

Files are in Adobe format. Download the newest version from Adobe.

46th Annual Gun & Missile Systems Conference & Exhibition

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

Miami, FL

29 August - 1 September 2011

Agenda

Monday, August 29, 2011

TUTORIAL B

"Ready or not? Using Readiness Levels to Reduce Risk on the Path to Production", Mr. Dan Chien, Vice President, Engineering, General Dynamics Armament and Technical Products

Tuesday, August 30, 2011

DIVISION UPDATE/2012 JOINT ARMAMENTS SYMPOSIUM

Mr. Dave Broden, NDIA Armaments Division Chair; Broden Resource Solutions

KEYNOTE ADDRESS:

"Air and Missile Defense Overview", COL Cavalier, USA, Program Executive Officer, Missile and Space, U.S. Army

KEYNOTE ADDRESS:

"Close Air Support and Joint Operations", Mr. Andrew K. Balding, Associate, Booz Allen Hamilton

KEYNOTE ADDRESS:

"The Role of the Government Laboratory in Shaping Weapon Systems Development; An ARDEC Perspective", Mr. Anthony J. Sebasto, Senior Associate for Munitions, U.S. Army ARDEC

CONCURRENT SESSIONS

MONROE

- INDIRECT FIRES

- 11503 An Analysis of the Indirect Fires Portfolio of Munitions, Mr. Jim Rodrigue, Raytheon Land Combat
- 11830 Development of an Extended Range, Large Caliber, Modular Payload Projectile, Mr. Pierre-Antoine Rainville, GD-OTS, Canada
- 11528 XM1128 155mm Insensitive Munition (IM) High Explosive (HE) Extended Range Artillery Projectile, Mr. Ductri Nguyen, U.S. Army ARDEC
- 11511 Technologies Utilizing the M483 Carrier, Mr. George Kurzik, GD-OTS, Red Lion

- EMERGING TECHNOLOGIES: SYSTEMS

• 11586 - Introduction of Wireless and MEMs based MDevices into Fire Control Systems, Mr. Ralph Tillinghast, U.S. Army ARDEC

- 11641 Extended Area Protection and Survivability Program (EAPS), Mr. Manfredi Luciano, U.S. Army ARDEC
- 11720 Development of the Interceptor System for the Extended Area Protection & Survivability (EAPS), Mr. E. Mitchell Danielson, ATK, Plymouth

- REQUIREMENTS & PROGRAM TRENDS

- 11786 Naval Forces Capabilities Gap Against Swarm Attacks, Mr. Andrew Bradick, Rheinmetall
- 11861 U.S. Forces Light and Medium Mortar Ammunition Insensitive Munitions Path, Mr. Nick Baldwin, U.S. Army RDECOM-ARDEC
- 11863 IM Compliance for Mortar Illumination Cartridges, Mr. Thomas Peter, U.S. Army RDECOM-ARDEC
- 11482 Precision Guided Indirect Munitions Operational Evolution, Mr. Justin Skaret, Raytheon, Missile Systems
- 11792 Enhancing Convoy Security by Means of Rapid Deployable Weapons, Mr. Gerrie Van der Merwe, BAE Land Systems, South Africa

TUTTLE

– MODELING & SIMULATION I – DESIGN

- 11791 Gun Launch Dynamics Modeling-Benchmarking the State of the Art, Mr. Rollie Dohrn, ATK, Plymouth
- 11774 Gun Launch Dynamics and Aeroballistic Analysis via Onboard Laser Diode, Mr. Rollie Dohrn, ATK, Plymouth
- GD-OTS/Nammo 25 mm JSF Combat Ammunition, Mr. Zack Kemp, GD-OTS
- 11824 Design, Analysis and Weight Optimization Techniques for Joint Strike Fighter Missionized Gun Pod Support Equipment, Mr. Gary Miller, GD-ATP

- MODELING & SIMULATION II: TEST METHODS

- 11838 A Method for Assessing the Effects of Overpressure from Small/Medium Caliber Weapons Fire, Mr. Steven Backer, NSWC-Crane
- 11793 The Challenge of Environmental Testing of the Expeditionary Fighting Vehicle Ammunition Feed System Separate from the Expeditionary Fighting Vehicle, Mr. Ron Hopkins, GDATP

- TACTICAL ROCKETS & MISSILES

- 11808 Design Synthesis for Large Shaped Charges: From Requirements to Qualification, Mr. Jason Shire, Raytheon
- 11802 Use of COTS O-rings as a Pyrotechnic Safety Barrier in a Rocket Motor Ignition Safety Device, Mr. Brian Erickson, ATK, Plymouth
- 11756 Hellfire Integrated Blast Fragmentation Sleeve Multipurpose Warhead, Mr. Jonathan Thomas, GD-OTS

Wednesday, August 31, 2011

AWARDS LUNCHEON

2011 Robert Trifiletti Award Winner

• Dr. Norbert D'Souza

Combat Archer

• Capt Jesse "Magoo" Proctor

CONCURRENT SESSIONS

MONROE

- ENERGETICS I

- 11822 Novel ARDEC Igniters for Gun Systems, Dr. Eugene Rozumov, U.S. Army ARDEC
- 11787 The Effects of Igniter Design on the Interior Ballistic Performance of Deterrent Coated Propellants, Dr. Thelma Manning, U.S. Army, RDECOM-ARDEC

– ENERGETICS II

- 11867 IM in the Field—Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli, Ms. Pamela Ferlazzo, U.S. Army RDECOM-ARDEC
- 11537 Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications, Mr. Virgil Fung, BAE Systems Ordnance Systems Inc
- 11832 Development and Characterization of IM Gun Propellant for the 120mm Tank System, Mr. Duncan Park, U.S. Army RDECOM-ARDEC
- 11821 The Advance Case System (ACS) Program for 120mm Tank Training Ammo- Phase 2, Mr. Jeff Berg, ATK, Plymouth
- 11761 High Explosives Charges for Insensitive Artillery and Mortar Ammunitions: Performances, Technology, Producibility, Affordability, Dr. Bernard Zeller, SNPE

- DIRECT FIRES I

- 11747 Direct Fires & Precision Weapons for Rapid Deployment at the Modern Battlefield, Mr. Danny Schirding, Israel Military Industries, Ltd.
- 11725 Medium Calibre Goes in a New Direction, Mr. David Leslie, BAE Systems Global Combat Systems
- 11572 The Development and Testing of the Improved Kinetic Energy Electronic Time (IKE-ET) Round, Mr. Geoffrey Bland, NSWC Dahlgren
- 11809 Composite Sabot Technology for the 105mm Rifled Tank Gun System, Mr. Velan Mudaliar, U.S. Army RDECOM-ARDEC

- PRECISION WEAPONS

11719 - Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the Family of Precision Guided Projectiles, Dr. Karl Flueckiger, Draper Laboratory

- 11635 Very Affordable Precision Projectile (VAPP) System and Flight Experiments, Mr. Christopher Stout, U.S. Army ARDEC
- 11459 Evolution of the EXCALIBUR Guided Projectile, Mr. Chris Geswender, Raytheon Missile Systems
- 11526 Precision Urban Mortar Attack (PUMA), Mr. Luke Steelman, NSWC Dahlgren
- 11788 Leveraging Proven Systems to Develop a Guided Mortar for APMI, Ms. Kelly Hanink, Program Manager, Projectile Systems ATK Advanced Weapons Division, Plymouth

TUTTLE

- EMERGING TECHNOLOGIES: MATERIALS & PROCESSES

- 11583 New PVD Processes for Durable Pollution-Free Ordnance, Dr. Sabrina Lee, U.S. Army, ARDEC
- 12179 The "Perfect" Time for an Upgrade to US Propellant, Mr. Donald Messner, ATK, Radford

- MODELING & SIMULATION III: SYSTEMS & MANUFACTURING

- 11648 System Analysis with Integrated Modeling and Optimization, Mr. Philip Brislin, U.S. Army ARDEC RDAR-MEM-L
- 11502 A Virtual Learning Environment for Precision Indirect Fires, Mr. Jon Peoble, Raytheon
- 11779 Next Generation Manufacturing & Modeling Technology, Mr. David Smith, U.S. Army Benet Laboratories

- NON-TRADITIONAL WEAPONS I

- 11840 Development of a Large Caliber Naval EM Railgun, Mr. Roger Ellis, Office of Naval Research
- 11841 Electromagnetic Railgun, a Multi-Mission Weapon System, Mr. Alan Kull, General Atomics
- 11828 Scalable Gen-Set for Directed Energy Weapons: Resolving the Power Problem, Mr. Bryan Bockmon, Rocky Mountain Scientific Laboratory

- NON-TRADITIONAL WEAPONS II

- 11509 Aggressor Suppression via the Use of Non-Lethal Projectiles and Launcher Systems, Mr. Dan Hartman, GD-OTS
- 11697 Netted Smart Precision Engagement Autonomous Rounds (NetSpears) for Navy and Army Weapons, Mr. Allan Vanuga, Raytheon Missile Systems
- 11781 Gun-Launched Aerial Precision Munition, Mr. Jay Canela & Mr. Lloyd Khuc, U.S. Army RDECOM-ARDEC
- 11525 Cannon Cluster Munition Replacement for 155mm Artillery Systems, Mr. Ryan Gorman, U.S. Army ARDEC
- 11644 Determination of the Shelf Life of MEMS Navigation- Grade Sensors through Use of Accelerated Aging Principles, Mr. James Sarruda, U.S. Army ARDEC

Thursday, September 1, 2011

CONCURRENT SESSIONS

MONROE

- EMERGING TECHNOLOGIES: AMMUNITION

- 11581 Precision Air Dropped Guided Munition (PADGM) System, Mr. Asad Khan, U.S. Army ARDEC
- 11759 Scalable Airburst Fuze Technology-Shaping the Future, Mr. Paul Reynolds, GD-OTS, Marion
- 11790 LW25 Programmable Air Burst Munitions, Mr. Donavan Gloude, ATK, Plymouth
- PRODAS GNC Trajectory System Simulation, Mr. Jeff Siewert, ArrowTech

- DIRECT FIRES II

- 11611 USMC EFV Program Cartridge Qualification and Integration Program Status, Maj Ian McDuffie, USMC, PM AAA
- 11615 30mm MK317 TPDS-T Cartridge Development and Qualification, Mr. James McConkie, ND5, Office of the Program Manager
- 11758 30mm x 173 Ammunition Suite—The Appropriate Response for Any Target, Mr. Rick Wright, GD-OTS
- 11800 LW30 Target Practice-Traced (TP-T) Ammunition, Mr. Kyle Nerison, ATK, Plymouth
- 11819 30 x 173mm TPDS-T Development, Mr. Donavan Gloude, ATK, Plymouth

TUTTLE

- PLATFORM & WEAPON SYSTEM INTEGRATION

- 11681 Next-Gen Fire Control: Free Software & Video Game Math, Mr. Marc Santoro, NSWC Dahlgren
- 11777 Development of a Moveable Weapon Mount System for the CH47 Helicopter, Mr. Michael Colonnello, U.S. Army ARDEC
- 11584 Rapid Integration of the M197 onto the MH-60S, Mr. Joseph Burkart, NSWC Crane
- 11660 Gun Weapon System (GWS) MK 48 for USCG Legends Class Cutters, Ms. Kaye Aswegan, NSWC Dahlgren

- ARMAMENT SUBSYSTEMS

- 11799 Developing Reliable Software in a Rapid Deployment Product, Mr. Steve Gunderson, ATK, Plymouth
- 11823 M197 Weapon Command and Control System for the MH-60S, Mr. William Reed, U.S. Navy
- 11804 Pivoting Coupling—Army's Greatest Invention, Mr. Steve Kotefski, Savit Corporation

Untitled Document

PROMOTING NATIONAL SECURITY SINCE 1919

46TH ANNUAL GUN & MISSILE SYSTEMS CONFERENCE & EXHIBITION "Shaping Weapon Systems for Rapid Deployme

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

AUGUST 29 -SEPTEMBER 1, 2011 www.ndia.org/meetings/1590

HYATT REGENCY MIAMI 📉 MIAMI, FLORIDA

GUN & MISSILE SYSTEMS CONFERENCE INFORMATION

Conference Chair:

Mr. Jim Talley General Dynamics Armament and Technical Products, Inc. jtalley@gdatp.com (802) 662-6013

Armament Division Chair:

Mr. Dave Broden Broden Resource Solutions dbroden@brsbis.com (952) 476-4301

Gun & Missile Committee Chair:

Mr. Steve French BAE Systems Steven.French@baesystems.com (763) 572-6551

Conference Planning Team

Mr. Sam Campagna Assistant Vice President, Operations, NDIA (703) 247-2544 scampagna@ndia.org

Ms. Allison Doherty

Meeting Planner, NDIA (703) 247-2570 adoherty@ndia.org

Ms. Taryn Crowder

Exhibits Manager, NDIA (703) 247-2566 tcrowder@ndia.org

ANNOUNCEMENT

The 46th Annual NDIA Armament Systems: Gun and Missile Conference and Exhibition will be held August 29-September 1, 2011 in Miami, Florida. The conference will address the theme, "Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response." The conference will provide a forum for discussing methods to enhance defense-related capabilities, not only through available technology, but also through development of personnel. A broad range of topics related to design and development of technology and training, and development of people in the gun and missile system industry will be presented.

The full scope of gun and missile tactical weaponry and related components will be discussed including: direct/indirect/precision fire systems, tactical rockets and missiles, energetics, effectiveness, modeling and simulation, platform integration and emerging technologies. Representatives of the U.S. and International defense communities including both government and industry members are invited to participate.

SESSION CHAIRS

Indirect Fires:

Mr. John Altrichter, *BAE Systems*; Mr. Scott Martin, *Raytheon* **Modeling & Simulation I - Design**

Mr. Jeff Siewert, *Arrow Tech*; Ms. Shellie Clift, *NSWC-Dahlgren* Emerging Technologies - Systems:

Mr. Mark Serben, U.S. Army ARDEC; Mr. Joe Buzzett, GD-OTS

Modeling & Simulation II - Test Methods:

Mr. Jeff Siewert, Arrow Tech

Requirements and Program Trends:

Mr. Steve French, *BAE Systems;* Mr. Jay Brannam, *ATK*

Tactical Rockets and Missiles:

Mr. Ed DePasqual, *Nammo Talley*; Mr. John Bednarz, *Raytheon* Energetics I:

Mr. Matt Solverson, *GD-OTS*; Mr. Ric Mutascio, *Esterline Defense Technologies* Emerging Technologies - Materials & Processes:

Mr. Bob Glantz, *ATK*; Mr. Jeff Caratelli, *Alcoa* Energetics II:

Mr. Matt Solverson, GD-OTS; Mr. Ric Mutascio, Esterline Defense Technologies Modeling & Simulation III - Systems & Manufacturing

Mr. Jeff Siewert, *Arrow Tech*; Mr. Steve Piper, *Piper Pacific* **Direct Fires I:**

Mr. Tony Gabriele, *Benet Labs*; Mr. Doug Wong, *PM-MAS* Non-Traditional I:

Mr. Scott Martin, *Raytheon*; Mr. Dave Panhorst, *U.S. Army ARDEC* **Precision Weapons:**

Mr. Bill Beard, *LMMFC*; Mr. Rollie Dohrn, *ATK* **Non-Traditional II:**

Mr. Scott Martin, *Raytheon*; Mr. Dave Panhorst, *U.S. Army ARDEC* Emerging Technologies - Ammunition:

Mr. Mark Serben, U.S. Army ARDEC; Mr. Joe Buzzett, GD-OTS Platform & Weapon System Integration:

Mr. Rob Brewer, *NAVAIR*; Mr. Greg Hill, *Meggitt Defense Systems* **Direct Fires II:**

Mr. Tony Gabriele, *Benet*; Mr. Doug Wong, *PM-MAS* Armament Subsystems:

Mr. Steve Kelley, *BAE Systems*; Mr. Greg Hill, *Meggitt Defense Systems* **Poster Sessions:**

Mr. Rob Brewer, *NAVAIR*

ATTENDEE INFORMATION

REGISTRATION

CONFERENCE REGISTRATION FEES	EARLY (ON/BEFORE 2/19)	REGULAR (2/20-8/19)	LATE (AFTER 8/19)
GOVERNMENT/ ACADEMIA/ALLIED GOV.	\$720	\$800	\$880
INDUSTRY NDIA MEMBER	\$820	\$900	\$990
INDUSTRY Non-Ndia member	\$900	\$990	\$1,090

Register online at the event website: www.ndia.org/meetings/1590

Mail Registration To:

NDIA - Event #1590 2111 Wilson Boulevard, Suite 400 Arlington, VA 22201

Fax Registration to: (703) 522-1885

Please do not fax or mail any registration forms after August 19, 2011

Cancellation Policy: All cancellations on or before August 19, 2011 will receive a refund minus a cancellation fee of \$75. Refunds will not be given for cancellations after August 19, 2011. Please be sure you are registering with the correct credit card or form of payment, as a \$25 fee will be applied to registrations switching credit cards or forms of payment. Substitutions welcome in lieu of cancellations! Please make your cancellation or substitution in writing to Allison Doherty at adoherty@ndia.org.

HOTEL INFORMATION

A block of rooms has been reserved at the Hyatt Regency Miami. In order to ensure the discounted rate, you must make your reservations early and ask for the National Defense Industrial Association (NDIA) room block. Rooms will not be held after Saturday, March 19, 2011 and may sell out before then. Rates are also subject to change after this date.

Hyatt Regency Miami 400 SE Second Avenue Miami, Florida 33131

To make your reservation, please call the hotel directly at (305) 358-1234.

- Industry Rate \$149 (single/double)
- Government Rate* \$104 (single/double) or the prevailing government per diem

Note: The government per diem rate is available only to active duty or civilian government employees. ID will be required upon check-in.

Any active U.S. Military attendee with ID and travel order will be tax exempt (subject to state's regulation of tax exemption). Any U.S. Government employee paying with U.S. Government check or credit card will be tax exempt (with supporting documentation as required by some states). Check with the hotel for specific state and local requirements when booking hotel reservations.

ATTIRE

During conference registration and check in, each participant will be issued an identification badge. Please be prepared to present picture ID. Badges must be worn at all conference functions. Appropriate dress for this conference is business casual for civilians and Class B uniform or uniform of the day for military.

SPECIAL NEEDS

NDIA supports the Americans with Disabilities Act of 1990. Attendees with special needs should contact Ms. Allison Doherty, Meeting Planner, NDIA, at adoherty@ndia.org.

TRAVEL INFORMATION From Miami International Airport (8 miles)

Take 836 East, go through tolls and stay to right side. Take I-95 South Exit - Downtown. Once on I-95, stay in left hand lane and take Exit 2A / Biscayne Boulevard. Stay in right hand lane at the end of the ramp, the hotel will be on your immediate right side.

Super Shuttle service from Miami International Airport:

(fees apply): 24 hour service to hotel. \$18.00 per person. The Super Shuttle station is located at the Van/Limo booth directly outside of the lower level baggage claim area near curbside pick-up.

Taxi from Miami International

Airport: Approximately \$20.00-\$25.00 one-way.

PARKING

Valet parking charges: 0-2 hours \$10.00, 2-3 hours \$12.00, 3-4 hours \$16.00, 4-5 hours \$20.00, overnight \$30.00. Valet parking charges include in and out privileges. No vans, trucks or large vehicles.

Self parking: \$12.75 with a validation sticker provided by the front desk staff upon request for the discounted rate. Self parking is in a garage with no in/out privilege.

MONDAY, AUGUST 29, 2011

10:00 AM - 3:00 PM EXHIBITOR MOVE-IN — RIVERFRONT HALL

12:00 PM - 5:00 PM REGISTRATION — LOWER PROMENADE

2:00 PM - 4:00 PM	TUTORIALS
2:00 PM - 3:00 PM	TUTORIAL A - TUTTLE "Legislative Update" Mr. Pete Steffes, <i>Vice President, Government Policy, NDIA</i>
3:00 PM - 4:00 PM	TUTORIAL B - TUTTLE "Ready or not? Using Readiness Levels to Reduce Risk on the Path
	to Production" Mr. Dan Chien, Vice President, Engineering, General Dynamics Arma- ment and Technical Products

5:00 PM - 6:00 PM

WELCOME RECEPTION IN EXHIBIT HALL

TUESDAY, AUGUST 30, 2011

7:00 AM - 5:00 PM	REGISTRATION — LOWER PROMENADE	
7:00 AM - 8:00 AM	CONTINENTAL BREAKFAST — REGENCY BALLROOM PREFUNCTION	
8:00 AM - 8:15 AM	WELCOME REMARKS & CONFERENCE OVERVIEW — TUTTLE/MONROE BALLROOM	
	 Mr. Sam Campagna, Assistant Vice President, Operations, NDIA Mr. Jim Talley, NDIA Conference Chair; General Dynamics Armament and Technical Products, Inc. Mr. Steve French, NDIA Gun & Missile Committee Chair; BAE Systems 	
8:15 AM - 8:30 AM	DIVISION UPDATE/2012 JOINT ARMAMENTS SYMPOSIUM	
	Mr. Dave Broden, NDIA Armaments Division Chair; Broden Resource Solutions	
8:30 AM - 9:00 AM	KEYNOTE ADDRESS: "Air and Missile Defense Overview"	
	BG Ole Knudson, USA, Program Executive Officer, Missile and Space, U.S. Army	
9:00 AM - 9:30 AM	KEYNOTE ADDRESS: "Close Air Support and Joint Operations"	
	Mr. Andrew K. Balding, Associate, Booz Allen Hamilton	
9:30 AM - 10:00 AM	KEYNOTE ADDRESS: "The Role of the Government Laboratory in Shaping Weapon Systems Development; An ARDEC Perspective"	
	Mr. Anthony J. Sebasto, Senior Associate for Munitions, U.S. Army ARDEC	
10:00 AM - 6:30 PM	EXHIBIT HALL OPEN - RIVERFRONT HALL	
10:00 AM - 10:35 AM	BREAK IN EXHIBIT HALL	

GUN & MISSILE SYSTEMS TUESDAY, AUGUST 30, 2011

10:35 AM - 12:15 PM

CONCURRENT SESSIONS

	USS AM - 12.15 FM		
	MONROE INDIRECT FIRES	TUTTLE MODELING & SIMULATION I - DESIGN	
10:35 AM - 10:55 AM	11503 - An Analysis of the Indirect Fires Portfolio of Munitions Mr. Jim Rodrigue, <i>Raytheon</i> Land Combat	11791 - Gun Launch Dynamics Modeling—Benchmarking the State of the Art Mr. Rollie Dohrn, <i>ATK, Plymouth</i>	
10:55 AM - 11:15 AM	11830 - Development of an Extended Range, Large Caliber, Modular Payload Projectile Mr. Pierre-Antoine Rainville, <i>GD-OTS, Canada</i>	Guided Projectile Simulation Mr. Jeff Siewert, Arrow Tech	
11:15 AM - 11:35 AM	11528 - XM1128 155mm Insensitive Munition (IM) High Explosive (HE) Extended Range Artillery Projectile Mr. Ductri Nguyen, U.S. Army ARDEC	11774 - Gun Launch Dynamics and Aeroballistic Analysis via Onboard Laser Diode Mr. Rollie Dohrn, <i>ATK, Plymouth</i>	
11:35 AM - 11:55 AM	11463 - 155mm HE Projectile Qualification Program Mr. Charlie Patel, <i>U.S. Army</i> <i>ARDEC</i>	GD-OTS/Nammo 25 mm JSF Combat Ammunition Mr. Zack Kemp, <i>GD-OTS</i>	
11:55 AM - 12:15 PM	 11511 - Technologies Utilizing the M483 Carrier Mr. George Kurzik, <i>GD-OTS</i>, <i>Red Lion</i> 	11824 - Design, Analysis and Weight Optimization Techniques for Joint Strike Fighter Missionized Gun Pod Support Equipment Mr. Gary Miller, <i>GD-ATP</i>	

12:15 PM - 1:30 PM

LUNCHEON SPEAKER

"Changes in the World of ITAR"

Mr. Larry Christensen, *Miller Chevalier Chartered*

1:30 PM - 2:50 PM

CONCURRENT SESSIONS

	MONROE EMERGING TECHNOLOGIES: SYSTEMS	TUTTLE MODELING & SIMULATION II: TEST METHODS
1:30 PM - 1:50 PM		11692 - AFRL Munitions Directorate Fuze Experimentation Research Activities Mr. Scott Turner, AF Munitions Directorate, Eglin AFB

GUN & MISSILE SYSTEMS TUESDAY, AUGUST 30, 2011

1:50 PM - 2:10 PM	11586 - Introduction of Wireless and MEMs based Devices into Fire Control Systems Mr. Ralph Tillinghast, U.S. Army ARDEC	11838 - A Method for Assessing the Effects of Overpressure from Small/Medium Caliber Weapons Fire Mr. Steven Backer, <i>NSWC-Crane</i>
2:10 PM - 2:30 PM	11641 - Extended Area Protection and Survivability Program (EAPS) Mr. Manfredi Luciano, U.S. Army ARDEC	11793 - The Challenge of Environmental Testing of the Expeditionary Fighting Vehicle Ammunition Feed System Separate from the Expeditionary Fighting Vehicle Mr. Ron Hopkins, <i>GDATP</i>
2:30 PM - 2:50 PM	11720 - Development of the Interceptor System for the Extended Area Protection & Survivability (EAPS) Mr. E. Mitchell Danielson, ATK, Plymouth	11668 - Design and Fabrication of a Novel High-g Soft Recovery System for 155mm Precision Munitions and Components Mr. Greg Hader, U.S. Army ARDEC

2:50 PM - 3:30 PM

BREAK IN EXHIBIT HALL

3:30 PM - 5:10 PM

CONCURRENT SESSIONS

	MONROE REQUIREMENTS & PROGRAM TRENDS	TUTTLE TACTICAL ROCKETS & MISSILES
3:30 PM - 3:50 PM	11786 - Naval Forces Capabilities Gap Against Swarm Attacks Mr. Andrew Bradick, <i>Rheinmetall</i>	11808 - Design Synthesis for Large Shaped Charges: From Requirements to Qualification Mr. Jason Shire, <i>Raytheon</i>
3:50 PM - 4:10 PM	11861 - U.S. Forces Light and Medium Mortar Ammunition Insensitive Munitions Path Mr. Nick Baldwin, U.S. Army RDECOM-ARDEC	11842 - Advanced Aluminum Alloys Enabling High Performance Missile Components Mr. Travis Schmidt, <i>Alcoa</i>
4:10 PM - 4:30 PM	11863 - IM Compliance for Mortar Illumination Cartridges Mr. Thomas Peter, U.S. Army RDECOM-ARDEC	11802 - Use of COTS O-rings as a Pyrotechnic Safety Barrier in a Rocket Motor Ignition Safety Device Mr. Brian Erickson, <i>ATK, Plymouth</i>
4:30 PM - 4:50 PM	11482 - Precision Guided Indirect Munitions — Operational Evolution Mr. Justin Skaret, <i>Raytheon</i> <i>Missile Systems</i>	11756 - Hellfire Integrated Blast Fragmentation Sleeve Multipurpose Warhead Mr. Jonathan Thomas, <i>GD-OTS</i>
4:50 PM - 5:10 PM	11792 - Enhancing Convoy Security by Means of Rapid Deployable Weapons Mr. Gerrie Van der Merwe, BAE Land Systems, South Africa	

RECEPTION IN EXHIBIT HALL

GUN & MISSILE SYSTEMS WEDNESDAY, AUGUST 31, 2011

WEDNESDAY, AUGUST 31, 2011

7:00 AM - 5:00 PM

REGISTRATION

7:00 AM - 8:10 AM

CONTINENTAL BREAKFAST

8:10 AM - 9:30 AM

CONCURRENT SESSIONS

	MONROE ENERGETICS I	TUTTLE EMERGING TECHNOLOGIES: MATERIALS & PROCESSES
8:10 AM - 8:30 AM	11822 - Novel ARDEC Igniters for Gun Systems Dr. Eugene Rozumov, U.S. Army ARDEC	11813 - Potting of Electronic Components for High-G Gun Environments Dr. Peter Vo, Raytheon Missile Systems
8:30 AM - 8:50 AM	11787 - The Effects of Igniter Design on the Interior Ballistic Performance of Deterrent Coated Propellants Dr. Thelma Manning, U.S. Army <i>RDECOM-ARDEC</i>	11829 - Investment Cast Titanium in Gun and Missile Systems Mr. Chris Jensen, <i>Alcoa Howmet</i>
8:50 AM - 9:10 AM	11590 - Foamed Celluloid Technology Mr. Mohammed Elalem, <i>U.S.</i> <i>Army ARDEC</i>	11583 - New PVD Processes for Durable Pollution-Free Ordnance Dr. Sabrina Lee, U.S. Army ARDEC
9:10 AM - 9:30 AM		12179 - The "Perfect" Time for an Upgrade to US Propellant Ms. Kelly Moran, <i>ATK, Radford</i>

9:30 AM - 3:30 PM

EXHIBIT HALL OPEN

9:30 AM - 10:15 AM

10:15 AM - 11:55 AM

CONCURRENT SESSIONS

BREAK IN EXHIBIT HALL

	MONROE ENERGETICS II	TUTTLE MODELING & SIMULATION III: SYSTEMS & MANUFACTURING
10:15 AM - 10:35 AM	11867 - IM in the Field— Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli Ms. Pamela Ferlazzo, U.S. Army RDECOM-ARDEC	11648 - System Analysis with Integrated Modeling and Optimization Mr. Philip Brislin, U.S. Army ARDEC RDAR-MEM-L

GUN & MISSILE SYSTEMS WEDNESDAY, AUGUST 31, 2011

THE TRIFILETTI AWARD

The Trifiletti Award is presented by the NDIA Gun & Missile Executive Committee to recognize and honor an individual who has made a significant contribution benefiting the warfighter, thus strengthening national defense. This contribution can be in the areas of the advancement of technology, systems, system integration or to someone who through his/her work provided unique leadership resulting in changes and progress in the community.

The award is named in honor of Mr. Robert Trifiletti who made significant contributions to the advancement of technology, and by whose leadership many other accomplishments benefiting the warfighter came to fruition. The award is open to anyone in the gun and ammunition or rocket and missile community.

MILITARY OPERATIONS AWARD

The Military Operations Award is presented to recognize an individual, crew or unit who in the opinion of the NDIA Gun & Missile Executive Committee has made significant contributions in operational employment, tactics or combat applications of guns and ammunition and/or rockets and missiles which have impacted the readiness, capabilities or results of U.S. military activity. A significant contribution is considered to be superior performance in an operational environment, development of tactics, training or leadership.

