumor with SET morphology (F) is evident. 111

might be more diverse than expected, both in precursor 57 and cell type.

This study establishes further that HGSC, in both 59 $BRCA^+$ and $BRCA^-$ women, is not a homogenous disease.

In our study of BRCA⁺ and BRCA⁻ groups, we found that several variables, including histology, coexisting STIC, age, and clinical outcome segregated 2 general tumor groups. 117 Further studies will be needed to flesh out the particulars,

	BR	CA'	A*	
	SET	Classic	SET	Classie
ANED	5	3	6	4
AWD	1	7	5	8
DOD	2	2	1	8
Total	9	12	12	20

39

15 but the following observations from this study-witnessed in both **BRCA⁺** and/or **BRCA⁻** tumors—suggest >1 form 17 of HGSC_{\overline{a}} (1) Multiple histologic patterns are observed in HGSC, and the SET pattern seems more common in 19 **BRCA**⁺ women albeit the significance of this association varies depending on the criteria for defining SET morphology and the study population.¹⁴ (2) A significant in-21 verse correlation exists between SET histology and STIC in 23 BRCA⁻ tumors. (3) SET histology in BRCA⁻ tumors is associated with a significantly younger mean age. (4) A 25 generally more favorable outcome exists for women with SET histology. Further study is warranted to determine 27 whether there is a consistent association of SET histology with chemo-responsiveness and whether the SET group of 29 HGSCs explains why BRCA⁺ tumors are generally more chemo-responsive.

The negative correlation between SET histology and coexisting STIC observed in both BRCA⁺ and BRCA⁻
tumors in this study suggests that the differences in morphology may reflect different pathways of tumor evolution.^{13,14} First, we found that SET tumors were associated with a significantly younger mean age than classic HGSCs.
Second, a recent report looking at fallopian tubes from low-

 FIGURE 4. A summative model of HGSC pathogenesis with respect to clinical features (age, outcome), precursor lesion, and tumor evolution. In this model, tumor morphology in HGSC could signal a greater likelihood of a certain tumor cell origin and/or biological behavior. The classic pathway involves a STIC and possibly a protracted period from precursor to HGSC. The SET pathway evolves differently as implied by lower frequency of STIC and a younger mean age at discovery.

The 2 pathways also seem to differ in terms of responsiveness to chemotherapy and PARP inhibitors.

risk women who underwent surgery for benign conditions suggests that isolated STICs in asymptomatic women are 61 more common than previously appreciated.¹⁵ Moreover, in **BRCA**⁺ women STICs in isolation confer a low risk for 63 HGSC, and when HGSC does develop, there is a lag period of 2 to 5 years after discovery of the STIC.9,10 The im-65 plications are that progression from STIC to HGSC does not always occur, and when it does it may take years. The 67 classic tumors-which have high association with STIC-fit nicely into the model proposed by Brown and Palmer¹⁶ that 69 allows an interval of a few years between initiation of carcinogenesis and symptomatic disease, during which a defined 71 precursor (STIC) develops and evolves. With the observed vounger mean age of discovery and lower frequency of 73 STIC, SET tumors do not fit as cleanly into this model.

Figure 4 accounts for the possibility of a second 75 pathway to HGSC and depicts a dualistic model of tumor development in HGSC that incorporates the 2 variables of 77 a defined precursor (STIC) and tumor histology (SET vs. classic). At one pole of this model is classic STIC, which 79 develops and may spread, but demonstrates lag phases both from precursor to STIC and from STIC to symptomatic 81 metastatic tumor, leading to an older average age of clinical presentation. At the other pole are SET tumors that could 83 arise from STIC, from some other tubal precursor, or from elsewhere and become clinically apparent at a younger 85 mean age. This admixture of 2 different tumor biologies would explain 4 prior observation, which is the rather 87 narrow age gap between BRCA⁺ women with STIC versus women with more advanced disease.9,10 89

This study separated classic and SET tumors on the basis of the assignment of the predominant histologic pat-91 tern, and it remains to be determined how this translates biologically and whether the associations seen will be re-93 produced and consistently reveal 2 separable entities. However, it should be emphasized that type II "ovarian" 95 cancers (HGSCs) are increasingly being subdivided, and the 97 notion that these tumors invariably evolve rapidly may be an oversimplification. For example, in the breast, multiple pathogenetic tumor types have emerged, with BRCA1 99 disease most frequently associated with a basal (including triple negative) breast cancer phenotype and an obscure or 101 particularly high-grade precursor that evolves rapidly.^{17,18} Another tumor phenotype, luminal A, is associated with 103 defined precursors, develops more slowly, and as expected is more likely to be detected on screening studies.¹⁹⁻²¹ 105 Additional studies are introducing dualistic classifications of HGSC in BRCA⁺ and BRCA⁻ women that correlate molecular profiles with outcome.^{22,23} In parallel with ar-107 guments for multiple tumor origins, others have divided 109 tumors prognostically into ovarian surface or tubal origin on the basis of expression signatures.^{24,25} Such studies beg 111 the correlation of molecular pathways, tumor morphology, and outcome with closer examination of the fallopian tube 113 and its environs to identify novel precursors to explain different biological behaviors within the spectrum of 115 HGSC. The answers bear not only on our understanding of type II HGSCs but also on expectations both from sero-117 logic screening and prophylactic salpingectomy.

ACKNOWLEDGMENTS

- The authors thank Drs Ross Berkowitz, Michael 3 Muto, Colleen Feltmate, and Donald Goldstein and Ursula
- Matulonis in the Divisions of Gynecologic Oncology at 5 BWH and DFCI-and, Dr Judy Garber and Ms Elizabeth Root in the Division of Medical Oncology at the Data
- 7 Farber Cancer Institute for their contribution to the study, and Mei Zheng and Christine Lam for assistance with the
- 9 histology and immunohistochemistry. Dr Hanina Hibshoosh of Columbia University provided helpful discussions
- 11 regarding the comparison of fallopian tube and breast neoplasia.
- 13

