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FINAL REPORT. 

Introduction: Colorectal cancer (CRC) represents a major health burden, and is the third leading cause of 
cancer deaths in the U.S. In the past decade, the median survival among patients with metastatic CRC has 
significantly improved, primarily due the development of active chemotherapeutic regimens that include 
biological agents. However, despite this success, patients soon run out of therapeutic options and receive 
salvage therapy that results in only a few weeks of disease stability. This is particularly true for a subset of 
patients that have a mutation in the KRAS gene, since it has been shown that one of these new treatments is 
not effective for them. Therefore, new agents are needed that can stabilize disease and hopefully prolong life 
in patients with CRC. One of the lessons learned in CRC, in fact, in patients with the KRAS mutation in their 
tumor, is the importance of not only developing new effective drugs, but also developing ways to select 
patients for those treatments. Unfortunately the lack of such strategies is what led to thousands of CRC 
patients with KRAS mutations being treated with epidermal growth factor receptor (EGFR) inhibitors at 
considerable toxicity and no benefit, when it was discovered that tumors with this mutation did not respond to 
these drugs. This new area of patient selection, or individualized therapy, is based upon a robust set of 
research tools in the field of bioinformatics. Therefore, successful research teams are comprised of clinicians, 
who treat patients with cancer, and bioinformaticians, that are able to synthesize large sets of data and look for 
patterns of response or resistance to a particular new drug. Such a team has been assembled for this 
proposal. Thus, the overall goal of this Idea Award is enhance the efficiency and speed of developing novel 
and individualized therapy for patients with KRAS mutant colorectal cancer (CRC) using a comprehensive 
bioinformatics approach and novel preclinical models of human CRC. This proposal has the potential of 
providing novel, individualized therapeutic strategies for CRC patients with KRAS mutations that are poised for 
clinical testing at the completion of this work (3 years). The yield will be highly relevant, as new drug 
development will not only be jump-started by this proposal but agents to be tested clinically will be tailored for 
specific populations of patients with CRC, thereby potentially conferring greater clinical benefit. We will 
describe our research achievements and outcomes of this project in this Final Report.  

Aim 1. To develop predictive classifiers for 3 novel agents using preclinical models of colorectal cancer (CRC). 
We have identified the following three novel agents to develop predictive classifier using preclinical models of 
CRC and these agents will be tested in Aim 2. 

Aim 1. To develop predictive classifiers for 6 novel agents using preclinical models of colorectal cancer (CRC). 

We initially selected the following six novel agents to develop predictive classifiers using preclinical models of CRC and 
three of these agents were tested in Aim 2. 

Table 1: Three novel anti-cancer agents selected in this study. 
Agents Targets Company Clinical 

Developmental 
Phase 

MLN8237 
(alisertib) 

Aurora Kinase A (AURKA) Millennium 
Pharmaceuticals/Takeda 

Phase I/II 

MLN0128 TORC1/TORC2 Millennium 
Pharmaceuticals/Takeda 

Phase I/II 

TAK733 Dual specificity mitogen-activated protein 
kinase kinase 1 (MAP2K1) 

Millennium 
Pharmaceuticals/Takeda 

Phase I 

TAK960 Polo-like Kinase 1 (PLK1) Millennium 
Pharmaceuticals/Takeda 

Phase I 

ENMD2076 Aurora Kinase A (AURKA) and Angiogenic 
Kinase (KDR) 

CASI Pharmaceuticals Phase I/II 

PF-04691502 
(PF-502) 

Phosphatidylinositol 3-Kinase (PIK3CA) and 
mammalian Target of Rapamycin (mTOR) 

Pfizer Phase I 
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Task 1: In vitro cell line exposure (Months 1-12, Dr. Eckhardt). 
To evaluate the sensitivity of CRC cell lines to MLN8237, ENMD2076, and MLN0128, a panel of CRC cell lines 
were exposed to increasing concentrations of these novel anti-cancer agents and assessed for proliferation 
using an SRB or CyQuant assay as previously described (Skehan et al 1990; Pitts et al 2010). As depicted in 
Figure 1 there was a broad range of sensitivity of the CRC cell lines to these anti-cancer agents, indicating 
that patient selection is needed. See Dr. Eckhardt’s Final Report for details. 

Figure 1: A panel of CRC cell lines were exposed to increasing concentrations of MLN0128 (A), ENMD2076 
(B), MLN8237 (C). 
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Task 2: In vivo cell line xenograft treatment (Months 6-18, Dr. Eckhardt). 
To determine the in vivo inhibition, we have performed treatment using these anti-cancer agents on cell lines 
derived xenografts as previously described (Pitts et al 2010). We have treated CRC cell line xenografts with 
MLN8237 (Figure 2), MLN0128 (Figure 3), ENMD2076 (Figure 4).  We are in the process finishing this task 
by injecting more mice with CRC cell lines and treating with the compounds listed. As anticipated, there is also 
a diversity of responses to these agents in vivo. See Dr. Eckhardt’s Final Report for details. 

 
Figure 2: In vivo cell lines treated with MLN8237. 
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Figure 3: In vivo cell lines treated with MLN0128. 
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Figure 4: In vivo cell lines treated with ENMD2076. 
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Task 3: Immunoblotting for relevant downstream effectors (Months 6-18, Dr. Eckhardt). 
To access the inhibition of these anti-cancer agents in the cancer cells, we have performed immunoblotting for 
relevant downstream effectors of these targets. See Dr. Eckhardt’s Final Report for details. 
 