10:35 AM - 10:55 AM	11537 - Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications Mr. Virgil Fung, BAE Systems Ordanance Systems Inc.	11502 - A Virtual Learning Environment for Precision Indirect Fires Mr. Jon Peoble, <i>Raytheon</i>
10:55 AM - 11:15 AM	11832 - Development and Characterization of IM Gun Propellant for the 120mm Tank System Mr. Duncan Park, U.S. Army RDECOM-ARDEC	11779 - Next Generation Manufacturing & Modeling Technology Mr. David Smith, U.S. Army Benet Laboratories
11:15 AM - 11:35 AM	11821 - The Advance Case System (ACS) Program for 120mm Tank Training Ammo- Phase 2 Mr. Jeff Berg, <i>ATK, Plymouth</i>	
11:35 AM - 11:55 AM	11761 - High Explosives Charges for Insensitive Artillery and Mortar Ammunitions: Performances, Technology, Producibility, Affordability Dr. Bernard Zeller, SNPE	

11:55 AM - 1:15 PM

AWARDS LUNCH

1:15 AM - 2:35 PM

CONCURRENT SESSIONS

	MONROE DIRECT FIRES I	TUTTLE NON-TRADITIONAL WEAPONS I
1:15 PM - 1:35 PM	11747 - Direct Fires & Precision Weapons for Rapid Deployment at the Modern Battlefield Mr. Danny Schirding, Israel Military Industries, Ltd.	11840 - Development of a Large Caliber Naval EM Railgun Mr. Roger Ellis, <i>Office of Naval</i> <i>Research</i>
1:35 PM - 1:55 PM	11725 - Medium Calibre Goes in a New Direction Mr. David Leslie, <i>BAE Systems</i> <i>Global Combat Systems</i>	11841 - Electromagnetic Railgun, a Multi-Mission Weapon System Mr. Alan Kull, <i>General Atomics</i>
1:55 PM - 2:15 PM	11572 - The Development and Testing of the Improved Kinetic Energy Electronic Time (IKE-ET) Round Mr. Geoffrey Bland, <i>NSWC-Dahlgren</i>	 11828 - Scalable Gen-Set for Directed Energy Weapons: Resolving the Power Problem Mr. Bryan Bockmon, Rocky Mountain Scientific Laboratory
2:15 PM - 2:35 PM	11809 - Composite Sabot Technology for the 105mm Rifled Tank Gun System Mr. Velan Mudaliar, <i>U.S. Army</i> <i>RDECOM-ARDEC</i>	

GUN & MISSILE SYSTEMS WEDNESDAY, AUGUST 31, 2011

2:35 PM - 2:55 PM

BREAK IN EXHIBIT HALL

3:00 PM - 7:00 PM

EXHIBIT HALL CLOSES & EXHIBITOR MOVE OUT

2:55 PM - 4:55 PM

CONCURRENT SESSIONS

	MONROE PRECISION WEAPONS	TUTTLE NON-TRADITIONAL WEAPONS II
2:55 PM - 3:15 PM	11810 - Inherent Reliability and Affordability of Ballistic Solutions and Their Operational Benefits Mr. Larry Linde, <i>ATK, Plymouth</i>	11805 - Electronic Ballistics Systems: A Scalable Integrated Weapons Systems with Applications Footprint for Fixed and Mobile Platforms and Delivery of Same Caliber Lethal and Non-Lethal Munitions or Payloads Mr. George Orrison, Metal Storm Inc.
3:15 PM - 3:35 PM	11719 - Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the Family of Precision Guided Projectiles Dr. Karl Flueckiger, Draper Laboratory	11509 - Aggressor Suppression via the Use of Non-Lethal Projectiles and Launcher Systems Mr. Dan Hartman, <i>GD-OTS</i>
3:35 PM - 3:55 PM	11635 - Very Affordable Precision Projectile (VAPP) System and Flight Experiments Mr. Christopher Stout, U.S. Army ARDEC	11697 - Netted Smart Precision Engagement Autonomous Rounds (NetSpears) for Navy and Army Weapons Mr. Allan Vanuga, <i>Raytheon Missile</i> <i>Systems</i>
3:55 PM - 4:15 PM	11459 - Evolution of the EXCALIBUR Guided Projectile Mr. Chris Geswender, <i>Raytheon</i> <i>Missile Systems</i>	11781 - Gun-Launched Aerial Precision Munition Mr. Jay Canela & Mr. Lloyd Khuc, <i>U.S. Army</i> <i>RDECOM-ARDEC</i>
4:15 PM - 4:35 PM	11526 - Precision Urban Mortar Attack (PUMA) Mr. Luke Steelman, <i>NSWC-</i> <i>Dahlgren</i>	11525 - Cannon Cluster Munition Replacement for 155mm Artillery Systems Mr. Ryan Gorman, U.S. Army ARDEC
4:35 PM 4:55 PM	11788 - Leveraging Proven Systems to Develop a Guided Mortar for APMI Mr. Nicholas Ward, ATK, Plymouth	11644 - Determination of the Shelf Life of MEMS Navigation- Grade Sensors through Use of Accelerated Aging Principles Mr. James Sarruda, U.S. Army ARDEC

GUN & MISSILE SYSTEMS THURSDAY, SEPTEMBER 1, 2011

THURSDAY, SEPTEMBER 1, 2011

7:00 AM - 12:00 PM

REGISTRATION

7:00 AM - 8:00 AM

CONTINENTAL BREAKFAST

8:00 AM - 10:00 AM

CONCURRENT SESSIONS

	MONROE EMERGING TECHNOLOGIES: AMMUNITION	TUTTLE PLATFORM & WEAPON SYSTEM INTEGRATION
8:00 AM - 8:20 AM	11581 - Precision Air Dropped Guided Munition (PADGM) System Mr. Asad Khan, <i>U.S. Army</i> <i>ARDEC</i>	11681 - Next-Gen Fire Control: Free Software & Video Game Math Mr. Marc Santoro, NSWC- Dahlgren
8:20 AM - 8:40 AM	11759 - Scalable Airburst Fuze Technology—Shaping the Future Mr. Paul Reynolds, <i>GD-OTS,</i> <i>Marion</i>	11777 - Development of a Moveable Weapon Mount System for the CH47 Helicopter Mr. Adam Jacob, <i>U.S. Army</i> <i>ARDEC</i>
8:40 AM - 9:00 AM	11790 - LW25 Programmable Air Burst Munitions Mr. Donavan Gloude, <i>ATK</i> , <i>Plymouth</i>	11584 - Rapid Integration of the M197 onto the MH-60S Mr. Joseph Burkart, <i>NSWC-</i> <i>Crane</i>
9:00 AM - 9:20 AM		11660 - Gun Weapon System (GWS) MK 48 for USCG Legends Class Cutters Ms. Kaye Aswegan, NSWC- Dahlgren
9:20 AM - 9:40 AM	11784 - Non-Traditional Impact Detection Using Triboluminescence Mr. William Hollerman, University of Louisiana at Lafayette	1869 - Digitized M119A2 105mm Howitzer Mr. John Allen, <i>U.S. Army</i> <i>ARDEC</i>

9:40 AM - 10:00 AM

BREAK

GUN & MISSILE SYSTEMS THURSDAY, SEPTEMBER 1, 2011

10:00 AM - 12:20 PM

CONCURRENT SESSIONS

	MONROE DIRECT FIRES II	TUTTLE ARMAMENT SUBSYSTEMS
10:00 AM - 10:20 AM	11611 - USMC EFV Program Cartridge Qualification and Integration Program Status Maj Ian McDuffie, USMC, <i>PM</i> <i>AAA</i>	11799 - Developing Reliable Software in a Rapid Deployment Product Mr. Steve Gunderson, ATK, Plymouth
10:20 AM - 10:40 AM		11775 - Development of a Field Inspection Vehicle Designed to Autonomously Analyze Large- Bore Tubes for Fatigue and Wear Mr. Cory Mettler, American Science & Technology
10:40 AM - 11:00 AM	11615 - 30mm MK317 TPDS-T Cartridge Development and Qualification Mr. James McConkie, <i>ND5</i> , Office of the Program Manager	11823 - M197 Weapon Command and Control System for the MH-60S Mr. William Reed, <i>U.S. Navy</i>
11:00 AM - 11:20 AM	11839 - Rheinmetall 30mm x 173 Weapon Systems: Two Guns, Two Solutions Mr. Stephan Kerk, <i>Rheinmetall</i> Waffe Munition	11804 - Pivoting Coupling— Army's Greatest Invention Mr. Steve Kotefski, <i>Savit</i> <i>Corporation</i>
11:20 AM - 11:40 AM	11837 - The Rheinmetall 30mm x 173 Ammunition Family: Lethality and Urban Effectiveness Mr. Stephan Kerk, <i>Rheinmetall</i> Waffe Munition	
11:40 AM - 12:00 PM	11758 - 30mm x 173 Ammunition Suite—The Appropriate Response for Any Target Mr. Rick Wright, <i>GD-OTS</i>	
12:00 PM - 12:20 PM	11800 - LW30 Target Practice- Traced (TP-T) Ammunition Mr. Kyle Nerison, <i>ATK</i> , <i>Plymouth</i>	

12:20 PM

CONFERENCE ADJOURNS

PROCEEDINGS

Proceedings will be available on the web one to two weeks after the conference through the Defense Technical Information Center (DTIC). You will receive notification via email that proceedings are posted and available.

ABSTRACT ID	ABSTRACT TITLE	ADDITIONAL AUTHORS		
11463	IM testing and Initiation Trials of the IMX-101 Explosive in the M795 projectile	Mr. Philip Samuels, Mr. Anthony Di Stasio, Mr. Ductri Nquyen		
11482	Precision Guided Indirect Munitions – Operational Evolution	Mr. Conan Davis		
11502	A Virtual Learning Environment for Precision Indirect Fires	Mr. Jim Rodrigue		
11503	An Analysis of the Indirect Fires Portfolio of Munitions	Mr. Jon Peoble		
11506	Advanced Cannon Bore Cleaning System	Mr. Jonghyun Shim, Mr. Seil Jeon		
11509	Aggressor Suppression via the Use of Non-Lethal Projectiles and Launcher Systems	Mr. Dan Hartman, Mr. Steve Broussard		
11528	XM1128 155mm Insensitive Munition (IM) High Explosive (HE) Extended Range Artillery Projectile	Mr. John Magrogan		
11537	Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications	Mr. Brian Alexander, Mr. Mike Ervin, Mr. Philip Samuels, Mr. Charlie Patel		
11572	The Development and Testing of the Improved Kinetic Energy Electronic Time (IKE- ET) Round	Mr. James Barnes, Mr. Todd Cloutier		
11581	Precision Air Dropped Guided Munition (PADGM) System	Mr. Marc Ritt		
11583	New PVD Processes for Durable Pollution-Free Ordnance Based on Ionized PVD Technology	Mr. Dan Schmitt, Mr. Fang Yee, Mr. Mick Cipollo		
11586	Introduction of Wireless and MEMs Based Devices into Fire Control Systems	Mr. Michael Wright		
11609	30MMX173 310 MOD 0 PABM-T Cartridge Qualification Program	Mr. Jay Fitzsimmons		
11644	Determination of the Shelf Life of MEMS Navigation-Grade Sensors Through Use of Accelerated Aging Principles	Mr. Scott Gift		
11657	Modeling of the Autofrettage Processes of a Gun Barrel	Mr. Sudhir Puttagunta, Mr. Chandra Penumarthy		
11668	Design and Fabrication of a Novel High-g Soft Recovery System for 155mm Precision Munitions and Components	Mr. Nigel Gray, Mr. Brian DeFranco, Mr. Donald Carlucci		
11670	Versatile Electromagnetic Mortar Launcher for the JLTV-B	Mr. Ronald Kaye, Mr. Steven Dron		
11681	Next-Gen Fire Control: Free Software & Video Game Math	Mr. Anthony D'Alessandro		
11692	AFRL Munitions Directorate Fuze Experimentation Research Activities	Mr. James Cross, Mr. Don Clabaugh		
11697	Netted Smart Precision Engagement Autonomous Rounds (NetSpears) for Navy and Army Weapons	Mr. Sam Ghaleb, Mr. Mark Elkanick		
11719	Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the family of Precision Guided Projectiles	Mr. Paul Manz, Mr. Brian London Mr. Tim Easterly		
11761	High Explosives Charges for Insensitive Artillery and Mortar Ammunitions: Ferformances, Technology, Producibility, Affordability	Mr. Jacques Cardin, Mr. Pierre Vignaud		
11775	Development of a Field Inspection Vehicle Designed to Autonomously Analyze Large- Bore Tubes for Fatigue and Wear	Mr. John Duffy, Mr. Jesse VanOverbeke Dr. Fereidoon Delfanian		
11781	Gun-Launched Aerial Precision Munition	Mr. Daniel Vo, Mr. Hjalmar Canela, Mr. Lloyd Khuc		
11784	Non-Traditional Impact Detection Using Triboluminescence	Dr. Shawn Goedeke, Mr. Ross Fontenot, Mrs. Kamala Bhat, Mr. Brady Broussard		
11787	The Effects of Igniter Design on the Interior Ballistic Performance of Deterrent Coated Propellants	Dr. Eugene Rozumov, Mr. Carlton Adam, Mr. Duncan Park, Dr. Joseph Laquidara		
11790	LW25 Programmable Air Burst Munitions	Mr. Erik Elmer		
11791	Gun Launch Dynamics Modeling – Benchmarking the State of the Art	Dr. Donald Carlucci, Dr. James Newill		
11802	Use of COTS O-rings as a Pyrotechnic Safety Barrier in a Rocket Motor Ignition Safety Device	Mr. Tom Larson		

11807	Using JLOC (GPS Jammer Detection and Location System) to Improve the Effectiveness of Mission Planning for GPS Guided Weapons and to Support Flexible Response	Mr. Rick Edwards	
11809	Composite Sabot Technology for the 105MM Rifled Tank Gun System	Mr. Saif Musalli, Dr. William Drysdale, Mr. Michael Minnicino	
11811	Cartridge Case Venting Technologies, 25mm M910 Ctg Test Vehicle	Mr. Philip Abbate	
11814	Structural Integrity Evaluation of Composite Cylinders	Mr. Ajay Srinivasa, Dr. Fereidoon Delfanian	
11819	30mm Target Practice Discarding Sabot, Traced (TPDS-T) Ammunition Development	Mr. Don Gloude	
11822	Novel ARDEC Igniters for Gun Systems	Dr. Thelma Manning, Dr. Joseph Laquidara, Mr. Duncan Park, Dr. Kimberly Chung	
11823	M197 Weapon Command and Control System for the MH-60S	Mr. Alan Ford, Mr. John Proctor	
11828	Scalable Gen-Set for Directed Energy Weapons: Resolving the Power Problem	Mr. Travis Swanson	
11829	Investment Cast Titanium in Gun and Missile Systems	Mr. Eric Foos, Mr. David Lee	
11832	Development and Characterization of IM Gun Propellant for the 120mm Tank System	Mr. Sam Moy, Dr. Thelma Manning Mr. Donald Chiu, Dr. Eugene Rozumov	
11837	The Rheinmetall 30mm x 173 Ammunition Family: Lethality and Urban Effectiveness	Mr. Brian Sullivan	
11839	Rheinmetall 30mm x 173 Weapon Systems: Two Guns, Two Solutions	Mr. Brian Sullivan	
11840	Development of a Large Caliber Naval EM Railgun	Mr. Ryan Hoffman	
11841	Electromagnetic Railgun, A Multi-Mission Weapon System (Non-Traditional Armaments Category)	Mr. Thomas Hurn	
11842	Advanced Aluminum Alloys Enabling High Performance Missile Components	Mr. Les Yocum, Mr. Dustin Bush, Mr. Jeff Caratelli	
11861	US Forces Light and Medium Mortar Ammunition Insensitive Munitions Path	Mr. Roger Wong, Mr. John Niles, Mr. William Kuhnle, Mr. Rei Martinez	
11863	IM Compliance for Mortar Illumination Cartridges	Mr. Eli Martinez, Mr. John Niles, Mr. Sal Ghazi, Mr. Jeffrey Smith	
11867	IM in the Field – Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli	Mr. Roger Wong, Mr. John Niles, Mr. William Kuhnle, Mr. Jeffrey Smith	
11869	Digitized M119A2 105mm Howitzer	Mr. Ray Espinosa, Mr. Jose Santiago, Mr. Norm Lionetti	
11877	Acoustic Emissions Measured on the Outer Portion of a Composite Barrel	Ms. Rushie Ghimire	

SPONSORSHIP INFORMATION

Increase your company or organization's exposure by becoming a Sponsor! With a Sponsorship of \$5000, you will receive your organization's name on the back cover of the onsite brochure, a 350-word company description in the onsite brochure, main podium recognition, signage throughout the conference, and a hotlink to your organization's website.

For more information, please contact Taryn Crowder, Exhibits Manager at (703) 247-2566 or tcrowder@ndia.org.

2011 Exhibit Schedule:

Move In: Monday, August 29, 2011 10:00 AM – 3:00 PM (Must be set by 3:00 PM)

Show Hours: Monday, August 29, 2011 5:00 PM - 6:00 PM (Opening Reception in Exhibit Hall)

Tuesday, August 30, 2011 10:00 AM - 5:00 PM (Breaks in Exhibit Hall)

Tuesday Night Reception 5:00 PM - 6:30 PM Reception in Exhibit Hall)

Wednesday, August 31, 2011 9:30 AM - 3:30 PM (Breaks in Exhibit Hall)

Move Out: Wednesday, August 31, 2011 3:00 PM - 7:00 PM

EXHIBIT INFORMATION

EXHIBIT RATE INCLUDES

- Networking social functions in the exhibit hall
- Food Functions and Receptions
- Two exhibitor/conference registrations for exhibit personnel, per 10' x 10' booth
- Company profile online
- 24 hour security
- Booth 7"x44" ID Sign and Fabric back and side walls

Purchase your booth in real time! Visit: www.ndia.org/exhibits/1590.

REMINDERS

- Booths are sold in 10x10 sq. ft. increments and multiples thereof
- NDIA does not charge for corner or island fees
- No "end cap" booths are permitted
- Booth furnishings are not included and floor covering is required unless the hall is carpeted

COST TO EXHIBIT

Corporate Member Rate*: \$24.50 / sq. ft. (Note: your corporate member dues must be current to be able to get the member rate).

*Rate also applies to bona-fide government agencies

Non-Corporate Member Rate: \$29.50 / sq. ft.

MEMBERSHIP DISCOUNT

To qualify for the member rate on booths, or the small business package, your company has to join NDIA first as a Corporate Member. For more information on joining, contact Michael Kibler, 703-247-2571 or Erica Utegaard, 703-247-2549.

EVENT #1590 ► NDIA REGISTRATION FORM

NATIONAL DEFENSE INDUSTRIA (703) 522-1820 ► (703) 522-		G	VARD, SUITE 400 ► ARLIN	
46TH ANNUAL GUN & I ► HYATT REGENCY MIA		NFEREN	CE & EXHIBITION	
BAYS TO SIGN UP:	1. Online with a credi 2. By fax with a credi 3. By mail with a cheo	t card - Fa	ix: (703) 522-1885	> Address Change Needed
NDIA Master ID/Membership # (If known - hint: on mailing label ab	ove your name)		_ Social Security # (Last 4 digits - optional)	
Prefix <i>(e.g. RADM, COL, Mr., Ms., I</i>	Dr., etc.)			
Name: First		MI	_ Last	
Military Affiliation (e.g. USMC, USA (Ret.) etc.)			Nickname (For meeting badges)	
Title				
Organization				
Street Address				
Address (Suite, PO Box, Mail Stop,	Building, etc.)			
City	State		Zip	Country
Phone	Ext		_ Fax	
E-Mail				
Signature*				Date
		nate (Print address below) nate (Print address below)	⊳E-mail	
Alternate Street Address				
Alternate Address (Suite, PO Box	Mail Stop, Building, etc.)			
City	State		_ Zip	Country

A, AFEI, PSA, WID) through regular mail, e-mail, telephone or fax. NDIA, its Chapters, Divisions and affiliates do not sell data to vendors or other companies.

> ¹ Includes a free three-year NDIA membership and subscription to National Defense magazine for military

▷ No, do not sign me up for the free government membership.

² Registration fees for non-NDIA (or affiliate) members include a one-year non-refundable NDIA membership

-\$15.00 will be applied for your 12 month

subscription to National Defense magazine.

and government employees.

CONFERENCE REGISTRATION FEES	Early (Through 7/8/11)	Regular (7/9/11-8/19/11)	Late (After 8/20/11)
Government/Academia1	\$720	\$800	\$880
Industry NDIA Member and affiliates (AFEI, NTSA, PSA, V Industry non-NDIA member ²		\$900 \$990	\$990 \$1090

Cancellations received before 8/20/11 will receive a refund minus a cancellation fee of \$75. No refunds for cancellations received after 8/20/11.

Substitutions welcome in lieu of cancellations! Cancellations and substitutions must be made in writing to adoherty@ndia.org.

PAYMENT OPTIONS

Check (Payable to NDIA - Event #1590)				> Government PO/Training Form #			
⊳ VISA	⊳ MasterC	ard	⊳ Amer	ican Express	; D	> Diners Club	Cash
If paying by credit card, you may return by fax to (703) 522-1885.							
Credit Card Nu	mber					Exp. Dat	e
Signature				Da	te		

BY COMPLETING THE FOLLOWING, YOU HELP US UNDERSTAND WHO IS ATTENDING OUR EVENTS.

PRIMARY OCCUPATIONAL

- CLASSIFICATION. Check ONE.
- Defense Business/Industry
- ➢ R&D/Laboratories
- > Army
- > Navy
- ▷ Air Force
- Marine Corps
- Coast Guard
- > DOD/MOD Civilian
- ➢ Government Civilian (Non-DOD/MOD)
- > Trade/Professional Assn.
- Educator/Academia
- Professional Services
- ▷ Non-Defense Business
- > Other

CURRENT JOB/TITLE/POSITION.

Check ONE.

- > Senior Executive
- Executive
- Manager
- ➢ Engineer/Scientist
- > Professor/Instructor/Librarian
- Ambassador/Attaché
- Legislator/Legislative Aide
- ▷ General/Admiral
- Colonel/Navy Captain
- ▷ Lieutenant Colonel/Commander/ Major/Lieutenant Commander
- Captain/Lieutenant/Ensign
- Enlisted Military
- Other ____

Year of birth (optional)

QUESTIONS, CONTACT:

ALLISON DOHERTY, **MEETING PLANNER**

PHONE: (703) 247-2570 E-MAIL: ADOHERTY@NDIA.ORG

MAIL REGISTRATION TO:

NDIA - EVENT #1590 2111 WILSON BOULEVARD SUITE 400 ARLINGTON, VA 22201

FAX TO: (703) 522-1885

NATIONAL DEFENSE INDUSTRIAL ASSOCIATION 2111 WILSON BOULEVARD, SUITE 400 ARLINGTON, VA 22201-3061 (703) 522-1820 (703) 522-1885 FAX WWW.NDIA.ORG

46TH ANNUAL GUN & MISSILE SYSTEMS CONFERENCE & EXHIBITION

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

AUGUST 29-SEPTEMBER 1, 2011 HYATT REGENCY MIAMI MIAMI, FLORIDA

TO REGISTER, VISIT: WWW.NDIA.ORG/MEETINGS/1590 WWW.NDIA.ORG/EXHIBITS/1590

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT, & ENGINEERING CENTER (ARDEC)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

NDIA, 46th Annual Gun & Missile Systems Conference & Exhibition, Miami, FL 14 April 2011 Asad Khan ARDEC Project Officer U.S. Army RDECOM-ARDEC RDAR-MEM-S Picatinny Arsenal, NJ 07806 973-724-5075 asad.khan@us.army.mil

DISTRIBUTION STATEMENT A. This presentation is unclassified and approved for public release

- ARDEC Overview
- PADGM Project Objective
- System Description
- Warfighter Payoff
- Accomplishments to date
- Summary

Armament Research, Development & Engineering Center

Research

Development

Production

Field Support

Demilitarization

Innovative Armaments Solutions for Today and Tomorrow

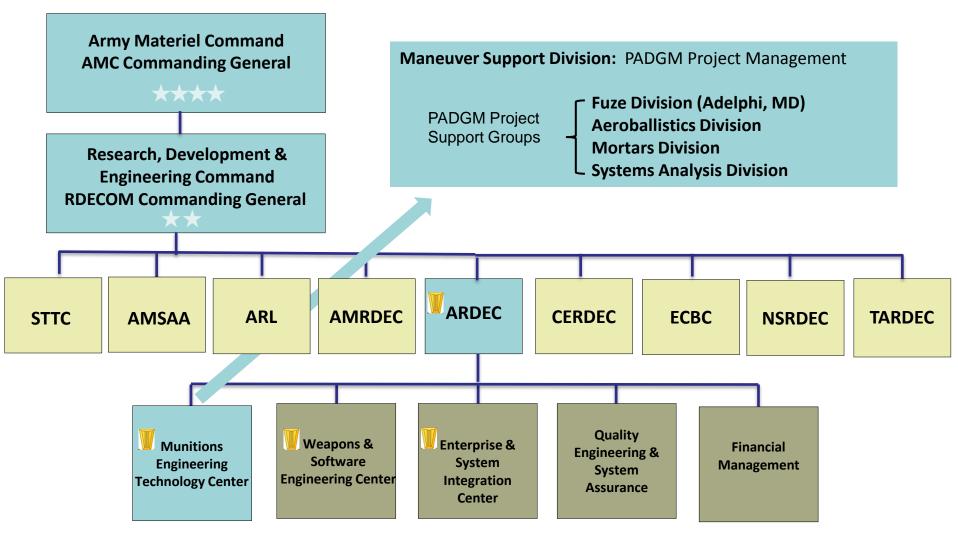
Mission:

To develop and maintain a customer focused, world-class workforce that will execute, manage and continuously improve integrated life cycle engineering processes required for the research, development, production, field support and demilitarization of munitions, weapons, fire control and associated items.

<u>Advanced Weapons</u> – line of sight/beyond line of sight fire; non line of sight fire; scalable effects; non-lethal; directed energy; autonomous weapons

<u>Ammunition</u> – small, medium, large caliber; propellants; explosives; pyrotechnics; warheads; insensitive munitions; logistics; packaging; fuzes; environmental technologies and explosive ordnance disposal

<u>Fire Control</u> – battlefield digitization; embedded system software; aero ballistics and telemetry


ARDEC provides the Technology for Over 90% of the Army's lethality; Significant support to other services' lethality

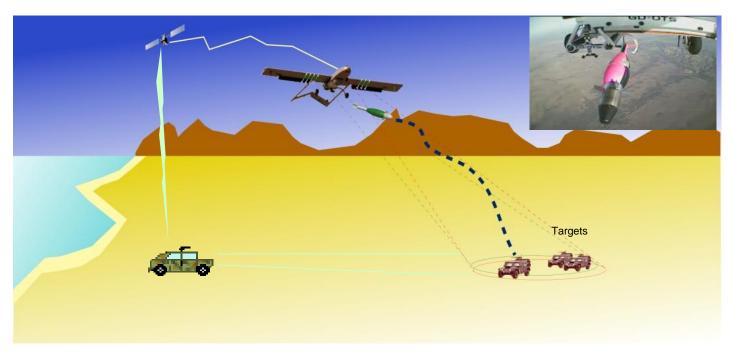
Mateoim Bathri Nationa Quality Award 2007 Award Recipient

ARDEC Organization -Chain of Command

Unclassified

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Objectives


- Provide a low cost, small, light weight and near term precision strike weapon capability for unmanned (and manned) aircraft systems
- Modify the 81mm mortar ammunition by replacing the standard fuze with a nose kit that includes GPS based Guidance, Navigation & Control (GN&C) elements including a fuze designed for air drop applications
 - Partner with General Dynamics Ordnance Tactical Systems (GD-OTS) for development of the GN&C system, including their innovative Roll Controlled Fixed Canard (RCFC) technology
 - Design, develop and integrate an electronic proximity fuzing system to address air dropped environments – considered critical path item to rapid fielding

Notional Concept of Operation for PADGM System

Aircraft positioned above targets of interest determines GPS coordinates, fed from ground/air observers, and passes to mortar round via umbilical data link which once released is guided by the on board GN&C system to target. The control concept utilizes a unique braking system to reorient fixed canted canards to provide the necessary maneuvers to the mortar round in flight for precision target engagement


Reduced sensor to shooter timeline. 'See it, Kill it' capability.

81mm mortar round comparison Standard vs. Air Drop

81 mm Mortar Ammunition

for Extended Range

Guidance Kit & integrated Electronic Fuzing

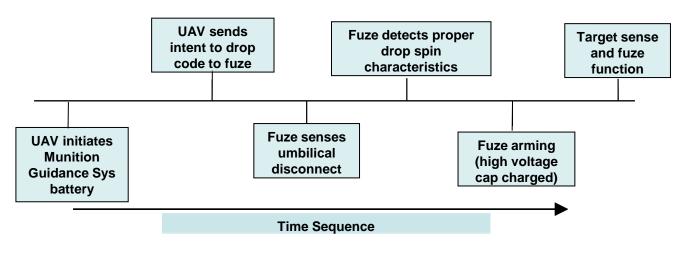
Unclassified

調播

Why PADGM?

- Low cost GPS based precision munition capability
- Small and Light Weight suitable for Shadow class UAS platforms
- Soft Release of kill munition from aircraft dropped vs. launched
- Reduced collateral damage and soldier exposure near vertical and precision engagement
- Reversible arming capability electronic fuze disarms if round misguides
- No warhead development proven lethality
- Warhead high weight ratio vs. total weight
- Reduced logistics burden lethal effectiveness with fewer rounds
- Effective engagement against stationary soft targets sets light vehicles, dismounted enemy personnel
- Future warhead enhancement capability Mortar Anti-personnel Anti-Material (MAPAM)

PADGM Fuzing System



• Electronic Safety and Arming Device (ESAD) and Height of Burst (HOB) sensor integrated with the Guidance and Control System

• ESAD designed to operate independently from the guidance electronics to satisfy the fuze safety requirements

• Three function modes – proximity, impact and delay after impact

- ESAD Module Booster
- Two independent arming events/environments
 - Time sequenced umbilical release
 - In-flight round spin induced by tail fin cant

US ARMY

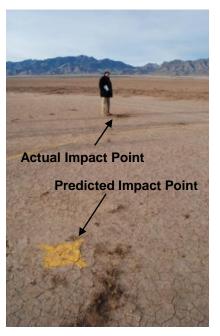
RDECOM

Unclassified

Guide-to-Target Air Drop Flight Demonstration - Dec 08

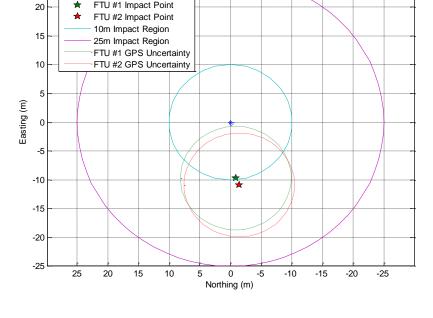
Unclassified

• Two Flight Test Units air dropped from C-123


25

- FTU #1 impacted ground < 10 meters from intended target
- FTU #2 impacted ground < 11 meters from intended target
- Demonstrated accuracy within the accuracy of the GPS (9 10.5 meters)

Target Point



WARFIGHTER FOCUSED

DRIVE

'OLOGY

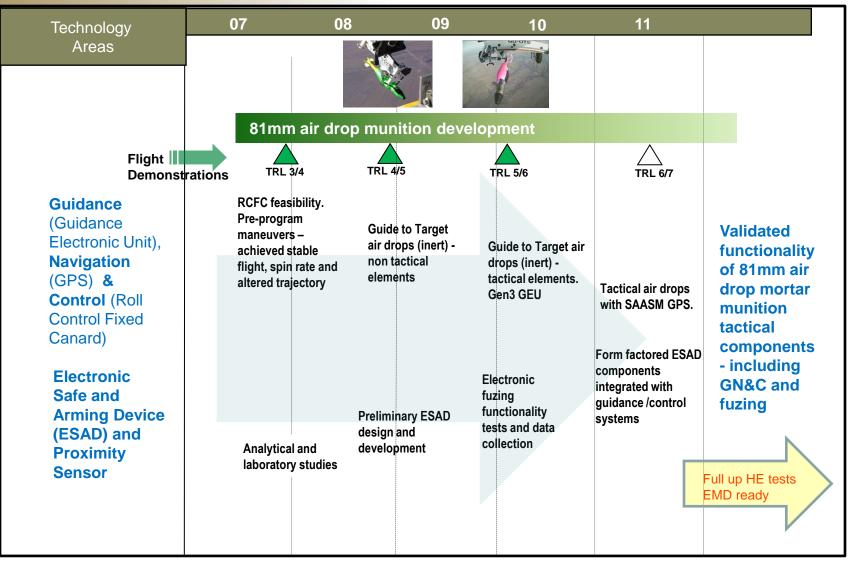
81mm Mortar RCFC Guide-to-Target Flight Demonstration Test Results (Air Drop Testing, December '08, Kingman, AZ)

Unclassified

Guide-to-Target Air Drop Flight Demonstration - Mar 10

Tiger Shark UAV with 81mm Guided Air Drop Munition and GD-OTS Rack System

- First ever PADGM air drop demonstration from tactical class Unmanned Aircraft System
- Air drop from 8,000 ft AGL with 75m lateral offset
- Demonstrated 40m range and 80m cross-range correction landing within 2m of target
- Improved algorithms resulted in improved accuracy
- Test validated UAV integration, system functionality and aero coefficients



RDECON

PADGM Technology Roadmap

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- ARDEC initiative to develop a low cost, small and light weight weapon option for unmanned/manned aircraft platforms
- Munition Guidance Kit technology, with ESAD fuze and GN&C components, replaces existing M734A1 mortar round fuze nose for air drop application
- Very successful 'guide to target' flight demonstrations
- Path forward mature 81mm air drop munition to a fully integrated tactical configuration and conduct live fire flight demonstrations



RDECOM

Questions?

