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Summary. In this review we explore the possibility of adapting first order hybrid
feedback controllers for nonholonomically constrained systems to their dynamical
counterparts. For specific instances of first order models of such systems, we have
developed gradient based hybrid controllers that use Navigation functions to reach
point goals while avoiding obstacle sets along the way. Just as gradient controllers
for standard quasi-static mechanical systems give rise to generalized “PD-style”
controllers for dynamical versions of those standard systems, so we believe it will
be possible to construct similar “lifts” in the presence of non-holonomic constraints
notwithstanding the necessary absence of point attractors.

1 Introduction

The use of total energy as a Lyapunov function for mechanical systems has a
long history [1] stretching back to Lord Kelvin [2]. Unquestionably, Arimoto
[3] represents the earliest exponent of this idea within the modern robotics
literature, and, in tribute to his long and important influence, we explore
in this paper its extension into the realm of nonholonomically constrained
mechanical systems.

The notion of total energy presupposes the presence of potential forces
arising from the gradient of a scalar valued function over the configuration
space. We focus our interest on “artificial cost functions” introduced by a
designer to encode some desired behavior as originally proposed by Khatib
[4, 5]. However, we take a global view of the task, presuming a designated
set of prohibited configurations — the “obstacles” — and a designated set
of selected configurations — the “goal,” which we restrict in this paper to
be an isolated single point. We achieve the global specification through the
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introduction of a Navigation Function (NF) [6] — an artificial potential
function that attains a maximum value of unity on the entire boundary of the
obstacle set, and its only local minimum, at zero, exactly on the isolated goal
point. Such functions are guaranteed to exist over any configuration space of
relevance to physical mechanical systems [7], and constructive examples have
been furnished for a variety of task domains [6, 8, 9, 10].

NF-generated controls applied to completely actuated mechanical systems
force convergence to the goal from almost every initial condition and guarantee
that no motions will intersect the obstacle set along the way. In the dynamical
setting, where the role of kinetic energy is important, they achieve a pattern of
behavior analogous to that of similarly controlled corresponding quasi-static
dynamics. For example, in the one degree of freedom case, the dynamical
setting is represented by the familiar spring-mass-damper system

mq̈ + cq̇ + kq = 0 (1)

and the corresponding quasi-static model arises through a neglect of the in-
ertial forces, m → 0 in (1), yielding

cq̇ + kq = 0 (2)

To illustrate the nature of NF-gradient-based controllers in this simple
setting, take the configuration space to be Q := {q ∈ R : |q| ≤ 1} with nav-
igation function ϕ(q) := 1

2kq2, implying that {0} = ϕ−1[0] is the goal and
{−1, 1} = ϕ−1[1] the obstacle set. We imagine that both systems, (1), (2),
arise from application of the NF-gradient control law, u := −∇ϕ, to the re-
spective open loop,

u = mq̈ + cq̇

or
u = cq̇.

We observe that ϕ is a global Lyapunov function for (2) guaranteeing that
all initial conditions give rise to motions that avoid the obstacle set while
converging asymptotically on the goal set. Analogously, the total energy,
μ := 1

2 q̇2 + ϕ(q) is a Lyapunov function for the velocity-limited extension of
Q, X := μ−1[0, 1] =

{
(q, q̇) ∈ R

2 : μ(q, q̇) ≤ 1
}
. This guarantees that all ini-

tial conditions in X give rise to motions that avoid the obstacle (and, in fact,
are repelled from the entire boundary, μ−1[1]) while converging asymptoti-
cally on the zero velocity goal set, μ−1[0] = {(0, 0)}. A more general global
version of Arimoto’s [3] adaptation of Lord Kelvin’s observations has been
presented in greater detail in [11].

In contrast, for incompletely actuated mechanical systems, when the de-
grees of freedom exceed the number of independently controlled actuators,
the applicability of NF-gradient-based controllers to either dynamical or
quasi-static mechanical systems remains largely unexplored. One particu-
larly important class of such systems arises in the presence of nonholonomic
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constraints — systems with intrinsically unavailable velocities whose absence
cannot be expressed in terms of configuration space obstacles [12]. In such set-
tings, there is an inherent degree of underactuation, since no amount of input
work can be exerted in the forbidden directions. In an echo of Arimoto’s [3]
“lift” of first order gradient dynamics (2) to damped second order mechanical
dynamics (1), this paper explores the relationship between quasi-static and
fully dynamical NF-gradient controllers for a class of nonholonomic systems.

One very important general observation about nonlinear systems that
throws a shadow on every aspect of this exploration was made two decades ago
by Brockett [13] who pointed out that nonlinear systems may be completely
controllable while failing to be smoothly stabilizable. Nonholonomically con-
strained systems suffer this defect, so that no smooth feedback controller,
NF-gradient or otherwise, could ever stabilize a single point goal. However,
switching controllers incur no such limitation.

