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1 Introduction
In a large eddy simulation (LES), the flow vari-

ables are decomposed into a directly resolved grid-
scale (GS) component and an unresolved subgrid-scale
(SGS) part that derives from the small-scale eddies. A
canonical form of the governing equations for incom-
pressible turbulence may be written as
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where( ) denotes a filtered value. In Eq. (1),ρ,P ,U i,
ν andSij denote the density, filtered static pressure,
filtered velocity, kinematic viscosity and the strain-rate
tensor, respectively. The SGS-stress tensorτij is orig-
inally expressed asτij = UiUj − U iU j .

LES has long been recognized as a promising way
to predict complex turbulence in engineering applica-
tions. Since the success of LES depends strongly on
the accurate prediction of the SGS stresses, a num-
ber of research groups have proposed several kinds
of SGS models forτij (see for example, Germano et
al., 1991; Lilly, 1992; Zang et al., 1993; Vreman et
al., 1994; Salvetti and Banarjee, 1995; Horiuti, 1997;
Sarghini et al., 1999; Morinishi and Vasilyev, 2001).
Although these models have provided encouraging re-
sults, there still remain several aspects to be further im-
proved. Among them, an important concern may be in
the reduction of the prediction accuracy, when they are
applied to engineering applications using coarse grid
resolution in the near-wall region.

To overcome this difficulty, Abe (2013) recently
proposed a new anisotropy-resolving SGS modeling
concept, where the SGS-stress expression is con-
structed by combining an isotropic eddy-viscosity
model (EVM) with an extra anisotropic term (EAT).
This SGS model successfully improved the prediction
accuracy, particularly with a coarse grid resolution in
the near-wall region, while maintaining computational
stability. Although the application of the model to
several test cases indicated the basic capability of this

SGS modeling concept (Abe, 2013; Abe, 2014), it had
not been made clear how the EAT worked for improv-
ing the predictive performance. To investigate this is-
sue, Ohtsuka and Abe (2013) compared the simula-
tion results obtained by this anisotropic SGS model
with those by a linear isotropic SGS model. They
found that this anisotropy-resolving SGS model en-
hanced unsteady motions in the near-wall region.

Based on the above background, the objective of
the present study is to elucidate in more detail how the
SGS models influence turbulent vortex motions. For
this purpose, we perform a detailed investigation of the
model performance by means of ana priori test using
the direct numerical simulation (DNS) data of a plane
channel flow. We make several reduced velocity fields
from the DNS data with different filter widths. Apply-
ing some representative SGS models to these filtered
velocity-field data, we evaluate the SGS stresses. The
results obtained are compared with the true values esti-
mated directly from the DNS data and the performance
of the SGS models is then discussed.

2 Turbulence Models
In what follows, we briefly describe the SGS mod-

els investigated in this study.

Conventional linear eddy-viscosity model

The conventional linear EVM has been most of-
ten used for LES. Among EVMs, the following two
may be representative. One is the Smagorinsky model
(SM) (Smagorinsky, 1963) and the other is the dy-
namic Smagorinsky model (DSM) (Germano et al.,
1991; Lilly, 1992). The former is well known to be
a model at an early stage of development and the latter
is one of the most advanced models in this category.

A canonical form of the linear EVM is expressed
as follows:

τij
a = −2 νSGS Sij , (3)

where the superscript( )a denotes the anisotropic
part of a tensor (i.e.,τija = τij − τkkδij/3). In the
Smagorinsky model, the SGS eddy viscosityνSGS is



modeled as
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whereCS = 0.01
(
= 0.12

)
andA = 25 are the model

constants. In contrast, in the dynamic Smagorinsky
model,νSGS is modeled as follows:

νSGS = CS∆
2
√
2S2, (5)

where the coefficientCS is locally determined by the
dynamic procedure that was originally proposed by
Germano et al. (1991), with the aid of the least square
approximation by Lilly (1992).