Unclassified

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

D

SPECIAL MISSIONS

RAPID RESPONSE

Harnessing the Power of Technology for the Warlighter 🏐

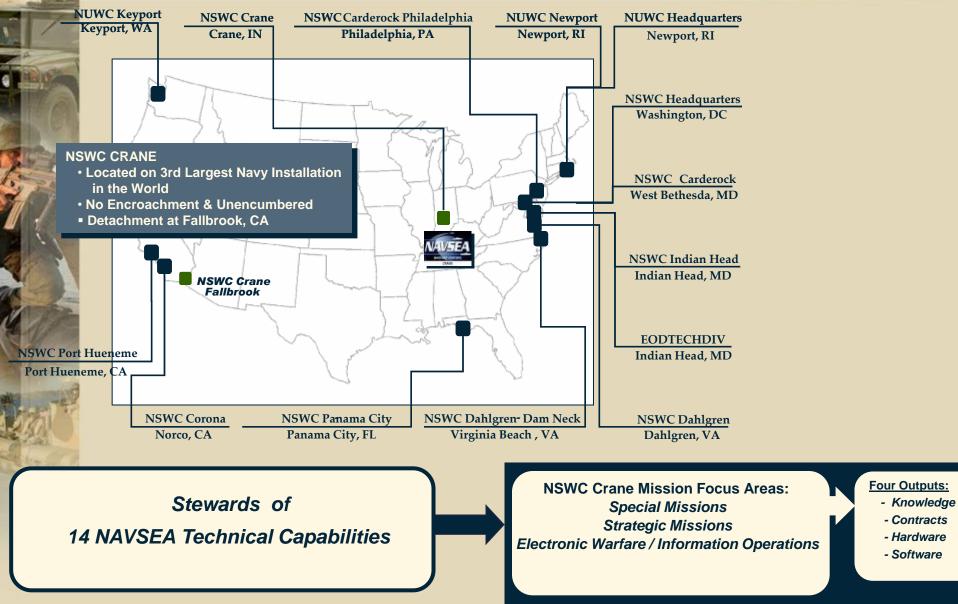
ONS

Rapid Integration of the M197 onto the MH-60S – Abstract 11584

31 August 2011

Joseph Burkart

Crane Division, Naval Surface Warfare Center (NSWC Crane)


Com (812) 854-1654 DSN 482-1654 joseph.burkart@navy.mil

Approved for Public Release; Distribution is unlimited.

NSWC Crane Division

Approved for Public Release; Distribution is unlimited.

3

Small Arms Air Platform Integration

- Who are we?
 - We are a team of engineers, logisticians, and technicians with vast crew served weapons and electronics integration experience.
 - We have the capability to support the full life cycle of the systems we deploy.
 - We support multiple platform offices and team with industry partners.
 - We take great pride in providing high quality support to our customers in a timely manner.

- What do we do?
 - Design and integrate weapon systems for various aircraft.
 - Fabricate prototype parts for fit checks and testing.
 - Support flight certification process through the NAVAIR Performance Monitors.
 - Provide Finite Element Analysis (FEA) modeling for fatigue and crash loads.
 - Procure production hardware through GOV contracts.
 - Receive, inspect, kit, and deploy high quality systems.
 - Provide interim supply support.

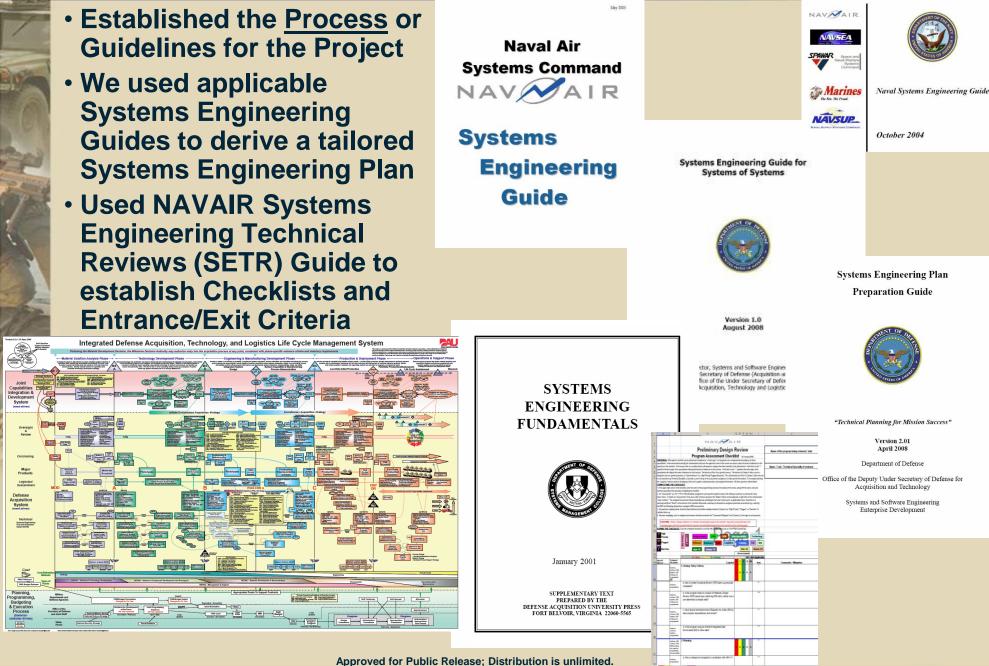
Various Air Platforms Supported

 How can we rapidly integrate weapon systems at a reduced cost that will provide enhanced capability for the fleet?

Process

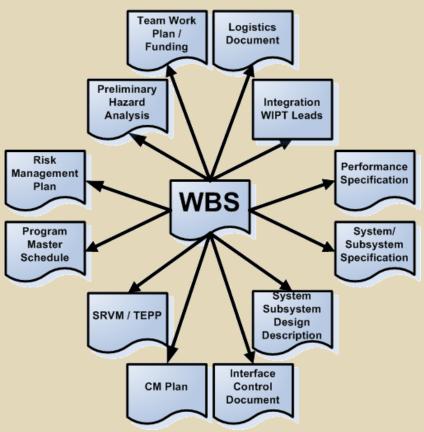
Artifacts

• How are we using Systems Engineering to solve this?

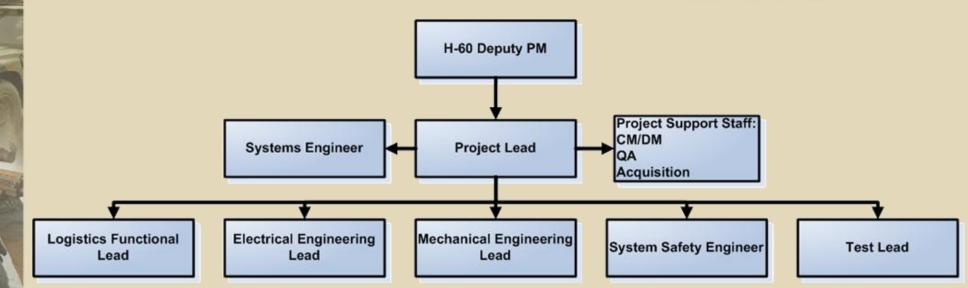

Approved for Public Release; Distribution is unlimited.

Execution

Systems Engineering Plan


8

- The use of 'Tailor' instead of 'Cut' was key to our systems engineering process
 - Tailor: to fit to a particular circumstance
 - Cut: reduction; break off
- Key Questions:
 - How can we apply guides and instructions written for an ACAT I program to a small rapid development effort?
 - What is the purpose of the process/document?
 - Does the purpose add value to the program?
 - How can we benefit from the purpose within cost and schedule?
- Readdressed how we 'Tailor' the Guides and Instructions to ensure we're meeting the intent of the document
- Putting 'Pen to Paper' forces tough decisions to be made early and greatly aid in the planning process and gets everyone on the same page


- Scoped the Project and Defined <u>Artifacts</u>
- The WBS was created to capture the total effort to support the development, integration and fielding of the 20mm Gun System.
- Based on MIL-HDBK-881A
- Contains a WBS Dictionary for each element.
- Established Common Terms.
- Assigned each WBS Element to a Functional Lead

Team Structure

CRANE

- Established a Team that could execute the work
- Involved Non-Design Functional Areas from the start of the project

Areas of Responsibility

Electrical Lead

•Electrical Design

Fabrication

•Electrical Component

Project Lead

•Stakeholder Mgt

Decision Analysis

Technical Assessment

Configuration Mgt

•Data Mgt

Contract Mgt

Risk Mgt

Validation

Test Lead

Test Planning
 Component Testing
 Subsystem Testing
 System Functional Checkout

•Test Execution

Test Coordination

Systems Engineer •Technical Planning •Requirements Mgt •Requirements Analysis •Architecture Design •Implementation •Interface Mgt •Verification

System Safety Lead

•WSESRB Data Package•LSRB Data Package•System Safety Planning

Mechanical Lead

Logistics Lead

Logistics Documents

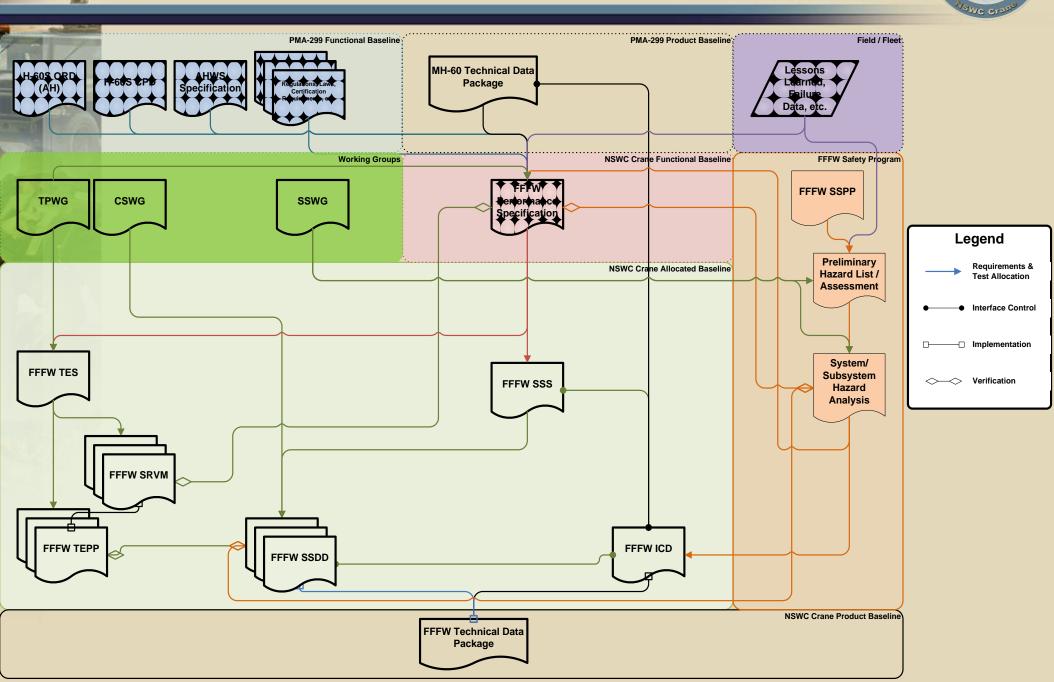
•Training

Mechanical DesignHardware Fabrication

Death by Meetings?

12

- Enforce Time Limits
- Working Meetings
- Follow an Agenda
- Stay Focused
- Low Preparation Workload
 - Most Preparation is Day-to-Day Tasking
- Follow Up
- Clear Expectations
- IPT Meeting
 - Weekly
- Sponsor Meeting
 - Weekly
- Integration WIPT Lead Meeting
 - Daily
- Integration WIPT Meeting
 - Weekly
- Functional Lead Meeting
 - Weekly



- Systems Engineering Plan
- Product Performance Specification
- System/Subsystem
 Specification
- System/Subsystem Design Description
- Interface Control Document
- Initial Functional Analysis
- Test and Evaluation Strategy
- Test and Evaluation Program Plan
- System Requirements
 Verification Matrix

- Team Work Plan
- Configuration Management Plan
- Risk Management Plan
- Work Breakdown Structure
- System Safety Program Plan
- System/Subsystem Hazard Analysis
- Interim Support Plan
- User's Logistics Support Summary
- Acquisition Logistics
 Support Plan

Document Traceability

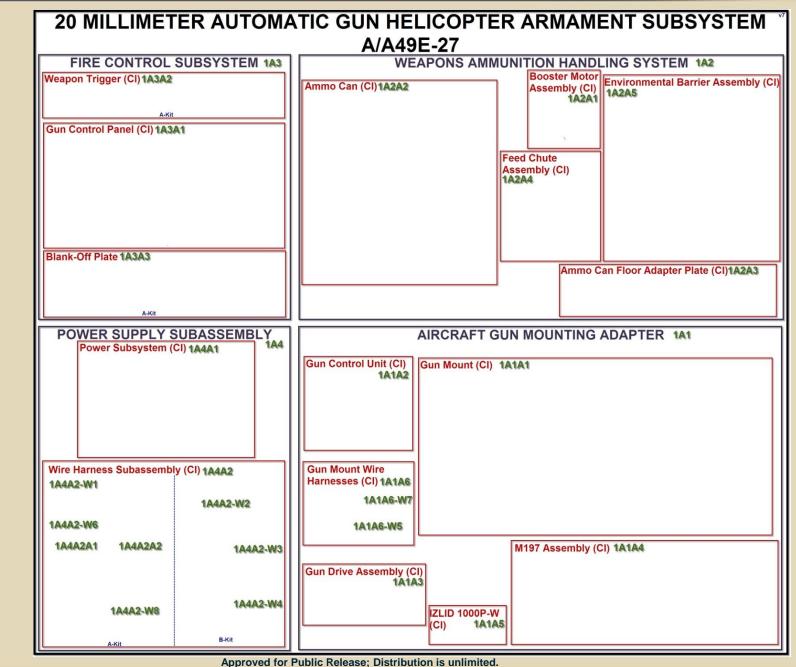
Approved for Public Release; Distribution is unlimited.

15

- Don't Micro-Manage
 - Allowed the Leads to Lead
 - Helped Leads Identify Risks and Solutions
 - Didn't 'Trump' Functional Lead Decisions
 - 'Maybe sometimes'
 - Allowed Creativity
 - "My" Design would have looked vastly different
 - Is the system meeting requirements?
- Paperwork increased up the chain

- At what point do we draw the line for integration
 - COTS System onto Platform?
 - COTS Subsystems into a System onto Platform?
 - COTS Components into Subsystems into Systems onto Platforms?
 - The higher the better, within Performance, Schedule and Cost
- Use of Analysis of Alternatives and Trade Studies to identifying level of integration
 - Risk vs. Benefit Chart
 - This places the priority on the performance of the end item
 - Cost and Lead Time
 - Often COTS lead times are longer than entire project schedule

Key Documents



- System Subsystem Specification
 - Allocated Requirements to WBS Elements
 - Assigned to Functional Leads
- Interface Control Document
 - Defined External and Internal Functional, Physical, Human Interfaces
 - Established Interface Nomenclature
 - Assigned to Functional Leads
- System Subsystem Design Description
 - Established System Architecture
 - Documented System Wide Design Decisions
 - Quality Factors Allocation
 - Fire Controls Design Decisions
 - Power Subsystem Design Decisions
 - Weapons Ammunition Handling System Design Decisions
 - Aircraft Gun Mounting Adapter Design Decisions
 - Consolidated Trade Studies and Analyses to one Location
 - Alternative System Design Analysis
 - Gun Drive Motor Alternative Design Trade Study
 - Booster Motor Assembly Alternative Design Trade Study
 - M197 Assembly Alternative Design Trade Study
 - Firing Rate Selection and Vibration Analysis
 - System Faults Analysis
 - Hardware vs. Firmware Justification White Paper
 - Booster Motor Requirement Analysis
 - Dispersion/Boresight Analysis

System Architecture

NSWC Crane as the System Integrator

- RAPID RESPONSE
 - As a DoD Activity funding can be provided immediately avoiding contract lead times
 - This allows us to be fully engaged from the start of the program, working with the sponsor and end user to solidify requirements
 - No contract mods when requirements change
 - Flexibility to adjust to SE process changes
 - Drop non-value added tasks
 - Add emerging tasks to meet goals

Thank you for your time and attention!

For more information on NSWC Crane, please visit www.crane.navy.mil

Images were downloaded via publically accessible websites

1

30-mm X 173 MK310 MOD0 PABM-T FCT Program and Cartridge Qualification Status

46th Annual NDIA Armament Systems: Guns & Missile Conference

Jay Fitzsimmons & Susan Broad Naval Surface Warfare Center Dahlgren Division

14 April 2011

Agenda

- MK46 GWS & Application
- Foreign Comparison Test (FCT) Program
- Joint Cartridge Qualification Program
- Cartridge Qualification Status
 - Overall Test Program
 - Tests Completed
 - WSESRB Status

MK46 GWS

MK44 Bushmaster II Chain Gun

MK46 GWS Characteristics

- Firing Rate: 200 rpm
- Single Shot or Burst Fire
- Magazine Size: 400 Ctgs
- FLIR / ELRF

MK46 GWS Applications

LPD-17 Class Transport Dock

Expeditionary Fighting Vehicle (EFV)

LCS 1 USS Freedom

LCS 2 USS Independance

5

Joint USN / USMC FCT for 30mm PABM-T

- USN as the lead service, teamed with the USMC, submitted a joint FCT program for 30mm Programmable Air Burst Munition (PABM) (January 2005)
- 30mm PABM Program was the number one priority of the FCT program within the USN (May 2005)
- 30mm PABM FCT Program was selected for funding by the Office of Secretary of Defense (September 2005)
- Request For Proposals (Solicitation) requested interested candidates/vendors to supply cartridges for lethality evaluation
- Three candidates/vendors provided cartridges for evaluation
 - All were Non-Developmental Items (NDI) Cartridges
 - Fragmenting High Explosive (HE) & Kinetic Energy (KE) Type Projectiles

FCT Lethality Evaluation

- FCT Lethality Objective:
 - Evaluate Single Shot, Terminal Lethality of 30mm PABM against representative land and naval targets (USN, USMC, & US Army Rqmts)
- Lethality Analysis:
 - Personnel Kill Operational Requirements based Casualty Assessment (ORCA) & Joint Technical Coordination Group (JTCG) Modeling
 - FirePower Kill Operational (Technical Assessment) and Advanced Joint Effectiveness Model (AJEM) Analysis
 - Mobility Kill Operational (Technical Assessment) and Supporting AJEM Analysis

Naval Targets Evaluated

42' Aluminum Hull FIAC

- 2 Man Crew
- 1500m

24' Fiberglass Hull USMC Raider Boat

- 2 Man Crew
- 1500m
- 3 Jet Ski Targets
 - 1 Man Per Jet Ski
 - 1500m

Infantry Targets Evaluated

- Infantry Squad (1500m)
 - 8-Man Standing and Prone
- Anti-Tank Guided Munitions (1500m)
 - Two Man Fighting Position without Overhead cover
- Lightly Fortified Infantry Encampment (600m)
 - Two Man Fighting Position with Overhead cover
- BTR-60 (1500m)
 - Three Man Crew (scored) with 6 mounted infantry (not scored)

Wall Targets Evaluated

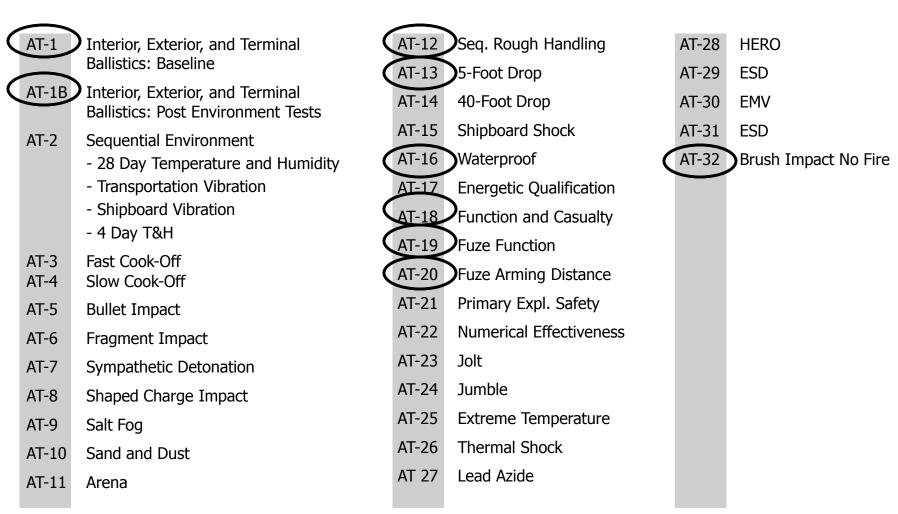
- Concrete Block and Terra Cotta Walls w/ Room Behind
 - 2-man behind wall

600 meter Target

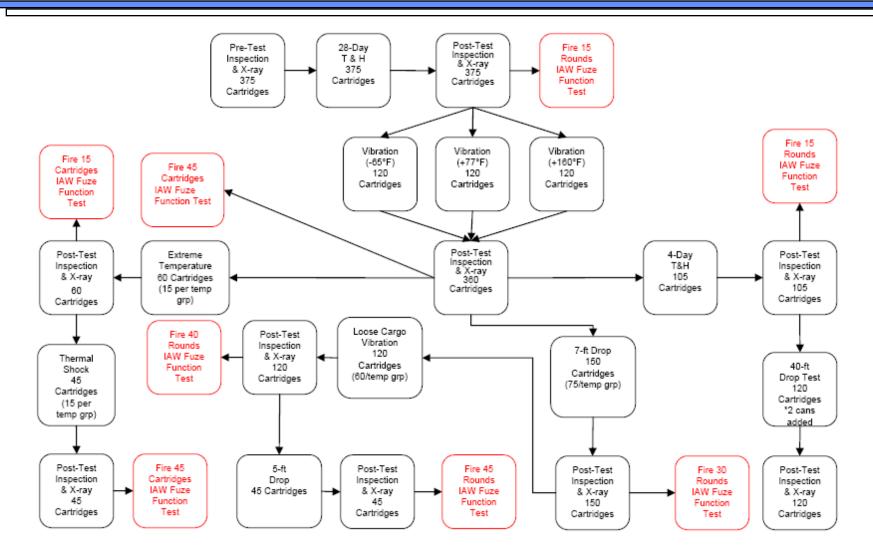
600 meter Target

FCT Down Select

- ATK/Diehl Cartridge recommended by Source Selection Panel for Down Select
 - Selection Based on Performance and Cost
 - Cartridge selected required safety qualification
- General PABM-T Cartridge Information
 - High Explosive Warhead with Air Burst Base Fuze
 - PBXN-5 Explosive with Zirconium Incendiary
 - Inductive Fuze Setting Required for Gun Feed
 - Aluminum Cartridge Case
 - Single Base Propellant
 - M36A2 Percussion Primer

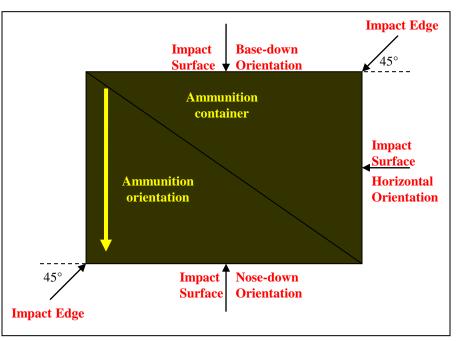


Cartridge Qualification Program



30-mm Ammunition Qualification Tests

30-mm Ammunition Conditioning Series


30-mm Ammunition Conditioning Series

- Purpose: To assess energetics and fuze safety devices against lifecycle threats
 - Package, Handling, Storage & Transportation
 - Loading
 - Gun Fire to Barrel Exit
 - After Barrel Exit
- Passing: Fuze safety devices remain safe; safe for disposal or safe for firing and operational depending on the specific test

40 FT Drop

• Purpose: Satisfies UN Test Series 4(c); assess safety after free fall. 5 Drop Orientations.

• Passing: No reaction or escape of explosive material; safe for disposal

Insensitive Munitions Tests

- Joint Requirements Oversight Committee (JROC) harmonized testing requirements between Hazard Classification and Insensitive Munitions
- Tests Conducted & Associated Reaction:
 - Fast Cook-Off TYPE I
 - Slow Cook-Off TYPE III
 - Bullet Impact TYPE I
 - Fragment Impact TYPE I
 - Sympathetic Reaction PASS
 - Shaped Charge Jet Impact Not Conducted; high order failure anticipated

Static Arena Test

Purpose: To satisfy safe separation safety analysis requirements and characterize projectile fragmentation to develop lethality and effectiveness assessments

Lightning – Direct & Near Strike

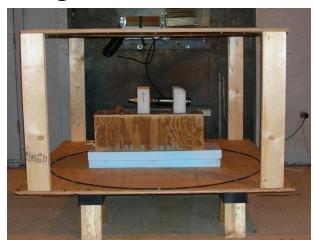
- Purpose: Subject PABM-T Cartridges Magnetic and Electric Fields IAW MIL-STD-464A Direct Strike: A: 200kA, B: 2kA, C: 200-800A, D: 100kA
 - Near Strike (E-Field)
 - Near Strike (M-Field)
- Pass Criteria:
 - Near Strike: Safe to Handle & Safe to Dispose
 - Direct Strike: Fully Operational
- Post Test Analysis: Perform post test inspection to verify safety & operability

Lightning – Direct Strike

Strike Number 2: Side of Container

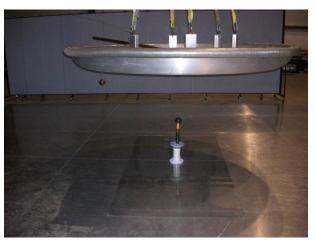
Post Test Cartridges & Dunnage

Post Test Container & Linked Cartridges


Post Test Linked Cartridges

Approved for Public Release. Distribution is Unlimited.

Lightning – Near Strike Magnetic and Electric Fields


• Magnetic Field

• Electric Field

Approved for Public Release. Distribution is Unlimited.

ESD Personnel and Helicopter Bourne

- Purpose: Subject PABM-T Cartridges to Electro-Static Discharge IAW MIL-STD-331C
 - Personnel Bourne: 25kV exposure (+/- polarities)
 - 22 cartridges @ 3 test points / ctg (Nose, projectile seam, primer)
 - Helicopter Bourne: 300kV exposure (+/- polarities)
 - 3 containers (different test point on each container)
- Pass Criteria: Cartridges must be fully operational after exposure (per Mil-Spec)
- Post Test Analysis: Perform post test inspection to verify safety & operability

Fuze Testing

- Purpose: Assess safety and reliability of fuze S&A
- Testing Completed:
 - Jolt, Jumble, Numerical Effectiveness of the Interrupter, Primary Explosive Safety
- Passing: Safety devices (S&A) remain in safe condition; assess degree of inline rotation necessary for propagation; no propagation of explosive train when S&A out of line

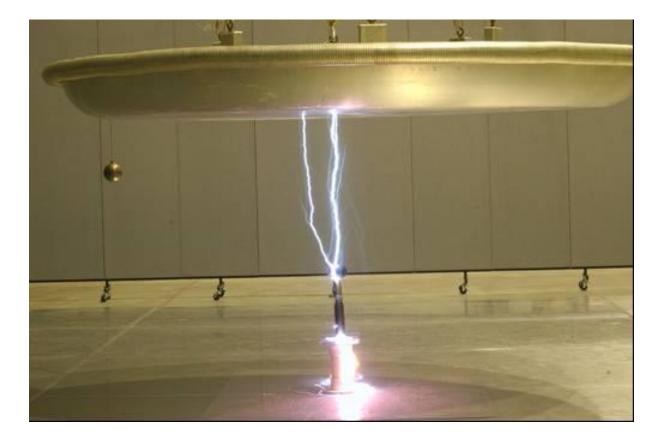
Fuze Testing

Jolt Fixture

Primary Explosive Safety

Numerical Effectiveness

Approved for Public Release. Distribution is Unlimited.



Summary

- Complete All Qualification Testing July 2011
- Finalize Safety Documentation:
 - SSSTRP
 - FISTRP
 - Final Type Qualification (FTQ)
- Submit Letter Data Package to US Navy WSESRB with Recommendation for Final Operational Capability (FOC) – Sept 2011

Questions / Comments

Approved for Public Release. Distribution is Unlimited.

1

Status of 30mm MK317 MOD 0 TPDS-T **USMC/USN** Qualification Program Presented to the 46th Annual Gun & Missile Systems **Conference & Exhibition** Miami, Florida 11-14 April 2011 Prepared By NSWCDD, Code G32 Jim McConkie

- Background of Selection of the 30mm MK317 TPDS-T
 - Trainer Ctg for Combat APFSDS-T Ctg
 - From FCT to USMC Lead Program
 - NATO Qualification of 30mm TPDS-T
- Qualification by Analogy & Test
- Qualification Testing
 - Hawthorne Test Range SDZ & Ranging Tests in Dec 2010
 - NSWCDD Test Range Future Qualification Tests ?
- Summary & Future Work

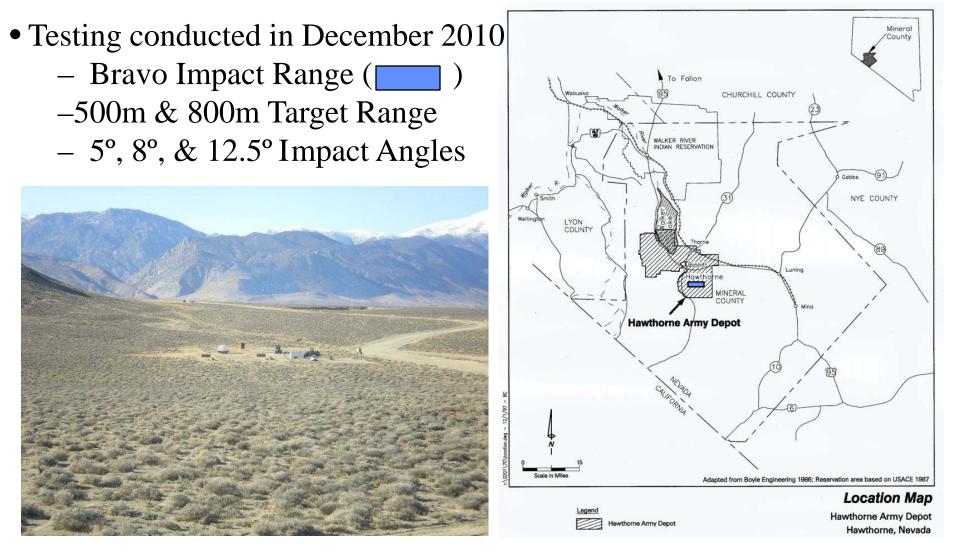
Background of 30mm MK317 TPDS-T

- 30mm Target Practice Discarding Sabot (TPDS-T) was submitted as a Foreign Comparative Test (FCT) Proposal in 2007 & 2008 (Not Selected)
 - Joint USMC, US Navy, and US Army Effort
 - Flight Characteristics similar to APFSDS-T out to 1500m
- Qualification of 30mm MK317 as "Not New Item" – RWM-S TPDS-T Qualified by Analogy to the MK268 MOD 0 APFSDS-T Combat Cartridge - 2009

Plan to Qualify ATK, GD-OTS and NAMMO 30mm TPDS-T variants in 2010 & 2011 for Increased Competition

• USMC/USN & NATO Qualification of MK317 in FY2011

30mm MK317 SDZ & Ranging Ballistics TPDS-T Requirements


- 30mmx173 TPDS-T Cartridge (Ctg) Compatible for use in the 30mm MK44 Chain Gun (Loading, Firing, and Ejecting)
- Ballistic Match (1 mrad) to the 30mmx173 MK258 APFSDS-T Ctg from 100 meter (m) to 1500 m Range

 Projectile trajectory time-of-flight (ToF) within 0.5 second of the MK258 projectile ToF out to 2500 meters Range
- Surface Danger Zone (SDZ) of less than 8,300 meters
 - Max Sabot Debris Distance 400m
 - Sabot Discard Angle Less than 30° off Line-of-Fire
- Compliant with USN Insensitive Munitions

30mm TPDS-T SDZ & Ranging Test at Hawthorne, Nevada

30mm MK317 SDZ Berm Setup

12.5 Degree Berm with Steel Plates

30mm MK317 TPDS-T SDZ Test Berms

Earth & Steel Berms

5 degree

12.5 degree

30mm MK317 Ranging Test Set-up

30mm Mann Barrel & Tracking Radar

30mm SDZ Test Matrix

• 30mm TPDS-T SDZ Test Requirement – 10 Valid Ricochets per Test Event

Impact Media	Range (m)	Impact Angle(deg)	ATK (Rds)	GD-OTS (Rds)	NAMMO (Rds)
Armor Plate	500	12.5	15	15	15
Earth	500	12.5	15	15	15
Armor Plate	500	8.5	15	15	15
Earth	500	8.5	15	15	15
Armor Plate	500	5	15	15	15
Earth	500	5	15	15	15
Armor Plate	800	5	15	15	15
Earth	800	5	15	15	15
Total			120	120	120

30mm Ranging Test Matrix

• 30mm TPDS-T SDZ Test Requirement – 10 Valid Ricochets per Test Event

	Gun Super Elevation Angle (deg)	Temp Condition of Ammo (°F)	ATK (Rds Fired)	GD-OTS (Rds Fired)	NAMMO (Rds Fired)
	5	-25	15	15	15
	5	+125	15	15	15
	25	+125	15	15	15
	5	+70	15	15	15
Total			60	60	60

30mm MK310 Ranging Test Results

• 30mm MK317 TPDS-T Data by Manufacturer

Data Parameter	(ATK)	(GD-OTS)	NAMMO
Avg MV (m/s) (5°SE, +70°)	1632.5	1603.9	1490.6
MV SD (m/s)	8.8	6.88	3.02
Avg Range (m) (5°SE, +70°)	6542.5	4942.9	4544.8
Avg ToF (sec) (5°SE, +70°)	15.9	13.2	12.9
Max Range (m) (24°SE, +125°)	7613.8	6854.8	8416.5
Avg ToF(sec) for Max Range	25.6	33.3	36.1

Note: MV SD – Muzzle Velocity Standard Deviation; Avg ToF – Average Time of Flight, SE – Gun Tube Super Elevation

30mm MK317TPDS-T SDZ Results

30mm MK317 TPDS-T Data by Manufacturer

Manufacturer	Range (m)	Avg Impact Velocity (m/s)	Impact Velocity SD	Avg Impact ToF	Impact Time SD
ATK	500	1447	16.8	0.327	0.023
	800	1346	16.1	0.538	0.018
GD-OTS	500	1349	15.6	0.340	0.017
	800	1193	28.4	0.575	0.014
NAMMO	500	1388	5.4	0.344	0.006
	800	1331	6.3	0.561	0017

Summary of SDZ & Ranging Test

- 30mm TPDS-T SDZ and Ballistic Ranging Data Has Been Submitted US Army Aeroballistics Branch, ARDEC for SDZ Analysis and Final SDZ Report
- All three Manufacturers Provide TPDS-T Variants that Meet SDZ Requirements Based upon Preliminary Data
- Three Other Qualified Manufactures will Provide Competition with the Current Single Qualified MK317 TPDS-T Cartridge Made by RWM-S

Future Plans

- Current Plans for USMC & NATO Qualification On Hold Due to Cancellation of EFV Program
- USMC Is In Process of Developing Requirement for the Follow-On Amphibious Combat Vehicle (ACV) Program.
- Completion of the 30mm TPDS-T Qualification will be Based Upon USMC and/or USN Requirement for Realistic Training Ammunition for a 30mm Main Gun

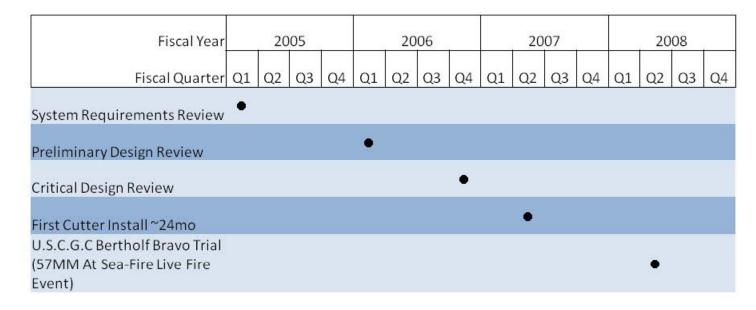
Questions?