15

REFERENCES

- 1. Piek JM, van Diest PJ, Zweemer RP, et al. Dysplastic changes in 17 prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 2001;195:451-456.
- 19 2. Crum CP, Herfs M, Ning G, et al. Through the glass darkly: intraepithelial neoplasia, top-down differentiation, and the road to ovarian cancer. J Pathol. 2013;231:402-412. 21
- 3. Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal 23 relationship. Am J Surg Pathol. 2007;31:161-169.
- 4. Jarboe E, Folkins A, Nucci MR, et al. Serous carcinogenesis in the fallopian tube: a descriptive classification. Int J Gynecol Pathol. 25 2008:27:1-9.
- 5. Vang R, Visvanathan K, Gross A, et al. Validation of an algorithm 27 for the diagnosis of serous tubal intraepithelial carcinoma. Int J Gynecol Pathol. 2012;31:243-253.
- 6. Levanon K, Ng V, Piao HY, et al. Primary ex vivo cultures of 29 human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene. 2010;29:1103-1113.
- 31 7. Perets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous 33 ovarian cancer in Brca; Tp53; Pten models. Cancer Cell. 2013:24:751-765.
- 8. Lee Y, Miron A, Drapkin R, et al. A candidate precursor to serous 35 carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211:26-35.
- 37 9. Powell CB, Swisher EM, Cass I, et al. Long term follow up of BRCA1 and BRCA2 mutation carriers with unsuspected neoplasia identified at risk reducing salpingo-oophorectomy. Gynecol Oncol. 39 2013;129:364-371.
- Conner JR, Meserve E, Pizer E, et al. Outcome of unexpected 10. 41 adnexal neoplasia discovered during risk reduction salpingooophorectomy in women with germ-line BRCA1 or BRCA2
- mutations. Gynecol Oncol. 2014;132:280-286. 43

- 11. Gilbert L, Basso O, Sampalis J, et al. Assessment of symptomatic 45 women for early diagnosis of ovarian cancer: results from the prospective DOvE pilot project. Lancet Oncol. 2012;13:285-291. 47
- 12. Köbel M, Kalloger SE, Lee S, et al. Ovarian Tumor Tissue Analysis consortium. Biomarker-based ovarian carcinoma typing: a histo-49 logic investigation in the ovarian tumor tissue analysis consortium. Cancer Epidemiol Biomarkers Prev. 2013;22:1677-1686.
- 13. Roh MH, Yassin Y, Miron A, et al. High-grade fimbrial-ovarian 51 carcinomas are unified by altered p53, PTEN and PAX2 expression. Mod Pathol. 2010;23:1316-1324.
- 53 14. Soslow RA, Han G, Park KJ, et al. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod Pathol. 2012;25:625-636. 55
- 15. Rabban JT, Garg K, Crawford B, et al. Early detection of highgrade tubal serous carcinoma in women at low risk for hereditary breast and ovarian cancer syndrome by systematic examination of fallopian tubes incidentally removed during benign surgery. Am J Surg Pathol. 2014:38:729-742.

57

59

75

- 16. Brown PO, Palmer C. The preclinical natural history of serous ovarian cancer: defining the target for early detection. PLoS Med. 61 2009:6:e1000114.
- 17. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple negative breast cancer. Clin Breast Cancer. 63 2009;9(suppl 2):S73-S81.
- 18. Dabbs DJ, Chivukula M, Carter G, et al. Basal phenotype of ductal 65 carcinoma in situ: recognition and immunohistologic profile. Mod Pathol. 2006;19:1506-1511.
- 67 19. Kurbel S. In search of triple-negative DCIS: tumor-type dependent model of breast cancer progression from DCIS to the invasive cancer. Tumour Biol. 2013;34:1-7. 69
- 20. Abdel-Fatah TM, Powe DG, Hodi Z, et al. Morphologic and molecular evolutionary pathways of low nuclear grade invasive 71 breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am J Surg Pathol. 2008;32:513-523. 73
- 21. Turashvili G, Hayes M, Gilks B, et al. Are columnar cell lesions the earliest histologically detectable non-obligate precursor of breast cancer? Virchows Arch. 2008;452:589-598.
- 22. Espinosa I, Catasus L, Canet B, et al. Gene expression analysis identifies two groups of ovarian high-grade serous carcinomas with 77 different prognosis. Mod Pathol. 2011;24:846-854.
- 23. George J, Alsop K, Etemadmoghadam D, et al. Nonequivalent gene 79 expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin Cancer Res. 2013;19:3474-3484. 81
- 24. Merritt MA, Bentink S, Schwede M, et al. Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes. 83 PLoS One. 2013;8:e80314.
- 25. Auersperg N. The stem-cell profile of ovarian surface epithelium is 85 reproduced in the oviductal fimbriae, with increased stem-cell marker density in distal parts of the fimbriae. Int J Gynecol Pathol. 2013;32:444-453. 87

The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium

Gang Ning,^{1†} Jonathan G Bijron,^{2†} Yusuke Yamamoto,¹ Xia Wang,¹ Brooke E Howitt,³ Michael Herfs,⁴ Eric Yang,³ Yue Hong,¹ Maxence Cornille,¹ Lingyan Wu,⁵ Suchanan Hanamornroongruang,⁶ Frank D McKeon,^{1†} Christopher P Crum^{3†*} and Wa Xian^{1,†}

¹ Jackson Laboratory for Genomic Medicine, Farmington, CT, USA

- ² Department of Pathology, University of Utrecht, Utrecht, The Netherlands
- ³ Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA
- ⁴ Department of Pathology, University of Liège, Liège, Belgium
- ⁵ Genome Institute of Singapore, A*STAR, Singapore
- ⁶ Department of Pathology, Siriraj Hospital, Mahidol University, Bangkok, Thailand

*Correspondence to: Christopher P Crum, Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA. e-mail: ccrum@partners.org

[†]Shared equal responsibility as first and senior authors.