In the next section we will introduce a switching controller for a broad
class of systems that alternately runs “down” and then “across” the gradient
slope to bring all motions arbitrarily close to the goal without hitting any
obstacles. For these classes we can prove this analytically. The next section
addresses the same class of systems, now cast in the dynamical setting. We
show how to recast the hybrid controller to give the analogous result for these
second order systems. Finally, as an illustrative example, we present numerical
simulations of the rolling disk defined in a configuration space with a simple
sensory model that imposes a particular configuration space topology.

2 Hybrid Controller for Nonholonomic Kinematic
Systems

We start by presenting a class of controllers defined in R
3 for nonholonomic

kinematic systems. For an in depth exposure please see [14]. Consider the class
of smooth and piecewise analytic, three degree of freedom, drift-free control
systems

q̇ = B(q)u, q ∈ Q ⊂ R
3; u ∈ R

2, (3)

where Q is a smooth and piecewise analytic, compact, connected three di-
mensional manifold with a boundary, ∂Q (that separates the acceptable from
the forbidden configurations of R

3), possessing a distinguished interior goal
point, q∗ ∈ Q. In this section we will impose very general assumptions on
B and construct a hybrid controller that guarantees local convergence to an
arbitrarily small neighborhood of the goal state while avoiding any forbidden
configurations along the way.3

3 In the next section, we will introduce more specialized assumptions that extend
the basin of attraction to include almost every initial configuration in Q.
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We find it convenient to write (3) using the nonholonomic projection ma-
trix [15], H into the image of B:

H(q) = B(q)B(q)† = B(q)
(
B(q)T B(q)

)−1
B(q)T (4)

q̇ = H(q)v, q ∈ Q ⊂ R
3; v ∈ R

3 (5)

2.1 Two Controllers and Their Associated Closed Loop Dynamics

It is useful to compare the unconstrained system q̇ = v with the constrained
version (5). Let ϕ be a navigation function defined in Q. For the input
v = −∇ϕ the unconstrained system is globally asymptotically stable at the
origin. Using ϕ as a control Lyapunov function yields ϕ̇ = −‖∇ϕ‖2. Given
this result, a naive approach to attempt stabilizing system (5) is to use the
same input v = −∇ϕ. Define the vector field f1 : Q → TQ such that
f1(q) := −H(q)∇ϕ(q) and the system

q̇ = f1(q) = −H(q)∇ϕ(q) (6)

Since H has a 1-dimensional kernel it follows that (6) has a 1 dimensional
center manifold

Wc := {q ∈ Q : H(q)∇ϕ(q) = 0} ,

as corroborated by explicitly computing the Jacobian of f1 at q∗:

Df1|q∗ = −(∇ϕ|q∗︸ ︷︷ ︸
=0

⊗I)DHS − HD2ϕ = − HD2ϕ
∣∣
q∗ (7)

Using ϕ as a control Lyapunov function, La Salle’s invariance theorem states
that system (6) has its limit set in Wc:

ϕ̇ = −∇ϕT H∇ϕ

= −‖H∇ϕ‖2

{
= 0 if q ∈ Wc

< 0 if q /∈ Wc (8)

Figure 1 illustrates the topology associated with (6): the projection H im-
poses a co-dimension 1 foliation complementary to the center manifold. The
stable manifold, Ws, is the leaf containing the goal, q∗. The input

u1 := B(q)†∇ϕ(q) (9)

alone cannot stabilize system (6) at the origin, since no smooth time invariant
feedback controller has a closed loop system with an asymptotically stable
equilibrium point [12]. Nevertheless, for any initial condition outside Wc an
infinitesimal motion in the direction of f1 reduces the energy ϕ. If there can
be found a second controller that “escapes” Wc without increasing ϕ then it
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Fig. 1. Conceptual illustration of the flow associated with (6). Each leaf is an
invariant manifold with all trajectories collapsing into Wc.

is reasonable to imagine that iterating the successive application of these two
controllers might well lead eventually to the goal. We now pursue this idea by
introducing the following controller,

u2 := B(q)† [A(q) ×∇ϕ(q)] , (10)

leading to the closed loop vector field

q̇ = f2(q)
f2(q) := A(q) ×∇ϕ(q) (11)

where A(q) := ×B(q) is the cross product of the columns of B(q). 4 Note
that the nonholonomic constraint expressed in (3) can be represented by the
implicit equation AT (q)q̇ = 0. Since the derivative of ϕ in the direction of f2

is

Lf2ϕ = ∇ϕ(q)T · (A(q) ×∇ϕ(q)) = 0, (12)

it follows that f2 is ϕ-invariant — i.e. the energy, ϕ, is constant along its
motion. Moreover 0 = AT (A×∇ϕ) = AT f2, verifying that f2 indeed satisfies
the constraint (3).