 
Task 4: Perform transcriptome sequencing (RNA-Seq) on CRC cell lines (in vitro and xenografts) 
(Months 1-18, Dr. Tan). 
Total RNAs were extracted from the cancer cells or tumor tissues using Trizol (Invitrogen, Carlsbad, CA). 
Libraries were constructed using 1µg total RNA following Illumina TruSeq RNA Sample Preparation v2 Guide. 
The poly-A containing mRNA molecules were purified using poly-T oligo-attached magnetic beads. Following 
purification, the mRNA was fragmented into small pieces using divalent cations under elevated 
temperature. The cleaved RNA fragments were converted into first strand cDNA using reverse transcriptase 
and random primers. This was followed by second strand cDNA synthesis using DNA Polymerase I and RNase 
H. These cDNA fragments then were subjected to an end repair process, the addition of a single “A” base, and 
ligation of the adapters. The products were purified and enriched using PCR to create the final cDNA library. 
The cDNA library was validated on the Agilent 2100 Bioanalyzer using DNA-1000 chip. Cluster generation was 
performed on the Illumina cBot using a Single Read Flow Cell with a Single Read cBot reagent plate (TruSeq 
SR Cluster Kit v3-cBot-HS). Sequencing of the clustered flow cell was performed on the Illumina HiSeq 2000 
using TruSeq SBS v3 reagents. We used the Illumina HiSeq2000 as this is the latest machine with higher 
sequencing throughput and cheaper for sequencing cost. Utilizing the latest HiSeq2000 machine, we were able 
to multiplex 3 samples per lane, sequence with single end 100 cycles (1x100bp) and achived ~40 million reads 
per sample. The number of cycles for each read is also programmed into the machine before the run begins. 
Sequencing images were generated through the sequencing platform (Illumina HiSeq 2000). The raw data 
were analyzed in four steps: image analysis, base calling, sequence alignment, and variant analysis and 
counting. An additional step was required to convert the base call files (.bcl) into *_qseq.txt files. For 
multiplexed lanes/samples, a de-multiplexing step is performed before the alignment step. 
 
 
Task 5: Bioinformatics analysis of RNA-Seq data (Months 12-18, Dr. Tan). 
High-throughput mRNA sequencing (RNAseq) of each sample was obtained from the Illumina HiSeq2000. On 
average, we obtained about 60 million (coverage ranged from 30 to 90 million reads) single-end 100bp 
sequencing reads per sample. To analyze the RNAseq data, the reads were mapped against the human 
genome using the BiNGS! (Bioinformatics for Next Generation Sequencing) pipeline. In our pipeline, we have 
optimized the parameters for mapping using Tophat (Trapnell et al 2009) and cufflinks (Trapnell et al 2010). 
The first step of the BiNGS! pipeline is mapping the reads against the reference genome. Here, we used the 
NCBI reference annotation (build 37.2) as a guide, and allowing 3 mismatches for the initial alignment and 2 
mismatches per segment with 25 bp segments using Tophat (version 1.3.2).  On average, 92% (ranging from 
71% to 95%) and 84% (ranging from 68% to 92%) of the reads aligned to the human genome for cell lines and 
human CRC explants, respectively. Next, the workflow employed Cufflinks (version 1.3.0) to assemble the 
transcripts using the RefSeq annotation as the guide, but allowing for novel isoform discovery in each sample. 
Isoforms were ignored if the number of supporting reads was less than 30 and if the isoform fraction was less 
than 10% for the gene. The data were fragment bias corrected, multi-read corrected, and normalized by the 
total number of reads. On average, the sequences can be mapped to 20,221 known genes (ranging from 
18,213 to 21,448 genes) and 19,355 known genes (ranging from 17,481 to 21,519 genes) for cell lines and 
human CRC explants, respectively. The transcript assemblies for each sample were merged using cuffmerge. 
To estimate the transcript expressions of individual sample, we computed the FPKM values of the transcripts 
by rerunning Cufflinks again using the merged assembly as the guide. The final output of this analysis step is a 
P x N matrix, where P is the number of samples and N is the number of transcripts, respectively. Gene 
expression for individual sample is estimated by summing the FPKM values of multiple transcripts that 
represent the same gene. Subsequent data analyses of RNAseq will be performed on this matrix. We also 
performed variants calling analysis on the RNA-seq for all the models using GATK workflow (McKenna et al 
2010). We used ANNOVAR (Wang et al 2010) to annotate the functional annotation of these variants. We 
prioritized on the variants that were predicted as non-synonymous mutations.  
 



7

Task 6: Development of the k-TSP classifier from mRNA-Seq (Months 18-24, Dr. Tan). 
Using the drug sensitivity data obtained from Task 1, we have selected the 5-8 most sensitive (S) and 5-8 
most resistant (R) cell lines as the training set for each anti-cancer agent. Using the RNA-seq data from these 
selected cell lines, we have employed k-TSP algorithm to derive gene pairs as classifier for the selected agent. 
Internal leave-one-out cross-validation (LOOCV) was performed to avoid overfitting of the training process. On 
average, these classifiers achieved 75% (range 65% - 85%) of LOOCV accuracies. The number of gene pairs 
selected in the classifiers was 3 – 9 pairs. The training set for the three selected agents (MLN0128, MLN8237 
and ENMD2076) and the gene markers for k-TSP classifier are presented in Tables 2, 3, and 4 respectively. 

