

Files are in Adobe format. Download the newest version from Adobe.

46th Annual Gun & Missile Systems Conference & Exhibition

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

Miami, FL

29 August - 1 September 2011

Agenda

Monday, August 29, 2011

TUTORIAL B

"Ready or not? Using Readiness Levels to Reduce Risk on the Path to Production", Mr. Dan Chien, Vice President, Engineering, General Dynamics Armament and Technical Products

Tuesday, August 30, 2011

DIVISION UPDATE/2012 JOINT ARMAMENTS SYMPOSIUM

Mr. Dave Broden, NDIA Armaments Division Chair; Broden Resource Solutions

KEYNOTE ADDRESS:

"Air and Missile Defense Overview", COL Cavalier, USA, Program Executive Officer, Missile and Space, U.S. Army

KEYNOTE ADDRESS:

"Close Air Support and Joint Operations", Mr. Andrew K. Balding, Associate, Booz Allen Hamilton

KEYNOTE ADDRESS:

"The Role of the Government Laboratory in Shaping Weapon Systems Development; An ARDEC Perspective", Mr. Anthony J. Sebasto, Senior Associate for Munitions, U.S. Army ARDEC

CONCURRENT SESSIONS

MONROE

- INDIRECT FIRES

- 11503 An Analysis of the Indirect Fires Portfolio of Munitions, Mr. Jim Rodrigue, Raytheon Land Combat
- 11830 Development of an Extended Range, Large Caliber, Modular Payload Projectile, Mr. Pierre-Antoine Rainville, GD-OTS, Canada
- 11528 XM1128 155mm Insensitive Munition (IM) High Explosive (HE) Extended Range Artillery Projectile, Mr. Ductri Nguyen, U.S. Army ARDEC
- 11511 Technologies Utilizing the M483 Carrier, Mr. George Kurzik, GD-OTS, Red Lion

- EMERGING TECHNOLOGIES: SYSTEMS

• 11586 - Introduction of Wireless and MEMs based MDevices into Fire Control Systems, Mr. Ralph Tillinghast, U.S. Army ARDEC

- 11641 Extended Area Protection and Survivability Program (EAPS), Mr. Manfredi Luciano, U.S. Army ARDEC
- 11720 Development of the Interceptor System for the Extended Area Protection & Survivability (EAPS), Mr. E. Mitchell Danielson, ATK, Plymouth

- REQUIREMENTS & PROGRAM TRENDS

- 11786 Naval Forces Capabilities Gap Against Swarm Attacks, Mr. Andrew Bradick, Rheinmetall
- 11861 U.S. Forces Light and Medium Mortar Ammunition Insensitive Munitions Path, Mr. Nick Baldwin, U.S. Army RDECOM-ARDEC
- 11863 IM Compliance for Mortar Illumination Cartridges, Mr. Thomas Peter, U.S. Army RDECOM-ARDEC
- 11482 Precision Guided Indirect Munitions Operational Evolution, Mr. Justin Skaret, Raytheon, Missile Systems
- 11792 Enhancing Convoy Security by Means of Rapid Deployable Weapons, Mr. Gerrie Van der Merwe, BAE Land Systems, South Africa

TUTTLE

– MODELING & SIMULATION I – DESIGN

- 11791 Gun Launch Dynamics Modeling-Benchmarking the State of the Art, Mr. Rollie Dohrn, ATK, Plymouth
- 11774 Gun Launch Dynamics and Aeroballistic Analysis via Onboard Laser Diode, Mr. Rollie Dohrn, ATK, Plymouth
- GD-OTS/Nammo 25 mm JSF Combat Ammunition, Mr. Zack Kemp, GD-OTS
- 11824 Design, Analysis and Weight Optimization Techniques for Joint Strike Fighter Missionized Gun Pod Support Equipment, Mr. Gary Miller, GD-ATP

- MODELING & SIMULATION II: TEST METHODS

- 11838 A Method for Assessing the Effects of Overpressure from Small/Medium Caliber Weapons Fire, Mr. Steven Backer, NSWC-Crane
- 11793 The Challenge of Environmental Testing of the Expeditionary Fighting Vehicle Ammunition Feed System Separate from the Expeditionary Fighting Vehicle, Mr. Ron Hopkins, GDATP

- TACTICAL ROCKETS & MISSILES

- 11808 Design Synthesis for Large Shaped Charges: From Requirements to Qualification, Mr. Jason Shire, Raytheon
- 11802 Use of COTS O-rings as a Pyrotechnic Safety Barrier in a Rocket Motor Ignition Safety Device, Mr. Brian Erickson, ATK, Plymouth
- 11756 Hellfire Integrated Blast Fragmentation Sleeve Multipurpose Warhead, Mr. Jonathan Thomas, GD-OTS

Wednesday, August 31, 2011

AWARDS LUNCHEON

2011 Robert Trifiletti Award Winner

• Dr. Norbert D'Souza

Combat Archer

• Capt Jesse "Magoo" Proctor

CONCURRENT SESSIONS

MONROE

- ENERGETICS I

- 11822 Novel ARDEC Igniters for Gun Systems, Dr. Eugene Rozumov, U.S. Army ARDEC
- 11787 The Effects of Igniter Design on the Interior Ballistic Performance of Deterrent Coated Propellants, Dr. Thelma Manning, U.S. Army, RDECOM-ARDEC

– ENERGETICS II

- 11867 IM in the Field—Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli, Ms. Pamela Ferlazzo, U.S. Army RDECOM-ARDEC
- 11537 Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications, Mr. Virgil Fung, BAE Systems Ordnance Systems Inc
- 11832 Development and Characterization of IM Gun Propellant for the 120mm Tank System, Mr. Duncan Park, U.S. Army RDECOM-ARDEC
- 11821 The Advance Case System (ACS) Program for 120mm Tank Training Ammo- Phase 2, Mr. Jeff Berg, ATK, Plymouth
- 11761 High Explosives Charges for Insensitive Artillery and Mortar Ammunitions: Performances, Technology, Producibility, Affordability, Dr. Bernard Zeller, SNPE

- DIRECT FIRES I

- 11747 Direct Fires & Precision Weapons for Rapid Deployment at the Modern Battlefield, Mr. Danny Schirding, Israel Military Industries, Ltd.
- 11725 Medium Calibre Goes in a New Direction, Mr. David Leslie, BAE Systems Global Combat Systems
- 11572 The Development and Testing of the Improved Kinetic Energy Electronic Time (IKE-ET) Round, Mr. Geoffrey Bland, NSWC Dahlgren
- 11809 Composite Sabot Technology for the 105mm Rifled Tank Gun System, Mr. Velan Mudaliar, U.S. Army RDECOM-ARDEC

- PRECISION WEAPONS

11719 - Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the Family of Precision Guided Projectiles, Dr. Karl Flueckiger, Draper Laboratory

- 11635 Very Affordable Precision Projectile (VAPP) System and Flight Experiments, Mr. Christopher Stout, U.S. Army ARDEC
- 11459 Evolution of the EXCALIBUR Guided Projectile, Mr. Chris Geswender, Raytheon Missile Systems
- 11526 Precision Urban Mortar Attack (PUMA), Mr. Luke Steelman, NSWC Dahlgren
- 11788 Leveraging Proven Systems to Develop a Guided Mortar for APMI, Ms. Kelly Hanink, Program Manager, Projectile Systems ATK Advanced Weapons Division, Plymouth

TUTTLE

- EMERGING TECHNOLOGIES: MATERIALS & PROCESSES

- 11583 New PVD Processes for Durable Pollution-Free Ordnance, Dr. Sabrina Lee, U.S. Army, ARDEC
- 12179 The "Perfect" Time for an Upgrade to US Propellant, Mr. Donald Messner, ATK, Radford

- MODELING & SIMULATION III: SYSTEMS & MANUFACTURING

- 11648 System Analysis with Integrated Modeling and Optimization, Mr. Philip Brislin, U.S. Army ARDEC RDAR-MEM-L
- 11502 A Virtual Learning Environment for Precision Indirect Fires, Mr. Jon Peoble, Raytheon
- 11779 Next Generation Manufacturing & Modeling Technology, Mr. David Smith, U.S. Army Benet Laboratories

- NON-TRADITIONAL WEAPONS I

- 11840 Development of a Large Caliber Naval EM Railgun, Mr. Roger Ellis, Office of Naval Research
- 11841 Electromagnetic Railgun, a Multi-Mission Weapon System, Mr. Alan Kull, General Atomics
- 11828 Scalable Gen-Set for Directed Energy Weapons: Resolving the Power Problem, Mr. Bryan Bockmon, Rocky Mountain Scientific Laboratory

- NON-TRADITIONAL WEAPONS II

- 11509 Aggressor Suppression via the Use of Non-Lethal Projectiles and Launcher Systems, Mr. Dan Hartman, GD-OTS
- 11697 Netted Smart Precision Engagement Autonomous Rounds (NetSpears) for Navy and Army Weapons, Mr. Allan Vanuga, Raytheon Missile Systems
- 11781 Gun-Launched Aerial Precision Munition, Mr. Jay Canela & Mr. Lloyd Khuc, U.S. Army RDECOM-ARDEC
- 11525 Cannon Cluster Munition Replacement for 155mm Artillery Systems, Mr. Ryan Gorman, U.S. Army ARDEC
- 11644 Determination of the Shelf Life of MEMS Navigation- Grade Sensors through Use of Accelerated Aging Principles, Mr. James Sarruda, U.S. Army ARDEC

Thursday, September 1, 2011

CONCURRENT SESSIONS

MONROE

- EMERGING TECHNOLOGIES: AMMUNITION

- 11581 Precision Air Dropped Guided Munition (PADGM) System, Mr. Asad Khan, U.S. Army ARDEC
- 11759 Scalable Airburst Fuze Technology-Shaping the Future, Mr. Paul Reynolds, GD-OTS, Marion
- 11790 LW25 Programmable Air Burst Munitions, Mr. Donavan Gloude, ATK, Plymouth
- PRODAS GNC Trajectory System Simulation, Mr. Jeff Siewert, ArrowTech

- DIRECT FIRES II

- 11611 USMC EFV Program Cartridge Qualification and Integration Program Status, Maj Ian McDuffie, USMC, PM AAA
- 11615 30mm MK317 TPDS-T Cartridge Development and Qualification, Mr. James McConkie, ND5, Office of the Program Manager
- 11758 30mm x 173 Ammunition Suite—The Appropriate Response for Any Target, Mr. Rick Wright, GD-OTS
- 11800 LW30 Target Practice-Traced (TP-T) Ammunition, Mr. Kyle Nerison, ATK, Plymouth
- 11819 30 x 173mm TPDS-T Development, Mr. Donavan Gloude, ATK, Plymouth

TUTTLE

- PLATFORM & WEAPON SYSTEM INTEGRATION

- 11681 Next-Gen Fire Control: Free Software & Video Game Math, Mr. Marc Santoro, NSWC Dahlgren
- 11777 Development of a Moveable Weapon Mount System for the CH47 Helicopter, Mr. Michael Colonnello, U.S. Army ARDEC
- 11584 Rapid Integration of the M197 onto the MH-60S, Mr. Joseph Burkart, NSWC Crane
- 11660 Gun Weapon System (GWS) MK 48 for USCG Legends Class Cutters, Ms. Kaye Aswegan, NSWC Dahlgren

- ARMAMENT SUBSYSTEMS

- 11799 Developing Reliable Software in a Rapid Deployment Product, Mr. Steve Gunderson, ATK, Plymouth
- 11823 M197 Weapon Command and Control System for the MH-60S, Mr. William Reed, U.S. Navy
- 11804 Pivoting Coupling—Army's Greatest Invention, Mr. Steve Kotefski, Savit Corporation

Untitled Document

PROMOTING NATIONAL SECURITY SINCE 1919

46TH ANNUAL GUN & MISSILE SYSTEMS CONFERENCE & EXHIBITION "Shaping Weapon Systems for Rapid Deployme

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

AUGUST 29 -SEPTEMBER 1, 2011 www.ndia.org/meetings/1590

HYATT REGENCY MIAMI 📉 MIAMI, FLORIDA

GUN & MISSILE SYSTEMS CONFERENCE INFORMATION

Conference Chair:

Mr. Jim Talley General Dynamics Armament and Technical Products, Inc. jtalley@gdatp.com (802) 662-6013

Armament Division Chair:

Mr. Dave Broden Broden Resource Solutions dbroden@brsbis.com (952) 476-4301

Gun & Missile Committee Chair:

Mr. Steve French BAE Systems Steven.French@baesystems.com (763) 572-6551

Conference Planning Team

Mr. Sam Campagna Assistant Vice President, Operations, NDIA (703) 247-2544 scampagna@ndia.org

Ms. Allison Doherty

Meeting Planner, NDIA (703) 247-2570 adoherty@ndia.org

Ms. Taryn Crowder

Exhibits Manager, NDIA (703) 247-2566 tcrowder@ndia.org

ANNOUNCEMENT

The 46th Annual NDIA Armament Systems: Gun and Missile Conference and Exhibition will be held August 29-September 1, 2011 in Miami, Florida. The conference will address the theme, "Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response." The conference will provide a forum for discussing methods to enhance defense-related capabilities, not only through available technology, but also through development of personnel. A broad range of topics related to design and development of technology and training, and development of people in the gun and missile system industry will be presented.

The full scope of gun and missile tactical weaponry and related components will be discussed including: direct/indirect/precision fire systems, tactical rockets and missiles, energetics, effectiveness, modeling and simulation, platform integration and emerging technologies. Representatives of the U.S. and International defense communities including both government and industry members are invited to participate.

SESSION CHAIRS

Indirect Fires:

Mr. John Altrichter, *BAE Systems*; Mr. Scott Martin, *Raytheon* **Modeling & Simulation I - Design**

Mr. Jeff Siewert, *Arrow Tech*; Ms. Shellie Clift, *NSWC-Dahlgren* Emerging Technologies - Systems:

Mr. Mark Serben, U.S. Army ARDEC; Mr. Joe Buzzett, GD-OTS

Modeling & Simulation II - Test Methods:

Mr. Jeff Siewert, Arrow Tech

Requirements and Program Trends:

Mr. Steve French, *BAE Systems;* Mr. Jay Brannam, *ATK*

Tactical Rockets and Missiles:

Mr. Ed DePasqual, *Nammo Talley*; Mr. John Bednarz, *Raytheon* Energetics I:

Mr. Matt Solverson, *GD-OTS*; Mr. Ric Mutascio, *Esterline Defense Technologies* Emerging Technologies - Materials & Processes:

Mr. Bob Glantz, *ATK*; Mr. Jeff Caratelli, *Alcoa* Energetics II:

Mr. Matt Solverson, GD-OTS; Mr. Ric Mutascio, Esterline Defense Technologies Modeling & Simulation III - Systems & Manufacturing

Mr. Jeff Siewert, *Arrow Tech*; Mr. Steve Piper, *Piper Pacific* **Direct Fires I:**

Mr. Tony Gabriele, *Benet Labs*; Mr. Doug Wong, *PM-MAS* Non-Traditional I:

Mr. Scott Martin, *Raytheon*; Mr. Dave Panhorst, *U.S. Army ARDEC* **Precision Weapons:**

Mr. Bill Beard, *LMMFC*; Mr. Rollie Dohrn, *ATK* **Non-Traditional II:**

Mr. Scott Martin, *Raytheon*; Mr. Dave Panhorst, *U.S. Army ARDEC* Emerging Technologies - Ammunition:

Mr. Mark Serben, U.S. Army ARDEC; Mr. Joe Buzzett, GD-OTS Platform & Weapon System Integration:

Mr. Rob Brewer, *NAVAIR*; Mr. Greg Hill, *Meggitt Defense Systems* **Direct Fires II:**

Mr. Tony Gabriele, *Benet*; Mr. Doug Wong, *PM-MAS* Armament Subsystems:

Mr. Steve Kelley, *BAE Systems*; Mr. Greg Hill, *Meggitt Defense Systems* **Poster Sessions:**

Mr. Rob Brewer, *NAVAIR*

ATTENDEE INFORMATION

REGISTRATION

CONFERENCE REGISTRATION FEES	EARLY (ON/BEFORE 2/19)	REGULAR (2/20-8/19)	LATE (AFTER 8/19)
GOVERNMENT/ ACADEMIA/ALLIED GOV.	\$720	\$800	\$880
INDUSTRY NDIA MEMBER	\$820	\$900	\$990
INDUSTRY Non-Ndia member	\$900	\$990	\$1,090

Register online at the event website: www.ndia.org/meetings/1590

Mail Registration To:

NDIA - Event #1590 2111 Wilson Boulevard, Suite 400 Arlington, VA 22201

Fax Registration to: (703) 522-1885

Please do not fax or mail any registration forms after August 19, 2011

Cancellation Policy: All cancellations on or before August 19, 2011 will receive a refund minus a cancellation fee of \$75. Refunds will not be given for cancellations after August 19, 2011. Please be sure you are registering with the correct credit card or form of payment, as a \$25 fee will be applied to registrations switching credit cards or forms of payment. Substitutions welcome in lieu of cancellations! Please make your cancellation or substitution in writing to Allison Doherty at adoherty@ndia.org.

HOTEL INFORMATION

A block of rooms has been reserved at the Hyatt Regency Miami. In order to ensure the discounted rate, you must make your reservations early and ask for the National Defense Industrial Association (NDIA) room block. Rooms will not be held after Saturday, March 19, 2011 and may sell out before then. Rates are also subject to change after this date.

Hyatt Regency Miami 400 SE Second Avenue Miami, Florida 33131

To make your reservation, please call the hotel directly at (305) 358-1234.

- Industry Rate \$149 (single/double)
- Government Rate* \$104 (single/double) or the prevailing government per diem

Note: The government per diem rate is available only to active duty or civilian government employees. ID will be required upon check-in.

Any active U.S. Military attendee with ID and travel order will be tax exempt (subject to state's regulation of tax exemption). Any U.S. Government employee paying with U.S. Government check or credit card will be tax exempt (with supporting documentation as required by some states). Check with the hotel for specific state and local requirements when booking hotel reservations.

ATTIRE

During conference registration and check in, each participant will be issued an identification badge. Please be prepared to present picture ID. Badges must be worn at all conference functions. Appropriate dress for this conference is business casual for civilians and Class B uniform or uniform of the day for military.

SPECIAL NEEDS

NDIA supports the Americans with Disabilities Act of 1990. Attendees with special needs should contact Ms. Allison Doherty, Meeting Planner, NDIA, at adoherty@ndia.org.

TRAVEL INFORMATION From Miami International Airport (8 miles)

Take 836 East, go through tolls and stay to right side. Take I-95 South Exit - Downtown. Once on I-95, stay in left hand lane and take Exit 2A / Biscayne Boulevard. Stay in right hand lane at the end of the ramp, the hotel will be on your immediate right side.

Super Shuttle service from Miami International Airport:

(fees apply): 24 hour service to hotel. \$18.00 per person. The Super Shuttle station is located at the Van/Limo booth directly outside of the lower level baggage claim area near curbside pick-up.

Taxi from Miami International

Airport: Approximately \$20.00-\$25.00 one-way.

PARKING

Valet parking charges: 0-2 hours \$10.00, 2-3 hours \$12.00, 3-4 hours \$16.00, 4-5 hours \$20.00, overnight \$30.00. Valet parking charges include in and out privileges. No vans, trucks or large vehicles.

Self parking: \$12.75 with a validation sticker provided by the front desk staff upon request for the discounted rate. Self parking is in a garage with no in/out privilege.

MONDAY, AUGUST 29, 2011

10:00 AM - 3:00 PM EXHIBITOR MOVE-IN — RIVERFRONT HALL

12:00 PM - 5:00 PM REGISTRATION — LOWER PROMENADE

2:00 PM - 4:00 PM	TUTORIALS
2:00 PM - 3:00 PM	TUTORIAL A - TUTTLE "Legislative Update" Mr. Pete Steffes, <i>Vice President, Government Policy, NDIA</i>
3:00 PM - 4:00 PM	TUTORIAL B - TUTTLE "Ready or not? Using Readiness Levels to Reduce Risk on the Path
	to Production" Mr. Dan Chien, Vice President, Engineering, General Dynamics Arma- ment and Technical Products

5:00 PM - 6:00 PM

WELCOME RECEPTION IN EXHIBIT HALL

TUESDAY, AUGUST 30, 2011

7:00 AM - 5:00 PM	REGISTRATION — LOWER PROMENADE	
7:00 AM - 8:00 AM	CONTINENTAL BREAKFAST — REGENCY BALLROOM PREFUNCTION	
8:00 AM - 8:15 AM	WELCOME REMARKS & CONFERENCE OVERVIEW — TUTTLE/MONROE BALLROOM	
	 Mr. Sam Campagna, Assistant Vice President, Operations, NDIA Mr. Jim Talley, NDIA Conference Chair; General Dynamics Armament and Technical Products, Inc. Mr. Steve French, NDIA Gun & Missile Committee Chair; BAE Systems 	
8:15 AM - 8:30 AM	DIVISION UPDATE/2012 JOINT ARMAMENTS SYMPOSIUM	
	Mr. Dave Broden, NDIA Armaments Division Chair; Broden Resource Solutions	
8:30 AM - 9:00 AM	KEYNOTE ADDRESS: "Air and Missile Defense Overview"	
	BG Ole Knudson, USA, Program Executive Officer, Missile and Space, U.S. Army	
9:00 AM - 9:30 AM	KEYNOTE ADDRESS: "Close Air Support and Joint Operations"	
	Mr. Andrew K. Balding, Associate, Booz Allen Hamilton	
9:30 AM - 10:00 AM	KEYNOTE ADDRESS: "The Role of the Government Laboratory in Shaping Weapon Systems Development; An ARDEC Perspective"	
	Mr. Anthony J. Sebasto, Senior Associate for Munitions, U.S. Army ARDEC	
10:00 AM - 6:30 PM	EXHIBIT HALL OPEN - RIVERFRONT HALL	
10:00 AM - 10:35 AM	BREAK IN EXHIBIT HALL	

GUN & MISSILE SYSTEMS TUESDAY, AUGUST 30, 2011

10:35 AM - 12:15 PM

CONCURRENT SESSIONS

	USS AM - 12.15 FM		
	MONROE INDIRECT FIRES	TUTTLE MODELING & SIMULATION I - DESIGN	
10:35 AM - 10:55 AM	11503 - An Analysis of the Indirect Fires Portfolio of Munitions Mr. Jim Rodrigue, <i>Raytheon</i> Land Combat	11791 - Gun Launch Dynamics Modeling—Benchmarking the State of the Art Mr. Rollie Dohrn, <i>ATK, Plymouth</i>	
10:55 AM - 11:15 AM	11830 - Development of an Extended Range, Large Caliber, Modular Payload Projectile Mr. Pierre-Antoine Rainville, <i>GD-OTS, Canada</i>	Guided Projectile Simulation Mr. Jeff Siewert, Arrow Tech	
11:15 AM - 11:35 AM	11528 - XM1128 155mm Insensitive Munition (IM) High Explosive (HE) Extended Range Artillery Projectile Mr. Ductri Nguyen, U.S. Army ARDEC	11774 - Gun Launch Dynamics and Aeroballistic Analysis via Onboard Laser Diode Mr. Rollie Dohrn, <i>ATK, Plymouth</i>	
11:35 AM - 11:55 AM	11463 - 155mm HE Projectile Qualification Program Mr. Charlie Patel, <i>U.S. Army</i> <i>ARDEC</i>	GD-OTS/Nammo 25 mm JSF Combat Ammunition Mr. Zack Kemp, <i>GD-OTS</i>	
11:55 AM - 12:15 PM	 11511 - Technologies Utilizing the M483 Carrier Mr. George Kurzik, <i>GD-OTS</i>, <i>Red Lion</i> 	11824 - Design, Analysis and Weight Optimization Techniques for Joint Strike Fighter Missionized Gun Pod Support Equipment Mr. Gary Miller, <i>GD-ATP</i>	

12:15 PM - 1:30 PM

LUNCHEON SPEAKER

"Changes in the World of ITAR"

Mr. Larry Christensen, *Miller Chevalier Chartered*

1:30 PM - 2:50 PM

CONCURRENT SESSIONS

	MONROE EMERGING TECHNOLOGIES: SYSTEMS	TUTTLE MODELING & SIMULATION II: TEST METHODS
1:30 PM - 1:50 PM		11692 - AFRL Munitions Directorate Fuze Experimentation Research Activities Mr. Scott Turner, AF Munitions Directorate, Eglin AFB

GUN & MISSILE SYSTEMS TUESDAY, AUGUST 30, 2011

1:50 PM - 2:10 PM	11586 - Introduction of Wireless and MEMs based Devices into Fire Control Systems Mr. Ralph Tillinghast, U.S. Army ARDEC	11838 - A Method for Assessing the Effects of Overpressure from Small/Medium Caliber Weapons Fire Mr. Steven Backer, <i>NSWC-Crane</i>
2:10 PM - 2:30 PM	11641 - Extended Area Protection and Survivability Program (EAPS) Mr. Manfredi Luciano, U.S. Army ARDEC	11793 - The Challenge of Environmental Testing of the Expeditionary Fighting Vehicle Ammunition Feed System Separate from the Expeditionary Fighting Vehicle Mr. Ron Hopkins, <i>GDATP</i>
2:30 PM - 2:50 PM	11720 - Development of the Interceptor System for the Extended Area Protection & Survivability (EAPS) Mr. E. Mitchell Danielson, ATK, Plymouth	11668 - Design and Fabrication of a Novel High-g Soft Recovery System for 155mm Precision Munitions and Components Mr. Greg Hader, U.S. Army ARDEC

2:50 PM - 3:30 PM

BREAK IN EXHIBIT HALL

3:30 PM - 5:10 PM

CONCURRENT SESSIONS

	MONROE REQUIREMENTS & PROGRAM TRENDS	TUTTLE TACTICAL ROCKETS & MISSILES
3:30 PM - 3:50 PM	11786 - Naval Forces Capabilities Gap Against Swarm Attacks Mr. Andrew Bradick, <i>Rheinmetall</i>	11808 - Design Synthesis for Large Shaped Charges: From Requirements to Qualification Mr. Jason Shire, <i>Raytheon</i>
3:50 PM - 4:10 PM	11861 - U.S. Forces Light and Medium Mortar Ammunition Insensitive Munitions Path Mr. Nick Baldwin, U.S. Army RDECOM-ARDEC	11842 - Advanced Aluminum Alloys Enabling High Performance Missile Components Mr. Travis Schmidt, <i>Alcoa</i>
4:10 PM - 4:30 PM	11863 - IM Compliance for Mortar Illumination Cartridges Mr. Thomas Peter, U.S. Army RDECOM-ARDEC	11802 - Use of COTS O-rings as a Pyrotechnic Safety Barrier in a Rocket Motor Ignition Safety Device Mr. Brian Erickson, <i>ATK, Plymouth</i>
4:30 PM - 4:50 PM	11482 - Precision Guided Indirect Munitions — Operational Evolution Mr. Justin Skaret, <i>Raytheon</i> <i>Missile Systems</i>	11756 - Hellfire Integrated Blast Fragmentation Sleeve Multipurpose Warhead Mr. Jonathan Thomas, <i>GD-OTS</i>
4:50 PM - 5:10 PM	11792 - Enhancing Convoy Security by Means of Rapid Deployable Weapons Mr. Gerrie Van der Merwe, BAE Land Systems, South Africa	

RECEPTION IN EXHIBIT HALL

GUN & MISSILE SYSTEMS WEDNESDAY, AUGUST 31, 2011

WEDNESDAY, AUGUST 31, 2011

7:00 AM - 5:00 PM

REGISTRATION

7:00 AM - 8:10 AM

CONTINENTAL BREAKFAST

8:10 AM - 9:30 AM

CONCURRENT SESSIONS

	MONROE ENERGETICS I	TUTTLE EMERGING TECHNOLOGIES: MATERIALS & PROCESSES
8:10 AM - 8:30 AM	11822 - Novel ARDEC Igniters for Gun Systems Dr. Eugene Rozumov, U.S. Army ARDEC	11813 - Potting of Electronic Components for High-G Gun Environments Dr. Peter Vo, Raytheon Missile Systems
8:30 AM - 8:50 AM	11787 - The Effects of Igniter Design on the Interior Ballistic Performance of Deterrent Coated Propellants Dr. Thelma Manning, U.S. Army <i>RDECOM-ARDEC</i>	11829 - Investment Cast Titanium in Gun and Missile Systems Mr. Chris Jensen, <i>Alcoa Howmet</i>
8:50 AM - 9:10 AM	11590 - Foamed Celluloid Technology Mr. Mohammed Elalem, <i>U.S.</i> <i>Army ARDEC</i>	11583 - New PVD Processes for Durable Pollution-Free Ordnance Dr. Sabrina Lee, U.S. Army ARDEC
9:10 AM - 9:30 AM		12179 - The "Perfect" Time for an Upgrade to US Propellant Ms. Kelly Moran, <i>ATK, Radford</i>

9:30 AM - 3:30 PM

EXHIBIT HALL OPEN

9:30 AM - 10:15 AM

10:15 AM - 11:55 AM

CONCURRENT SESSIONS

BREAK IN EXHIBIT HALL

	MONROE ENERGETICS II	TUTTLE MODELING & SIMULATION III: SYSTEMS & MANUFACTURING
10:15 AM - 10:35 AM	11867 - IM in the Field— Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli Ms. Pamela Ferlazzo, U.S. Army RDECOM-ARDEC	11648 - System Analysis with Integrated Modeling and Optimization Mr. Philip Brislin, U.S. Army ARDEC RDAR-MEM-L

GUN & MISSILE SYSTEMS WEDNESDAY, AUGUST 31, 2011

THE TRIFILETTI AWARD

The Trifiletti Award is presented by the NDIA Gun & Missile Executive Committee to recognize and honor an individual who has made a significant contribution benefiting the warfighter, thus strengthening national defense. This contribution can be in the areas of the advancement of technology, systems, system integration or to someone who through his/her work provided unique leadership resulting in changes and progress in the community.

The award is named in honor of Mr. Robert Trifiletti who made significant contributions to the advancement of technology, and by whose leadership many other accomplishments benefiting the warfighter came to fruition. The award is open to anyone in the gun and ammunition or rocket and missile community.

MILITARY OPERATIONS AWARD

The Military Operations Award is presented to recognize an individual, crew or unit who in the opinion of the NDIA Gun & Missile Executive Committee has made significant contributions in operational employment, tactics or combat applications of guns and ammunition and/or rockets and missiles which have impacted the readiness, capabilities or results of U.S. military activity. A significant contribution is considered to be superior performance in an operational environment, development of tactics, training or leadership.

10:35 AM - 10:55 AM	11537 - Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications Mr. Virgil Fung, BAE Systems Ordanance Systems Inc.	11502 - A Virtual Learning Environment for Precision Indirect Fires Mr. Jon Peoble, <i>Raytheon</i>
10:55 AM - 11:15 AM	11832 - Development and Characterization of IM Gun Propellant for the 120mm Tank System Mr. Duncan Park, U.S. Army RDECOM-ARDEC	11779 - Next Generation Manufacturing & Modeling Technology Mr. David Smith, U.S. Army Benet Laboratories
11:15 AM - 11:35 AM	11821 - The Advance Case System (ACS) Program for 120mm Tank Training Ammo- Phase 2 Mr. Jeff Berg, <i>ATK, Plymouth</i>	
11:35 AM - 11:55 AM	11761 - High Explosives Charges for Insensitive Artillery and Mortar Ammunitions: Performances, Technology, Producibility, Affordability Dr. Bernard Zeller, SNPE	

11:55 AM - 1:15 PM

AWARDS LUNCH

1:15 AM - 2:35 PM

CONCURRENT SESSIONS

	MONROE DIRECT FIRES I	TUTTLE NON-TRADITIONAL WEAPONS I
1:15 PM - 1:35 PM	11747 - Direct Fires & Precision Weapons for Rapid Deployment at the Modern Battlefield Mr. Danny Schirding, Israel Military Industries, Ltd.	11840 - Development of a Large Caliber Naval EM Railgun Mr. Roger Ellis, <i>Office of Naval</i> <i>Research</i>
1:35 PM - 1:55 PM	11725 - Medium Calibre Goes in a New Direction Mr. David Leslie, <i>BAE Systems</i> <i>Global Combat Systems</i>	11841 - Electromagnetic Railgun, a Multi-Mission Weapon System Mr. Alan Kull, <i>General Atomics</i>
1:55 PM - 2:15 PM	11572 - The Development and Testing of the Improved Kinetic Energy Electronic Time (IKE-ET) Round Mr. Geoffrey Bland, <i>NSWC-Dahlgren</i>	 11828 - Scalable Gen-Set for Directed Energy Weapons: Resolving the Power Problem Mr. Bryan Bockmon, Rocky Mountain Scientific Laboratory
2:15 PM - 2:35 PM	11809 - Composite Sabot Technology for the 105mm Rifled Tank Gun System Mr. Velan Mudaliar, <i>U.S. Army</i> <i>RDECOM-ARDEC</i>	

GUN & MISSILE SYSTEMS WEDNESDAY, AUGUST 31, 2011

2:35 PM - 2:55 PM

BREAK IN EXHIBIT HALL

3:00 PM - 7:00 PM

EXHIBIT HALL CLOSES & EXHIBITOR MOVE OUT

2:55 PM - 4:55 PM

CONCURRENT SESSIONS

	MONROE PRECISION WEAPONS	TUTTLE NON-TRADITIONAL WEAPONS II
2:55 PM - 3:15 PM	11810 - Inherent Reliability and Affordability of Ballistic Solutions and Their Operational Benefits Mr. Larry Linde, <i>ATK, Plymouth</i>	11805 - Electronic Ballistics Systems: A Scalable Integrated Weapons Systems with Applications Footprint for Fixed and Mobile Platforms and Delivery of Same Caliber Lethal and Non-Lethal Munitions or Payloads Mr. George Orrison, Metal Storm Inc.
3:15 PM - 3:35 PM	11719 - Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the Family of Precision Guided Projectiles Dr. Karl Flueckiger, Draper Laboratory	11509 - Aggressor Suppression via the Use of Non-Lethal Projectiles and Launcher Systems Mr. Dan Hartman, <i>GD-OTS</i>
3:35 PM - 3:55 PM	11635 - Very Affordable Precision Projectile (VAPP) System and Flight Experiments Mr. Christopher Stout, U.S. Army ARDEC	11697 - Netted Smart Precision Engagement Autonomous Rounds (NetSpears) for Navy and Army Weapons Mr. Allan Vanuga, <i>Raytheon Missile</i> <i>Systems</i>
3:55 PM - 4:15 PM	11459 - Evolution of the EXCALIBUR Guided Projectile Mr. Chris Geswender, <i>Raytheon</i> <i>Missile Systems</i>	11781 - Gun-Launched Aerial Precision Munition Mr. Jay Canela & Mr. Lloyd Khuc, <i>U.S. Army</i> <i>RDECOM-ARDEC</i>
4:15 PM - 4:35 PM	11526 - Precision Urban Mortar Attack (PUMA) Mr. Luke Steelman, <i>NSWC-</i> <i>Dahlgren</i>	11525 - Cannon Cluster Munition Replacement for 155mm Artillery Systems Mr. Ryan Gorman, U.S. Army ARDEC
4:35 PM 4:55 PM	11788 - Leveraging Proven Systems to Develop a Guided Mortar for APMI Mr. Nicholas Ward, ATK, Plymouth	11644 - Determination of the Shelf Life of MEMS Navigation- Grade Sensors through Use of Accelerated Aging Principles Mr. James Sarruda, U.S. Army ARDEC

GUN & MISSILE SYSTEMS THURSDAY, SEPTEMBER 1, 2011

THURSDAY, SEPTEMBER 1, 2011

7:00 AM - 12:00 PM

REGISTRATION

7:00 AM - 8:00 AM

CONTINENTAL BREAKFAST

8:00 AM - 10:00 AM

CONCURRENT SESSIONS

	MONROE EMERGING TECHNOLOGIES: AMMUNITION	TUTTLE PLATFORM & WEAPON SYSTEM INTEGRATION
8:00 AM - 8:20 AM	11581 - Precision Air Dropped Guided Munition (PADGM) System Mr. Asad Khan, <i>U.S. Army</i> <i>ARDEC</i>	11681 - Next-Gen Fire Control: Free Software & Video Game Math Mr. Marc Santoro, NSWC- Dahlgren
8:20 AM - 8:40 AM	11759 - Scalable Airburst Fuze Technology—Shaping the Future Mr. Paul Reynolds, <i>GD-OTS,</i> <i>Marion</i>	11777 - Development of a Moveable Weapon Mount System for the CH47 Helicopter Mr. Adam Jacob, <i>U.S. Army</i> <i>ARDEC</i>
8:40 AM - 9:00 AM	11790 - LW25 Programmable Air Burst Munitions Mr. Donavan Gloude, <i>ATK</i> , <i>Plymouth</i>	11584 - Rapid Integration of the M197 onto the MH-60S Mr. Joseph Burkart, <i>NSWC-</i> <i>Crane</i>
9:00 AM - 9:20 AM		11660 - Gun Weapon System (GWS) MK 48 for USCG Legends Class Cutters Ms. Kaye Aswegan, NSWC- Dahlgren
9:20 AM - 9:40 AM	11784 - Non-Traditional Impact Detection Using Triboluminescence Mr. William Hollerman, University of Louisiana at Lafayette	1869 - Digitized M119A2 105mm Howitzer Mr. John Allen, <i>U.S. Army</i> <i>ARDEC</i>

9:40 AM - 10:00 AM

BREAK

GUN & MISSILE SYSTEMS THURSDAY, SEPTEMBER 1, 2011

10:00 AM - 12:20 PM

CONCURRENT SESSIONS

	MONROE DIRECT FIRES II	TUTTLE ARMAMENT SUBSYSTEMS
10:00 AM - 10:20 AM	11611 - USMC EFV Program Cartridge Qualification and Integration Program Status Maj Ian McDuffie, USMC, <i>PM</i> <i>AAA</i>	11799 - Developing Reliable Software in a Rapid Deployment Product Mr. Steve Gunderson, ATK, Plymouth
10:20 AM - 10:40 AM		11775 - Development of a Field Inspection Vehicle Designed to Autonomously Analyze Large- Bore Tubes for Fatigue and Wear Mr. Cory Mettler, American Science & Technology
10:40 AM - 11:00 AM	11615 - 30mm MK317 TPDS-T Cartridge Development and Qualification Mr. James McConkie, <i>ND5</i> , Office of the Program Manager	11823 - M197 Weapon Command and Control System for the MH-60S Mr. William Reed, <i>U.S. Navy</i>
11:00 AM - 11:20 AM	11839 - Rheinmetall 30mm x 173 Weapon Systems: Two Guns, Two Solutions Mr. Stephan Kerk, <i>Rheinmetall</i> Waffe Munition	11804 - Pivoting Coupling— Army's Greatest Invention Mr. Steve Kotefski, <i>Savit</i> <i>Corporation</i>
11:20 AM - 11:40 AM	11837 - The Rheinmetall 30mm x 173 Ammunition Family: Lethality and Urban Effectiveness Mr. Stephan Kerk, <i>Rheinmetall</i> Waffe Munition	
11:40 AM - 12:00 PM	11758 - 30mm x 173 Ammunition Suite—The Appropriate Response for Any Target Mr. Rick Wright, <i>GD-OTS</i>	
12:00 PM - 12:20 PM	11800 - LW30 Target Practice- Traced (TP-T) Ammunition Mr. Kyle Nerison, <i>ATK</i> , <i>Plymouth</i>	

12:20 PM

CONFERENCE ADJOURNS

PROCEEDINGS

Proceedings will be available on the web one to two weeks after the conference through the Defense Technical Information Center (DTIC). You will receive notification via email that proceedings are posted and available.

ABSTRACT ID	ABSTRACT TITLE	ADDITIONAL AUTHORS			
11463	IM testing and Initiation Trials of the IMX-101 Explosive in the M795 projectile	Mr. Philip Samuels, Mr. Anthony Di Stasio, Mr. Ductri Nquyen			
11482	Precision Guided Indirect Munitions – Operational Evolution	Mr. Conan Davis			
11502	A Virtual Learning Environment for Precision Indirect Fires	Mr. Jim Rodrigue			
11503	An Analysis of the Indirect Fires Portfolio of Munitions	Mr. Jon Peoble			
11506	Advanced Cannon Bore Cleaning System	Mr. Jonghyun Shim, Mr. Seil Jeon			
11509	Aggressor Suppression via the Use of Non-Lethal Projectiles and Launcher Systems	Mr. Dan Hartman, Mr. Steve Broussard			
11528	XM1128 155mm Insensitive Munition (IM) High Explosive (HE) Extended Range Artillery Projectile	Mr. John Magrogan			
11537	Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications	Mr. Brian Alexander, Mr. Mike Ervin, Mr. Philip Samuels, Mr. Charlie Patel			
11572	The Development and Testing of the Improved Kinetic Energy Electronic Time (IKE- ET) Round	Mr. James Barnes, Mr. Todd Cloutier			
11581	Precision Air Dropped Guided Munition (PADGM) System	Mr. Marc Ritt			
11583	New PVD Processes for Durable Pollution-Free Ordnance Based on Ionized PVD Technology	Mr. Dan Schmitt, Mr. Fang Yee, Mr. Mick Cipollo			
11586	Introduction of Wireless and MEMs Based Devices into Fire Control Systems	Mr. Michael Wright			
11609	30MMX173 310 MOD 0 PABM-T Cartridge Qualification Program	Mr. Jay Fitzsimmons			
11644	Determination of the Shelf Life of MEMS Navigation-Grade Sensors Through Use of Accelerated Aging Principles	Mr. Scott Gift			
11657	Modeling of the Autofrettage Processes of a Gun Barrel	Mr. Sudhir Puttagunta, Mr. Chandra Penumarthy			
11668	Design and Fabrication of a Novel High-g Soft Recovery System for 155mm Precision Munitions and Components	Mr. Nigel Gray, Mr. Brian DeFranco, Mr. Donald Carlucci			
11670	Versatile Electromagnetic Mortar Launcher for the JLTV-B	Mr. Ronald Kaye, Mr. Steven Dron			
11681	Next-Gen Fire Control: Free Software & Video Game Math	Mr. Anthony D'Alessandro			
11692	AFRL Munitions Directorate Fuze Experimentation Research Activities	Mr. James Cross, Mr. Don Clabaugh			
11697	Netted Smart Precision Engagement Autonomous Rounds (NetSpears) for Navy and Army Weapons	Mr. Sam Ghaleb, Mr. Mark Elkanick			
11719	Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the family of Precision Guided Projectiles	Mr. Paul Manz, Mr. Brian London Mr. Tim Easterly			
11761	High Explosives Charges for Insensitive Artillery and Mortar Ammunitions: Ferformances, Technology, Producibility, Affordability	Mr. Jacques Cardin, Mr. Pierre Vignaud			
11775	Development of a Field Inspection Vehicle Designed to Autonomously Analyze Large- Bore Tubes for Fatigue and Wear	Mr. John Duffy, Mr. Jesse VanOverbeke Dr. Fereidoon Delfanian			
11781	Gun-Launched Aerial Precision Munition	Mr. Daniel Vo, Mr. Hjalmar Canela, Mr. Lloyd Khuc			
11784	Non-Traditional Impact Detection Using Triboluminescence	Dr. Shawn Goedeke, Mr. Ross Fontenot, Mrs. Kamala Bhat, Mr. Brady Broussard			
11787	The Effects of Igniter Design on the Interior Ballistic Performance of Deterrent Coated Propellants	Dr. Eugene Rozumov, Mr. Carlton Adam, Mr. Duncan Park, Dr. Joseph Laquidara			
11790	LW25 Programmable Air Burst Munitions	Mr. Erik Elmer			
11791	Gun Launch Dynamics Modeling – Benchmarking the State of the Art	Dr. Donald Carlucci, Dr. James Newill			
11802	Use of COTS O-rings as a Pyrotechnic Safety Barrier in a Rocket Motor Ignition Safety Device	Mr. Tom Larson			

11807	Using JLOC (GPS Jammer Detection and Location System) to Improve the Effectiveness of Mission Planning for GPS Guided Weapons and to Support Flexible Response	Mr. Rick Edwards			
11809	Composite Sabot Technology for the 105MM Rifled Tank Gun System	Mr. Saif Musalli, Dr. William Drysdale, Mr. Michael Minnicino			
11811	Cartridge Case Venting Technologies, 25mm M910 Ctg Test Vehicle	Mr. Philip Abbate			
11814	Structural Integrity Evaluation of Composite Cylinders	Mr. Ajay Srinivasa, Dr. Fereidoon Delfanian			
11819	30mm Target Practice Discarding Sabot, Traced (TPDS-T) Ammunition Development	Mr. Don Gloude			
11822	Novel ARDEC Igniters for Gun Systems	Dr. Thelma Manning, Dr. Joseph Laquidara, Mr. Duncan Park, Dr. Kimberly Chung			
11823	M197 Weapon Command and Control System for the MH-60S	Mr. Alan Ford, Mr. John Proctor			
11828	Scalable Gen-Set for Directed Energy Weapons: Resolving the Power Problem	Mr. Travis Swanson			
11829	Investment Cast Titanium in Gun and Missile Systems	Mr. Eric Foos, Mr. David Lee			
11832	Development and Characterization of IM Gun Propellant for the 120mm Tank System	Mr. Sam Moy, Dr. Thelma Manning Mr. Donald Chiu, Dr. Eugene Rozumov			
11837	The Rheinmetall 30mm x 173 Ammunition Family: Lethality and Urban Effectiveness	Mr. Brian Sullivan			
11839	Rheinmetall 30mm x 173 Weapon Systems: Two Guns, Two Solutions	Mr. Brian Sullivan			
11840	Development of a Large Caliber Naval EM Railgun	Mr. Ryan Hoffman			
11841	Electromagnetic Railgun, A Multi-Mission Weapon System (Non-Traditional Armaments Category)	Mr. Thomas Hurn			
11842	Advanced Aluminum Alloys Enabling High Performance Missile Components	Mr. Les Yocum, Mr. Dustin Bush, Mr. Jeff Caratelli			
11861	US Forces Light and Medium Mortar Ammunition Insensitive Munitions Path	Mr. Roger Wong, Mr. John Niles, Mr. William Kuhnle, Mr. Rei Martinez			
11863	IM Compliance for Mortar Illumination Cartridges	Mr. Eli Martinez, Mr. John Niles, Mr. Sal Ghazi, Mr. Jeffrey Smith			
11867	IM in the Field – Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli	Mr. Roger Wong, Mr. John Niles, Mr. William Kuhnle, Mr. Jeffrey Smith			
11869	Digitized M119A2 105mm Howitzer	Mr. Ray Espinosa, Mr. Jose Santiago, Mr. Norm Lionetti			
11877	Acoustic Emissions Measured on the Outer Portion of a Composite Barrel	Ms. Rushie Ghimire			

SPONSORSHIP INFORMATION

Increase your company or organization's exposure by becoming a Sponsor! With a Sponsorship of \$5000, you will receive your organization's name on the back cover of the onsite brochure, a 350-word company description in the onsite brochure, main podium recognition, signage throughout the conference, and a hotlink to your organization's website.