4 We will assume in A3 that B has rank two at each point.
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2.2 Assumptions, a Strategy, and Preliminary Analysis

Given the previous two vector fields — one which is energy decreasing; the
other energy conserving — we now sketch a strategy that brings initial condi-
tions of system (3) to within an arbitrarily small neighborhood ε of the goal,
by way of motivating the subsequent definitions and claims that arise in the
formal proofs to follow. Let f t

1(q) and f t
2(q) denote the flows of f1 and f2

respectively.

(1). If q0 ∈ Wc then follow a direction in im(H) for a finite amount of time
t0 such that f t0

1 (q0) /∈ Wc and ϕ ◦ f t0
1 (q0) < 1 for all t ∈ (0, t0).

(2). If q0 
∈ Wc and ϕ(q0) > ε

2.1) Use a scaled version of f2 for time τ2 to escape a δ-neighborhood of
Wc, keeping the energy ϕ constant.

2.2) Use controller f1, for time τ1, to decrease the energy ϕ, stopping at a
γ-neighborhood of Wc such that fτ1

1 (q) /∈ Wc and γ < δ.

We now introduce a number of assumptions, definitions and their consequences
that will allow us to formalize each of the previous steps:

A1 Q is a smooth compact connected manifold with boundary.
A2 ϕ is a navigation function in Q.
A3 H has rank two, uniformly throughout Q.

Assumption A1 gives the proper setting for the existence of a naviga-
tion function in the configuration space.Assumption A3 assures the foliation
sketched in figure 1.

Define the local surround of the goal to be the closed “hollow sphere”,
Qs := ϕ−1[Φs], with Φs := [ε, ϕs] whose missing inner “core” is the arbitrar-
ily small open neighborhood, Qε := ϕ−1[Φε]; Φε := [0, ε), and whose outer
“shell”, Q1 := ϕ−1[Φ1], with Φ1 := (ϕs, 1], includes the remainder of the free
configuration space. ϕs is defined to be the largest level such that all the
smaller levels, ϕ0 ∈ (0, ϕs) are homeomorphic to the sphere, S2, and are all
free of critical points, ‖∇ϕ‖−1[0] ∩ ϕ−1[(0, ϕs)] = ∅.

The restriction to ϕ-invariant topological spheres precludes limit sets of f2

more complex than simple equilibria in the local surround. However, has in the
examples section of [14], one can provide more specialized conditions resulting
in the guarantee that the algorithm brings almost every initial condition in
the “outer” levels, Q1 into the local surround, Qs and, thence, into the goal
set Qε.

Lemma 1 ([14]). Given the previous assumptions

f−1
1 [0] ∩Qs ≡ f−1

2 [0] ∩Qs ≡ Wc ∩Qs. (13)
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To formally express the “δ-neighborhood” described in the stabilization
strategy we start by defining the function ξ : Q− {q∗} → [0, 1]:

ξ(q) :=
‖H(q)∇ϕ(q)‖2

‖∇ϕ(q)‖2
(14)

The quantity ‖H(q)∇ϕ(q)‖2 evaluates to zero only in Wc. Therefore in
a small neighborhood of Wc the level sets of ‖H(q)∇ϕ(q)‖2 define a “tube”
around Wc. The denominator of (14) normalizes ξ such that 0 ≤ ξ ≤ 1.
Moreover it produces a “pinching” of the tube at the goal q∗.

Lemma 2 ([14]). For all ϕ0 ∈ Φs , ϕ−1[ϕ0] intersects the unit level set of ξ,
i.e., ξ−1[1] ∩ ϕ−1[ϕ0] 
= ∅.

Corollary 1 ([14]). For all ϕ0 ∈ Φs the level set ϕ−1[ϕ0] intersects every
level set of ξ, i.e., ξ−1[α] ∩ ϕ−1[ϕ0] 
= ∅ for all α ∈ [0, 1].

Lemma 3 ([14]). A sufficient condition for the Jacobian of f2(q) evaluated
at Wc − ‖∇ϕ‖−1[0] to have at least one eigenvalue with non-zero real part is
that the control Lie algebra on B spans R

3.

Lemma 4 ([14]). The Jacobian of f2(q) evaluated at Wc ∩Qs has two non-
zero real part eigenvalues with the same sign.