Abstract

The oviducts contain high-grade serous cancer (HGSC) precursors (serous tubal intraepithelial neoplasia or STINs), which are γ -H2AX^p- and TP53 mutation-positive. Although they express wild-type p53, secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer; moreover, both STINs and SCOUTs share a loss of PAX2 expression (PAX2ⁿ). We evaluated PAX2 expression in proliferating adult and embryonic oviductal cells, normal mucosa, SCOUTs, Walthard cell nests (WCNs), STINs, and HGSCs, and the expression of genes chosen empirically or from SCOUT expression arrays. Clones generated in vitro from embryonic gynaecological tract and adult Fallopian tube were Krt7^p/PAX2ⁿ/EZH2^p and underwent ciliated (PAX2ⁿ/EZH2ⁿ/FOXJ1^p) and basal (Krt7ⁿ/EZH2ⁿ/Krt5^p) differentiation. Similarly, non-ciliated cells in normal mucosa were PAX2^p but became PAX2ⁿ in multi-layered epithelium undergoing ciliated or basal (WCN) cell differentiation. PAX2ⁿ SCOUTs fell into two groups: type 1 were secretory or secretory/ciliated with a 'tubal' phenotype and were ALDH1ⁿ and β -catenin^{mem} (membraneous only). Type 2 displayed a columnar to pseudostratified (endometrioid) phenotype, with an EZH2^p, ALDH1^p, β -catenin^{nc} (nuclear and cytoplasmic), stathmin^p, LEF1^p, RCN1^p, and RUNX2^p expression signature. STINs and HGSCs shared the type 1 immunophenotype of PAX2ⁿ, ALDH1ⁿ, β -catenin^{mem}, but highly expressed EZH2^p, LEF1^p, RCN1^p, and stathmin^p. This study, for the first time, links PAX2ⁿ with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs, and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumour suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2), calcium binding (RCN1), and oncogenesis (stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target for early prevention.

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Keywords: Fallopian tube; serous carcinoma; stem cell; PAX2; ALDH1

Received 29 May 2014; Revised 24 July 2014; Accepted 29 July 2014

No conflicts of interest were declared.

Introduction

Recent discoveries have strengthened the relationship between the distal Fallopian tube and epithelial malignancies traditionally attributed to the ovary, specifically high-grade serous carcinomas (HGSCs), the most lethal of ovarian cancers [1-3]. With these discoveries has emerged a collective effort to resolve the sequence of histological and molecular events giving rise to these tumours in the Fallopian tube. The serous carcinogenic sequence involves not only frank malignancies with metastatic spread, but also serous cancer precursors, including latent precursors – the p53 signature – and serous tubal intraepithelial neoplasms (STINs). The latter include intramucosal carcinomas (STICs) and lesser but immunophenotypically similar atypias that are considered premalignant intraepithelial lesions (STILs) [4,5]. Virtually all serous cancer precursors

contain mutations in TP53, evidence of a DNA damage response (γ -H2AX^p), and predominate in the distal Fallopian tube [4]. Contiguous benign (p53 signatures) and malignant (STICs) epithelia have been documented with shared mutations in specific codons of TP53 [4,6]. In addition, further studies have unearthed other benign epithelial alterations, termed secretory cell outgrowths (SCOUTs), that do not contain TP53 mutations or evidence of a DNA damage response, yet share with precursors and carcinomas loss of PAX2 expression [7-9]. SCOUTs do not appear directly linked to HGSC, but have been documented at higher frequency in the normal tubes of postmenopausal women and those with HGSC [8,9]. Based on these properties, we have designated SCOUTs as 'surrogate precursors' and hypothesize that both SCOUTs and serous cancer precursors share properties or similar mechanisms in their pathogenesis, albeit with different potential outcomes.

The shared loss of PAX2 expression in both SCOUTs and many 'true' serous cancer precursors suggests that inactivation of this gene, while integral to neoplasia, has a wider range of associations and may signify a generic pathway common to epithelial cell expansion. The goals of this study were, firstly, to determine the breadth of the PAX2ⁿ immunophenotype in the Fallopian tube by examining 'normal' cell growth and differentiation *in vitro* and *in vivo*. Secondly, we wanted to characterize more fully the alterations in expression that typified SCOUTs by array analysis and employ a biomarker profile to determine whether the SCOUT signature was recapitulated in STINs and HGSCs.

Materials and methods

Case material

This study was approved by the Brigham and Women's Human Investigation Committee and involved the use of discarded fresh and archived tissues. Case material for antibody staining consisted of the following epithelia/lesions: (1) normal salpingeal epithelium (n=15); (2) SCOUTs (n=44) and other outgrowths such as transitional-like metaplasia [Walthard cell nests (WCNs), n=5]; (3) serous tubal intraepithelial neoplasms (STINs) (n=18); and (4) metastatic or invasive serous carcinomas (n=39). In addition, cultured clonogenic cells from normal Fallopian tubes were examined for selected marker expression. Cases for immunohistochemistry were selected by one of us (CPC) using previously described criteria (Figure 1) [10].

Cell culture

Fimbrial tissue was obtained from discarded surgical specimens of women undergoing benign procedures. Discarded fetal oviductal tissues were obtained by parental consent under an approved IRB protocol. Disaggregated cells were cultivated onto a feeder layer

Figure 1. Entities associated with the PAX2ⁿ immunophenotype included (A) type 1 secretory cell outgrowths (SCOUTs), (B) type 2 SCOUTs, (C) Walthard cell nests, and (D) low- and (E) high- (serous tubal intraepithelial carcinoma) grade tubal intraepithelial neoplasia.

of lethally irradiated 3 T3-J2 cells in stem cell culturing media (Jackson Laboratory, scm003). Clonal analysis and *in vitro* 3D differentiation were based on previously described methods for lung epithelial stem cells [11].

Microarray and bioinformatics

In order to identify genes expressed in PAX2ⁿ epithelium, expression arrays were generated from formalin-fixed, laser-capture-micro-dissected (LCM) PAX2ⁿ SCOUTs and benign control oviductal epithelium. RNAs obtained from the LCM procedure were amplified using the Ovation FFPE WTA System, WT-Ovation Exon Module, and Encore Biotin Module (NuGEN Technologies, San Carlos, CA, USA) and hybridized onto GeneChip® Human Exon 1.0 ST Arrays. GeneChip operating software was used to process all the Cel files and calculate probe intensity values. To validate sample quality, hybridization ratios were calculated using Affymetrix Expression Console software. The intensity values were log₂-transformed and imported into the Partek Genomics Suite. Exons were summarized to genes and a one-way ANOVA was performed to identify differentially expressed genes. p values and fold change were calculated for each analysis. Heat maps were generated using Pearson's correlation and Ward's method with selected genes based on p value. Pathway analyses were performed using Gene Set Enrichment Analysis (GSEA) software. Candidate biomarkers were culled from these arrays and are summarized in Supplementary Table 1.