For more information, please contact Taryn Crowder, Exhibits Manager at (703) 247-2566 or tcrowder@ndia.org.

2011 Exhibit Schedule:

Move In: Monday, August 29, 2011 10:00 AM – 3:00 PM (Must be set by 3:00 PM)

Show Hours: Monday, August 29, 2011 5:00 PM - 6:00 PM (Opening Reception in Exhibit Hall)

Tuesday, August 30, 2011 10:00 AM - 5:00 PM (Breaks in Exhibit Hall)

Tuesday Night Reception 5:00 PM - 6:30 PM Reception in Exhibit Hall)

Wednesday, August 31, 2011 9:30 AM - 3:30 PM (Breaks in Exhibit Hall)

Move Out: Wednesday, August 31, 2011 3:00 PM - 7:00 PM

EXHIBIT INFORMATION

EXHIBIT RATE INCLUDES

- Networking social functions in the exhibit hall
- Food Functions and Receptions
- Two exhibitor/conference registrations for exhibit personnel, per 10' x 10' booth
- Company profile online
- 24 hour security
- Booth 7"x44" ID Sign and Fabric back and side walls

Purchase your booth in real time! Visit: www.ndia.org/exhibits/1590.

REMINDERS

- Booths are sold in 10x10 sq. ft. increments and multiples thereof
- NDIA does not charge for corner or island fees
- No "end cap" booths are permitted
- Booth furnishings are not included and floor covering is required unless the hall is carpeted

COST TO EXHIBIT

Corporate Member Rate*: \$24.50 / sq. ft. (Note: your corporate member dues must be current to be able to get the member rate).

*Rate also applies to bona-fide government agencies

Non-Corporate Member Rate: \$29.50 / sq. ft.

MEMBERSHIP DISCOUNT

To qualify for the member rate on booths, or the small business package, your company has to join NDIA first as a Corporate Member. For more information on joining, contact Michael Kibler, 703-247-2571 or Erica Utegaard, 703-247-2549.

EVENT #1590 ► NDIA REGISTRATION FORM

NATIONAL DEFENSE INDUSTRIA (703) 522-1820 ► (703) 522-		G	VARD, SUITE 400 ► ARLIN	
46TH ANNUAL GUN & I ► HYATT REGENCY MIA		NFEREN	CE & EXHIBITION	
BAYS TO SIGN UP:	1. Online with a credi 2. By fax with a credi 3. By mail with a cheo	t card - Fa	ix: (703) 522-1885	> Address Change Needed
NDIA Master ID/Membership # (If known - hint: on mailing label ab	ove your name)		_ Social Security # (Last 4 digits - optional)	
Prefix <i>(e.g. RADM, COL, Mr., Ms., I</i>	Dr., etc.)			
Name: First		MI	_ Last	
Military Affiliation (e.g. USMC, USA (Ret.) etc.)			Nickname (For meeting badges)	
Title				
Organization				
Street Address				
Address (Suite, PO Box, Mail Stop,	Building, etc.)			
City	State		Zip	Country
Phone	Ext		_ Fax	
E-Mail				
Signature*				Date
PREFERRED WAY TO RECEIVE I Conference Information Subscriptions	NFORMATION Address above Address above		nate (Print address below) nate (Print address below)	⊳E-mail
Alternate Street Address				
Alternate Address (Suite, PO Box	Mail Stop, Building, etc.)			
City	State		_ Zip	Country

A, AFEI, PSA, WID) through regular mail, e-mail, telephone or fax. NDIA, its Chapters, Divisions and affiliates do not sell data to vendors or other companies.

> ¹ Includes a free three-year NDIA membership and subscription to National Defense magazine for military

▷ No, do not sign me up for the free government membership.

² Registration fees for non-NDIA (or affiliate) members include a one-year non-refundable NDIA membership

-\$15.00 will be applied for your 12 month

subscription to National Defense magazine.

and government employees.

CONFERENCE	Early	Regular	Late
REGISTRATION FEES	(Through 7/8/11)	(7/9/11-8/19/11)	(After 8/20/11)
Government/Academia1	\$720	\$800	\$880
Industry NDIA Member and affiliates (AFEI, NTSA, PSA, V		\$900	\$990
Industry non-NDIA member ²		\$990	\$1090

Cancellations received before 8/20/11 will receive a refund minus a cancellation fee of \$75. No refunds for cancellations received after 8/20/11.

Substitutions welcome in lieu of cancellations! Cancellations and substitutions must be made in writing to adoherty@ndia.org.

PAYMENT OPTIONS

Check (Pay	Check (Payable to NDIA - Event #1590)								
▷ VISA ▷ MasterCard ▷ An If paying by credit card, you may return by fax to (ican Express	; D	> Diners Club	Cash		
If paying by cre	edit card, you ma	ay return by	fax to (703	8) 522-1885.					
Credit Card Number Exp. Date							e		
Signature				Da	te				

BY COMPLETING THE FOLLOWING, YOU HELP US UNDERSTAND WHO IS ATTENDING OUR EVENTS.

PRIMARY OCCUPATIONAL

- CLASSIFICATION. Check ONE.
- Defense Business/Industry
- ➢ R&D/Laboratories
- > Army
- > Navy
- ▷ Air Force
- Marine Corps
- Coast Guard
- > DOD/MOD Civilian
- ➢ Government Civilian (Non-DOD/MOD)
- > Trade/Professional Assn.
- Educator/Academia
- Professional Services
- ▷ Non-Defense Business
- > Other

CURRENT JOB/TITLE/POSITION.

Check ONE.

- > Senior Executive
- Executive
- Manager
- ➢ Engineer/Scientist
- > Professor/Instructor/Librarian
- Ambassador/Attaché
- Legislator/Legislative Aide
- ▷ General/Admiral
- Colonel/Navy Captain
- ▷ Lieutenant Colonel/Commander/ Major/Lieutenant Commander
- Captain/Lieutenant/Ensign
- Enlisted Military
- Other ____

Year of birth (optional)

QUESTIONS, CONTACT:

ALLISON DOHERTY, **MEETING PLANNER**

PHONE: (703) 247-2570 E-MAIL: ADOHERTY@NDIA.ORG

MAIL REGISTRATION TO:

NDIA - EVENT #1590 2111 WILSON BOULEVARD SUITE 400 ARLINGTON, VA 22201

FAX TO: (703) 522-1885

NATIONAL DEFENSE INDUSTRIAL ASSOCIATION 2111 WILSON BOULEVARD, SUITE 400 ARLINGTON, VA 22201-3061 (703) 522-1820 (703) 522-1885 FAX WWW.NDIA.ORG

46TH ANNUAL GUN & MISSILE SYSTEMS CONFERENCE & EXHIBITION

"Shaping Weapon Systems for Rapid Deployment: Development, Interoperability & Flexible Response"

AUGUST 29-SEPTEMBER 1, 2011 HYATT REGENCY MIAMI MIAMI, FLORIDA

TO REGISTER, VISIT: WWW.NDIA.ORG/MEETINGS/1590 WWW.NDIA.ORG/EXHIBITS/1590

Presentation for the 46th Annual Guns and Missiles Conference

Development History and Evolution of the XM982 Excalibur Chris E. Geswender cegeswender@raytheon.com David Brockway dabrockway@raytheon.com April 13, 2011

NOTE — All equations, weapon descriptions and equipment-specific information are from open (Internet) sources without correlation to U.S. products to avoid ITAR or classification issues.

Copyright © 2011. Unpublished Work. Raytheon Company. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Contains Excalibur Technical Data Approved for Public Release. PAO Log 36-11

Excalibur Description

- GPS-guided, extended-range 155 mm artillery projectile
- Precision and accuracy consistently within 10 meters
 - Minimizes collateral damage and risk to civilians
 - Employment flexibility close support missions
 - Achieves target effects with fewer rounds
- Steep terminal approach angle optimizes unitary effects
 - Ideal for urban, complex and mountainous terrain
- Significant maneuverability supports offset firing
- Integral multi-option fuze point detonate, delay and HOB
- U.S. and Sweden international cooperative program
- Initial capability (XM982 la-1) fielded to deployed forces in 2007
- Fully ORD-compliant M982 la-2 pending full-rate production
- Low cost M982E1 Ib in final design and qualification phase
- Exportable since 2008 Excalibur Ia FMS cases in progress
- Current platforms
 - M777
 - M109A6
 - M198
 - FH77BW
 - AS90 (limited qual)

FH77BW Archer — Sweden

AS90 — U.K.

M109A6 Paladin — U.S. Army

M777 — U.S. Army, USMC, Canada

M198 — Australia

Responsive, accurate and lethal precision effects

Approved for Public Release. PAO Log 36-11

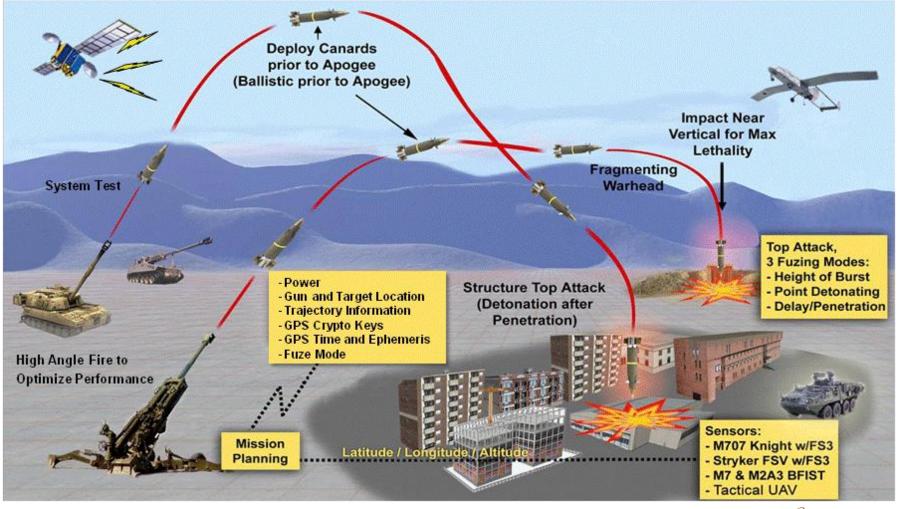
IRAQ Urban Combat Experience — Avoiding Collateral Damage

Warfighter perspective on Excalibur

- "Incredibly accurate ... at its minimum/maximum range, you get that same level of accuracy"
- Easy to use "Firing Excalibur was similar, if not easier, than firing conventional artillery"

 More responsive than air-delivered assets
 "Every soldier and Marine has access because the artillery directly supports every battalion and company in contact"

Saving lives today — "The unit was able to fire an artillery round at a target within 50 meters of infantrymen on the ground. If we did not have Excalibur, we would not have been able to engage that target."



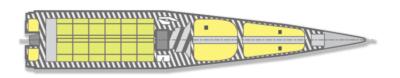
Raytheon

Missile Systems

Operational Concept

Approved for Public Release. PAO Log 36-11

Excalibur Warfighter Rationale


- Extended-range fire extends maneuver's tactical reach
- Range-independent ten-meter Radial Miss Distance and offaxis capability increase operational flexibility
- Close-combat capability reduces risk to friendly forces while protecting civilians and minimizing collateral damage
- Near-vertical terminal attack angle permits urban and complex terrain uses
- Concrete penetration, integrated multiple-mode fuze, scalable effects — expands cannon artillery target set – Point detonate, Delay, Height of burst
- Fewer rounds to achieve target effects minimizes logistics burden
- Minimal change to unit-level training and TTP

Autonomous, all-weather, day and night — responsive, organic firing capability

Original Excalibur Concept Was a Radical Departure From Initial Army Plans

- Government design (ARDEC)
- LCCM guidance
- Tractor rocket motor
- IMU N/A
- GPS unknown
- Warhead(s)
 - XM-80 bomblets
 - One SADARM

- Fixed tail
- CAS two axis
- IMU FOG
- GPS IEC
- Payloads via Block Insertions
 - DPICM changed to Unitary warhead in '01
 - Smart sub-munition 2 SFMs (SADARM)
 - Discriminating munition
- No propulsion

www.globalsecurity.org/military/systems/munitions/images/

120.10 Non Technical Data as defined under ITAR

Designing for Operational Challenges

- Gun hardening
 - Multiple charges
 - Angular acceleration variation (also a worn gun barrel issue)
 - Muzzle exit over pressure decay profile
 - Variable spin rate at tail fin deployment
 - Effective gas flow, engraving
 - Muzzle brakes
 - Ramming/handling
- Operational
 - EPIAFS
 - Carrier frequency
 - Message protocol
 - Integration with AFATDS
 - 20-year storage life
 - Handling
 - Training

NDIA 2002 Gun & Ammunition Symposium 18 April 2002 120.10 Non Technical Data as defined under ITAR

Naive Engineering Toolbox Slowed Early Progress

Raytheon Missile Systems

- Models/analysis/understanding
 - FEA modeling transient loads, high-pressure differentials
 - Material science strength of materials to transients, elasticity/tear
 - Pressure management obturation, muzzle exit
 - Base design spin/overpressure/muzzle brake design tools
- GPS
 - Clock loss of time reference
 - Vendors, orientation, suspension
 - Evolution new environments
 - Hardware, software, integration
- IMU
 - FOG did not gun harden spool too fragile
 - MEMS #1 did not gun harden masses too large
 - MEMS #2 did not gun harden almost
- CAS
 - Two to four axis required
 - Increased span on canards
- Affordable testing
 - Early, aggressive gun engineering testing
 - Capable, affordable OBR development and use

120.10 Non Technical Data as defined under ITAR

Excalibur Evolved With the Market

- Major program restructure affects SDD (2001-December 2002) merger with Swedish TCM; transition from DPICM to Unitary
 - Block I to Increment la
 - Structural design and testing to be done early
 - Critical components were still technologies not products
- Early fielding (April 2004) to full compliance (October 2007)

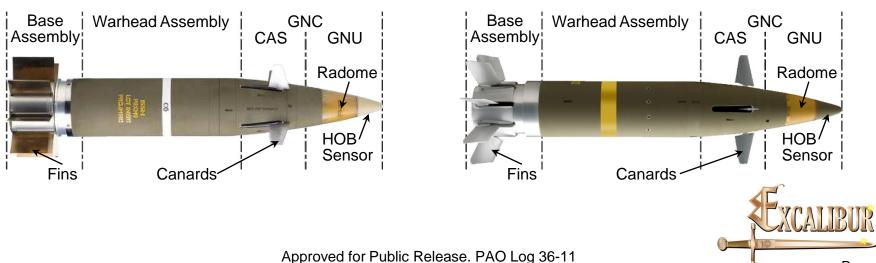
- Test-structured, early program paid big benefits in execution
- Clever algorithm design makes things possible without hardware changes
- Cost improvement; increased reliability; new, more stringent A/J requirement September 2008 to present)

la-2 to lb

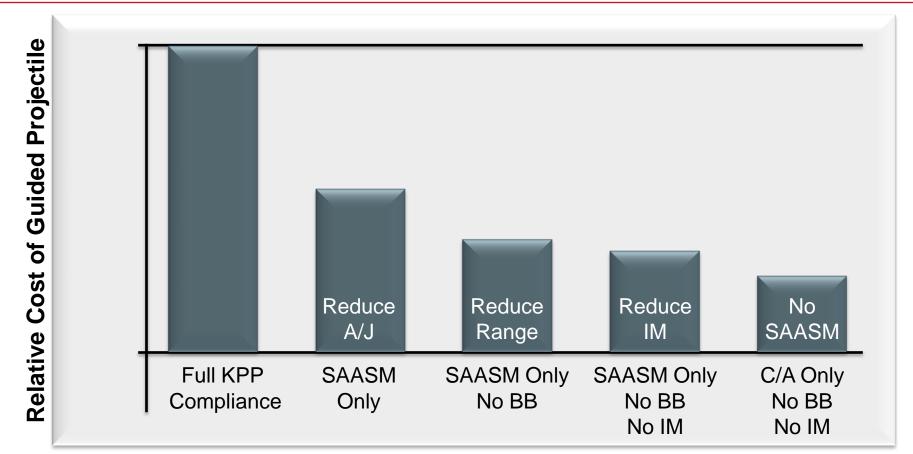
la-1 to la-2

- Pay attention to cost, cost, cost
- Systems expertise in many areas critical to good architecturing and execution

120,10 Non Technical Data as defined under ITAR

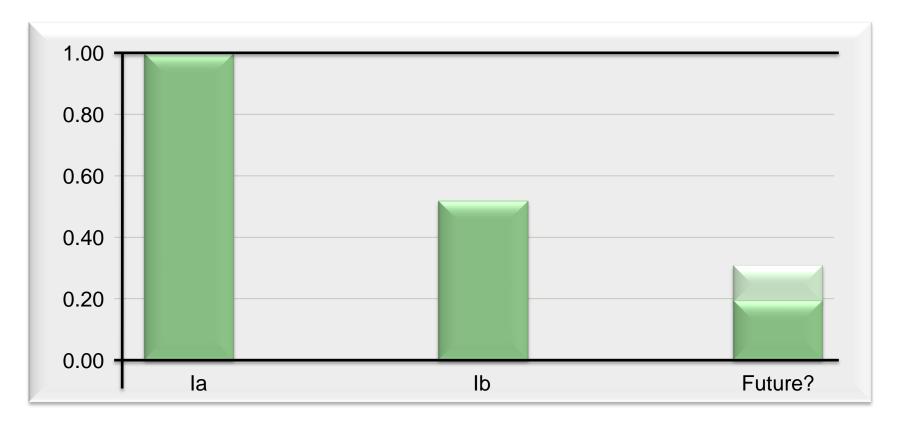

Demonstrated Capability Exceeded Some Requirements

Requirements Comparison Summary										
	Threshold			Objective				Demonstrated		
KPP	la-1	la-2	lb	la-1	la-2	lb		la-1	la-2	lb
Precision (CEP)	20 m	20 m	10 m		10 m	6 m		<6m	<6m	<5 m
Maximum Range	24 km	35 km 39-Cal 50 km 52-Cal	35 km 50 km	—	40 km 60 km	40 km 60 km	2	>24 km	41 km 39-Cal	>32 km 39-Cal >46 km 52-Cal
Reliability	60%	85%	93%	_	96%	96%		85%	85.9%– 91.5%	93% for shoot-off
Lethality	Effectiveness \geq M107Effectiveness \geq M107Effectiveness \geq M107					s <u>></u> M107				


Increment la

Increment Ib

Specifications Drive System Cost


Majority of architecture costs driven by requirements (A/J requirement sets major architecture population)

Presentation to 43nd Annual Gun & Missiles Conference April 23, 2008 Alternatives for Architecturing Low Cost Guided Projectiles

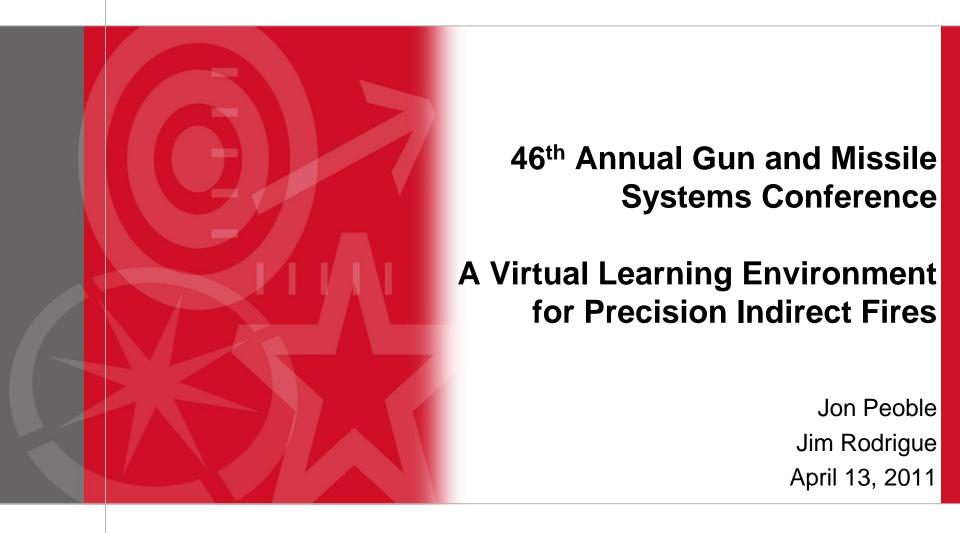
120.10 Non Technical Data as defined under ITAR

What Is the Future Cost of Precision?

Requirements and technology (and production quantity) likely to continue to have a significant impact on the future

PM Excalibur presentation to Future Artillery Conference 25 April 2011 120.10 Non Technical Data as defined under ITAR

Excalibur Benefits the Warfighter


- Excalibur was the first and still the only fielded, autonomous, precision-guided, extended-range artillery projectile
 - GPS/IMU
 - CAS
 - Finned base
- When we started, we were unable to see the course
 - The industrial base overestimated readiness at SDD start
 - Analysis/models were naive
 - Impulsive loads pressure variation SOM under impulse
 - Requirements evolution increased the challenge (increased AJ, new payload, platform...)
- Increased experience denoted the turning point
 - Chasing subtle problems in IMU and GPS
 - Mechanical failures solved
 - A baseline set of tools and processes available
- More capable and able to evolve
 - Activities based on cost reduction, reliability improvement, large industry investment
 - ARDEC/RMS successfully supported warfighter

Progress flowed from solid engineering and operational lessons

120.10 Non Technical Data as defined under ITAR

Copyright. Unpublished Work. Raytheon Company. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Agenda

- The Need for Virtual Environments
- Precision Fires Virtual Environments
 - Phase 1: Virtual Learning Environment
 - Phase 2: Virtual Training Environment
- Summary

Marked screenshots are Copyright © 2008 Bohemia Interactive VBS1™,Virtual Battlespace, & VBS2™are trademarks of Bohemia Interactive

The Evolving Fires Kill-Chain

- Role of indirect fires is evolving to include tasks normally serviced by Joint or direct fire munitions
 - Precision strike, danger-close situations, avoidance of collateral damage
- Indirect fire munitions are becoming more precise and the kill-chain needed to employ them is becoming more complex
 - Target location requirements
 - FO must report an accurate grid
 - FDC must program TLE constraints into AFATDS
 - Employment planning
 - Off-axis planning, fail safe impact zones, collateral damage planning
 - Munition initialization
 - Munition must be properly initialized with grid coordinates and fuze settings
- As Copperhead exemplifies, when the kill-chain becomes complicated, the munition often does not get used due to lack of familiarity
 - Virtual Learning Environments can help the Warfighter better understand and properly employ the new, evolving Fires kill-chain

The precision fires kill-chain is becoming more sophisticated and virtual environments can aid in familiarization and training

The Case for Virtual Environments

- As precision indirect fires munitions become more capable and thus more costly, traditional live fire exercises for training become less cost-effective
- Virtual exercises can provide effective training for a fraction of the cost of live fire exercises
 - Inclusion of accredited in-flight simulations (6-DOF) vital to ensuring accurate representation of munitions
 - Supplements live fire exercises for mission rehearsal
- Virtual already being employed in school-houses for other sophisticated weapon systems, supplemented with occasional live fires
 - Air-to-air missiles, ballistic missile defense, direct fire missiles
- Virtual already being used for parts of the Fires kill-chain
 - VBS2Fires for FO training (Ft. Bragg)
 - VRSG for JTAC training (AFRL-MESA)

Virtual environments can provide effective, inexpensive supplemental training to live fire exercises

Precision Fires VLE: Phase 1

Overview

- A virtual environment that represents the entire precision fires kill chain, from Forward Observer to the Firing Unit and munitions
- User makes decisions to progress through a tactical scenario and see the outcomes of their actions
- Collaborative effort between RTN and Fires Center of Excellence to explore technology for virtual learning environments

Objective

- Increase the Warfighter's understanding of precision fires
- Model the entire precision-fires kill-chain to an appropriate level of fidelity
- Present the user with decisions that are doctrinally correct
- Model relevant combat scenarios that illustrate when to use precision

The Virtual Learning Environment will reinforce and improve the Warfighter's understanding of precision fires

Raytheon

The Virtual Learning Environment

VLE Concept

- User will select a scenario and his role
- VLE will develop the scenario by showing the user animation clips
- At key points, the user will be asked to make a decision on how to respond to events in the scenario
- Scenario will continue to unfold based on the user's decisions
- User will see the outcome of their decision and will be able to go back and explore other options
- User Roles

Forward Observer

- Conduct a call for fire (CFF)
- Understand when precision munitions should be employed
- Request a precision munition and fuze mode and provide the necessary TLE
- Observe results and request further actions if necessary

Fire Direction Center

- Decide which area or precision munition to use
 - Examine target, collateral damage concerns, and TLE
- Process the CFF through AFATDS and generate Fire Mission

Firing Unit

- Place the guns while taking Excalibur's large maneuver footprint into consideration
- Unpack and inspect the munitions
- Set the fuze (EPIAFS) and load the munition
- Execute the Fire Mission

VLE will expose the user to every role, giving them a complete understanding of the precision fires kill-chain

Raytheon

An Example of the VLE (FO User)

Scenario is presented to FO user; troops pinned down by ambush from nearby structure

FO is instructed to conduct a CFF and is presented a choice of munitions and the required scenario information

FO selects a precision munition; VLE instructs him to obtain TLE < 10m for the structure target and explains need for a tight TLE

FO observes effects of decisions and must decide if re-engagement with adjustments is necessary

FO sends CFF by selecting appropriate commands to send to FDC, including munition selection and Fuze setting

Scenario presents the user with a relevant mission that enables a better understanding of precision munitions and how to employ them

Raytheon

Deploying the VLE

- VLE will be a light-weight, browser based application that can be deployed on multiple devices
- Possible deployment methods:
 - Web-based deployment on AKO / FKN / DKO
 - DVD deployment for personal computer use and rapid deployment
 - App deployment for use on touch-based devices

Light-weight nature of VLE allows it to be easily and rapidly deployed on multiple devices

Precision Fires VLE: Phase 2

- Overview
 - A full training version of the kill-chain that makes use of virtual and live devices combined with digital IFS / 6DOFs
 - Virtual FO devices created in VBS2 (LRAS3, PSS-SOF, etc)
 - Allows for individual soldier training with an accurate representation of their system
 - Could be connected to live training devices for added fidelity
 - FDC would use live AFATDS
 - Virtual FO sensors in VBS2 would send live JVMF messages to AFATDS for the FDC to process
 - Live JVMF messages would also be sent to the FU
 - Virtual representations of the guns, munitions, and EPIAFS created for FU in VBS2
 - Once the round is fired, the 6DOF would accurately fly the munition to the target grid

Objective

 Replicate the Fires kill-chain in an L-V-C environment to a level of fidelity that enables realistic and effective training

The virtual training environment will provide the Warfighter with an accurate, virtual representation of the fires kill-chain

Hav meon

The Virtual Training Environment

FO Environment

- Live / Training devices view Virtual world
- Accurate representations of FO devices
 - PSS-SOF, BFIST, FS3, LLDR, etc
- VBS2 and VBS2Fires

guns and munitions

FU Environment

VBS2

Munitions IFS / 6DOFs fly munition accurately

All participants in the kill-chain would interact with the virtual world using either live or virtual versions of their devices

Summary

- As precision indirect fires munitions become more capable and thus more costly, traditional live fire exercises for training become less cost-effective
- Virtual environments can provide effective, inexpensive supplemental training to live fire exercises
- Phase 1: The Virtual Learning Environment
 - A scenario driven, interactive tool to reinforce and improve the Warfighter's understanding of the entire precision fires kill-chain
- Phase 2: The Virtual Training Environment
 - An accurate representation of the kill-chain that makes use of virtual and live devices combined with digital IFS / 6DOFs

The precision fires virtual learning environment is being collaboratively investigated by the customer and Raytheon

Questions?

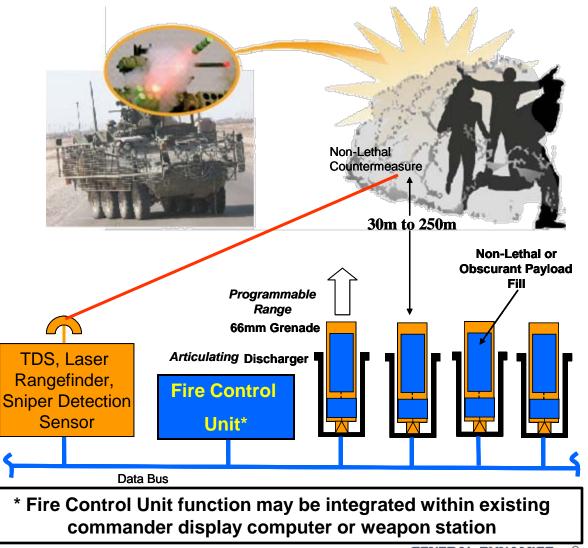
Jon Peoble Raytheon Missile Systems 520.545.7841 Jon.Peoble@raytheon.com

Jim Rodrigue Raytheon Missile Systems 520.794.1349 jmrodrigue@raytheon.com

MEDUSA 66MM LAUNCHER System

Aggressor Suppression via the use of Non-lethal Projectiles and Launchers

GENERAL DYNAMICS Ordnance and Tactical Systems


Presentation Overview

- Review the warfighter's "Escalation of Force" (EoF) needs and non-lethal, EoF requirements
- MEDUSA: a vehicle-mounted, digital, grenade launcher system
 - 66mm Articulating Grenade Launchers
 - Fire Control Unit
 - Programmable, Electronically-Fuzed Grenades
 - Demonstration Videos
- Points for Discussion

What is a Digital Grenade Launcher System ?

OBJECTIVES:

- Multirole, networked countermeasures delivery including sensors, fire control, launchers and electronicallyfuzed ammunition.
- Integrate countermeasure response delivery to platform sensors for rapid, automated or man-in-the-loop response to detected threats with precision placement of countermeasure effects.

GENERAL DYNAMICS Ordnance and Tactical Systems

GD-OTS' MEDUSA System

- MEDUSA supports a full range of 66mm combat effects grenades including; nonlethal human temporary incapacitation, obscuration and sensor defeat, illumination, marking and combat countermeasures.
- The MEDUSA Launchers and Fire Control Unit are a next-generation spin-off of a system developed for the US Army's Escalating Response System (ERS) for the Full Spectrum Effects Platform (FSEP Stryker) fleet

• MEDUSA provides longer range, greater coverage area, extended effects duration, low risk of permanent injury, better scalability of effects, and supports the government's EoF needs.

Non-lethal Weapon System Requirements

- Capable of being easily installed on any tactical; B-kit architecture
- The non-lethal effect must be capable of suppressing the aggressors for an extended period of time without risk of significant or permanent injury
- The non-lethal effect must be capable of being delivered with precision anywhere between 30 to 250 meters
- The NLWS must have the capability to support urban patrolling, convoy operations, crowd control and area denial operations (of approx 250 m²)

Medusa: USMC MPM-NLWS TD Phase

Program Objectives: MPM-NLWS is a new weapon system that launches non-lethal payloads to greater ranges with broader area coverage, greater duration of effects, and volume of fire.

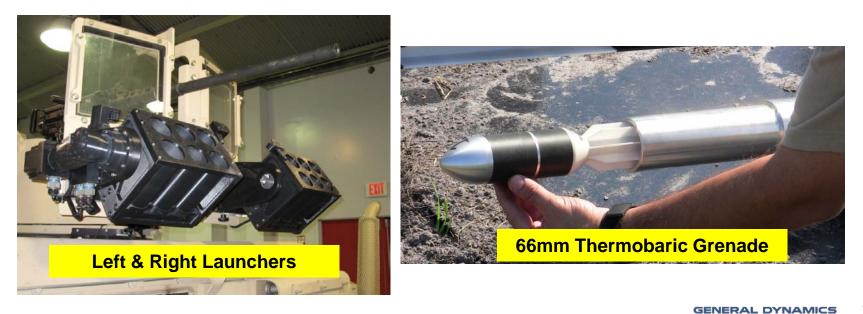
Hardware Overview: Lightweight, dual articulating launchers, fire control and LRF integrated on MC-TAGS. Grenade ammunition incorporates thermobaric NL temporary incapacitation payload.

Results Significance:

- HECOE validation of human incapacitation effectiveness and acceptable levels of injury risk.
- Mortar grenade projectile with programmable fuzing provides extended range and effects placement accuracy.

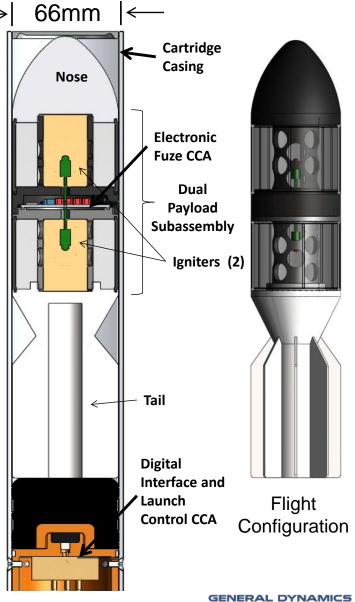
GENERAL DYNAMICS Ordnance and Tactical Systems

System Overview

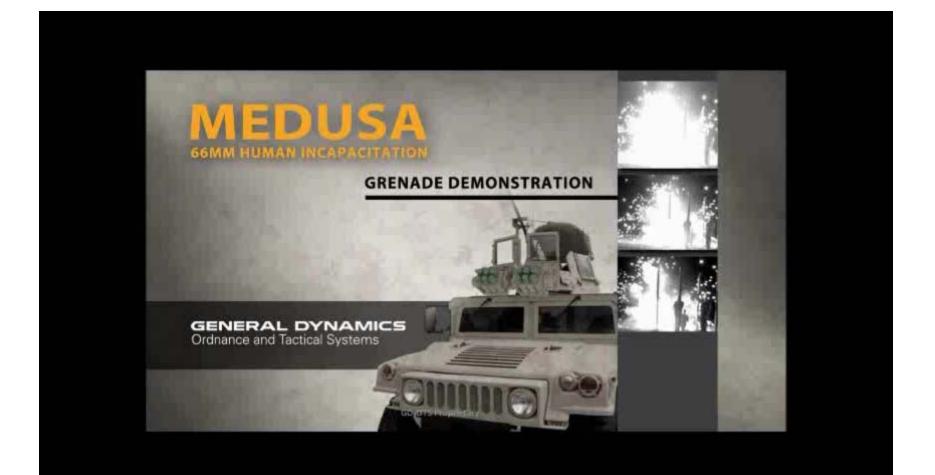

Fire Control

Unit

Ordnance and Tactical Systems


- The MEDUSA kit has six major components:
 - Fire Control Unit
 - Laser Range Finder
 - Left & Right Dischargers
 - Thermobaric Grenades
 - Installation Kit (cables & mounting brackets)

(Note: The system is very modular and installs readily on most tactical vehicles)


Grenade Overview

- Large, dual payload capacity;
 7.5 in³ each, 15 in³ (246 cm³) total
- Independent payload initiation control; simultaneous or separate function
- "Smart" capabilities include:
 - Self type identification
 - In-tube BIT
 - Each payload individually programmable for range-time of activation
- Range accuracy Spherical Error Probability (SEP)
 - 0.8m at 30m range
 - 2.5m at 90m range
 - 4.0m at 150m range
- Max range to 300m
- Low fragmentation hazard

Ordnance and Tactical Systems

Medusa Demonstration Video

How is suppression achieved?

The grenade payload temporarily incapacitates targeted personnel through the use of **intense physiological** (auditory/visual) human effects:

- Light stimuli: 25 k-lux/s with a fireball diameter of approx 3 meters. Intense light emitted by the grenade will temporarily blind aggressors. This light can be seen several miles away.
- **Sound stimuli:** 146 dBA measured 1 meter from the burst. Intense sound will affect hearing so that an aggressor will not be able to hear (i.e., take or give commands) for several minutes
- **Pressure stimuli:** Approx 5.2 psi measured 1 meter from the burst to disorient an aggressor when he is within several meters of the burst
- Psychological effects: harder to quantify, but seeing is believing.

Issues for Further Discussion

- Backward and forward compatibility with legacy and digital discharger/launcher and grenade ammunition.
- Standardization of networked fire control, launcher and ammunition interfaces.
- Single System Multirole Functionality; vehicle self-protection and sensor-defeating obscuration and decoys, NL counter-personnel and EOF, hard-kill APS, illumination, marking, lethal (?), other effects.

GENERAL DYNAMICS Strength On Your SideTM

Mr. Daniel Hartman Director, Business Development General Dynamics – OTS <u>dhartman@gd-ots.com</u> Tel: 850-897-6266 Cell: 407-346-5718 Abstract # 11509

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Presented by:

Ryan Gorman, ARDEC Project Officer (APO) 973-724-6149 ryan.patrick.gorman@us.army.mil

Current Landscape

- Cluster Munitions have come under ever increasing scrutiny for unexploded ordnance (UXO)
- US submunition payloads are classified as Cluster Munitions & required to meet a <1% UXO rate by 2018
- "Legacy" cannon fire Cluster Munitions in inventory not compliant
- Retrofit Self-Destruct Fuzing Technology has not been able to reach <1% UXO in current systems
- Monitor Domestic & Foreign Policy
- Significant opportunity to provide solutions through maturation of viable technologies

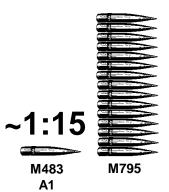
Studies performed to examine CMs role

RDECOM

- Conclusions:
 - "A <u>residual capability gap</u> <u>remains</u> for the attack of area targets even after programmed solutions are applied"

(TRADOC Cluster Munitions Assessment)

"...a need for an alternative to cluster munitions (CM) in the attack of <u>area targets</u> and <u>inaccurately</u> <u>located targets</u>"

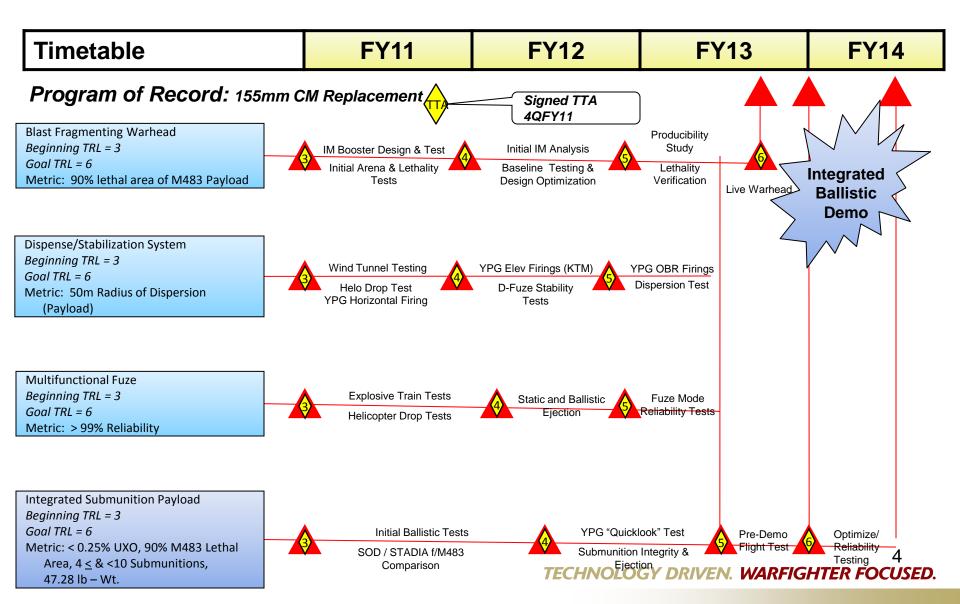

(CAN 12-17 Materiel Domain Gap 1-n List)

- Recommendations:
 - TRADOC/FCoE recommends developing PRAXIS for 155mm cannon artillery
 - Presented to VCSA on 16 February 2010

<u>Relative Rounds to Defeat:</u> <u>CM (M483A1) vs. HE M795)</u>

Hard Targets

Soft Targets



Cluster Munitions Replacement Plan

ARDEC

US ARMY

RDECOM

Cluster Munition Replacement: PRAXIS

EXPULSION CHARGE

PUSHER PLATE

CARGO PRAXIS **Submunitions** w/ integrated keys

PRAXIS features

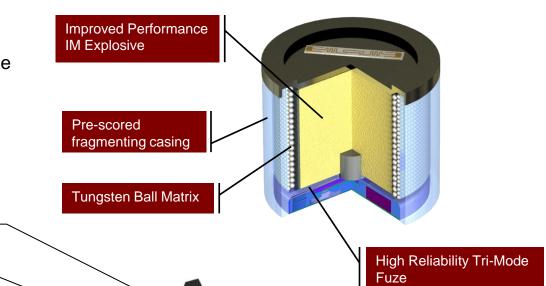
RDECOM

- Full bore submunition
- Extreme Reliability Tri-Mode Proximity Fuze

OGIVE

PGK or Std Fuze

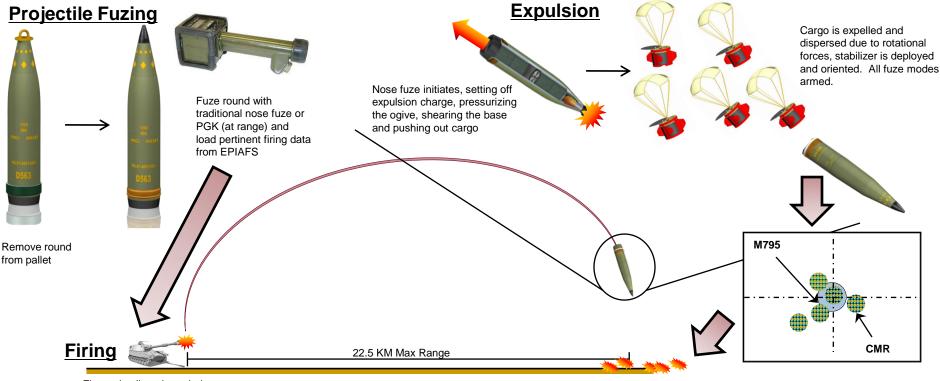
BASE


Proximity _

US ARMY

- Impact
- Time
- CMR Objective- < 0.25% UXO
- Fired at MACS5

BODY


Reuse existing M483A1 metal parts

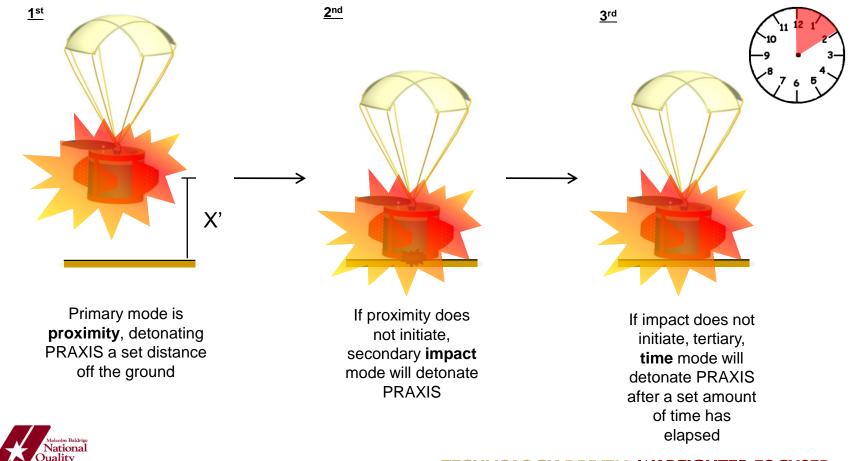
PRAXIS Order of Operation

Fire projectile at intended target Fully zoneable up to MACS5

Order of Operation: Fuze

PRAXIS

Fuze Functioning


ward

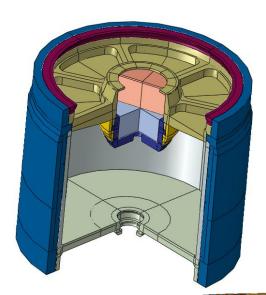
2007 Award ecipient

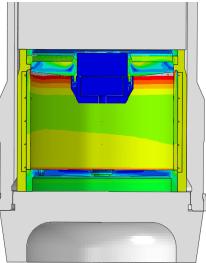
US ARMY

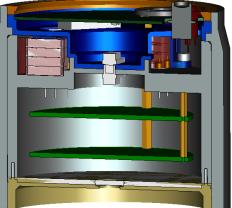
RDECOM

All three fuze functioning modes operate in parallel, removing common point failures.