Mixed SGS model
Although introducing a linear EVM into existing

CFD codes is easy, a crucial problem has been pointed
out: its principal direction does not align with the
real SGS-stress tensor. Alternatively, the concept of
a “mixed SGS model (mixed model)” may be worth
noting. In general, a conventional form of the mixed
model can be written as

τij
a = −2 νSGS Sij + (Scale-similarity model) . (6)

A representative mixed model at an early stage of de-
velopment is the model proposed by Bardina et al.
(1980) as follows:

τij
a = −2 νSGS Sij +

(
U i − U i

)(
U j − U j

)a
, (7)

where the conventional Smagorinsky model is used for
νSGS . Note that considering the summation of the

original Leonard term (U iU j − U iU j) and the mod-

eled cross term (U i(U j − U j) + U j(U i − U i)) with
the model constant being unity due to the restriction of
the Galilean invariance, the mixed model in Eq. (7) is
rewritten as

τij
a = −2 νSGS Sij +

(
U iU j − U iU j

)a
. (8)

In fact, the second term of this expression coincides
with the modified Leonard stress proposed by Ger-
mano et al. (1991). In this model, the SGS turbulence
energykSGS may be evaluated as

kSGS =
1

2
τkk =

1

2

(
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)
. (9)

Anisotropy-resolving SGS model
In the following, we briefly describe the

anisotropy-resolving SGS model proposed by
Abe (2013). The SGS stressτij in Eq. (1) was
modeled as follows:

τij =
2

3
kSGS δij − 2 νSGS Sij + 2 kSGS bEAT

ij . (10)

In Eq. (10), the anisotropy tensorbEAT
ij in the EAT is

modeled as
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In this model,τ
′

ij in Eq. (11) is given by the afore-
mentioned representative scale-similarity model for
the SGS Reynolds stress (Bardina et al. (1980)):

τ
′
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)
, (12)

where(̂ ) denotes a test-filtered value. In Eq. (11),ν
′

is an equivalent eddy viscosity evaluated by an EVM-
type linear approximation for Eq. (12) as
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whereS2 = SijSij . In Eq. (11),R
′

ij is evaluated
by subtracting an EVM form from the original scale-
similarity model. Considering the fact that the pro-
duction term ofkSGS is expressed as−τijU i,j (=
−τijSij), Eq. (13) means that this linearized approx-
imation produces the same amount of energy transfer
between the GS and SGS components as the original
scale-similarity model. Therefore,R

′

ij yields no unde-
sirable extra energy transfer between the GS and SGS
components; the EAT in Eq. (10) is then expected to
properly predict the SGS-stress anisotropy with no se-
rious effect on the computational stability.

Concerning the linear EVM in Eq. (10), this model
adopts the one-equation SGS model proposed by Ina-
gaki (2011). The SGS viscosityνSGS is modeled as
follows:
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where∆ is an SGS filter width. In this study,kSGS

andεSGS are evaluated using the following equations:
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The model constants are as follows:

CSGS = 0.05, A0 = 30, Cl = 4,

Cε = 0.835, Ck = 0.1. (16)

More detailed descriptions of this SGS model are
given in Abe (2013).

As is found from Eq. (6), a mixed model is orig-
inally based on the combination of a linear EVM
and a scale-similarity model. With this in mind, the
anisotropic SGS model in Eq. (10) is rewritten as

τij
a = −2 νSGS Sij + 2 kSGS bEAT

ij . (17)

On the other hand, the mixed model in Eq. (8) can be
expressed as

τij
a = −2 νSGS Sij + 2 kSGS bMM

ij , (18)



Table 1: Reduced data fora priori tests obtained from the DNS for a channel-flow case.

Case Reτ Grid numbers Domain (x-z) ∆x+ ∆y+ ∆z+

C180F (∆x+ = 18,∆z+ = 9) 180 65× 98× 65 6.4δ × 3.2δ 18 0.2–9 9
C180M (∆x+ = 36,∆z+ = 18) 180 33× 98× 33 6.4δ × 3.2δ 36 0.2–9 18
C180C (∆x+ = 72,∆z+ = 36) 180 17× 98× 17 6.4δ × 3.2δ 72 0.2–9 36

where

bMM
ij =

(
U iU j − U iU j

)
(
UkUk − UkUk

) − 1

3
δij . (19)

Therefore, the anisotropic SGS model by Abe (2013)
may be recognized as an alternative version of the
mixed model newly introducing an effective correc-
tion for stable computation as explained in Eq. (11).
In this sense, the model by Abe (2013) can be named
the ”stabilized mixed model” (SMM, hereafter).