Immunohistochemistry

Immunostaining was performed with attention to the biomarkers in Supplementary Table 1, in which product information and dilutions are included. When normal-appearing epithelia were scanned for putative PAX2ⁿ secretory cells, sections were immunostained with two antibodies concurrently: PAX2, which stains non-ciliated cells, and FOXJ1, a ciliated cell marker. Antibodies to leukocyte common antigen (LCA) for CD3, as well as FASCIN, were also used to track intraepithelial lymphocytes and dendritic cells, which are normally PAX2ⁿ. Detection was completed with the Vectastain ABC kit (Cat No PK-6102; Vector Laboratories, Inc, Burlingame, CA, USA) with a liquid DAB-plus substrate kit (Cat No 00-2020). Slides were counterstained with Hematoxylin Stain 3 (Cat No CS402-1D). Antibody information is summarized in Supplementary Table 1. Reaction to antibody staining is indicated by superscripted 'p' or 'n' for positive or negative (PAX2, ALDH1, FOXJ1, etc), superscripted 'm' or 'wt' for mutated or wild type (p53), and superscripted 'nc' or 'mem' for nuclear and cytoplasmic versus membrane localization (β -catenin). Immunohistochemistry, immunofluorescence staining, and image acquisition were performed as previously described [9,11]. Proliferating clones were identified and immunostained for PAX2, PAX8, FOXJ1, Krt7, Krt5, p63, EZH2,

and Ki67. Evidence of ciliated cell differentiation was identified by immunostaining for FOXJ1 and acetylated alpha-tubulin. Basal cells were identified by Krt5 or p63 immunostaining.

Results

Histological sub-classification of SCOUTs and STINs

The lesions under study are illustrated in Figure 1. Based on previous studies, SCOUTs were subdivided into two general histological categories [8,12]. The first, designated as type 1 SCOUTs, consisted of a typical monoor bi-phasic tubal epithelial composition with either single layers of tubal non-ciliated cells or (more commonly) a combination of non-ciliated and ciliated cells. The second, arbitrarily labelled type 2 SCOUTs, consisted of proliferations with mildly pseudostratified and closely arranged elongated fusiform nuclei, similar to endometrial epithelium, and also termed 'endometrioid' SCOUTs. Cells with ciliated differentiation (FOXJ1^p) were present, but were typically less than 30% of the cells and scattered throughout the epithelium. Walthard cell nests (WCNs), consisting of basal cell outgrowth with a squamo-transitional phenotype, were also studied because they signify another form of outgrowth derived from columnar epithelial cells, albeit metaplastic. STINs were sub-classified as previously described and contained strong p53 immunostaining and evidence of DNA damage by H2AX staining [5]. Those with mild or moderate atypia and preserved epithelial polarity were classified as low grade and are identical to lesions classified as 'STILs', 'TILTs', and atypical hyperplasia in other reports [13–15]. Those with conspicuous loss of epithelial polarity were classified as high grade, synonymous with serous tubal intraepithelial carcinoma (STIC). The latter have a 0-11% outcome risk of HGSC, based on recent studies [16–18]. The HGSC outcome risk of lower-grade STINs is unknown but presumed to be less than that of high-grade STINs.

In vitro and *in vivo* expression of PAX2 in the Fallopian tube mucosa

Cultured epithelial cells from the gynaecological tract, both in adults and at 20 weeks' gestation, were plated and colonies of clonogenic cells were characterized. The dominant immunophenotype associated with highly-proliferative clonogenic cell outgrowth was Krt7^p/PAX8^p/EZH2^p/ PAX2ⁿ/Krt5ⁿ/p63ⁿ (Figures 2A, 3A, and Supplementary Figure 2A). FOXJ1 expression indicating ciliated cell differentiation was also seen occasionally in the non-proliferative cells that were not stained positively with Ki67 (Figure 2A). To examine the differentiation ability of these cloned cells at the single-cell level, we established single-cell pedigree lines by subsequent rounds of plating and clone selection (Figure 2B). Pedigree lines of these cloned oviductal progenitor cells were differentiated

Figure 2. In vitro propagation and differentiation of oviductal progenitor cells. (A) The cells cloned from fetal or adult oviduct are PAX2ⁿ, PAX8^p and occasionally express differentiation marker (FOXJ1) in non-proliferative cells (Ki67ⁿ). (B) Schematic diagram of pedigree cell line establishment. (C) Upper panel: representative image of fetal (20-week) oviductal progenitor cells differentiated in 3D Matrigel culture system. Lower panel: immunofluoresence image of human adult oviduct epithelium. Acetyl-alpha-tubulin (green) indicates ciliated cell differentiation. PAX8 (red) indicates non-ciliated cells. DAPI stains nuclei (blue). (D1) Combined staining of histological sections of normal tube with both PAX2 and FOXJ1 reveals widespread nuclear staining, except occasional lymphocytes (arrows). (D2) Occasional foci of multi-layered epithelium undergoing ciliated cell differentiation (positive nuclei) consist of some cells negative for PAX2. (D3) Tubal intraepithelial carcinoma with focal FOXJ1 staining (arrowheads) indicating ciliated cell differentiation. Circled focus of normal ciliated cells is an internal positive control.

in either an air-liquid interface (ALI) cell culture system or 3D Matrigel cultures for 10-20 days. In 3D Matrigel cultures, PAX8^p oviductal progenitor cells differentiated into columnar epithelium consisting of acetylated tubulin^p/FOXJ1^p/PAX8ⁿ ciliated cells and PAX8^p non-ciliated cells, which resembles the human oviduct histology (Figure 2C). In the ALI culture system, a series of images of acetylated tubulin expression were taken at different time points during the differentiation and showed that the oviductal progenitor cells started to differentiate into ciliated cells at day 3 and became maturely differentiated at day 10 (Supplementary Figure 2B). At day 10 in the ALI culture system, the cloned oviductal progenitor cells formed a simple epithelium with ciliated cells marked by FOXJ1 and acetylated tubulin and non-ciliated cells marked by PAX2 (Supplementary Figure 2C). It is noteworthy that while the proliferating population is PAX2ⁿ (Figure 2A), PAX2 expression was reclaimed in some non-ciliated (secretory) cells. This further indicates that the progeny of a single oviductal progenitor cell can

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk give rise to all epithelial lineages typically found in the oviduct, including not only mature ciliated cells but also non-ciliated (secretory) cells.