Task 7: Development of an integrated classifier (Months 18-24, Drs. Eckhardt and Tan).  
From the mRNA-seq, we obtained mutations data for the training set cell lines, and initiate evaluation of 
incorporating KRAS, BRAF, PIK3CA, APC, and TP53 mutations into the k-TSP do not enhance the predictive 
accuracy of the integrated classifiers. This suggests that the usual suspects of the CRC “driver” genes are not 
predictive against these novel agents. We have expanded the process of adding additional mutations and/or 
selected genes within a pathway to refine the predictive accuracy of the integrated classifiers. We also 
incorporated recent published data (e.g. Diamond et al 2013) into the integrated classifier such as relevant genes 
described in other cancer types in this refinement process. However, we do not see improvement in the prediction 
accuracy in the selected three agents. 

Task 8: Prioritization of agents to progress to Specific Aim 2 (Months 18-24, Drs. Eckhardt and Tan). 
We have identified the following three anti-cancer compounds to move into Aim 2:  

Agents Targets Company Clinical Developmental Phase 
MLN0128 TORC1/TORC2 Millennium 

Pharmaceuticals/Takeda 
Phase I 

MLN8237 
(alisertib) 

Aurora Kinase A (AURKA) Millennium 
Pharmaceuticals/Takeda 

Phase I/II 

ENMD2076 Aurora Kinase A (AURKA) 
and Angiogenic Kinase 
(KDR) 

EntreMed Phase I/II 
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MLN0128 Training Set and k-TSP classifier. 

 
Figure 5. Training Set for MLN0128 and their mutational status of KRAS, NRAS, BRAF and PIK3CA. 
For training the MLN0128 gene classifier, we used the cell lines as with IC50 < 0.1µM and IC50 > 0.3 µM as 
sensitive and resistant cell lines (Figure 5). There are 12 sensitive and 10 resistant cell lines selected as the 
training set for MLN0128 (Table 2).  

 

Table 2: MLN0128 Training Set and Genes included in the k-TSP classifier. 

 
 

The k-TSP algorithm was applied on the training data set to generate a 7 gene pairs classifier. The decision 
rules for the MLN0128 classifier is defined as: 

IF LOC100505640 > NGFR, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 

IF LOC10050658 > CRCT1, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 

IF LIPC > MGC102966, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 

IF TCP10L > PAGE2B, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 

IF LY6G5B > PARD6B, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 
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IF CCNH > TATDN2, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 

IF ERAL1 > TMEM159, THEN Predict MLN0128 Sensitive, ELSE Predict Resistant. 

As each decision rule is making a prediction, the final classifier will predict a new sample as Sensitive if 4 out 
of 7 rules are predicting sensitive, otherwise it will predict the new sample as resistant. The gene expressions 
(in FPKM values) for these 7 gene pairs were tabulated in Table 2.  

 
 
MLN8237 Training Set and k-TSP classifier. 
 

 
 
Figure 6. Training Set for MLN8237 and their mutational status of KRAS, NRAS, BRAF and PIK3CA. 
 
For training the MLN8237 gene classifier, we used the cell lines as with IC50 < 0.1µM and IC50 > 5 µM as 
sensitive and resistant cell lines (Figure 5). There are 7 sensitive and 19 resistant cell lines selected as the 
training set for MLN8237 (Table 2). The k-TSP algorithm was applied on the training data set to generate a 3 
gene pairs classifier. The decision rules for the MLN8237 classifier is defined as: 

IF FAM177A1 > RAB24, THEN Predict MLN8237 Sensitive, ELSE Predict Resistant. 

IF MEF2C > CITED1, THEN Predict MLN8237 Sensitive, ELSE Predict Resistant. 

IF PRR5L > ACSS1, THEN Predict MLN8237 Sensitive, ELSE Predict Resistant. 

As each decision rule is making a prediction, the final classifier will predict a new sample as Sensitive if 2 out 
of 3 rules are predicting sensitive, otherwise it will predict the new sample as resistant. The gene expressions 
(in FPKM values) for these 3 gene pairs were tabulated in Table 3. 
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Table 3: MLN8237 Training Set and Genes included in the k-TSP classifier. 

 
 
 
 
 
ENMD2076 Training Set and k-TSP classifier. 

 
Figure 7. Training Set for ENMD2076 and their mutational status of KRAS, NRAS, BRAF, PIK3CA and 
TP53. 
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For training the ENMD2076 gene classifier, we used the cell lines as with IC50 < 1µM and IC50 > 3 µM as 
sensitive and resistant cell lines (Figure 7). There are 6 sensitive and 9 resistant cell lines selected as the 
training set for ENMD2076 (Table 4). The k-TSP algorithm was applied on the training data set to generate a 5 
gene pairs classifier. The decision rules for the ENMD-2076 classifier is defined as: 

IF AHRR > ENTPD8, THEN Predict ENMD2076 Sensitive, ELSE Predict Resistant. 

IF RAMP1 > QPRT, THEN Predict ENMD2076 Sensitive, ELSE Predict Resistant. 