Now consider the implicit equation,

ξ(q) = ξ∗ ⇔ ‖H(q)∇ϕ(q)‖2 = ξ∗‖∇ϕ(q)‖2 (15)

At the goal any ξ∗ satisfies (15). Although ξ is not defined at q∗ all of its level
sets intersect at q∗.Finally, define the parameterized cone Cγ around Wc, and
its complement Cc

γ := Q− Cγ − {q∗}, by:

Cγ = {q ∈ Q− {q∗} : ξ(q) ≤ γ} (16)

We follow by imposing conditions on H and A such that the vector field f2

can afford the needed “escape” from Wc.

Lemma 5 ([14]). Suppose system (3) satisfies assumptions A1-A3 and, hence,
the previous lemmas. Then, there exists a function σ : Q → R that renders
the system

q̇ = σ(q)A(q) ×∇ϕ(q) = f̄2(q) (17)

unstable at Wc ∩Qs.

Corollary 2 ([14]). Under the conditions of the previous lemma, there can
be found a τ ∈ (0,∞) such that for all q0 ∈ ξ−1[δ/2] we have ξ ◦ f̄τ

2 (q0) ≥ δ.

Figure 2 illustrates the steps used in the previous proof. Trajectories start-
ing inside N − Cc

γ will traverse ∂Cγ and ∂Cδ in finite time.
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Fig. 2. Illustration of the construction used in the proof of corollary 2.

2.3 A Hybrid Controller and Proof of its Local Convergence

Given the previous result define the time variables τ1, τ2 and the scalars γ < δ
such that:

τ1(q, γ) :=
{

min {t > 0 | ξ(f t
1(q)) = γ} if q ∈ Cc

γ

0 otherwise

τ2(q, δ) :=
{

min
{
t > 0 | ξ(f̄ t

2(q)) = δ
}

if q ∈ Cδ −Wc

0 otherwise

I.e., τ1 is the time to reach the γ neighborhood of Wc using vector field f1

and τ2 is the time to escape from a γ neighborhood to a δ neighborhood of
Wc using vector field f̄2.

This results in the following maps:

fτ1
1 : Cc

γ → ∂Cγ (18)

f̄τ2
2 : Qs −Wc → Cc

δ ⊂ Cc
γ , (19)

where C is the closure of C. With δ = 2γ define the map P : Qs −Wc → ∂Cγ

P (q) = f
τ1(·,γ)
1 ◦ f̄

τ2(q,2γ)
2 (q) (20)

and consider the recursive equation:

qk+1 = P (qk). (21)

The set ∂Cγ can be interpreted as a Poincaré section for the discrete system
(21). We are now ready to present the following result:

Theorem 1 ([14]). There exists an iteration number, N : Qs → N such that
the iterated hybrid dynamics, PN brings Qs to Qε.
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Proof. Define

N := min {n ∈ N|0 ≤ N ≤ Nε|ϕ ◦ Pn(q0) ≤ ε} ,

and Δϕ(q) := ϕ ◦ P (q) − ϕ(q). Since Qs is a compact set it follows that
|Δϕ| achieves its minimum value, Δε, on that set, hence at most Nε :=
ceiling(ϕs − ε)/Δε iterations are required before reaching Qε.

Note that all initial conditions in the pre-image of the “local surround”,
R :=

⋃
t>0 f−t

1 (Qs−Wc) are easily included in the basin of the goal, Qs, by an
initial application of the controller u1. While it is difficult to make any general
formal statements about the size of R, we show in the next section that for
all the examples we have tried, the “missing” initial conditions, Q−R = Z,
comprise a set of empty interior (in all but one case Z is actually empty)
because all of Wc, excepting at most a set of measure zero, is included in Qs.
In configuration spaces with more complicated topology, there is no reason to
believe that this pleasant situation would prevail. To summarize, the following
algorithm is guaranteed to bring all initial configurations in R to the goal set,
Qs:

(1). ∀q0 ∈ Qs −Wc, follow successive applications of (21), i.e. use the inputs
to equation (3):

u1(q) := B†(q)∇ϕ(q) (22)
u2(q) := σ(q)B†(q)J(A(q))∇ϕ(q) (23)

(2). ∀q0 ∈ Wc use the input

u3 :=
[

α1

α2

]
, (24)

for a small amount of time t3 such that ϕ ◦ f t3
3 (q0) < 1, with f3(q) :=

B(q)u3.
(3). ∀q0 ∈ R−Qs, use the input u1 for time t until f t

1(q0) ∈ Qs.