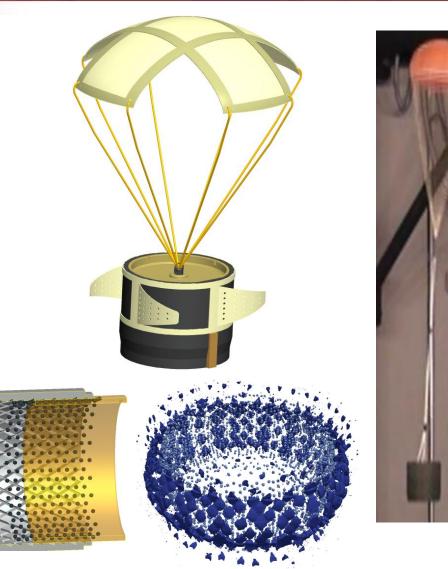
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


7



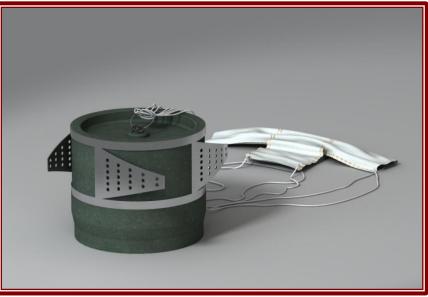

Electronic Development Fuze/Telemetry

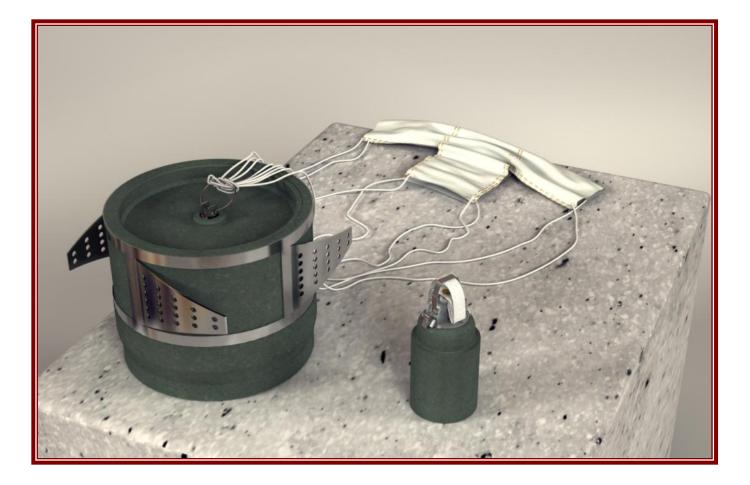
- Fuze will have three modes of functioning in parallel
 - Prevents common point failure
- Will incorporate advanced technologies in new applications while leveraging existing, proven components
- Pursuing risk mitigators in parallel to ARDEC effort
 - Advanced battery work
 - Parallel fuze design



Physical Development Warhead/Stabilizer/Integration

- Aero will separate, despin and orient submunition
 - Stabilizer, expulsion concepts being refined
- Warhead will address soft to medium targets
 - IM explosives have been selected
 - Testing being conducted on performance
- Solid, structural, fragmentation and fluid dynamic models being utilized
- Solution to fit within existing M483A1 space and weight claim




- In 2018, User will lose Cluster Munitions
- Cluster Munitions still desirable
- ARDEC currently developing a viable solution
- Mature advanced technology while leveraging existing components
- Baseline design backed by extensive M&S
- Component testing underway
- Demonstration tests planned for FY13

Distribution Statement A

Precision Universal Mortar Attack (PUMA)

NDIA 46th Annual Armament Systems: Gun & Missile Systems Conference & Exhibition

29 Aug - 1 Sep 2011

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

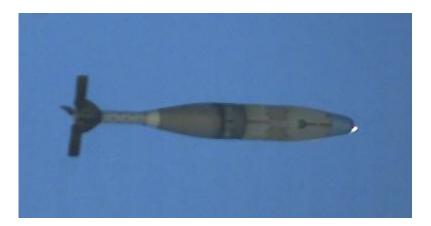
Distribution Statement A

What is PUMA?

Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

- ONR Future Naval Capabilities (FNC) Program
 - Demonstrate critical technologies to support a system capability for enhanced mortar engagements
 - Precision Guidance
 - Trajectory Shaping
 - Range Extension
 - Lighten the Load for the Warfighter
 - More Stowed Kills
 - Lighter/Smaller Support Equipment
 - Cost Effective Solution
 - Utilization of Novel technologies & COTS products
 - Joint Services, Gov't Lab Partnership Development Team

TRL 6 Demonstrations & Transition to Acquisition Program in FY14



Guided Flight Testing

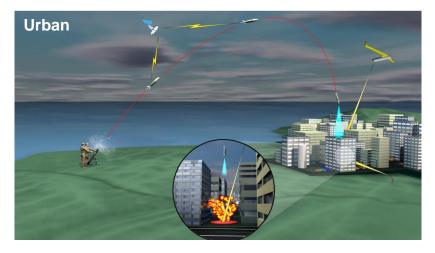
Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

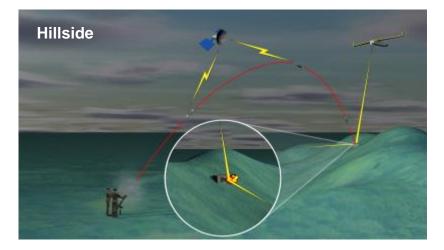
- Successful Demonstration of Guided 81mm Mortar Airframes
 - 22 Jun 2011 @ YPG, AZ
 - 6 Test Rounds: 2 Ballistic, 4 Guided
 - Pre-Programmed Maneuvers
 - Divert authority well in excess of ballistic delivery accuracy

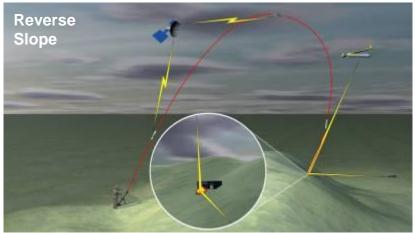
GPS Guide-to-Hit Demonstration in FY12

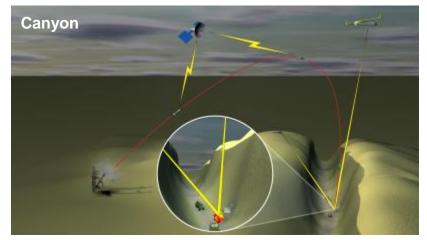
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Distribution Statement A




81mm Future Engagement Capability





Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

Ability to Address Targets Masked by Terrain Topology

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Distribution Statement A

NR Current vs. Future 81mm Mortar

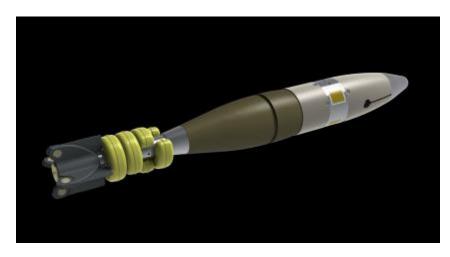
Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

Future 81mm Capability

- Precision Fires (GPS, SAL)
- Consistent CEP @ all ranges
- Trajectory Shaping
- Extended Range
- Reduced Collateral Damage

Current 81mm Capability

- Area Coverage
- Increasing CEP w/ Range




Enabling Products

Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

<u>Flight Controlled Mortar (FCMortar) –</u> (NSWCDD, ARL)

- Guidance Kit for Mortar Ammunition
 - Depot/Factory level conversion kit for HE projectiles
 - Reuses existing Primer/Igniter assembly
- Global Positioning System (GPS) Guidance
 - Fire & Forget Precision
- Semi-Active Laser (SAL) Guidance
 - TLE Elimination
 - GPS, Setter denied operations
- Non-ballistic flight path capable Airframe & GNC
 - Vectored approach guidance
 - Range extension
 - Proven pedigree (VAPP)
- Modular Design
 - "Plug & Play" modules allow for easy upgrade to alternate configurations
 - Sub-systems portable to other systems

Precision Compliment to Existing HE Inventory

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Distribution Statement A

Enabling Products

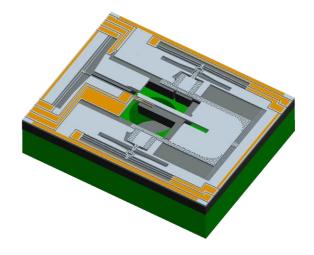
Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

Extended Range Mortar Ammunition (ERMA) Propellant (NSWCIHD)

- Advanced artillery propellant adapted for mortar use
- Increased muzzle velocity
 - Extends FCMortar operational range
- Improved cook-off & IM performance
- Lower barrel erosion & fouling
- Already demonstrated on ballistic mortar ammo

Miniaturized SAL Seeker – (NSWCDD)

- Strap-Down, Body Fixed Architecture
 - No mirrors, gimbals, or gyros
- STANAG 3733 compliant
 - Compatible with all fielded designators
 - Works with proposed lower pulse energy (20-30 mJ) designators
- Form factor units ready for flight testing in FY 12


Distribution Statement A

Enabling Products

Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

Mission Setter (NSWCDD, ARDEC)

- Small Form Factor precision weapon pre-flight initialization device (hand-held)
- Provides trajectory, guidance, and fuze mode data prior to launch
- Miniaturization of EPIAFS system starting FY12
 - New Non-Inductive link to be developed
- Backwards compatible w/ current EPAIFS interface (inductive & direct connect) based systems through add-on kit

MEMS S&A Based Fuze (NSWCIHD)

- Reduces size of PD/PDD Fuze to that of conventional mortar Fuze S&A device
- Based on silicon MEMS chip with integrated micro-detonator
- Connector for external HOB sensor
- Successful fabrication of first S&A chips complete

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Conclusions

Precision Universal Mortar Attack (PUMA) – 46th Annual NDIA Armament Systems – 29 Aug-1 Sep 2011

- Guidance Capability Demonstrated on 81mm
 - Successful controlled divert testing in July '11
 - GPS Guide to Hit Demonstration in FY12
- Modular Guidance Kit Solution
 - Easily upgraded
 - Enabling technologies portable to other systems
- Government Lab Partnership developed/owned design
 - Maximum flexibility in meeting acquisition sponsor requirements
- TRL 6 Solution Demonstration in FY14 to support transition to USMC Acquisition POR

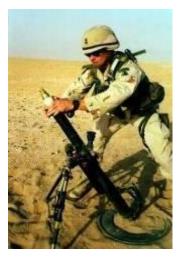
Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications

46th Annual Gun & Missile Systems Conference & Exhibition

* Virgil Fung, Mike Ervin, Brian Alexander BAE SYSTEMS Ordnance Systems Inc. Holston Army Ammunition Plant, TN, USA

Charlie Patel, Philip Samuels, Leila Zunino U.S. ARMY PM-CAS Picatinny Arsenal, NJ, USA

46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (S2DESA2011-0051)


Briefing Outline

- Program Goals & Background
- Formulation Development
- Material Characterization
 - IM Testing (IMX-104 in 81mm and 120mm Mortar)
 - IMX-104 Qualification Status
- IMX-104 Large Scale Manufacturing
- Concluding Remarks
- Acknowledgements

BAE SYSTEMS

Program Goals & Background

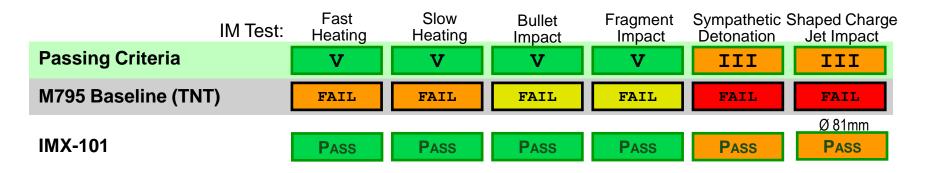
- PM-Mortars funded PAX-21 Product Improvement Program (PIP) for the 60mm Mortar with the primary goals:
 - Replace AP in PAX-21 (environmental issue)
 - Achieve PAX-21 or better performance
 - Achieve PAX-21 or better IM Response
- Secondary goal utilization of ingredients manufactured on production scale at Holston in these new formulations:-
 - RDX, HMX (conventional Holston ingredients)
 - DNAN, NTO, TATB, HBD NQ (new ingredients)
- Utilizing manufacturing technologies that were a good-fit for the U.S. Industrial base
 - Traditional Melt-pour processing
 - Large capacity equipment
 - Recrystallization
 - Incorporation, drying & flaking of product
 - Dry Fluid Energy Milling of ingredients as required (a contributing technology)

^{46&}lt;sup>th</sup> Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (S2DESA2011-0051)

Insensitive Ingredients

- DNAN, NTO and NQ inherently less sensitive than traditional high explosives and melt base ingredients
- Selected as materials for scale-up and production at Holston because of their perceived benefits and adequate suitability with the existing infrastructure
- Now STANDARD PRODUCTS from Holston Army Ammunition Plant
 - Manufactured in Agile Facility at Holston



46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (S2DESA2011-0051)

Insensitive Explosive Formulations

- Development Efforts resulted in several new formulations, the most promising of which include:
 - IMX-101 (formerly OSX-CAN) for Artillery Ammunitions
 - Achieved the best IM results in full-scale ammunition trials:-

- IMX-101 is QUALIFIED by the U.S. Army as a main charge explosive and TNT replacement. Type (system) qualification evaluation for Artillery Ammunition is completed
- IMX-104 (formerly OSX-7) (DNAN, RDX, and NTO) for Mortars
 - Qualified by the U.S. Army as a main charge explosive and Composition B replacement
 - Type (system) qualification testing will be performed in FY 2012
- PAX-48 (formerly OSX-8) (DNAN, HMX, and NTO) for Mortars and Direct-Fire Ammunition
 - Qualified by the U.S. Army as a main charge explosive for the 120mm IM HE-T Ammunition

Formulation Development - Overview

- Two formulations of greatest interest to OSI Customers
 - IMX-104 (DNAN, NTO and RDX based)
 - PAX-48 (DNAN, NTO and HMX based)
 - Both formulations possess energetic performance similar to Composition B

Material	TMD (g/cc)	VOD (% Comp B)	LSGT (50% Card Gap)	Reference	Scale of Manufacture	DSC MP / Exotherm Onset (C)	Efflux Viscosity (sec.) @ 96 C
TNT	1.65	84	133	MSIAC	1,200 – 1,500	-	-
Comp B	1.76	100	207	LLNL/NOL		80 / 215	-
PAX-21	1.72	83	161	UTEC/ARDEC		89 / 193	< 10
IMX-104	1.73	95/92 *	118	OSI/GD-OTS Canada*	LB Full Production Scale	89 / 213	< 10
PAX-48	1.76	93/91 *	110	OSI/GD-OTS Canada*		93 / 231	< 10

Typical Properties of IMX-104 and PAX-48 Versus Traditional Mortar Fillings

- Both are proving worthy candidates for evaluation in IM Mortar applications
 - Undergoing evaluation in USA and Europe
 - IMX-104 & PAX-48 both achieved U.S. Army Qualification status (as explosive material) in the U.S.

Formulation Development – Performance Comparison

 IMX-104 and PAX-48 designed to have performance similar to Composition B

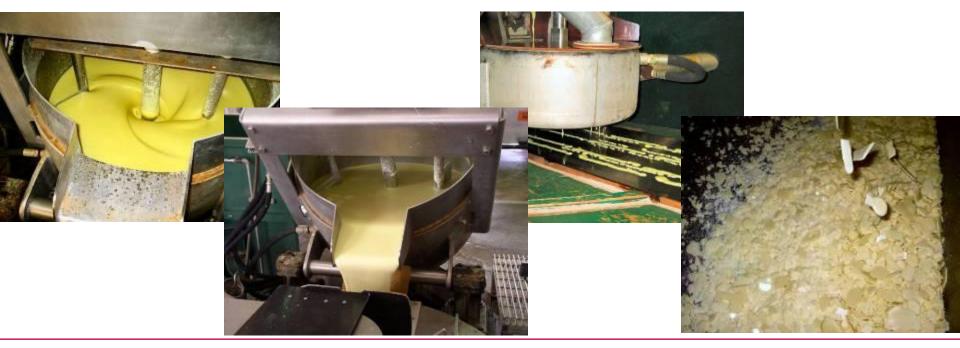
IMX-104

PAX-48

Comp B

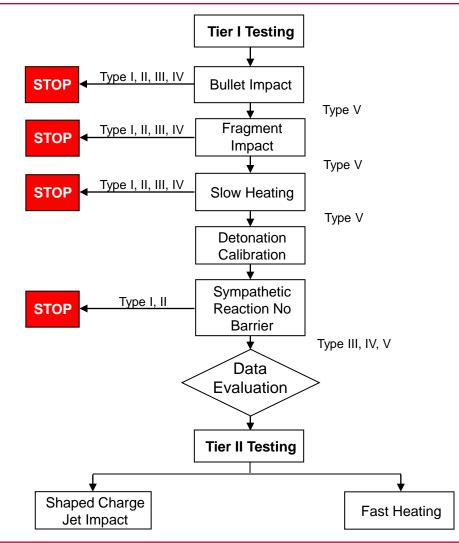
PBXN 51uze booster

(initiation test set up)



46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

BAE SYSTEMS


Formulation Development -Large Scale Manufacturing Process Development

- IMX-104 & PAX-48
 - Large scale manufacture in Holston production equipment (1200 lb. batch)
 - Material supplied to PM-CAS for loading into mortars for IM Testing, and to General Dynamics for the 120mm IM HE-T Program
 - Both formulations successfully scaled up with adequate processability

IM Assessment Testing in Mortar Ammunitions

- US ARMY PM-CAS Common Low-cost IM Explosive Program (CLIMEx) Phase 2
 - Evaluation of IM explosive candidates as Comp B replacement in 81/120mm Mortar
 - IMX-104 and PAX-48 selected as OSI's candidates
 - Also evaluated were candidates from other manufacturers including melt- pour, cast-cure and pressable explosives

46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

IM Assessment Testing – Baseline Test Results

R	action	Burn Def	flagration	Explosion	Partial Detonation	I Detonation	
IM Test:	Fast Heating	Slow Heating	Bullet Impact	Fragment Impact	Sympatheti Detonation	C Shaped Charge Jet Impact	
Passing Criteria	V	V	V	V	III	III	
60mm (Comp-B/PAX-21)	II V**	III II**	V	III	(I)*	(I)*	
81mm (Comp-B)	(II)*	(II)*	(III)*	(III)*	(I)*	(I)*	
120mm (Comp-B)	Π	Ι	Ι	Ι	(I)*	(I)*	
* Assessment not tested	** with PAX-21 Intumescent						
60mm	81mm					120mm	
0.8 lb (1.8kg) PAX-21/Comp B	2.0 lb (4.4kg) Comp B				6.6 lb (14.5kg) Comp B		

Results and images courtesy of PM-CAS

46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

IMX-104 IM Test Results (81/120 mm Mortar) – Summary

Bullet Impact 81/120mm (TYPE V – 7.62mm)

Fragment Impact 120mm (TYPE V)

Fast Heating 81mm (TYPE V)

Sympathetic Detonation 81/120mm (TYPE III)

Slow Heating 81/120mm (TYPE V)

IMX-104 IM Test Results - Summary

Reactions:	VI o Sustained Reaction	V Burn	IV Deflagration	III Explosion	II Partial Detonation	I Detonation
IM Test:	Fast Heating	Slow Heating	Bullet Impact	Fragment Impact	Sympathetic Reaction	Shaped Charge Jet Impact
Passing Criteria	V	V	V	V	ш	III
81mm (Comp-B) Baseline	(II)*	(]])*	(III)*	(III)*	(I)*	(I)*
81mm (IMX-104)	V	V	12.7mm 7.62mm IV V	8300 ft/s 6000 ft/s III IV	III	Ι
120mm (Comp-B) Baseline	Π	Ι	I	I	(I)*	(I)*
120mm (IMX-104)		V	IV	V	III	

- Engineering IM Tests in the M934A1 120mm Mortar and M821A2 81mm Mortar with IMX-104 show significant improvement in IM properties over baseline Comp B
- IMX-104 selected as the prime candidate as an IM Comp. B replacement for Mortar Ammunitions for the US ARMY

^{*} Assessment -- not tested

IMX-104 Material Qualification Status

- IMX-104 material qualification began in late 2009
- Follow protocols as per NATO Allied Ordnance Publication AOP-7 Qualification Procedures for the United States
- All tests including accelerated aging are now completed and PASS ratings achieved across the board
- Test results presented to the US DOD Energetic Material Qualification Board (EMQB) in June 2011
 - Material qualification granted

IMX-104 loaded Mortars Insertion Schedule

- IMX-104 type qualification currently in progress
 - 81mm mortars
 - Extensive evaluation testing including
 - IM System Tests
 - Environmental/Aging Tests
 - Gun Launch Survivability Tests
 - Range and Accuracy
 - Lethality / Fragmentation / Initiation


End Item	Current Main Charge Explosive	IM Main Charge Explosive	Project Start Date	ECP Date
60mm Mortar (M720A1/M768/M888)	PAX-21	IMX-104	2007	FY 2013
81mm Mortar (M821A2/M889A1/ M889A2)	Composition B	IMX-104	2007	FY 2012
120mm Mortar (M933A1/M934A1)	Composition B	IMX-104	2007	FY 2013

46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

BAE SYSTEMS

IMX-104 Large Scale Manufacturing Overview

Load Ingredients (DNAN, NTO, RDX)

Molten IMX-104

Cast onto flaker belt

Cool/solidify and break-up

IMX-104 flakes └─ (Final Product) Pack and ship

46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

BAE SYSTEMS

IMX-104 Manufacturing Process Development

- Processing Parameters identification
 - Processing temperatures at various stages
 - Ingredient Feed Rate & Order of Addition
 - Use of dry/wet ingredients
 - Final Incorporation (mixing) Time
 - Agitator Speed
- Material Processibility indicated by Efflux
 Viscosity and consistent Product Homogeneity
 - Composition, sensitivity and other physical/chemical properties testing
- Close interaction with ARDEC EM and LAP Producibility Teams
- Continuous Improvement and Process Optimization

IMX-104 Manufacturing Process Summary

- Current batch size over 1300 lb (> 600 kg)
- Over 90,000 lb (> 41000 kg) of IMX-104 had been manufactured at HSAAP
 - Support US ARMY Mortar Loading Trial and Qualification
 - Round-the-clock operation
- Although process is relatively young, it can be considered as robust and repeatable
- Process optimization planned for FY 2012
 - Design of Experiment technique to evaluate various process parameters
 - Reduce process cycle time to lower overall product cost
 - Collaborate with Loading Facility in the evaluation of suitability in loading operation

46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

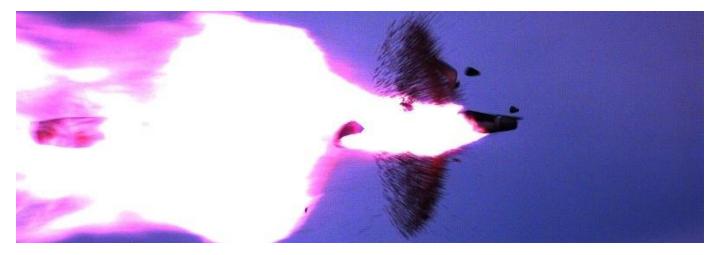
Concluding Remarks

- A NEW GENERATION of IM melt-pour explosives now available
 - IMX-104 demonstrated excellent IM properties over Composition B
- Low-cost replacement for Composition B
- Reduced shock sensitivity vs. Composition B (and PAX-21)
- Ingredients readily available and manufactured at Holston
- Robust large scale manufacturing process for IMX-104
- Viable candidate for common fill across all mortar sizes
 - Insertion for 81mm by FY 2012, 60mm and 120mm mortar by FY 2013
- Achieved significant IM improvement over current munitions
- Significant National and International interest
 - Insensitive Composition B replacement in other weapon systems

^{46&}lt;sup>th</sup> Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

Acknowledgement

- RDECOM-ARDEC
 - Mr. P. Vinh, Mr. A. Di Stasio, Ms. L. Zhao
- PM-CAS / PM Mortars / ARDEC
 - Mr. J. Rutkowski, Mr. P. Samuels, Mr. C. Patel, Mr. B. Kuhnle, Ms. W. Balas Hummers
- BAE SYSTEMS OSI
 - Mr. A. Carrillo, Mr. P. Lucas, Dr. D. Price, Mr. M. Hathaway, Mr. E. LeClaire, Ms. L. Hale, Mr. B Schreiber, Ms. D. Bowyer
 - Plant Operators in the Explosive Finishing Area
- NTS Camden
 - Mr. D. Mann, Mr. M. Brian


46th Annual Gun & Missile Systems Conference & Exhibition - Miami, FL

Gunfire Test of the U.S. Navy's Improved Kinetic Energy – Electronic Time Projectile

Geoffrey Bland

Naval Surface Warfare Center, Dahlgren Division, G32

The Navy's 5" 54 and 62 Caliber Guns

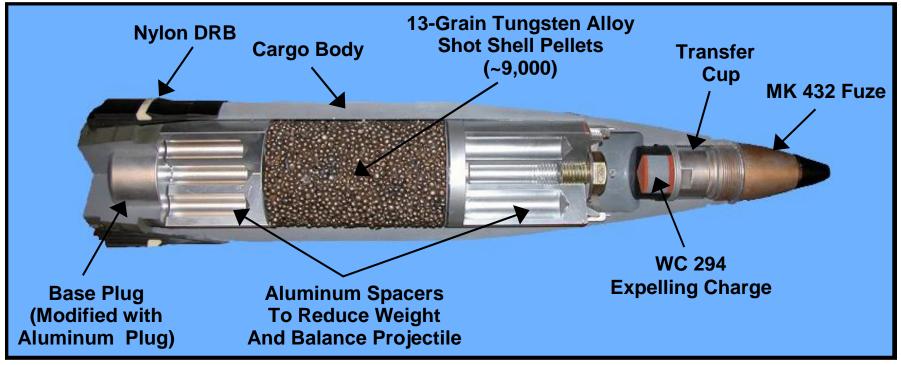
Cruisers (CG's) Destroyers (DDG's)

"History does not long entrust the care of freedom to the weak or the timid" – General Eisenhower

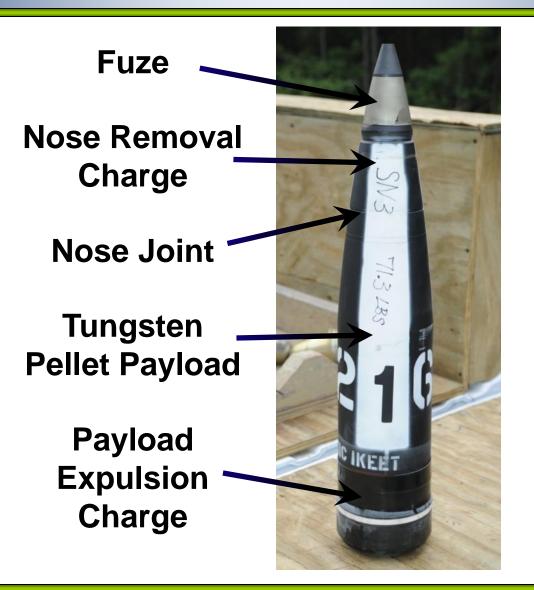
Navy's Requirement

The Navy's 5" 54/62 caliber guns have an antisurface warfare requirement to defend against small boat threats

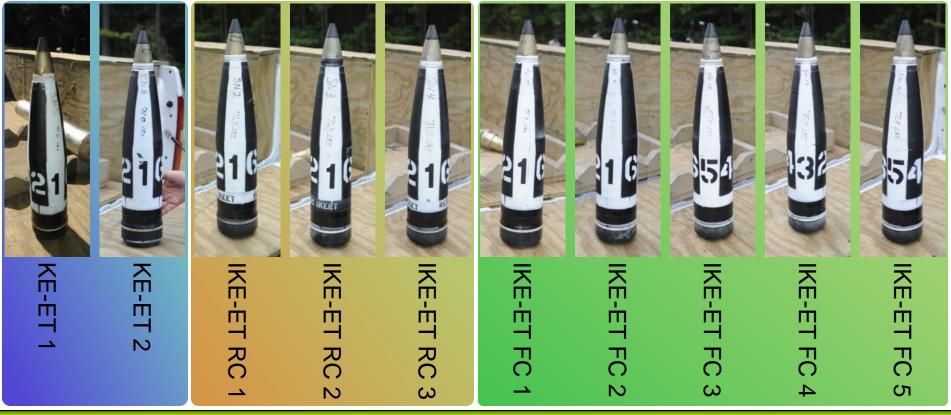
- Swarming tactics
- Terrorists
- Pirates



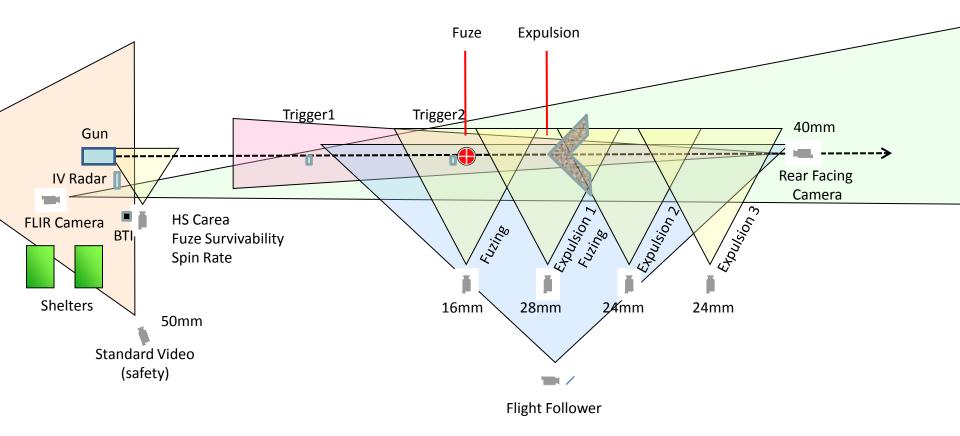
MK 182 KE-ET Anatomy


- The MK 182 KE-ET is currently fielded in the fleet
- KE-ET: The pellets <u>lose</u> kinetic energy by being expelled from the base
- IKE-ET: The pellets <u>gain</u> kinetic energy by being expelled from the nose

IKE-ET Anatomy



IKE-ET Test

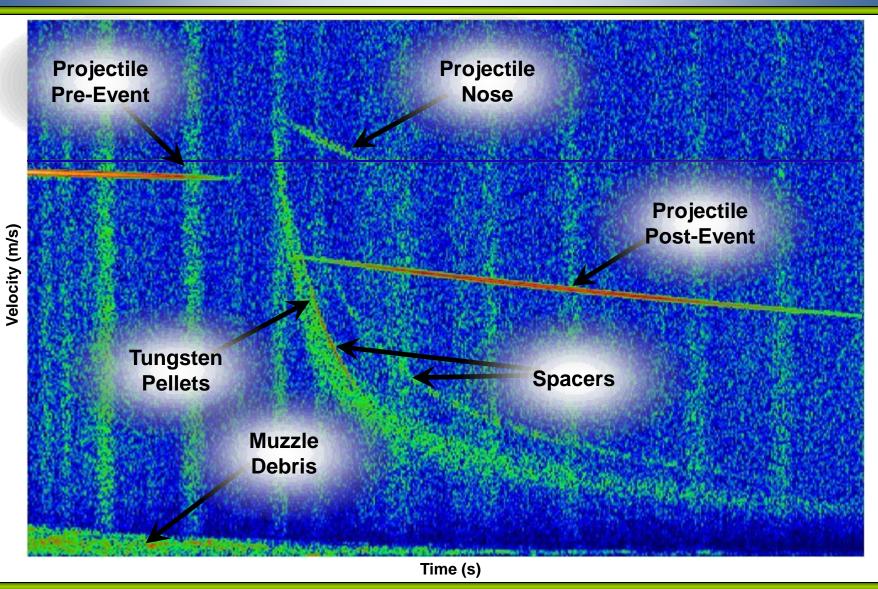

September 16 2010

- 4 BL&Ps
- 2 KE-ETs
- 3 Reduced Charge IKE-ETs (1 fuze failure) 5 Full Charge IKE-ETs


Test Instrumentation Layout

Test Photos (Nose Separation)

Test Photos (Payload Expulsion)


Test Photos (Flight Follower)

Sample Radar Plot

Debris Impact Divots

Spacer vs. Sandbag

IKE-ET vs. Camera Shelter

IKE-ET vs. Stop Sign

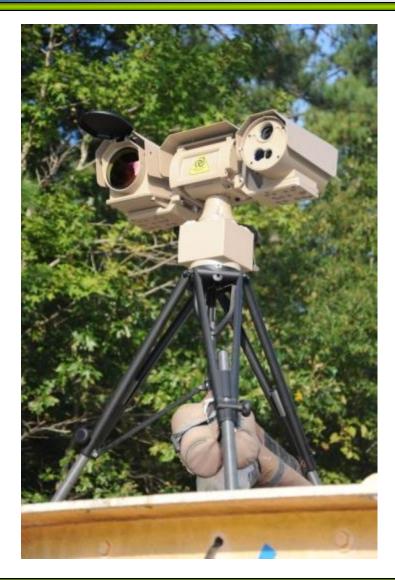
The Future of IKE-ET

- The IKE-ET is still in the Small Business and Innovative Research (SBIR) phase
- What's to come?
 - Currently the contractor is redesigning the projectile specifically for this application
 - After the redesign phase we will test fire the projectile again to verify survivability and functionality
 - The test will also attempt to acquire dispersion and velocity data (Z-data)
 - The Z-data will be provided to the lethality analysts to characterize IKE-ET's effectiveness vs. certain targets
 - The lethality results will support a decision whether or not to proceed with the program

Geoffrey Bland (540) 284-1078 Naval Surface Warfare Center, Dahlgren Division, G32 geoffrey.bland@navy.mil

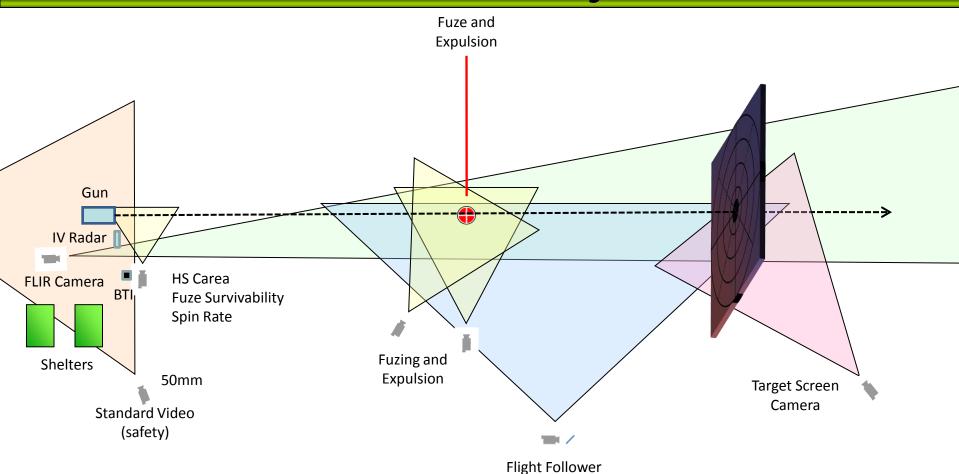
Backup Slides

5 Inch 54 Caliber Gun Mount



Field Cameras

Flight Follower and Triggers

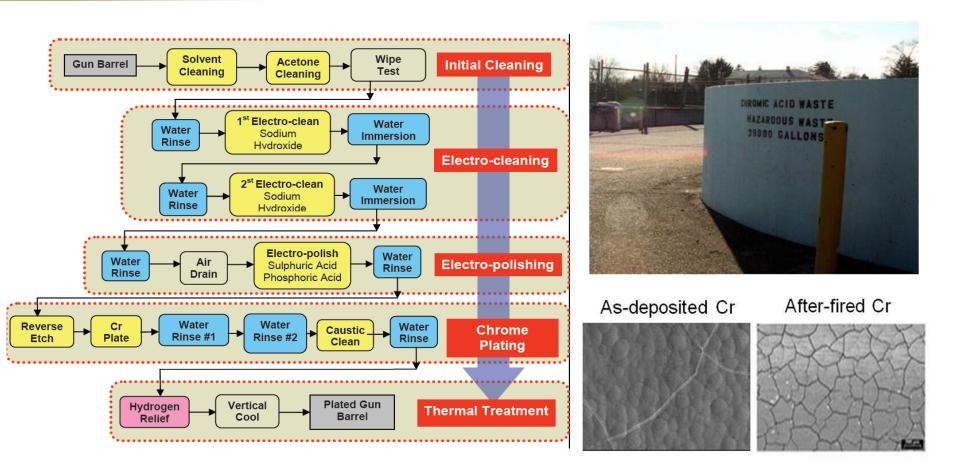

Rear Facing Camera

Future Dynamic Arena Test Layout

WARFARE CENTERS DAHLGREN

Weapon Systems & Technology Directorate US ARMY ARDEC and ARDEC- BENET Labs

New Physical Vapor Deposition Processes for Durable Pollution-Free Ordnance


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

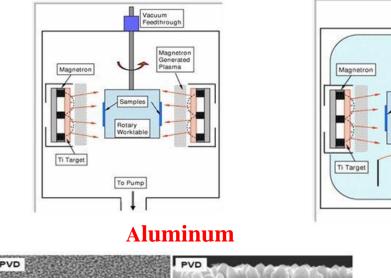
Dr. Sabrina Lee and Daniel Schmidt

2011 NDIA Gun and Missile Conference Miami, Florida, Aug 29- Sept 1, 2011

Production High Contraction Chrome (HC Cr) Process to Coat Ordnance

From- M. Audino. DOD Metal Plating Workshop, May 22, 2006.

- □ Arc Evaporation (filtered, steered, switched) Process.
- Direct Current Magnetron Sputtering (DCMS) Process.
- □ Plasma Enhanced Magnetron Sputtering (PEMS).
- High Power Impulse Magnetron Sputtering (HIPIMS).
- **D PEMS/HIPIMS Deposited CrN Coatings and Applications**.
- **PEMS/HIPIMS Deposited Ta Coatings and Applications.**
- **Conclusions**.


Plasma Enhanced Magnetron Sputtering (PEMS) Using Higher Plasma Intensity

Multiple Target PVD- DCMS and PEMS systems at SWRI

DCMS (0.2mA/cm²)

RDECOM)

PEMS (4.9 mA/cm²)

Vacuum

Samples

Rotary

Worktabl

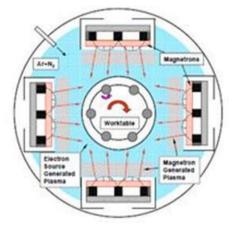
To Pump

Filament

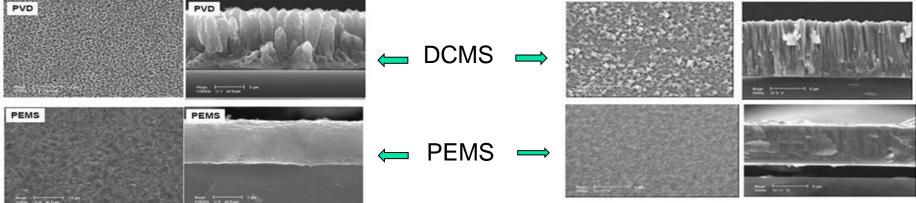
Feedthrough

Magnetron

Generated


Filament

Plasma


Generated

Plasma

Multiple Target System

Chromium

DCMS Versus HIPIMS-HPPMS-MPP RDECOM High Power Impulse Magnetron Sputtering DCMS **HIPIMS-HPPMS-MPP*** DCMS Pulsed DC **Continuous DC** Frequency: in Hz Frequency: in kHz Duty cycle: 1-10% Duty cycle: 50~90% Asymmetric bipolar Target voltage Continuous DC **Farget voltage** No positive voltage Reversed positive voltage **Farget voltage** Time V Time Time 0 V-

*Introduced by Kouznetsov et al; HPPMS-MPP are slight variances of HIPIMS.

 τ_{cvcle}

Large number of target material ions and enhanced plasma density.

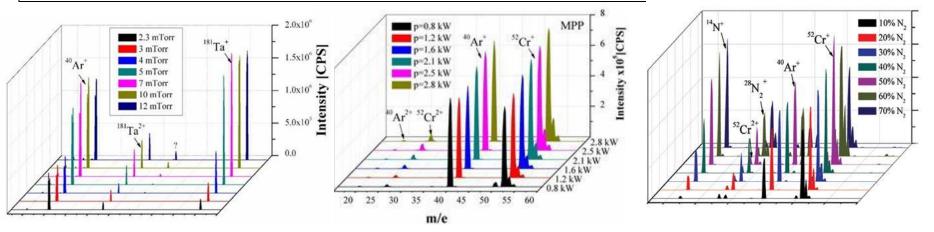
V_

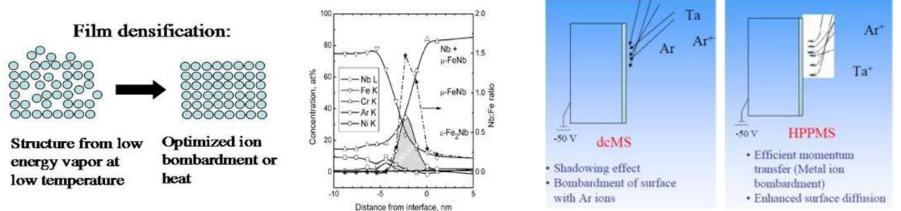
V

> High power pulses of short duration (100-150 μ s); low duty cycle (1-10%).

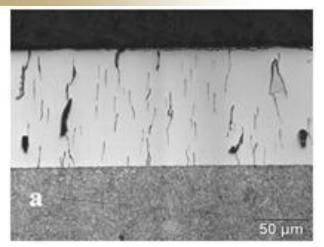
 $\tau_{rev} \tau_{on}$

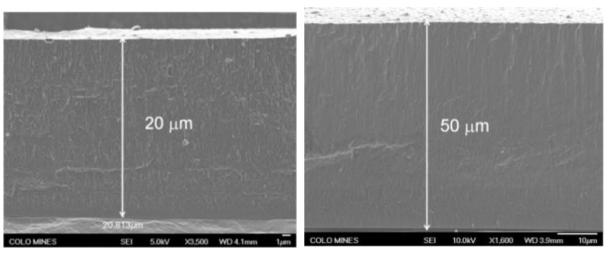
Peak value (1-3 kW/cm²) typically 100 times greater than conventional DC magnetron sputtering (1-3 W/cm²).