Gun Weapon System MK 48 for the United States Coast Guard Large Maritime Security Cutters (WMSL 750-757)

COAST GUARD

repared by: Mr. Henry T. Rowland

MK 48 System Engineer aval Surface Warfare Center, G34 Dahlgren, VA Presented by: Ms. Kaye Aswegan


MK 48 Project Manager Naval Surface Warfare Center, G34 Dahlgren, VA

Subject and Purpose

- The GWS MK 48 was developed in response to the urgent gun fire control needs of the US Coast Guard for its newest Homeland Security Maritime Platform
- Adaptation of existing Naval lethal tactics into US Coast Guard Law Enforcements non-lethal actics
- ntegration of a foreign gun mount terminology and operation into a US Gun Weapon System

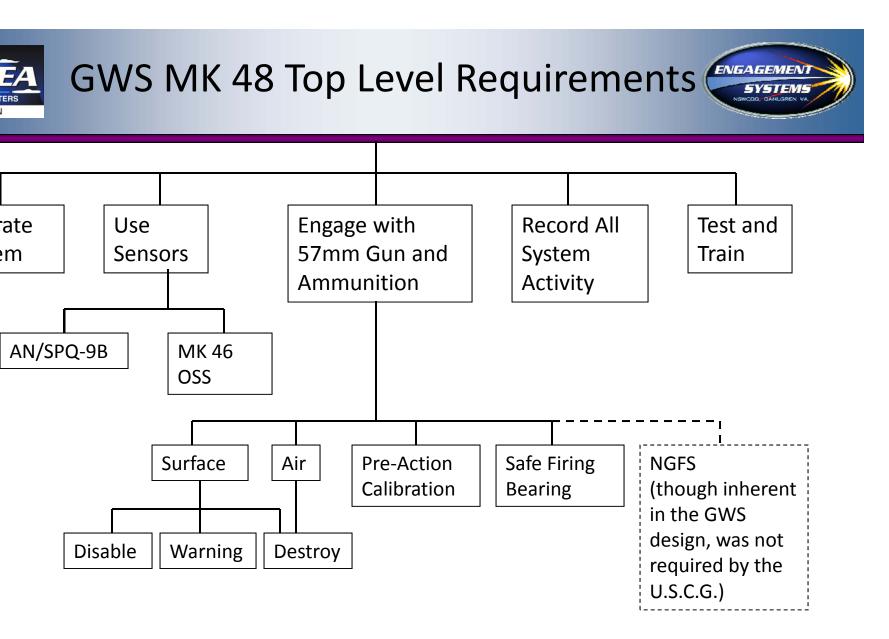
Rapid Development Timeline

Gun Computer System (GCS) Description

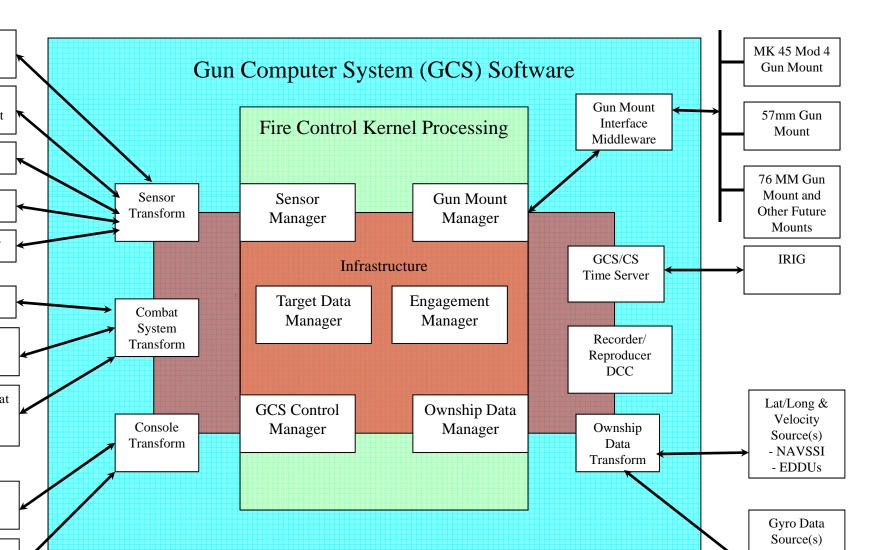
- approved for development in 1982 for S DDG-51 Class Destroyers.
- orms
- DG and CG
- SCG Deepwater WMSL
- alone or Fully Integrated into AEGIS bat Systems
- tegrated with Air Defense, Anti-Surface and NSFS unctionality
- se of non-dedicated sensors, gyros and clocks
- rocess Engagement Orders
- ilter Track Data for Gun Engagements
- CS track initiation based on OSS data
- Allows C&D engagement
- evelops Ballistic Solution for 5" and 57mm rojectiles
- evelops Stabilized Gun Pointing Orders
- upports Destructive, Warning and Disabling Fire

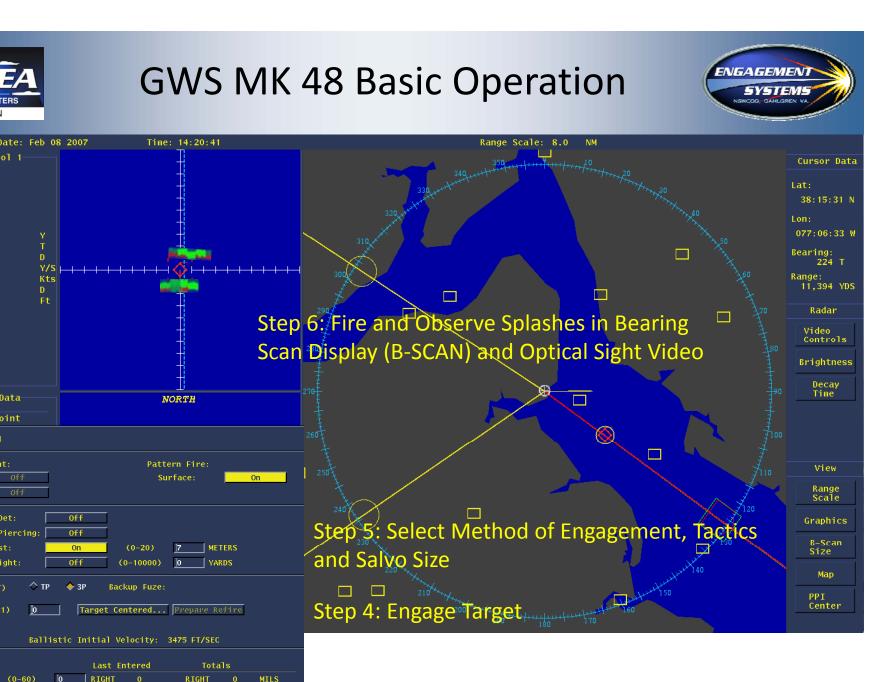
DDG/CG

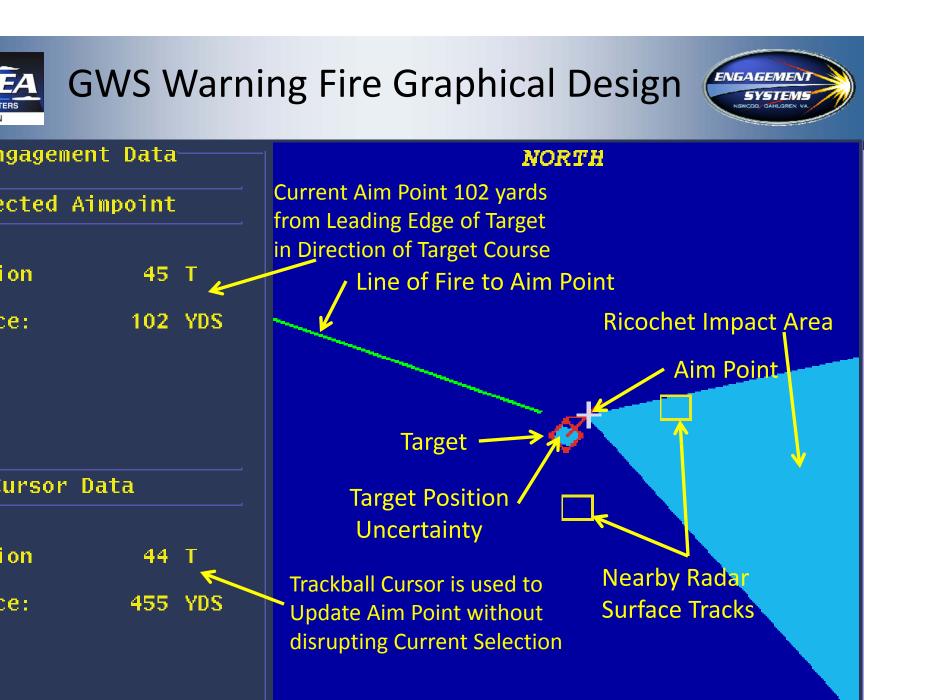
WMSL



5"/54 & 5"/62 Conventional / ERM


57mm





Fire Control Enterprise Architecture

GWS MK 48 Disabling Fire Operation

ical Sight tracks some point on the target ets the GWS Console track ball and aim point ame position. The GWS Console Operator can e aim point from the point of tracking by e trackball. There are three aiming strategies ed:

where the optical sight line of sight is pointed at the afe laser range finder-provided range.

e vessels trim by the stern or have an odd stern e, making it difficult to maintain a stable optical at the desired point of aim. Allow the optical sight ator to target a convenient "fat" (sizable exposed ice area) portion of the target and allow the aim t to be adjusted from the optical sight-tracked point e desired location

ly, because it may have been a while since the gun last fired, allow the Disabling Fire aim point to be t from the optical sight track to a position pletely aft of the target and then walked back onto arget after gun firing accuracy has been established

SYSTEM

Adaptation to 57mm Design: Loading Next Round to Fire and Point Detonation 3P Fuze Backup

S.C.G. Maritime Law Enforcement al states "inert ammunition must be or Warning Shots and Disabling Fire"; the 57mm, TP projectile.

Tring, the 57mm design will always ot to load a projectile at the ram on(next to be fired). If none of the ed type is available, it will load ver ammunition type is available.

se of this, a 3P, high explosive tile may be at the ram position when xt mission requires inert, TP nition.

D Adaptation: If a high-explosive tile is at the ram position while the s using restrained-response warning or ng fire, a warning is displayed to the Console Operator which must be Unless the target is physically hit, shallow projectile angles of fall on short range targets will likely result in fuze non-function if the fuze is set to Impact mode. The MK160 avoids this by setting the fuze to function on Time and detonating the projectile at the computed time of intercept. The result is a Point Detonation using the 3P backup fuze function if the target is struck ,or close aboard fragmentation on the target if not directly struck.

Assimilation of a Foreign Gun Mount

into U.S. Service

es of Foreign Influences/Priorities Imm Design

by design, the first High-Explosive projectile of any 57mm salvo is non-settable and uses he default proximity fuze function. In the J.S., however, this design results in the nisemployment of that first projectile in rarious tactical circumstances. For example, when the operator orders an Air Burst at a particular height and range, or when armor piercing is ordered.

The 57mm design assumed no need for a puilt-in simulation capability. The U.S. places high value on training. The lack of a 57MM built-in simulation capability makes GWS training less effective.

The 57mm, 3P high-explosive ammunition is lesigned with a Point Detonation Back Up function. This is a positive feature and is used to advantage in the U.S. design. 57mm Units and Terminology Examples

- Units:
 - (57mm) Meters/Second vs. (U.S.) Feet/Second
 - (57mm) Radians and Radians/Second used for Gun Resolver Display vs. (U.S.) No use of Radians for Gun Position-related displays
 - (57mm) 0 to +/-180 Degrees Convention vs. (U.S.) 0-to-360 Degrees Convention
- 57mm Terminology: "Unsafe" is an action (verb) taken on the 57mm Gun prior to firing. The operator is "unsafing" the gun.
- 57mm Terminology: "Disturbing" Errors are errors that do not prevent the accomplishment of a critical function.

MK 160 Approach to Terminology Differences

C.G. decision to man a gunner's ation using the Gun Control Panel

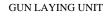
IK 160 to adopt 57mm terminology GWS Console with exceptions such isplay of train from 0 to 360

. This supports common, precise ary between the gunner's mate and controlman.

160 assists the fire controlman by ent display of 57mm units and U.S.

U.S.: Degrees and Decimal Minutes

U.S.: Decimal Degrees


57mm: Decimal Radians

GWS CONSOLE AN/UYQ-70(V)11

	System Time: Link Status:	14:39:20 Up	
Gun Position	Order	Actual	Error
Train	102 D 20.1 M	102 D 20.1 M	0 D 0.0 M
	102.335 D	102.335 D	0.000 D
	1.7861 R	1.7861 R	0.0000 R
Elevation	0 D 22.4 M	0 D 22.4 M	0 D 0.0 M
	0.374 D	0.374 D	0.000 D
	0.0065 R	0.0065 R	0.0000 R

🔷 Hold Display 🔶 Start Display

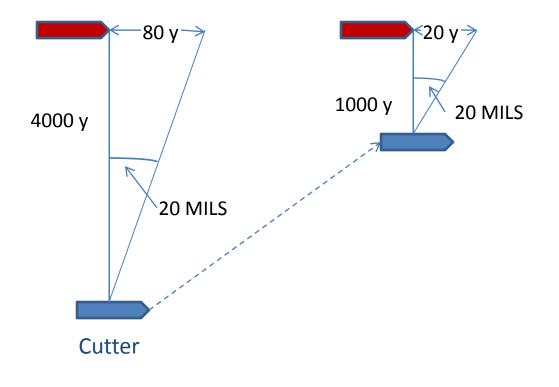
GWS MK 48 Summary

VS MK 48 – Being installed on (8) S.C.G. Large Maritime Security tters leverages off our U.S.N. MK34 VS product family.

oven MK 34 GWS tailored to oport rapid development.

VS MK 48 Integration of Warning d Disabling Fire uses graphical ethods and engagement processing oporting warning, disabling, and struction methods of engagement thin a single engagement for xible response.

e use of a Foreign Gun Mount ove MK 160 design decisions ated to terminology differences d influences of the country of


BACKUPS

Prior Ad Hoc Warning Fire Problems: **Motivation for MK 160 Design**

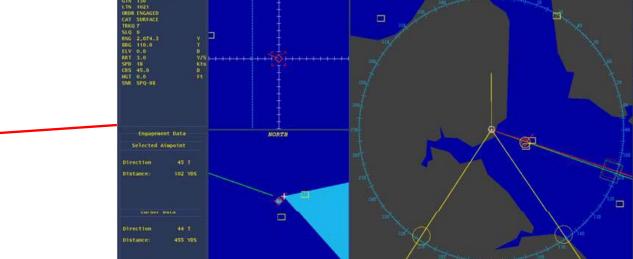
- CO orders a warning shot 80 s ahead of the target.
- arget is engaged and prior ration systems aimed by It to hit the target after of flight.
- ire controlman has to late a deflection spot in mils itary milliradian) to move im point forward in the ion of the target's course by rds. Problem A: What part e target is being tracked-Amidships? This must be d to the 80 yards.
- using the target range, the ontrolman enters a spot in vhich results in 80 yards d setting the stage for em B: the distance enclosed

Sentric Recorder

Evidence Collection and Event Playback within MK 48 GWS

1000 N

Video Control: crightner Decay Time


Range Scale Graphics B-Scan Size

ns that may arise from gun use are serious. It is ve to document what the GWS Operator saw and ng the use of the gun.

S Console includes a console-integrated accessory, ric Media Recorder, to capture all GWS Console nd the Optical Sight Video, for evidence and event .

ally, the MK160 records all digital interface data ery internal and external interface for data

Adaptation to 57mm Design:

EA

rn is designed to lay a wall of ation across the target using 10 projectiles. host GWS hold the height of a surface the surface, and the gun makes no target ated offset, if firing is normal then at least attern will be short. There are holes in the

daptation: When the surface firing pattern target height is used to enable the entire ttern to detonate in the air as a supportive The MK160 implements aiming and firing limits in addition to the 57mm software-designed limits. This provides an "Or'd" safety check and a way of tailoring limits. For example, MK160 does not allow pointing in the direction of the superstructure while the gun mount allows pointing over and across the superstructure

Other Key MK 160 Adaptations to 57mm Design

ovided the gun magazine is loaded, the MK160 can complete all the steps of target engagement id readiness to fire without moving the gun mount ,including transitions from local gun mount introl to MK 160 control ,thus concealing the Captain's intentions.

e MK 160 system provides a built-in 57mm simulator that allows simulated pointing and firing.

NE MK 160 has developed a method of testing the analog firing order and the analog unsafe gnals without requiring a sailor to go top side to physically load a primer or test case for that arpose.

nytime communications with the gun are restored, the MK 160 will warn the GWS Console perator if the gun has gone from a loaded condition to being unloaded.

the 57mm does not take local control of pointing when communications with fire control have filed. This can result in mount motion when communications with the fire control system are retablished. Such events, while technically correct, can catch the officer of the watch off-guard. To event this, when communications with the gun mount are restored after being down for a gnificant period of time, the GWS Console operator must approve the coupling of the MK160 gun ount orders to the gun.

the compartmentalization of 57mm ammunition can hurry the operator's reload order to the point that premature orders to reload while firing is in progress are likely- interrupting the salvo in ogress. The MK160 precludes this by holding off orders to reload or load until any currently fired by a sended.

Next-Gen Fire Control: Free Software & Video Game Math Marc Santoro

Anthony D'Alessandro

Special Mission Weapon Systems

Naval Surface Warfare Center, Dahlgren Division

> Distribution Statement: (A) Approved for public release; distribution is unlimited.

Outline

- Developing a Fire Control System
- Integrating New Approaches
- The Tools
- Video Game Math
- Roadmap of Future Technology
- Conclusions

The System

- Medium-Caliber Fire Control System
- Non-Traditional Customer
 - Airborne
 - Rapid Development
- Existing system inappropriate
 - Physically large
 - Developed using legacy tools
- Concept to delivery in 1/3 time for typical system
- Significant COTS components

Open Approach

- Open Source tools are high quality
- NSWCDD gradually introduced open source into Naval Fire Control
- New software architecture based on Open Source
- Hardware Interfaces
 - DoD Mount, Wescam EO/IR, ATK Gun, C2/C4ISR
- Ballistics Simulation 4-DOF MPM
- Servo Control Discrete PID
- State Estimation/Filtering Alpha-Beta, R-C

The Tools

- Linux
- GNU Toolchain (C++)
- TRAC
- Git
- Python
- Sage
- Octave

- KST
- OpenJava
- R
- Open/LibreOffice

Video Game Math

- Fire Control overlaps video game technology goals
 - Accurate Simulations
 - High Performance
 - Processing
 - Networking
- Strong commercial demand
 - Technical Expertise & Resources
- Linear Algebra
- Signal Processing

Linear Algebra

- Strong overlap between FC and games
- Parallax
 - Direct solution derived from fundamental math
- Ballistics
 - 1:1 match between implemented ballistics model and idealized 4DOF model

Graphics Cards

- Contain integrated processors with massive capacity
- Used to accelerate certain signal processing operations
- Real-time Video Decoding; 3D (georectified) overlays
- Developers use a C-like language

State Estimation

- Analogies between commercial sector & DoD interests
- Alignment (Parallax)
 - Computer Vision
- Target Tracking
 - Video Games

The Future

- Utilize application-specific COTS components
 - Digital Signal Processing
 - Graphics Processing Units
 - COTS I/O
- Minimization
 - Small-form-factor rugged platforms
- Simplification
 - Identify and reuse analogous technology
 - Obsolescence

Conclusions

- Investing in knowledge capital
 - Identify trends in commercial technology that parallel DoD needs
 - Prioritize technical subject-matter expertise
- Minimized investment in specialized technology
 - Long-term reuse potential is over-estimated
 - Extensive investment in component reuse is inefficient
 - Components end up specialized anyway
 - Focus on capturing knowledge

GD-OTS/Nammo 30mm Combat and Training Ammunition

46th Annual Armament Systems: Gun & Missile Conference & Exhibition

August 29-September 1, 2011

Miami, FL

Nammo PRECISION, PEOPLE AND TECHNOLOGY

Approved for Public Release

GENERAL DYNAMICS Ordnance and Tactical Systems

Agenda

- Nammo/GD-OTS Team Information
- 30mm MK317 TPDS-T
- 30mm MK266 HEI-T
- 30mm MPAB-T
- 30mm MK264 MP-T/SD
- 30mm MK258 APFSDS-T
- 30mm MK320 APDS-T
- 30mm P-SRTA-T Trainer
- 30mm Blank
- Questions/Comments

GD-OTS/Nammo Partnership

- Since 1981, GD-OTS and Nammo have been working together on the development of advanced Medium Caliber Ammunition (MCA). In 2000, the relationship was further strengthened with the signing of a new Strategic Alliance Agreement (SAA) extending to 2020.
- Numerous cooperative efforts have been conducted on both domestic and international production sales as well as joint development efforts including:
 - Kinetic Energy (KE) Cartridges
 - Airburst (MPAB-T) Technology
 - Multipurpose (MPC) Cartridges

Namme

- 6 Strategic Business Units
 - Large Caliber Ammunition
 - Medium Caliber Ammunition
 - Small Caliber Ammunition
 - Precision Systems
 - St. Marks Powder
 - GD-OTS Canada

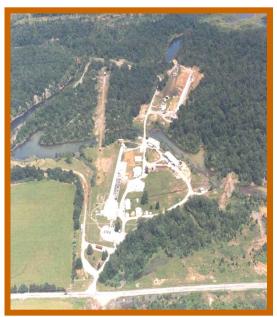
•3,927 Employees

•17 Operating Facilities

GD-OTS Marion Operations Facility

631 acres leased for Manufacturing

Propelling charge, solid propellant products, Advanced Development


Ammunition Manufacturing

Roadway: Buildings: 10 miles 224 76 Magazines

Operating Buildings: (Area, Square Feet)

159,290

290 acres owned

Test Range

GENERAL DYNAMICS Ordnance and Tactical Systems

GD-OTS Medium Caliber Ammunition Product Portfolio

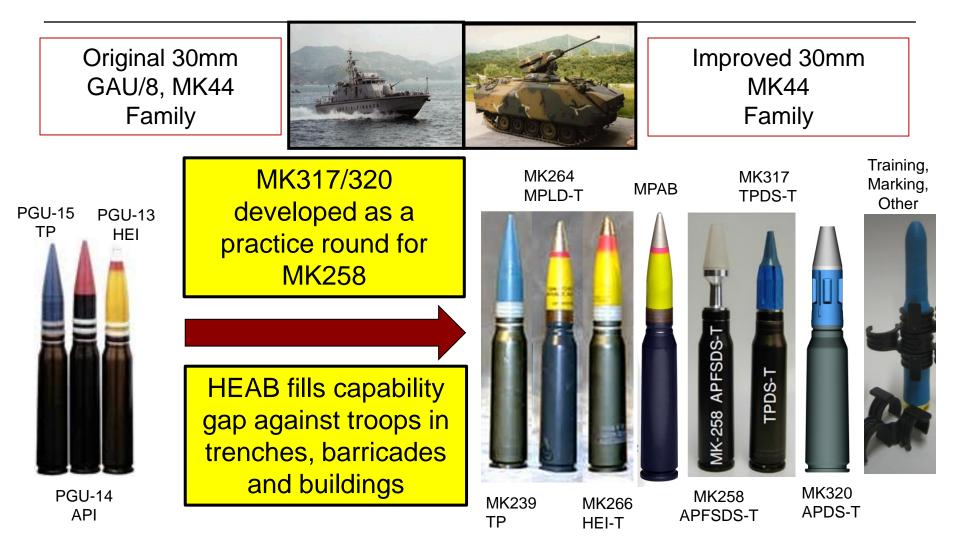
20mm Ammunition

30mm Lightweight

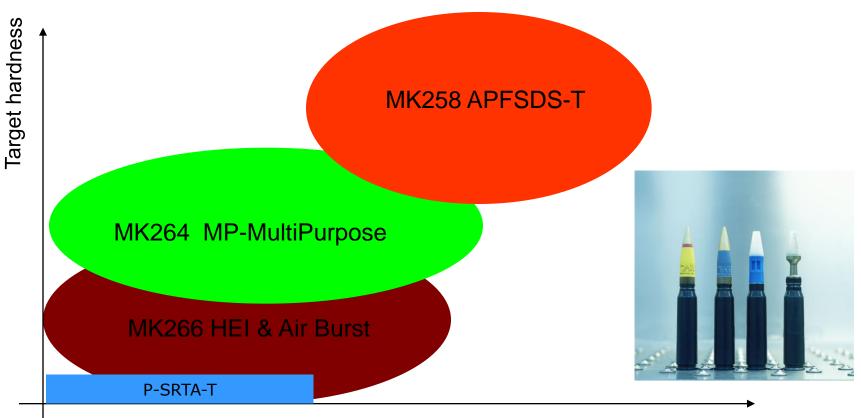
25mm Ammunition

30mm x 173

25mm - 57mm Airburst



40mm Grenades


Approved for Public Release

30mm x 173 GD-OTS/Nammo Family

30mm Team Solutions

Target distance

The GD/Nammo team can provide a 30mmx173mm family of ammunition capable of satisfying all military requirements!

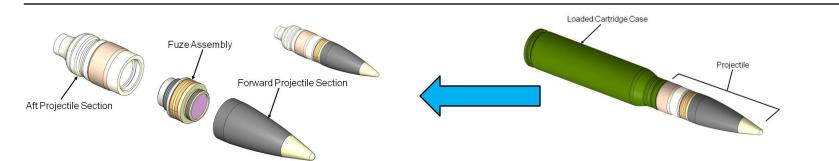
30mm X 173 MK317 TPDS-T

•GD-OTS has developed a low cost 30mm Target Practice Discarding Sabot-Trace (TPDS-T) round that is ballistically matched to the qualified MK258 and MK268.

- •Time of flight to 2000m <0.5 second delta to 30mm MK258 and MK268.
- •Max range <8,000m using "Fort Bliss Hot Day" conditions.
- •Trace visible for >3000 meters (5 sec.).
- •TRL-7 design included in recent US Navy qualification testing.

30mm x 173 MK266 Mod 3 HEI-T

•GD has been working with the USN to qualify the MK266 Mod 3, High Explosive Incendiary-Trace (HEI-T) cartridge.


•Cartridge pairs current GD-OTS qualified MK266 projectile and cartridge design with proven M505 fuze.

•All testing successfully completed in 2010.

•USN currently putting into place a Final Operation Classification (FOC) for the MK-266 Mod 3.

•FOC approval expected in 2011 with US Navy/USMC.

30x173mm MPAB-T

•GD-OTS/Nammo team has a 30mm Multi Purpose Air Burst-Trace (MPAB-T) solution.

Time based fuze operates with both contact and inductive fuze setting methods.
Nammo will be demonstrating Radio Frequency (RF) communication in June 2011.

•Fuze has been subjected to US Army fuze safety board reviews and is scalable across 25-57mm.

•The munition has demonstrated effectiveness against hard armor targets, troops in the open and defilade, and light skin targets at multiple ranges.

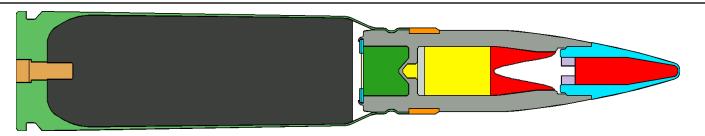
•GD-OTS under contract for further fuze development.

GENERAL DYNAMICS Ordnance and Tactical Systems

Nammo PRECISION, PEOPLE AND TECHNOLOGY

Nammo's Business Units

Medium & Large Caliber Talley Defense Systems Small Caliber **Missile Products** Demil EXOCET MM40 Block 3

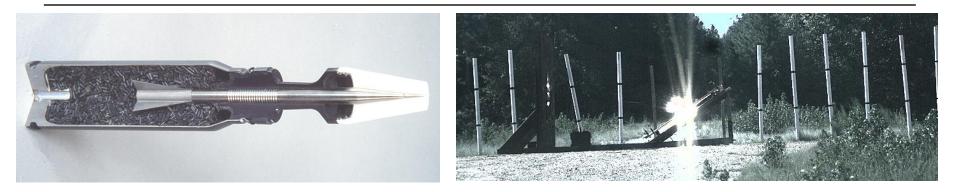


12

Approved for Public Release

30mm X 173 MK264 MP-T/SD

•The USG qualified MK264 Multi Purpose-Traced round with Self Destruct (MP-T/SD), is combat proven and is the choice for multispectral target defeat ammunition for 30mm users.


•Based on the well proven Nammo MP concept.

•Characteristics:

Muzzle Velocity-1070m/s
Dispersion- <0,4 mils
Self Destruct-4,7s, approx 3500m
Impact delay-0,4ms
Low velocity drop due to the low drag shape.
Penetration with high volume of fragmentation (50-60 ea) with blast and incendiary effects.

30x173mm MK258 APFSDS-T

•Armor Piercing Fin Stabilized Discarding Sabot-Trace (APFSDS-T) round for hard armor defeat at extended ranges.

•Design features super cavitating nose tip for below water line missions.

•Nammo currently in production with the qualified MK258 Mod 0 and Mod 1.

•GD-OTS Americanized version (Mod 2) meets all US requirements and leverages high rate APFSDS-T manufacturing experience.

30mm X 173 MK320 APDS-T

•Nammo has developed a 30mm Armor Piercing Discarding Sabot-Trace (APDS-T) round, ballistically matched to the qualified MK258, that can be used in both tactical and training environments.

- •Tactical tungsten penetrator with no cobalt defeats urban targets. (walls, hard armor)
- •Training window 100-1500m; Max range less than 8000m.
- •Tracer identical to APFSDS-T.
- •Serial production-June 2008.

30mmX173 P-SRTA-T

•Plastic Short Range Trainer Ammunition-Trace (P-SRTA-T)

- •Trainer has a max range <1200m.
- •Effective training range=300m
- Trainer round includes:

 Day/Night Tracer
 Plastic Link
 Non Toxic Plastic
 UV-Degradable Materials
 Used by Food Industry

•Qualified by FLO in Nov-08

30mm Plastic Blank Ammunition

Items used for:
 Force-on-force exercises.
 Implemented in Battle Training Systems.

•Round Safety Distance: 015m / 50 ft in front of muzzle.

•Cartridge color is either red or black.

•Cartridge utilizes plastic link.