Furthermore, considering the basic concept of the
mixed model, another possibility for Eq. (10) may
be proposed by using the following scale-similarity
model instead of Eq. (12):

τ
′
ij =

(
Û iU j − Û iÛ j

)
. (20)

In addition, a more advanced version may be available
by combining Eq. (12) and Eq. (20) as

τ
′
ij = CL

(
Û iU j − Û iÛ j

)
+CB

(
U i − Û i

)(
U j − Û j

)
.

(21)

Note that Eq. (21) is used just for evaluating the SGS-
stress anisotropybEAT

ij becausekSGS is determined
by its transport equation in Eq. (15). Therefore, only
the ratio ofCL andCB is important in this model. Ap-
parently, the combination of (CL = 0, CB = 1) co-
incides with SMM. Further investigations of this ex-
tended anisotropic SGS model will be necessary in fu-
ture studies.

3 Computational Conditions
Although the basic capability of the SMM was val-

idated by application to some test cases (Abe, 2013;
Abe 2014), there still remain several points to be fur-
ther investigated. In particular, it is important to make
clear how the EAT works for enhancing turbulent vor-
tex motions. For this purpose, we performed a detailed
investigation of the model performance by ana pri-
ori test using the DNS data of a plane channel flow at
Reτ = 180 that were originally obtained by Hattori
and Nagano (2004). Note that the Reynolds number
Reτ is based on the friction velocityuτ and the half
channel heightδ, i.e., Reτ = uτδ/ν. In this study,
we made three filtered velocity fields with grid reso-
lutions(∆x+,∆z+) = (18, 9), (36, 18) and(72, 36),
where the grid-filter width was set to be the same as
the grid spacing of each reduced data, i.e.,∆i = ∆xi.
Detailed information is summarized in Table 1.

In addition to thea priori test, to compare the pre-
diction accuracy of the SGS models, we performeda
posteriorisimulations corresponding to the aforemen-
tioned three grid-resolution cases. Note that the com-
putation with the DSM quickly diverged and we thus
introduced a well-known strategy of clipping the neg-
ative values ofνSGS . Although stable computations
were thereby achieved, the effect of the back scatter
was no longer included. Moreover, concerning thea
posterioricalculation with the mixed model, the com-
putation was numerically unstable and results could
not be obtained, probably due to the back-scatter ef-
fect caused by the scale-similarity model in Eq. (8).
Therefore, the investigation of the mixed model was
performed only by means ofa priori test.

A posteriori calculations were performed using
an unstructured finite-volume procedure that was the
same as that used in Abe (2013), where vertex-
centered type storage was used on a grid. For the
boundary conditions, the periodic condition was im-
posed in the streamwise and spanwise directions. On
the other hand, the no-slip conditions were specified
at the wall surfaces. More detailed descriptions of the
computational schemes are given in Abe (2013).

4 Results and Discussion
First, to compare the prediction accuracy of the

SGS models for various grid resolutions, we investi-
gate the representative results obtained bya posteriori
simulations. Figure 1 shows the mean-velocity distri-
butions predicted by the SM and the DSM. It is seen
that the accuracy becomes worse as the grid resolu-
tion becomes coarser. This trend is a common fea-
ture that has been recognized in most of previous stud-
ies. In contrast, Fig. 2 shows the results of the SMM.
The results of the mean velocity for all grid resolu-
tions correspond fairly well to those of the DNS data.
Such a grid-independent trend in the mean-velocity
distributions is very encouraging from an engineering
viewpoint. The distributions of the total (GS+SGS)
Reynolds shear stress also agree well with the DNS
data. This fact properly accounts for the prediction ac-
curacy of the mean velocity.

Next, to discuss the fundamental features of the
SGS models in more detail, we investigate the results
evaluated bya priori tests using the DNS data. In
the following, due to limitations of space, only the re-
sults for C180C will be shown because the effect of an
SGS model appears most clearly in the coarsest grid-
resolution case. Figure 3 shows the results ofa priori
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Figure 1: Mean-velocity distributions predicted by the conventional eddy-viscosity models.
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Figure 2: Computational results of the present anisotropic one-equation SGS model (SMM).

tests of the conventional eddy-viscosity models, i.e.,
the SM and the DSM. Note that for these models, we
used the true value forkSGS that was directly obtained
from the DNS data. Apparently, both models failed
to reproduce the SGS normal stresses, obtaining in-
stead an almost isotropic prediction, where each of the
SGS normal stresses becomes close to2kSGS/3. Al-
though a linear EVM has been widely used, this type
of SGS model cannot reproduce the SGS-stress tensor
correctly, in particular for its normal components.