* From- V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, "A Novel Pulsed Magnetron Sputter Technique Utilizing Very High Target Power Densities," Surf. Coat. Technol. 122 (1999) 290.

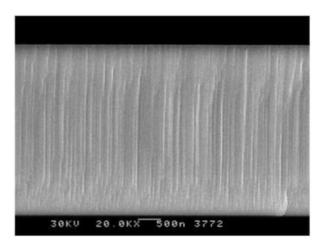

New High Power Impulse Magnetron (HIPIMS) Process Using Metal Plasma

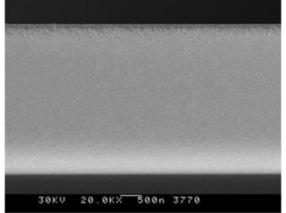
High intensity target Metal Plasma Instead of Argon Plasma Deposition of dense coatings at low temperature on complex shape.

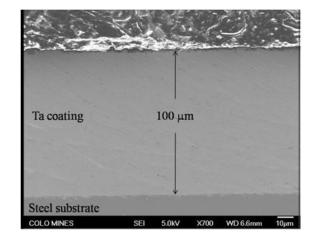

Plasma Mass-Ion Distribution using Tantalum and Chrome Targets measured using an electrostatic quadrupole plasma (EQP) mass spectrometer



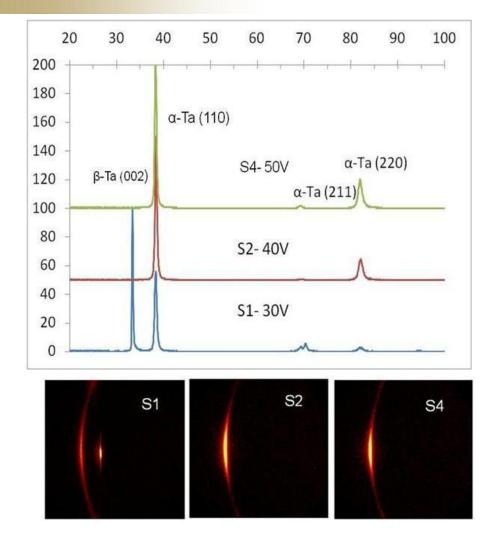
Improved Microstructure in HIPIMS-MPP Deposited Thick Ta and CrN Coatings



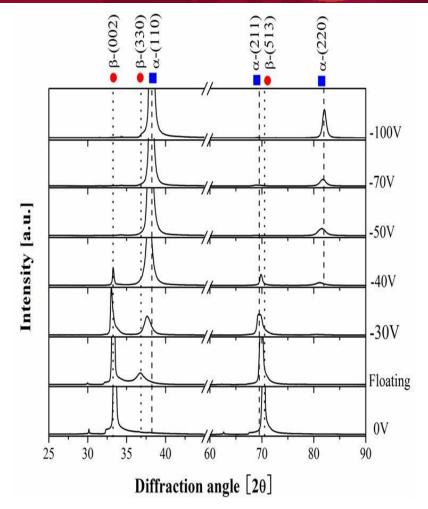



Production Electroplated Cr

HIPIMS-MPP Deposited Thick CrN



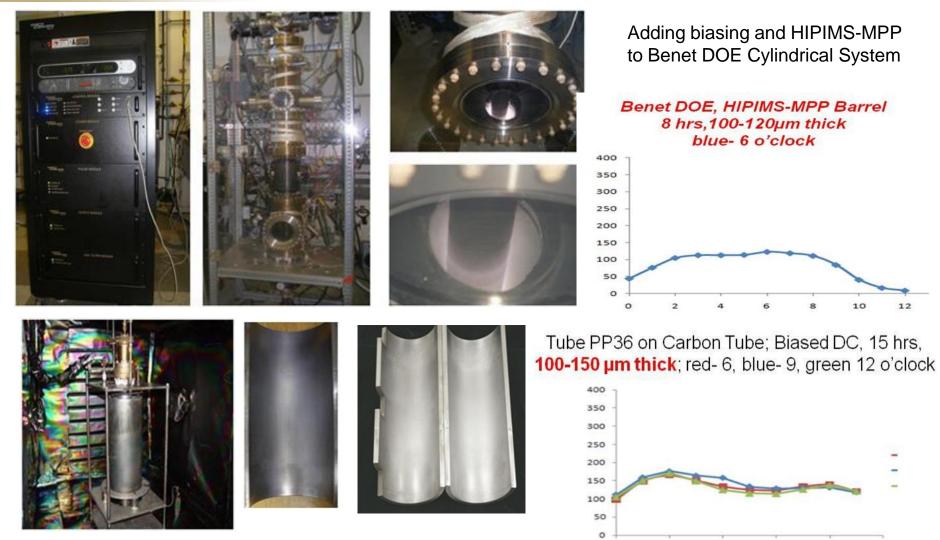
DCMS Ta (10µm)


HIPIMS Ta (10µm)

HIPIMS Ta (100µm)

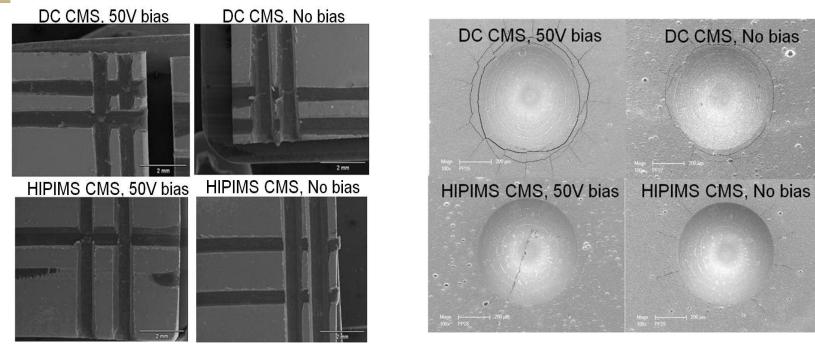
RDECOM HIPIMS Tantalum Phase Dependence on Deposition Parameter- Bias Voltage

* From- S.L. Lee, M. Cipollo, F. Yee, R. Chistyakov, B. Abraham, SVC 52nd Tech Conf. Proc.,(2009) 44-49.

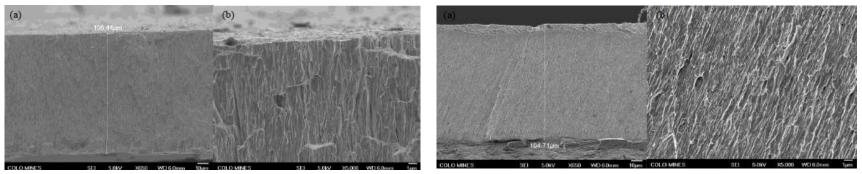

* From- J. Lin, J. Moore, W.D. Sproul, S.L. Lee, J. Wang, IEEE Transactions on Plasma Science, Vol 38, No. 11, (2010) 3071-3078.

PEMS-HIPIMS-MPP Cylindrical Magnetron Systems for Ta Depositions on 120mm Bore

10


From- S.L. Lee, R. Wei, F. Yee, M. Cipollo, W. Sproul, J. Lin, presentation at ICMCTF, San Diego, CA, April 26-30, 2010.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


0

PEMS-HIPIMS Cylindrical Magnetron Deposited Ta on 120mm Steel Cylinder Bore

RDECOM

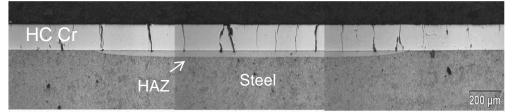
Fractured surface of 104-106 μm PEMS Ta on 1-ft long steel cylinder

From-S.L. Lee, M. Todaro, S. Smith, R. Wei, K. Coulter, SVC 52nd Tech Conf. Proc., (2009) 558-563.

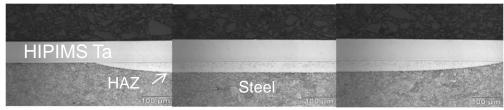
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

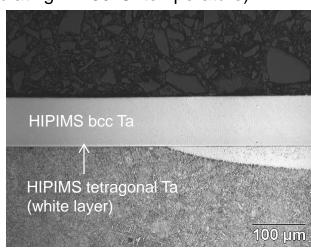
BENET

Properties of HIPIMS-MPP Deposited Thick Ta Coatings on A723 Steel

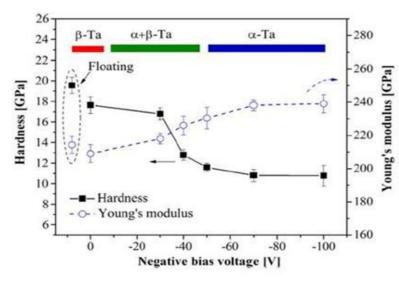

Knoop hardness depth profile of MPF

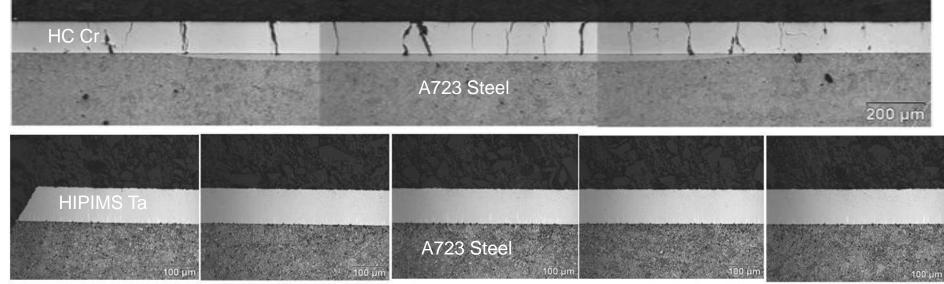
deposited 90 µm Ta on A723 steel




Pulse Laser Heating (2.5 msec, 1.0 J/mm2, 20 cycles, simulating ~1400°C temperature)

125 µm HC Cr on 120mm Diameter Steel Cylinder


90µm HIPIMS-MPP Ta on Steel

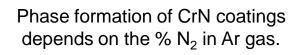

HAZ (Heat affected zone) in steel is due to tempered to untempered martensite transformation.

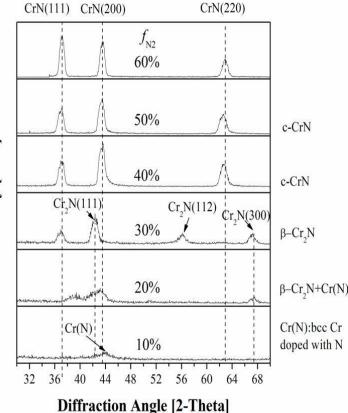
P	PL-Ta Mines 2-01		
Diamond Length (µ)	Knoop (Hk ₅₀)	Depth of Diamond (µ)	
36.64	530	-98.35	
37.57	505	-79.34	-Steel
39.68	451	-62.38	
29.54	815	-31.43	
30.75	752	-16.72	- HAZ
29.84	823	-6.63	
35.33	569	12.15	
34.52	598	28.53	-
33.10	649	46.51	- Ta
33.10	649	61.02	
33.82	623	75.43	

HIPIMS-MPP Cylindrical Magnetron Deposited Ta on 120mm Cylinder Bore

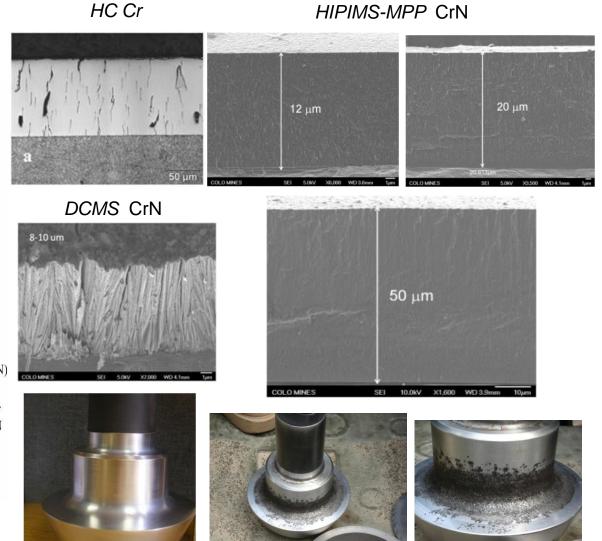
* Pulse Laser Heating (2.5 msec, 1.0 J/mm2, 20 cycles, simulating ~1400°C temperature)
 * DOE-Z2-2 (MPP, substrate ground, 106 μm, no HAZ, no cracking, no delamination)

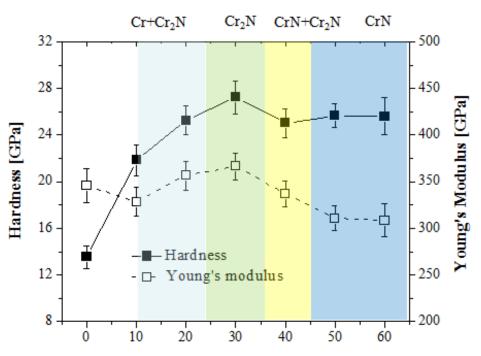
RDECOM


Z2-2					
Diamond Length (µ)	Knoop (Hk ₅₀)	Depth of Diamond (µ)			
46.86	326	5.67			
47.18	319	25.78			
47.51	315	45.53			
47.32	318	64.51			
48.96	297	82.74			

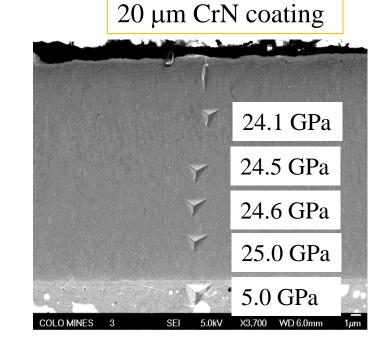


HIPIMS-MPP CrN Coatings


For Weapons Coatings and Remediation



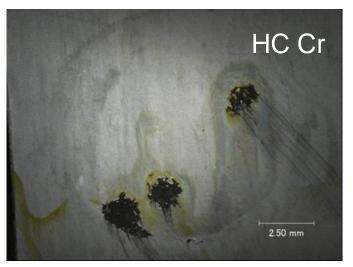
From- Jianliang Lin, William Sproul, John Moore, Sabrina Lee, S. Myers, Surf Coat Tech 205 (2010), 3226-3234.



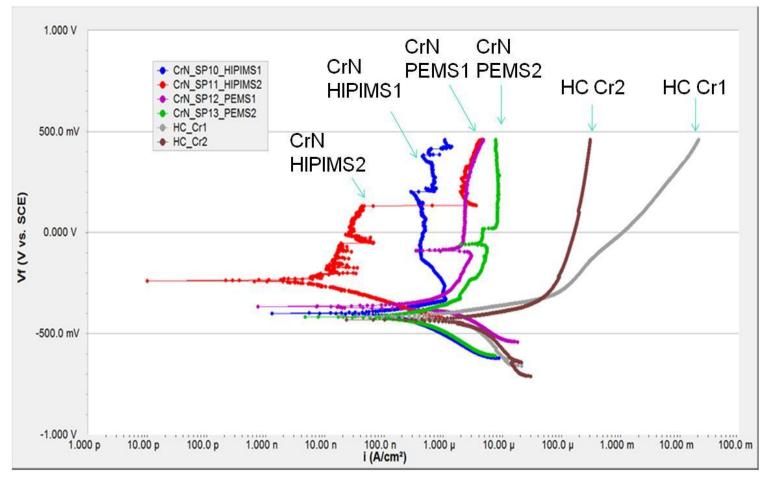
HIPIMS-MPP CrN Coatings Hardness and Young's Modulus

Nitrogen Flow Rate Percentage [%]

From- Jianliang Lin, William Sproul, John Moore, Sabrina Lee, S. Myers, Surf Coat Tech 205 (2010), 3226-3234.


ASTM Standard Corrosion Test Using a Potentiodynamic Tester & Sea Water

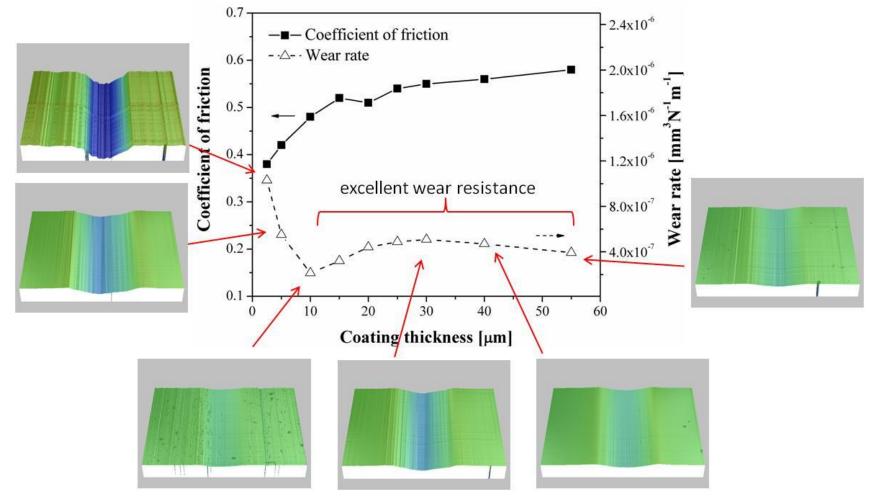
- ASTM G3-89 "Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing"
- ASTM G5-94 "Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements"



ASTM Standard Corrosion Test Potentiodynamic Polarization Test

RDEGOM

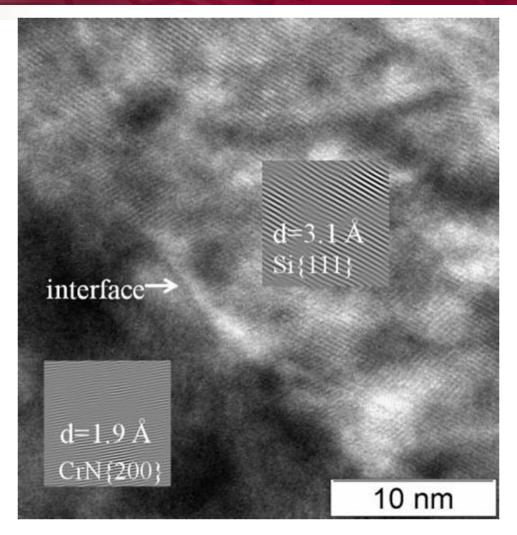
PEMS and HIPIMS CrN coatings showed 2 orders of magnitude improved corrosion resistance compared to electroplated HC Cr



Current Density in μ A/cm², Log Scale

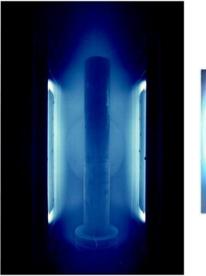
HIPIMS-MPP CrN Coatings Coefficient of Friction and Wear Rate

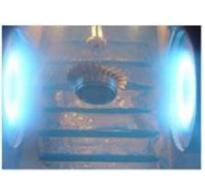
Test conditions: 10 N normal load, 200 rpm, 5hr, sliding against a 5 mm Al₂O₃ ball


RDECOM

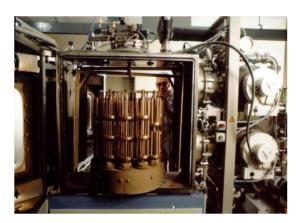
* Jianliang Lin, William Sproul, John Moore, Sabrina Lee, S. Myers, Surf Coat Tech 205 (2010), 3226-3234.

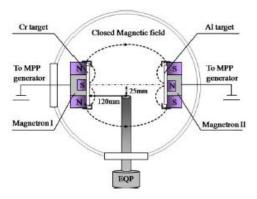
Clean and Dense Interface Microstructure of MPP CrN Film on Si


RDECOM

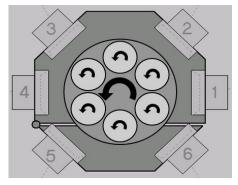


From- J. Lin, W.D. Sproul, J. Moore, S. L. Lee, R. Chistyakov, 'Recent advances in Modulated Pulsed Power Magnetron Sputtering for Surface Engineering', JOM, June (2011) 48-58.


RDECOM State-of-Art PVD Deposition Systems







Conclusions

- New PVD technology PEM with higher plasma density, and HIPIMS-MPP processes generating high intensity metal plasma for deposition of dense quality coatings with less columnar microstructure.
- New technology successfully deposited Ta 100-150 μm on 120mm diameter cylinder bore; Ta phase is sensitive to deposition parameters.
- □ New technology successfully deposited 10-55 μ m fcc CrN coatings on steel; formation of CrN and Cr₂N phases depends on N₂ concentration.
- New thick PVD Ta demonstrated dense bcc Ta coatings with excellent ductility, microstructure, and high temperature properties.
- New thick PVD CrN demonstrated dense coatings, good microstructure, high hardness, good modulus, superior corrosion resistance, superior wear resistance properties.
- New technology can deposit environmental-friendly coatings, Ta & CrN, for potential replacement of production HC Cr coatings for ordnance.

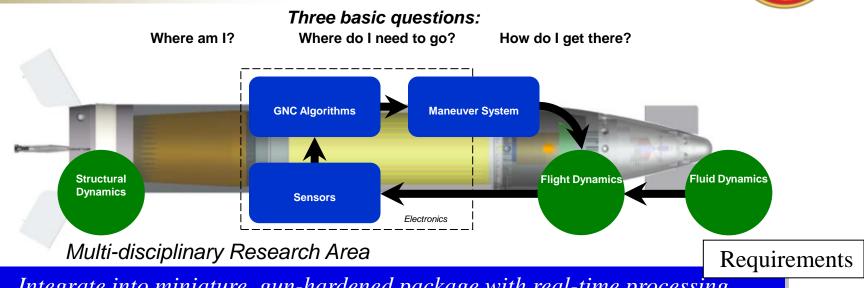
Very Affordable Precision Projectile System and Flight Experiments

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Chris Stout – Analysis & Evaluation Technology Division , FPAT ARDEC

Frank Fresconi, Gordon Brown, Ilmars Celmins, James DeSpirito, Mark Ilg, James Maley, Phil Magnotti, Adam Scanlan, Chris Stout, Ernesto Vazquez

ARDEC/ARL


Motivation

- Provide soldier with an organic precision lethality solution for indirect fire systems
- Growing demand for precision capability across multiple caliber systems
 - First-round lethality
 - more stowed kills
 - more timely
 - Limit collateral damage
 - use in urban terrain
 - use in close proximity to friendly troops and civilians
- Deliver scalable effects warheads

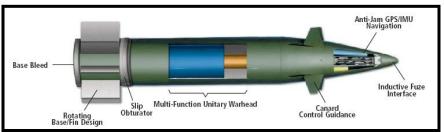
Guidance, Navigation, and Control (GNC) Overview and Challenges

Integrate into miniature, gun-hardened package with real-time processing

Unique Challenges for GNC in the Gun-Launched Environment:

- Rifled guns \rightarrow spin-stabilized projectiles (Magnus moment, gyroscopic action, actuation freq.)
- Survivability of components at gun launch event
- Sensors in high-dynamic environment
- Physics of flight for novel concepts
- Embedded processing

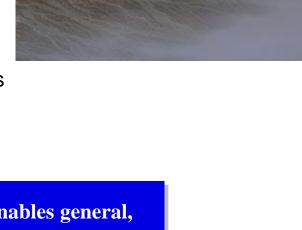
RDECON


- Varied applications (1s < time-of-flight < 100s, 0Hz < spin rate < 1000Hz)
- Size, weight, and power
- Affordability (\$/round, \$/kill)

Technical Approaches

Current Approaches:

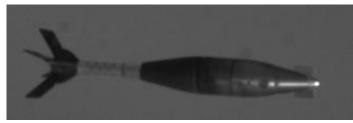
RDEGO


- Gun-hardened missile technology
 - maneuver system complexity/tolerance
 - high grade sensors
 - expensive
- Retro-fit existing stockpiles
 - narrowed design space

Alternate Approach for Affordable Precision

- DoD scientists and engineers develop technical underpinnings
 - Accept greater technical risk
 - Non-proprietary
 - Fund R&D once and apply to all

Fundamental understanding of science and technology enables general, caliber-independent GNC solutions

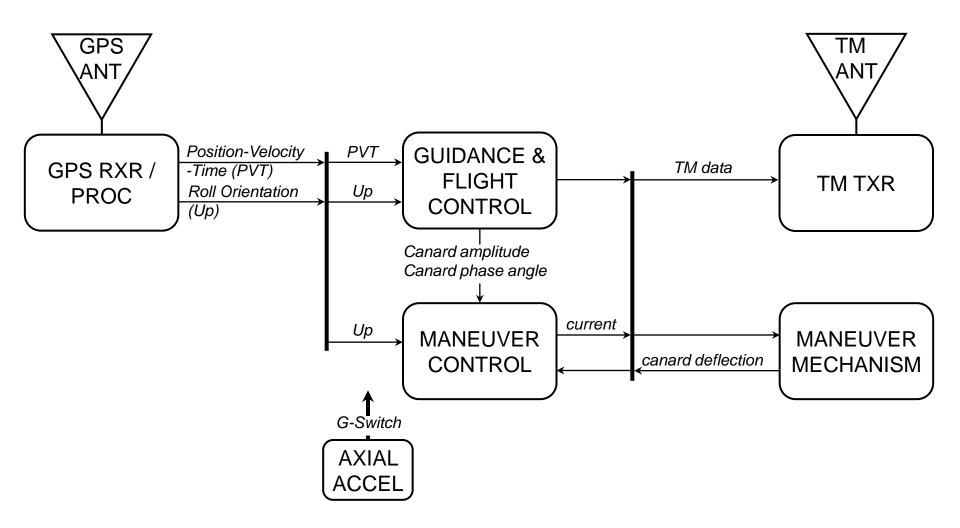


RDECON Very Affordable Precision Projectile - Overview -

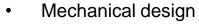
Objective

- To develop and demonstrate affordable precision technologies independent of projectile caliber applicable across all indirect fire platforms
- Requirements
 - Cost
 - Precision
 - Angle-of-Fall
 - Range

- **Solution**: rolling airframe with single-axis maneuver mechanism, reduced sensor requirements and ballistic-based guidance algorithm
- Joint ARDEC-ARL effort with support from PM-CAS
- CRADA with industry for GPS expertise
- Fuzing, warhead, rocket, tactical battery leveraging other efforts



Demonstrated guide-to-hit capability in flight experiments on multiple calibers



VAPP Architecture

Maneuver System - Development -

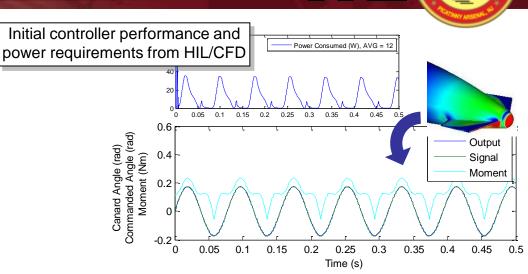
- Linear voice coil coupled to canards with locking mechanism
- Electrical design
 - Algorithms embedded for real-time processing on DSP
 - H-bridge driven by pulse width modulated signals from DSP
 - Encoder and zero-crossing sensors provide feedback
- Controller algorithm
 - LQR controller tracks sinusoidal reference signal

Maneuver system performance and power requirements verified in wind tunnel

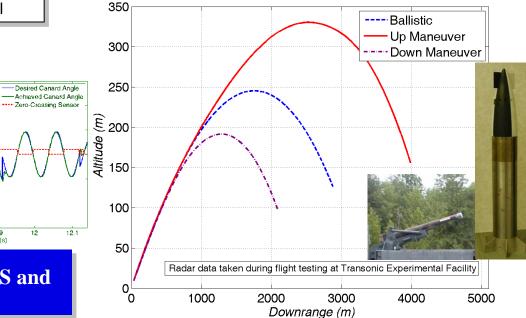
(bep)

nard Angle

15 11.7

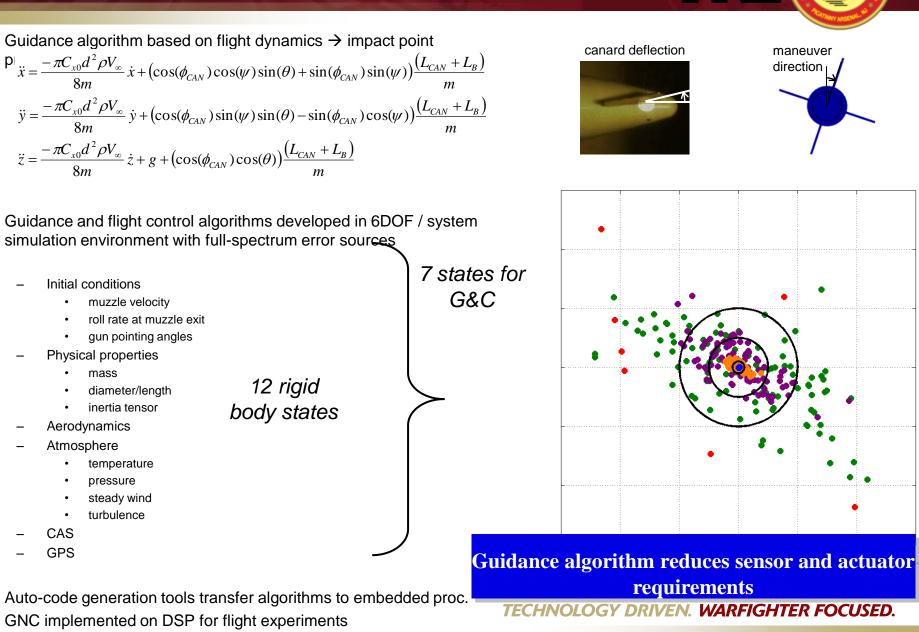

118

11.9

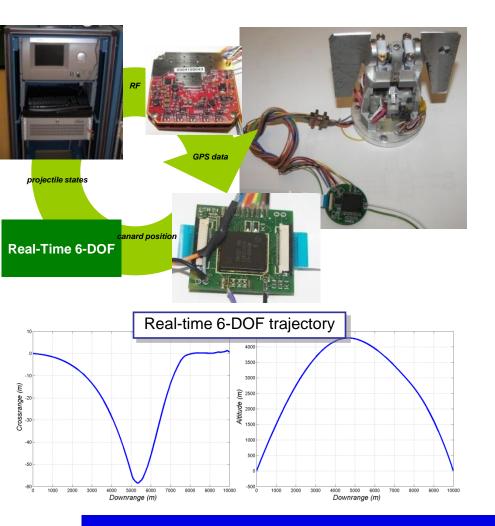

Time (s)

12

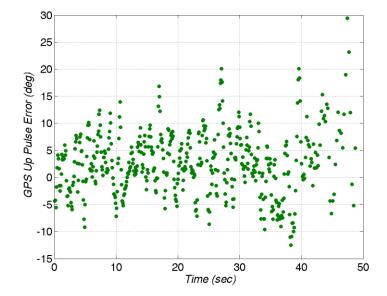
Mach = 0.76


Maneuvers of Precision 105mm at 15deg QE and 300mps MV

Maneuver system developed with M&S and verified in experiments

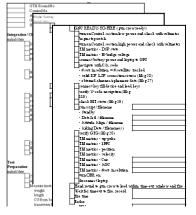


Guidance and Flight Control



Integration of Technologies

Extensive laboratory/field efforts reduce risk before flight experiments



RDECOM Guided Flight Experiments - Check-out | Procedure | Setup

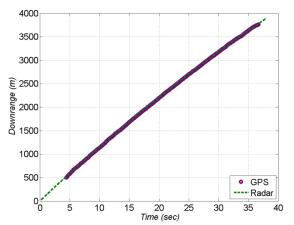
120mm mortar

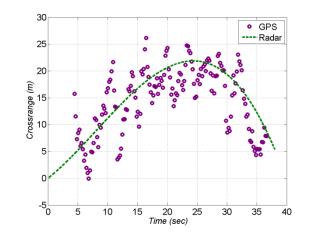
Detailed check-out and test procedure

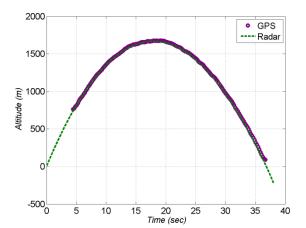
Full ballistic range support

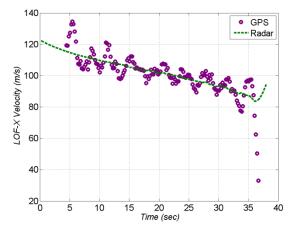
155mm artillery

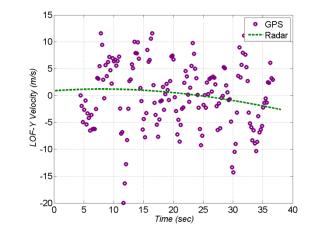
YPG

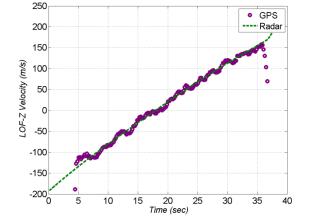

Target at 16.4 km

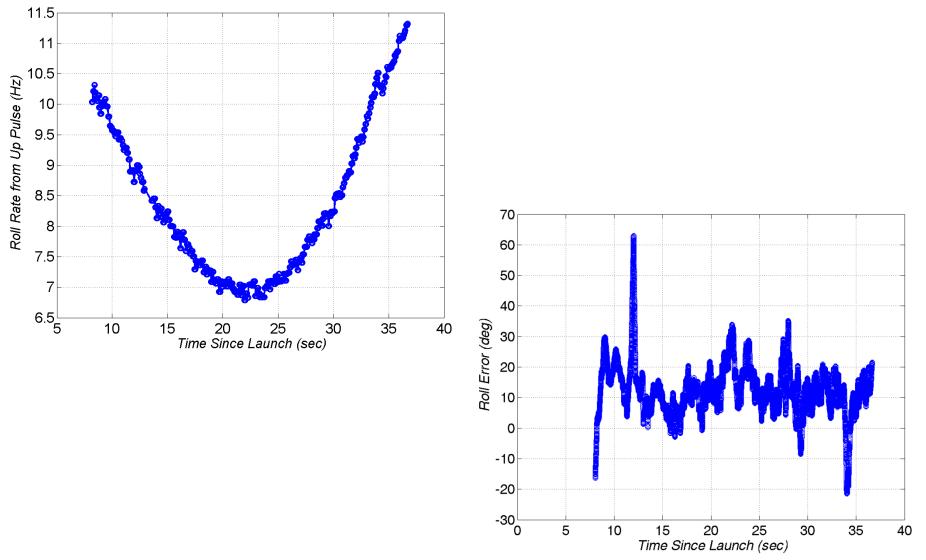

APG

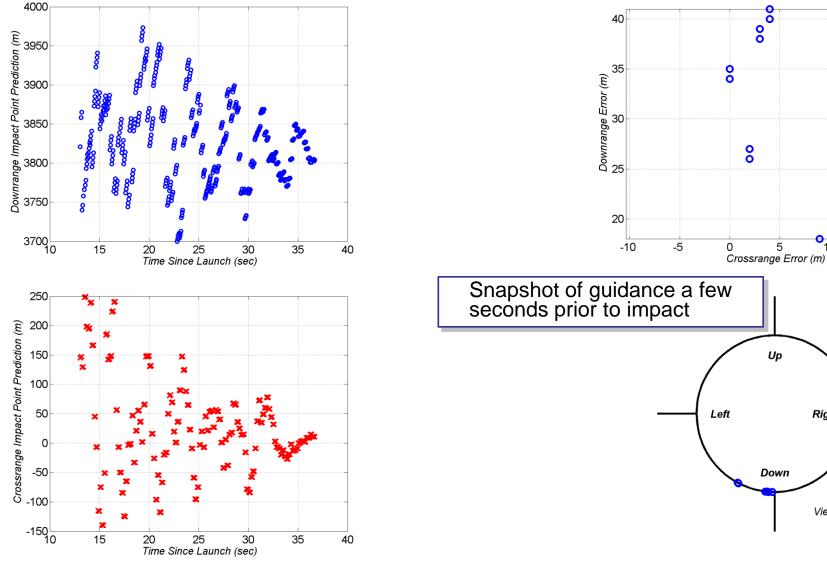

Target at 3.8 km




Flight Experiments - GPS | Radar -





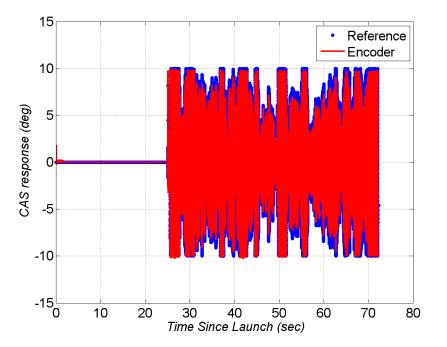


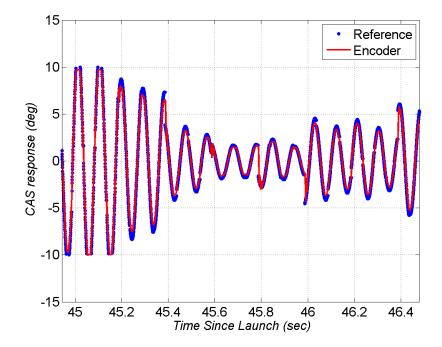
Flight Experiments
<u>-</u>Upfinding -

Flight Experiments - Guidance -

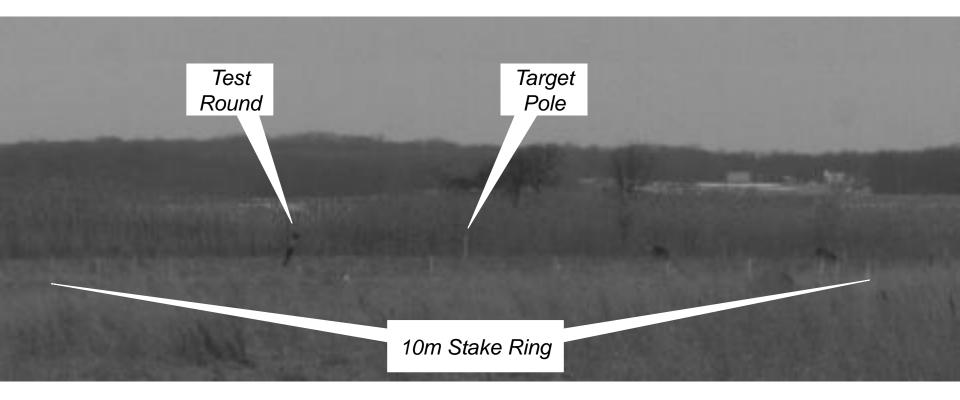
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

10


Right


Viewed from Base

15



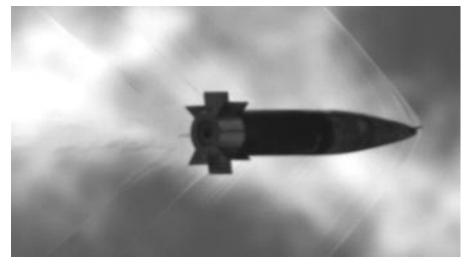
Flight Experiments - Maneuver System -

RDECOM Guide-to-Hit Flight Experiments - 120mm -

RDECOM Guide-to-Hit Flight Experiments - 120mm -

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

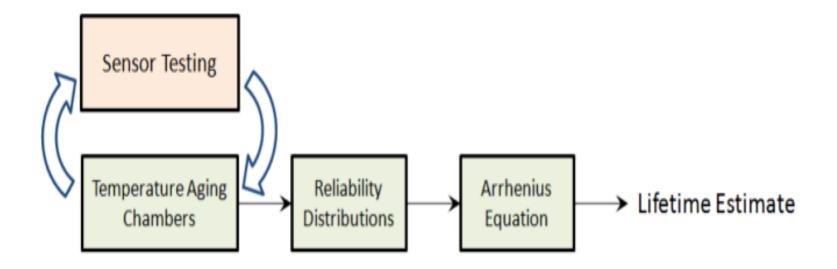
RDECOM Guide-to-Hit Flight Experiments - 155mm -



TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Affordable precision solutions enabled through fundamental understanding of technology by DoD scientists and engineers
 - accept higher technical risk
 - caliber-independent (fund R&D once)
- Successful guide-to-hit flights
 - validated technologies and approach
 - confirmed TRL
 - provided transition vehicle to other government labs and industry

U.S. Army Research, Development and Engineering Command

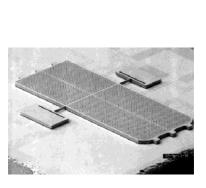

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

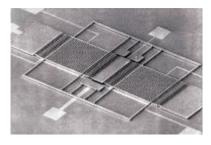
Determination of the Shelf Life of MEMS Navigation-Grade Sensors through Use of Accelerated Aging Principles

April 14, 2011 James A. Sarruda

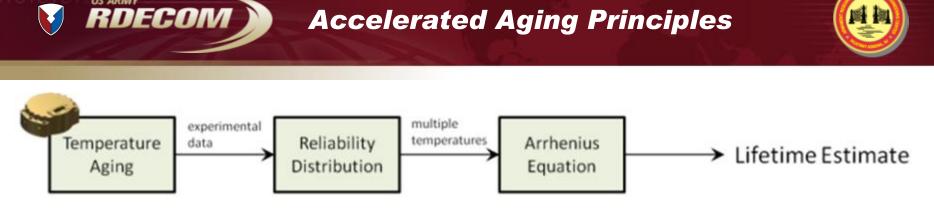
 Determine the life expectancy of a generic micro electro-mechanical systems (MEMS) inertial measurement unit (IMU) designed specifically for the use in a precision munition.

- Degradation in performance parameters of a MEMS IMU over time is not well understood.
 - Natural aging not an option
 - Developing navigation capability
- Artificial aging is a viable option to understand product reliability.
 - Precision munitions have been expensive
 - Guidance and Control is a key cost driver





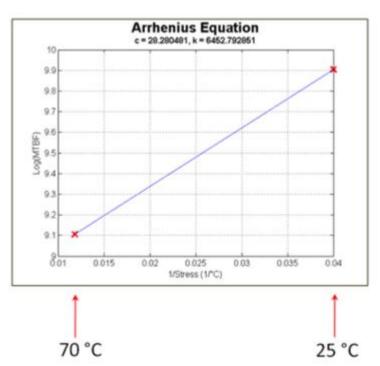
- Guided munition weapon systems are in need of extremely miniaturized, navigation-grade sensors in order to increase the lethality of the Army's precision guided products.
 - Complex environments pose a severe challenge to the warfighter, and therefore the advancement of key technology is necessary to meet stringent user requirements.
 - MEMS IMU provides full six-degrees-of-freedom triaxial motion measurements.
 - All indirect fire systems substantially benefit from precision capability.


- Testing is designed to obtain the life expectancy of the inertial sensors within the inertial measurement unit system, not the life expectancy of the IMU system as a whole.
 - Performance independent of sensor integration
 - Greater sample size
- Reliability Prediction

RDECOM

- A "time to failure" population distribution is required to predict shelf life
- Weibull distribution is commonly used in reliability engineering
- Success Criteria
 - Sensors must "fail" for lifetime equations to be appropriate.
 - Sensor performance outside program goals will be considered a failure.

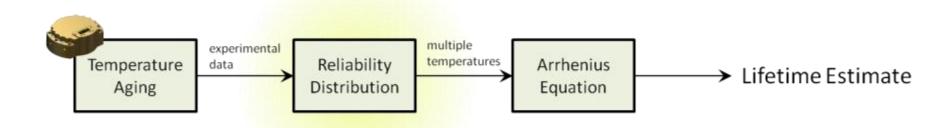
• Arrhenius equation correlates lifetime to temperature stress.


$$t = ke^{\frac{c}{s}}$$

Where

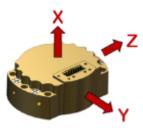
US ARMY

t is the time to failure for a percentage of the population k and c are constants S is the amount of stress


• At a minimum, two temperature age estimates are needed to estimate the equation's parameters.

Accelerated Aging Principles

- A "time to failure" population distribution (reliability distribution) is required to use the Arrhenius equation.
- A reliability distribution is selected from a best fit to the experimental data failure times.
- The sensor parameters must fail for the reliability distribution to be determined.
- Weibull distribution will be utilized for this testing as this distribution is commonly used in reliability engineering.



- Each inertial IMU contains an inertial sensor assembly (ISA) with six inertial sensors.
 - Angular rates are measured using three orthogonal MEMS gyroscopes along the x, y, and z axes.
 - Linear acceleration is measured using three orthogonal MEMS accelerometers along the x, y, and z axes.