•Status:

Delivered 10,000 rds in 2005 to Norway.
Delivered 20,520 rds in 2006 to SE Asia.
Delivered 25,000 rds in 2009 to SE Asia.

Summary

- GD-OTS/Nammo has ready for USG use an extensive suite of 30mm tactical and training ammunition.
- With a new/strengthened relationship, the Team is now focused on strategies that best reduce manufacturing cost while continuing to develop new higher effectiveness products.

The GD/Nammo team stands ready to support the USG with state-of-the-art 30mm products!

S40x180mm Ammunition for the MK44 Weapon

46th Annual Armament Systems: Gun and Missile Systems Conference & Exhibition Event #1590 August 29 – September 1, 2011 Miami, FL

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

THE STRENGTH OF THE NATION

GENERAL DYNAMICS Ordnance and Tactical Systems

Approved for Public Release

S40x180mm MK44 Ammunition

- Brief S40mm ammunition history
 - US Army Contract Efforts
 - Internal Research and Development (IRAD) Efforts
- S40mm Ammunition Family
 - Armor Piercing Fin Stabilized Discarding Sabot with Tracer (APFSDS-T)
 - Multi Purpose Air Burst with Tracer (MPAB-T)
- Summary

GD-OTS and ATK working together to further S40mm technology

S40x180mm - Introduction

The S40mm MK44 capable weapon and ammunition solution is ready for U.S. Army study and test.

- The 30mm MK44 weapon is a battle proven system with a complete family of qualified ammunition ranging from target practice, armor piercing and high explosive cartridges.
- The proven MK44 weapon contains growth provisions for S40mm cartridges
 - Increasing lethality over 30mm where...bigger is better.
 - Minimal up-gun cost impacts due to a combination of MK44 weapon part commonality and interchangeability.

30mm to S40mm Projectile Growth Placing more Lethality on Target

GENERAL DYNAMICS Ordnance and Tactical Systems

Approved for Public Release

S40mm - Introduction

- Maintains lethality overmatch against the most common/capable threat.
- Leverages existing scalable 30mm cartridge technologies and qualified explosive items.
- Can use existing and established US supplier base to meet growth objective needs.
- Allows use of common 30mm MK44 and S40mm MK44 weapon parts

30mm,S40mm, and larger caliber commonalities = Lower Cost

Brief S40mm Ammunition History

- US Army Contract Efforts
- Internal Research and Development (IRAD) Efforts

Approved for Public Release

S40mm – US Army Contract Efforts

2001-2005 – US Army Contract for the Advanced Light Armaments Combat Vehicle (ALACV):

- Propellant development for:
 - Multi Purpose Air Burst with Trace (HEAB-T)
 - Target Practice with Trace (TP-T)
- Cartridge development:
 - S40mm x 218 APFSDS-T
 - S40mm x 165 HEAB-T
- Live fire demonstrations at High Rate Bursts (HRB) out of the MK44 mounted in a Bradley Fighting Vehicle.
- Successful APFSDS-T ballistic penetration performed.
- Successful HEAB-T ballistic function demonstrated.

S40mm–Internal Research and Development (IRAD)

2001-Present –IRAD:

- Common S40mm x 180mm case design, development, tooling and manufacture complete for S40mm ammunition family.
- S40mm APFSDS-T Cartridge Design:
 - Successful aluminum sabot ballistic testing with common case.
 - Composite material sabot solution in progress.
 - Propellant solutions from GD-OTS St. Marks and GD-OTS Canada very near objective.
- S40mm MPAB-T Cartridge Design
 - Induction or contact set fuze with:
 - > PD/PD delay
 - Self destruct
 - Selectable short/long fuze arming ranges
- S40mm TP-T Cartridge Design
 - Simple two piece metal projectile design for low cost production.

Approved for Public Release

S40mm Ammunition Family

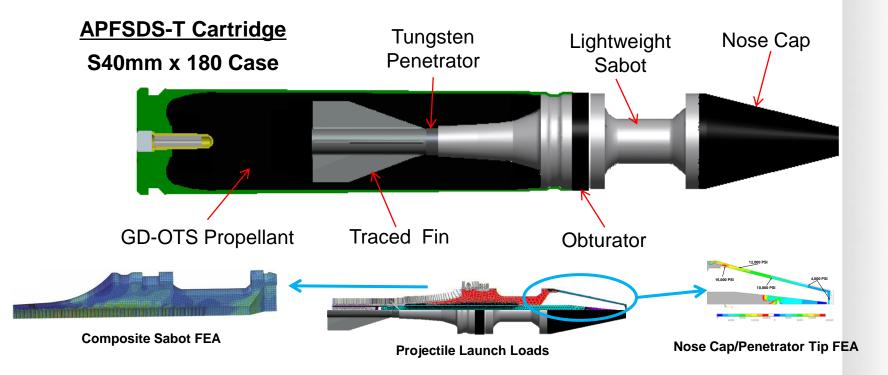
- APFSDS-T for armor targets. Features include:
 - Cobalt free penetrator
 - Composite sabot assembly
- MPAB-T for urban and troop targets.
 Features include:
 - PD/PD delay
 - Short or long selectable arming ranges
 - Airburst function
 - Self destruct function
 - Induction or contact communication fuze

MPAB-T TP-T APFSDS-T

Projectile technology is scalable to larger calibers for increased requirements.

Approved for Public Release

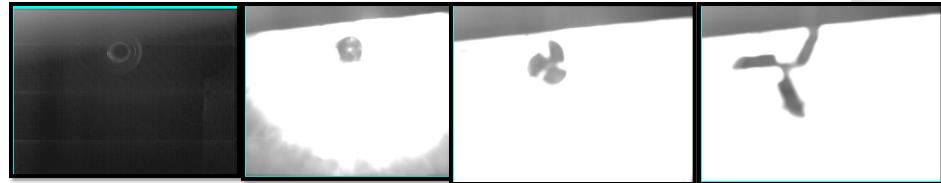
S40mm Armor Piercing Fin Stabilized Discarding Sabot with Tracer (APFSDS-T)

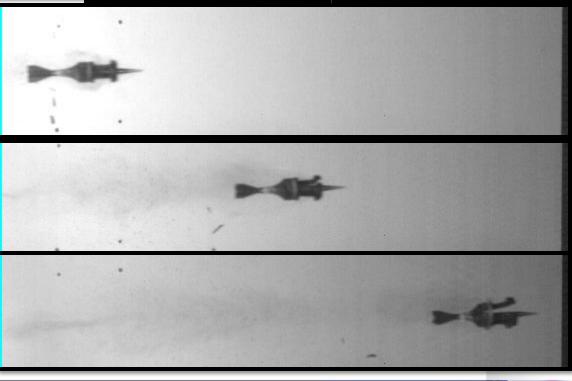


Approved for Public Release

S40mm APFSDS-T – Design Characteristics

Projectile Features:


 S40mm provides ~50% higher flight weight (penetrator, fin, and windscreen) than the 30mm APFSDS-T.


GENERAL DYNAMICS Ordnance and Tactical Systems

Approved for Public Release

S40mm Composite Sabot Ballistic Test: Down Muzzle and Sideline Projectile Views

Successful composite sabot ballistic testing using St. Marks Powder Hybrid® Propellant

GENERAL DYNAMICS Ordnance and Tactical Systems

Approved for Public Release

S40mm APFSDS Composite Sabot

Objective:

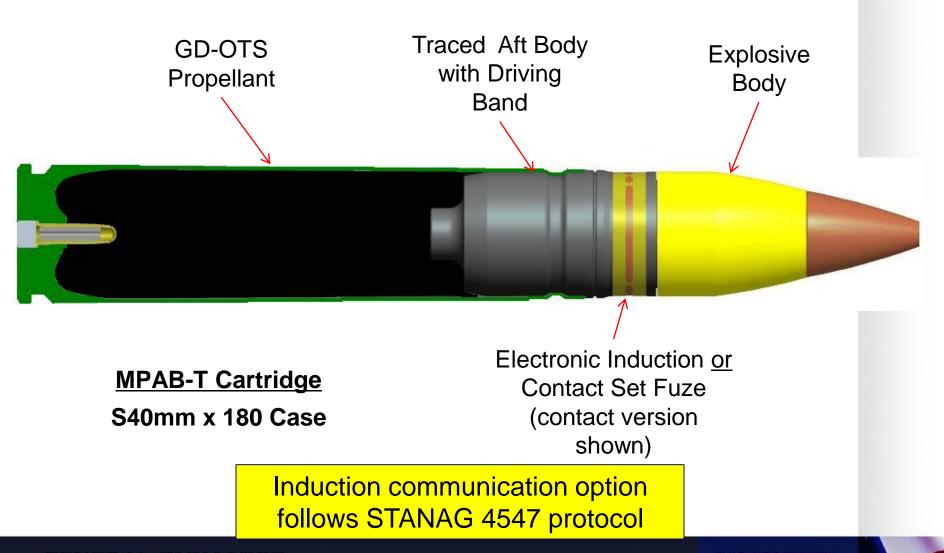
Transition from aluminum to composite sabot decreasing sabot mass by 43% for a lighter weight projectile translating to higher velocity, kinetic energy, and penetration capability

Status:

- Design work complete
- Composite sabot mold fabricated and producing test parts
- Initial testing complete

Next Steps:

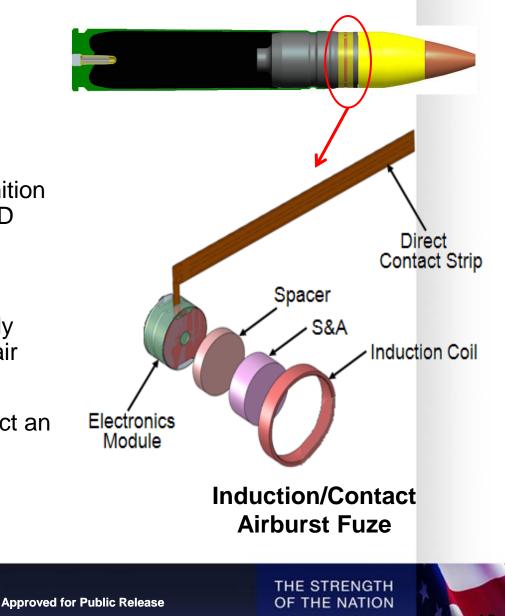
- Additional ballistic testing at temperatures
- MK44 weapon testing


S40mm Multi Purpose Air Burst with Tracer (MPAB-T)

Approved for Public Release

S40mm MPAB-T Cartridge

GENERAL DYNAMICS Ordnance and Tactical Systems


Approved for Public Release

S40mm Air Burst – Fuze Characteristics

- Inductive or contact set, time-based, programmable electronic fuze.
- Airburst function
- PD/PD Delay feature to:
 - Increase capability of the ammunition and eliminate the need for HEI PD ammunition.
 - Defeat light materiel targets
 - Provide PD function in the unlikely event that PD is preferred or an air burst communication signal fails.
- Selectable arming: allows user to select an arming range of short or long.
- Self destruct function

GENERAL DYNAMICS

Ordnance and Tactical Systems

Summary

- The S40mm cartridges offer greater lethality than 30mm without reducing the number of stowed rounds:
 - APFSDS-T design provides more kinetic energy on target vs. 30mm
 - MPAB-T design is up to 3 times more lethal than 30mm
- APFSDS-T sabot and GD-OTS propellant development will yield goal muzzle velocity by end of 2011.
- The S40mm APFSDS-T and MPAB-T munitions have been successfully demonstrated out of the MK44 cannon
- S40mm technology is scalable to larger calibers as required

S40mm Family

THE STRENGTH OF THE NATION

TP

KE

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Development of a Moveable Weapon Mount System for the CH47 Helicopter

Michael Colonnello 1 September 2011

DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Background – M24E1 Program

RDECOM

ationa Duality ward

Recipient

•The current machine gun mount for the CH47 is the M24 -astationary bar mount that mounts in the door and window of the aircraft and accepts the M240H machine gun.

•A need arose for a new mount to eliminate some deficiencies that are present in the M24.

2007 Award DISTRIBUTION STATEMENT A: Approved for public release.

GY DRIVEN. WARFIGHTER FOCUSED.

M24 Machine Gun Mount -**Deficiencies**

Ammunition **Capacity/Retention**

o Only 200 Round Capacity Per Can o Can Held in Place by Bungee Cord

Case/Link Collection

 Only 200 Round Capacity • Bag is Very Weak – Tears Easily o Bag Interferes with Bar When Full

Rigid Cradle

RDECOM

o Cradle is Solid Steel Transfers Force and Vibration to Mount/Aircraft Inaccurate Fire From Gunners

Malcolm Baldrige

National

Quality Award

Recipient

Hard Mounted in **Door/Window**

 Makes Egress Difficult o Makes Hot Refueling Impossible Without Removing the Mount Puts Soldiers at Risk in **Emergency Situations**

2007 Award TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED. DISTRIBUTION STATEMENT A: Approved for public release.

M24E1 Machinegun Mount

Flex-Mount Cradle

✓ Cradle Features Buffers
 That Flex with Weapon Recoil
 ✓ Allows Gunners to be More
 Accurate

Improved Catch Bag/Frame

✓ 450 Case/Link Capacity
 ✓ Reversible Zipper for
 Outboard or Inboard Emptying

Lightweight Construction

- ✓ Hollow Tube Construction
 ✓ Aluminum Ammunition Cans
 ✓ Titanium Used Where Possible to
- Reduce Weight

Modular Design

- ✓ Mounts in Existing Mount Points
- ✓ Improved Field of Fire
- ✓Two Ammunition Can Choices Cradle Mounted and Cross-bar Mounted
- ✓ Only Four Bolts Need to be Removed to Change Ammo Can Type

Pivoting Cross-bar

- ✓ Cross-bar Pivots into Aircraft
- ✓ Quick Breaking Articulation Point
- ✓Allows Easy Egress and Ingress
- ✓Can be Pivoted into Aircraft with Weapon Installed

Cross-bar Mounted Ammunition Can

- ✓ 400 Round Capacity
- ✓ Anti-Siphon Spring
- ✓ Opens up Gunner's Field of View on Left Side of Weapon
- ✓ Smooth Functioning Nobles
- Ammunition Chute

DISTRIBUTION STATEMENT A: Approved for public release.

Cradle Mounted Ammunition Can

- ✓ 400 Round Capacity
- ✓Anti-Siphon Spring
- ✓Fewer Components
- ✓Fast Loading
- ✓ Fast Ammo Can Swap

M24E2 Future Improvements:

- ✓ Inboard and Outboard Articulation
- ✓ Fold-Flat Inboard Articulation
- ✓ Decreased Number of Moving Parts

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Flex Mount Cradle

Rigid Cradle Standard Aircraft Cradle -Steel Construction -Rigid – Transfers all shock to mount, aircraft, gunner

olm Baldrige National

Quality Award

Recipient

Flexible Cradle

•FN Manufacturing, LLC, Columbia, SC

- -FN is also the designer of the M240H
- -Cradle features spring damper system to dampen recoil
- -Aluminum construction
- -Positions ammunition can mounts, case collection system, weapon in the same location as rigid mount

2007 Award TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED. DISTRIBUTION STATEMENT A: Approved for public release.

M24E1 Machine Gun Mount

Operation – Articulation

1) Pull Aft Hinge Pin

2) Pull Safety Pin

Operation – Articulation

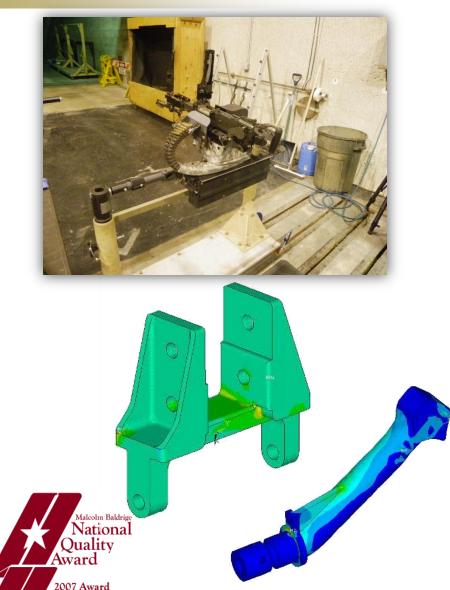
3) Slide Handle to Release

4) Swing Mount Inside Aircraft

Operation – Articulation

Just a few simple steps to go from Deployed to Open to Stowed

DISTRIBUTION STATEMENT A: Approved for public release.



Locking Pin

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM

Recipient

•Finite Element Analysis (FEA) was used to ensure that the M24E1 was structurally sound

- -8 G crash loads in positive and negative X, Y, Z directions
 -Recoil loads simulated in worst case position to predict fatigue of critical components
- Extensive testing performed at Picatinny's Armament Technology Facility to ensure reliability of the M24E1 system
 - -Ammunition Can Loading Configurations
 - -Blank Firing
 - -Integrity of the Structure
 - -Operation of Recoil Mount

Analysis and Testing – Ft. **Rucker and Ft. Drum**

 Flight Test at Ft. Rucker -Vibration

RDECOM

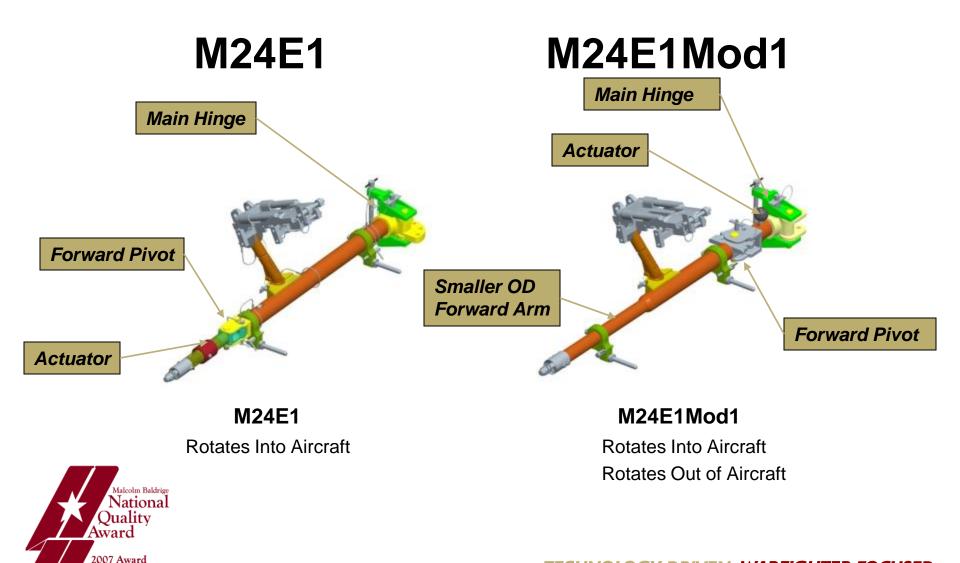
Juality Award

Recipient

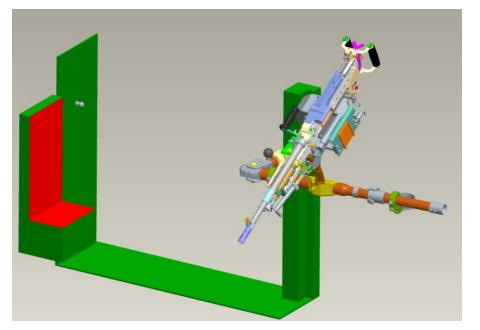
- -System reliability through flight operations •Ft. Drum/Ft. Indiantown Gap Operational Testing and Evaluation.
 - -Traveled to Ft. Drum/Ft. Indiantown Gap throughout the process as upgrades and changes were made to get Soldiers to test them

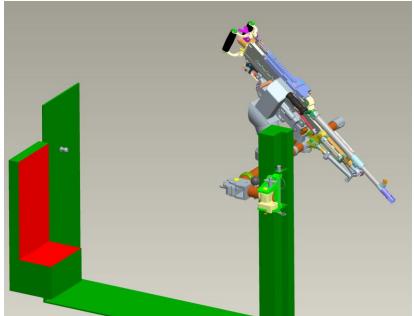
2007 Award DISTRIBUTION STATEMENT A: Approved for public release.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


- Production of M24E1 currently complete and Operational Evaluation has begun
 - Imperial Machine and Tool, LLC is the prime contractor
 - Located in Columbia, NJ
 - Manufactured the prototype mounts
 - Have expertise in titanium machining, welding
 - 120 Shipsets (240 Mounts), and applicable spare parts and assemblies manufactured
- In Theater Operational Evaluation
 - Beginning In December 2010, Units deploying to Theater have been outfitted with these mounts
 - Each Unit going into Theater will be fully equipped, trained, and outfitted with the M24E1 system
 - Throughout their Tour, they will be asked to use this system and provide feedback to the design team, which will be used to help tune the design of the M24E1Mod1, which will go into production in FY2012

Recipient


M24E1Mod1 – Added Features



M24E1Mod1 – Added Features

Stowed Inside Aircraft for Regular Egress or Hot Refueling Pushed Outside Aircraft for Emergency Egress

Applicability of Technology

- How can we apply this technology to other systems, or allow additional weapon systems to be mounted to the CH47
 - Recoil System The Recoil Cradle that is used on the M24E1 is a simple system that allows the recoil of the weapon to be absorbed through the use of a spring-damper system. Larger versions of this system could allow weapons with higher recoil forces to be mounted on aircraft that typically use the M240H. Special Forces are already mounting additional weapon systems on their aircraft.
 - Structural Rigidity M24E1 cross bars are essentially thin-walled titanium tubes.
 Stronger tubes, larger diameter, and thicker cross sections will improve the system's structural integrity, as could the use of different cross sectional profiles.
 - Aircraft Hardpoints While the system itself could easily be modified to allow the use of heavier or higher recoil weapons, the aircraft hardpoints may not be able to hold up over time. As such, the design team would likely need to beef up these hardpoints in order to allow prolonged use of higher recoil systems.
 - Foreign Military Sales Many other countries have CH47 aircraft Great Britain, Australia, Netherlands, Japan, Canada, etc.
 - Additional Applicability to CH47 Different Locations in Aircraft (Rear Windows, etc.)

Applicability to Other Aircraft/Services

M107

Jationa

Quality ward

Applicability to Other Weapon Systems

M2

Mk19

M134


Many other weapons could be desirable on aircraft
Special Forces are already using some of these weapons in their aircraft with less than ideal mounting solutions

•Technologies used in the M24E1 and M24E1Mod1 could make this possible

QUESTIONS

Michael Colonnello, (973) 724-9748, michael.colonnello@us.army.mil Adam M. Jacob, (973) 724-0535, adam.jacob@us.army.mil

References

Photographs of Aircraft and Weapons taken from:

- http://www.gdatp.com
- http://www.dillonaero.com
- •http://www.minihelicopter.net
- http://www.barrett.net
- •http://en.wikipedia.org
- http://www.sikorsky.com
- http://www.boeing.com

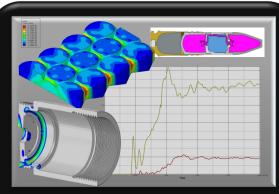
2011 NDIA Gun & Missile Systems Conference Aug. 29 – Sept. 1, 2011

25 x 59mm LW25 Programmable Air Burst Munition

Don Gloude Chief Design Engineer ATK Integrated Weapon Systems 763-744-5253 Don.Gloude@ATK.com

Approved for Public Release 11-S-1844 dated 20 April 2011

Contents



- Project Summary
- Cartridge Description
- System Description
- Common Fuze
- Capabilities
- Summary

Leverage ATK's PABM (Programmable Air Burst Munition) experience across multiple calibers to develop 25 x 59mm LW25 PABM ammunition. Develop and demonstrate a scalable common fuze for airburst munitions capable of integration into 25mm and larger cartridges.

Design

- Requirements Development and Management
- ✓ Trade Studies
- Design for production
- Lethality Modeling
- Gun Integration
- 🖌 Analysis & Modeling
- Preliminary Design Review

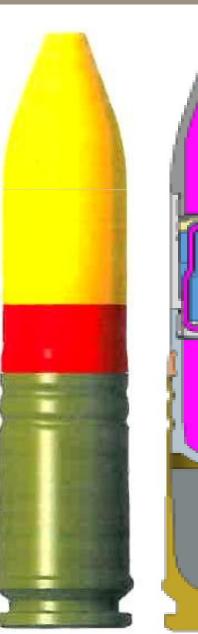
PHASE COMPLETED

Build & Verification Testing

- 🗹 Design Verification
- 🖌 Lab Test
- Warhead Evaluation
- Softcatch Testing
- ✓ Integrate System Test
 - Airburst Test

COMPLETE 2011

Qualification


- Safety Testing
- Arena Testing
- Environmental Testing
- Performance Testing

COMPLETE 2011/2012

- Complete

LW25 PABM Cartridge Overview

- Initial design concepts included base fuze, mid-body fuze, and nose fuze airburst projectiles
- Trade study completed which reviewed key aspects of the design such as Cost, Producibility, and Performance/Lethality to down select to mid-body fuzed projectile
- Emphasis on modeling and analysis to reduce risk and time to market. Tools such as Pro-E, PRODAS, ANSYS, CTH, and Matrix Evaluator were used
- The final design incorporates ATK's common/scalable medium caliber airburst fuze
- Lethality optimized through use of controlled fragmenting dual warheads; projectile is highly effective against defilade targets
- Common LW25 projectile profile and cartridge case components
- Inductive programming that is common with ATK's 30mm PABM-T Mk310; reliable and simple to integrate.

LW25 PABM Requirements Summary

- **Programmable modes** Airburst, Point Detonate (PD), PD-delay (PD-D)
- **Backup Mode** In the event of no communication or improper communication with the fuze setter, the fuze shall default to the PD mode
- No-Arm Distance 35 meters
- All-Arm Distance 50 meters
- **Self-Destruct** 6.25 +1.0/-0.0 seconds
- Muzzle Velocity 436 m/sec (mean) ٠
- Airburst Range 2,000 meters (Objective) .
- **PD and PD-D Range** 2,000 meters (Objective) ٠
- **PD Sensitivity (min)** 0.063" thick aluminum plate
- Safety: .
 - MIL-STD-1316 compliant S&A Mechanical setback lock and spin lock
 - Electronic spin rate test
 - Environmentally induced power source with Mechanical lock
- **Producibility** modular fuze and common production process with 30mm and IAWS (25mm)

Requirements are flexible and can be adjusted during development to meet user specific requirements

Example of 25mm Air Burst Function

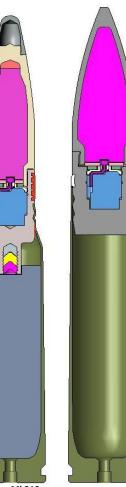
LW25 PABM Fuze – Scalable Airburst Fuze

- Demonstrated to survive setback loads up to 100kg's for LW25 application •
- Turns count range estimation option to upgrade to hybrid turns/time estimation •
- Command arm electro-mechanical fuze •
- Safety Out-of-line safe MIL-STD-1316 compliant S&A with spin and setback locks ٠
- Airburst, PD, PD-D modes of operation
- Quick-arm compatible, expandable to additional modes •
- Environmentally induced power •
- Defaults to PD backup with no programming •
- Self-neutralization and self-destruct features
- **Designed for production Modular fuze stack** ٠
- Inductively programmable common with Mk310 •
- Integrates into aft, mid, or forward body of projectile

Scalable Airburst Fuze for Mid-body Projectile

25mm IAWS (XM25)

PABM

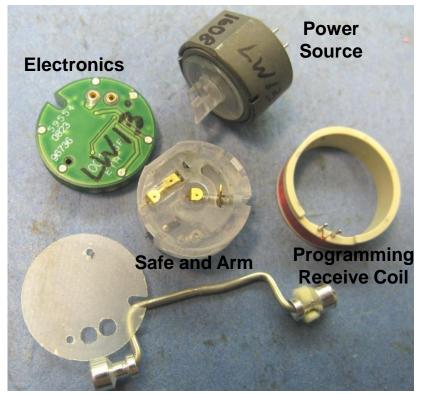

25mm PABM 25 x 137mm

TT

LW30 PABM 30 x 113mm

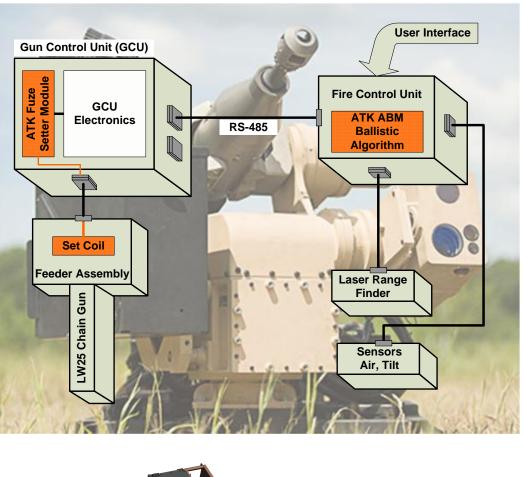
30mm Mk310 MOD1 PABM 30 x 173mm

Super 40 PABN 40 x 180mm


Scalable Airburst Fuze Components

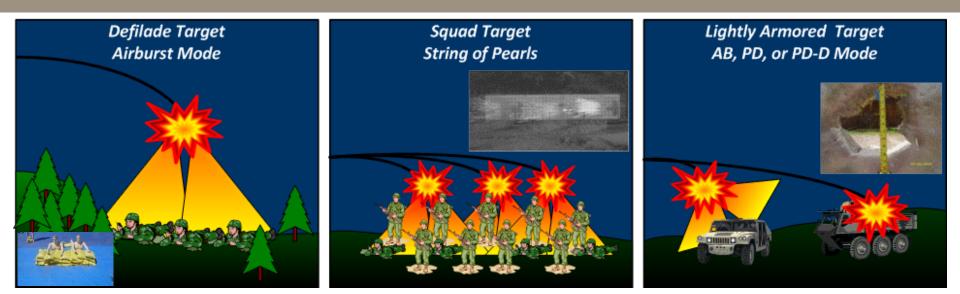
Mid-body Airburst Projectile Components

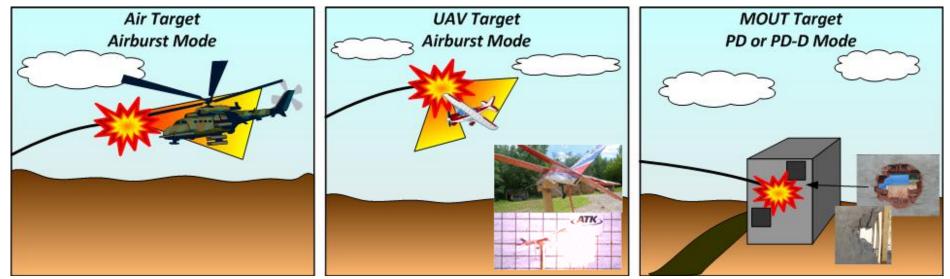
Scalable Airburst Fuze Components for Mid-body Projectile


System Description

The following components comprise a typical LW25 PABM System:

- PAWS
- LW25 Chain Gun
- Gun Control Unit (GCU)
- Fire Control
- Laser rangefinder
- Sensors for air temperature and pressure
- Gunner display to assist and confirm target aiming





Ammunition Modes and Capabilities

AIRBURST FUZING = OPERATIONAL VERSATILITY PERFORMANCE AGAINST DEFILADE AND BEHIND WALL TARGETS

Summary

- ATK has developed and demonstrated a common scalable PABM fuze which can be easily integrated across the medium caliber family of ammunition.
- Using precision fuzing and controlled fragmentation, the LW25 PABM offers a significant performance increase over conventional ammunition when engaging:
 - Targets in defilade position
 - Area targets squad formations
 - Light armor
 - Light skin targets
 - Air targets such as UAV's and helicopters

Contacts

- Robert Schmitz (ATK Market Segment Director)
 - (763) 744-5724
 - Bob.Schmitz@ATK.com
- Clay Bringhurst (ATK Medium Caliber Ammunition Business Development)
 - (480) 324-8649
 - Clay.Bringhurst@ATK.com
- Lee Olson (ATK Chief Engineer LW25 Ammunition)
 - (763) 744-5721
 - <u>Lee.Olson@ATK.com</u>
- Don Gloude (ATK Chief Design Engineer (ABM))
 - (763) 744-5253
 - <u>Don.Gloude@ATK.com</u>

Developing Reliable Software For A Rapid Deployment Product

ATK Advanced Weapons

Challenge:

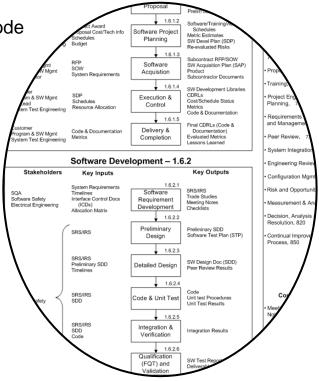
Develop reliable software while minimizing risk for a rapid deployment product.

Approach/Goal:

Apply simple strategies to the following standard software activities.