2.4 Other Considerations

• Limit cycles in the level sets of ϕ. In many practical applications
switching between controllers f1 and f2 using a small δ-neighborhood is
far too conservative. It may be possible to escape Wc by more than just the
small collar ξ−1[δ]. If we could recognize the passage into Ws and switch
off controller u2 (i.e. turn Ws into an attractor of a suitable modified form
of f2) then a final application of controller u1 is guaranteed to achieve the
goal state, q∗. The hope of reworking the form of u2 so that the resulting
closed loop vector field, f2, has its forward limit set solely in Ws thus
raises the question of when there exists limit cycles in the level sets of ϕ
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for the flow of f2. More importantly, we seek a condition that guarantees
that every trajectory of f2 starting in a small neighborhood of Wc can
intersect Ws either by forward or inverse time integration of system (11).
Note that f2 generates a planar flow, making the Bendixon’s criteria a
natural candidate for such condition. Several authors [16, 17, 18, 19] have
developed extensions to Bendixson’s criteria for higher dimensional spaces,
obtaining in general conditions that preclude invariant sub-manifolds on
some set. For systems with first integrals, such as some classes of systems
that result from nonholonomic constraints, the conditions simplify to a di-
vergence style test. Feckan’s theorem (see [16]) states that in open subsets
where divf2 
= 0 there can exist no invariant submanifolds of any level
precluding cyclic orbits. The divergence measure can be used this way to
detect limit cycles. Note however, that the previous result does not pre-
clude quasi-periodic orbits.

• Computational heuristic substitutes for σ. The σ function intro-
duced in Lemma 5 modifies the flow of f2 rendering the center manifold
unstable. Having that property is sufficient for stabilization, but more
can be accomplished. By careful craft of σ one can minimize the number
of switches between controllers f1 and f̄2 necessary to reach the desired
neighborhood of the goal. If the stable manifold Ws is contained in the
zero set of σ and Ws is made attractive by f̄2 for any point in Qs then one
gets f∞

1 ◦ f̄∞
2 (Qs) = q∗, i.e., only 2 steps are necessary to reach the goal.

Different methods for approximating σ are presented in [14]. Specifically
the function σ is replaced by the divergence of f2 in a neighborhood of
Wc; by maximizing ξ, since that implies escaping Wc in some measure;
or replacing σ by and implicit polynomial stable manifold approximation
(please see [20, 14] for invariant manifold computations).

3 Hybrid Controller for Nonholonomic Dynamic Systems

In this section we look into the “lift” of the algorithm proposed in the previ-
ous section to nonholonomically constrained dynamical systems. The resulting
corollaries arise naturally from the ideas introduced in [21]. Let (25) and (26)
be the system of equations for unconstrained systems [22] and nonholonomi-
cally constrained systems [23] with q, u ∈ R

n and v ∈ R
m,m < n:

M(q)q̈ + c(q, q̇) = u (25)

M(q)q̈ + c(q, q̇) = A(q)T λ + B(q)v (26)
A(q)q̇ = 0

where M is the mass matrix, c the Coriolis term, A and B represent the actu-
ation constraints defined in section 2 and λ is a vector of Lagrange multipliers.
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We start by recalling some notation and lemmas required for the subsequent
proofs. Using the “stack-kronecker notation” [24, 25, 26] consider the following
linear map:

Ḿq : x �→ [x ⊗ I]T DqM
S (27)

and the skew-symmetric value operator:

Jq(x) := Ḿq(x) − ḾT
q (x) (28)

Lemma 6 ([21]). For any curve, q : R → Q, and any vector, x ∈ Tq(t0)Q,

Ṁq|t0x = Ḿq(t0)(x)q̇|t0 (29)

Lemma 7 ([21]). Given a Lagrangian with kinetic energy, κ, with no poten-
tial forces present, and with an external torque or force actuating at every
degree of freedom as specified by the vector, τ , the equations of motion may
be written in the form:

M(q)q̈ + c(q, q̇) = τ (30)

where

c(q, x) = C(q, x)x (31)

and

C(q, x) :=
1
2
Ṁ(qx) − 1

2
Jq(x) (32)

Notice that the representation of the Coriolis and centripetal forces in
terms of the bilinear operator valued map C only coincide at q̇ with the
quadratic expression c(q, q̇). In general they are not the same.

Corollary 3 ([21]). For any motion q : R → Q, and any tangent vector,
x ∈ TQq(t),

xT

[
1
2
Ṁ(q) − C(q, q̇)

]
x ≡ 0 (33)

Proof. From the previous lemma,

xT

[
1
2
Ṁ(q) − C(q, q̇)

]
x = −1

2
xT Jq(q̇)x = 0
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3.1 Embedding the Limit Behavior of Gradient Dynamics

Controller f1(q) = −H(q) · ∇ϕ(q), introduced in Section 2.1, aims to reach
a fixed point in the center manifold Wc. In order to lift the controller into
a 2nd order system, theorem 2, concerning limit sets of gradient dynamics,
is complemented with corollary 4. Let the state variables p1, p2 represent q, q̇
respectively and let P = T Q be the tangent bundle of Q for system (25).

