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Macro-Fiber Composite Based Transduction 
Award Number: N00014-13-1-0212 

LONG-TERM GOALS 

The goal of this project was to develop a family of inexpensive hydrophone and/or projector 
designs utilizing Macro Fiber Composite (MFC) patches. The MFC is a low profile (0.012") 
actuator and sensor invented by NASA in 1996 and manufactured by Smart Material 
Corporation. The MFC utilizes a layer of rectangular piezo ceramic rods that are encapsulated 
between layers of adhesive, polyimide film and interdigitated electrodes. The MFC is assembled 
in a sealed package, which makes them durable, highly flexible, inexpensive and easily applied. 
The patch has high actuation authority and can be stacked to provide improved force 
characteristics. The MFC has been used to bend and twist structures for NASA and Air Force 
applications. 
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OBJECTIVES 

The first objective was to develop a model that accurately predicts the MFC performance. Once 
the model was working, it was used to simulate the MFC in various structures and 
configurations. Prototypes were then developed and measured. Performance was compared to 
prediction. Hydrophones and projector concepts were explored as well as using the MFC to 
morph an existing structure to alter stiffness or shape to demonstrate the ability to tune the 
resonance frequency of the device. 

APPROACH 

This basic research effort considered both hydrophone and projector applications. For projector 
applications, integration of harder piezoelectric ceramics was done to decrease the loss 
characteristics. Performance tradeoffs were conducted both in simulation and in experimental 
testing. 

MFCs can easily be incorporated into traditional transducer structures. One simple example 
would be a ring. The approach in year one was to study these simple geometries by developing a 
model, fabricating a test unit and electroacoustic testing. In year two, model input material 
properties were refined using direct calculation from impedance spectra and PolyTec Laser 
Doppler Vibrometry (LDV). With input from Smart Materials, work was done to explore the 
changes in these materials with increasing voltage. Experiments were also conducted to 
determine the ability of the MFC patches to influence the performance of flex tensional 
transducers by imparting tensile or compressive strains to the elastic members of the 
flextensionals. Models of some novel transducer designs were constructed. 

This effort is in conjunction with two partnerships. The Applied Research Laboratory provided 
stipend and tuition for Master candidate Bradley Golder as part of an Eric Walker Fellowship. In 
addition, a teaming arrangement was formed with Smart Material, Inc. Smart agreed to supply 
MFC patches and tailor their product with hard piezoceramic compositions at a reduced cost. 

WORK COMPLETED 

MFC patches were procured from Smart Materials, Inc. Several different sizes and geometries 
were delivered. Patches containing PZT5A and PZT8 were each procured. Examples of these 
patches are shown in Figure 1. These patches were incorporated into cylindrical transducers and 
into simple bender bars. These shapes were then characterized in air and in water to determine 
displacements, resonance frequencies, and acoustic performance. 

In addition to the experimental work, ATILA++ finite element models were developed and used 
to predict performance. Several code iterations were required to troubleshoot the patch function 
to calculate impedances and displacements properly. In addition, tangential polarization was 
added to the code to allow for modeling of cylindrical geometries. 

Initial material property inputs for the models were calibrated through comparison with 
measured results, followed by iteration of properties in the models to yield matching results. This 



worked fairly well. However, these values have been refined through direct measurement of 
MFC edge displacements using a PolyTec Scanning Laser Doppler Vibrometer and calculations 
from impedance spectra. 

Bender bars and rings were measured in water for TVR and FFVS data and drive linearity. 

SMC reported that MFC properties arc improved when driven at high voltage(> 300V AC). 
Samples were subjected to increasing voltage drive to characterize this effect. As-received 
patches and bender bars were tested in air, and a bender bar was tested in water. 

The merits of using M FC's to affect the perfonnance of flextensional transducers was tested. An 
MFC patch was bonded to the outside of a slotted-cylinder transducer and across the span of a 
ClassiV t1extcnsional and the impedance spectra were recorded for increasing positive or 
negative DC voltage applied to the MFC. 

An extensive literature survey was conducted to generate a bibliography of references on theory, 
materials and applications t()r MFCs. 

Figure I MFC patches produced by Smart Materials, Inc. 

RESULTS 

Material Properties for Atila++ Entry 

Measured in-air complex impedance data from all available samples was averaged to yield 
values t()r calculating clastic and dielectric constants and losses. The calculations used are shown 
in Table I. Sample masses were used to calculate densities t()r the modeling inputs. 
Measurements were made of the displacements at the ends and sides of samples using a PolyTcc 



Scanning LASER Doppler Vibrometer system (LDV). These displacements were used to 
calculate piezoelectric d:XX coefficients as shown in Table 2. 