Immunostaining of both fetal and adult Fallopian tubes was performed to ascertain the distribution of PAX2-expressing cells and address the possibility that the PAX2ⁿ immunophenotype was programmed earlier in development. Histological sections of fetal (at 21 weeks) and adult Fallopian tubes were examined. Fetal tubes contained an abundance of PAX2^p cells, with occasional interspersed ciliated cells (Supplementary Figure 1A). Expression of PAX8 was similar in distribution (Supplementary Figure 1B). Similarly, in normal adult tubes, PAX2 staining was extensive in cells that were not undergoing ciliated (tubulin^p) differentiation (Supplementary Figure 1C). A summary of immunophenotypes for progenitor and adult cells is displayed in Supplementary Table 2.

In the adult tubes, sections were also stained with FOXJ1, and/or LCA to account for other $PAX2^n$

cells that were either undergoing ciliated differentiation or were non-epithelial. Mono-layered or mildly pseudostratified normal Fallopian tube mucosa typically contained cells expressing either PAX2 or FOXJ1 (Figure 2D1). In occasional foci of prominent multi-layered epithelium with some cells staining positive with FOXJ1, loss of PAX2 nuclear staining could be seen (Figure 2D2), giving the impression that loss of PAX2 expression in non-ciliated cells was coordinated with cell growth in multi-layered epithelium. Albeit less so, FOXJ1 staining was also seen in STINs, supporting ciliated differentiation in PAX2ⁿ neoplastic growth (Figure 2D3).

Metaplastic (WCNs) differentiation of PAX2ⁿ columnar cells *in vitro* and *in vivo*

WCNs are foci of transitional-like metaplasia in the fimbria or adjacent peritoneal surface and are emblematic of basal cell outgrowth that can develop near the junctions of disparate epithelial types [19]. Other sites include the gastro-oesophageal and cervical squamo-columnar junctions. Both have been designated as sites harbouring residual embryonic cells and studies of the latter have suggested that basal or reserve cells emerge from the overlying columnar cells and then undergo squamous metaplasia [20,21]. This process has been termed 'top-down' differentiation, ie the progeny (basal cells) emerge from beneath the progenitor population. However, no study has ever displayed this sequence in vitro. Fetal tubal cells propagated in vitro were strongly positive for both Krt7 and PAX8, in keeping with Müllerian epithelium (Figures 2A and 3A). Moreover, these progenitor cells did not express Krt5 or p63 (Figure 3A). Interestingly, when pedigree lines of these cloned oviductal progenitor cells were differentiated in 3D Matrigel cultures for 10-20 days, in addition to the typical ciliated cell differentiation (Figure 2C), subjacent p63/Krt5^p basal cells emerged (Figure 3B1) and expanded (Figure 3B3) in a pattern similar to that

Figure 3. *In vitro* and *in vivo* basal cell differentiation in the oviduct. (A) Colonies of Krt7^p/Krt5ⁿ/p63ⁿ cells from a 20-week-old fetal oviduct. (B1, B3) Single (p63, green) and multi-layered (Krt5, red) basal cell outgrowth seen in Matrigel cultures. (B2, B4) Similar basal cell growth highlighted by p63 and Krt5 in the adult fimbria. (C) Walthard cell nest in the adult tube is typically PAX2 and ALDH1 negative. Residual Krt7-positive cells (arrows) are displaced from beneath by an expanding Krt5 population.

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk J Pathol 2014; 234: 478–487 www.thejournalofpathology.com

Figure 4. (A) Laser-captured micro-dissected SCOUTs (left) and a heat map comparison of SCOUTs and normal oviduct (right). (B) Arrays generated from PAX2ⁿ SCOUTs revealed genes differentially expressed across type 1 and type 2 SCOUTs, including ALDH1, LEF1, and RCN1 (right). (C) Coordinated expression of the above genes distinguish type 1 SCOUTs, which show membraneous β -catenin localization and absent ALDH1 staining plus negative or weak staining for LEF1 and RCN1 staining (left), from type 2 SCOUTs, with nuclear and cytoplasmic β -catenin, strong ALDH1, LEF1, and RCN1 staining (right).

seen in p63/Krt5^p cells in WCNs in the adult tube (Figures 3B2 and 3B4). In vitro, the Krt5 and p63 immunopositive cells were superimposed, although the Krt5 staining index was higher (Supplementary Figure 2E). Analysis of WCNs in tissue sections (Figure 3C) revealed a strikingly similar pattern of growth and differentiation, arising either from beneath Krt7^p epithelial cells or in continuity with columnar epithelium typical of type 1 SCOUTs. The result was a PAX2ⁿ/ALDH1ⁿ transitional-like outgrowth that was strongly Krt5^p but stathminⁿ (not shown). Taken in the context of the in vitro findings, this observation further linked the PAX2ⁿ immunophenotype to cell outgrowth and a Krt7^p progenitor cell to the development of not only terminal (FOXJ1⁺) but also metaplastic (Krt5⁺) differentiation in the Fallopian tube.

Altered gene expression in PAX2ⁿ proliferations (SCOUTs, STINs, and HGSCs)

Supplementary Table 3 is a list of genes selected for analysis and found to be differentially expressed in SCOUTs relative to normal-appearing epithelium. Arrays generated from RNA extracted from formalin-fixed laser-capture micro-dissected SCOUTs yielded differentially expressed genes, illustrated in the representative heat map (Figures 4A, 4B, and Supplementary Figures 4 and 5). When stained with selected

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk markers, type 1 SCOUTs varied from strictly secretory to mixed secretory and ciliated, and were ALDH1ⁿ, β -catenin^{mem} and stained weakly or negative for LEF1, RCN1, RUNX2, and EZH2 (Figures 4C, 5, and Supplementary Figure 3). Type 2 SCOUTs stained variably for ciliated cell differentiation and were β -catenin^{nc} and ALDH1, LEF1, RCN1, EZH2, RUNX2 (not shown) and stathmin positive (Figures 4C, 5, and Supplementary Figure 3). Basal cell differentiation, signifying WCN development, was associated with PAX2ⁿ columnar epithelium, suggesting that this pathway of differentiation might initiate within type 1 PAX2ⁿ SCOUTs.