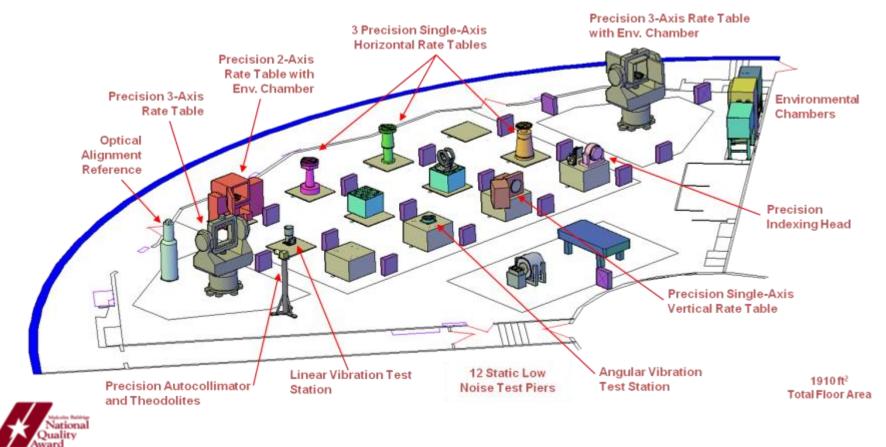
Name	Symbol ¹	Units	Name	Symbol ¹	Units
Angle Random Walk (ARW)	g i, arw	°/√hr	Velocity Random Walk (VRW)	a _{i, VRW}	m/s/√hr
Bias Error	g i,Berr	°/hr	Bias Error	a i,Berr	mg
Bias Instability	g i,Bstab	°/hr	Bias Instability	a _{i,Bstab}	mg
Turn-on to Turn-on Bias Error Repeatability	g i,Brep	°/hr	Turn-on to Turn-on Bias Error Repeatability	a _{i,Brep}	mg
Self-Heating Settling Time	g i,setT	hr	Self-Heating Settling Time	a _{i,setT}	hr
Scale Factor Error	g i,SFerr	PPM	Scale Factor Error	a i,SFerr	PPM
Scale Factor Asymmetry	g i,SFsym	PPM	In-Run Scale Factor Stability	a _{i,SFir}	PPM
Scale Factor Nonlinearity	g i,SFlin	PPM	In-Run Bias Stability	a _{i,Bir}	mg
In-Run Scale Factor Stability	g i,sFir	PPM	Sensor Misalignment	a _{õi}	µrad
In-Run Bias Stability	g i,Bir	°/hr			
Sensor Misalignment	g õi	μrad			

RDECOM

• Shape and scale parameters will be determined via linear regressions.

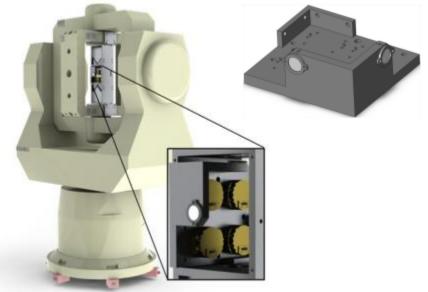
Gyros Parameter	Weibull Reliability Distribution Parameters	25 °C	70 °C	Arrhenius Constants	
Dias Davis	Shape (β)				
Bias Error	Scale (0)			K = , C =	
Scale Factor Error	Shape (β)			K = , C =	
	Scale (0)				
Non-Orthogonality	Shape (β)			K = , C =	
	Scale (0)				

Accelerometer Parameter	Weibull Reliability Distribution Parameters	25 °C	70 °C	Arrhenius Constants	
Dias Danas	Shape (β)			¥ = C =	
Bias Error	Scale (0)			K = , C =	
Scale Factor Error	Shape (β)			¥ - C -	
	Scale (0)			K = , C =	
Non-Orthogonality	Shape (β)			K = , C =	
	Scale (0)				



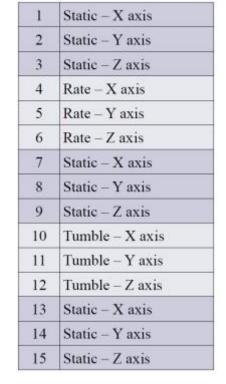
07 Award

- Provides capabilities to conduct research as well as test the most precise navigation sensors and equipment
- Building design reduces noise internal to the building itself


- Artificial Aging
 - The temperature chamber provides air temperature, pressure, and humidity data.
 - Mounting fixture stabilized at target temperature during aging.

• 3-Axis Characterization

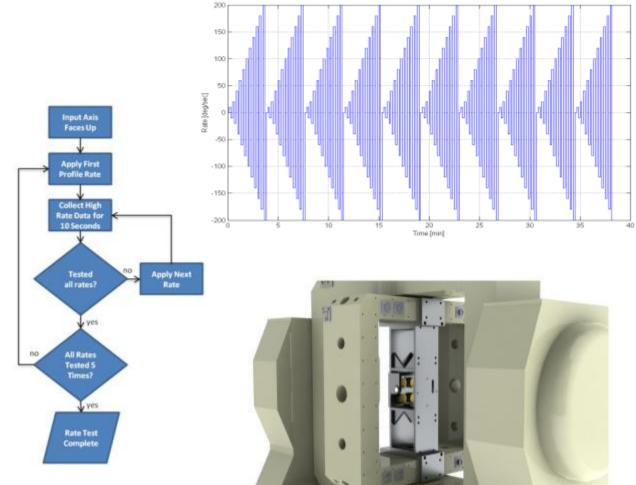
- Two alignment mirrors allow sensors to be precisely oriented on the fixture to the North, East, and to gravity.
- No need to remount sensors.


Test Procedures

• Static Test

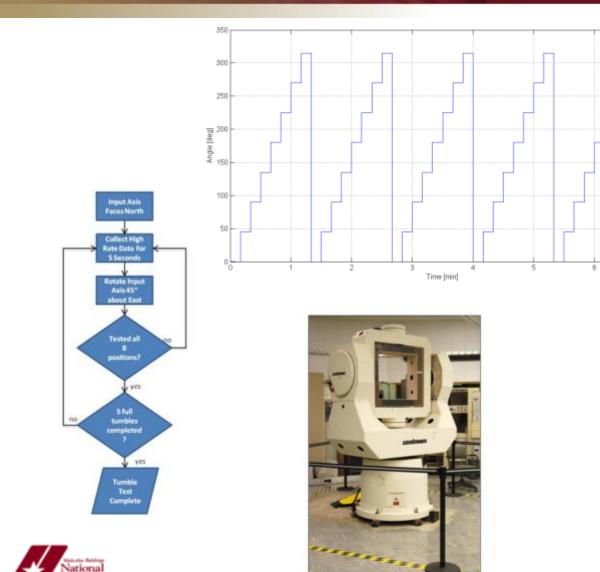
RDECOM

- Sensors are powered on and held motionless for a period of 30 minutes.
- Rate Test
 - The sensor input axis of the gyros under test is positioned along the table's axis of rotation.
 - Sensor data is collected ten times according to a rate profile.
- Tumble Test
 - The sensor input axis of the accelerometers under test were positioned along north.
 - Sensor data is collected five times according to a tumble profile.



Rate Profile

Table Rate deg/sec	Dwell Time sec
0	10
± 10	10
± 20	10
±40	10
±60	10
± 80	10
± 100	10
±120	10
±140	10
±160	10
±180	10
±200	10



National Quality Award

2007 Award ecipient

Tumble Profile

	Angle deg	Input Axis Orientation
1	0°	North
2	45°	
3	90°	Up (+g)
4	135°	
5	180°	South
6	225°	
7	270°	Down (-g)
8	315°	

Initial characterization to baseline sensor performance parameters. •

Test Schedule

- Monthly characterization at the beginning of each month. •
- Final characterization at the end of the 14 month period. ٠

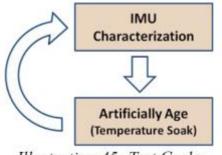


Illustration 45: Test Cycle

	November	Characterization
	November	
		Age
	December	Characterization
	December	Age
	January	Characterization
	January	Age
	Talanan	Characterization
	February	Age
	March	Characterization
	March	Age
	April	Characterization
2011	2011 May June July	Age
		Characterization
		Age
		Characterization
		Age
		Characterization
		Age
	August	Final Characterization

Year

2010

Month

May

June

July

August

September

October

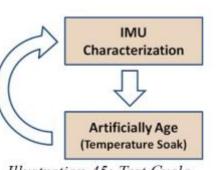
US ARMY

RDECOM

Action

Test Setup

Baseline Characterization


Age Characterization

Age Characterization

Age

Characterization

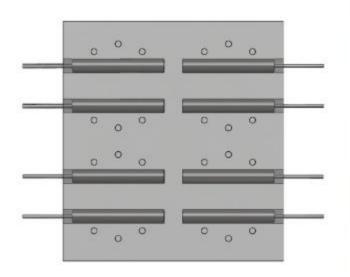
Age Characterization

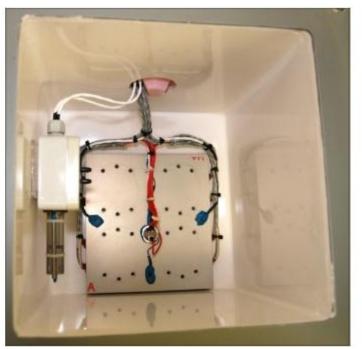
- Ongoing effort to be completed in September 2011
- Complete results are not available at this time
- Future MEMS IMU lifetime predictions can leverage off the process demonstrated in this testing program

- Increase the determination of reliability distributions by testing more IMUs.
 - Eight IMUs at each temperature step
- Additional temperature steps
- Further increase the aging process by increasing the aging temperature
 - More accurate lifetime prediction
- Point of Contact

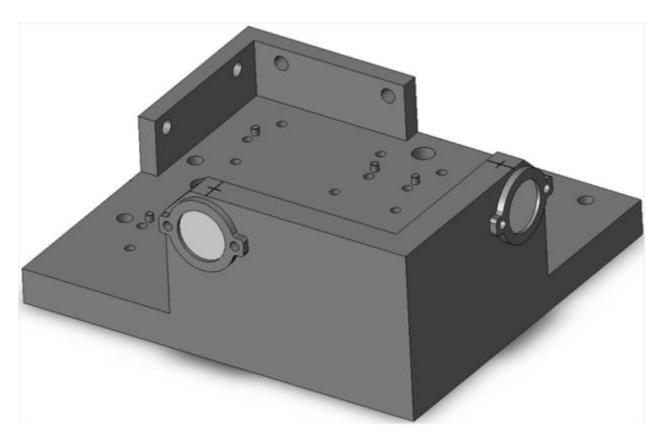
James A. Sarruda James.a.sarruda@us.army.mil Picatinny Arsenal, NJ

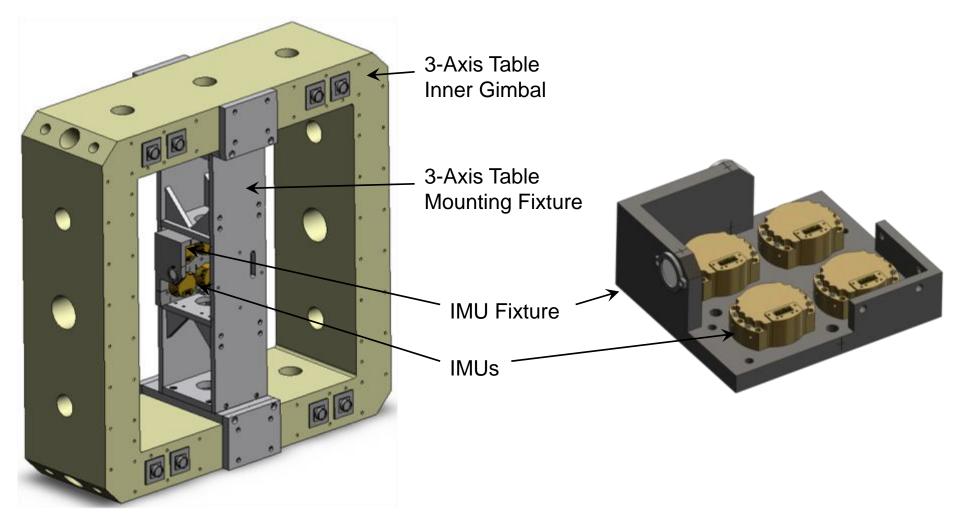
- Two thermal chambers and support electronics.
- IMUs are mounted to a custom fixture in each chamber .



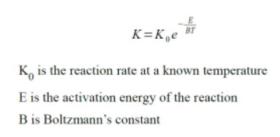


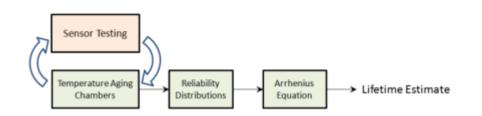
• The temperature chamber provides air temperature, pressure, and humidity control back to the support computer.

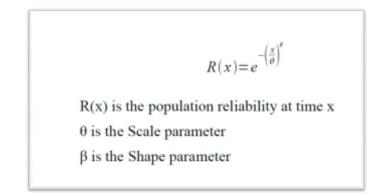




Backup – Characterization Setup


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.




- The Arrhenius equation can be generalized to correlate any stress to a population failure.
 - At minimum, two temperature age estimates are needed to estimate the equation's parameters.

RDECOM

- The devices under test do not fail simultaneously.
 - Weibull distribution used to model reliability

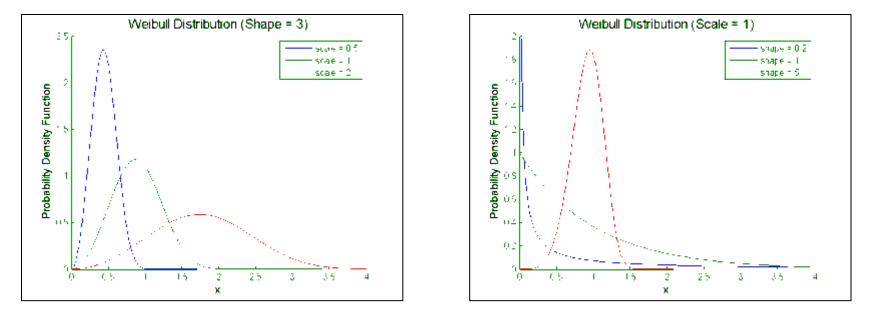
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Direct measurements of aging degradation can take decades.
- The Arrhenius model describes the effect temperature has on chemical reactions.

$$K = K_0 e^{-\frac{E}{BT}}$$

K₀ is the reaction rate at a known temperature

E is the activation energy of the reaction


B is Boltzmann's constant

- It is possible to induce artificial aging in a material or device by applying some form of stress.
- By calculating the reliability distributions at differing stress levels, the Arrhenius model can be utilized to calculate the failure rate at intermediate stresses.

Weibull distribution has two parameters to be calculated from the "failed" parameters data: Shape (β) and Scale (Θ)

Backup – Weibull Distribution

$$f \mathbf{\Phi} = \frac{\beta}{\theta} \left(\frac{x}{\theta}\right)^{\mathbf{\Phi}-1} e^{-\left[\left(\frac{x}{\theta}\right)\right]^{\beta}}$$

US ARMY

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- An appropriate out-of-spec value was chosen for each parameter
- The values are based upon the Common Guidance Common Sense (CGCS) program goals
 - Some of the sensor values were out of CGCS program thresholds at the start of the program
- Some of the gyro parameters are shown here

Gyro Parameter	Maximum Threshold		
Bias Error	±100 °/hour		
Scale Factor Error	±400 PPM		
Non-orthogonality	±1400 µrad		

 From the extrapolated parameter failure times, the shape and scale parameter for the Weibull distributions were determined via linear regressions on the data

Gyros Parameter	Weibull Reliability Distribution Parameters	25 °C	70 °C	Arrhenius Constants
Bias Error	Shape (β)	1.04	0.97	K = 0.86, C = 70.00
	Scale (0)	14.07	2.33	
Scale Factor Error	Shape (β)	1.18	1.34	K = 0.20, C = 94.32
	Scale (0)	8.81	0.78	
Non-Orthogonality	Shape (β)	0.61	1.27	K = 5.28, C =1.12
	Scale (0)	459.76	26.04	

• From the calculated Weibull distributions, the population reliability for each parameter across temperature can be computed

RDECOM

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

System Analysis with Integrated Modeling and Optimization 46th Annual NDIA Conference April 13, 2011

Presented by Phil Brislin Munitions Engineering & Technology Center

DISTRIBUTION STATEMENT A Approved for public release; distribution is unlimited.

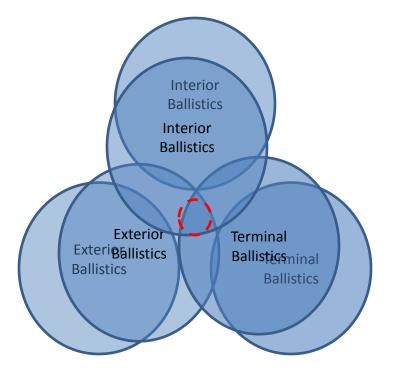
- Integrated System Modeling for Munitions
- Integrated Modeling and Optimization (IMO) Software
- Extended Area Protection and Survivability Example
- Questions

2

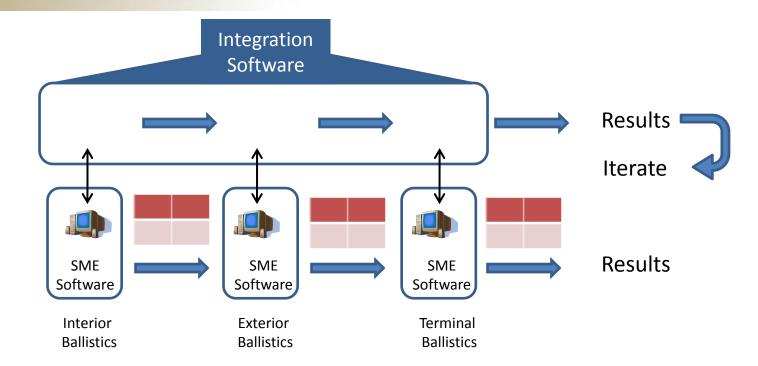
Munitions Design Example

- Goal Develop a design that meets or exceeds the requirements.
- Questions :
 - Is there enough time to perform sufficient design iterations?
 - Are the design dependencies well understood and quantified?
 - Is the sum of the parts the best for the system?

3

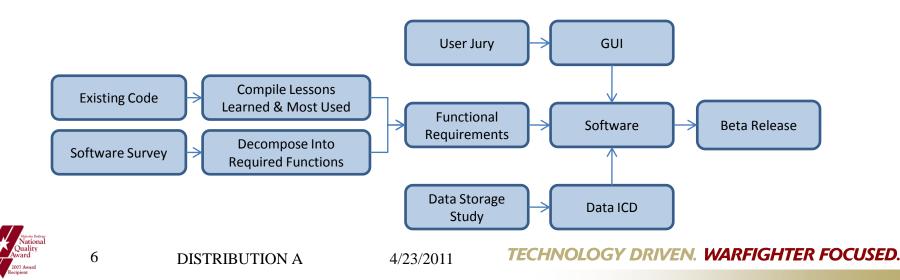


Integrated Modeling & Complex Systems

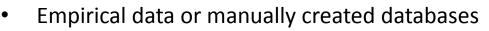

- New munitions seek more lethality in a lighter weight system
 - Multipurpose munitions.
 - Overdesigning is not an option.
- Overall system performance dependent on compromises between subsystems.
 - Systems or integration engineer tasked with this challenge.
- Using an integrated approach helps to find more common ground.
 - Quantitative rather than qualitative data for decisions.
- Establish working baseline for more detailed analysis.
 - Start with best design possible.

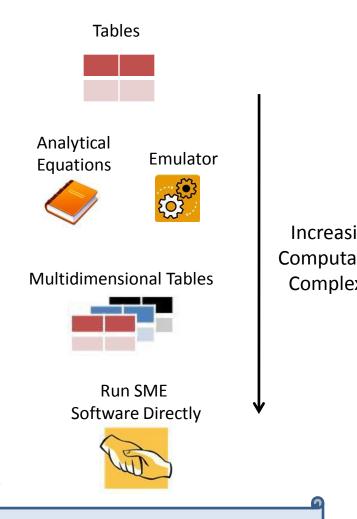
Integrated Modeling & Design

- An integrated workflow increases efficiency and permits more design evaluations than could be done before.
 - Increase the understanding of the design concepts via increased data availability.
- Well defined requirements lead to good designs.
 - Translation of performance requirements into design features with supporting qualitative data.


US ARMY

RDECOM


- Integrated Modeling and Optimization (IMO)
 - ARDEC software development project in 2011
- Mission Statement :
 - Increase the ARDEC wide integrated modeling capability through the development of software tools and by expanding SME use of the process via ATO support.
- IMO IPT is a subset of the ARDEC competencies.
 - Performed survey to identify software codes in use and workflow examples.



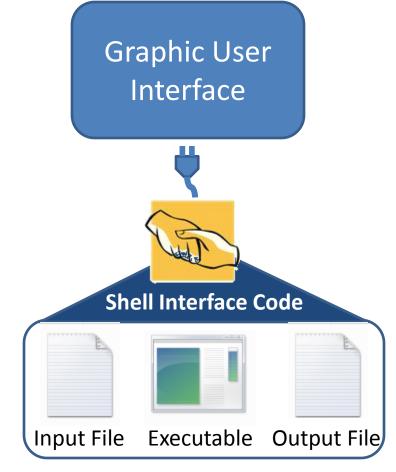
Integration Forms

- A few variables, medium to low fidelity, low run time.
- Analytical Equations or "Emulator"
 - Medium fidelity, medium to low run time
 - Simplified model or equations to capture physics.
- Multidimensional Tables
 - Medium fidelity with fast run time
 - Multivariable relationships _
 - Potential for reduced accuracy depending on system
- Build "shell" around existing software.
 - High fidelity and potentially higher run time
 - Complex multivariable analysis
 - ProEngineer, CTH, Abacus, Excel, Custom Executables, etc.

7

Selection of Form Factor Based on **Scope** of Analysis and **Time**

4/23/2011

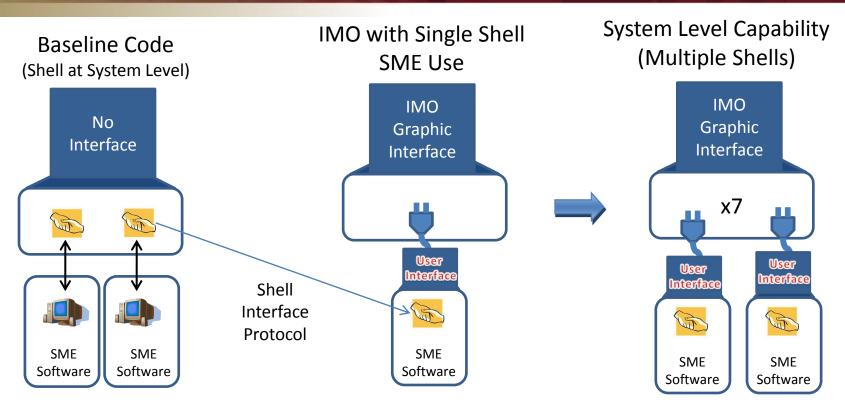

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Increasing Computation Complexity

Shell Concept

Generic Example

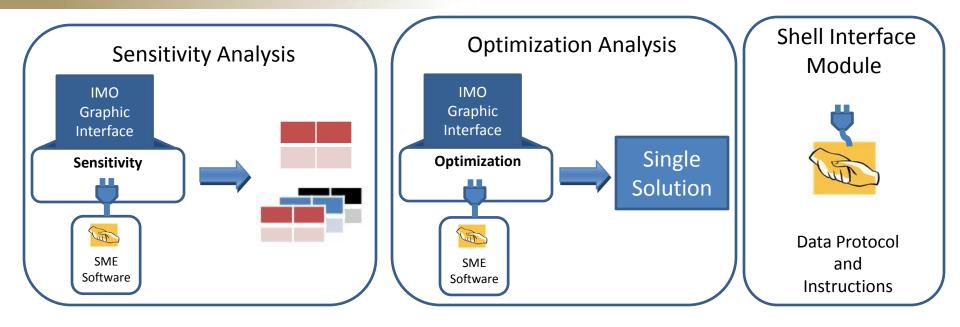
• A software "shell" is a set of execution instructions and data protocols to operate the software of interest via a third party software.


- IMO Analysis Software :
 - Run shells
 - Manage data
 - Run studies : optimization, Monte Carlo, etc.
 - Post processing
- IMO Graphic User Interface Aids SME in
 - Creating shell
 - Managing desired inputs / outputs.
 - Running single shell studies
- SME takes ownership of shell.

8

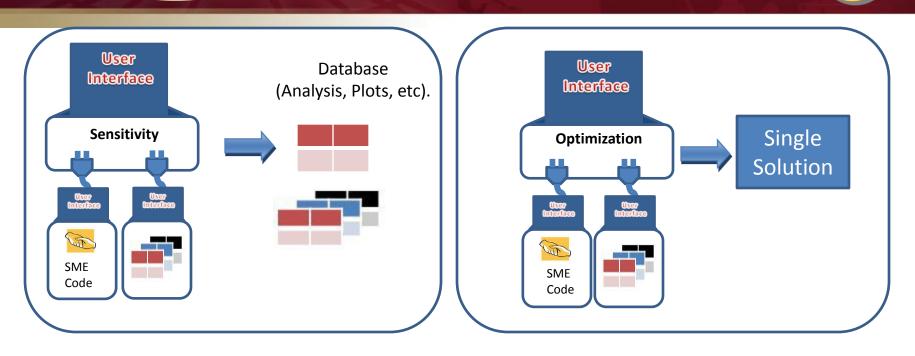
Accessibility to SME User

- Integration protocol transitioning from the system level to the SME level.
 - Provides the ability to "plug in" to larger system level analysis.
- Puts parametric and trade study code in the hands of modelers.
 - Allows for greater SME involvement, capability, and level of verification and validation.


9

US ARMY

RDECOM

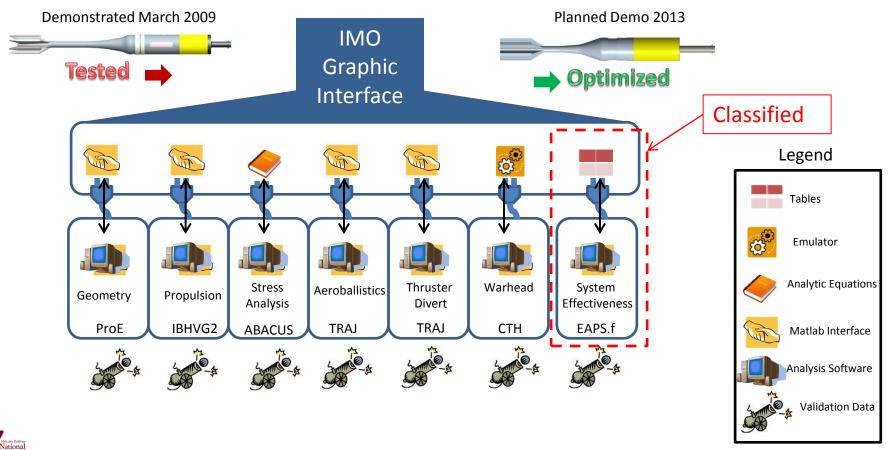

SME Level Outputs

- Sensitivity
 - Generate databases, analyze, mine data, plots, etc.
- Optimization Analysis
 - Perform simple goal seek or more advance nonlinear discontinuous optimization.
- Shell Interface Module
 - Export shell for other SME users

System Level Outputs

- System level users work with the same software as the SME level user.
 - Multiple shells can be fed into IMO software for system analysis.
 - Type of shell can vary from databases to "plug in" shell modules.
 - IMO shells developed by the SME engineers to ensure a verified / validated implementation.
- Sensitivity & Optimization Analysis
 - Perform the same functions available to the SME user but at a more complex level.
 - Quantity cross functional design tradeoffs.

11


US ARMY

RDECOM

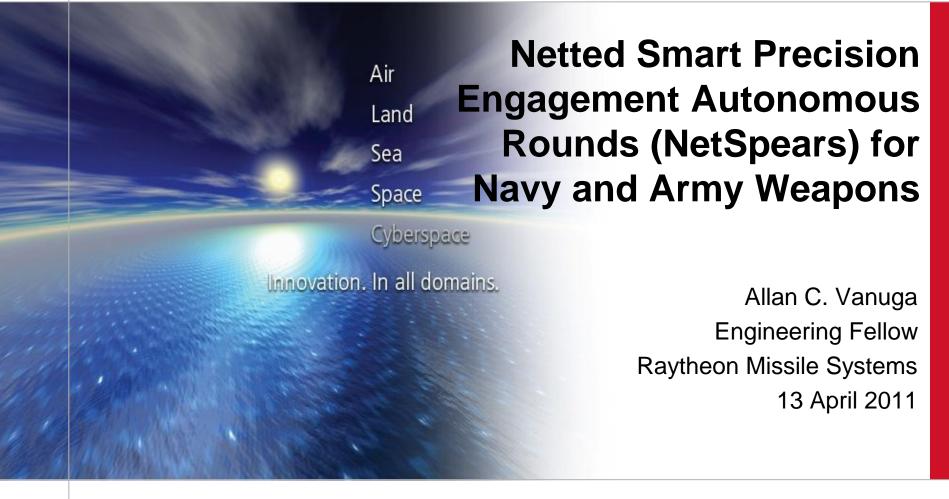
- 50mm ground to air defense projectile in technology demonstration phase.
- IMO used extensively to perform design refinements and numerous studies since 2006.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- An integrated modeling approach has proved very successful from multiple programs.
 - The M1040 was type classified in 2006 and had two related patents for the design concept and software.
 - The EAPS design has been influenced by numerous studies using integrated modeling.
- System modeling and optimization is not a new concept, but it's success is heavily tied to pairing the right tools to the organizational structure.
- The IMO software under development is tailored to ARDEC's specific needs and design practices.

13

Questions



14

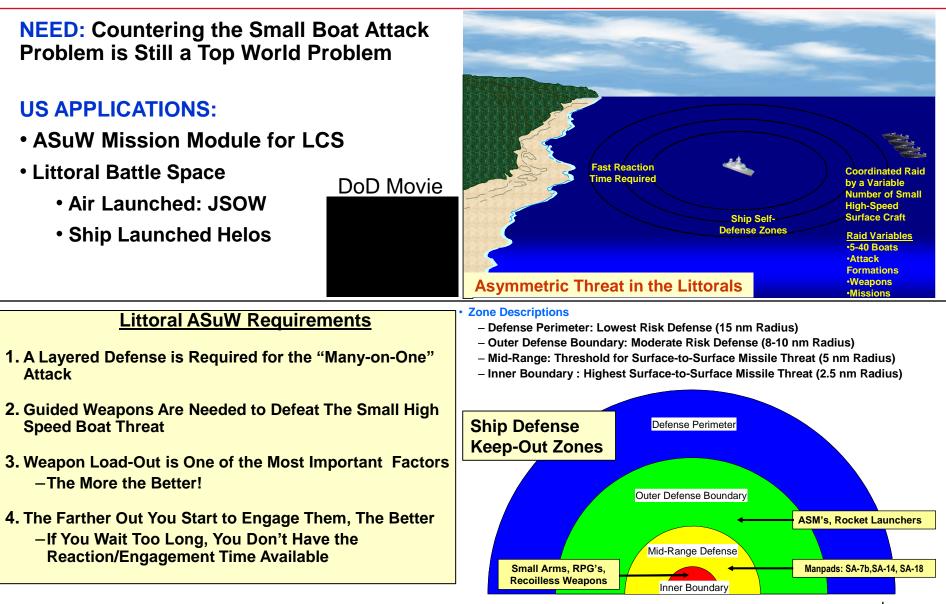
NDIA 46th Annual Armament Systems: Gun & Missile Conference & Exhibition

Copyright © 2011 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Co-Authors Acknowledgement

- Sam Ghaleb, Technical Staff Naval Air Warfare Center Weapons Division China Lake (NAWCWD)
- Mark E. Elkanick, Senior Engineering Fellow Raytheon Missile Systems

SUBJECT DATA GENERATED DURING PERFORMANCE OF NAVY CRADA (NCRADA-NAWCWDCL-04-124) BETWEEN RAYTHEON COMPANY AND NAVAL AIR WARFARE CENTER WEAPONS DIVISION.


Overview

- This smart submunition was designed to be utilized by both existing Army and Navy weapon platforms in order to deliver a lower cost and more capable munition to increase warfighter effectiveness.
- Briefing Objective:
 - Overview of the Small Boat Attack Problem
 - Describe the smart submunition, subsystem components, design trades and predicted simulation performance results
 - How the weapon system can be delivered by current Army and Navy weapon platforms and the CONOPS for its employment

The benefit to the gun and missile community is that this type of weapon enables a capability equivalent to massed fires with precision lethality against both asymmetric and conventional threats.

Small Boat Attack Problem

Raytheon

Missile Systems

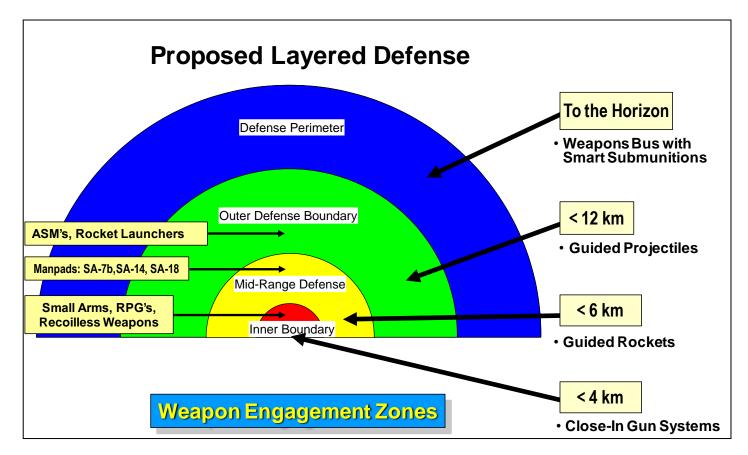
The Small Boat Threat

Raytheon Missile Systems

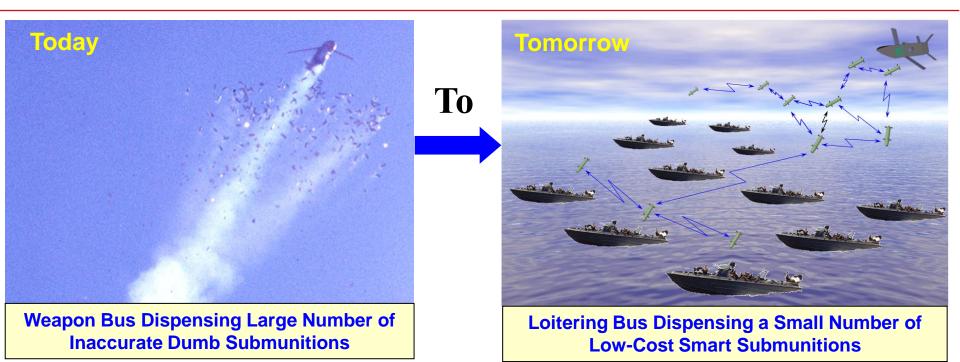
- Wide Spectrum of Asymmetric Threats
 - Detection Issues
 - Large and Small Raid Sizes
 - Multitude of Attack Scenarios
 - Numerous Weapon Keep-Out Ranges
- Compressed Timelines
- Restrictive Rules of Engagement (ROE)
- Likelihood of Collateral Damage

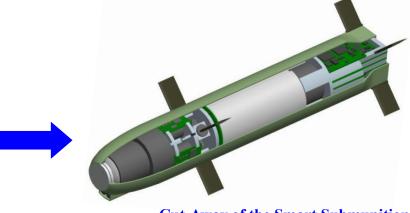
- Small Craft Threats Range In Size, Agility And Load-Out Capacity
 - Craft sizes range from 20 to 70 feet
 - Speeds range from 25 to 70+ knots
 - Payloads range from 300 to 1000 pounds
- Craft As Launch And Attack Platforms
- Missile Threats Include Surface-to-Surface and Land-Combat Weapons
- Small Arms, RPG's, Explosives

"A formation of warships is ill-suited to fight a swarm of small craft, because powerful missiles are wasted in overkill while the swarm sucks the large warships dry of their ordnance." *


> * "Take the Small Boat Threat Seriously", Capt Wayne P. Hughes Jr., US Navy (Ret), U.S. Naval Institute Proceedings, October 2000

NetSPEARS Program Overview


- OBJECTIVES: Develop a Design for a Low-Cost Smart Submunition That Employs an Optimized Weapon-Target Pairing Concept to Increase Probability of Kill (P_k). Determine Optimum Delivery Bus and CONOPS
- APPROACH: Cooperative Effort (CRADA) with NAWCWD China Lake to Employ Their Smart Swarming Algorithms in a Future Weapon System for the Outer Defense Layers
 - Smart Submunition Design
 - Applicable Weapon Delivery Platforms & CONOPS


NetSPEARS Concept

Smart Submunition Features


- A Fast Acting LAN for Communications Between Submunitions
- Optimized Weapon-Target Pairing Algorithms
- Low-Cost Electro-Optical Sensor Form Factored for the Weapon
- A Miniaturized Laser Altimeter for Submunitions
- Effective Warhead Technology
- All Other Relevant Subcomponents Such as IMU, G&C, GPS

Cut-Away of the Smart Submunition

Submunition Model

Stowed Configuration

Raytheon

Missile Systems

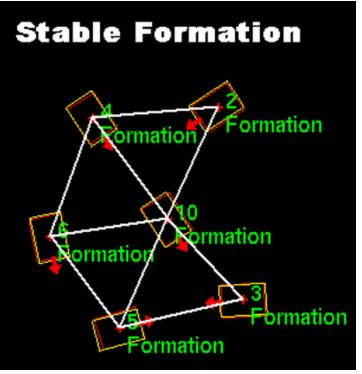
Swarming Algorithms Overview

- NAWCWD China Lake Has Developed and Simulated the Algorithms for a Smart Submunition Concept Which Have the Following Key Features:
- Submunition-to-Submunition Communication via Wireless LAN
- Forms a Stable and Cohesive Formation in Space (Virtual Coupling)
 - Based on the idea of a virtual network of inter-connecting spring forces.
- Robust Weapon-Target Pairing
 - Algorithms for Optimally Assigning Submunitions to Targets with Capability to:
 - > Maximize the global probability of intercepting all targets
 - Maximize the probability of intercepting a specific high-value target at the expense of missing a lower value target
 - Distribute impacts on the target to maximize the probability of a submunition entering a vulnerable volume

Distributed information sharing via the Wireless LAN is key to achieving cooperation and is essential for maintaining: group cohesion, avoiding submunition collisions, pursuing multiple targets and optimally assigning submunitions to engage maneuvering targets.

Ravtheon

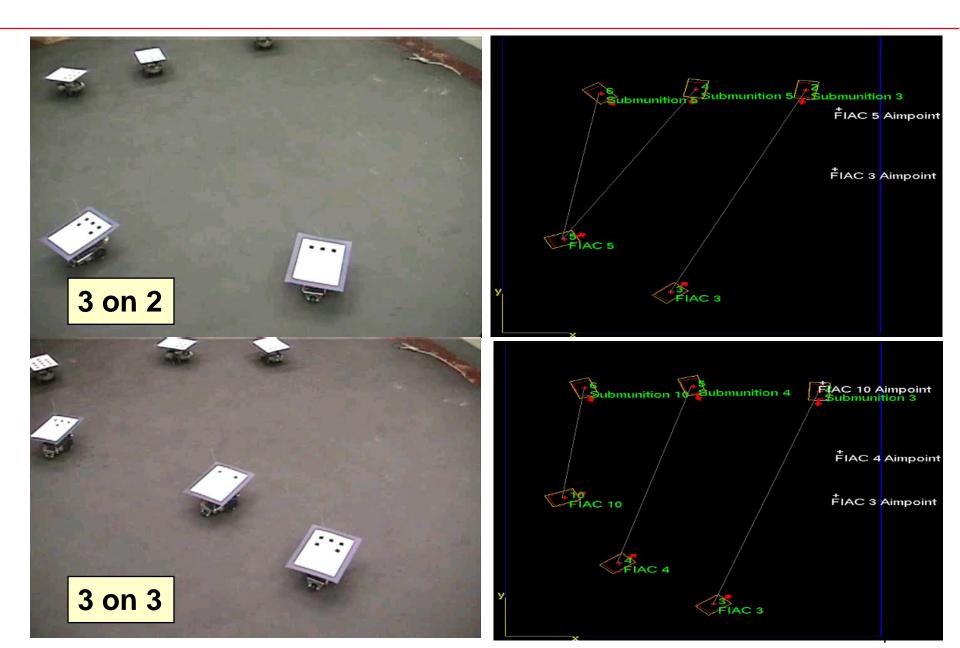
Missile Systems



Virtual Coupling Demo

Convergent Network Formation Example

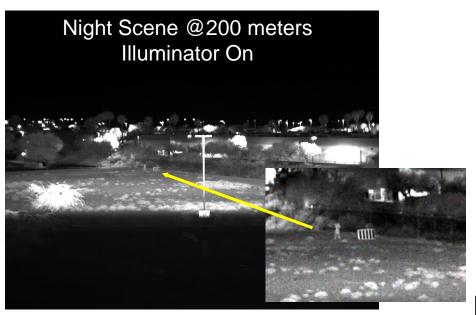
- The robots begin separated from each other and converge toward the center of the arena.
- As the robots approach the center of the arena, they begin to enter each other's local neighborhoods and autonomously alter their respective courses.
- An ad-hoc network forms near the center of the arena as the robots' virtual springs reach their rest distances.