Table 1 Elastic and Dielectric Formulas 

I D 2 2 ! 
• 1 533 = 4*dens*(fr *L) 

• 1/E3 = S33°/(1 -k3/) 

• KT = (Cap.*elctrode gap)/(Area*Eo*n) 
Table 2 Calculation Methodology for Piezoelectric Coefficients 
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The refined Atila input material properties (1-volt properties) are listed in Table 3. 
Table 3 MFC Atila "Thin Piezo Patch" Material Property Inputs 

General I PZT5A (P1) PZT8 (SP8) 

Density 5077 5612 Average Measured 

Spacing 0.5 0.5 

Thickness 0.3 0.3 

Mechanical I 
E1 14745E+6 20217E+6 Width Mode 

E3 51938E+6 50535E+6 Length Mode 

NU13 0.16 0.16 SMC Data sheet -
NU12 0.31 0.31 SMC Datasheet 

G13 5.52E+09 5.52E+09 SMC Datasheet 

D31 -046.0E-12 038.9E-12 LASER Edge Measurements 

D33 82.0E-12 86.1E-12 LASER Edge Measurements 

Dielectric ll 

E33T/EO 310 273 Measured Average 

Losses I 
DELTA M 0.022 0.023 Measured Average 

DELTA P 0.000 0.000 

DELTA D 0.018 0.010 Measured Average 

Thin Piezo Patch [@) 

PPatch ~ ~[Q][K]~ ~ 
Genera l J Mechanical ) Dielectric j l osses J 

DENSITY 5077 

Spacing 0.5 

Potential Forced ~ 

Amplitude 11 I 
Phase 0.0 

Thickness 0.3 

II ~ssign Qraw !!nassign I Exchange I 
I £ lose I 



Patch Modeling 

In-Air models of the different sizes ofMFC patches were run using the above input properties. 
Results showing comparisons of measured and modeled values for as-received patches are 
shown in Figure 2 through Figure 6. The measured curves are averages with the number of 
samples shown in the figure captions. The M-8528 and M-25528 model results are in good 
agreement with measured. For the M-8557-Pl test, only one sample was available, and its 
second peak appears to be dampened, perhaps by proximity of some spurious mode. 
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Bender Bars 

Additional models were run with PI type patches bonded to steel plates to produce bender bars. 
Steel thicknesses of0.8mm and 3.0mm were used and measured results are shown compared to 
the models in Figure 7 and Figure 8. The model results are in good agreement with the measured 
data. These bars employed single patches. Multiple layers of patches or higher voltage driving 
may improve coupling. 
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Figure 8 M-8528-Pl patch on 3mrn thick steel plate modeled and measured impedance and phase 

Figure 9 compares measured and modeled deflection shapes and displacements for an MFC 
patch bonded to a 3mrn steel plate. Measured results were obtained using a PolyTec Scanning 
LASER Doppler Vibrometer. The measured and modeled results agree to within 3 percent in 
frequency. The center point displacement in the model is exaggerated by about 40 percent (more 
on the ends), indicating a possible need for additional loss considerations in the model such as 
accounting for the glue joint. 
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In-Water measurements of the 3mm-steel bender bar are shown in Figure 10 with measured and 
modeled TVR results. The model predicts the principle resonances. This sample was measured 
in water at increasing voltage drive levels to investigate the linearity. Figure 1 OB shows the 
resulting TVR when the sample was driven with 600Vrms. The simple difference between this 
result and the 32Vrms level is shown in Figure 11 , and reveals an increase in TVR of about 
4.3dB averaged from 10 kHz- 40 kHz. 
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Ring Configurations 

Figure 12 shows an MFC ring made by wrapping four nested MFC M25528-P1 patches around a 
mandrel. Each MFC patch covers the entire circumference of the ring. Their electrical­
connection tabs are staggered around the circumference. The layers were bonded together with 
Loctite - Hysol E-120HP epoxy. This configuration was tested in air and in water for both PI 
(PZT5A) and SP8 (PZT8) materials. The in-water tests were done free flooded and with a 
simulated air backing made from a foam core (a weight was suspended below the device for 
negative buoyancy). Figure 13 and Figure 14 illustrate the comparison between in-air modeled 
and measured complex impedance. The model does not account for glue joints between the 
layers, therefore the model resonance frequency is high by 5%. 