Figure 5 and Supplementary Figure 6 summarize the staining patterns observed in the different lesions. STINs and HGSCs shared expression of several markers with SCOUTs. Expression patterns for ALDH and β -catenin were identical to type 1 SCOUTs (ALDHⁿ and β -catenin^{mem}). In addition, like type 2 SCOUTs, there was increased staining for EZH2, stathmin, LEF1, RCN, Krt5, and RUNX2 (not shown). Not surprisingly, no marker in this group separated STINs or HGSCs from SCOUTs. This is in contrast to other published markers such as Ki67, cyclin E, p16, and others, which are significantly more commonly expressed in STINs and HGSCs relative to benign Fallopian tube mucosa [4,5,15,22].

Figure 5. Shared expression of SCOUT markers with low- (LSTIN) and high- (HSTIN or STIC) grade serous tubal intraepithelial neoplasia and high-grade serous carcinoma (HGSC). Neoplasms (STINs, HGSCs) share with type 1 SCOUTs loss of PAX2 and ALDH1, and with type 2 SCOUTs, increased LEF1, EZH2, and stathmin and other markers (see text).

Discussion

Analysis of arrays generated from high-grade serous cancer has confirmed a transcriptome that parallels oviductal epithelium [23]. Given that these tumours are strongly positive for biomarkers (such as PAX8) typically assigned to non-ciliated (so-called secretory) cells, the assumption has been that the secretory cell is the cell of origin [1]. Levanon *et al* showed that PAX8-expressing (secretory) cells of the tube were uniquely susceptible to DNA damage imposed by irradiation, a finding that parallels similar observations in latent precursors (p53 signatures) and STINs that contain p53 mutations [5,24]. However, with the discovery of PAX2ⁿ SCOUTs and a similar PAX2ⁿ expression pattern in many STINs, it became clear that there may be a relationship between the two entities, despite the fact that SCOUTs are more ubiquitous in the Fallopian tube and do not arise in the setting of a DNA damage response and loss of p53 function. Although altered PAX2 expression has been associated with neoplasia, we hypothesized that the PAX2ⁿ immunophenotype typified a 'generic' series of molecular events that were the underpinning of stem cell expansion common to many proliferations.

We addressed PAX2 expression or loss in the Fallopian tube from three perspectives. The first was by analysing expression and differentiation in proliferating normal adult and fetal cells propagated *in vitro*. The second was by comparing the *in vitro* findings to expression in tissue sections from fetal and adult tubes. The third was to look for shared expression across PAX2ⁿ cells in cell proliferation and expansion (SCOUTs,

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk STINs, and HGSCs). We discovered that the PAX2ⁿ immunophenotype was particularly linked to *in vitro* and *in vivo* cell growth, not infrequently with an increase in EZH2 expression. Moreover, in highly clonogenic Krt7^p/FOXJ1ⁿ oviductal progenitor cells grown *in vitro*, we demonstrated for the first time that PAX2ⁿ expanding populations were capable of <u>both</u> ciliated (FOXJ1) and basal cell (Krt5) differentiation. This sequence of cell growth and differentiation was recapitulated in SCOUTs, STINs, and HGSCs, with progressively reduced ciliated differentiation in the type 2 SCOUTs, STINs, and HGSCs. We thus concluded that all of these entities were related to a similar progenitor cell.

The next goal was to determine if the cells involved in benign and neoplastic outgrowth shared common expression patterns and we chose to use the least proliferative lesions (SCOUTs) as the reference. One advantage of this approach is to identify events that occur prior to the more dramatic molecular changes that characterize malignancy that may have profound influences on expression. The study delineated two general groups of SCOUTs: the first (type 1) closely resembled normal tubal epithelium, histologically and in their expression profile (Figure 1D). The second (type 2) was composed of proliferations with less pronounced ciliated differentiation, many noticeably 'endometrial'-like (Figure 1E). Accordingly, there was minimal difference in expression between type 1 SCOUTs and control epithelium, although they were consistently ALDH1ⁿ. In contrast, type 2 SCOUTs demonstrated nuclear and cytoplasmic β -catenin staining plus increased BCL2 (see ref 7), ALDH1, and Krt5 staining. This diversity in phenotype underscores the complexity of cell growth

and differentiation that can occur in the Fallopian tubes with age. Type 1 SCOUTs appear to signify very minor genomic changes, as evidenced by the similarities in transcription to normal controls. Thus, the alterations in transcription are limited to absence of ALDH1 expression. In contrast, type 2 SCOUTs, which exhibit a more divergent histology, have a common biomarker signature – stathmin, EZH2, LEF1, RCN1, and RUNX2 – that is more similar to premalignant (STINs) and malignant (HGSCs) entities in the tube (Figure 5).

A fundamental question stemming from the above observation is the relevance of the gene signature found in SCOUTs, STINs, and HGSCs to both stem cell biology and neoplasia. ALDH1 has been identified as a marker of epithelial stem cells. Its expression can be both increased or absent, the latter more typical of STINs and HGSCs [25,26]. EZH2 is a polycomb suppressor that is implicated in stem cell maintenance and regulation of differentiation. It is noteworthy that EZH2 expression typically increased in areas of cell expansion, in keeping with the coordinated suppression of PAX2 expression [27]. EZH2 is also a potential suppressor of tumour suppressor genes [28]. LEF1 is likewise expressed during lineage differentiation [29]. The function of RCN1 is less clear but this gene product is a calcium binder that is weakly expressed in renal tubular cells and up-regulated in renal cell carcinomas [30]. RUNX2 is a gene involved in morphogenesis and osteoblastic differentiation [31]. Functions attributed to stathmin are multiple. It is a marker of P13 kinase

activation that has been linked to serous neoplasia in some studies, tumour progression and metastases in others, and regulates p53 stability in still others [32–34]. Its range of expression, including normal epithelium, SCOUTs, and STINs, is similar to that of these other markers, several of which (ALDH1, PAX2, EZH2) have also been linked to not only stem cells but also outcome or resistance to chemotherapy [35–37]. The significance of the unique β -catenin staining in type 2 SCOUTs, with a shift in distribution from the membrane to the cytoplasm and nucleus, is unclear but it is emblematic of Wnt pathway activation, and mutations in β -catenin are commonly found in endometrial and colon carcinomas [38].