Weapon-Target Pairing Examples

Raytheon

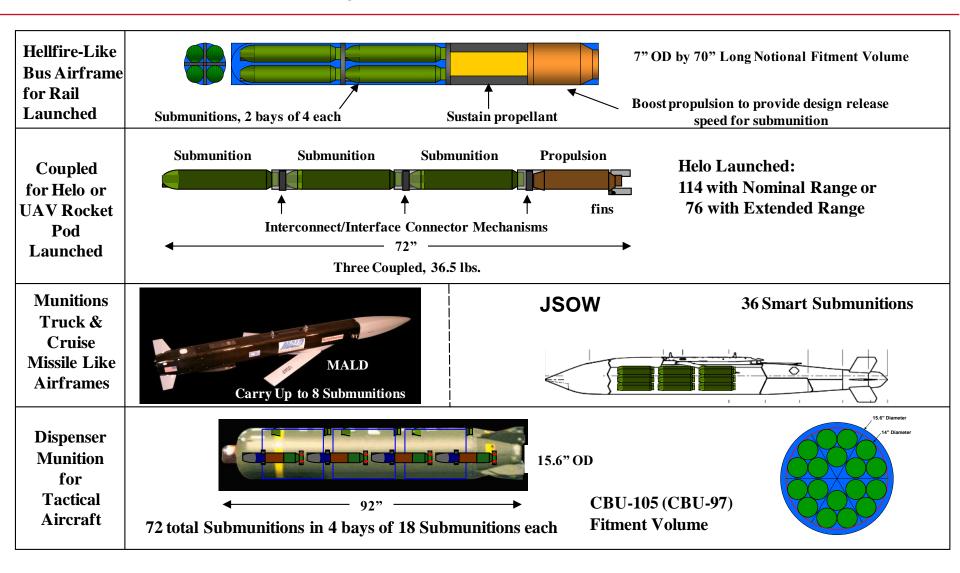
Missile Systems


NAVMAIR Approach to Meeting Low-Cost **Goals for E-O Sensor**

Strap-Down Illuminated CMOS Visible Sensor

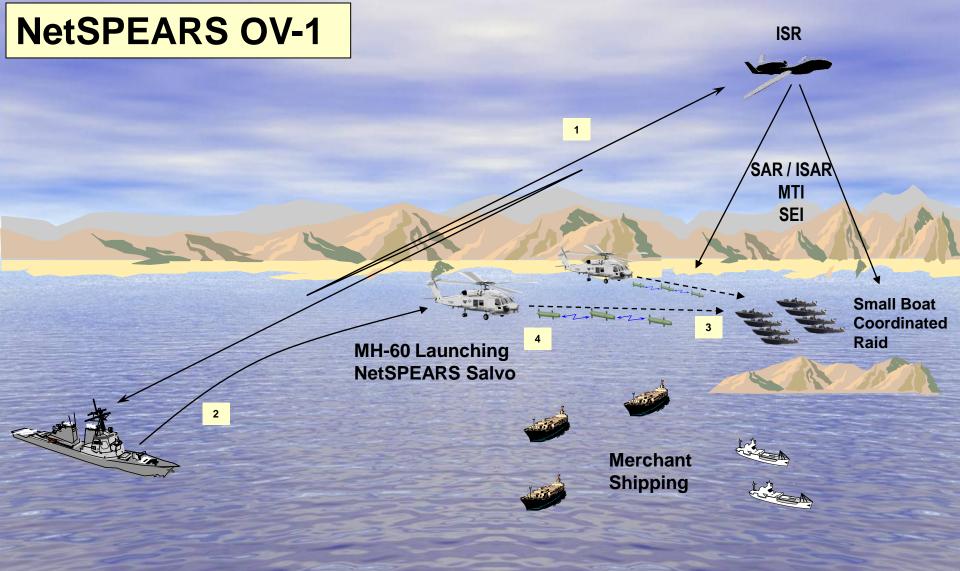
- Provides Short Range Night Performance Using a Pulsed Laser Diode
- Added Benefit: Provides Ranging Capability for
 - Detection & Tracking Algorithms
 - Warhead Fuzing

Candidate Delivery Platforms

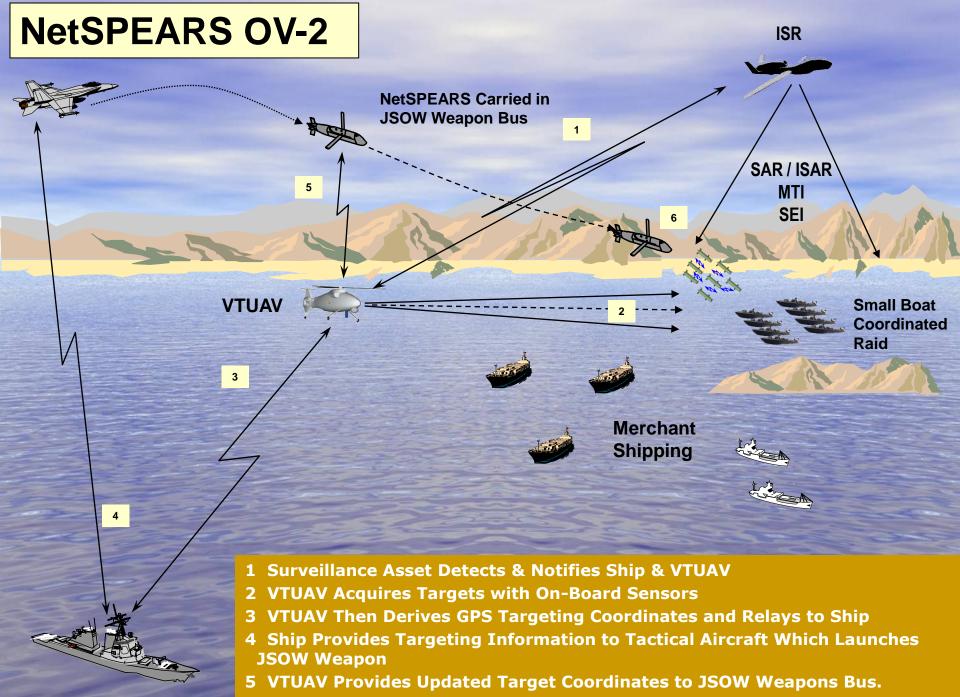


Raytheon

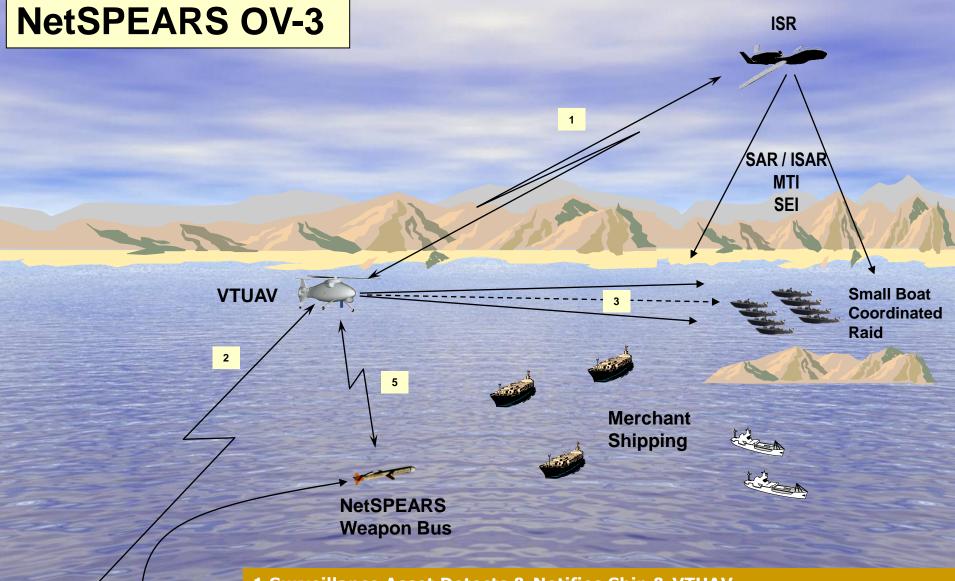
Missile Systems



Delivery Weapon Concepts



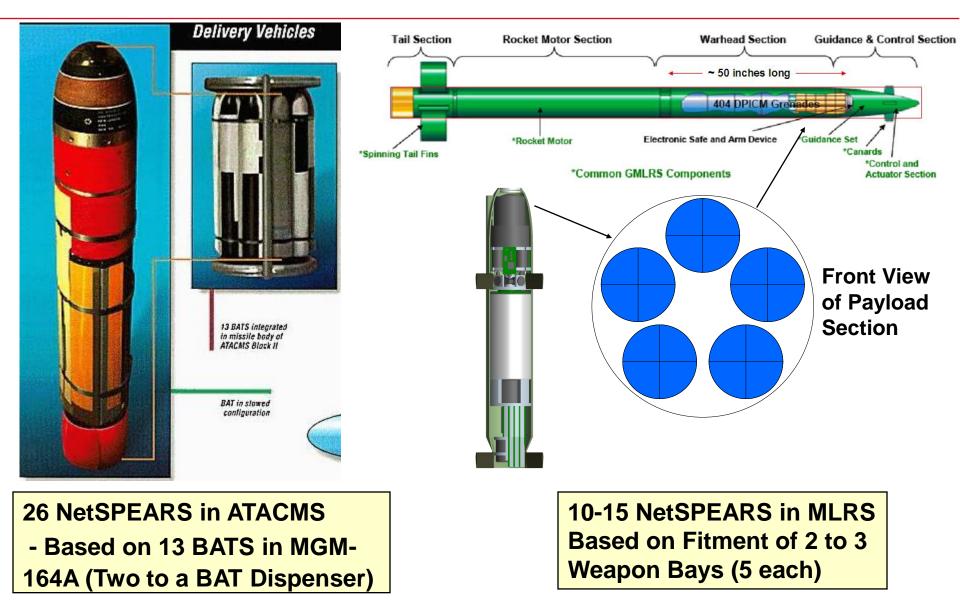
Raytheon


Missile Systems

- 1. Surveillance Asset Detects Threat & Notifies Ship
- 2. Ship Dispatches MH-60 Helos with NetSPEARS to Threat Area
- 3. MH-60 Acquires Targets with On-Board Sensors & Transfers Data to NetSPEARS
- 4. MH-60 Ripple Fires NetSPEARS Salvos as Required

6 JSOW Dispenses NetSPEARS Weapons over Target Area

- Surveillance Asset Detects & Notifies Ship & VTUAV
 VTUAV Relays to Ship and Acquires Targets with On-Board Sensors
 VTUAV Then Derives GPS Targeting Coordinates
 Ship Launches Weapon(s)
 VTUAV Provides Updated Target Coordinates & Relays Imagery to Ship.
- Also Sends Target Position Updates to Loitering Weapons Bus.


Application to Army Rocket Artillery Munitions

http://www.fas.org/man/dod-101/sys/land/atacms.htm

Preliminary Fitment Results for NetSPEARS Submunition in MLRS & ATACMS

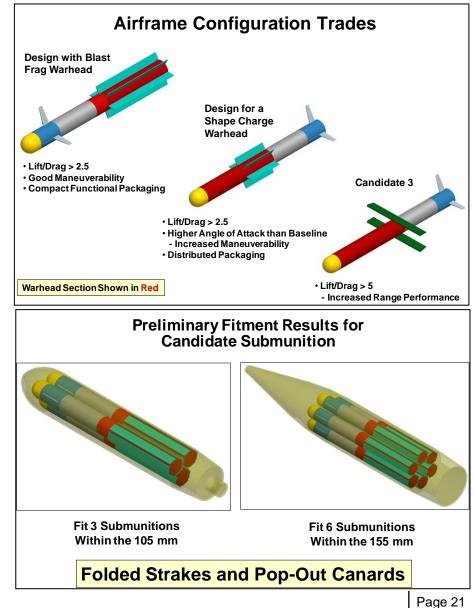
*http://www.fas.org/man/dod-101/sys/land/atacms-bat.htm

NAV

Raytheon

Missile Systems

NetSPEARS Technology for Army Artillery



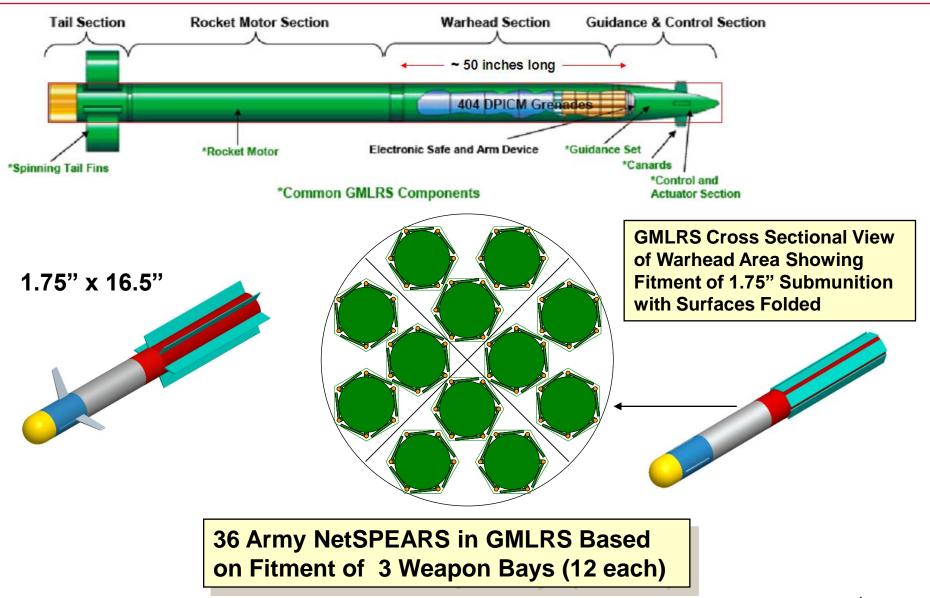
Trade Study Summary

Based on Preliminary Fitment Analysis of a Navy NetSPEARS Submunition

- Only One Would Fit in a 105mm Howitzer Shell
- Only Two in a 155 mm Howitzer Shell
- Based on Our Analysis, the Current Design Can be Modified for Artillery Applications
- Specific Design Areas to Trade for Artillery Applications
 - Airframe Design Trades for Length/Diameter Changes (Aero Analysis)
 - Seeker Performance
 - Warhead Size & Lethality
 - Gun-Hardening Requirements
 - Packaging Ramifications
 - Shell Modifications (e.g. Nose Shape)
- Analysis of New Submunition Footprints vs Shell Dispersion and TLE
 - Needed to Derive the New Required Submunition Authority

End-Game Functional Operation

Army NetSPEARS for Conventional Artillery (DPICM Replacement)

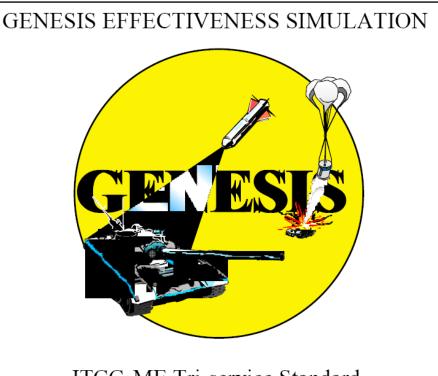


1.75 inch OD 16.5 inches Side View Front View E-O Seeker & Controls Warhead Power Illuminator Electronics Unit - GPS/IMU - 3 Axis Magnetometer - CPU/Data Processor Diameter: 1.75 in - LAN Length: 16.5 in Fixed Pop-Out Tail Stakes For Longitudinal Stability Unit Weight: 7.2 lbs Canards for Directional Control Warhead: 1.6 lbs **ADU Battery Target** - 3-Axis Control Gun-Hardened NAWCWD LAN Technology and Algorithms **Concept of Operation for Artillery** Dispensed Near Ballistic Apogee for Maximum Range 1) Acquisition Phase Each munition searches uncertainty volume for targets using detection algorithms and communicates via LAN 2) Midcourse Phase Acquisition/Tracking system communicates likely targets via the LAN. Weapon-Target pairing algorithm then assigns each munition to a target 3) Terminal Phase NIR tracker guides the ndividual munition to impact. Fit 3 Submunitions Fit 6 Submunitions Within the 105 mm Within the 155 mm **Folded Strakes and Pop-Out Canards**

Preliminary Fitment Results for 1.75" NetSPEARS Submunition in GMLRS

NetSpears Weapon System Performance Prediction Studies

Mission Utility Study for Helo Launched NetSPEARS

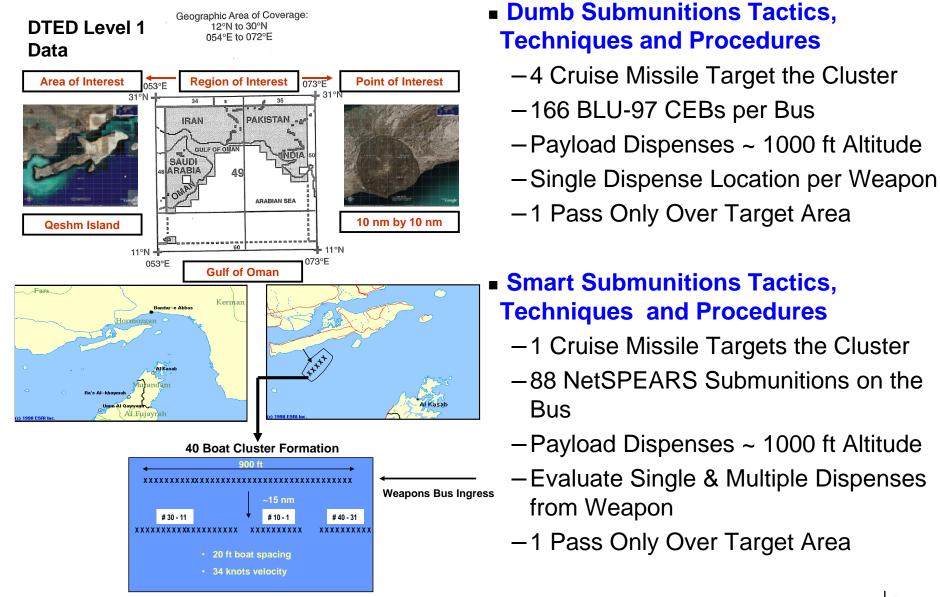


- Evaluation of both helicopter-launched and truck-launched (JSOW) NetSPEARS munitions in the Small Boat Suppressor Mission Level Model scenario to provide a rough idea of the military effectiveness of the submunition
 - JSOW version deployed from F/A-18s
 - Helo-launched version carried in a 19-round rocket launcher, two or three NetSPEARS munitions per rocket tube
- The effort was to evaluate the lethality of the NetSPEARS submunition concept against small boat targets. This required a two-step process. The first was to generate small boat damage for single submunition encounters. Next, when these values were completed they were used as input to a SUPRESSOR many-onmany simulation.
- This study leveraged previous, similar work for an AOA study of small guided warheads. Because of this, the target models, effectiveness methodology, lethality input scripts, and parametric analysis schemes were available, in place, and tested.
- The kill criterion used: Mission Kill

Performance Model Description

- The GENEric Smart Indirect Fire Simulation (GENESIS) is used to perform effectiveness evaluations based on user defined engineering parameters and system performance data.
 - Monte Carlo Based US Army/Air
 Force Performance Model for
 Dumb & Smart Submunitions
 - Many-on-Many
 - Indirect fire
 - End game (effects of targeting and delivery errors modeled)
 - Effectiveness model (1 volley of smart munitions vs. target arrays

Ravtheon


Missile Systems

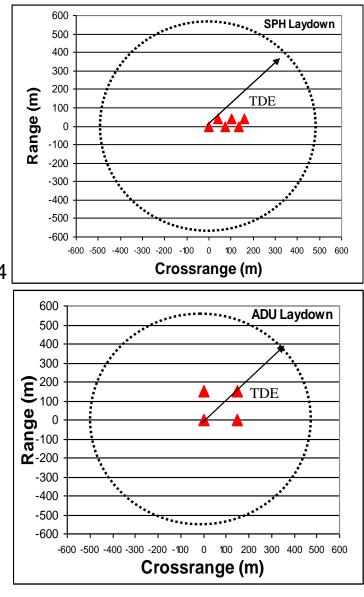
JTCG-ME Tri-service Standard

Scenario and Approach for Navy System Performance Evaluation Trade

NAV

Raytheon Missile Systems

Army Systems Performance Evaluation Run Matrix



Targets

- Self-Propelled Howitzer Battery (SPH)
- Air Defense Unit (ADU)

Rounds Fired

- Artillery w/NetSPEARS: 6, 12, 18
- Artillery w/DPICM: 18, 36, 54
- MLRS: 6, 12 (All Cases)
- ATACMS: 1, 2 (All Cases)

Weapon & Payload
105mm (Unguided & Precision) a) 42 DPICM b) 3 SmartCATS (1.75")
155mm (Unguided & Precision) a) 72 DPICM b) 6 SmartCATS (1.75")
MLRS (Unguided) a) 404 DPICM b) 10 SmartCATS (2.75") c)200 lb Unitary
GMLRS (Guided) a) 72 DPICM b) 10 SmartCATS (2.75")
ATACMS BIk 1A a) 300 APAM b) 26 SmartCATS (2.75")

NetSPEARS System Attributes

- A smart submunition containing sensors and power can be programmed to detonate under virtually all conditions thus leaving *no UXO* on the battlefield
- A warhead design that will assure at least a mission or functional kill and will meet IM requirements.
- Loaded with a qualified Insensitive High Explosive, the small SmartCATS warhead in its life-cycle (containerized) configuration will meet most IM requirements (FI, BI, SCO, FCO), and, with appropriate packaging, will pass SD
- Low cost by the heavy use of COTS components

Summary

NetSPEARS Weapon System Benefits:

- Submunitions will attempt to engage the entire incoming small boat raid simultaneously rather than targeting just one boat at a time.
- The submunitions themselves are smart, meaning they have their onboard sensors to acquire and track targets and determine their own altitude and GPS coordinates. *The delivery vehicle is free to move on after the dispense*.
- The target-weapon pairing algorithm is optimized so that the appropriate number of submunitions can be allocated to each target of interest in order to maximize lethality

NetSPEARS Weapon System Employs a New Paradigm:

"The Submunitions Pair-Up with Targets as They Drop & Talk"

Can Provide a Low-Cost Solution for Neutralizing Large Coordinated Raids of Fast Moving Asymmetric Surface Targets

Common GPS: Development of the Subsystem Specification and ICD for the Common GPS Subsystem for the family of Precision Guided Projectiles

Paul Manz Karl Flueckiger, Tim Easterly, Brian London US Army, PEO Ammo Draper Laboratory

13 April 2011

Approved for Public Release – Distribution Unlimited

Outline

- Objectives and Rationale
 - Common GPS goals
 - Unique requirements imposed by indirect fire gun-launched PGMs
- Development Approach and Current Status
 - Participants and stakeholders
 - Relevant milestones and future activity
- Overview of Documents
 - Scope of requirements
 - What is and is not covered
- Conclusion

Objectives

- Define req'ts for common GPS with A/J subsystem across future Joint gun-launched Precision Guided Munitions (PGMs)
 - Develop vendor-neutral Specification and ICD that addresses gunlaunched PGM needs (applicable across 81, 105, 120, and 155 mm projectiles) without favoring any one particular solution or technical approach
 - Address A/J req'ts and hardware needs, including projectile spin environments up to 300 Hz
 - Address anti-tamper and modernization imperatives
- Enable GPS hardware commonality benefits
 - Competition in the supply chain: lower unit production cost and hardware availability
 - Simplified integration

Focused on Common GPS Solution for Major Joint M-Code Market Segment

Why are Indirect Fire Gun-Launched PGMs Different?

	Indirect Fire Gun-Launched PGMs	
Initial Conditions	Load GPS Ephemeras data prior to launch and reacquire after muzzle exit at high velocity (up to 800 m/s)	
Shock Environment	Extreme (up to 21,000 Gs)	
Spin Environment	High Spin (up to 300 Hz)	
Size, Weight, Power (SWP)	Desired 40mm Diameter	
Set-Time Requirement	Less than 10 seconds	
POR Quantities	> 100,000	
Durable vs. Consumable	Consumable	
Shelf Life	20 Years	

Gun-Launched PGMs Represent Most Demanding Environment

Indirect Fire Gun-Launched PGMs

Mortars

XM395 Accelerated Precision Mortar Initiative (APMI)

- 120mm conventional High Explosive (HE) ٠ mortar cartridges equipped with GPS guidance fuse and modified stabilization fins
- Provides Battalion commander with organic precision capability ≤10m CEP
- Urgent Need Fielding: Mar 2011


XM982 Excalibur

Autonomous fire & forget, optimized for urban/complex terrain

Increment	Range	Accuracy	Fielding Status
1a-1	8-24Km	≤ 10m*	Fielded
1a-2	8-40Km	≤ 10m*	2QFY11
1b	8-40Km	≤ 10m	3QFY14

*significantly exceeding accuracy requirements >6m

XM1156 Precision Guidance Kit (PGK)

- GPS guidance fuze for 155mm conventional High Explosive (HE) artillery projectiles
- Turns our conventional HE stockpile into near precision rounds \leq 50m CEP (range independent)
- MS C in FY13

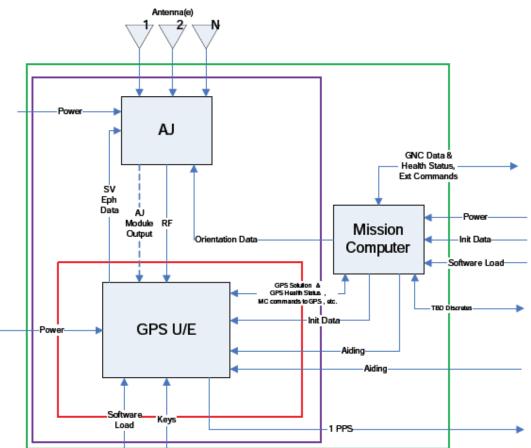
Approved for Public Release – Distribution Unlimited

Requirements Development Approach

- Team of stakeholders and experts
 - Government
 - Vendors
 - Integrators
 - Draper Laboratory
- Interface Control Working Group (ICWG) consensus building approach
 - Focus initially on areas of agreement
 - Iteration Multiple review cycles

Definition of MGUE CDD Appendix for PGMs underway

- Milestone/Timeline
 - Kickoff: May 2009
 - ICWG Meetings #1 and #2: Nov 2009, March 2010
 - Finalized Initial Spec and ICD: Aug 2010



Planned near-term "one pass" revision: April/May 2011

Specification and ICD Scope

- Generic projectile guidance system architecture functional block diagram
 - GPS U/E only
 - GPS + A/J electronics
 - Guidance & Navigation
 System
- System boundary defines included functionality and interfaces
 - Trade study identified benefits/detriments of each approach

Common GPS Specification and ICD Scope defined by Purple Box

Enables a Common GPS Supplier Paradigm for Gun-Launched PGMs

Mechanical/Form Factor Requirements

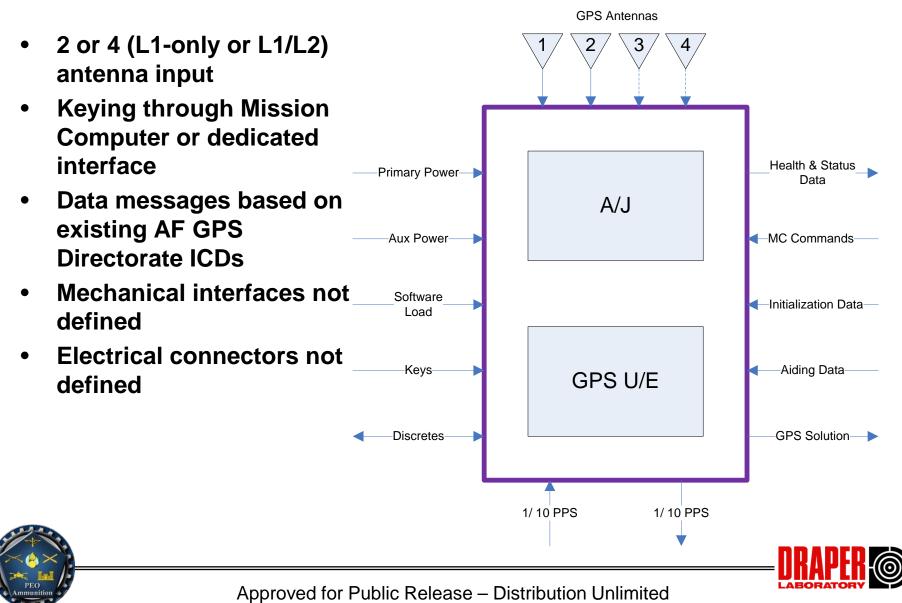
- ICWG Team consensus not attainable today
 - Vendors have divergent SAASM roadmaps
 - Circular card perpendicular to axis line-of-fire
 - Gum-Stick form factor along axis line-of-fire
 - Integrators do not want design constraints
- Common GPS Program strongly influenced by Fuze Well Volumetric SWP considerations
 - Constraints imposed by legacy SAASM-based designs
 - User Equipment not based on KDP hardware enable greater design flexibility for miniaturization

Focused on modularity imperative for Joint Service PGM applications

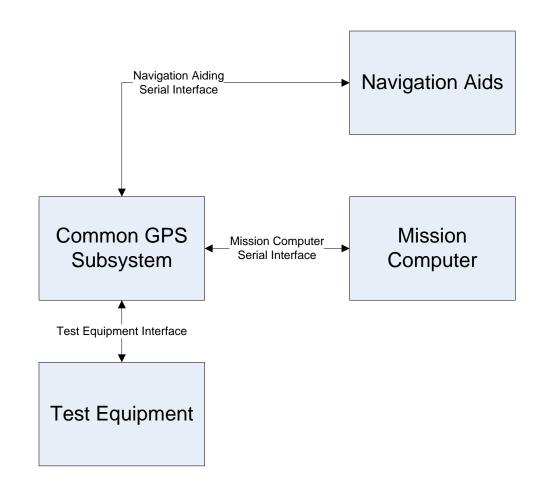
Specification Contents

- External Interfaces (electrical and data exchange requirements)
- States and Modes
- Functional Requirements
 - Self Test
 - Reprogramming
 - Data Storage
 - Operating Conditions [GPS Signal]
 - GPS Reacquisition
 - Security Requirements

- Performance Requirements
 - Time-to-Usable-Navigation
 - Reacquisition
 - Position, Velocity, and Attitude accuracy
 - Timing
 - Performance in a Jamming Environment
- Quality and Reliability
- Environmental Requirements
 - Storage & Transportation
 - Operating
- Verification Methods


Jamming Requirements

- Developed from multiple sources:
 - Excalibur requirements: laydown and jammer types
 - Joint Navigation Warfare Center (JNWC) intelligence briefings focused on current threats
 - Operational considerations for mortars and cannon munitions
- Captured as a classified Appendix to Specification where J/S levels are defined
- Verifiable by reasonable methods as outlined in the Specification
 - Reference antenna characteristics
 - Analysis and test at specified points on a reference trajectory



ICD Boundary

ICD Data Detail

- Trade study investigated using a modern data bus such as FireWire (IEEE 1994b)
 - Unanimous pushback from integrators and vendors
 - Other multi-point and point-to-point protocols considered
- MCSI (Mission Computer Serial Interface) and TEI (Test Equipment Interface) are 3.3V CMOS serial with selectable data rates
 - MCSI messages based on IS-GPS-153D
 - All TEI data messages vendor defined

Conclusion

- Focused on a Common GPS Solution for major Joint Service M-Code Market Segment
- Gun-Launched PGMs Represent Most Demanding Environment
- Definition of MGUE CDD Appendix for PGMs underway
- Enables a Common GPS Supplier Paradigm for Gun-Launched PGMs

This Common GPS Spec and ICD will continue to be refined and evolve

Guns & Missiles Symposium #11725

31st August 2011 13:35-1355

CTA INTERNATIONAL

40mm CTAS "Medium calibre goes in a new direction"

David Leslie, Chairman CTA-International

CTA-International

- CTA International (CTAI) private joint venture (JV) company 50/50 BAE Systems and Nexter Systems
- Dedicated Anglo-French team, focused on 40mm
 Cased Telescoped Armament System (CTAS)
- All UK and French staff are based in Bourges, France

Key Points:

The 40mm Cased Telescoped Armament System:

- Demonstrated "Game changing" benefits at a system level
- Mandated by the UK MoD and preferred by the French DGA
- Development of the system is complete
- Qualification and Industrialisation has started
- Seeking global partners

СТА INTERNATIONAL

CT Technology background (Ammunition)

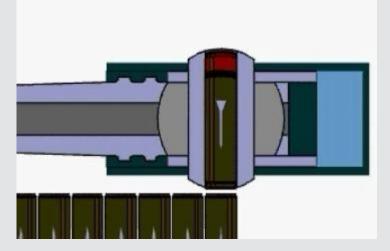
Unlike conventional rounds, the projectile is *'telescoped'* within the cartridge case and surrounded by propellant;

The cartridge case diameter is increased to provide efficient internal volume;

CT Ammunition is volumetrically 30% more efficient than conventional ammunition;

CTA INTERNATIONAL

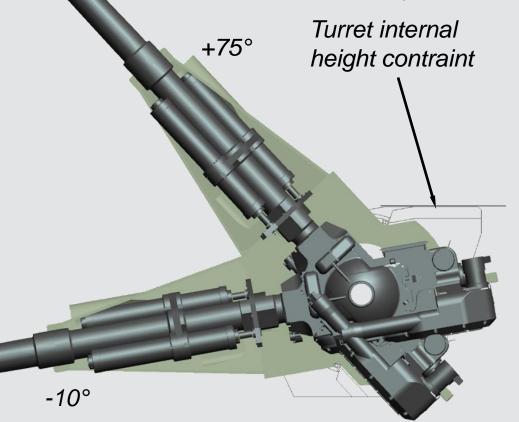
CT Technology background (Cannon)


- 'Push-through' concept
- Commercial 'Gear box' technology
- High reliability

C T A INTERNATIONAL

CT Technology background (System)

- 1. Ammunition enters the rotating breech
- 2. Breech revolves thru 90° to align with barrel
- 3. Round is fired, the breech recoils, the projectile leaves the barrel
- 4. breech revolves another 90°
- 5. Empty case is pushed out by the next round



This document is CTA International property. The information can not be utilised, reproduced or communicated without previous written permission.

20110831 11725 Guns and Missiles 2011

CT Technology background (System)

The ease of integration into a turret is defined by the necessary swept volume

- Limits of elevation set by turret roof and floor plate
- Free space created behind breech
- ***** Managed out-of-balance
- ***** Fixed trunnion location

CTA INTERNATIONAL

CT Technology background (ammunition)

UK MoD Operational Analysis of 40mm CT (Unclassified quotes) "...clear advantage in urban Operations, increases platform survivability..."

Defeat of RHA and add-on special armours

Point Detonating defeat of structures with behind-structure effect

Airburst suppression, both 'line of sight' & 'non line of sight' land and air targets

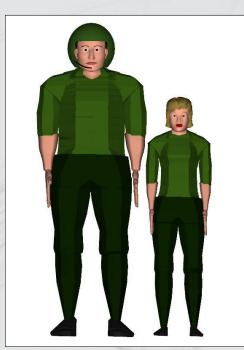
Defeat of soft skin targets

'GPR' ammunition

i.e. Point Detonating + Air Burst fuzed HE ammunition combined in one general purpose round (GPR)

CT Technology system level impact

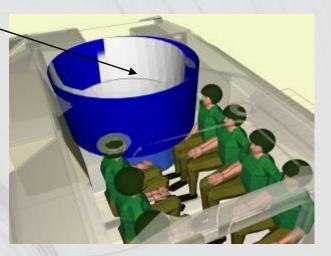
Minimal intrusion to the crew compartment compared to conventional weapon systems



20110831 11725 Guns and Missiles 2011

CTA INTERNATIONAL

CT Technology system level impact


Future User needs:

illustrative

"...higher firepower..." ...and need to maximise use of limited turret basket volume, small turret ring diameters and increases in crew carried kit... ...and need to accommodate

- 2x 95th percentile men
- or 2x 5th percentile women
- in full body armour and helmet...

"...and increase crew survivability..."

CTA INTERNATIONAL

CT Technology system level impact

Conventional gun and ammunition systems:

- over 200 litres of swept volume
- limited gun elevation/depression
- limitations on crew evacuation/survivability
- crew tasks compromised

Conventional 30mm

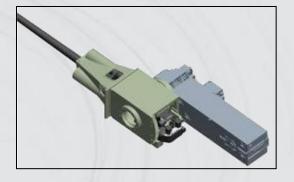
CT Technology system level impact

CTA INTERNATIONAL

CT Technology system level impact

22/09/2011

 CT cannon positioned well forward of the Commander and Gunner crew can 'ignore' the gun allows the turret crew to concentrate on their core tasks increased scope for use of screens • out-of-balance managed by high-performance GCE • improved casualty evacuation particularly driver's F7 FB F9 F10 **CT** cannon with only 80 ltrs swept volume Static ammunition feeder


• minimizes swept volume

Turret Integration scope

- Ammunition Handling systems adaptable to user requirements and turret design
- Sustainable reloading
- High/low turret elevations and depression angles possible

Tracked vehicle: narrow turret ring, shallow basket. Wheeled vehicle: narrow turret ring, deep basket. Tracked or wheeled vehicle: remotely operated turret.

CTA INTERNATIONAL

Vehicle integration examples (2001-2011)

MTIP (CTAI)

VBCI (Nexter)

Toutatis (CTAI)

Bradley (United Defence)

FSCS (Sika)

FSCS (Lancer)

MTIP2 (BAE Systems)

FRES SV (General Dynamics)

WCSP (Lockheed Martin)

Demonstrated Performance

FIRING ON THE MOVE ON MOVING TARGETS

- * Full stabilization
- * Coincidence firing mode
- * High accuracy whilst in moving/moving scenario

CTA INTERNATIONAL

UK MoD and French DGA Cooperation

"The MoD has down selected ... the cannon developed by CTAi....for both Warrior and FRES Scout programmes, as it meets the lethality requirements of both systems, and a single common solution is more efficient and

effective." Minister UK MoD, 2008

* UK MoD / French DGA Joint qualification of:

- * CT40 Weapon System (Mandated Items)
- Armour Piercing Fin Stabilised Discarding Sabot Tracer (APFSDS-T)
- * General Purpose Point Detonating Tracer (GPR-PD-T)
- * Target Practice Tracer (TP-T)
- * General Purpose Air Burst Tracer (GPR-AB-T)
- Over 70 trials & 100 Evaluations over 2 years (>12000 rounds of ammunition and >22000 weapon cycles)
 - * Ammunition Sequential Trials Programme
 - * Ammunition Non Sequential Trials
 - * Cannon Trials

Industrialisation

Use of existing Ammunition Manufacturing Facilities within the shareholder companies operating under licensed production

BAE SYSTEMS

Bourges, France

Glascoed, Wales

La Chapelle, France

Seeking global partners

Licence available for the complete system

Summary

- 40CT is moving from 'development' to 'industrialisation'
- 40CT offers an innovative approach to high lethality and lower integration burden
- Its introduction will radically change the medium calibre choices to potential global customers
- It is a rare business opportunity for new partners

Questions?

The Impact of Performance

46th Annual Armament Systems: GUN & MISSILE SYSTEMS

Direct Fires & Precise Weapons for the modern battlefield

Danny Schirding

Program Manager & Marketing Director

Munition Systems Division, IMI

Tel: +972 3 5486122

E-mail: dschirding@imi-israel.com

2011

Lessons learned from the battle field

▲ 북한의 공기부양정은 크기가 작고 무장도 허 술하지만 후방 기습침투에 사용될 경우 엄청난 위력을 발휘할 수 있다. 서울경제 파퓰러사이언 스 3월호 www.popsci.co.kr

공기부양정은 해안지대 또는 높지대 등 물과 땅 이 얽혀있는 곳에서도 빨리 움직일 수 있다는 점 때문에 군용으로 엄청난 잠재력을 보유하고 있

대전차미사일 헬파이어를 탑재한 아파치 헬리콥 터는 북한의 공기부양정에 대처할수있는 유일한 전력으로 평가되고 있다.

The Institute for

Latrun

Land Warfare Studies.

The RPG-7: King of The City Battle

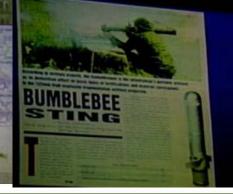
Approved for Public National

nploying Nonlinear Operations to Control a City in Comprehensive Counter Insurgency Operations

Effectively Synchronize Security, Governance, Development, and Information Operations

> OL Wayne W. Grigsby JR. US Army

Know your opponent


Prepare, prepare, prepare

- Choose the right weapons
- Adapt tactics to situation
- Resolve comms problems
- Win the information war-lost confidence of Russian people

Direct and Indirect Fires

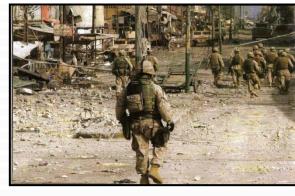
- Abrams Main Battle Tank: 120mm gurt, 50 cal, 7.63 mm CDAR MG
 Bradley Infantry Fighting: 25mm gurt; TOW missile
 Marine Light Armoned Vehicles: 20mm Chain Gun and Mik0 MG
- Marine Light Armored Vehicles: 20mm Chain our and web inc HMMWV: 50 cal and Mk19
- + Army and Marine 155mm Howitzers fired thousands of round
- Army and Marine mortars fixed thousands of rounds
 Army and Marine rotary wing helicopter support
- Army and Marine sotary wing method support
 Marine, Navy and Air Force fix wing support
- Marche, here and her observed by Forward Observer or Forward Air Controller; most were "danger close" Marme and Special Operations Porces Seigers Consile, understandable Bules of Engagement.

General Business Information

....

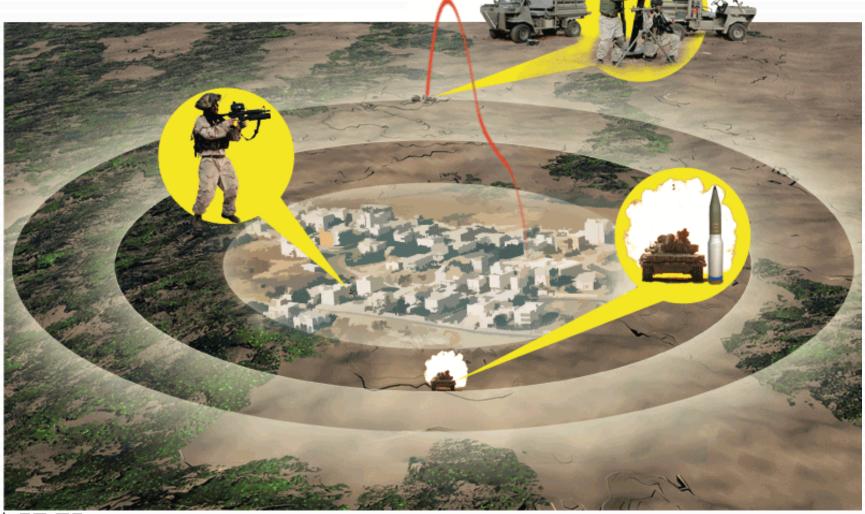
The Battlefield Scenarios

War


Non Limited Conflicts at High Friction (NLCHF) / Major Operations

Limited Conflict at Medium Friction (LCMF) / Routine security operations

Challenges (Typical targets) Vs. scenarios


	Dismounted Infantry (Short / Iong range A.T Teams)	Tanks	Assault Helicopter	IFV's	Military infra- structures (Bunkers, field fortifications)	Mines / IED's	Buildings	Snipers	Tracks / Cars
1) WAR	+	+	+	+	+	+	+	+	+
2) NLCHF	+			+	+	+	+	+	+
3) LCMF	+					+	+	+	+

NLCHF = Major Operations including MOUT

LCMF = Routine security operations

Direct Fires & Precise Weapons for the modern battlefield

120mm Guided Mortar Munitions (GMM)

Indirect Fire

2011

System Requirements

120mm mortar bomb which provides combat teams with organic, rapid response, and all weather indirect fire capability

The Requirements:

- Precision
- First round on the target
- Increased lethality
- Minimized collateral damage
- Reduced logistical support
- Leveraged joint fire networking

Performance Goals

- Ballistic Range : 7.2 Km (K6-charge 5)
- Gliding range : \approx 10 Km (K6-charge 5)
- GPS guidance, CEP (Circular Error Probable) < 10. m
- Laser guidance, CEP (Circular Error Probable) < 1.5 m

Operational Sequence

- The bomb could be fire from existing platforms
- The bomb operation procedures are like regular bombs except loading of mission data

120 GNM Guided Mortar Munition

Video Clip

"HORNET" 120-mm Light Mobile Mortar System

2011

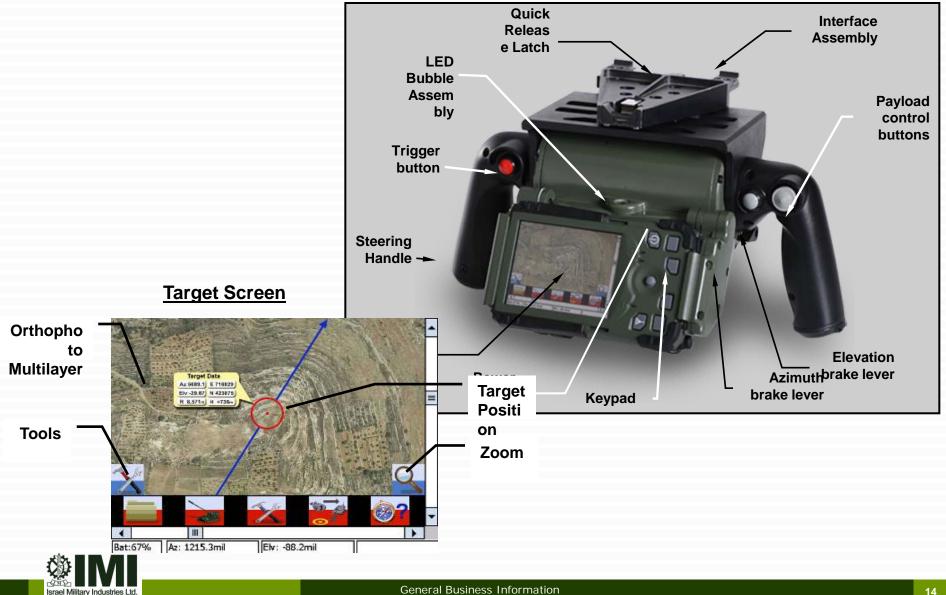
IMI's Hornet System

An Organic, light, highly mobile and Helicopter carried Weapon System, that consists on off-the-shelf military components.

The solution

To generate accurate and effective fire to support the Operational forces (Activities of infantry) in an independent and fast fire networking for immediate response.