Theorem 2 (Koditschek[21]). Let ϕ be a Morse function on Q which is
exterior directed on the boundary ∂Q, surpasses de value μ > 0 on the bound-
ary, and has a local minima at the points G := {qi}n

i=1 ⊂ Q. Let K2 > 0
denote some positive definite symmetric matrix. Consider the set of “bounded
total energy” states

Pμ :=
{[

p1

p2

]
∈ P : ϕ(p1) +

1
2
pT
2 Mp2 ≤ μ

}
(34)

Under the feedback algorithm

u := −K2p2 − DϕT (p1) (35)

Pμ is a positive invariant set of the closed loop dynamical system within which
all initial conditions excluding a set of measure zero take G as their positive
limit set.

Let H be the nonholonomic projection matrix. Define Q(q) := I − H(q)
to be the nonholonomic converse projection matrix. Notice that ker(A) =
ker(Q) and therefore Q(q)q̇ = 0. Let Wc

0 := {q ∈ Wc ∧ q̇ = 0}. As shown in
Section 2.1, Wc is the center manifold of the system q̇ = −H(q) · ∇ϕ(q).
Rewriting equation (26) with a new input v := B(q)†u we get:

M(q)q̈ + c(q, q̇) = A(q)T λ + H(q)u
A(q)q̇ = 0 (36)

Corollary 4. Let K2 = K̄2H(q) with K̄2 > 0 denoting a positive definite
symmetric matrix. Under the conditions of theorem 2 all the initial conditions
of the system (36), excluding a set of measure zero, take Wc

0 as their positive
limit set.

Proof. Let V = ϕ(q) + 1
2 q̇T M(q)q̇ be a Lyapunov function for (5). Then

V̇=Dϕq̇ +
1
2
q̇T Ṁ q̇ − q̇T

(
HK2q̇ + HDϕT + HCq̇

)
+ q̇T AT λ︸ ︷︷ ︸

=0

=DϕQq̇︸ ︷︷ ︸
=0

+ q̇T Jq q̇︸ ︷︷ ︸
=0

−q̇T HK2q̇

=−q̇T HT K̄2Hq̇
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HT K̄2H is a semi-definite positive matrix. V̇ is null when either q̇ = 0 or
Hq̇ = 0. Since A(q)q̇ = 0 ⇒ Hq̇ 
= 0 then the largest invariant set is the
interception of the previous sets with Wc

0 resulting in Wc
0 . La Salle’s theorem

guarantees that (5) with input (35) takes Wc
0 as the forward limit.

3.2 Embedding of More General Dynamics

We now seek to lift the controller f2(q) defined in Section 2.1 to a 2nd order
system. We do so by adding once again a level regulator term, so that the
reference dynamics attracts to a particular level set. First recall the embedding
of general reference dynamics: let f be a reference vector field with Lyapunov
function μ, and let F (p) := p2 − f(p1). Consider the control algorithm,

u = −K2F − DμT + MDfp2 + Cf (37)

which applied to the mechanical system (25) yields a closed loop form, ṗ =
h(p),

h(p) :=
[

p2

Dfp2 − M−1
[
K2F + CF + DμT

] ]

Theorem 3 (Koditschek[21]). If μ is a strict Lyapunov function for f on
Q, then

V := μ +
1
2
FT MF

is a strict Lyapunov function for h on P.

In system (5) the set of images of H for each point on Q is the tangent
bundle of Q. Therefore, since H is a projection operator then ∀x ∈ P we have
H(px).x = x. Define H̄ = M−1HM and Q̄ = M−1QM . For system (36) with
input (37) the closed loop is written in the following way:

h(p) :=
[

p2

H̄Dfp2 − M−1
[
HK2F + HCF + HDμT + QCp2 − AT λ

] ]

Corollary 5. Suppose Hf = f , i.e. the reference vector field respects the
nonholonomic constraints. If μ is a strict Lyapunov function for f on Q for
system (36), then

V := μ +
1
2
FT MF

is a strict Lyapunov function for h on P.

Proof. First note that Q.f = 0; Q.p2 = 0; A.f = 0.
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V̇=Dμ p2 +
1
2
FT ṀF + FT MQ̄Dfp2 +

−FT
(
HK2F + HCF + HDμT + QCp2

)
+ FT AT λ

=DμHf − FT HK2F − fT Q(MDfq̇ − Cf)︸ ︷︷ ︸
=0

+ fT AT λ︸ ︷︷ ︸
=0

=Dμf − FT K2F

According to the hypothesis, the first term is negative except on the largest
invariant set of F = 0. The second term is always negative except in F−1[0].
The interception of the two results in the limit set of q̇ = f(q).