IF GSTT1 > UBD, THEN Predict ENMD2076 Sensitive, ELSE Predict Resistant. 

IF LENG9 > CDKN2B, THEN Predict ENMD2076 Sensitive, ELSE Predict Resistant. 

IF IQCH > SAA2, THEN Predict ENMD2076 Sensitive, ELSE Predict Resistant. 

As each decision rule is making a prediction, the final classifier will predict a new sample as Sensitive if 3 out 
of 5 rules are predicting sensitive, otherwise it will predict the new sample as resistant. The gene expressions 
(in FPKM values) for these 5 gene pairs were tabulated in Table 4. 

Table 4: ENMD2076 Training Set and Genes included in the k-TSP classifier. 
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Aim 2. To validate the preclinical efficacy of these classifiers against 20 independent patient-derived CRC 
explant models. 

Task 1: Prediction of the human CRC explants (Months 24-36, Drs. Eckhardt and Tan)  
Using the classifiers developed in Aim 1 for the three agents, we predicted the response to the drugs using 
baseline mRNA-seq expression obtained from CRC PDX models. See Dr. Eckhardt’s report for the response 
graphs. The results for Aim 2 are provided in Tables 5, 6, and 7. 

Task 2: The human CRC explants will be treated with the agent and assessed for response (Months 24-36, 
Dr. Eckhardt). 
The classifiers predictions in Task 1 of Aim 2 were validated in PDX models. See Dr. Eckhardt’s report. The 
results for Aim 2 are provided in Tables 5, 6, and 7. 

Classifier Assessment. 
We used the following three metrics to assess the performance of the classifier based on the prediction as 
validated by the PDX models response to the three agents. 

Actual PDX Response 
SEN RES 

Prediction 
of PDX 

Response 

SEN TP FP 

RES FN TN 

Accuracy: 100 x (TP + TN)/(TP + FP + FN + TN) 

Sensitivity: 100 x (TP)/(TP + FN) 

Specificity: 100 x (TN)/(TN + FP) 

MLN0128 Prediction on the PDX models. 
Using the MLN0128 gene classifier developed in Aim 1 (Table 2), we predict the PDX models response to 
MLN0128. As tabulated in Table 5, the classifier correctly predicted 13 out of 18 (72% accuracy) PDX models 
response to MLN0128. The sensitivity and specificity of the MLN0128 classifier are 67% and 78%, 
respectively. The gene pairs expressed of the MLN0128 classifier (in FPKM values) and the prediction results 
were tabulated in Table 5.  

Table 5. Prediction of the MLN0128 classifier on 20 PDX models. 
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MLN8237 Prediction on the PDX models. 
Using the MLN8237 gene classifier developed in Aim 1 (Table 5), we predict the PDX models response to 
MLN8237. As tabulated in Table 6, the classifier correctly predicted 16 out of 21 (62% accuracy) PDX models 
response to MLN8237. The sensitivity and specificity of the MLN8237 classifier are 50% and 67%, 
respectively. The gene pairs expressed of the MLN8237 classifier (in FPKM values) and the prediction results 
were tabulated in Table 6.  
 
Table 6. Prediction of the MLN8237 classifier on PDX models 

 
 
 
 
ENMD2076 Prediction on the PDX models. 
Using the ENMD2076 gene classifier developed in Aim 1 (Table 4), we predict the PDX models response to 
ENMD2076. As tabulated in Table 7, the classifier correctly predicted 16 out of 20 (80% accuracy) PDX 
models response to ENMD-2076. The sensitivity and specificity of the ENMD2076 classifier are 100% and 
73%, respectively. The gene pairs expressed of the ENMD2076 classifier (in FPKM values) and the prediction 
results were tabulated in Table 7.  
 
 
Table 7. Prediction of the ENMD2076 classifier on PDX models. 
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KEY RESEARCH ACCOMPLISHMENTS: 
1. Completed in vitro screening on a large panel of CRC cell lines to determine the activity of three novel
anti-cancer agents 
2. Completed in vivo screening on CRC patient-derived xenografts
3. Completed baseline gene expression profiling of CRC cell lines and patient-derived tumor explants by
high-throughput RNA-sequencing approach 
4. Analyzed the RNA-seq data with bioinformatics pipeline
5. Developed initial predictive classifiers for the three novel anti-cancer agents

REPORTABLE OUTCOMES: Based on the data obtained we have published two manuscripts and three 
additional manuscripts are in preparation.   

1. Davis SL, Robertson KM, Pitts TM, Tentler JJ, Bradshaw-Pierce EL, Klauck PJ, Bagby SM, Hyatt SL,
Selby HM, Spreafico A, Ecsedy JA, Arcaroli JJ, Messersmith WA, Tan AC, Eckhardt SG.  (2015).
Combined inhibition of MEK and Aurora A kinase in KRAS/PIK3CA double-mutant colorectal cancer
models.  Front Pharmacol. 6:120. [PMID: 26136684]. [PMCID: PMC4468631].

2. Christopher H. Lieu, Patrick K. Henthorn, John J. Tentler, Aik-Choon Tan, Anna Spreafico, Heather M.
Selby, Stacey M. Bagby, Peter J. Klauck, John J. Arcaroli, Wells A. Messersmith, Todd M. Pitts , S. Gail
Eckhardt.  Antitumor Activity of the Potent MEK Inhibitor, TAK733, Against Colorectal Cancer Cell Lines
and Patient Derived Xenografts. Oncotarget. 6(33):34561-34572. [PMID: 26439693].