- > Process
- Design/Implementation
- Integration
- Field Test

Process: Simplify


Use a consistent, rigorous software process that allows flexibility.

> Simplifying process when risk is low expedites development.

- Generate thorough requirements without over specifying, simplify scope if possible
 - Missed requirements results in errors while excessive requirements add overhead in maintenance and testing
 - Challenge questionable requirements
- Hold "appropriate" peer reviews
 - Broad review team for requirements, focused review for code
- Allow parallel effort
- Don't apply process formality too early
- Perform thorough integration test and analysis, focusing on most likely scenarios
 - Ensure implementation of requirements and handling of possible failure situations

Develop complex software incrementally

• Focusing on a single functionality makes it easier to specify, implement, debug, and integrate

Simple and effective Configuration Management is critical when development is progressing quickly. Incorrect software in a product build leads to disaster.

- Manage software configurations without invoking a complex change control process too early
- Use diligent configuration management throughout software development whether software is prototype, test, intermediate distributed version, lab configuration, tactical, etc
- Provide unique <u>readable</u> version/build number and checksum in each software release

> What we do...

- Provide lab checkout software with unique ID but not released to CM
- Release flight test software to CM system along with a version control document
- Document all software version(s) in a TRR package prior to flight test

Change Control formality must increase as software matures

- Early: Fix anomalies and add functionality per test schedule / build plan, review, debug, and integrate. Limited approval required.
- Later: Obtain CCB approval, implement and test

Process: Example

There can be several steps to the final software product while software process formality increases with software maturity.

- High level software architectural design concurrent with software requirement development
- > Early prototype software developed for interfacing with external components
- > Test software developed for integration and checkout of external components
- Major functionality added incrementally
 - 1: Perform pre-programmed controlled maneuvers
 - 2: Add Navigation/Guidance algorithms, program mission "manually"
 - 2a: Disable Navigation and Guidance, use for data recording purposes only
 - 2b: Enable Navigation and Guidance
 - 3: Program mission "tactically"
- Unique version ID and CRC for each build, identified in TRR package and readable from the embedded software at test site
- Requirement change control initiated after requirements baseline, tactical code change control initiated after unit test complete.

Early and close involvement in all aspects of program design and development reduces risk.

- > Ensure well-justified decisions and obtain robust system understanding
 - Participate in proposal and planning
 - Participate in processor selection
 - Interact closely with other engineering disciplines
 - Systems
 - Electrical
 - Simulation/algorithm

Perform early risk mitigation activities

- Perform trade studies for concept validation
- Prototype software before requirements complete

Create environment for smooth software transitions

- Obtain all stakeholder input (e.g., Safety, Field Test, Production Test, Electrical)
- Develop software on tactical breadboards
- Involve simulation/algorithm team implementation and test of embedded software
- Participate in system integration

Design: Software Re-use

Field tested and/or qualified software re-use is especially beneficial.

Benefits of continuing re-use

- Reuse avoids reinventing/redesign/learning time
- Software quality increases with reuse
- Repository of reusable software increases with design for re-use

Several types of re-usability

- Software design architecture
- Tool and knowledge (when same family processor used)
- External factors driving software: algorithm, electronics
- Software: embedded, external test and maintenance, data reduction and analysis tools, subcontractor software
- > Modular design and functional decomposition promotes re-use
 - Design for re-use

But, be careful. Drive for robustness in re-usable software without over complicating it.

Airburst derivatives

- Four similar programs
- Same processor family
- Common messaging and arming/detonation
- Same test environment

30mm ABM Fuze

Most weapons systems contain safety critical software for fuzing and arming functions. Isolate safety critical software into a small single purpose and well defined Software Item (SI).

- Stanag 4404 and other safety related requirements are applied to fewer lines of code
 - Safety related requirements result in additional lines of code and added complexity
- Smaller SI usually means fewer future updates required
 - Updates to safety critical software are sensitive, requiring more analysis and testing
- Safety analysis for safety board approval is simplified
- > Safety critical software is typically not re-programmable when fielded
 - Software cannot be easily modified

Use a thorough set of lab integration tests prior to each field test to help ensure success. Variety of testing is a key.

- > Ensure all requirements are tested during development or integration
- > Specifically test all updates to the release and all field test objectives
- Perform end-to-end functional testing
 - Processor-in-the-loop test gives a high level of confidence that all components are integrated correctly
 - Hardware-in-the-loop testing visually demonstrates closed loop control
- Duplicate subcontractor development/test environment for parallel integration and smooth transition
- Perform component test during product assembly, integrating and testing software with hardware

While integration testing is comprehensive, it is not Formal Qualification Test (FQT). FQT must be performed prior to product delivery.

Integration Example

Three subcontractors provided software that required integration with ATK software. Integration continued through product build.

- > Well defined system timeline and interface specifications
 - Software items integrated relatively smooth first time
- Replicate development environments at all sites
 - Facilitated working in parallel
 - Eliminated need for emulated subsystems
 - Allowed periodic integration as functionality added
 - Allowed timely delivery of software fixes as needed, key when debugging
- > Systematic detailed set of product build integration tests
 - Ensured communication between subsystems during assembly

Effective field tests are critical to rapid deployment. Software results are necessary for analysis, whether test success or failure is declared.

- Process control, design, and sufficient integration/test/analysis are keys to avoiding software induced test failure
 - Tests limited in number
 - Data is crucial
- > Robust and detailed ground interface/telemetry/on-board recording is essential
 - Thorough self test and detailed reporting
 - Key factor in go/no-go decisions for effective flight test
 - Telemetry provides on-site real-time evaluation
 - Key factor in go/no-go decisions for subsequent flight test
 - On-board recorder (OBR)/Telemetry
 - Provides invaluable 'real' flight data for system performance
 - Allows visibility into software, algorithms, and interface functions
 - Provides insight into software and/or system anomalies

It is possible to develop reliable software in a rapid deployment environment.

Approach Summary:

Process – simplify/streamline

Design/implementation – re-use, eliminate complexity

Integration – don't shortchange

➢ Field Test – get the data

PGK Field Test

Steve Gunderson

Software Design ATK – Advanced Weapons Division Plymouth, Minnesota (763) 744-5106 <u>Steven.Gunderson@atk.com</u>

Mary Linman

Sr. Manager, Software Design ATK – Advanced Weapons Division Plymouth, Minnesota (763) 744-5120 <u>mary.linman@atk.com</u>

30mm x 113mm (LW30) Target Practice Tracer (TP-T) Ammunition

Kyle Nerison Mechanical Design Engineer ATK Integrated Weapon Systems 763-744-5519 Kyle.Nerison@ATK.com 14 April 2011

Approved for Public Release 11-S-1841 dated 7 April 2011

Outline

- Applications
- Performance Objectives
- Initial Development Phase
- Final Development Phase
- Summary

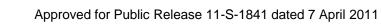
2

Applications

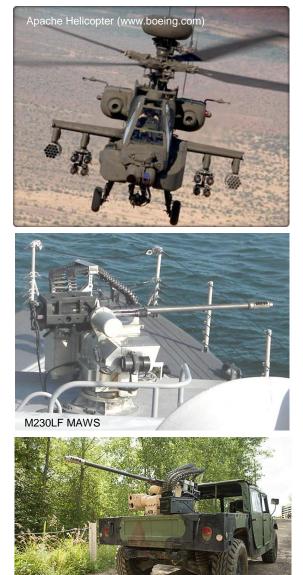
M230 Gun

3

Currently on Apache helicopter


M230LF (Link Fed) Gun

- Based on proven M230 gun
- Low-recoil design makes gun adaptable to many systems
- Being implemented for ground applications


ATK System Application Examples for M230LF

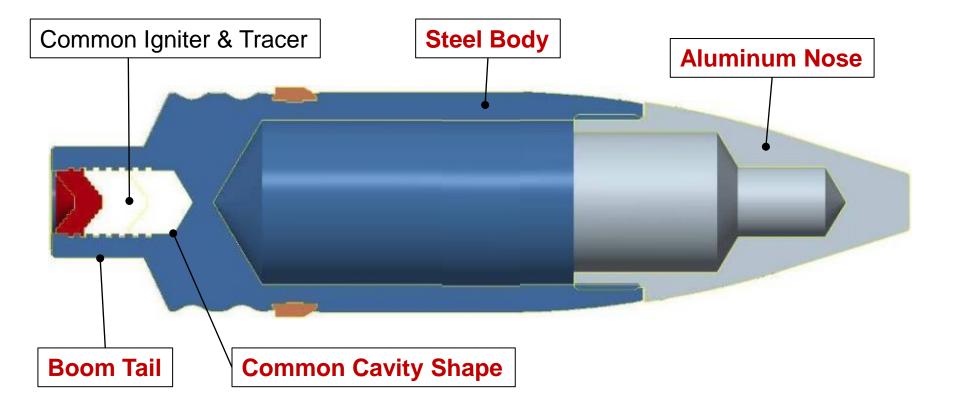
- Modular Advanced Weapon System (MAWS)
- Palletized Autonomous Weapon System (PAWS)
- Nobles Engineering Viper Gun System

Ground & shipboard applications require traced ammo

M230LF PAWS

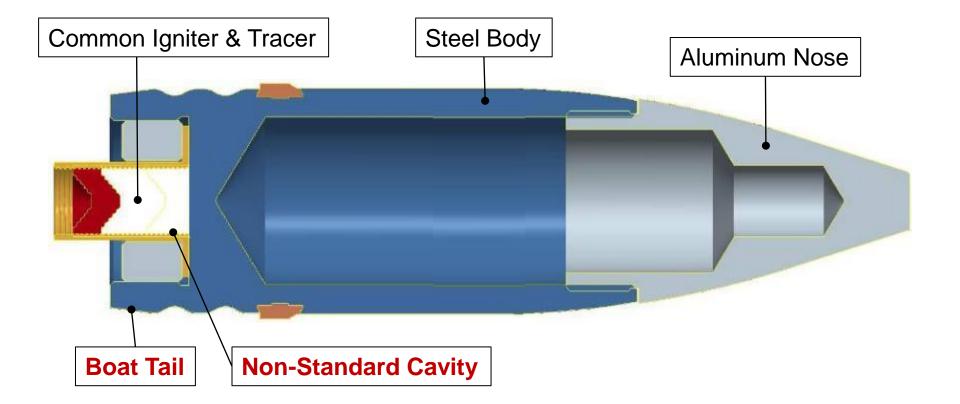
Flight Characteristics

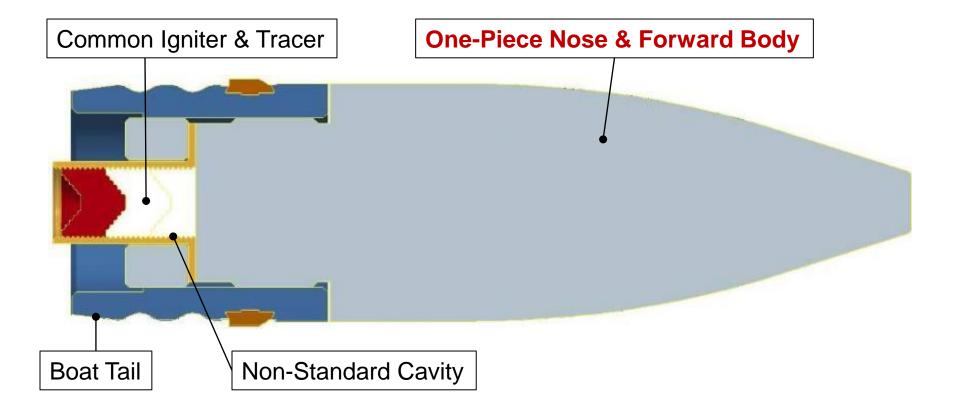
Desire direct drop-in addition to current LW30 ammo family


Tracer

4

- Trace distance to 2000 meters
- Daylight & infrared visible



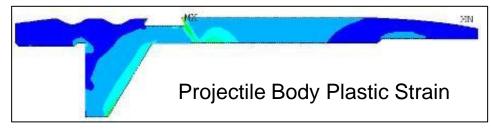


ATK

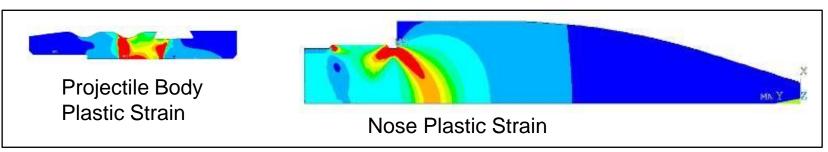
5

ATK

ATK >


7

ANSYS Finite Element Analysis at Setback / Max Base Pressure at 71°C (390 MPa)

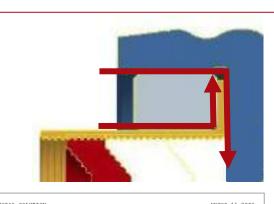

• Option 1: Localized projectile body deformation – Fracture not anticipated

Option 2: No projectile body deformation – Robust

Option 3: Localized nose and projectile body deformation – Fracture not anticipated

8

9

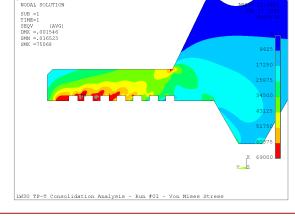

Initial FEA Analysis – Tracer

ANSYS FEA for tracer consolidation in Opt 1

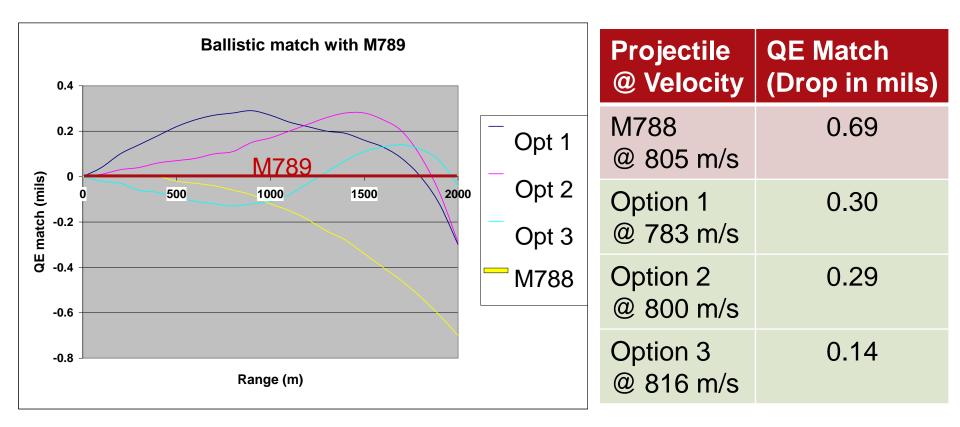
Outcome: Tracer boom will support consolidation

ANSYS FEA for pressure leak for Opt 2 and 3

- Outcome: Tracer will fail mechanically if gun pressure leakage occurs (red arrows)
 - Led to development of more robust assembly process to prevent leakage



LW30 TPT-T Option #02 - xy Shear Stress in Tracer Pellets


264.75 353

PRODAS ballistics analysis of match to M789 out to 2000 meters

Outcome: Option 1, 2, & 3 ballistic match (drop) is within objective requirements

PRODAS ballistics analysis

Projectile	Gyro Stab Factor (2-3)	Muzzle Jump Factor	Predicted Yaw (deg)
M789	2.94	.025	3.5
M788	2.86	.028	3.5
Option 1	2.28	.023	2.5
Option 2	2.75	.021	4.5
Option 3	1.93	.026	4.5

• Outcomes: Stability, dispersion, and yaw all predicted to be acceptable

Initial Fabrication & Assembly

Option 1

Option 2

Option 2 & 3 Tracer Assembly

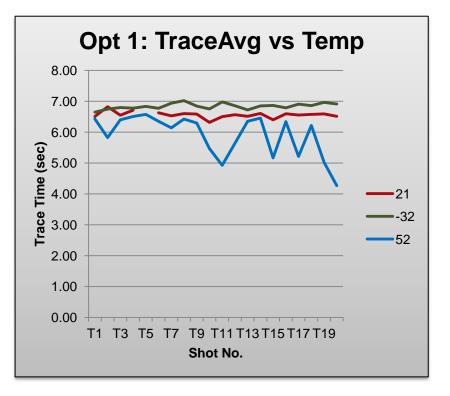
Option 3 Approved for Public Release 11-S-1841 dated 7 April 2011

- Radar and drag profile data collected and analyzed
 - Outcome: 'Tracer effect' less significant than estimated, resulting in slightly higher drag and longer flight times to 2000 meters than predicted
- PRODAS model updated based on empirical data
 - Outcome: Ballistic match and required muzzle velocity predictions updated

Projectile	Original QE Match (Drop in mils) @ Req'd Muzzle Velocity	Updated QE Match (Drop in mils) @ Req'd Muzzle Velocity	
M788	0.69 @ 805 m/s	same	
Option 1	0.30 @ 783 m/s	0.47 @ 817 m/s	
Option 2	0.29 @ 801 m/s	0.28 @ 850 m/s	
Option 3	0.14 @ 816 m/s	0.79 @ 856 m/s	

13

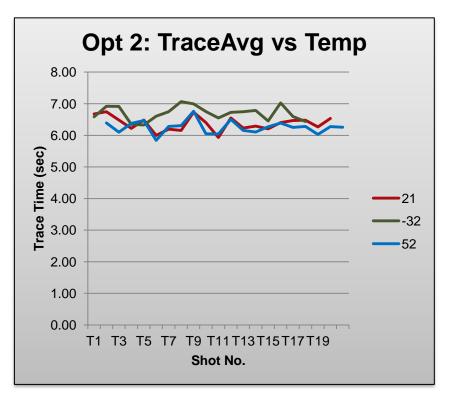
Initial Test Results – Tracer – Option 1


- Ambient: 18/20 successful
 - Both failures ignited but were short burns (failures averaged 9 meters short)
- Cold: 20/20 successful
- Hot: 11/20 successful

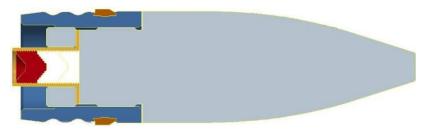
14

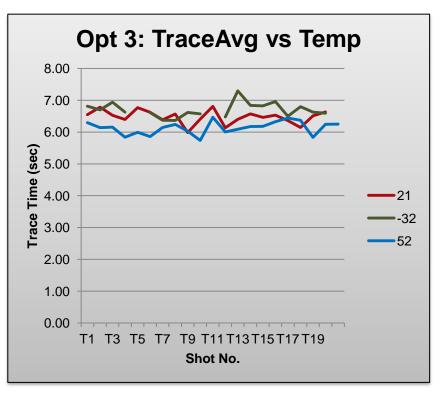
- All failures ignited but were short burns (failures averaged 152 meters short)
- High burn time variation

2km Flight	Ambient	Cold	Hot
Time (sec)≈	6.41	6.60	6.15


Initial Test Results – Tracer – Option 2

- Ambient: 17/20 successful
 - All failures ignited but were short burns (failures averaged 10 meters short)
- Cold: 15/20 successful
 - 4 failures ignited but were short burns (failures averaged 15 meters short)
 - 1 failure did not ignite
- Hot: 19/21 successful
 - 1 failure ignited but was a short burn (42 meters short)
 - 1 failure did not ignite
- All had consistent burn time variation


2km Flight	Ambient	Cold	Hot
Time (sec)≈	6.12	6.50	6.04


Initial Test Results – Tracer – Option 3

- Ambient: 7/20 successful
 - All failures ignited but were short burns (failures averaged 33 meters short)
- Cold: 4/20 successful
 - 14 failures ignited but were short burns (failures averaged 41 meters short)
 - 2 failures did not ignite
- Hot: 2/21 successful
 - All failures ignited but were short burns (failures averaged 62 meters short)
- All had consistent burn time variation

2km Flight	Ambient	Cold	Hot
Time (sec)≈	6.55	6.83	6.43

ATK

Structural Integrity

- All designs survived gun launch at all temperatures
- Risk areas identified during FEA

Aeroballistic Performance

• All designs met threshold ballistic match objectives

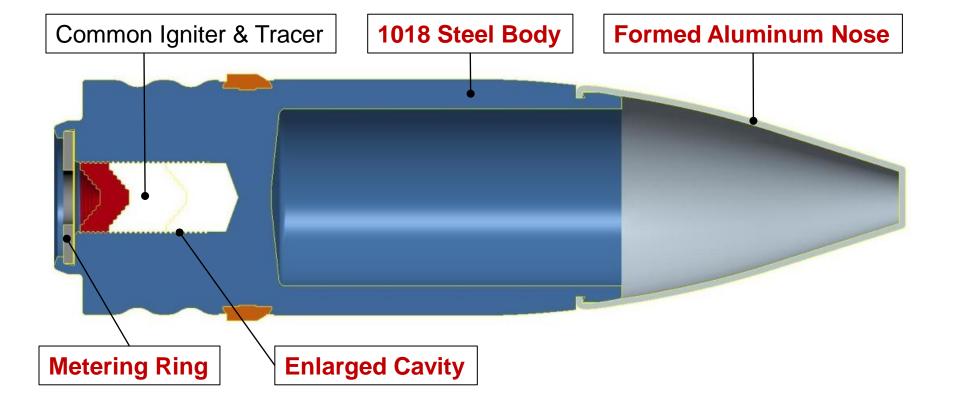
Tracer Performance

All designs must have longer tracer burn times to reliably meet objective trace distance
 of 2000 meters

Producibility

• Many improvement opportunities identified

An updated design was required to meet performance objectives


Threshold (Primary) Requirements:

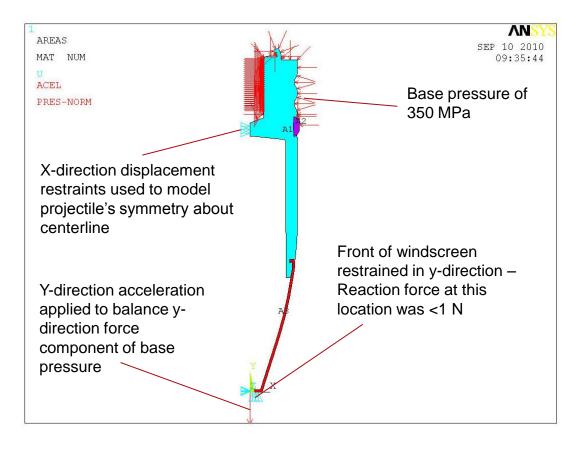
- Continue to meet ballistic match and dispersion objectives
- Reliably meet tracer burn distance requirements
- Added requirement for **compatibility in alternate barrel design**
 - 42" with 6.5° rifling exit angle (most common barrel for M230 on Apache)
 - This is design used for all previous PRODAS simulations
 - 60" barrel with 6.2° rifling exit angles (most common barrel for M230LF)

Objective (Secondary) Requirements:

- Method to improve tracer ignition reliability
- Improve producibility & affordability

ATK)

19

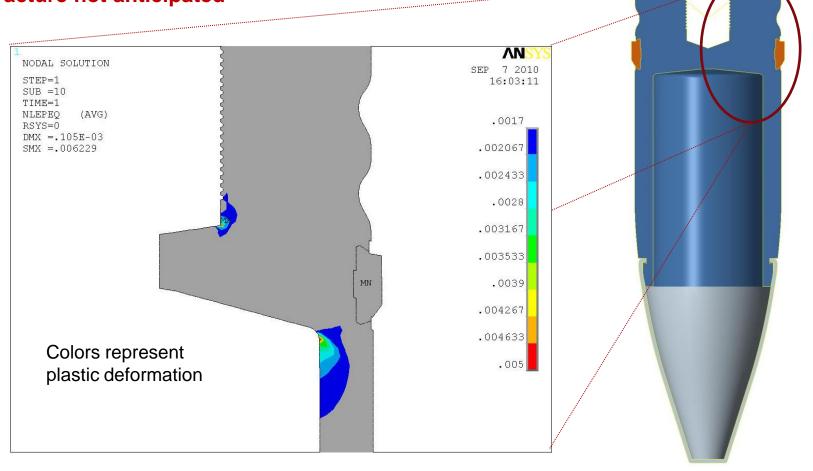


ANSYS Analysis Input Summary

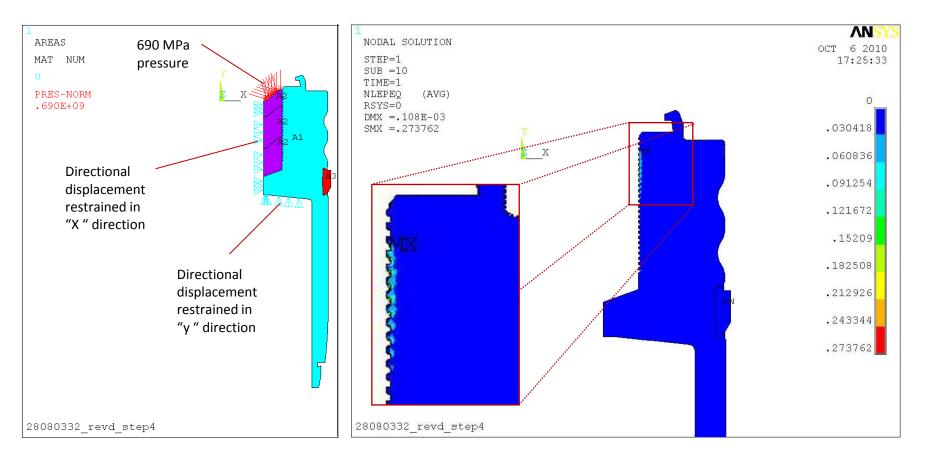
- Body & Nose Materials:
 - Minimum allowable material properties
- Base Pressure:

20

- 350 MPa pressure (greater than predicted pressure at hot) applied to aft exterior


Final FEA Analysis (cont'd) – Robust Design

ANSYS Analysis


21

Outcome: Localized projectile body deformation
 – Fracture not anticipated

ANSYS FEA for tracer consolidation

Outcome: Projectile body will support tracer consolidation

PRODAS ballistics analysis of match to M789 out to 2000 meters

• Simulations completed for both 42" and 60" barrel designs, and updated to account for radial match (a function of both drop and drift)

	42" Barrel, 6.5º Exit Angle	60" Barrel, 6.2º Exit Angle
Projectile	QE Match (Radial in mils) @ Req'd Muzzle Velocity	QE Match (Radial in mils) @ Req'd Muzzle Velocity
M788	0.10 @ 800 m/s	0.16 @ 839 m/s
Final	0.64 @ 769 m/s	0.60 @ 804 m/s

Outcome: Final design within objective requirements

PRODAS ballistics analysis

	42" Barrel, 6.5º Twist	60" Barrel, 6.2º Twist	Either Barrel	
Projectile	Gyro Stab Factor (2-3)	Gyro Stab Factor (2-3)	Muzzle Jump Factor	Predicted Yaw (deg)
M789	2.94	2.74	.025	3.5
M788	2.86	2.66	.028	3.5
Option 1	2.28	-	.023	2.5
Option 2	2.75	-	.021	4.5
Option 3	1.93	-	.026	4.5
Final	3.01	2.74	.012	4.0

• Outcomes: Stability, dispersion, and yaw all predicted to be acceptable

24

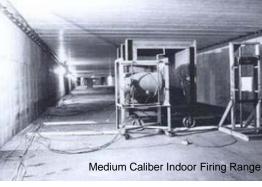
Completed:

- Nose caps
- Projectile Bodies (Figure 1), through banding (Figure 2), band trim, and plate/paint
- Tracer & igniter pellets
- Metering Discs

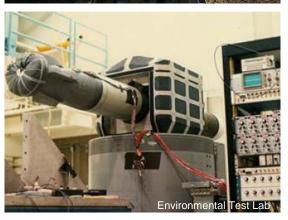
On-Going:

25

• Final Assembly to be completed in near future



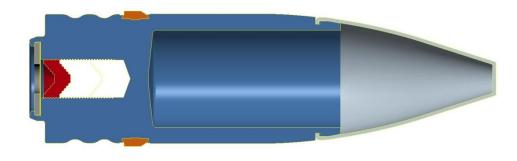
ATK


- Charge Establishment
- Charge Verification
- PVAT, Dispersion, Yaw, Mann Barrel Function & Casualty
- Max Range Tracer & Radar
- Autogun Function & Casualty
- Environmental then PVAT

26

Testing to be conducted in near future

Summary



Initial 3 Designs

- Met ballistic match and flight objectives
- Could not reliably meet tracer objectives
- Had producibility and assembly concerns

Final Design

- Simulations indicate this will meet ballistic and flight requirements
- Additional tracer mix capacity and metering ring expected to provide reliable tracing to 2km
- Structurally robust design
- Improved producibility and cost savings

Questions?

?

Clay Bringhurst (ATK Medium Caliber Ammunition Business Development)

- (480) 324-8649
- <u>Clay.Bringhurst@ATK.com</u>

Tim Graves (ATK LW30 Program Manager)

- (480) 324-8767
- <u>Tim.Graves@ATK.com</u>

Kyle Nerison (ATK LW30 Design Engineer)

- (763) 744-5519
- <u>Kyle.Nerison@ATK.com</u>

40mm PIVOTING COUPLING

Army Invention of the Year

- Presented By;
 - Steve Kotefski, Savit Corporation

MK 19 Weapon

- Choice Weapon System of the Warrior
 - Close Combat Scenario
 - Effective Lethality

- Drawback of Weapon System
 - 32 Round Belt Needs To Be Reloaded
 - Causes a Weapon Re-Load Requirement
 POTENTIAL DANGER TO WARRIOR

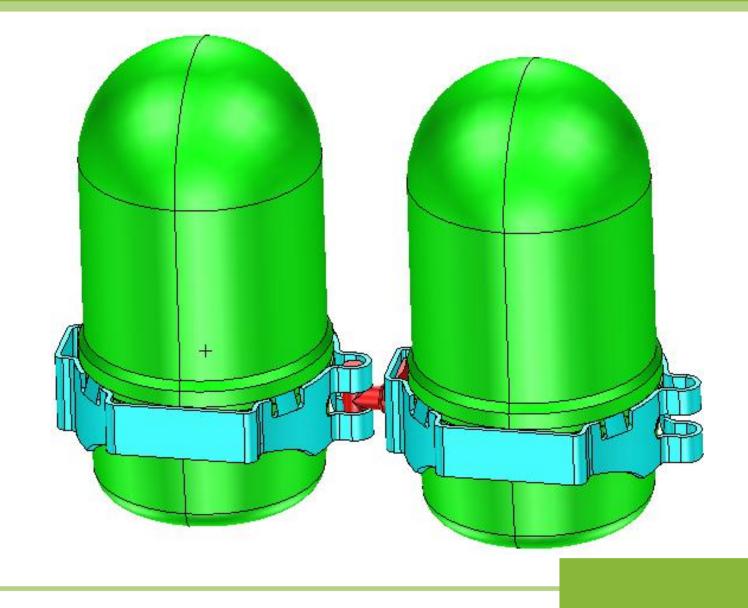
WARRIOR FIELD FEEDBACK

- ELIMINATE RELOAD ISSUE
- ADDITIONAL FEEDBACK
 - Partial Belts from Engagement and/or Practice become useless
 - Single Rounds From Charged Weapons become useless

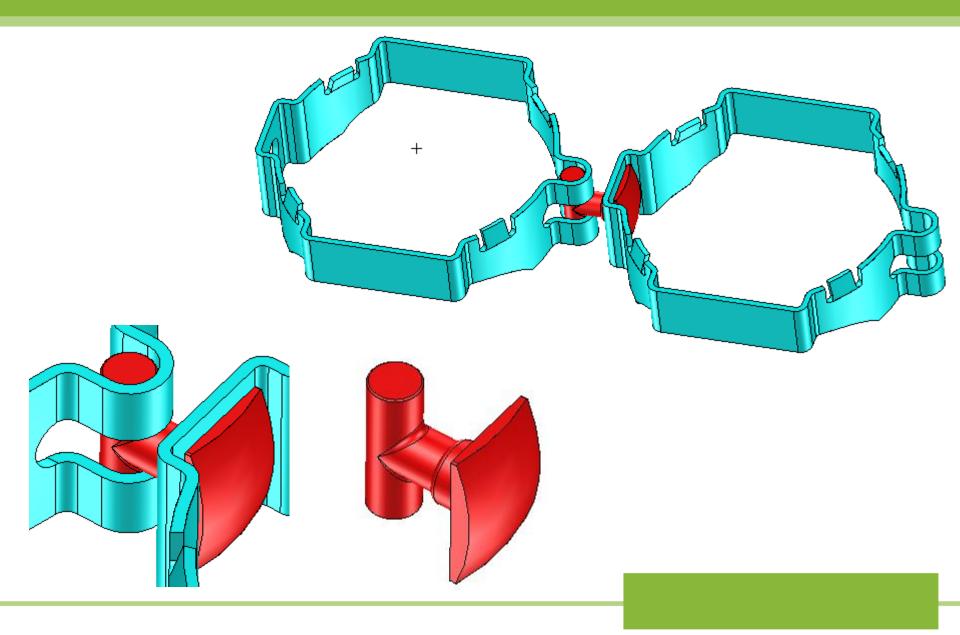
FIELD ISSUE TO SOLUTION

- Warrior Feedback Issues
 - Warrior Needs-
 - Continuous Firepower from Weapon System-MK19
 - Salvage Partial Belt and Single Round Ammunition
- Solution
 - Achieve the Warriors Needs

FIELD FEEDBACK TO SOLUTION


- Warriors Needs Defined
 - Field Feedback
- Potential Solutions-
 - Analyze Given Issues- WARRIOR FIELD FEEDBACK
 - Solution = Warrior Needs + Technical Innovation
 - INNOVATION = PATENT = ARMY's GREATEST INVENTION RECIPIENT for 2009 =

THE PIVOTING COUPLING


THE PIVOTING COUPLING DEVELOPMENT

- From Field Issue to Solution
 - Gather Field Issues
 - Gather Design Issues
 - Function- Ammunition, Linkage and Weapon System
 - Weapon System Limitations- Rate of Fire, Over Heating
 - Search for Solution-
 - Brainstorming
 - Analysis
 - Innovation

Ammunition Belt Assembly

Basics of Design

CONCLUSION

- PIVOTING COUPLING
 - Field Problem Success
 - User Issue Success
 - Cost Savings Success
 - Army Invention of the Year Recipient

2011 NDIA Gun & Missile Systems Conference Aug. 29 – Sept. 1, 2011

30 x 173mm TPDS-T Development

Don Gloude Chief Design Engineer ATK Integrated Weapon Systems 763-744-5253 Don.Gloude@ATK.com

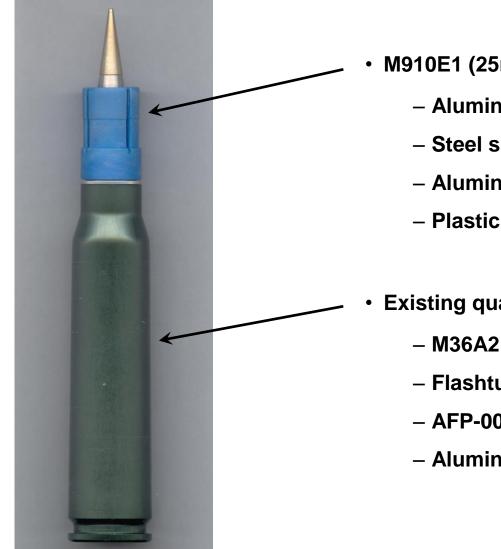
Approved for Public Release 11-S-1846 dated 7 April 2011

- Project Objectives/Summary
- Cartridge Concept
- Cartridge Development
- Testing Summary
- Go Forward Plans

Project Objective: Develop a 30 x 173mm TPDS-T training cartridge (MK317) that provides a ballistic match to the 30 x 173mm MK258 and MK268 APFSDS-T tactical cartridges. Deliver 1200 rounds to the USMC for qualification testing.