Walthard cell nests are a common benign condition seen in the distal Fallopian tube mucosa or the adjacent peritoneal reflection [19]. They bear a close resemblance to the cervical squamo-columnar junction, where columnar cells are undermined by p63-positive basal cells. These cells could be envisioned to either originate from the columnar epithelium or give rise to the overlying Krt7-positive epithelial cells. This study has made two novel observations. First, based on the Matrigel cell culture data, the basal cells emerge from the Krt7-positive columnar cells. Second, this process is marked by not only loss of PAX2 but also ALDH1 expression, similar to that seen in type 1 SCOUTs. The initiating cell, the Krt7^p non-ciliated epithelial cell, is remarkably similar to the cells seen in the squamo-columnar (SC) junction of the cervix from which squamous metaplasia is derived and this process is similar to so-called 'top-down' differentiation reported in the SC junction [21]. The fact that

Figure 6. A progenitor cell model for the Fallopian tube in which Krt7 identifies the progenitor cell and PAX2ⁿ defines progenitor cell expansion. Expanding PAX2ⁿ cells can differentiate into basal or ciliated cells in WCNs or type 1 SCOUTs, both of which approximate normal differentiation pathways, with loss of ALDH1 and normal or minimally increased expression of LEF1, RCN1, stathmin, and EZH2. In contrast, type 2 SCOUTs and STINs (right) share a different expression signature characterized by multiple genes, including EZH2, LEF1, RCN1, and stathmin and others, involved in a divergent pathway of progenitor cell growth.

WCNs are not considered direct precursors to malignancy is not surprising, in as much as they are terminally differentiated relative to their progenitors. This is similar to the cervix, where the progenitor cells in the SC junction are considered more vulnerable to neoplastic transformation than their metaplastic progeny [21]. What is interesting is the fact that WCNs underscore the existence of multi-potential cells in the distal Fallopian tube [12]. Given that 40-60% of HGSCs do not have a documented source (or STIN) in the Fallopian tube mucosa, coupled with the fact that a subset of HGSCs are strongly Krt5-positive, the possibility that cells involved in alternate differentiation pathways might contribute to a subset of these malignancies deserves further study (Hanamornroongruang S, Howitt BE, Crum CP, unpublished) [5,25].

Epithelia in virtually every organ (breast being a prime example) display a wide range of clonal expansions, some of which may be direct precursors to malignancy and others of which serve as risk factors for a malignant outcome. The model depicted in Figure 6 reflects a similar but novel scenario in the oviduct, with multiple categories of putative monoclonal cell outgrowth and striking similarities in expression across multiple genes between surrogate precursors and lesions that are considered premalignant or pre-metastatic. These findings emphasize the complexity of molecular and phenotypic perturbations that can take place in the Fallopian tubes during and following menopause. This complexity invites caution when considering the role (or diagnostic value) of newly discovered biomarkers as specific indicators of neoplasia. More importantly, it reveals a consistent disturbance in progenitor cell biology in keeping with a common pathway that is triggered by more than one initiating event. Thus, it introduces two approaches to cancer prevention, one directed at the initiating event and the other at the early perturbations in the pathway.

Acknowledgments

This work was supported by grants from the Department of Defense and National Cancer Institute (W81XWH-10-1-0289 and 5R21CA173190-02 to CC). We thank the Division of Gynecologic Oncology at Brigham and Women's Hospital and Dana Farber Cancer Institute for their contribution to the study, and Mei Zheng for assistance with the immunohistochemistry. We are also grateful for the support of this work by the Genome Institute of Singapore of the Agency for Science, Technology and Research, and a Bedside and Bench Grant from Singapore National Medical Research Council.

Author contribution statement

Contributions of the co-authors to design (1), data collection (2), data analysis (3), data interpretation (4), literature search (5), figures (6), and manuscript writing (7) were as follows: GN (1–4, 6, 7); JGB (1–4, 6, 7); YY (1–3, 6); XW (2, 3); BEH (1, 2, 4, 5); MH (1–4); EY (1–3, 5); YH (2–4); MC (2–4); LW (2–4); SH (2–4); FDMcK (1, 4, 7); CPCr (1, 4, 7); and WX (1, 3, 4, 7).

Abbreviations

ALI, air-liquid interface culture; SCOUT, secretory cell outgrowth; STIN, serous tubal intraepithelial neoplasia; WCN, Walthard cell nest

References

- 1. Piek JM, van Diest PJ, Zweemer RP, *et al.* Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. *J Pathol* 2001; **195**: 451–456.
- 2. Kindelberger DW, Lee Y, Miron A, *et al.* Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. *Am J Surg Pathol* 2007; **31:** 161-169.
- Finch A, Shaw P, Rosen B, *et al.* Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. *Gynecol Oncol* 2006; **100:** 58-64.
- Lee Y, Miron A, Drapkin R, *et al.* A candidate precursor to serous carcinoma that originates in the distal Fallopian tube. *J Pathol* 2007;211:26-35. Erratum in *J Pathol* 2007; 213: 116.
- Crum CP, Herfs M, Ning G, *et al.* Through the glass darkly: intraepithelial neoplasia, top-down differentiation and the road to ovarian cancer. *J Pathol* 2013; 231: 402-412.
- Carlson JW, Miron A, Jarboe EA, et al. Serous tubal intraepithelial carcinoma: its potential role in primary peritoneal serous carcinoma and serous cancer prevention. J Clin Oncol 2008; 26: 4160-4165.
- Chen EY, Mehra K, Mehrad M, *et al.* Secretory cell outgrowth, PAX2 and serous carcinogenesis in the Fallopian tube. *J Pathol* 2010; 222: 110-116.
- Quick CM, Ning G, Bijron J, *et al.* PAX2-null secretory cell outgrowths in the oviduct and their relationship to pelvic serous cancer. *Mod Pathol* 2012; 25: 449-455.
- Bijron JG, Ning G, Laury AR, *et al.* Digital quantification of precursor frequency in the Fallopian tube and its significance. *Mod Pathol* 2012; 25: 1654-1661.
- Mehrad M, Ning G, Chen EY, *et al.* A pathologist's road map to benign, precancerous, and malignant intraepithelial proliferations in the Fallopian tube. *Adv Anat Pathol* 2010; **17**: 293-302.
- Kumar PA, Hu Y, Yamamoto Y, *et al.* Distal airway stem cells yield alveoli *in vitro* and during lung regeneration following H1N1 influenza infection. *Cell* 2011; **147:** 525-538.
- Laury AR, Ning G, Quick CM, *et al.* Fallopian tube correlates of ovarian serous borderline tumors. *Am J Surg Pathol* 2011; 35: 1759-1765.
- Vang R, Visvanathan K, Gross A, *et al.* Validation of an algorithm for the diagnosis of serous tubal intraepithelial carcinoma. *Int J Gynecol Pathol* 2012; 31: 243-253.
- Ning G, Bijron JG, Yuan J, *et al.* Differential expression of p-ERM, a marker of cell polarity, in benign and neoplastic oviductal epithelium. *Int J Gynecol Pathol* 2013; **32:** 345-352.
- Lee S, Nelson G, Duan Q, *et al.* Precursor lesions and prognostic factors in primary peritoneal serous carcinoma. *Int J Gynecol Pathol* 2013; **32:** 547-555.
- Wethington SL, Park KJ, Soslow RA, *et al.* Clinical outcome of isolated serous tubal intraepithelial carcinomas (STIC). *Int J Gynecol Cancer* 2013; 23: 1603-1611.