The previous result show that as long as the reference dynamics respects
the nonholonomic constraints we can apply Theorem 3 directly. Notice that
Corollary 5 also applies to controller −H(q).∇ϕ(q). In general such restrictive
dynamics are not necessary for that controller, so using Corollary 4 gives a
better tool since we are only interested on the limit set.

4 Simulations

In this section we present simulation examples for the unicycle or vertical
rolling disk depicted in Figure 3. The unicycle is commonly defined in the
SE(2) configuration space with constraint equation ẋ sin(θ) − ẏ cos(θ) = 0.
Since we are interested in simulations in a dynamic setting we will follow
instead Bloch’s vertical rolling disk [27], defined in the configuration space
Q = R

2×S1×S1 = SE(2)×S1 with coordinates q = (x, x, θ, φ). The equations
of motion for the vertical rolling disk are:

x

y

θ

φ

Fig. 3. The vertical rolling disk.
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(mR2 + I)φ̈ = u1

Jθ̈ = u2, (38)

with the constraint equations:

ẋ = R cos(x)φ̇
ẏ = R sin(x)φ̇. (39)

Differentiating (39) in time and replacing φ̈ from (38), one obtains a complete
set of equations of motion that verifies the nonholonomic constraints for initial
conditions that also verify (39):

ẍ = −R sin(θ)θ̇φ̇ +
R cos(θ)
mR2 + I

u1

ÿ = R cos(θ)θ̇φ̇ +
R sin(θ)
mR2 + I

u1 (40)

This system is now written in the form M(q)q̈ + c(q, q̇) = B(q)u for which
corollaries 4, 5 apply directly. The A(q) and B(q) matrices are:

A :=

⎡
⎢⎢⎢⎢⎢⎣

−I + mR2

R − sin(θ)

0 cos(θ)

0 0

cos(θ) 0

⎤
⎥⎥⎥⎥⎥⎦ ; B :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R cos(θ)
mR2 + I

0

R sin(θ)
mR2 + I

0

0 1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(41)

Although the algorithms presented in section 2 are defined only in R
3, by

close inspection of A and B one realizes that, for this particular example, by
choosing a R

4 navigation function defined only by the first three parameters
of q we will obtain the “same” controller has in R

3. Let ϕ be a navigation
function such that ∇ϕ = [ϕx, ϕy, ϕθ, 0]T . Next compute the R

4 cross product
of A and ∇ϕ:

×(A,∇ϕ) =
4∑

i,j,k,l=0

εijkl∇ϕjAk1Al2êi (42)

=
−1

cos(θ)

⎡
⎢⎢⎢⎢⎣

ϕθ cos(θ)
ϕθ sin(θ)

−ϕx cos(θ) − ϕy sin(θ)

−I + mR2

R θ

⎤
⎥⎥⎥⎥⎦ , (43)

where εijkl denotes the permutation tensor, êi are the canonical basis vectors
and Ai,j is the ith row, jth column of A. We now compare with the function
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f2, defined in equation (11) for the R
3 unicycle with A3 = [− sin(θ), cos(θ), 0]T

and ∇ϕ3 := [ϕx, ϕy, ϕθ]T :

f2 = A3 ×∇ϕ3 = (44)

=

⎡
⎢⎣

ϕθ cos(θ)
ϕθ sin(θ)

−ϕx cos(θ) − ϕy sin(θ)

⎤
⎥⎦ (45)

The two previous computations produce, in effect, the same behavior for
the variables x, y and θ. For each fixed coordinate φ in Q ⊂ R

4 one obtains a
copy of the topology of SE(2). Therefore, from here on, although the config-
uration space is defined in R

4, we will only be interested in x, y and θ.

4.1 Navigation Function

Kantor and Rizzi [28] solved the problem of positioning a robot in relation to
a single engineered beacon by using the notion of Sequential Composition of
Controllers [29]. The final approach to the goal is implemented using Ikeda’s
Variable Constraint Control. We recast the problem with a NF-encoding ac-
cording to the approach described in the previous sections, to recover in sim-
ulation behavior comparable to that obtained in [28].