Project Summary:

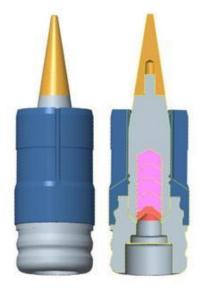
- Evaluate projectile designs for function, ballistic match and producibility
- Evaluate tracer designs for retention, visibility and burn time
- Testing to refine and verify design
- Manufacture and deliver 1200 rounds to the USMC for MK317 qualification testing



•	Muzzle Velocity	1615
•	Chamber Pressure	X-bar = 61.4 kpsi (+21C) X-bar + 3SD = 66.6 kpsi (-54C/+71C)
•	Action Time	5.3 msec (+21C/+71C) 7.7 msec (-54C) 8 msec max individual
•	Trace	3.5 sec min (all temps) Visible against light background
•	Dispersion	0.40 x 0.40 milliradian (+21C @1000 inches)
•	Max Range	8000 meters

- Ballistic match to MK258/MK268 from 1500 to 2000 meter range
- Existing qualified ignition train

30mm TPDS-T Cartridge Concept



- M910E1 (25mm) projectile scaled to 30mm
 - Aluminum pusher
 - Steel sub-projectile core w/tracer
 - Aluminum press-fit nose
 - Plastic molded sabot
- Existing qualified 30x173 ignition system
 - M36A2 primer
 - Flashtube assembly (IB52 pellets)
 - AFP-001 propellant
 - Aluminum cartridge case

30mm TPDS-T Projectile Baseline Concept

M910E1 Steel Sub-Projectile with Tracer

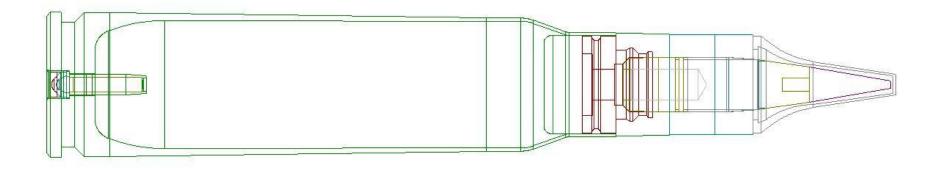
4-Petal Molded Sabot

- M910E1 steel sub-projectile with aluminum nose and tracer
- · Solid aluminum pusher
- 4-petal (slot) molded sabot (20% glass filled nylon 6/6)
 - Different rotating band diameters and tapers were evaluated

Baseline Pusher

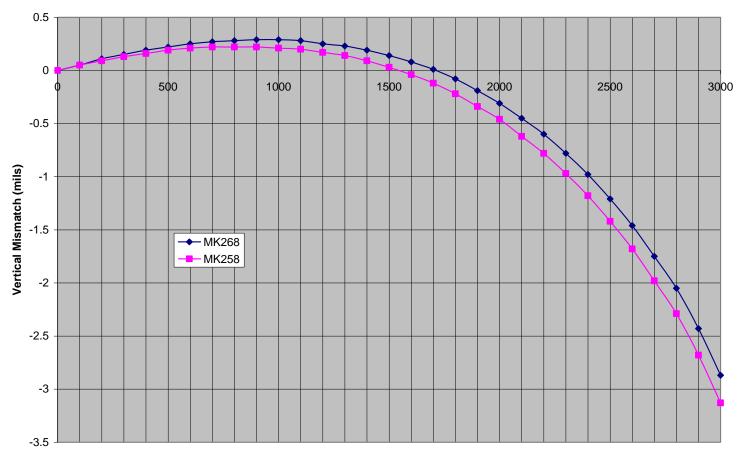
Alternate Projectile Concepts Considered

Scalloped 3-Petal Sabot



Segmented Pusher

- Stress analysis of scalloped 3-petal sabot design said that it would survive in-bore loads and discard but lower risk 4-petal design was incorporated.
- Segmented pusher yielded higher dispersion than solid pusher. This concept may be pursued in follow-on design optimization work.

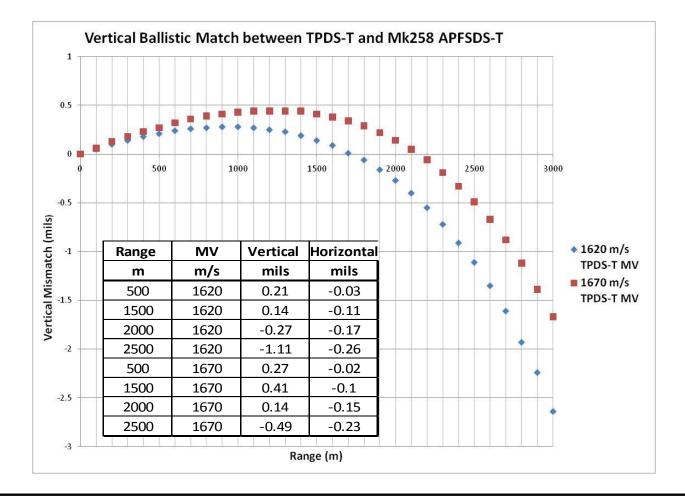


Preliminary PRODAS model of cartridge as analyzed by Arrow Tech

	Mass, gm.	Transverse Inertia, gm-cm²	Axial Inertia, gm-cm²	CG from Nose, cm.	Diameter, cm.
Projectile	123.5	497.5	93.6	6.06	
Sub-projectile w/tracer	66.3	170.3	21.5	5.24	1.62
Sub-projectile after burnout	62	157.4	21	5.16	

Table 1. Physical Properties of M910E1 (TPDS-T) Variant

Vertical Mismatch 30mm TPDS-T at 1600 m/s vs MK258 and MK268 APFSDS-T USMC EFV


Range (m)

• Initial interior ballistic modeling of AFP-001 indicated that design goal of 1600 m/sec should be achievable.

Code Used	Projectile Weight Grams	Chamber Pressure Kpsi	Predicted Muzzle Velocity, m/s
PRODAS, Baer- Frankle model	128	60.9	1570
CONPRESS	122	58	1600

- Charge establishment testing was only able to achieve a max velocity of 1154 m/sec at 19.6 Kpsi case mouth pressure
- AFP-001 burn rate was too slow to develop adequate pressure with a 122 126 gram projectile.

1620 m/sec muzzle velocity provided the best overall ballistic match to 2000 meters.

• Radford RP-910, with tailoring of grain geometries, was recommended as a viable solution based upon the modeling.

Charge Weight	Velocity	Pressure	
12E grame	1527 m/s	59.8 Kpsi	
125 grams	1527 11/5	53.6 Kpsi	
140 grams	1590 m/s	61.5 Kpsi	
150	1624		
150 grams	1624 m/s	61.5 Kpsi	

- Initial results still had lower velocity than model but pressures were also lower.
- Final charge establishment test results met the velocity design requirements with margin.

Group	Charge	Quantity	Muzzle	Pressure,	Action	Dispersion	Dispersion
No.	Weight,		Velocity,	Kpsi	Time,	horizontal,	vertical,
	grams		m/s		msec	mils	mils
1	145	10	1571	41.2	3.44	0.33	0.27
2	151	10	1619	45.4	3.18	0.18	0.19
3	157	8	1670	50.3	3.04	0.33	0.31

Тетр	Velocity	SD	Pressure	SD	DISP X	DISP Y	Trace Time	SD
21C	1630 m/s	6.4	46.6 Kpsi	0.7	0.42	0.55	-	-
-25F	-	-	-	-	-	-	7.11 sec	0.59
-65F	-	-	-	-	-	-	7.33 sec	0.58

LAT results for the first sub-lot met most of the design requirements.

- Velocity above target
- Pressure has significant margin
- Trace times were very good at extreme temperatures
- Dispersion slightly exceeded design requirements
- Autogun F&C had no metal parts security issues

Final 30mm TPDS-T Cartridge Design

- Cartridge Weight (422 grams)
- Projectile (123 grams)
 - Aluminum pusher
 - Steel sub-projectile core w/tracer
 - Aluminum press-fit nose
 - Plastic molded sabot
- Ignition system
 - M36A2 primer
 - Flashtube assembly (IB52 pellets)
 - RP-910 propellant (151 grams)
 - Aluminum cartridge case

ATK stands ready with our remaining 30mm TPDS-T hardware to support the USMC qualification effort whenever it resumes.

Contacts

- Robert Schmitz (ATK Market Segment Director)
 - (763) 744-5724
 - Bob.Schmitz@ATK.com
- Will Wennberg (ATK Medium Caliber Ammunition Business Development)
 - (480) 324-8612
 - William.Wennberg@ATK.com
- Larry Douma(ATK Ammunition Engineering Manager)
 - (763) 744-5252
 - Larry.Douma@ATK.com
- Don Gloude (ATK Chief Design Engineer)
 - (763) 744-5253
 - <u>Don.Gloude@ATK.com</u>

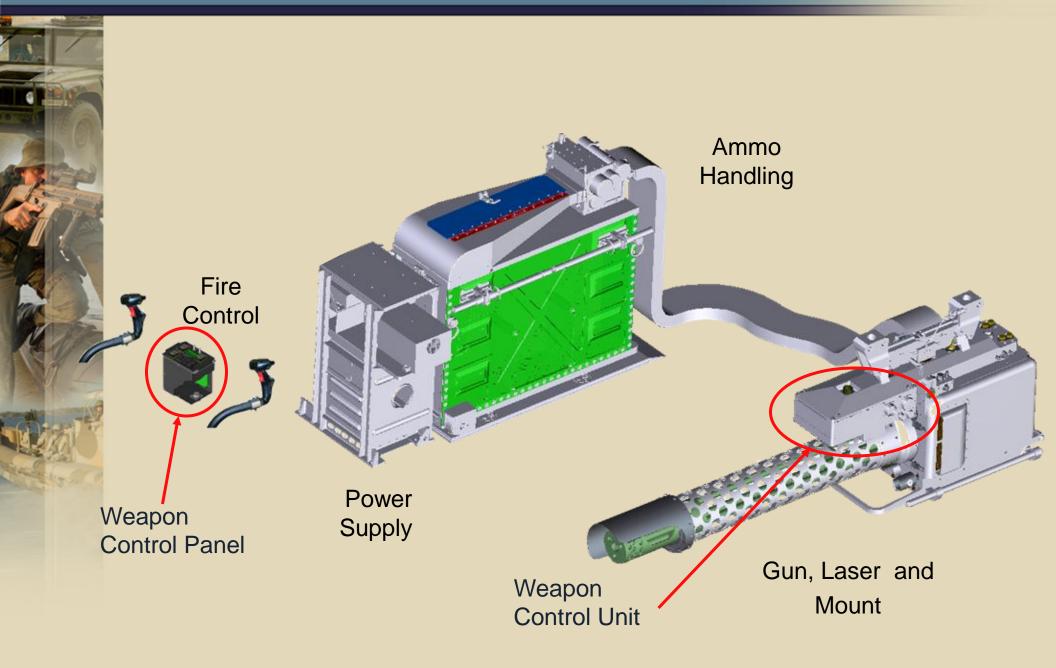
SPECIAL MISSIONS

M197 Weapon Command/Control System MH-60S

RAPID RESPONSE PROVEN SOLUTIONS

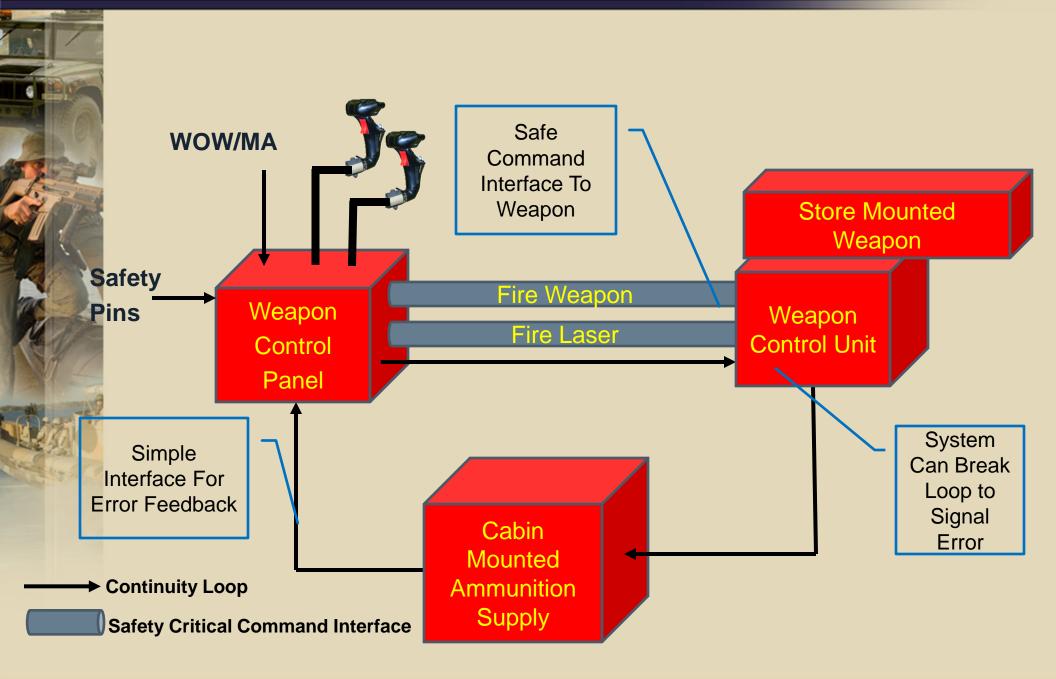
Agenda

- Design objectives
- System Overview
- System Communication
- Weapon Control Panel
- Weapon Control Unit



Design Objectives

- Isolate system from aircraft systems except for power, safety interlocks, and weapon triggers
- No microcontroller or embedded software
- Make the system as safe as possible in the presence of electrical interference, mechanical failure, human induced faults
- Minimize system weight
- Minimize cost
- Maximize reliability
- Rapid development schedule



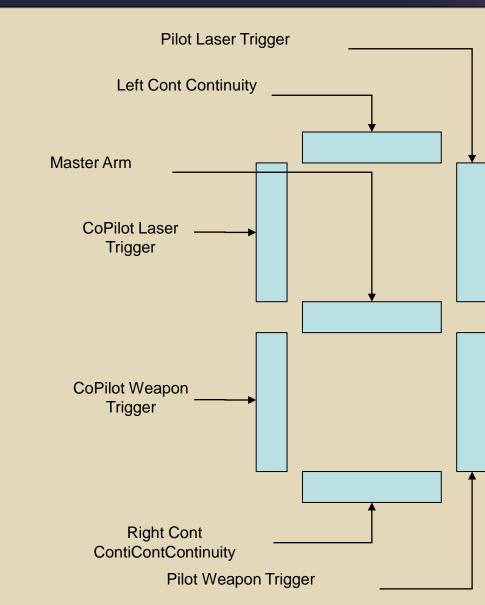
M197 20 mm Gun System Overview

System Communication

Weapon Control Panel

Weapon Control Panel

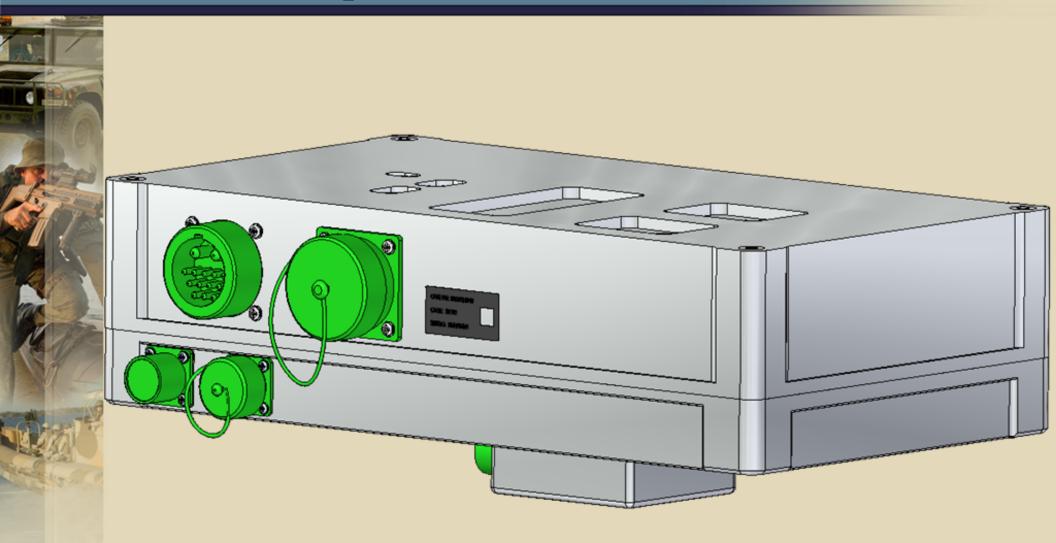
- Provides four state machines to maintain safe/arm states for one or two weapons and one or two laser target markers
 - State machines are implemented with Dual Field
 Programmable Gate Arrays for safety critical operations
- Utilizes a proprietary multi-wire connection to each weapon and laser installation.
 - Safety critical protection is provided by sensing shorts to ground, power and each other
- Maintains ammunition count



Weapon Control Panel

- Prevents arming if required interlocks are not detected or if a wiring/component error is detected on inputs
 - Other system components may communicate their non-readiness/fault by interrupting the continuity loop
 - Fault lock-out is enabled upon detection of system fault, preventing arming and enabling fault light
 - Troubleshooting mode integrated to aid diagnosis

CRANE



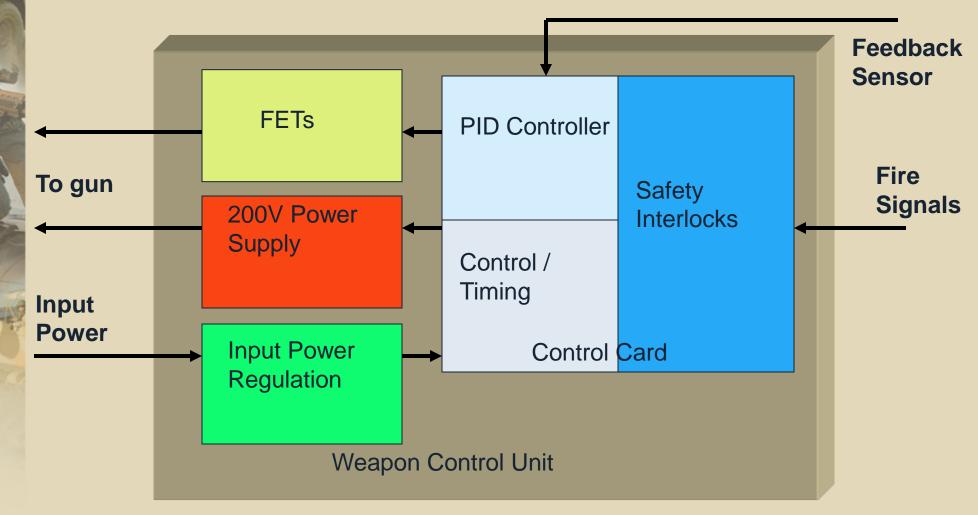
Weapon Control Panel System Fault Handling

System Fault Description	When Detected?	Reset Method
GCP FPGA Weapon States Differ	Whenever Powered	Cycle System Power
Weapon Trigger without Laser Trigger	When Weapon trigger is operated	Press System Fault Indicator
Loss of Continuity Loop	When GCP is Powered and GCU is Powered by either Laser or Weapon Power	Press System Fault Indicator

Weapon Control Unit

Weapon Control Unit

- Responds to commands received over safety critical interfaces from the WCP
- WCU utilizes state machines to verify correct operating sequence steps are received
- If faulty sequence is detected, the WCP opens the continuity loop to communicate fault to the WCP and safes the associated weapon or laser system
- System clearing procedures are provided to allow operators to correct and clear faults which may be corrected in flight



- 20mm gun integration required:
 - Speed Control of gun system via feedback loop, PID controller, and high current pulse width modulated output
 - 200V output for priming of ammunition
 - Output for activation of Feeder
 - Robust Input Power Circuit Regulation (MIL-STD-704A and additional capacitance for excessive current draw)

Weapon Control Unit 20mm gun integration

Modular Circuit Cards utilized for flexibility

Weapon Control Unit System Fault Handling

System Fault Description	When Detected?	Reset Method
GCU Loss of Power	When GCP is Powered and GCU is Powered by either Laser or Weapon Power	Press System Fault Indicator
Excessive Gun Motor Drive	When Gun Motor is being Run	Cycle GCU Power and then Press System Fault Indicator
Erroneous Arm or Fire Commands	Shorts to ground or Power whenever the System is Powered; Shorts to other signal lines only when firing	Cycle GCU Power and then Press System Fault Indicator

PRODAS GNC Trajectory System Simulation

Jeff Siewert

August 2011 NDIA Guns & Missiles

GN&C System Simulation Development Options

Legacy Software Simulation

PRODAS GN&C Prototype Tool MATLAB/ Simulink Simulation

ARROW TECH

If you can't get a bigger target...

GN&C System Simulation Development Options

Legacy Software Simulation

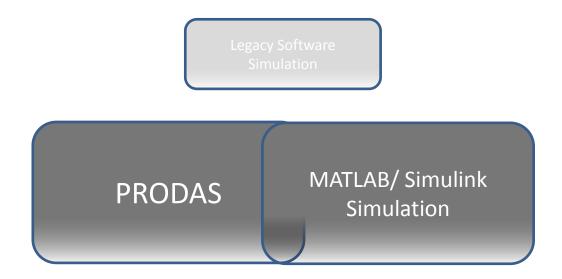
- Pros
 - Detail only limited by developer
 - Very fast simulation
- Cons
 - Tough to validate
 - Can get very complex

PRODAS GN&C Prototype Tool

Pros

- Trajectory Engine transparent to User
- Very fast simulation
- Simulation Data provided by PRODAS
- Can be driven by a Macro
- Validated Trajectory codes
- Cons
 - Limited detail

MATLAB/ Simulink Simulation

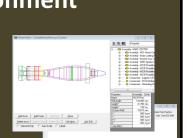

ARROW TE

If you can't get a bigger target...

- Pros
 - Almost unlimited details can be included
 - Internal equations and variables visible
 - GN&C can transition easily into Hardware
- Cons
 - User must build and validate Trajectory Engine
 - User must provide inputs and build outputs

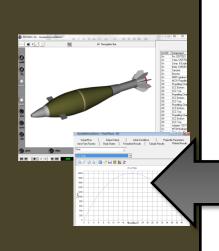
The New Combined Option

- Pros
 - Validated Trajectory Engine
 - Simulation inputs provided by PRODAS
 - Unlimited details can be included
 - GN&C can transition easily into Hardware


PRODAS – MATLAB/Simulink Simulation

ARROW TECH > If you can't get a bigger target...

PRODAS Environment


Modeling

- Projectile Modeler
- Aero Prediction
- Mass Properties
- Rocket Motor
- Initial Conditions
- Error Budgets
- MET

Visualization

- 3D Animations
- Extensive Plotting

MATLAB/Simulink Environment

M m_ONCTre_V0.2*
File Edit View Simulation Format Tools Help D (과 및 4월 3 No 185) 수 다 수 12 스() + = 2001 Format · 및 4월 20 등 등 등 등 중
P PRODAS
Data Control Force
Fin Deploy Times
Blade Deflections
Grub Firings Stability Stability
Control Force
Control Moment
Fin Deploy Times x_600
Squb Firings Vie GNC

Development

- Leverage All MATLAB/Simulink Toolboxes and Blocksets
- Focused Effort on GNC Design

Simulation

- Validated 6+DOF Trajectory Engine
- Seamless Data Interface and Execution Between PRODAS and MATLAB

Product Tests

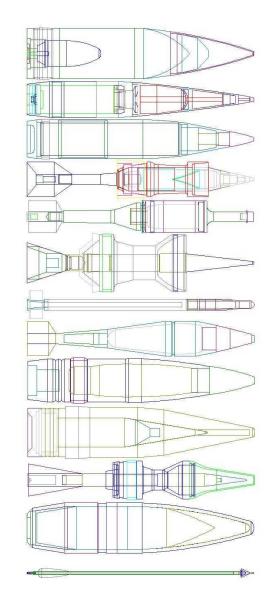
Hardware-In-the-Loop (HIL)

• Use the same simulation to drive the HIL fixture

Embedded Code Generation

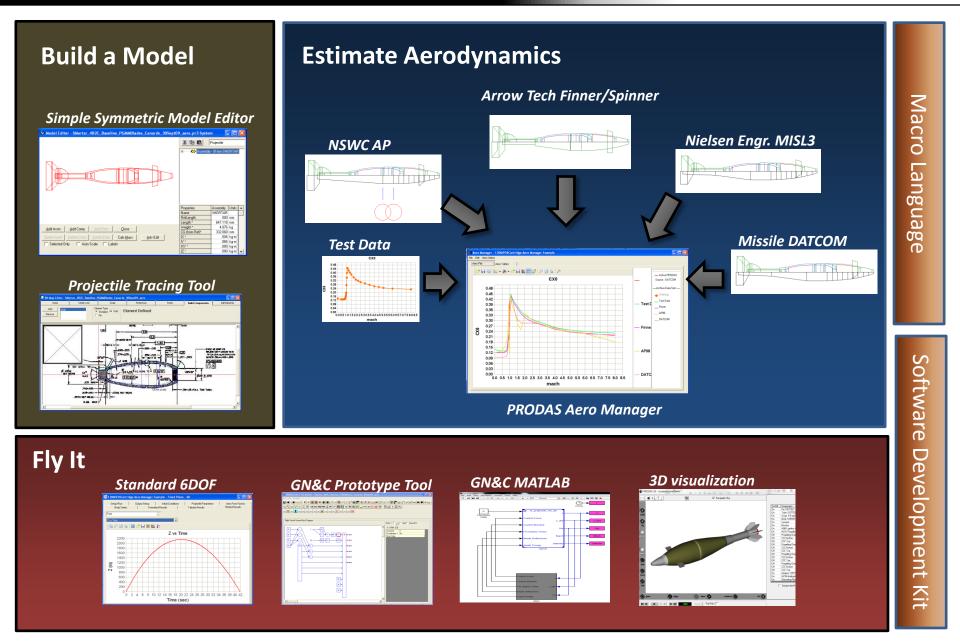
 Automatically generate flight code from the Simulink model

Fire Control

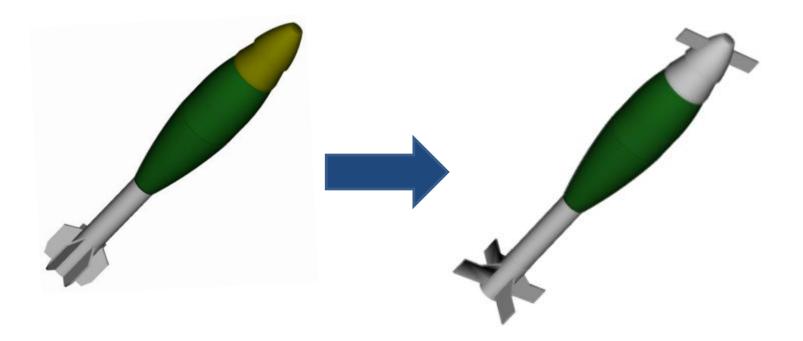

 Simulation software is the basis of fire control software

Arrow Tech Software

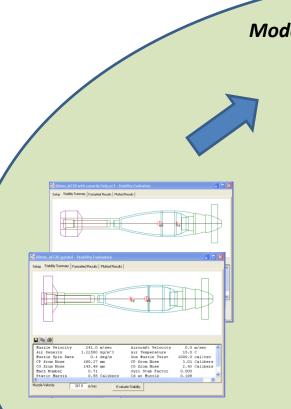
EPRODAS


- Industry standard projectile design and analysis environment
- 65+ integrated analysis modules
 - System simulation
 - Aerodynamic prediction and stability
 - Trajectory simulation and flight Dynamics
 - Guidance, navigation, and control
 - In-bore balloting and interior ballistics simulation
 - Aero-ballistic test data reduction
 - Software development kit
- Over 500 Users at Government and prime contractors
- In use in over 25 countries

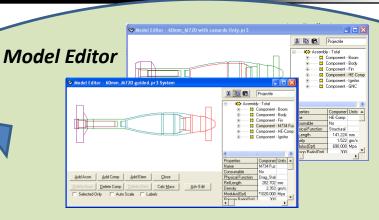
Guided Projectile Development with PRODAS



How Does It Work?