3. Todd M Pitts, Erica L Bradshaw-Pierce, Stacey M Bagby, Stephanie L Hyatt, Heather M Selby, Anna
Spreafico, John J Tentler, Kelly McPhillips, Peter J Klauck, Anna Capasso, Aik Choon Tan, John J
Arcaroli, Alicia Purkey, Wells A Messersmith, Jeffery A Ecsedy, S Gail Eckhardt.  Antitumor Activity of
the Aurora A Selective Kinase Inhibitor, Alisertib, Against Preclinical Models of Colorectal Cancer.  In
Preparation.

4. Anna Capasso, Todd M Pitts, John J Tentler, Peter J Klauck, Anna Capasso, Aik Choon Tan, John J
Arcaroli, Alicia Purkey, Wells A Messersmith, S Gail Eckhardt.  Dual Compartmental Targeting of Cell
Cycle and Angiogenic Kinases in Colorectal Cancer Models by ENMD2076.  In Preparation.

5. Peter J Klauck, Todd M Pitts, Aik Choon Tan, John J Tentler, John J Arcaroli, Alicia Purkey, Wells A
Messersmith, S Gail Eckhardt.  Antitumor Activity of the Polo-Like Kinase 1 Inhibitor, TAK960, Against
Preclinical Models of Colorectal Cancer.  In Preparation.

Other publications, conference papers, and presentations (See appendices): 

1. Tan AC, Britt BW, Astling DP, Leong S, Lieu C, Tentler JJ, Pitts TM, Arcaroli JJ, Messersmith WA,
Eckhardt SG. (2012). Validation of Preclinical Colorectal Cancer Models Against TCGA Data for
Pathway Analysis and Predictive Biomarker Discovery. (Presented in the EORTC-NCI-AACR
Symposium on Molecular Targets and Cancer Therapeutics, Dublin, Ireland.)

2. T. Pitts1, K.L. McPhillips1,  H.M. Selby1, A. Spreafico1, S.M. Bagby1, B.C. Britt1, J.J. Tentler1, A.C.
Tan1, K. Kuida2, S.G. Eckhardt1. Antitumor Activity of the Polo-like Kinase (PLK) Inhibitor, TAK-960,
Alone and in Combination with Standard Agents Against KRAS WT and MT Colorectal Cancer (CRC)
Models 1 University of Colorado, Medical Oncology, Aurora CO, USA; 2Millennium: The Takeda
Oncology Company, Translational Medicine, Cambridge MA, USA (European Journal of Cancer,
Volume 48, Supplement 6, November 2012, Pages 172-173, Poster 562)

3. J Tentler, SM Bagby, AC Tan, TM Pitts, HM Selby, KL McPhillips, SG Eckhardt, S Leong
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Molecular Markers of Sensitivity to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Human 
Colorectal Cancer (CRC) Models.  University of Colorado, Medical Oncology, Aurora CO, USA. 
(European Journal of Cancer, Volume 48, Supplement 6, November 2012, Pages 78, Poster 255) 

4. TM Pitts1, KL McPhillips1, HM Selby1, A Spreafico1, SM Bagby1, BC Britt1, AC Tan1, JJ Tentler1, JA
Ecsedy2, SG Eckhardt1.  In Vitro and in Vivo Antitumor Activity of the Investigational Aurora A Selective
Kinase Inhibitor MLN8237 Alone and in Combination with Standard Agents Against CRC Models.
1University of Colorado, Medical Oncology, Aurora CO, USA. 2Millennium: The Takeda Oncology
Company, Translational Medicine, Cambridge MA, USA. (European Journal of Cancer, Volume 48,
Supplement 6, November 2012, Pages 78, Poster 254)

CONCLUSIONS:  The overall impact of the work performed in this proposal is largely related to the fact that 
we were able to identify several novel agents that are active against CRC in vitro and in vivo. The scientific 
climate has changed somewhat in the last 5 years since there is much greater focus on rational combinations 
and combinations with immunotherapy in oncology, so that the use of classifiers for single-agent treatment 
currently has limited clinical application. Nonetheless, we are moving forward with these agents in CRC but 
with an eye towards combination strategies, and are developing humanized mouse models of our CRC PDX so 
that we can test combination strategies with these novel agents and immunotherapy. Ideally, we hope to 
integrate the biomarker data obtained in this proposal in order to select rational combinations for patients. We 
have completed all of the Tasks in Aim 1 and Aim 2.  In the future, we are using these data to predict rational 
combinations of these novel anti-cancer agents in CRC.  



 

 16 

REFERENCES: 
 
Diamond JR, Eckhardt SG, Tan AC, Newton TP, Selby HM, Brunkow KL, Kachaeva MI, Varella-Garcia M, Pitts 
TM, Bray MR, Fletcher GC, Tentler JJ. (2013). Predictive Biomarkers of Sensitivity to the Aurora and 
Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Breast Cancer Models. Clinical Cancer Research. 19(1): 
19:291-303. 
 
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, 
Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20(9):1297-1303. 
 