Two 4X4 All Terrain Vehicles (ATV)



Light Mortar

Munitions

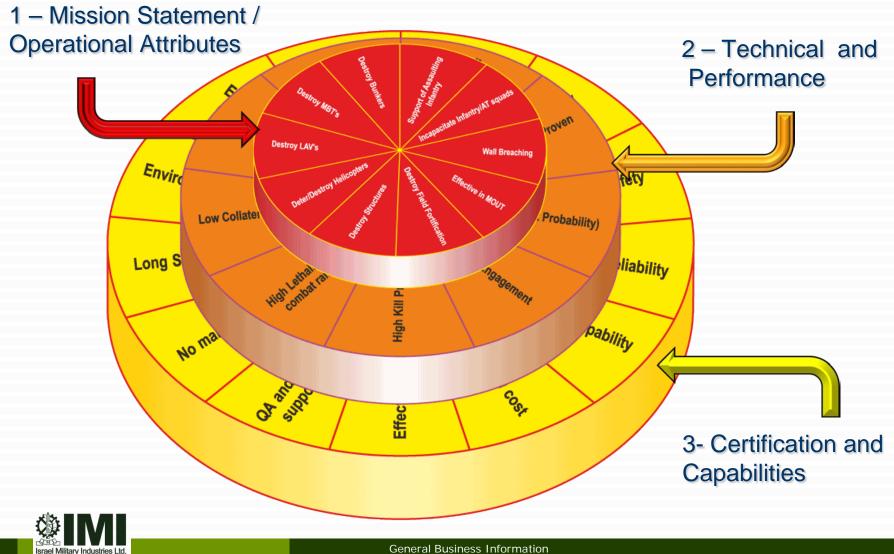
Passive Target Acquisition Goniometer System

Light 120 mm mortar

System Advantages

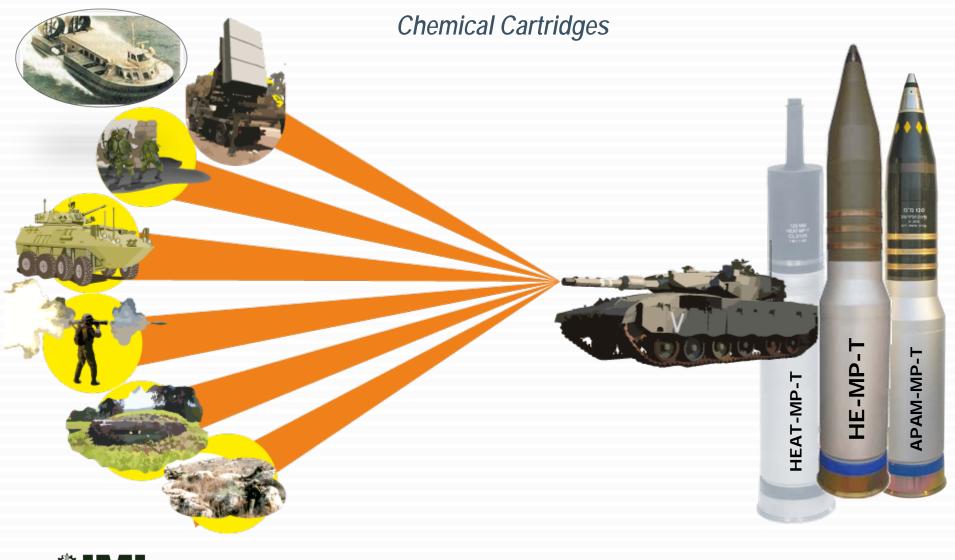
Optimal and most cost-effective solution for the user's Elite Units or Special forces:

- High Mobility
- First Round on Target capability with low collateral damage when firing the 120mm GMM.
- · Can be carried by helicopters.
- Capable of firing wide-rang of mortar ammo. (GMM, Smoke, Illumination etc.) for various operational-tasks.
- Increasing the lethality and survivability of the fighting-forces.


120 mm HE–MP–T, M339 Multi-Purpose Tank Cartridge

Direct Fire

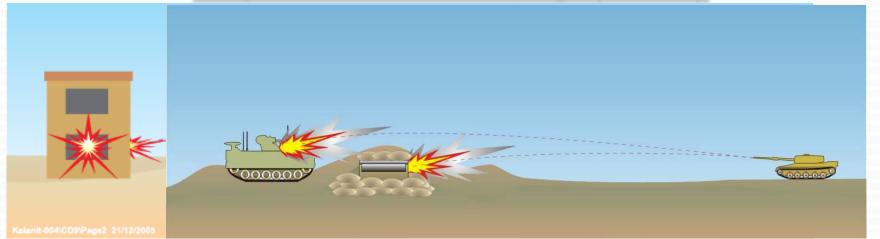
2011


The Main Requirement of The Armor Corps -Analysis

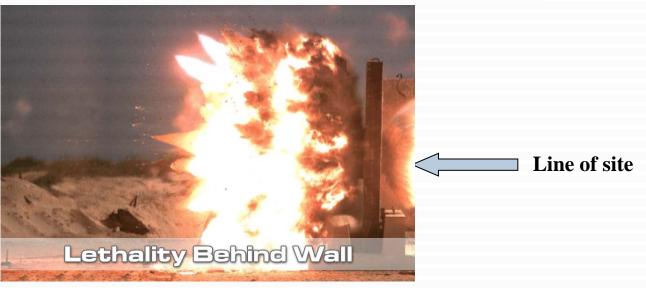
Destroy Multi Threats

HE-MP-T 120, M339 - Introduction

- Multi-Purpose Tank Cartridge
- Can be fired with 120mm smooth bore guns L44/L55
- Developed and qualified according NATO STANAG 4385 and IDF requirements
- Complies with:
 - STANAG 4493
 - STANAG 4369 & AOP 22
 - STANAG 4157
 - MIL-STD-810, ITOP and others
- IM round includes
 - HE (CLX663) Qualified by the IDF
 - LOVA propellant (optionally) Qualified by the IDF



HE-MP-T 120, M339



Impact - with Delay (PDD)

Typical penetration (Ø 40~60 cm)

Penetrate at least, 200mm double reinforced concrete wall

Impact - with Delay (PDD)

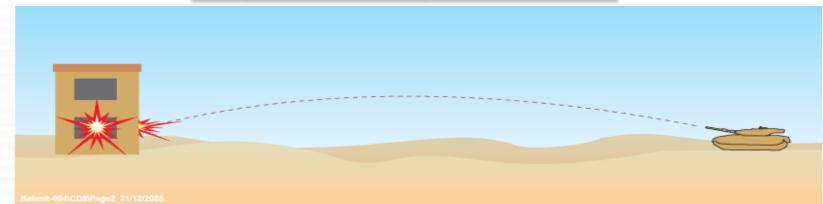
Before

After

Impact - with Delay (PDD)

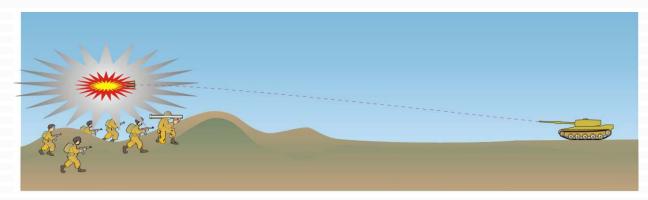
Before

After



Impact - Super Quick

Range = 300 m, T= 200mm, 30MPa, Hole = 120x180 cm



Breach wall for infantry pass by using 2 rounds

General Business Information

Air Burst

Air Burst operation – view from the tank

HE-MP-T 120 – Accuracy Test (2,000 m)

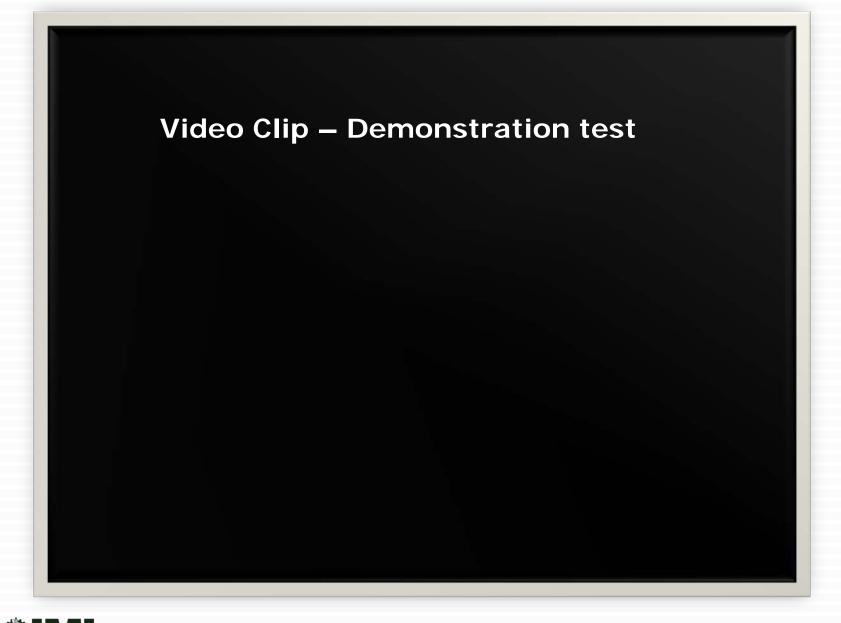
7 Rounds

0.12x0.19 mils

7 Rounds 0.18x0.19 mils

General Business Information

IM Reaction Levels (with CLX663)


IM Stimulus	Cond.	Reaction Level	Results
Liquid Fuel Fire (Fast Cook-Off)	N	5	
Slow Heating (Slow Cook-Off)	N	5	1.
Bullet Impact	N	4	X3 In Fuze
	Р	5	X3 In Primer
Fragment Impact	N	5	In Fuze
	Р	5	In Primer
Sympathetic Reaction	N	4	
Shaped Charge Jet Impact	N	1	A .

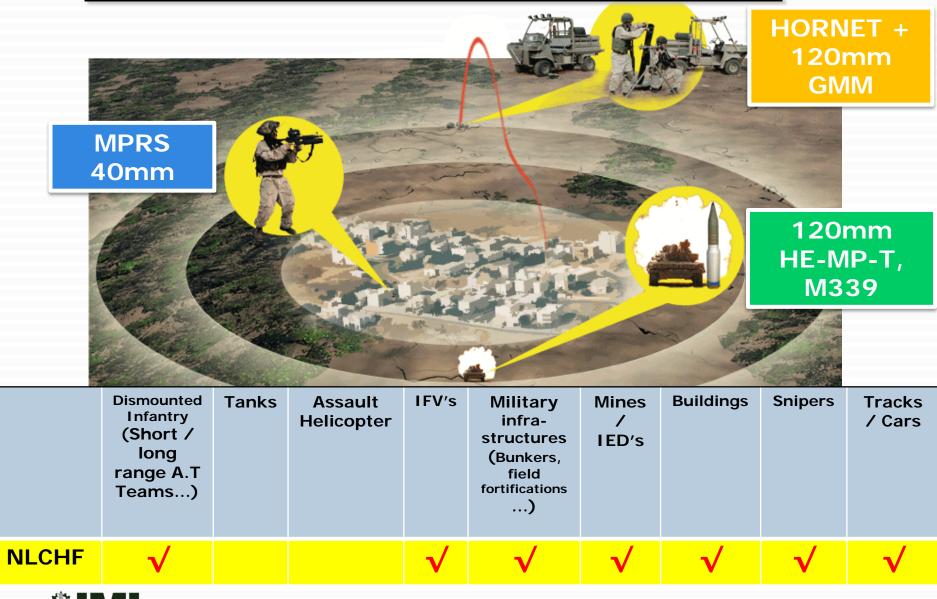
1 – Detonation; 2 – Partial Detonation; 3 – Explosion; 4 – Deflagration; 5 - Burning

N – Without Package; P – In Package

Israel Military Industries

General Business Information




Every one could sling at a hairbreadth and not miss

Judges 20/16

IMI's solution for the modern battlefield

Thank you for your attention !

QUESTIONS?

High Explosives Charges for Insensitive Artillery and Mortar Ammunitions

46th Annual Gun & Missile Systems Conference and Exhibition Miami – 29 Aug / 01 Sept 2011

46th Annual Gun & Missile Systems Conference and Exhibition Mian

Unique Know-How, Multifaceted Range

The loading international partner for Explosives and Propelants

CAST PBX in the European Defense and Technological Base (DITB)

In Europe, Cast PBX * is the Most Used Explosive to make Insensitive Munitions.

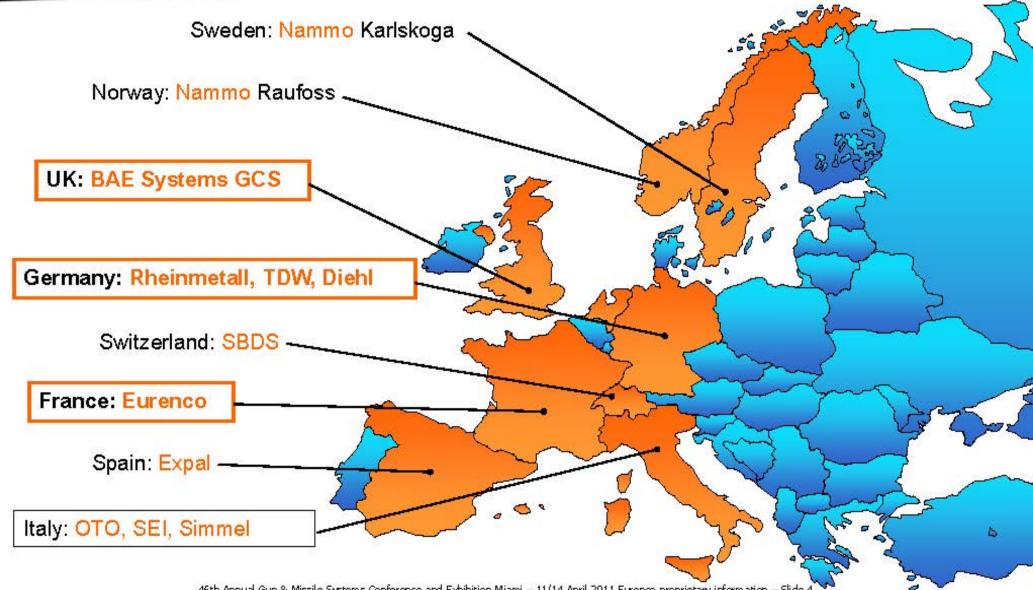
46th Annual Gun & Missile Systems Conference and Exhibition Miami – 11/14 April 2011 Eurenco propriets_____fmation – Slide 2

4

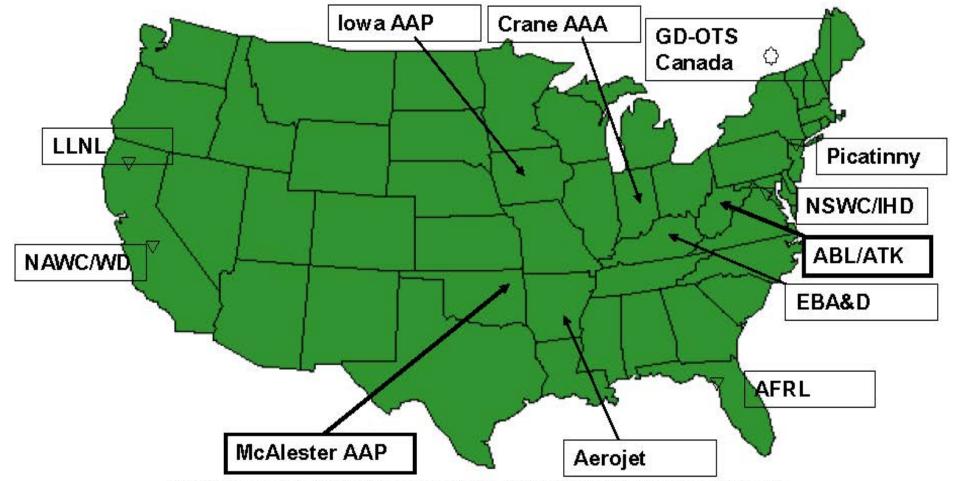
CAST PBX Material Description

* Cast PBX: Cast Plastic Bonded eXplosive

- Binder = HTPB (synthetic rubber)
- Energetic Filler = RDX, HMX, NTO...



CAST PBX in the European DITB

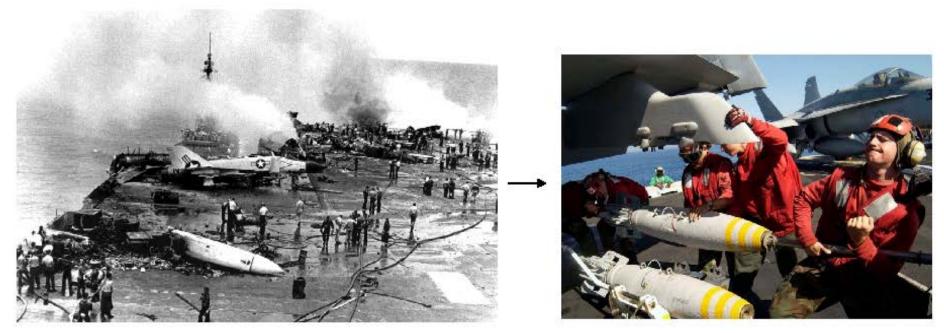

European Countries using cast PBX in Insensitive 60mm to 155mm Caliber Ammunitions

- UK
 81mm, 105mm, 155mm...
- GERMANY 120mm, 155mm
- NETHERLANDS 81mm, 155mm
- FRANCE 76mm, 81mm, 120mm
- ITALY 76mm, 127mm
- SWITZERLAND 60mm, 120mm

CAST PBX in the US NTIB

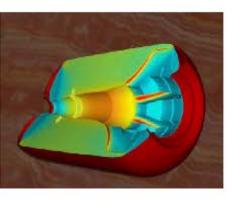
Cast PBX in USA: A well established Technological and Industrial Base

CAST PBX in Weapon Systems


The Most Implemented Insensitive High Explosive

CAST PBX: The Origins

Major Disasters on High Value Combat Platforms led to find a Mature and Effective IM Solution

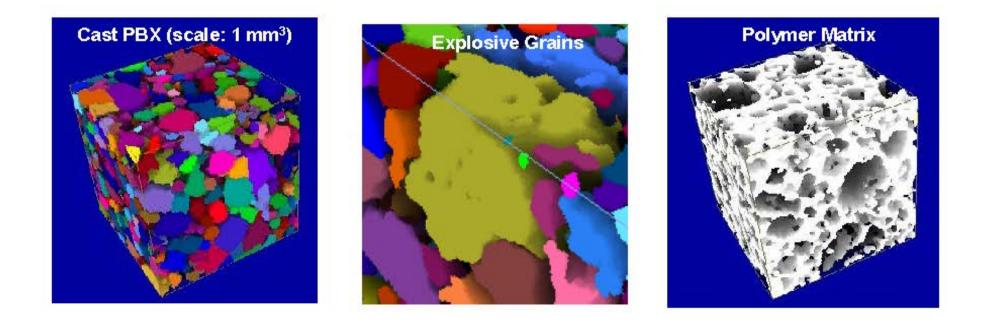

Aircraft Carriers Accidents

Best Insensitive Explosive for IM Bombs

CAST PBX: Background

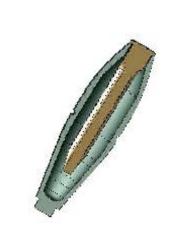
Cast PBX technology is based on a 50 year background shared with Solid Rocket Motor technology.

- Large Catalogue of Qualified Formulations
- Extensive Scientific Knowledge on these formulations (chemical, physical, mechanical properties, ageing...)
- Production Processes adapted to various types of applications

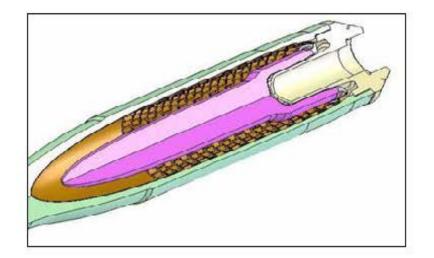


CAST PBX: Advantages for IM

A material with Excellent Intrinsic Properties


• Structural Reliability (no internal cracks)

- Homogeneity (no micro-voids)
- Thermal Stability (no reverse melting)


CAST PBX: Performances and Cost

- Affordable product (no high-cost ingredient needed)
- Performances comparable to non-IM explosives (Comp-B, TNT/Al...)
- Flexibility of design

CAST PBX: The Industrial Challenge

How to Produce High Volumes of Cast PBX Shells?

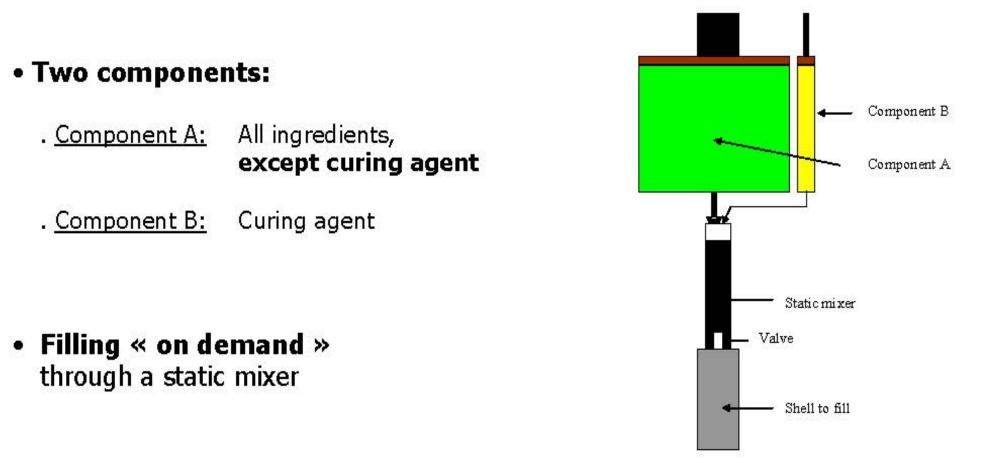
CAST PBX: The Batch Process

Batch Process is well adapted for Production of Explosive Charges for Bombs, Missile Warheads...

- Step 1: Mixing (with cross linking agent)
- Step 2: Casting (pot life limited)
- Step 3: Curing (several days)

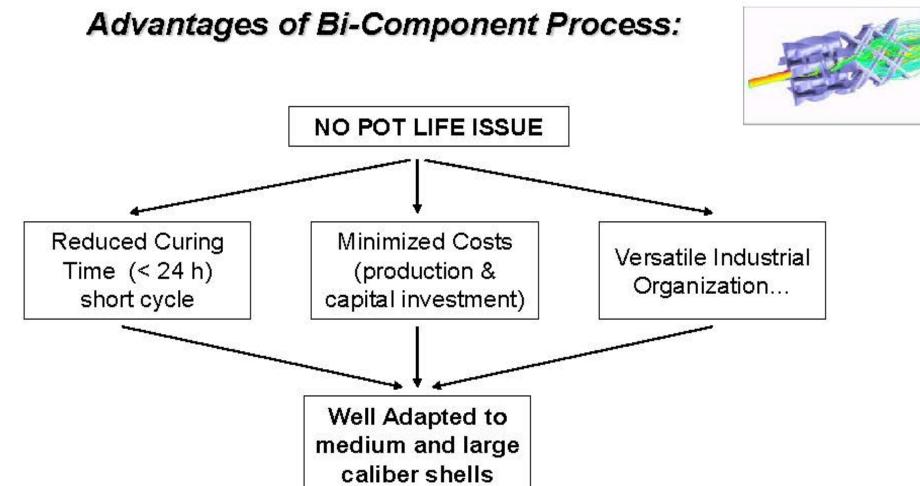
CAST PBX: Issues with Batch

Batch Process is Not Optimized for Production of Shells (60mm, 81mm, 105mm, 120mm, 155mm...)


- Casting time is limited (pot life constraint)
- Curing takes days (large oven areas)
- Large mass of explosive in the workshop

CAST PBX: The Solution for Shells

The Solution: The Bi-Component Process



CAST PBX: The Solution for Shells

Static Mixer

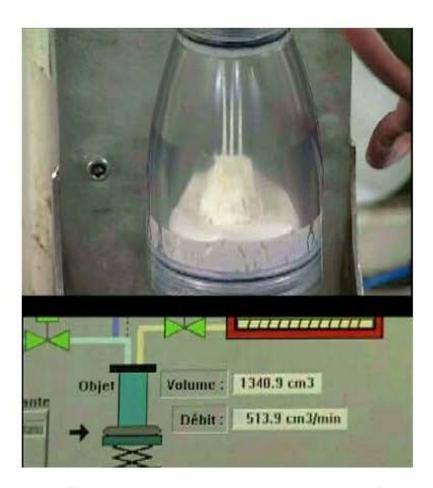
Full scale production line commissioned in 2006

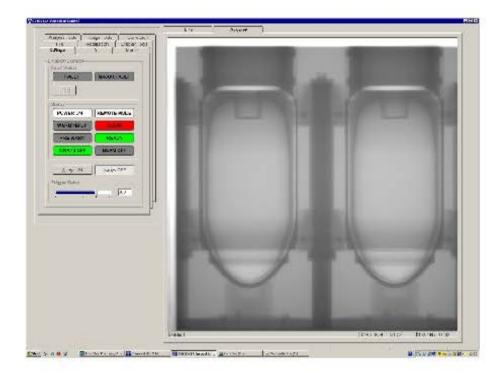
"POGS Workshop"

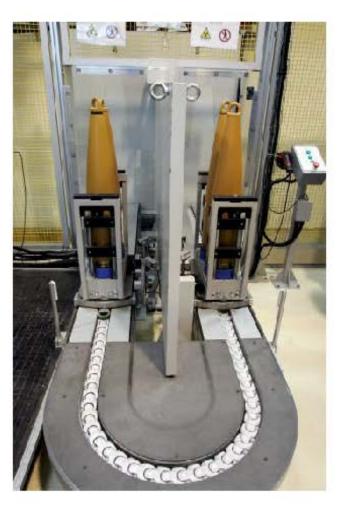
1.3 HD 1,200 m²

Capacity (items/year) with one Filling Station

155 mm: 50,000 120 mm: 100,000


"All-in-One" Workshop (Empty Shells Get In Packed Filled Shells Go Out)




LINEAR CURING OVEN

IN-LINE DIGITAL X-RAYS

CAST PBX for Shells

Some Applications

Naval Artillery

76mm n°1Artillery76mm n°2Artillery127mm (5")Artillery

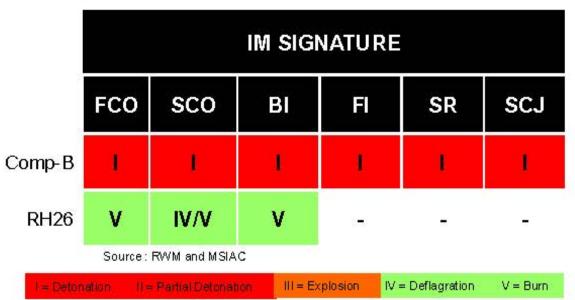
Qualified, Production 2011 Development Production 2011

Field Artillery

155mm n°1 155mm n°2

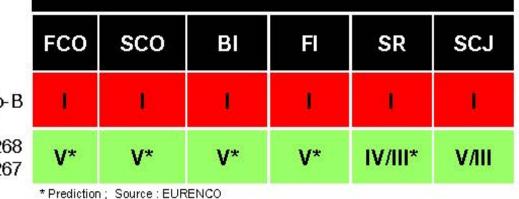
Artillery Artillery

Qualified, Production 2011 Production 2006-2007 (Combat Proven)



155mm Artillery (RWM RH30-40)

155mm Artillery (New EURENCO Formulations B2268& B2267)



IM SIGNATURE

46th Annual Gun & Missile Systems Conference and Exhibition Miami - 11/14 April 2011 Eurenco proprietary information - Slide 26

Tank Ammunitions

120mm n°1 120mm n°2 105mm Tank HE Tank HE Tank HE Production 2010/2011 Development Development

Mortar Ammunitions

120mm n°1 120mm n°2 120mm n°3 81mm n°1 81mm n°2 Mortar Mortar Mortar Mortar Mortar Qualified Qualified Development Development Production 2009/2010

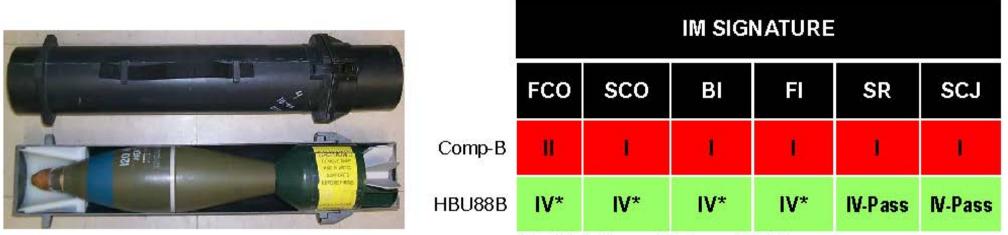
Mortars for USA

As a reminder: 120mm HE Mortar Ammunition (M934A2)

- Prime Co. : GD-OTS CANADA
- Customer: US ARMY
- Development: 2001/05 ; TC 2006

- High Blast / Frag (ref. Comp-B)
- Meets IM Requirements
- Licenses for HBU88-B and BC Process

46th Annual Gun & Missile Systems Conference and Exhibition Miami - 11/14 April 2011 Eurenco proprietary information - Slide 29


Mortars for USA

120mm HE Mortar Ammunition M934A2 (US ARMY Type Classified with EURENCO HBU88B)

* Fuze/Adapter Thrown >49 ft ; Source : US ARMY

46th Annual Gun & Missile Systems Conference and Exhibition Miami – 11/14 April 2011 Eurenco proprietary information – Slide 30

CAST PBX for Shells

Conclusion

- Cast PBX is the most used and mature IM explosive technology available
- Cast PBX is affordable and provides same performances as non-IM Explosives
- Bi-Component process is the right economical / technical trade-off for filling large caliber ammunitions with cast PBX.

EURENCO is Member of IMEMG

The Insensitive Munitions European Manufacturers Group

46th Annual Gun & Missile Systems Conference and Exhibition Miami – 11/14 April 2011 Eurenco proprietary information – Slide 32

DISTRIBUTION STATEMENT A: Unlimited Distribution

DEH

Next Generation Machining & Modeling Technology

Presentation NDIA Guns & Missiles 2011

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

David C. Smith, P.E. US Army Benét Laboratories 1 Buffington Street Watervliet, NY 12189 518-266-4741

Objective: To provide an overview of the US Army Benet Laboratories strategy to advance the state-of-the-art in defining product data, acquiring products in a timely, cost effective manner, and to update and maintain the techniques used to model products, maintain and improve the data, and to fabricate the end items. Further to serve as a model for the Department Of Defense agencies in the modernization of design, fabrication, acquisition capabilities

• Facts:

RDECOM

- Government Technical Data Packages (TDPs) contain design information but no information about manufacturing
- 85% of companies surveyed indicate that they <u>use 2D drawings as their baseline</u>, even when solid models are available. (1) The US DOD still uses 2D drawings as the legal documentation for acquisition and database
- Studies by industry and DoD have demonstrated that the use of 3D modeling during design can reduce development cycle time <u>by 30%+ (1)</u>.
- Studies by industry indicate that the use of 3D modeling during design can reduce non-conformances by 35%+ (1, 2).
- Next Generation Machining and Modeling Technology is not a single element program but a strategy that looks at the:
 - Design process
 - Fabrication process
 - Management of these elements

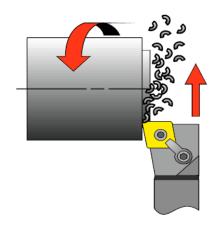
Next Generation Machining & Modeling Technology

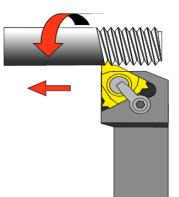
Model Centric

Next Generation Manufacturing

Smart Machine Platform Initiative

> Benet Labs has been selected as the DOD Lead Agency on the advisory board

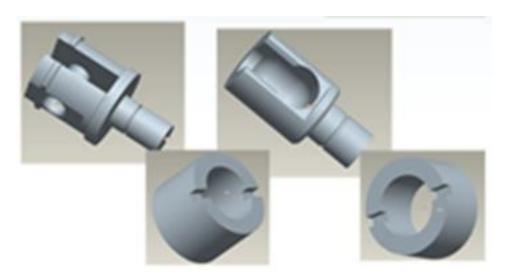

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



• Model Centric Approach:

RDECOM

- Actually comprised of 3 separate elements
 - Model Centric Design
 - Model Check
 - Model Based Environment
- Not a project or a program, but a new strategy in how parts are concepted and designed
- Not just the design information and intent, but all information necessary to support manufacturing the part to it's design intent



ISO 9001 Certified FS15149

RDEGOM

- Defined as ". . a Model-based (or -centric) design is an approach that puts 3D models at the center of the design (1)."
- The 3-Dimensional model serves as the basis of information for all design, analysis, fabrication, inspection, maintenance, repair, re-work, etc
- Detailed data or characteristics is contained in the solid model files including
 - <u>Physical geometry</u>
 - <u>Tolerances</u>
 - <u>Material characteristics</u>
 - Coating/Finishing
 - Manufacturing Data *
- Allows re-use of solid data across the enterprise
 - in other designs
 - in other software tools
 - for other purposes

ISO 9001 Certified FS15149

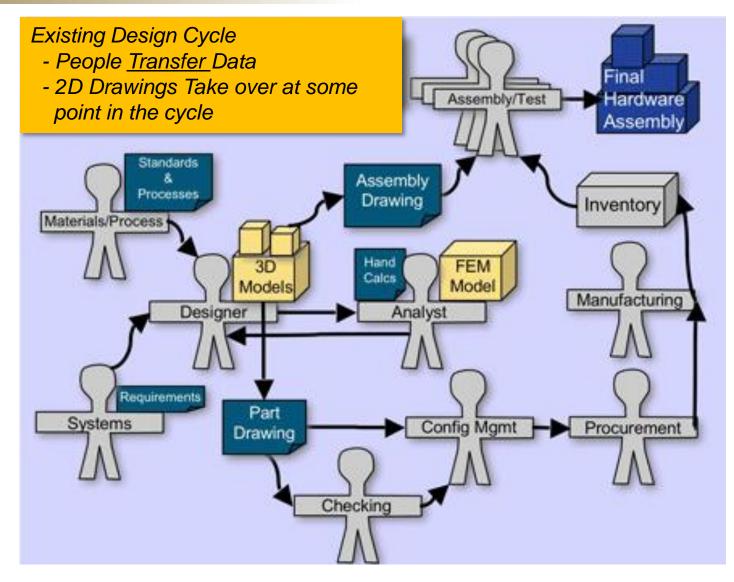
• Model Check:

RDECOM

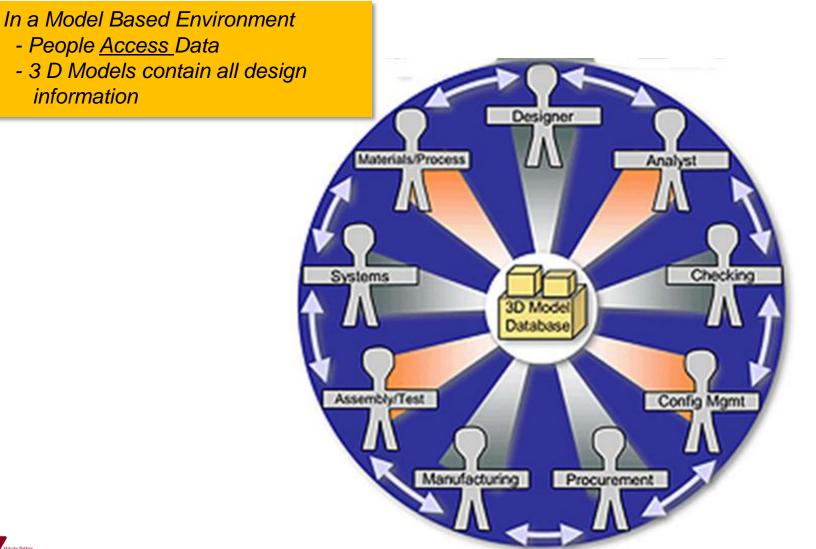
- Is a process that compares the solid geometry and tolerancing to an established set of standards to validate the *design*.
 - Can utilize a mix of automated software tools
 - Should include independent review by other individuals
- Model Check can be tailored
 - To review only tolerancing
 - To address producibility
 - To assess model geometry for stability

ISO 9001 Certified FS15149

• Model Based Environment:

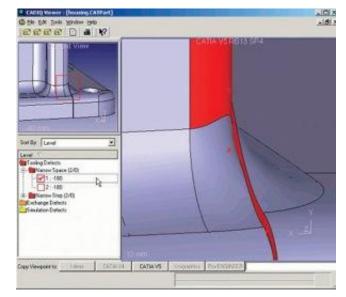

RDECOM

- A fully integrated and collaborative environment founded on 3D product definition detailed and shared across the enterprise; to enable rapid, seamless, and affordable deployment of products from concept to disposal.
- An approach to maintain all data in a common data base to serve as the basis for all:
 - Design Analysis
 - Interface to Enterprise Resource Planning: Raw material orders, Fabrication
 - Re-Use of data
- May utilize native CAD formats or neutral file formats

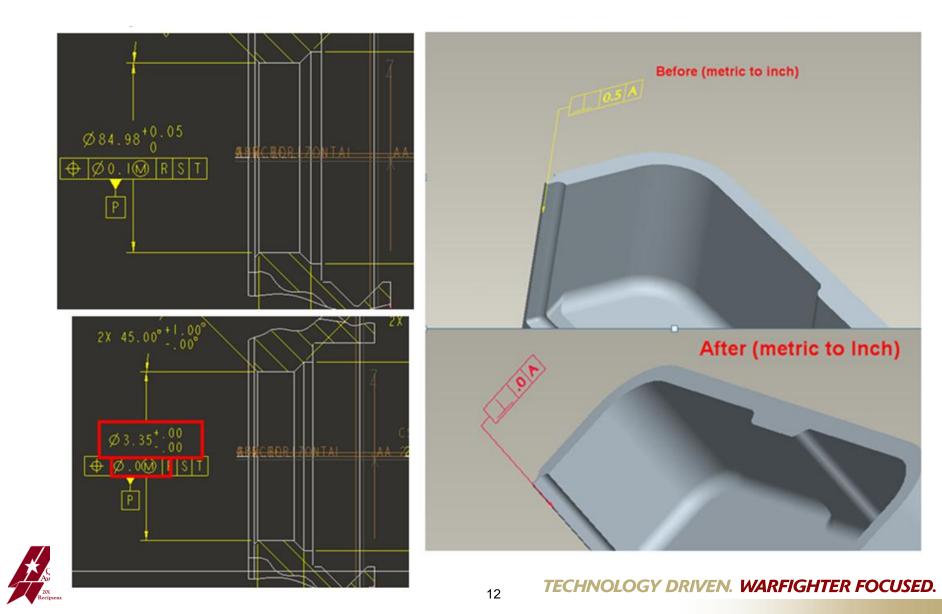


RDECOM)

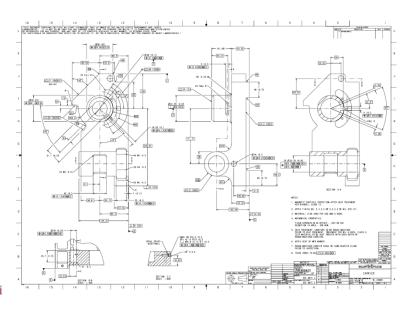
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



- Challenges to realize Model Centric within DOD (organic design & manufacturing)
 - Not all design details can be accurately modeled in CAD Packages
 - Not all CAD packages generate solid data that will:
 - Translate accurately into neutral formats
 - Translate accurately into Manufacturing Software
 - 3D models not transferable into other platforms
 - 3D file format changes can render old formats obsolete
 - Information Technology structure are at odds with government security protocols
 - Units translation needs additional user modification



RDECOM



Challenges to realize Model Centric outside DOD

RDECOM

Nationa Juality

- Substantial amounts of legacy data exist in 2 D records only:
 - 2D PDF and C4: Current Army Document of Record
 - Investments in modeling these products must be driven by an economic model
- Intellectual Property protections not well defined in 3D models
- Optimal design for 1 vendor/process may be suboptimal for another vendor/process
- Use of 3D data can create barriers to smaller vendors unable to make 3D capability investments



TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Challenges to realize Model Centric outside DOD
 - Visualization of data

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

FS15149

• Smart Machine Platform Initiative

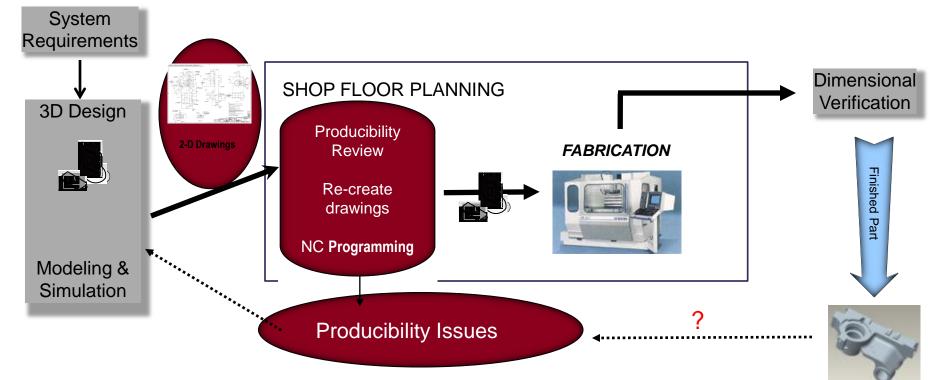
RDECOM

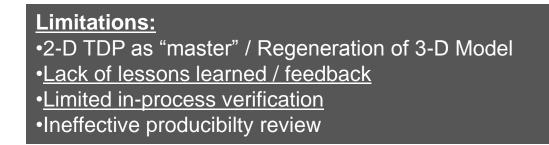
- A framework for the identification, development and transition of technologies that recognize the goal of 'First Part Correct' Manufacturing
- Demonstrate technologies identified to produce the first and every subsequent part and part feature to specification without unscheduled delays or significant human intervention.
- Transition program through organic DoD facilities and DoD contractors
- Bottom line: Timely and cost effective acquisition of DoD components
- Issues Addressed
 - Rapid production and cost reductions required
 - Costly tooling for low volume production
 - Producibility issues / Rework and scrap rates
 - Knowledge retention / Aging workforce
 - Diminishing supplier base

• Thrust Areas:

RDECOM

- Intelligent Process Planning
 - Feature Recognition semi automatic programming: 120 mins \rightarrow 15 mins
 - High Performance Machining Optimization saves 30% 50% of machining time
 - Tool Data Management Integrated with ESPRIT (CAM)
 - Virtual Machining Reduced cutting errors
- Machine Tool Health & Maintenance
 - Increased Tool Life & Availability
 - Reduced Turnaround time
 - Correction of minor problems, preventing catastrophic ones
 - Plan for maintainance during downtime
- Tool Condition Monitoring
 - Reduced Costs & Scrap; Fewer Process Interruptions
 - On-Machine Vision
- Intelligent Machining Network
 - Allows storage & organization of CNC programming
 - Communication of objective, real-time process data





• How is it done today?