In contrast, Fig. 4 shows the results of ana priori
test of the conventional mixed model (MM, hereafter).
For this model,kSGS was evaluated by Eq. (9). Note
that the results partially estimated with only the lin-
ear EVM term in Eq. (8) are also included. Clearly,
the SGS stresses are better predicted particularly for
the normal components, although we still see consid-
erable underpredictions. Figure 5 shows the results
of an a priori test of the SMM. For this model, we
used the true value forkSGS because it is originally
obtained from the transport equation in a one-equation
SGS model. Note that the linear EVM term in Eq. (10)
is almost the same as the linear SGS model by Inagaki
(2011). As seen in Fig. 5 (a), all components of the
SGS stresses are generally predicted well.

That being the case, the SGS models that incor-
porate the effect of a scale-similarity model, i.e., the
MM and the SMM, are found to reproduce the SGS
stresses more properly, particularly for the normal
components. Considering the fact that the linear part
of these SGS models shows a trend similar to the other
linear EVMs, it is concluded that a reasonable pre-

diction of the SGS-stress anisotropy is achieved by a
scale-similarity model introduced in an SGS model.

In this study, the primary attention is given to the
effect of the SGS models on unsteady motions of vor-
tex structures. Taking the curl of Eq. (1) with Eq. (2)
yields the following transport equation of the vorticity
vector of the filtered velocity:

Dωi

Dt
= ωj

∂U i

∂xj
− εijk

∂

∂xj

(
∂τkl
∂xl

)
+ ν

∂2ωi

∂x2
j

, (22)

whereεijk is the alternative tensor and the vorticity
vectorωi is defined as

ωi = εijk
∂Uk

∂xj
. (23)

In Eq. (22), the first term of the right-hand side is the
production term and the third term is the viscous dif-
fusion term. On the other hand, the second term is the
SGS-stress term that is expected to give a considerable
effect on the predictive performance in LES.

In general, an important concern is how the stream-
wise vortex structures are enhanced in the near-wall re-
gion by the SGS models. Therefore, in what follows,
we focus on the instantaneous streamwise-vorticity
field (i.e.,ωx for i = 1). Its transport equation is ex-
pressed as follows:
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∂2
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− ∂2
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)
τ23 (SGS-stress term)

+ν

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ωx (Viscous term). (24)
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Figure 3:A priori test of the conventional eddy-viscosity models for C180C (kSGS is directly obtained from the DNS data).
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Figure 4:A priori test of the conventional mixed model (MM) for C180C (kSGS is evaluated by Eq. (9)).
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Figure 5:A priori test of the anisotropy-resolving SGS model for C180C (SMM: Abe, 2013) (kSGS is directly obtained from
the DNS data).

Investigating Eq. (24) gives us valuable information
about how the SGS model works in an LES (see for ex-
ample, Ohtsuka and Abe, 2013). However, we cannot
understand easily whether each term works to enhance
or reduce the vortex motions because the vorticity has
a signed value. Thus, in this study, we multiply the
normalized streamwise vorticity to Eq. (24) to make
the role of each term clearer. For instance, the mod-
ified SGS-stress term (”quasi SGS-stress term”, here-
after) is expressed as follows:(

ωx

|ωx|

){
∂

∂x

(
∂τ12
∂z

− ∂τ31
∂y

)
+

∂2

∂y∂z
(τ22 − τ33)

+

(
∂2

∂z2
− ∂2

∂y2

)
τ23

}
(Quasi SGS-stress term). (25)

By using Eq. (25), we can understand more easily how

the SGS model affects streamwise vortex structures
because a positive value of the term means the en-
hancement of a streamwise vortex motion, and vice
versa, regardless of its streamwise rotating direction.