Let h be a change of coordinates from SE(2) × S1 to double polar coordi-
nates times S1 that we denote by P with coordinates p = [η, μ, d, φ]T :

⎡
⎢⎢⎣

η
μ
d
φ

⎤
⎥⎥⎦ = h(x, y, θ, φ) =

⎡
⎢⎢⎣

arctan (y/x)
θ − arctan (y/x)√

x2 + y2

φ

⎤
⎥⎥⎦ (46)

Obstacles are introduced on the field of view so that the robot maintains
a range of distances to the beacon and keeps facing it:

μm < μ < μM ; dm < d < dM (47)

Consider the following potential function:

ϕ̄(p) :=

(
2 − cos(η − η∗) − cos(μ − μ∗) + (d − d∗)2

)k

(1 − cos(μ − μm))(1 − cos(μ − μM ))
·

· 1
(d − dm)(dM − d)

, (48)

and its “squashed” navigation function version ϕ̌ : P → [0, 1]:

ϕ̌(p) :=
ϕ̄(p)l

ε + ϕ̄(p)l
(49)
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The navigation function written in the Q coordinates is ϕ(q) = ϕ̌ ◦ h(q)
and its derivative:

∇ϕ(q) = DhT (q) · ∇ϕ̌ ◦ h(q) (50)

We choose to present the Kantor-Rizzi example as the canonical illustra-
tion of our ideas due to the interesting topology of the configuration space.
Since Q is not simply connected the level sets of ϕ change from topological
spheres close to the goal q∗ to topological tori close to the boundary of Q.
Initial conditions stating in the tori will generate quasi-periodic orbits when
f2 is used. In the dynamical setting this provides a good example of the ap-
plicability of corollary 5, resulting in the generation of reference dynamics
that attract to a particular level set.

4.2 Kinematic Rolling Disk

We first simulate the previously described system in a kinematic setting by
solving the system:

q̇ = B(q)u, (51)

and using the control functions f1, f2 defined in section 2:

u1(q) := f1(q) = −H∇ϕ (52)
u2(q) := σ(q)f2(q) = ×(A,∇ϕ)σ (53)

Figure 4 illustrates the resulting simulation where the initial condition is
q0 = [1, 1,−3π

4 , 0]T , the desired goal is q0 = [0,−2, π
2 , 0]T , the body parame-

ters are I = J = m = R = 1, the obstacles are μm = −π
4 ;μM = π

4 ; dm = 1;
dM = 3 and σ(q) = x. The manifold {q ∈ Q : x = 0} is a good local approxi-
mation for the stable manifold Ws of the system q̇ = f1(q). One can observe
that from the initial time to ts the controller f2 keeps the energy constant
while moving exactly in the level set ϕ−1[ϕ∗], with ϕ∗ = 0.98. At time ts we
switch to controller f1 and the resulting final position is very close to the goal.
Looking at φ in the “positions” graphic one observes that the robot does a
back and forward motion, necessary to the parallel park maneuver. This comes
as a natural consequence of moving in the surface of the torus shown in the
“trajectories” plot.

4.3 Dynamic Rolling Disk

For the dynamic setting we solve the system defined by equations (38) and
(40):

M(q)q̈ + c(q, q̇) = H(q)u, (54)
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Fig. 4. Kinematic simulation of the vertical rolling disk.

with control functions (35) and (37):

u1(q, q̇) := −K2q̇ −∇ϕ (55)
u2(q, q̇) := −K2F − DμT + MDf2q̇ + Cf2, (56)

where F (q, q̇) := q̇ − f2(q) and μ := α(ϕ − ϕ∗)2.
The first simulation, depicted in Figure 5, uses a high gain α = 5000 in the

function μ to track the level set as close as possible while the controller f2 is in
use. That results in a good tracking but very jerky steering motion, visible in
the first part of the “velocities” and “trajectories” plots. The damping matrix
K2 is set to the identity matrix, resulting in low damping, as observed in the
intervals [ts, tf ] of the “positions” and “velocities” plots.

For the second simulation in the dynamic setting, depicted in Figure 6,
the parameter α = 250 provokes a less accurate tracking of the desired level
set ϕ∗, when using f2, as one can observe in the “energy” and “trajectories”
plots. However, the resulting motion is smoother then the previous simulation.
For the controller f1, the damping matrix K2 = 10I slows down the approach
to the desired goal, elimination any oscillations as seen in the “energy” plot.

The damping matrix K2, and the Lyapunov function μ are the design
parameters for the control of equation (54).

5 Conclusions

This exploratory discussion paper addresses the reuse of navigation functions
developed for fully actuated bodies in the setting of nonholonomic constrained
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Fig. 5. Dynamic simulation of the vertical rolling disk.
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ẏ

θ̇

φ̇

qi

qs

qf

q∗

ϕ−1[ϕ∗]ϕ

positions velocities

energy trajectories

Fig. 6. Dynamic simulation of the vertical rolling disk.
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systems for both kinematic and dynamic versions of the model. We suggest
how the vector fields developed for kinematic systems can be lifted to the
dynamic setting with the introduction of damping and proportional gain type
constants. The simulations suggest this lifting can be readily realized in real
applications, by proper choice of the damping and gain.
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