Pitts TM, Tan AC, Kulikowski GN, Tentler JJ, Brown AM, Flanigan SA, Leong S, Coldren CD, Hirsch FR, 
Varella-Garcia M, Korch C, Eckhardt SG. (2010). Development of an integrated genomic classifier for a novel 
agent in colorectal cancer: approach to individualized therapy in early development. Clin Cancer Res. 
16(12):3193-3204. 
 
Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd 
MR. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 82(13):1107-
1112.  
 
Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. (2005) Simple decision rules for classifying human cancers 
from gene expression profiles. Bioinformatics. 21(20):3896-3904. 
 
Trapnell, C., Pachter, L., and Salzberg, S.L. 2009. TopHat: discovering splice junctions with RNAseq. 
Bioinformatics 25:1105-1111. 
 
Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., 
and Pachter, L. 2010. Transcript assembly and quantification by RNAseq reveals unannotated transcripts and 
isoform switching during cell differentiation. Nat Biotechnol 28:511-515. 
 
Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput 
sequencing data. Nucleic Acids Res. 38(16):e164. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 17 

 
Appendices:  
Abstract Presented in the EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, 
Dublin, Ireland. 
 
Validation of Preclinical Colorectal Cancer Models Against TCGA Data for Pathway Analysis and 
Predictive Biomarker Discovery 
 
A. Tan1, B. Britt1, D. Astling1, S. Leong1, C. Lieu1, J. Tentler1, T. Pitts1, J. Arcaroli1, W. Messersmith1, S. 
Eckhardt1.  
1University of Colorado Anschutz Medical Campus, Medical Oncology/Medicine, Aurora CO, USA 
 
Background: Preclinical models such as cancer cell lines and patient- derived tumor xenografts (PDTX) have 
been widely used in predictive biomarker development and pathway modeling in cancer research. However, it 
has not been clear to what extent these preclinical models reflect the molecular heterogeneity observed in 
clinical samples, while initiatives such as the TCGA provide an opportunity for comparison and validation. 
 
Methods: We performed massively parallel mRNA sequencing (RNA-seq) on 25 PDTX and 60 CRC cell lines 
using the Illumina HiSeq2000 platform to characterize the transcriptome of these preclinical models. On 
average, 40 million single-end 100bp sequencing reads per sample were obtained. The RNA-seq reads were 
mapped against the human genome using Tophat (version 1.3.2). On average, 80% of the reads aligned to the 
human genome. Cufflinks (version 1.3.0) was used to assemble the transcripts using the RefSeq annotation as 
the guide. Gene-level expression was estimated by FPKM (fragments per kilobase of exon per million 
fragments mapped). We performed pathway analysis using PARADIGM. RNA-seq of 244 CRC patient tumors 
were downloaded from the TCGA website. Following rank-normalized, mean centered data normalization, 
hierarchical clustering was performed on the samples using gene-centric and pathway- centric approaches. 
 
Results: To determine whether the preclinical models were representative of the variability observed in 
expression profiles from clinical samples, we compared RNA-seq gene expression data of the 25 PDTX and 60 
CRC cell lines with 244 TCGA CRC patient tumors. From the unsupervised hierarchical clustering approach, 
CRC cell lines and PDTX clustered together with TCGA patient tumors. We also performed unsupervised 
hierarchical clustering based on PARADIGM inferred gene sets. In the pathway clustering analysis, the 
preclinical CRC models also clustered together with TCGA patient samples. Within each cluster, CRC 
preclinical models do response to particular class of targeted therapy, suggesting potential treatment strategies 
for the diverse CRC patient samples.  
 
Conclusions: In this study, we performed a systematic comparison of our CRC preclinical models and TCGA 
patient samples using next-generation sequencing data. Clustering analysis indicates that our preclinical 
models are representative of all CRC patient clusters identified in TCGA database. These results indicate that 
these CRC preclinical models are representative of actual patient samples and may be useful in early drug 
development and predictive biomarker discovery. 
 
(European Journal of Cancer, Volume 48, Supplement 6, November 2012, Pages 81, Poster 263) 
 
 



 

 18 

Antitumor Activity of the Polo-like Kinase (PLK) Inhibitor, TAK-960, Alone and in Combination with 
Standard Agents Against KRAS WT and MT Colorectal Cancer (CRC) Models 
 
T. Pitts1, K.L. McPhillips1,  H.M. Selby1, A. Spreafico1, S.M. Bagby1, B.C. Britt1, J.J. Tentler1, A.C. Tan1, K. 
Kuida2,  S.G. Eckhardt1.  
1 University of Colorado, Medical Oncology, Aurora CO, USA;  
2Millennium: The Takeda Oncology Company, Translational Medicine, Cambridge MA, USA 
 
Background: Polo-like kinases (PLKs) are serine-threonine kinases that are involved in several processes of 
cell division including chromosomal segregation, spindle formation, and cytokinesis. PLKs, specifically PLK-1, 
are highly expressed in cells and tissues with high mitotic indices such as cancer, and are overexpressed in 
head and neck, lung, breast and colon malignancies, among others. In this preclinical study we assessed the 
antitumor effects of the novel Plk inhibitor, TAK-960, against CRC models, including cell lines and patient-
derived xenografts.  
 