This fact is clearly understood if we investigate the
distributions of the viscous term in Eq. (24). Similarly
to Eq. (25), the modified viscous term (”quasi viscous
term”, hereafter) is expressed as(

ωx

|ωx|

){
ν

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ωx

}
(Quasi viscous term). (26)

Figure 6 compares the results of the original and quasi
viscous terms obtained bya priori tests using the DNS
data for C180C. In Fig. 6 (a), we can see regions in
both red and blue colors. Although we recognize that
the viscous term works actively near the walls, we can-



(a) Viscous term (Eq. (24)) (b) Quasi viscous term (Eq. (26))

Figure 6:A priori test for original and quasi viscous terms in the streamwise vorticity transport equation using DNS data
of Hattori and Nagano (2004) for C180C (color ranges from−2 × 10−3 (Blue) to 2 × 10−3 (Red), all terms are
normalized in wall units).

not distinguish whether it works for enhancing or re-
ducing vortex motions. In contrast, it is found from
Fig. 6 (b) that the viscous term indeed works almost
for reducing the vortex motions because most regions
are illustrated in blue, according to Eq. (26).

Figure 7 compares the results of the quasi SGS-
stress term in Eq. (25) obtained by ana priori test us-
ing the DNS data for C180C. In the figure, the pre-
dictions by each of the SM, DSM, MM, SMM and
the isotropic one-equation SGS model are compared
with the strict values directly evaluated from the fil-
tered DNS data. Note that the ”isotropic one-equation
SGS model” is composed of only the eddy-viscosity
term in Eq. (10), which corresponds to Fig. 5 (b).

It is found from the DNS in Fig. 7 (a) that the SGS-
stress term basically works for both enhancing and re-
ducing vortex motions. In contrast, as seen in Fig. 7
(b), the SM works almost for reducing the vortex mo-
tions because greater part of remarkable regions show
the blue color.

Concerning the DSM in Fig. 7 (c), we can see re-
gions in both red and blue colors. Although this fact
may imply that the DSM works for both enhancing and
reducing vortex motions, it is likely to cause a strong
numerical instability ina posterioricalculations.

On the other hand, the results of the MM in Fig. 7
(d) look preferable, although the SM is adopted as the
linear EVM in Eq. (8). This feature is considered to
be achieved by introducing the scale-similarity model.
A closer inspection however reveals that the red-color
region is not so wide compared with the DNS data.

As seen in Fig. 7 (e), the SMM generally shows
a trend similar to that of the DNS, although its effect
looks a little too active. It is understood from Fig. 7
(f) that the isotropic one-equation SGS model returns
an aspect rather similar to that of the SM. This may be
a common feature of this type of conventional linear
EVMs. That being the case, it is said that the EAT
in the SMM has the capability of enhancing unsteady
motions of vortex structures, although it produces no
back scatter.

Finally, the computational stability of the SGS
models is discussed. Similarly to Eq. (13), an equiva-
lent eddy viscosityνE for an SGS stressτij is evalu-
ated as

νE = −τij
aSij

2S2
. (27)

Note that for the conventional EVMs,νE is the same
asνSGS . The negative value ofνE indicates the back
scatter where the energy transfers back to the GS com-
ponent from the SGS component. Thus, by investigat-
ing the characteristics ofνE , we can understand how
the back scatter occurs in an LES. We performeda pri-
ori tests of Eq. (27) for the aforementioned SGS mod-
els. Table 2 summarizes the percent fraction of grid
nodes at which a negative value ofνE appears.

First, the true value directly evaluated by the DNS
shows a negative value ofνE in a considerable part
for all test cases. This also indicates that there exists
the back scatter in real turbulence. In contrast, the SM
always returns a positiveνE that leads to a stable com-
putation, although a strong dissipative feature is seen
in the results for coarser grid-resolution cases.

On the other hand, the DSM returns a negative
νE to reproduce the back scatter. However, it is well
known that reproducing the back scatter is likely to
cause a strong computational instability. As was de-
scribed earlier, the present study clipped the negative
values ofνSGS in thea posterioritests for stable com-
putation. Thus, the computed results became dissipa-
tive and they were rather similar to those by the SM.

As seen in Table 2, Eq. (12) originally generates
a negative value of the equivalent eddy viscosityν

′

in a considerable part. This type of feature is also
seen in another scale-similarity model in the MM and
this back-scatter effect still remains even if the stable
Smagorinsky model is incorporated. This is consid-
ered to be the primary reason why the MM caused a
strong numerical instability in ana posterioritest.