- Lowell CB, Swisher EM, Cass I, *et al.* Long term follow up of *BRCA1* and *BRCA2* mutation carriers with unsuspected neoplasia identified at risk reducing salpingo-oophorectomy. *Gynecol Oncol* 2013; **129**: 364-371.
- Conner JR, Meserve E, Pizer E, *et al.* Outcome of unexpected adnexal neoplasia discovered during risk reduction salpingo-oophorectomy in women with germ-line *BRCA1* or *BRCA2* mutations. *Gynecol Oncol* 2014; **132**: 280-286.
- Seidman JD, Yemelyanova A, Zaino RJ, *et al.* The Fallopian tube-peritoneal junction: a potential site of carcinogenesis. *Int J Gynecol Pathol* 2011; 30: 4-11.
- Wang X, Ouyang H, Yamamoto Y, *et al.* Residual embryonic cells as precursors of a Barrett's-like metaplasia. *Cell* 2011; 145: 1023-1035.
- Herfs M, Yamamoto Y, Laury A, *et al.* A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. *Proc Natl Acad Sci U S A* 2012; **109**: 10516-10521.
- Sehdev AS, Kurman RJ, Kuhn E, *et al.* Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase. *Mod Pathol* 2010; 23: 844-855.
- Marquez RT, Baggerly KA, Patterson AP, *et al.* Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal Fallopian tube, endometrium, and colon. *Clin Cancer Res* 2005; **11:** 6116-6126.
- Levanon K, Ng V, Piao HY, et al. Primary ex vivo cultures of human Fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 2010; 29: 1103-1113.
- Deng S, Yang X, Lassus H, *et al.* Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. *PLoS One* 2010; 5: e10277.
- Flesken-Nikitin A, Hwang CI, Cheng CY, *et al.* Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. *Nature* 2013; **495**: 241-245.
- Chou RH, Yu YL, Hung MC. The roles of EZH2 in cell lineage commitment. *Am J Transl Res* 2011; 3: 243–250.

- Deb G, Singh AK, Gupta S. EZH2: not EZHY (easy) to deal. *Mol Cancer Res* 2014; 12: 639-653.
- Merrill BJ, Gat U, DasGupta R, *et al.* Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. *Genes Dev* 2001; 15: 1688-1705.
- Giribaldi G, Barbero G, Mandili G, *et al.* Proteomic identification of Reticulocalbin 1 as potential tumor marker in renal cell carcinoma. *J Proteomics* 2013; **91:** 385-392.
- Yoshida T, Kanegane H, Osato M, *et al.* Functional analysis of *RUNX2* mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype–phenotype correlations. *Am J Hum Genet* 2002; **71**: 724-738.
- 32. Karst AM, Levanon K, Duraisamy S, *et al.* Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. *Gynecol Oncol* 2011; **123:** 5-12.
- 33. Zheng P, Liu YX, Chen L, *et al.* Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. *J Proteome Res* 2010; 9: 4897-4905.
- Sonego M, Schiappacassi M, Lovisa S, *et al.* Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. *EMBO Mol Med* 2014; 6: 295.
- Hueber PA, Waters P, Clark P, *et al.* PAX2 inactivation enhances cisplatin-induced apoptosis in renal carcinoma cells. *Kidney Int* 2006; 69: 1139-1145.
- Han X, Du F, Jiang L, *et al.* A2780 human ovarian cancer cells with acquired paclitaxel resistance display cancer stem cell properties. *Oncol Lett* 2013; 6: 1295-1298.
- Rizzo S, Hersey JM, Mellor P, *et al.* Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. *Mol Cancer Ther* 2011; 10: 325-335.
- van der Zee M, Jia Y, Wang Y, *et al.* Alterations in Wnt-β-catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression. *J Pathol* 2013; 230: 48-58.

SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Figure S1. Pax2 and acetyl-alpha-tubulin (cilia) expression in fetal and adult Fallopian tubes.

Figure S2. In vitro differentiation of oviduct progenitor cells.

Figure S3. Two types of PAX2ⁿ SCOUTs are distinguished in these panels with β -catenin, keratin 5, and LEF1 staining.

Figure S4. Heat map comparing type 1 and type 2 SCOUTs with normal tubal epithelium and high-grade serous cancer.

Figure S5. A depiction, in tabular (A) and graphical format (B), of genes up-regulated with the two-fold change in type 2 relative to type 1 SCOUTs, several of which have been linked to STIN and HGSC.

Figure S6. H&E, p53, and PAX2 staining of cases under study (see Figure 5).

Table S1. Biomarkers selected for analysis of clonogenic cells, SCOUTs, and STINs.

Table S2. Summary of immunophenotypes in cultured progenitor cells and adult cells in tissue sections.

Table S3. Upregulated genes in Type 2 SCOUTs in comparison with Type 1 SCOUTs (3 fold and p < 0.05).