Methods: The anti-proliferative effects of TAK-960 as a single agent and in combination with irinotecan (SN38) 
or cetuximab were assessed using an assay that measures DNA content (CyQUANT). Synergy was calculated 
using Calcusyn software while evaluation of downstream effector molecules and apoptosis was assessed by 
immunoblotting. Patient-derived CRC xenografts were implanted into athymic nude mice and tumor growth 
inhibition (TGI) was evaluated following treatment with TAK-960 alone or in combination with standard agents 
(irinotecan or cetuximab). 
 
Results: CRC cell lines were quite sensitive to TAK-960 with IC50 values ranging from 0.007 to 1 umol/L. 
While no synergy was observed in the KRAS WT CRC cell lines in the cetuximab combination groups, 
additivity to mild synergy was observed in the KRAS MT CRC cell lines exposed to the SN38 combination. 
Modulation of down stream effector molecules was observed following exposure to TAK-960, including 
pHistone H3 and p73. Interestingly, against patient-derived xenograft models, synergy was difficult to assess in 
the KRAS WT models due to the exquisite sensitivity to cetuximab, while some of the KRAS MT xenografts did 
demonstrate TGI in the irinotecan combination groups that was supra-additive.  
 
Conclusion: The PLK inhibitor TAK-960 demonstrated robust single-agent anti-proliferative effects against 
CRC cell lines in vitro, whereas synergy was not observed when combined with cetuximab or SN38. However, 
there were supra-additive effects noted in several patient-derived KRAS MT xenografts treated with TAK-960 
and irinotecan, supporting the evaluation of this regimen in this patient population with limited therapeutic 
options. 
 
(European Journal of Cancer, Volume 48, Supplement 6, November 2012, Pages 172-173, Poster 562) 
 



 

 19 

 
TAK-733, an Investigational Novel MEK Inhibitor, Suppresses Colorectal Cancer (CRC) Tumor Growth 
in Biomarker Positive Patient-derived Human Tumor Explants 
 
CH Lieu, JL Tentler, AC Tan, TM Pitts, A Spreafico, HM Selby, KL McPhillips, SM Bagby, SG Eckhardt 
University of Colorado, Medical Oncology, Aurora CO, USA 
 
Background: CRC is a significant cause of cancer mortality, and new therapies are needed for patients with 
advanced disease. TAK-733 is a highly potent and selective investigational novel MEK allosteric site inhibitor.  
 
Materials and Methods: In a preclinical study of TAK-733, a panel of CRC cell lines was exposed to varying 
concentrations of TAK-733 for 72 hours followed by sulforhodamine B assay. Cell lines were segregated into 
sensitive (IC50 � 0.5 mM) or resistant (IC50 > 0.5mM). Twenty patient-derived human tumor explants grown in 
vivo as xenografts were then treated with TAK-733. Tumor growth inhibition (TGI) was measured to determine 
the sensitivity of the CRC explants to TAK-733. A sensitive explant was defined by a TGI�80%. Linear 
regression was used to examine the predictive effects of genotype on the TGI of explants. 
 
Results: Fifty-four CRC cell lines were exposed to TAK-733, and 42 cell lines were found to be sensitive 
across a broad range of mutations within these cell lines. Eighty-two percent of the cell lines within the 
sensitive subset were BRAF or KRAS mutant, and 80% of the cell lines within the sensitive subset were 
PIK3CA WT. The predictability of these mutations is limited, because a majority (7/12) of the insensitive cell 
lines also contained mutations in BRAF and KRAS. Twenty patient-derived human tumor CRC explants were 
then treated with TAK-733. In total, 15 primary human tumor explants were found to be sensitive to TAK-733 
(TGI � 80%), including 9 primary human tumor explants exhibiting tumor regression (TGI >100%). Explants 
with a BRAF/KRAS mutant and PIK3CA wild-type genotype demonstrated increased sensitivity to TAK-733 
with a median TGI of 106%. Published MEK-response gene signatures also correlated with response to TAK-
733. 
 
Conclusions: TAK-733 demonstrates robust antitumor activity against CRC cell lines and patient-derived 
tumor explants. There was a trend towards higher sensitivity to TAK-733 in tumors that were BRAF/KRAS 
mutant and PIK3CA wild-type. There was also a trend towards sensitivity to TAK-733 in tumors with published 
MEK-response gene signatures. This data may provide a potential patient selection strategy for future clinical 
trials in patients with metastatic CRC. 
 
 
(European Journal of Cancer, Volume 48, Supplement 6, November 2012, Pages 119-120, Poster 393) 
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Molecular Markers of Sensitivity to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Human 
Colorectal Cancer (CRC) Models 
 
J Tentler, SM Bagby, AC Tan, TM Pitts, HM Selby, KL McPhillips, SG Eckhardt, S Leong 
University of Colorado, Medical Oncology, Aurora CO, USA 
 
Background: ENMD-2076 is an orally bioavailable small molecule currently in clinical development that is an 
inhibitor of Aurora kinase A, as well as angiogenic kinases VEGFR2 and PDGFRa. The purpose of this study 
was to use gene set enrichment analysis (GSEA) and RNA-seq data from preclinical models of CRC to 
develop predictive markers of sensitivity to ENMD-2076. 
 