In contrast, Table 2 shows that the SMM returns no
negativeνE that may cause a computational instabil-
ity. As was described earlier, the SMM is recognized
as an alternative version of the MM newly introduc-



(a) Filtered DNS data (b) Smagorinsky model (SM)

(c) Dynamic Smagorinsky model (DSM) (d) Conventional mixed model (MM)

(e) Anisotropic 1-Eq. SGS model (SMM) (f) Isotropic 1-Eq. SGS model

Figure 7:A priori test of quasi SGS-stress term (Eq. (25)) in the streamwise vorticity transport equation using DNS data of
Hattori and Nagano (2004) for C180C (color ranges from−2 × 10−3 (Blue) to 2 × 10−3 (Red), all terms are
normalized in wall units).

ing an effective correction for stable computation. It
is very interesting that the prediction accuracy ina
posteriori tests is clearly improved for coarser grid-
resolution cases, although no back scatter is involved
in the calculations.

The SGS-stress term in Eq. (24) plays an important
role for enhancing the vortex motions in the near-wall
region. As seen in Fig. 7, the effect by the SMM looks
very active compared with those of the SM and the
isotropic one-equation SGS model. Considering the
fact that the SMM returns no negativeνE , there may
exist another key factor besides the reproduction of the
back scatter for improving the prediction accuracy un-
der coarser grid-resolution conditions.

5 Concluding Remarks
To elucidate how SGS models influence turbulent

vortex motions, we carried out a detailed investigation

of the model performance by ana priori test using the
DNS data of a plane channel flow. We made several
reduced velocity fields with different filter widths and
then evaluated the SGS stresses by applying some rep-
resentative SGS models to these filtered data. The re-
sults obtained were compared with the true values es-
timated directly from the DNS data. Furthermore, to
illustrate the relation between an SGS model and near-
wall vortex structures more clearly, we compared the
predicted distributions of the SGS-stress term in the
transport equation of the streamwise vorticity (ωx).

It was found that the SM, which is a representative
conventional linear EVM, failed to reproduce the SGS
normal components at all. Moreover, it worked almost
for reducing the turbulent vortex motions because the
calculatedνSGS was always positive, resulting in their
diffusion. Although the DSM has a possibility of pro-
viding a negativeνSGS that implies the back scatter,
this model suffered from a strong numerical instability



Table 2: Percent fraction of grid nodes at which negative equivalent eddy viscosity appears forνE in Eq. (27).

Model C180F C180M C180C
DNS (true value) 33 % 31 % 27 %
SM (Smagorinsky, 1963) 0 % 0 % 0 %
DSM (Germano et al., 1991; Lilly, 1992) 30 % 27 % 24 %
MM (Bardina et al., 1980) 11 % 11 % 11 %
SMM (Abe 2013) 0 % 0 % 0 %

(for reference)
ν

′
evaluated by Eq. (13) using Eq. (12) 41 % 40 % 39 %

Fraction(%) =
Number of grid nodes at which negative equivalent eddy viscosity appears

Number of total grid nodes × 100

and thus needed to clip the negative value for stable
computation. Concerning the MM, thea priori test in-
dicated a performance better than linear EVMs, while
thea posterioricalculation was numerically unstable.
This instability was also caused by the back-scatter ef-
fect that was originally involved in the MM.

In contrast, the SMM, which is an anisotropy-
resolving SGS model, showed a notable feature for
solving these issues. Thea priori test confirmed that
this model returned the SGS-stress anisotropy prop-
erly. This was because the effect of the scale-similarity
model was involved, as was similar to the MM. More-
over, this model introduced a modification effective
for a stable computation by eliminating the effect of
the equivalent EVM from the original scale-similarity
model. Interesting is that the SMM still worked for en-
hancing turbulent vortex motions by means of the ef-
fect of the remaining EAT, with which the back scatter
was no more produced. Although we understand that
the back scatter is an important phenomenon in turbu-
lence, another key factor may exist for improving the
predictive performance of an SGS model. Further de-
tailed investigations of this issue will contribute to the
development of this research field.
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