Figure 12 Cylindrical geometry made from four 
M-25585-Pl MFCs 
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Figure 15 shows the TVR and phase of the MFC cylinder in-water with an air backing (foam 
core). The wide-band response and flat phase indicate a possible use as a hydrophone. The low 
phase angle might be adjustable with tuning inductors to bring much of the TVR band into 
serviceable power ranges . (The model loses accuracy at the high frequency end due to mesh 
coarseness.) Figure 16 shows the effect of increasing the drive voltage (with DC bias to keep the 
peaks within the -500V limit) . In this case, the TVR gain appears to be frequency dependent. 
Figure 17 shows measured FFVS and model results. The basic model matches the measured 
well . Another model with a single MFC layer and 5X electrode spacing shows FFVS gain of 5-
20 dB. Discussions are underway with SMC to produce some MFC samples with custom 
electrode spacings. The TVR of same device with no foam core and, in effect, water-backed 
does not have as flat a response, as seen in Figure 18. The TVR and beam patterns for the PZT8 
ring, air-backed, are shown in Figure 19 and Figure 20. This device is effectively 
omnidirectional. 
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Adjustment ofFlextensionals with MFC Patches 

The ability of the MFC to affect the performance of flex tensional transducers was investigated. 
First, M-25528-Pl strips were bonded to the OD of a slotted cylinder transducer equipped with 
PZT drivers on the ID. Figure 21 is a photograph of the assembled device. The MFC patches 
were bonded with Loctite-Hysol E-120HP epoxy. This device is made with an aluminum wall 
that is over 0.6 -inch thick, with an equal thickness ofPZT ceramic lining the inside. The in-air 
impedance and phase of the device were monitored as the DC voltage on the MFC ranged from 
negative 500VDC to positive 1500VDC (i.e. , the operational limits stated in SMC literature). 
Figure 22 shows that the resonance frequency of the device increased slightly as the voltage on 
the MFC increased. A second layer of MFC was applied, and the result was approximately 
double the observed change. 
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Figure 21 Photograph of an M-25585-P I MFC bonded to a slotted cylinder 
transducer 
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Figure 22 Slotted Cylinder - Change in resona1ee and anti-resonance 
frequencies caused by energizing the MFC 

In a second test, an elliptical Class IV tlextensional device was provided with PI MFC strips 
across the span. An Atila++ model of this configuration appears in Figure 23. Cunently there is 
no way in Atila++ to apply a DC voltage and an AC voltage simultaneously. Therefore, the 
model structure was constructed, and then the MFC was driven with IV AC at I 0 Hz while the 
PZT stack had no voltage applied. The maximum displacement at the shell of the Class!V 
caused by deflection of the MFCs was determined, and then with the voltage on the MFCs at 



ODC, an orthogonal force condition was applied to the contact surfaces between the MFC and the 
shell and increased until the same maximum displacement was achieved. This force condition 
was continuously applied while the ClassiV stack was itself driven with 1 VAC through the 
frequency spectrum of interest. 

The modeled and measured results are shown in Figure 24. The MFC patches were attached at 
one shell with cyanoacrylate glue, and then pulled under tension to attach the second end. This 
device has an aluminum shell that is about l-inch thick. The changes in resonance that were 
predicted by the models were not fully realized in the measured device, but the MFCs had a 
measureable effect on the behavior of this very robust device. In particular, the negative voltage 
may not have produced sufficient shrinkage of the MFC to overcome any slight slack that may 
have resulted from the assembly technique. 

These two experiments produced modest results, however, they illustrate that MFCs can affect 
the electromechanical performance of very robust devices, and point the way for more 
experimentation on transducers that are more sensitive. Investigation of commercially available 
flextensionals may lead to design of novel devices employing MFCs for active control. 
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Figure 23 Class IV elliptical flextensional model with MFC patches across the span 
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Figure 24 Class VI flextensional - changes in resonance with DC voltage applied to MFCs across the span 

Alternative Transducer Designs 

Some possible driving transducer designs were explored in the Atila ++models. 

One version is a cantilever/bender arrangement to use the bending motion of the MFCs bonded 
to steel plates as a driver for tonpilz type headmass. Figure 25 shows the conceptual idea . 
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Figure 25 Modeled cantilever driven "tonpilz" type design 



A second design involved using the MFC patches as drivers for a "1-3" composite style 
structure. Four or twelve MFC patches were embedded in an Araldite DBF matrix and fitted 
with a headmass and tailmass. The model is illustrated in Figure 26. 
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Figure 26 Modeled "1-3 Composite" type design 

Another version is a traditional barrel-stave structure with MFC benders, (Figure 27) . 

Figure 27 Modeled "Barrel-Stave" type design 
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Most of these alternate structures show low electromechanical coupling values. While they may 
not exhibit good projector qualities, they may find uses in hydrophone applications. 
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An additional 240 papers not listed here have been sourced and are being explored. 



Conclusions 

MFC-based transduction schemes have the potential to supply the fleet with low cost, low 
frequency sources or hydrophones. They may also provide unique transducer structures that 
provide improved performance capability and/or packaging. 