- Illustrate with a simple transformation
- Add nose and tail kit to a 60mm Mortar



Design the Air Vehicle

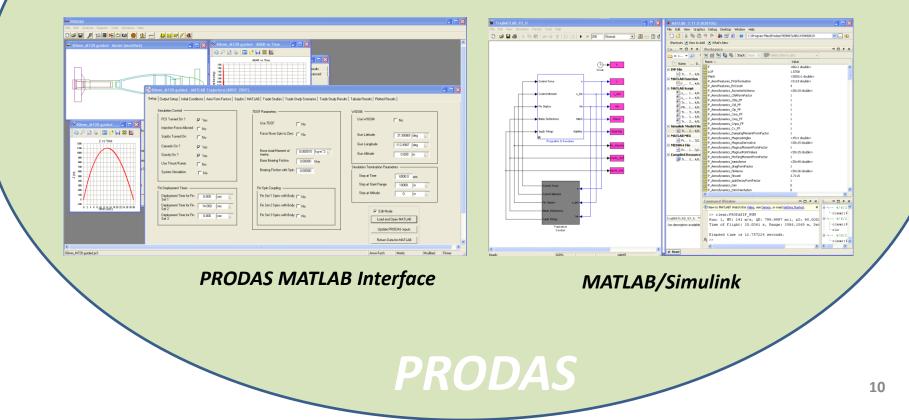
Stability Evaluation

- Design the air vehicle:
 - Add control surfaces
 - Update mass properties
 - Estimate Aerodynamics
 - Evaluate Stability
 - Repeat as Necessary

PRODAS

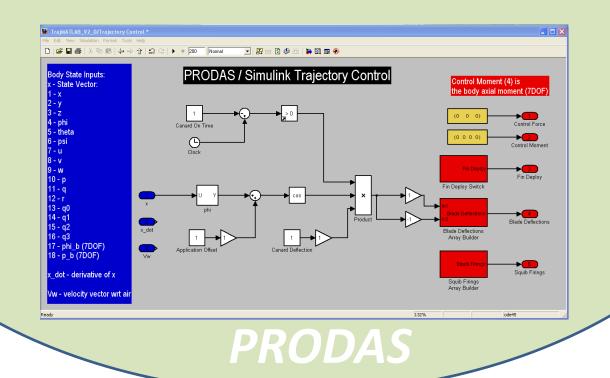
50mm_M7	20 with canards Only.p	r3 - Mass Properties		_ 0
			emental Properties Formatted Resul	ts
Before Burnout				
0mm_M720 with car	ards Only.pr3 - Mass Pr			×
ng Projectile As Launches	Sabot/Carrier Total w/Car	tridge Supplemental Propert	ies Formatted Results	3
ore Burnout				
Calculated Values		Baseline Values Used for A	Analysis	N
Weight	1.67439 kg	Flight Weight	1.67439 kg	
Avial Inertia	0.00072 kgm*2	Axial Inertia	0.00072 kgm^2	
Transverse Inertia	0.01059 kgm^2	Transverse Inertia	0.01059 kgm*2	
CG from Nose	145.0040 mm	CG from Nose	145.4950 mm	
Reference Diameter	59.9440 mm	Reference Diameter	59.9440 mm 🔊	
er Burnout		Baseline Values Used for J	Analusia	
Weight	1.67439 kg	Flight Weight After	1.67439 kg	
Avial Inertia	0.00072 kgm [*] 2 kg	Burnout Axial Inertia	0.00072 kpm*2	
Transverse Inertia	0.01059 kgm ²	Transverse Inertia	0.01059 kgm*2	
CG from Nose	145.0040 mm	CG from Nose	145.0040 mm	
	Calc M	ass Props		

Mass Properties

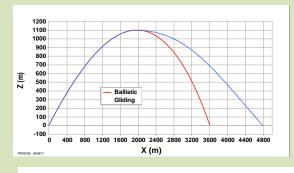

Aero Prediction

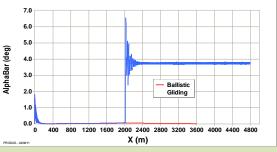
Fornatted Results Tabular Results Fin Aeros Potted Results Aero Fore Factors Geometry Isputs Fin-Mare Data Fin Configuration Geore Data Aero Model Adv. User 20 Shift

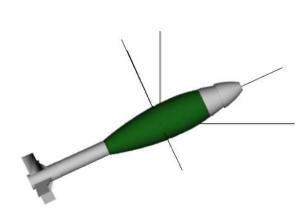
Build a Simple Open Loop Controller


- Open Loop Controller to:
 - Deploy canards at apogee
 - Extend Range
 - Dither with roll angle

Simple Open Loop Controller


- Validated trajectory engine
- Automatic interface to aeros and IC's
- Design the GNC in Simulink
 - Use any Block Set
 - Inputs Body states
 - Output canard angle
- Model contained in PR3 file




Run Simulation Review Results

- Use MATLAB plot functions or
- Use built in PRODAS plots and visualizations
- Cross plot against other codes

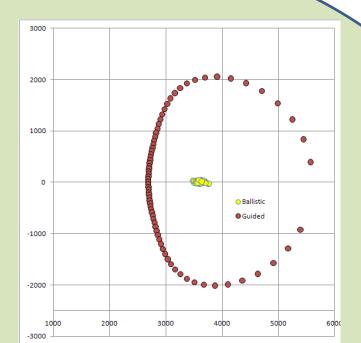
Trade Studies and Error Budget

- Setup trade study scenarios varying:
 - Body states
 - Mass properties
 - Aerodynamics
 - **Rocket Motor**
 - Environment (MET)
 - 50 custom GNC parameters —

康 junk12

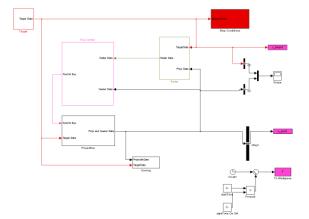
PRODAS

- Add system errors to any • variable
 - Mission-to-mission
 - Weapon-to-weapon
 - Round-to-round


junk123.pr3 - MATLAB Trajectory (6DOF-	7DOF)				- • •
etup Output Setup Initial Conditions Aero	Form Factors Squibs MATLAB	Trade Studies Trade St	udy Scenarios Trade Study Results	Tabular Results Plotted Results	
ritem Simulation T No Edit Model Load and Open MATLAB Update PRODAS inputs Return Data frm MATLAB	Scenario Generator Add error Runs Start at Row # End at Row # Append to Table User Entered Spin	□ No 1 20 □ No □ No	Load PRIDDAS Defaults Set All Trades to Single Generate Scenerios	Initial Conditions Generator No 01 Missions 100 No. Weapont/Mission 1 No. Rounds//Weapon 1 Use Stale Met Table No Generate Error Table Generate Error Table	
rade Space Variables States Y Z P ph theta(DE) pp(M/) V	Single Interation	250 m/sec 🔊	Range and Increment C Use Range Beginning Value u 0.00 Increment u 0.00 End Value	u	e 100 m/sec 250 m/sec 400 m/sec 100
w E q q r phib p,b fass Properties erodynamics tocket Motor	Error Levels	s to the Scenarios	u 0.00	Mission Error in u	0.0000 m/sec 0.0000 m/sec 0 m/sec
nvironment INC 1-10 INC 11-20	u	□ No		/eapon Error in u Round Error in u	5 m/sec

System Error Budget

- Example entered errors for:
 - Muzzle Velocity
 - Mass
 - Winds
 - Temperature
 - Quadrant Elevation
- Monte Carlo Runs
 - Ballistic to validate errors
 - Open loop guidance to check control authority


PRODAS

Where To Go From Here

- Close Loop GNC
- Sensor Models
- Use 6DOF and GNC model for HIL
- Generate code for embedded
 processor

This then becomes the system simulation for the program

Conclusion

- The PRODAS tool set has been enhanced with the inclusion of the MATLAB/Simlink Trajectory Code
- Now PRODAS can be your tool from concept to final production.

- For more information on the PRODAS MATLAB/Simulink Trajectory Engine contact:
 - Dr. Mike Wilson
 (802) 865-3460 ext.14
 mike@prodas.com
 - Mark Steinhoff
 (802) 865-3460 ext.18
 mark@prodas.com

GENERAL DYNAMICS Armament and Technical Products

Ready or Not? Using Readiness Levels to Reduce Risk on the Path to Production

August, 2011

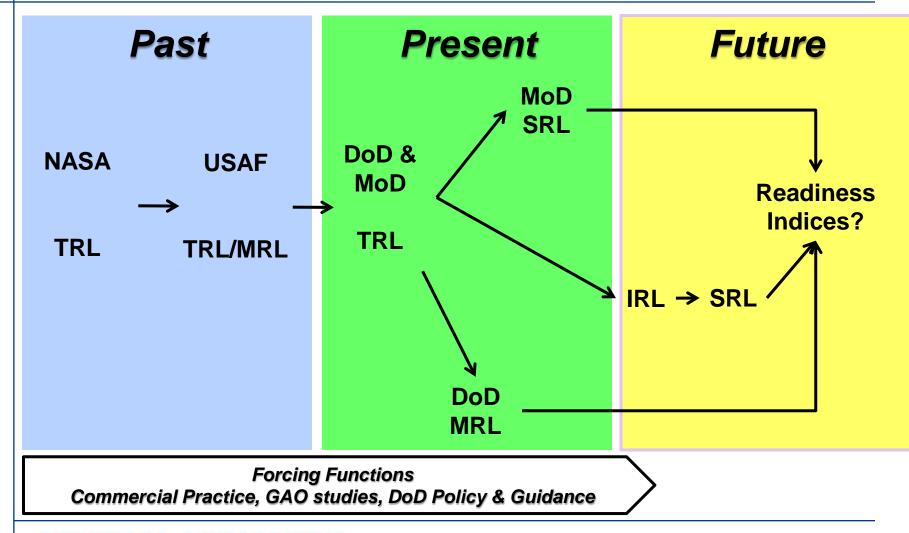
Are You Ready ...

- To adopt a new technology?
- To incorporate a new technology into a design?
- To integrate subsystems?
- To transition to production?

The Answers to these Questions Have Critical Implications to the Product Developer, Acquirer and User

- Introduction to Readiness Levels
- DoD Policy & Guidance
- Readiness Methods Survey
 - Technology Readiness
 - Manufacturing Readiness
 - Integration Readiness
 - > System Readiness
- Implementation Suggestions

Introduction


- A management method
- Informs risk management
- A measurement scale and vocabulary
 - Technology Readiness
 - Manufacturing Readiness
 - Integration Readiness

 - And others...

 And others...

 ■
- Used in various forms
 - Multiple Federal departments/agencies
 - → Multiple industries

An Approximate History

DoD Policy – Technology Readiness Assessment, TRA

- Required by DoD 5000.01 (directive) and DoD 5000.02 (instruction)
- TRA are required for ALL MDAP at Milestone B (before EMD phase).
- TRA not required for non-MDAP or MAIS
- TRA should focus on "technology maturity as opposed to engineering and integration *risk*"...memo: Improving Technology Readiness Assessment Effectiveness; Ashton Carter, May 2011.

Technology Readiness

- Approximate measure of technical maturity
- Technology Readiness Assessment (TRA) Deskbook, July 2009
- Applicable to 'critical' hardware and software technology elements (CTEs)
 - Identified during material solution analysis
 - Depend on element to meet op requirements
 - > New, novel or poses 'major technological risk'
 - Assessment criteria for hardware, software; aircraft, ground vehicles, missiles, ships...

Technology Readiness, Continued

	Level	Definition
Increasing Maturity, Decreasing Risk	TRL 1	Basic principles observed and reported
	TRL 2	Technology concept and/or application formulated
	TRL 3	Analytical and experimental critical function and/or characteristic proof of
		concept
	TRL 4	Component and/or breadboard validation in a laboratory environment
	TRL 5	Component and/or breadboard validation in a relevant environment
	TRL 6	System/subsystem model or prototype demonstration in a relevant
		environment(required to start EMD)
	TRL 7	System prototype demonstration in an operational environment (required to
		start LRIP)
	TRL 8	Actual system completed and qualified through test and demonstration
	TRL 9	Actual system proven through successful mission operations

Source: Technology Readiness Assessment (TRA) Deskbook, July 2009

DoD Policy, Manufacturing Readiness

- Manufacturing Readiness Requirements
 Implied by DoD 5000.02
 - Requires assessment of manufacturing capabilities and risks
 - Not institutionalized to degree TRLs are
 - Lack of consensus on use across services
 - Not currently required by DoD acquisition policy
 - Ise growing in DoD and defense industry
 - Analogs used routinely in other industries

Manufacturing Readiness

- Approximate measure of manufacturing maturity
- Resource: Manufacturing Readiness Level Deskbook, July 2010 (OSD Mfg Tech Program)
- Threads used to assess risk areas
 - Technology & Industrial Base

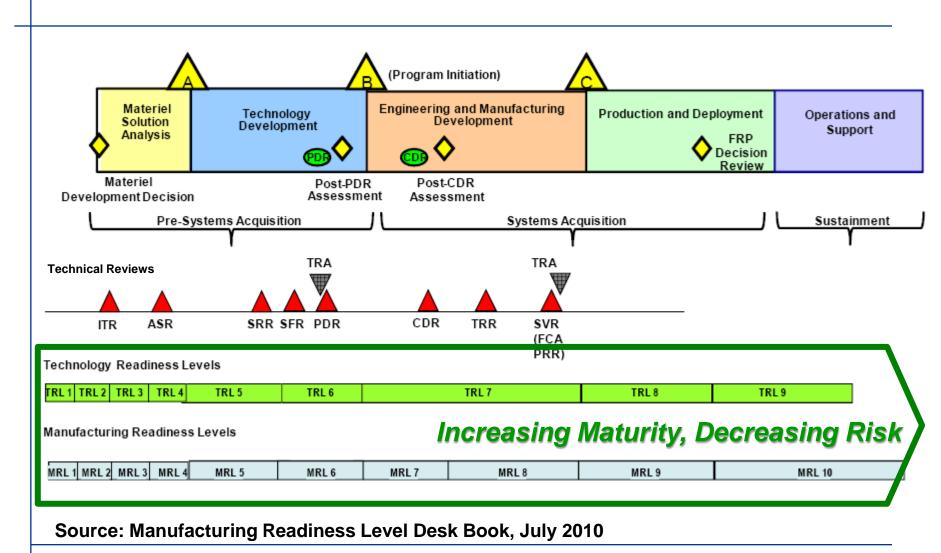
 - Cost and Funding

 - Process Capability and Control
 - A Quality Management
 - Manufacturing Personnel

 - Manufacturing Management

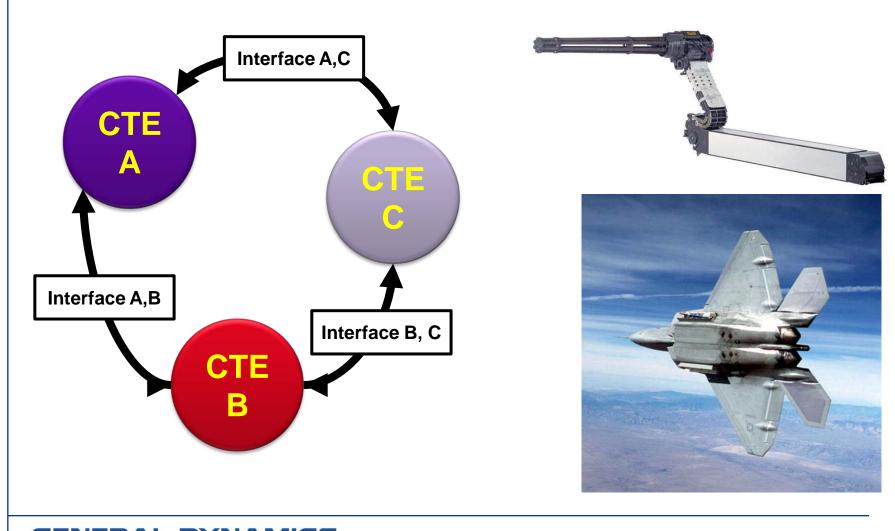
Manufacturing Readiness, Cont

	Level	Definition
	MRL 1	Basic Manufacturing Implications Identified
	MRL 2	Manufacturing Concepts Identified
	MRL 3	Manufacturing Proof of Concept Developed
	MRL 4	Capability to Produce the Technology in a Laboratory Environment
	MRL 5	Capability to produce prototype components in a production relevant
		environment
	MRL 6	Capability to produce a prototype system or subsystem in a production
		relevant environment
	MRL 7	Capability to produce systems, subsystems or components in a production
		representative environment
	MRL 8	Pilot line capability demonstrated; Ready to begin low rate initial production
	MRL 9	Low rate production demonstrated; Capability in place to begin full rate
		production
	MRL 10	Full rate production demonstrated and lean production practices in place


Source: Manufacturing Readiness Level Deskbook, July 2010

Increasing Maturity, Decreasing Risk

Role in DoD Acquisition


GENERAL DYNAMICS

Armament and Technical Products

12

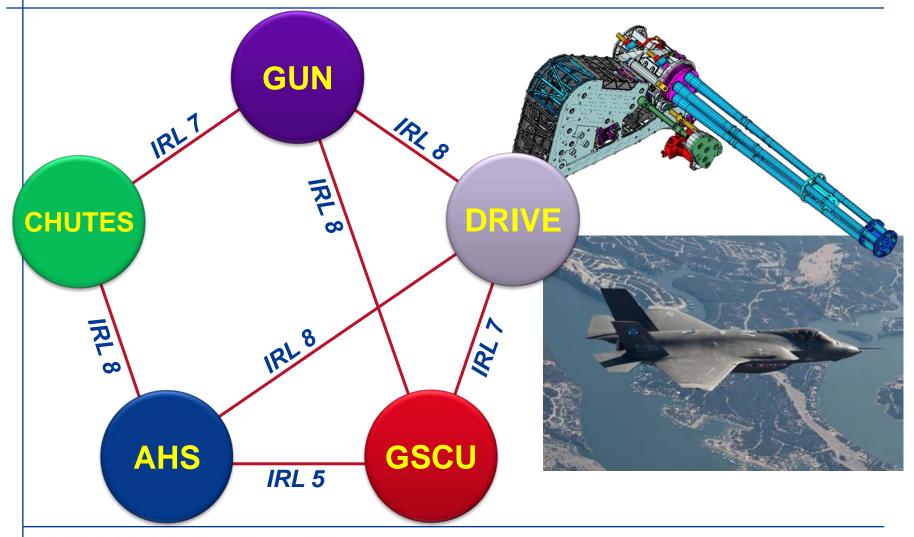
What About Interfaces?

GENERAL DYNAMICS Armament and Technical Products

 $\mathcal{\Sigma}$

Integration Readiness

- Approximate measure of integration maturity

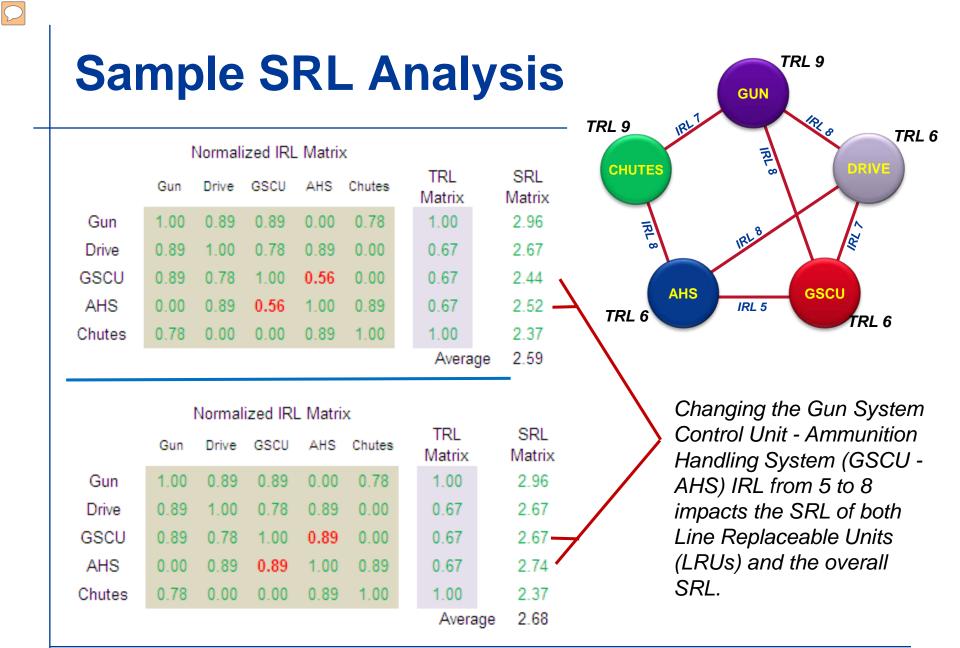

 ¬ Between two or more items or subsystems
- Work on integration measures, assessments and indices culminated in Integration Readiness Levels (IRLs) proposed by Gove et al., at Stevens Institute of Technology, School of Systems & Enterprises
- Resources: No deskbook equivalent, multiple papers and briefings on subject

Integration Readiness, Continued

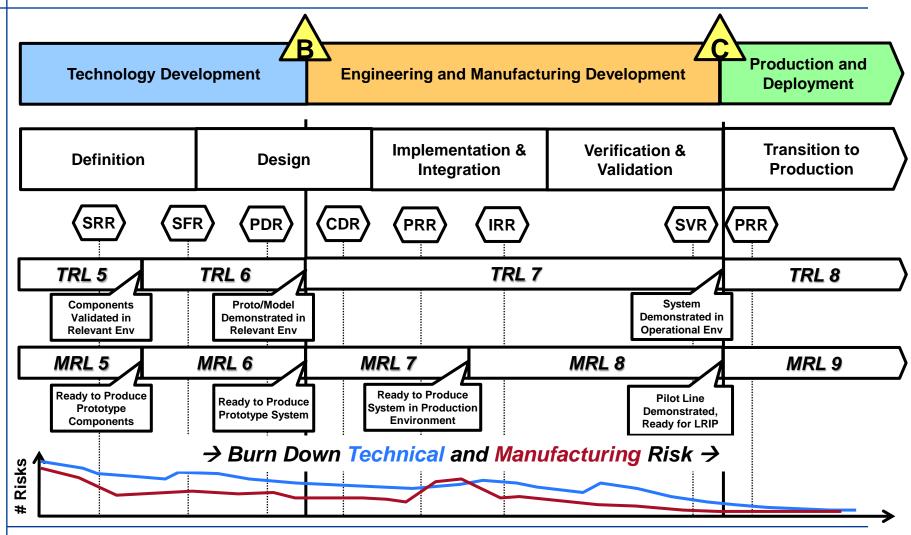
	Lev	el	Definition
	IRL 1	1	An interface between technologies has been identified with sufficient detail
_		. 1	to allow characterization of the relationship
Increasing Maturity, I	IDI	IRL 2	There is some level of specificity to characterize the interaction between
	INL		technologies through their interface
	IRL 3	С	There is compatibility between technologies to orderly and efficiently
			integrate and interact
	IRL 4	л	There is sufficient detail in the quality and assurance of the integration
		.4	between technologies
	IDI	5	There is sufficient control between technologies necessary to establish,
De	IRL 5	. ว	manage, and terminate the integration
Decreasing	IRL 6	6	The integrating technologies can accept, translate, and structure information
asi		.0	for its intended application
	IRL 7	7	The integration of technologies has been verified and validated with
Risk		. /	sufficient detail to be actionable
۶×	IRL 8	Q	Actual integration completed and Mission Qualified through test and
		.0	demonstration, in the system environment
\checkmark	IRL	.9	Integration is Mission Proven through successful mission operations

Source: A Systems Approach to Expanding the Technology Readiness Level within Defense Acquisition, International Journal of Defense Acquisition Management, Volume 1 2008

Example: F35JSF and Gun System


System Readiness

- Approximate measure of system maturity
- Aggregated measure of technology and integration readiness across elements and interfaces of a product/system
- Based on the outcome of TRL and IRL assessments
 ¬ SRL = f(technology readiness, integration readiness)
- Matrix of pair wise comparisons of IRLs & TRLs


 ¬ [SRL]_{nx1} = [IRL]_{nxn} x [TRL]_{nx1}; IRL & TRL normalized

 ¬ SRL composite = f(SRLn)
- Resources: No deskbook equivalent, many papers

Source: A Systems Approach to Expanding the Technology Readiness Level within Defense Acquisition, International Journal of Defense Acquisition Management, Volume 1 2008

Implementation Model One Perspective

Implementation Methods

- Concurrent product & mfg process development
- Engineering & manufacturing professionals working together closely and early
- Risk management
- Standard but tailorable work products
- Work product check lists
- Gate exit criteria
- Lessons learned
- Product & process prototyping
- Assessment & risk management tools

Conclusion

- Readiness assessments can reduce risk and improve program outcomes
- Technology & manufacturing readiness assessment methods are most mature
- Integration and system readiness assessment methods hold potential for use in future
- Meaningful assessments and relevant actions depend on experience and judgment
- Best used with concurrent development of product and manufacturing process

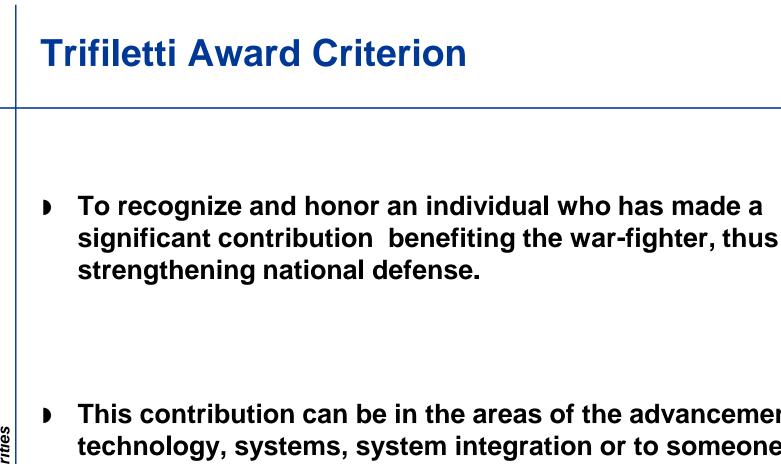
Select Resources

- Motivation for Readiness Assessments
 - GAO/NSIAD-99-162 Better Management of Technology Development Can Improve Weapon System Outcomes, July 1999
 - GAO-10-439 DOD Can Achieve Better Outcomes by Standardizing the Way Manufacturing Risks Are Managed, April 2010
- Assessment Methods & Guidance
 - DoD Technology Readiness Assessment Deskbook
 - ↗ DoD Manufacturing Readiness Level Deskbook, July 2010
- Papers on Advanced Assessment Methods
 - Fernandez (2010) Contextual Role of TRLs and MRLs in Technology Management, Sandia Report SAND2010-7595
 - Sauser, et all (2008) A Systems Approach to Expanding the Technology Readiness Level within Defense Acquisition, International Journal of Defense Acquisition Management, Volume 1, 2008
 - earrow Other references identified in the papers above

Contact Information

Daniel Chien Vice President, Engineering General Dynamics Armament and Technical Products, Inc. 248.840.7077 dchien@gdatp.com

GENERAL DYNAMICS



GENERAL DYNAMICS Ordnance and Tactical Systems

2011 Robert Trifiletti Award Winner Dr. Norbert D'Souza

August 31, 2011 Brian Berger

This contribution can be in the areas of the advancement of technology, systems, system integration or to someone who through his work provided unique leadership resulting in changes and progress in the community.

07MKT0125_CHINN AWARD_BBERGER.ppt (2)

Dr. Norbert D'Souza Professional Experience

- Ph D in Mechanical Engineering McGill University, Montreal, Quebec with specialization in high speed aerodynamics.
- 29 years of Mechanical Engineering and 18 years of Business
 Development and Marketing Experience
 - Senior Scientific Officer, Directorate of Tech. Developments, New Delhi
 - Program Manager and Senior Project Research, Space Research Corp.
 - Mechanical Design, Compression Design of solid propellants, wind tunnel testing of projectiles
 - Director of R&D at Canadian Arsenals Ltd
 - Director R&D, SNC Defense Products
 - Corporate Director of Technologies at SNC Industrial Technologies

GENERAL DYNAMICS Ordnance and Tactical Systems 07MKT0125_CHINN AWARD_BBERGER.ppt (3)

Dr. Norbert D'Souza Professional Experience

• Corporate Director of Technologies, SNC Technologies Inc.

- Set up Strategic Alliances between Canadian, US and International Companies
- Promoted partnerships with Dept of National Defence, Canada
- Participated in NATO Industry Advisory Group Studies involving members from nine NATO countries.

• Vice President Business Development, US Programs

- Worked on the development of the capability to produce the following products to the US TDP for production at GD-OTS Canada
 - 60mm and 81mm Mortar HE LAP
 - 120mm Mortar HE and FRPC LAP
 - 105mm PGU 43/B TP and PGU 44 /B HE
 - 105mm Illuminating M314A3
 - 105mm M67 Propelling Charges
 - 20mm M103 Cartridge Cases
 - .50 cal MK 263 Cartridges
 - M31A2 Propelling Charges

GENERAL DYNAMICS Ordnance and Tactical Systems 07MKT0125_CHINN AWARD_BBERGER.ppt (4)

Dr. Norbert D'Souza Professional Experience

Publications

- Technical papers on aerodynamics at American Institute of Aeronautics and Astronautics Proceedings and Journals
- Technical papers on heat transfer at American Society of Mechanical Engineers
- Publications on flight dynamics of projectiles International Ballistics
 Symposium
- Participated in the drafting of Technical Reports / Studies while working on the NATO Technical Committees

Memberships

- National Defense Industrial Association, AUSA, American Institute of Aeronautics and Astronautics, American Society of Mechanical Engineers

GENERAL DYNAMICS Ordnance and Tactical Systems 07MKT0125_CHINN AWARD_BBERGER.ppt (5)

Summary – Dr. Norbert D'Souza

- Dr. Norbert D'Souza has devoted 47 years to making significant contributions in the field of developing technologies for use by the American Soldier
- He starts each day thinking of ways to improve the equipment in the hands of our soldiers
- Even at the age of (70), following his retirement in December 2010, Norbert remains active, working closely with ARDEC, PM CAS and PM MAS on products that are fielded to soldiers in harms way.
- Dr. Norbert D'Souza's <u>life-long commitment to Large Caliber</u> <u>Ammunition Design and Development</u> is evident and he will continue to contribute significant achievements during his retirement. Therefore, he is a deserving recipient of the 2011 Robert Trifiletti Award.

GENERAL DYNAMICS Ordnance and Tactical Systems 07MKT0125_CHINN AWARD_BBERGER.ppt (6)

Letters of Commendation – Dr. Norbert D'Souza

- Received many Letters of Commendation during his career. I have attached two letters received in support of Norbert's nomination for the 2011 Trifiletti Award:
 - Ms. Barbara J. Machak,
 - Executive Director, Enterprise and Systems Integration Ctr
 - Mr. William J. Sanville
 - Deputy Project Manager, Maneuver Ammunition Systems

07MKT0125_CHINN AWARD_BBERGER.ppt (7)

DEPARTMENT OF THE ARMY ENTERPRISE & SYSTEMS INTEGRATION CENTER US ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER PICATINNY ARSENAL, NEW JERSEY 07806-5000

11 January 2011

Project Integration Division

SUBJECT: 2011 Trifiletti Award by the NDIA Guns & Missiles Executive Committee

Sam Campagna National Defense Industrial Association 2111 Wilson Blvd Suite 400 Arlington, VA 22201

Dear Mr. Campagna:

This letter serves as an endorsement of the nomination of Dr. Norbert D'Souza by General Dynamics Ordnance and Tactical Systems for the 2011 NDIA Trifiletti Award.

Dr. D'Souza's contributions to technology development over his 47-year career in the area of large caliber ammunition design and manufacture has benefitted the warfighter and strengthened national defense.

During his tenure as the Vice President Business Development at SNC Technologies and then General Dynamics Ordnance and Tactical Systems-Canada, Dr. D'Souza's unique leadership was instrumental in establishing and directing collaborative R&D projects. He embodies the phrase "the customer is always right" and his calm, fair and professional demeanor was an asset in promoting teamwork, maintaining objective focus, performing due diligence, and building consensus in pursuing the best solution.

In summary, Dr. Norbert D'Souza is a deserving recipient of the 2011 NDIA Guns & Missiles Trifiletti Award.

Sincerely,

Barbara J. Machak Executive Director, ESIC

DEPARTMENT OF THE ARMY

OFFICE OF THE PROJECT MANAGER MANEUVER AMMUNITION SYSTEM PICATINNY ARSENAL, NEW JERSEY 07806-5000

January 26, 2011

Award Committee: Robert Trifiletti Award

To Whom It May Concern:

Subject: Nomination for 2011 Robert Trifiletti Award

As the Deputy Project Manager for Maneuver Ammunition Systems, I would like to wholeheartedly express my support for the nomination of Dr. Norbert D'Souza for the 2011 Robert Trifiletti Award.

I have personally had the honor and privilege of working with Dr. D'Souza for over 20 years. I have worked with Dr D'Souza as a team leader in ARDEC, and have had the privilege to continue working with him as my career progressed through management positions and ultimately as either the PM or the DPM of Maneuver Ammunition Systems. Through this entire span, I can state that whether I was a team leader in charge of one artillery systems project, or a DPM running hundreds of projects in small, medium and large caliber ammunition, my interfacing with Dr D'Souza has never changed. He worked with me in the most professional, consistent and honorable way. Our significant communications over the years was always straight forward and candid (even on tough problems). I valued his technical knowledge and commitment when he gave his word that either he or his company would complete a task, as he always kept his word. I learned instantly that Dr. D'Souza is a man of integrity and vast knowledge; He is a man that first and foremost measured success of a project or item as to how the warfighter would benefit. There were even times over my career when I sought Norberts counsel and advice even on projects he was not even involved in; and he never hesitated to give me the benefit of his experience and advice.

I am extremely grateful that I was asked to write this letter of support. In my opinion, Dr. Norbert D'Souza is the best and most outstanding candidate who could be chosen to receive this award and I recommend him without hesitation. If I can be of any further assistance please contact me at 973-724-5309.

William J. Sanville Deputy Project Manager, Maneuver Ammunition Systems

Please join me in welcoming to the podium, the 2011 Robert Trifiletti Award Winner

Dr. Norbert D'Souza

07MKT0125_CHINN AWARD_BBERGER.ppt (8)