Methods: To determine sensitivity (S) or resistance (R), a panel of 52 CRC cell lines was exposed to 
increasing doses of ENMD-2076 and proliferation was measured by the sulforhodamine B method. For in vivo 
studies, athymic nude mice were injected subcutaneously with 3mm3 sections of patient-derived CRC tumor 
explants (PDTX). When tumors reached a volume of ~150 mm3 , mice were randomized into vehicle and 
ENMD-2076 (200mg/kg) groups; n=5 per group. Vehicle or drug was administered qd for 30 days by oral 
gavage with tumor volume measurements taken every 3 days. High-throughput mRNA sequencing (RNA-seq) 
of CRC cell lines and PDTX models was obtained using the Illumina HiSeq2000. On average, 40 million single-
end 100bp sequencing reads per sample were obtained. The RNA-seq reads were mapped against the human 
genome using Tophat (version 1.3.2). On average, 80% of the reads aligned to the human genome. Cufflinks 
(version 1.3.0) was used to assemble the transcripts using the RefSeq annotation as the guide. For GSEA, 
pathways were obtained from KEGG and AMBION databases as gene sets. Enriched pathways were identified 
by running GSEA using 1000 permutations. Predictive biomarkers for ENMD-2076 sensitivity were derived 
from the RNA-seq data using the k-TSP learning algorithm. 
 
Results: To determine the genes and pathways correlated with ENMD- 2076 responsiveness, GSEA was 
performed comparing baseline gene expression profiles of eleven S (IC50 � 1mM) and five R (IC50 � 5mM) 
cell lines. Six pathways were enriched in the S lines (p < 0.01) and 28 pathways were enriched in the R lines (p 
< 0.01). Among the top enriched pathways in the R lines were cytokine-related pathways, chemokine signaling 
pathways, JAK/STAT and PI3K signaling pathways. These results point to potential ra- tional combination 
studies with ENMD-2076 in CRC resistant cell lines. For the predictive biomarker development strategy, the k-
TSP algorithm was trained on the RNA-seq data from the S and R cell lines. Gene pair classifiers were then 
derived and tested on the RNA-seq of ten CRC PDTX tumor models. Among the ten PDTX models, nine had a 
TGI <50% and were predicted S while one of the explants had a TGI >150% was predicted as R.  
Conclusions: The results of this study indicate that it is possible to derive predictive biomarkers from CRC cell 
lines and predict sensitivity on CRC PDTX models. Further refinement of this classifier by including mutational 
data will greatly improve the robustness of these predictive biomarkers. 
 
(European Journal of Cancer, Volume 48, Supplement 6, November 2012, Pages 78, Poster 255) 
 



21

In Vitro and in Vivo Antitumor Activity of the Investigational Aurora A Selective Kinase Inhibitor 
MLN8237 Alone and in Combination with Standard Agents Against CRC Models 

TM Pitts1, KL McPhillips1, HM Selby1, A Spreafico1, SM Bagby1, BC Britt1, AC Tan1, JJ Tentler1, JA Ecsedy2, 
SG Eckhardt1 
1University of Colorado, Medical Oncology, Aurora CO, USA 
2Millennium: The Takeda Oncology Company, Translational Medicine, Cambridge MA, USA 

Background: The Aurora kinases are a family of serine/threonine kinases comprised of Aurora A, B, and C 
which execute critical steps in mitotic and meiotic progression. MLN8237 is an investigational Aurora A 
selective inhibitor that has demonstrated activity against a wide variety of tumor types in vitro and in vivo, 
including CRC. In this study the activity of MLN8237 alone and in combination with irinotecan or cetuximab 
was assessed in CRC cell lines and patient-derived tumor xenografts (PDTXs). 

Methods: A panel of 55 CRC cell lines were exposed to increasing concentrations of MLN8237, alone or in 
combination with SN38, and assessed for proliferation by quantifying DNA content using a CyQUANT assay. 
Synergy was determined in the combinations using Calcusyn software, while downstream effector molecules 
and apoptosis were assessed by standard immunoblotting methods. For the in vivo studies, patient-derived 
CRC xenografts were implanted into athymic nude mice and tumor growth inhibition was evaluated following 
treatment with MLN8237 as single agent or in combination with irinotecan or cetuximab. 

Results: Colon cancer cell lines demonstrated varying sensitivity to MLN8237 with IC50 values ranging from 
0.08 to >5umol/L. Synergy to additivity was observed in several KRAS mutant CRC cell lines treated with 
MLN8237 and SN38 (CI=0.1−6.0). Following exposure to MLN8237 we observed an increase in pHistone H3 
showing that MLN8237 was modulating its target. No remarkable combination effects of MLN8237 with 
cetuximab in KRAS WT PDTX was observed due to exquisite sensitivity to single agent cetuximab. Several 
KRAS MU PDTX did exhibit supra-additivity to MLN8237 and irinotecan combined, consistent with the 
beneficialcombinationobservedinvitrowithSN38.Analysisofdownstream effectors and markers of proliferation 
and apoptosis is ongoing.  
Conclusion: MLN8237 demonstrated anti-proliferative effects against CRC cell lines with synergy observed in 
combination with SN38 in vitro. Moreover, in the PDTX models greater tumor growth inhibition was observed in 
several of the KRAS mutant xenografts treated with the combination of MLN8237 and irinotecan, indicating a 
potential clinical development strategy for the agent in KRAS MU CRC, where therapeutic options are limited. 

(European Journal of Cancer, Volume 48, Supplement 6, November 2012, Pages 78, Poster 254) 