RDECOM

Nationa Mality

- How are we approaching the Smart Machine Platform Initiative?
 - Identify / Develop, Validate and Demonstrate enabling technologies:
 - Create demonstration test beds for enabling (Smart Machine) Technologies
 - Assess the Capabilities and Limitation of the technologies
 - Assess & Validate each Technology to "First Part Correct"
 - Focus: Return on Investment
 - Determine the Inter-relationships between technologies
 - Identify Technology Gaps
 - Provide the introduction of technology to industry & DoD
 - Demonstrate technologies in in-house (Benet) shops
 - Demonstrate/Transition technologies to organic (DOD) facilities
 - Involve private vendors through SMPI Umbrella
- Interaction with Logistics Modernization Plan

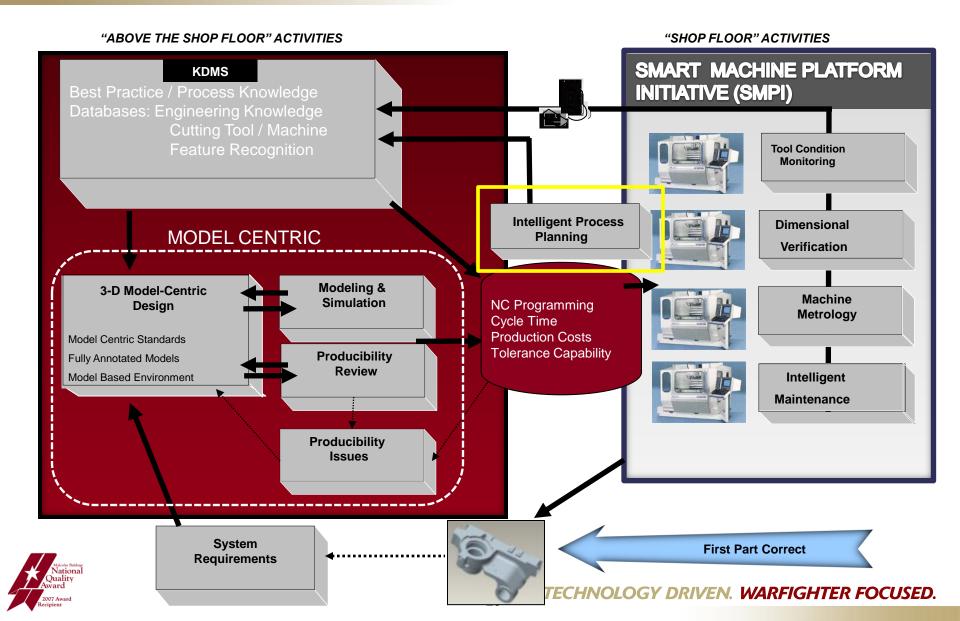
RDEGON

Benét Process Vision and Theme Knowledge Driven Manufacturing

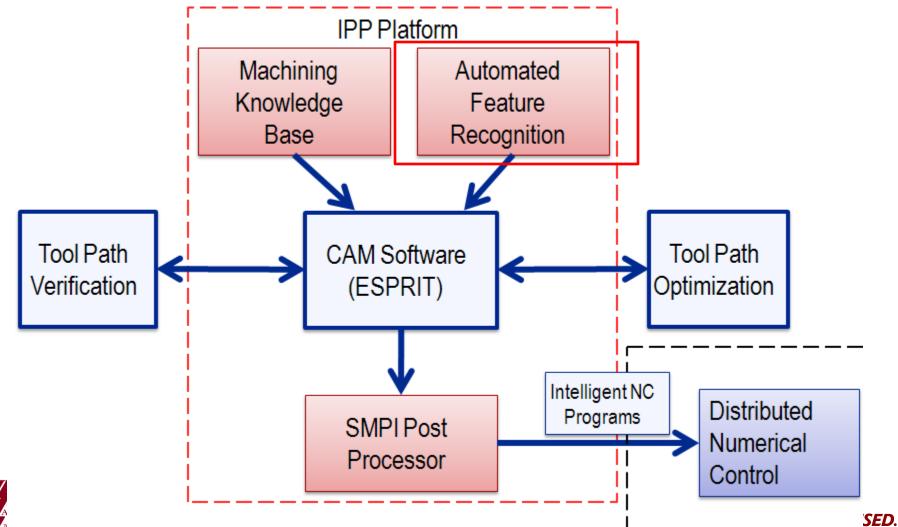
Above the Shop Floor

•Knowledge Base* •Standardization •Control •Certification

Manufacturing Shop Floor


* Knowledge Base = Intellectual IP

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

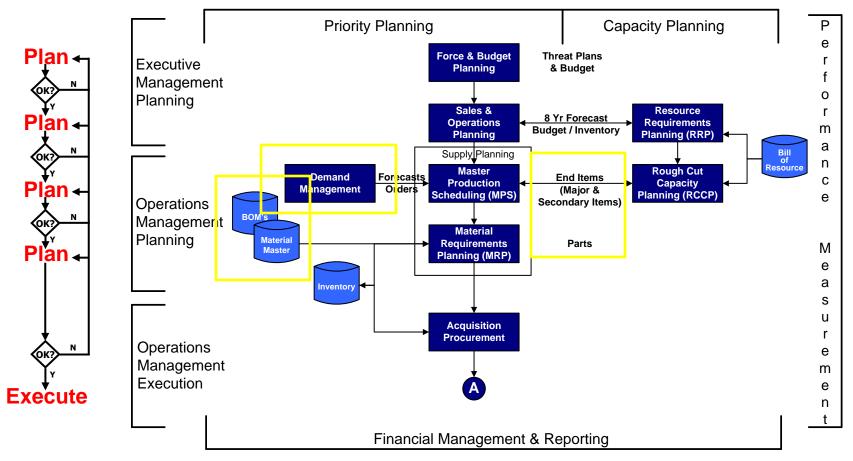


Intelligent Process Planning

RDECOM

Logistics Modernization Plan

RDEGOM


- An Army wide Enterprise Resource Planning system being implemented now.
- Dovetails with SMPI by:
 - providing a smart network to distribute information
 - Extending planning into materials, tooling, acquisition
 - Addressing user demand/needs
 - Creating a database for evaluation

ERP Business Process Overview

High Level ERP Closed-Loop Business Process Model - LCMC View

Customer / Partner / Supplier Integration

Advisory Group (Est. 2006)

Smart Machine Platform Initiative (SMPI)

Future Intelligent Integrated Machining Technologies

(FITMaT)

Government Advisory Group

- U.S. Army ARDEC Benét Labs DoD Lead
- U.S. Army Research Laboratory
- U.S. Air Force ManTech
- Defense Logistics Agency
- NIST Manufacturing Engineering Lab
- NNSA Y-12 National Nuclear Complex

Industrial Advisory Group

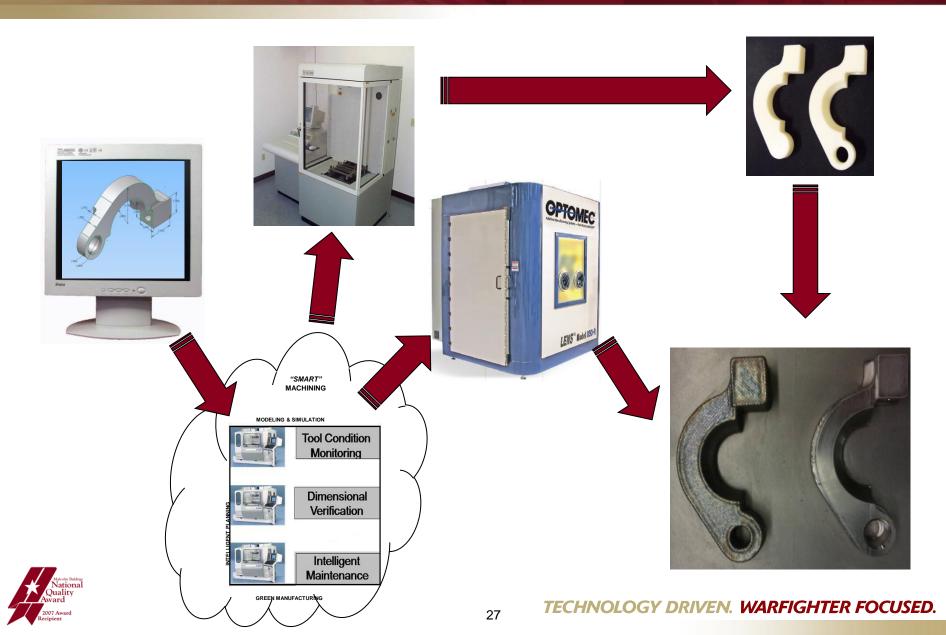
- BAE Systems
- The Boeing Company
- Caterpillar, Inc.
- Cincinnati Machine
- Delphi Automotive
- Ex One
- Ford Motor Company
- GE Aviation
- GD Land Systems
- GD Ordinance & Tactical Systems
- Hurco Companies, Inc.
- Lockheed Martin
- Pratt & Whitney
- Remmele Engineering
- Rolls Royce
- Sikorsky Aircraft Corporation
- Vought Aircraft

- Challenges to implementing Smart Machine Platform Initiatives within organic manufacturing or using other vendors
 - Disparate file formats, databases, optimization approaches create communication barriers.
 - Low demand quantity environment makes it difficult to identify large scale cost savings to justify investment, implementation
 - Established workforce sees increasing <u>'knowledge based' tools as a threat</u>
 - Outside the organic manufacturing base, many unique, small vendors lack the resources, communications links, skill levels to implement some of the SMPI elements
- Why does Smart Machining Platform make more sense for DOD than many other industries
 - Low demand level, wide variety of parts needed on high priority basis
 - Allows very flexible manufacturing approach
 - Allows lessons learned to be retained outside of organic (human) skill base

RDEAN

• Next Generation Manufacturing:

RDEGON


- A series of initiatives to explore advanced manufacturing techniques to reduce costs and to bring new capabilities into DOD Products
- Focus on "Additive Manufacturing Processes" to exploit the digital models available through the Model Centric approach and reduce waste materials
 - Laser Enhanced Net Shaping (LENS) System an <u>additive</u> system approach
 - StereoLithogrAphy (SLA) generation of near net shape parts in polymers
- Other approaches include the integration of new techniques with existing processes to focus on net-shape or near-net-shape results
 - Use of SLA with castings
 - Direct tool path generation for waterjet cutting machines
- Utilizes features of SMPI to enhance routing, material processing
- Provides cost effective fabrication of low production runs on unique parts
- Provides new capabilities

RDECOM

Next Generation Machining & Modeling Technology

- Challenges to implementing Next Generation Manufacturing
 - Modeling of parts for new processes may require new design approaches and optimization
- Why does Next Generation Manufacturing make sense
 - Focus on additive manufacturing processes leads to less waste
 - Focus on additive manufacturing processes means lower investment in raw materials
 - New processes can yield new materials that increase performance of equipment

RDECON

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Questions?

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

References:

- 1. "3D CAD and Model-centric design", Design World, 05 Dec 08, Jennifer Herron
- 2. "Software Checks CAD Models For Flaws", Machine Design, 4 Mar 04
- 3. <u>http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=10956086</u>
- "Check CAD models for quality. (CAD)" *The Free Library* 01 July 2003. 03 November 2010 <<u>http://www.thefreelibrary.com/Check CAD models for quality. (CAD).-</u> <u>a0105644526</u>>.
- 5. <u>http://model-based-enterprise.org/model-based-enterprise/Default.aspx</u>
- 6. "Mold Design Using Solid Modeling Techniques", *Moldmaking Technology*, 04 Feb 08, Lyle Fischer and Wojtek Zietak

Malcolm Baldrige

Quality

2007 Award

Recipient

46th Annual Gun and Missiles Conference 29-31 August2011

Gun-Launched Aerial Precision Munition (G-L APM)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED. Hjalmar "Jay" Canela/ Lloyd Khuc US ARMY METC, ARDEC Picatinny Arsenal, NJ

Distribution Statement A: Unlimited Distribution

Background

- Urban warfare targets can be effectively identified, targeted and neutralized by small Remote Armament System (RAS) capable of delivering warheads.
- This paper will cover the design such a system, how it is implemented in the Unmanned Aerial Vehicle (UAV) used as a prototype flight platform, and includes the results for its initial test flights.

RDFA

- Added lethality component to non-tactical small RAS
- Elimination of RAS capture
- Technology protection through self-destruction
- Added lethality to projectile (increase lethal range)
- Deterrence to terrorism activities
- Force protection

Test Vehicle (surrogate) Characteristics

Unmanned Aircraft Vehicle

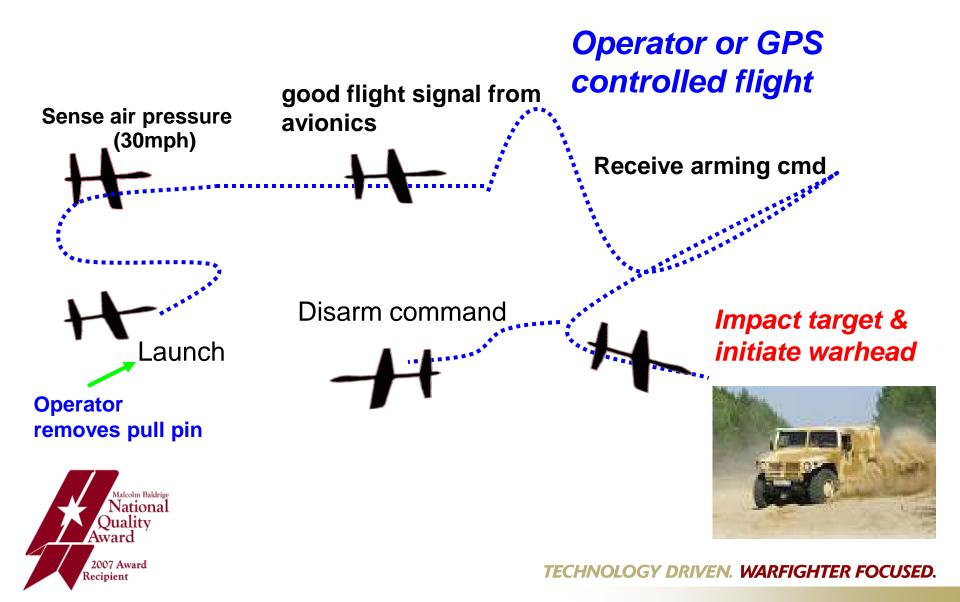
Length ~ 4.5' Wingspan ~ 4.5' Speed ~ 60-65 knots Range ~ 12mi System Weight ~ 10 lbs Warhead Weight ~ 2 lbs

Launch method ~ Air Pressure Rail Launch Power source ~ Lithium-Polymer rechargeable battery pack Avionics ~ Piccolo lite autopilot and radio, 900 MHZ Camera ~ Color Analog Video Transmitter, 2.4 GHZ

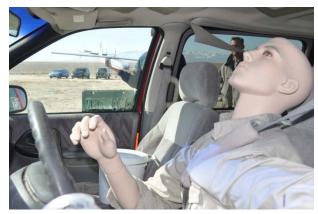
Recipient

Socorro, NM 3/26/2009

IVEN. WARFIGHTER FOCUSED.


- Requirements:
 - Must provide safety during handling & launch
 - Meet Mil-STD-1316/MIL- STD-1901 type safety requirements
 - Function on impact with the target
 - Receive commands from the ground station to arm, fire and disarm in flight
 - Radio Communicates fuze status back to the ground station
- Approach: An Electronic Safe and Arm (ESA) was selected
 - Reliable
 - Compatible with the system avionics functions and communications system
 - Can be readily fire and disarmed in flight
 - Impact or Remote Self-destruction mode

Fuze Flight Sequence



G-LAPM Demo Test Set up

G-LAPM Demo Test Result

- Live Fired Flight Tests were conducted on Feb-23-2010 at Dugway Proving Ground, Utah.
- Two UAV's were programmed to autonomously fly a preset pattern and home in on stationary SUV's used as demo targets with 100% success.
 - Info transmitted from UAV validated all fuze safety features worked as designed
 - Firing pulse 1,200V through LEEFI initiation warhead on target impact.
 - Both stationary SUV targets were significant damage.
- In Summary:
 - Universal fuze functioned flawlessly, technology demonstrated.
 - Multi-purpose warhead function demonstrated with low collateral damage.
 - APM Flight Platform precision demonstrated.

Movie1.wmv

Summary

- ARDEC was committed to developing Gun-Launched APM technology.
- Fuzing and Novel Warhead are key parts of ARDEC's Gun Launched APM program.
- On-going effort to reduce size of fuze to fit into small APM airframe.

=> <u>Areas/technologies for collaborative effort?</u>

Hjalmar Canela U.S. Army RDECOM-ARDEC Munitions Engineering Technology Center (METC) LOS-BLOS Munitions Division Ph: 973-724-2743 hjalmar.canela@us.army.mil Lloyd Khuc U.S. Army RDECOM-ARDEC Munitions Engineering Technology Center (METC) Fuze Division Ph: 973-724-7256

lloyd.khuc@us.army.mil

THE EFFECTS OF IGNITER DESIGN ON THE INTERIOR BALLISTIC PERFORMANCE OF DETERRENT COATED PROPELLANTS

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Dr. Thelma G. Manning^a, Dr Eugene Rozumov^a, Duncan Park^a, CarltonAdam^a, Dr. Joseph Laquidara^a and Christopher MacMurray^b, Jim Wedwick^b ^aUS Army RDECOM ARDEC and ^bAlliant Tech Systems 46th Annual Gun & Missile Systems Conference & Exhibition

Hyatt Regency, Miami, Florida , August 29-September 1,2011

Approved for public release; distribution is unlimited.

- Michael E. Ellis, Allan Cohen and Steven Gilbert, US Army Armament Research, Development and Engineering Center, RDAR-MEM-J, B65, Medium and Cannon Caliber Munitions Branch, Munitions System & Technology Directorate Picatinny, NJ 07806-5000, Phone: (973) 724-6052/3852, Email: michael.e.ellis@us.army.mil and <u>steven.gilbert@us.army.mil</u>]
- Christina Morales, Propellant Manufacture and Producibility Branch, US Army Armament Research, Development and Engineering Center
- Alan Sweet and William Goldberg, Packaging Division, US Army Armament Research, Development and Engineering Center
- Dr. Brian Fuchs, Chair, US Army Insensitive Munitions Board, US Army Armament Research, Development and Engineering Center, RDAR-MEE-W, B3024, <u>brian.edward.fuchs@us.army.mil</u>, (973)724-4772.
- Dr. Ernie Baker, RDAR-MEE-W, US Army Insensitive Munitions S & T, US Army Armament Research, Development and Engineering Center, RDAR-MEE-W, B3022, <u>ernie.l.baker@us.army.mil</u>, (973)724-5097.
- Chris Brandt/Ralph Obrera, QA, B65, US Army Armament Research, Development and Engineering Center, RDAR-QEM-F, B62, Quality Assurance, Munitions Branch, Munitions System & Technology Directorate
- James Wedwick, ATK, Program Manager, Radford Army Ammunition Plant
- Christopher McMurray, ATK, Propellant Development Engineer, Radford Army Ammunition Plant
- Kelly B. Moran, ATK, Chemical Engineer, Radford Army Ammunition Plant,
- W.J. and D.A. Worrell, ATK, Production Engineer, Radford Army Ammunition Plant
- Steven Ritchie, ATK, Propellant Development Manager, Radford Army Ammunition Plant

National Steve Lightsey and Matt Brian, National Technical Systems (NTS), Camden, Arkansas, Quality Insensitive Munitions Testing, steve.lightsey@ntscorp.com

2007 Award Recipient Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²

Briefing Outline

- Overview
- System Description
- Performance Test
- IM Test
- Conclusions

Approved for public release. Distribution is unlimited

- Develop an environmentally friendly propellant for medium caliber applications
 - -Elimination of ether and

alcohol processing solvents

- No ingredients from the EPA watch list
- -Step improvement of IM performance

RNFCAM

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁴

- Solventless PAP8386 tailored for medium caliber
- M793/PGU-23 selected as test vehicle
 - Ignition system optimized for propellant
 - Ballistics demonstrated across temperatures
 - Insensitive Munitions Testing of M793
 Vented Cartridge Cases and PA125
 Container with Developmental PAP-8386
 Propellant

Malcolm Baldrige National Quality Award 2007 Award Recipient

IM testing completed

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁵

- Despite the improved IM properties of PAP-8386 propellant a system level approach is needed for all of the IM tests
- A separate ARDEC program has developed a vented case and container
 - Designed to relieve undesired pressure
 - This case and container are expected to provide improved IM response of the loaded round to the Slow Cook-Off test in particular
- Vented cases and containers were used for the IM test

Approved for public release. Distribution is unlimited

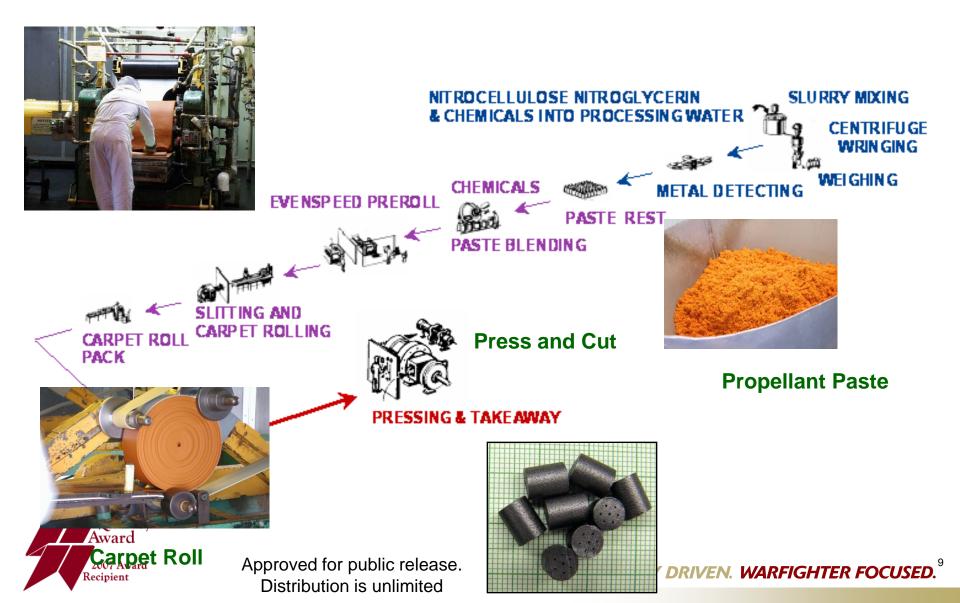
- Propellant Manufacturing at RFAAP
- Propellant Testing
 - Reproducibity (RFAAP)
 - PVAT (-46C, +21C, +63C)
 - Chemical and physical
 - Characterization
 - Insensitive Munitions Testing (Mil Std 2105C) (NTS)

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁷

SMALL SCALE SENSITIVITY SCREENING TEST

Propellant	ERL Type 12 Impact 50% point (cm)	Electrostatic Discharge Test (ESD) NR (NO REACTION)	BAM Friction (N) N (NEWTON)
RDX	24.8± 1.2	-	212N reacted
Lot # 21-18	25.1± 1.7		188N 10/10 no go
RPD380	27.1± 2.1	NR 20 trials @ 0.25	192N reacted
Lot # ARV01A002001		Joules	168N 10/10 no go
L1M	27.6 ± 1.5	NR 20 trials @ 0.25	212N reacted
Lot # NC-00J2890		Joules	188N 10/10 no go
JA2	32.0 ± 1.4	NR 20 trials @ 0.25	212N reacted
Lot # PD-065-5		Joules	188N 10/10 no go
M14	48.4 ±1.3	NR 20 trials @ 0.25 Joules	252N reacted 240N 10/10 no go
PAP-8386 (RPD-469)	75.4 <u>+</u> 1.2	NR 20 trials @0.25 Joules	252N reacted 240N 10/10 no go


PAP-8386 is less impact sensitive than M14 and JA2 propellant

Approved for public release; distirbution is unlimitted.

Distribution is unlimited

Solventless Propellant Process

Technical Progress Ignition Study Using Flash Tube Igniter

Blend Study Results (w/Flashtube)

Loaded Round — Flash Tube V. WARFIGHTER FOCUSED.¹⁰

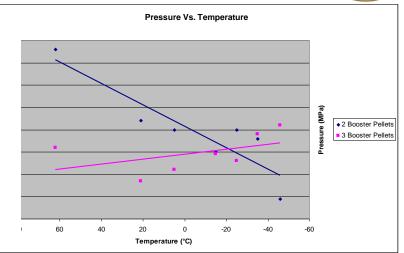
لے

Approved for public release. Distribution is unlimited

Pressure Velocity Action Time (**PVAT at +63C, +21C and -46C**)

Velocity Vs. Temperature

PVAT RESULTS MET THE PERFORMANCE SPECS


Figure 2: Velocity Vs Temperature results for cold walk-down


RDEGO

Figure 3: Action Time Vs Temperature results for cold walk-down

Approved for public release. Distribution is unlimited

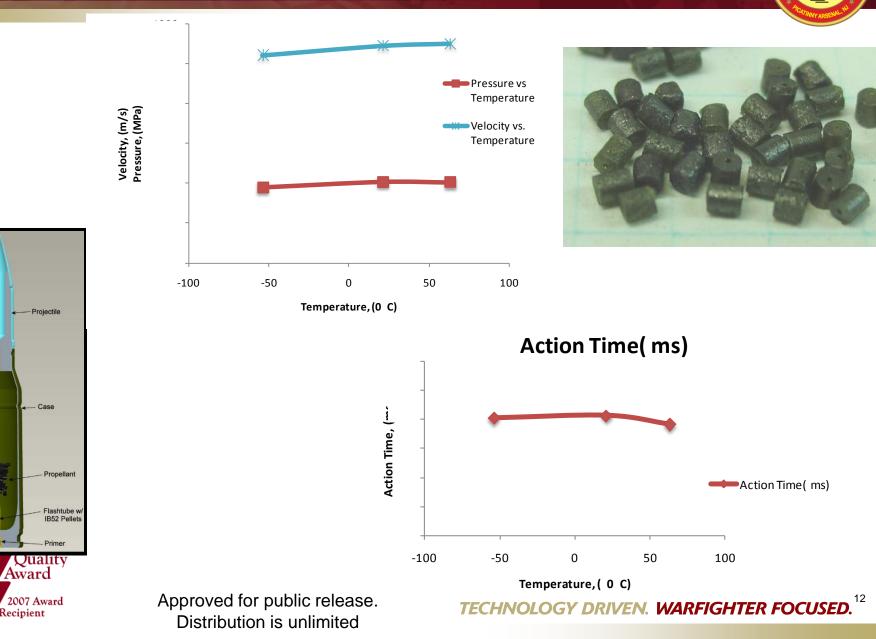


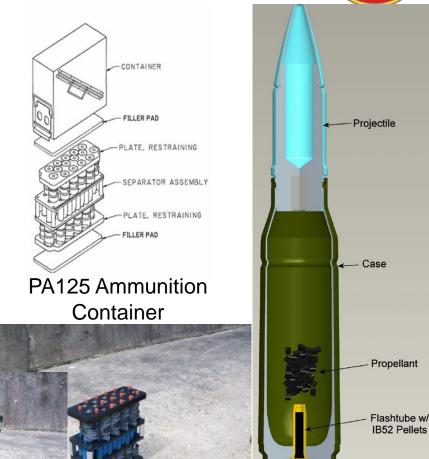
Figure 1: Pressure Vs Temperature results from cold walk-down

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹¹

| K-

Recommended Testing

IM Test	MIL-STD-2105C	Test Parameters
Fast Cook-Off (Liquid Fuel/External fire)	V	 Per STANAG 4240 (Edition 2) Complete engulfment of the test item by the fire for a min of 20 min
Slow Cook-Off (Slow Heating)	V	 Per STANAG 4382 (Edition 2) Test item to be pre -conditioned at +50°C for 8 hours prior to test or until it reaches equilibrium at +50°C Oven temperature to be increased +3.3°C per hour from +50°C
Bullet Impact	V	 Per STANAG 4241 (Edition 2). 0.50 cal Type M2 AP bullet @velocity of 2790±66 ft/sec
Fragment Impact	V	 Per STANAG 4496 (Edition 1). 0.50 inch mild steel conical fragment@velocity of 8,300±300 ft/sec
Shaped Charge Jet Impact	III,IV,V (PASS)	 Per STANAG 4526 (Edition 1, Ratification Draft 1) 81mm shaped charge loaded with LX-14 Impact at the propellant location
Sympathetic Detonation	III,IV,V (PASS)	 Per STANAG 4396 (Edition 2) Required if SCJI test is a failure 81mm shaped charge loaded with Comp B
2007 Award Approved		• Required if SCJI test is a failure


Modified Ammunition Configuration

- General Information
 - All tests to be repeated
 - 1 or 2 Cans per test
 - 2 Groups of 15 linked rounds per can
 - Rounds are modified M793 configuration
 - Energetic components
 - M115 primer
 - IB-52 pellets
 - PAP-8386 propellant
 - Projectiles are inert
 - Not traced

Approved for public release. Distribution is unlimited

M793

Primer

Ammunition Configuration

Vented Cases

Vented PA125 Containers

Recipient

The liquid fuel fire (FCO) tests were conducted IAW MIL-STD-2105C, 14 Jul 2003 and STANAG 4240(Edition 2), 15 Apr 2003 and the test plan to determine and evaluate the response of the test item to a rapid heating in a liquid fire, which completely engulfs the PA125 container packed with 30 rounds of M793 25-mm vented cartridge cases.

- Fuel Basin 14' W x 20'L to be filled with 1000 gallons JET A1 Fuel. From the control room, the JET A fuel was ignited underneath the test unit.
- Minimum of 30 minutes complete engulfment
- Average flame Temperature 1733-1754°F minimum
- One (1) ammunition container per test
- Container centered approximately 36 in. above fuel pan
- Four(4) thermocouples to be placed on each container
- One (1) on each side of the container
- Four (4) blast transducers positioned as shown on next page

The first the second se

Quality emperature profile and reaction history to be recorded.

After testing visual inspection and mapping was performed after the safety waiting time.

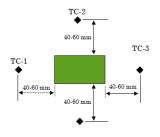
Approved for public release. Distribution is unlimited

Fast Cook-Off – Test Set-Up

Modified PA-125 Container Packed with


RDECOM)

Malcolm Baldrige


National Quality ward

2007 Award

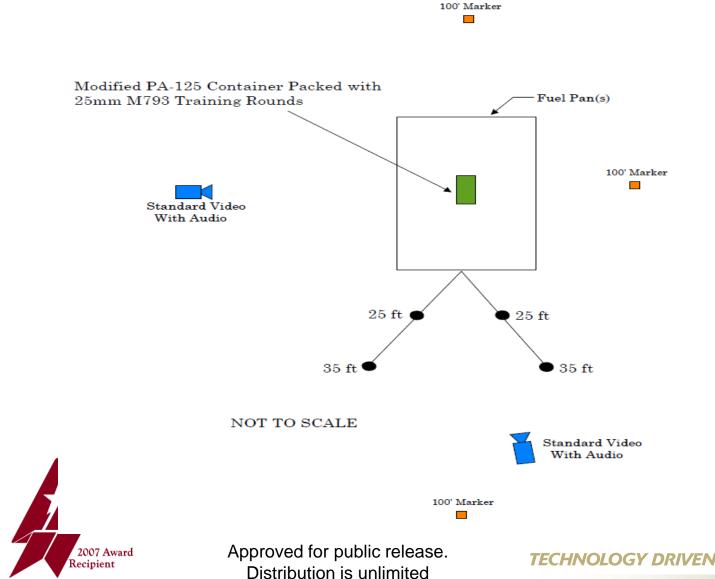
Recipient

ELEVATION VIEW

TC-4

PLAN VIEW Thermocouple Placement Fast Cook-Off

NOT TO SCALE


Figure 5 Fast Cook-Off Test Setup

Approved for public release. Distribution is unlimited

Post Test Results T/S 151-180 / Test 2 Fast Cook-Off Test

RDECOM Fast Cook-Off – Test Set-Up

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹⁸

RDECOM) Fast Cook-Off – Test Set-Up

Test Setup T/S 121-150 / Test 1 Fast Cook-Off Test

2007 Award Recipient

Approved for public release. Distribution is unlimited TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹⁹

Fast Cook-Off – Test Result ATK

S/N: 121-150							
Fuel Type	J	Jet-A A			Temp	1754°F	
Fuel Quantity	1000	1000 Gallons			Time to reach 1022°F		
Pan Dimensions	14'V	14'W x 20'L					
Reaction Type	Type IV Reac	Type IV Reaction					
Probe Number	Distance	PSI	Pro	be Number	Distance	PSI	
1	25'	0		4	25'	0	
2	35'	0		5	35'	0	

Results: At 1810 on 3/18/10 the fire was ignited. The first reaction was approximately 2 minutes into the fire and continued for approximately 3 minutes. There was no debris found out past 61'. There was no recordable blast pressure. The fire burned for approximately 30 minutes. All explosives were consumed except for one Live Primer End Cap. The High Vent side of the PA 125 Container was facing 90°.

RDEastv

Post Test Results T/S 121-150 / Test 1 Fast Cook-Off Test se.

Post Test Results T/S 121-150 / Test 1 Fast Cook-Off Test

Fast Cook-Off Test Result

S/N: 151-180

Fuel Type		Jet-A		Avg. Flame Temp		1733°F
Fuel Quantity	1000	1000 Gallons Time to reach 1022°F			32 Seconds	
Pan Dimensions	14'V	V x 20'L				
Reaction Type	Type IV Reac	tion				
Probe Number	Distance	PSI	Pro	be Number	Distance	PSI
1	25'	0		4	25'	0
2	35'	0		5	35'	0

Results: At 1922 on 3/19/10 the fire was ignited. The first reaction was approximately 3 minutes into the fire and lasted approximately 1 minute. There was no debris found out past 70'. There was no recordable blast pressure. The fire burned for approximately 30 minutes. All explosives were consumed except for one Live Primer End Cap. The High Vent side was facing 270°.

Post Test Results T/S 151-180 / Test 2 Fast Cook-Off Test

RDHast

Post Test Results T/S 151-180 / Test 2 Fast Cook-Off Test

Slow Cook-Off

The Slow Cook-Off (SCO) tests were conducted IAW MIL-STD-2105C, 14 Jul 2003 and STANAG 4240(Edition 2), 15 Apr 2003 and the test plan to determine and evaluate the response of the PA125 container packed with 30 rounds of M793 25-mm vented cartridge cases when subjected to a gradual increasing heat temperature at a rate of 50 F per hour until reaction occurs.

A 4' X 4' expanded metal grate was placed on top of concrete blocks and covered with 1" high temperature insulation.

One (1) 10" X 20" X $\frac{1}{2}$ " thick mild steel witness plate was placed on top of the high temperature insulation. A second witness plate 10" x 18" x $\frac{1}{2}$ " thick was placed on the side of the Test Unit.

A calibration Test of the blast transducers was performed by detonating a 1 pound sphere of C-4 explosives.

Test Unit was placed on top of the bottom witness plate.

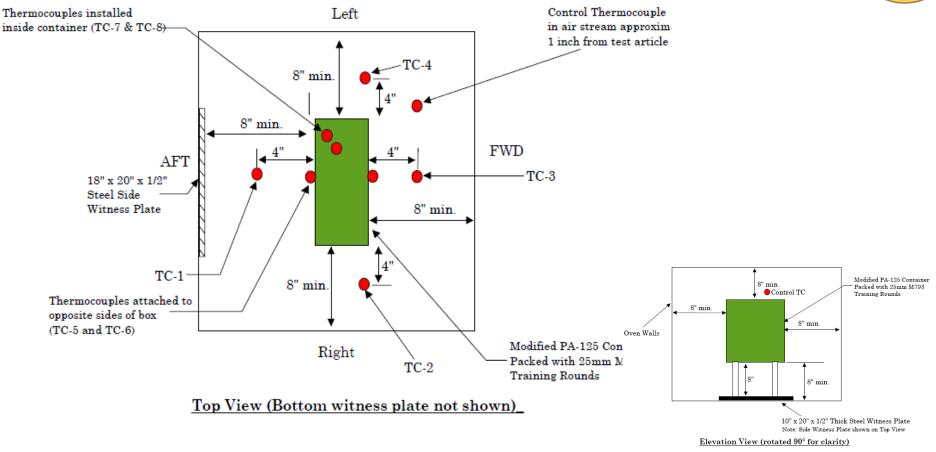
The Test Unit S/N's 241-270 were instrumented with thermocouples as referenced in Table 3 and Figure 10.

Two (2) standard video cameras, one (1) internal video and four (4) blast transducers were positioned as referenced in Figure 11.

The oven (40" tall x 36" wide x 46" long) was placed over the Test Unit.

The internal temperature of the oven was ramped to +122°F over a period of one (1) hour.

Once at a temperature of +122°F, the eight (8) hour minimum soak was performed.


Upon completion of the eight (8) hour minimum soak at +122°F, the internal temperature of the chamber was ramped at a rate of +6°F per hour until reaction occurs.

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²

NOT TO SCALE

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²³

RDECOM

S/N: T /S 241-270							
Bottom Witness	10" x 20" x 0	0.5"	Witnes	ss Plate Damage	No Damage		
Side Witness Pla	te	10" x 18" x 0.5" Witness Plate Damage No Damage					e
Oven Size:		40" Tall x 36" Wide x 46" Long					
Reaction Type	Type V reaction						
Probe Number	D	istance		PSI	Probe Number	Distance	PSI
1		25'		0	3	25'	0
2	_	35' 0 4 35' 0					

Test Results: On 3/26/10 at 0210 the first reaction occurred at approximately 276.5°F. There was a small pop and then a fire started all of the rounds went but did not breach the oven. The oven would not continue to heat so the test was ended. All pieces remained inside the oven at ground zero. There was no damage to either witness plate. All debris mapped and pictures taken. The test article was oriented with the handles pointing to 0° and 180°, and the blowout ports to 90° and 270°.

T/C	Location	Reaction Temperature (°F)
1	Air Temperature – Aft end high vent side 90°	266.0
2	Air Temperature – Right side 0°	267.3
3	Air Temperature – Forward end low vent side 270°	267.4
4	Air Temperature – Left side 90°	265.8
5	Skin Temperature – Aft end high vent side 900	
6	Skin Temperature – Forward end low vent s	Ó
7	Internal Temperature – Right side 0°	

8 Internal Temperature – Left side 180°

Post Test Results T/S 241-270 / Test 1

Post Test Results T/S 241-270 / Test 1 Slow Cook-Off Test Post Test Results T/S 241-270 / Test 1 Slow Cook-Off Test 24

RDECOM) Slow Cook-Off – Test Set-Up

se.

Test Setup T/S 271-300 / Test 2 Slow Cook-Off Test

Test Setup T/S 271-300 / Test 2 Slow Cook-Off Test

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²⁵

RDECOM) Slow Cook-Off – Test Result

S/N: T/S 271-300											
Bottom Witness	Plate	10" x 20" x 0	0.5"	Witnes	ss Plate Damage		No Damage				
Side Witness Pla	te	10" x 18" x 0	10" x 18" x 0.5" Witness Plate Damage No Damage								
Oven Size:		40" Tall x 36" Wide x 46" Long									
Reaction Type		Type IV rea	Type IV reaction								
Probe Number	D	istance		PSI	Probe Number		Distance	PSI			
1		25'		0	3		25'	0			
2		35'	35' 0 4 35' 0								

Test Results: At 2305 on 3/30/10 the container was breached by a round going off. The container caught on fire and all rounds proceeded to go off but remained inside the oven. The lid was blown off of the container and a few rounds came out of the container. There was no visual damage to the witness plates. The oven was not breached and remained in tact. The temperature at time of reaction was 270.0°F. The container was oriented with the handles to 0° and 180°, and the blow out ports to 90° and 270°.

T/C	Location	Reaction Temperature (°F)
1	Air Temperature – Aft end high vent side 90°	269.1
2	Air Temperature – Right side 0°	270.4
3	Air Temperature – Forward end low vent side 270°	267.9
4 5	Air Temperature – Left side 90°	267.4
5	Skin Temperature – Aft end high vent side 90°	265.6
6	Skin Temperature – Forward end low vent side 90°	266.6
7	Internal Temperature – Right side 0°	270.2
8	Internal Temperature – Left side 180°	268.9

Post Test Results T/S 271-300 / Test 2 Slow Cook-Off Test

Post Test Results T/S 271-300 / Test 2 Slow Cook-Off Test

CHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Bullet Impact

The bullet impact tests were conducted IAW MIL-STD-2105C, 14 July 2003 and STANAG 4241 (Edition 2), 15 April 2003 to determine and evaluate the response of the test item to the impact of a .50 caliber Type M2 armor-piercing (AP) bullet traveling at a velocity of 2,790 \pm 66 ft/s.

Projectile is .50 caliber type M2 armor-piercing (AP) bullet with a velocity of 2790±66 ft/sec.

Four (4) blast transducers were placed at a 45° angle to the rear of the Test Unit as referenced in Figure 4.

A calibration Test of the blast transducers was performed by detonating a 1 pound sphere of C-4 explosives.

The triple .50 cal guns were positioned, the test stand was constructed, and a piece of $10^{\circ} \times 20^{\circ} \times 1^{\circ}$ thick mild steel witness plate placed on top.

Velocity screens were placed along the gun line.

A second 18" x 20" x 1" witness plate was placed on the side of the Test Unit 25" from the center.

One (1) high-speed digital camera and three (2) standard video cameras were positioned to monitor and record testing.

All instrumentation was connected and calibration shots were performed using .50 caliber Armor Piercing ammunition. All data met within the test specification.

Test Unit S/N's 301-330 were placed on top of the witness plate.

Three (3) .50 cal M2 AP rounds were fired at the Test Unit. The first and third bullets were aimed 2 $\frac{1}{2}$ " up from the bottom of the round and $\frac{3}{4}$ " the second bullet centered between side walls as referenced in Figure 10.

2007 Award Recipient

Awaru

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²⁷

RDECOM Bullet Impact –Test Set-Up

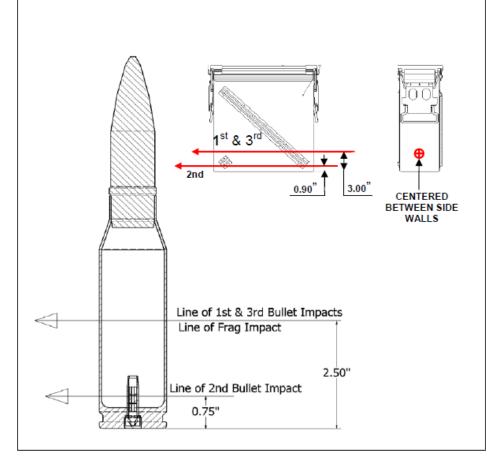
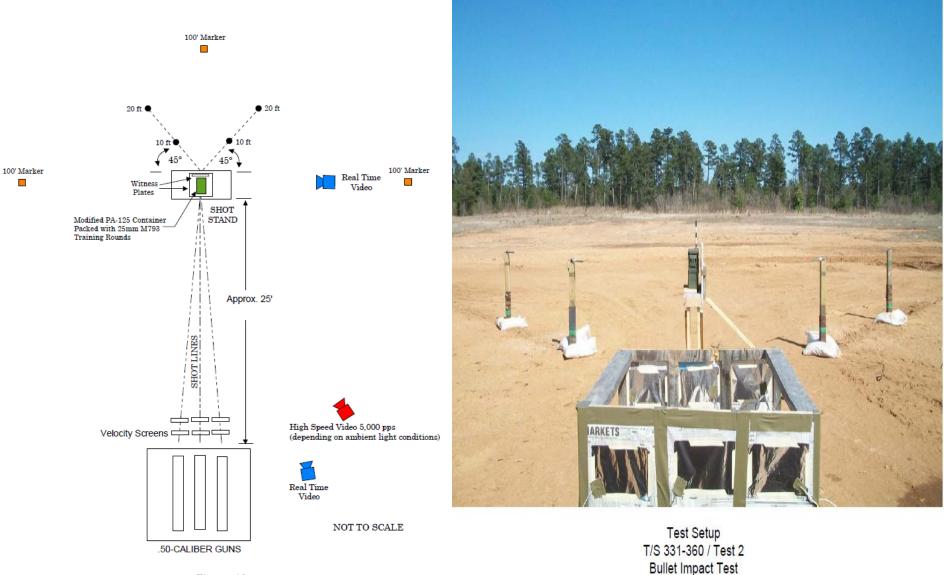



Figure 13 Aim Point and Shot Line for Bullet and Fragment Impact

Approved for public release. Distribution is unlimited TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²⁸

RDECOM) Bullet Impact – Test Set-Up

ATK

Figure 12 Bullet Impact Test Setup

RDECOM Bullet Impact – Test Result

S/N: T/S 301-330									
Temperature				76°F		Relative Humidity			30%
Barometric Pres	sure		3	0.08 inHg		Wind Speed/Direction			2.0 mph/SW
Bottom Witness	Plate	10"x20"x1" Thick Aluminu			ım Plate	Plate Witness Plate Damage			Burn/Gouge
Side Witness Pla	ate	18"x	18"x20"x1" Thick Aluminum P			Witness F	Plate Dan	nage	No Damage
Reaction Type		Type V Reaction			Bullet Type Three (3			3) .50	Cal M2 AP
	Bullet	Velo	city		Time				
Gun 1 Veloci	ity		2840.9	Ft/Sec	Gun 1 to Gun 2				92.7 ms
Gun 2 Veloci	ity		2854.8	Ft/Sec	Gun 2 to Gun 3				107.4 ms
Gun 3 Veloci	ity		2835.5	Ft/Sec					
Probe Number	Dista	nce	PSI	Probe Num	ber	Distance	PSI		
1	9'9	9" 0 3				9'10"	0		
2	19'	9"	0	4		19'8"	0		

Aim Point: 2.50" up from the bottom of the round and .75" for the second bullet centered between the side walls

Test Results: Unit was impacted with all three bullets. The shipping container remained on the shot stand. The units started to catch fire for a brief minute and then started to smoke for about four minutes. There was a few pieces found from 358° to 86° and out to 39' 7". The bottom witness plate had some burnt propellant on top of it and also had a gouge in it that looked like it was from a bullet. The side witness plate had no visual damage. The test article was oriented with the handles on the container to 90° and 270°.

Post Test Results

Post Test Results T/S 301-330 / Test 1 Bullet Impact Test

T/S 301-330 / Test 1 Bullet Impact Test Approved for public release. Distribution is unlimited Post Test Results T/S 301-330 / Test 1 Bullet Impact Test

ATK

RDECOM Bullet Impact –Test Result

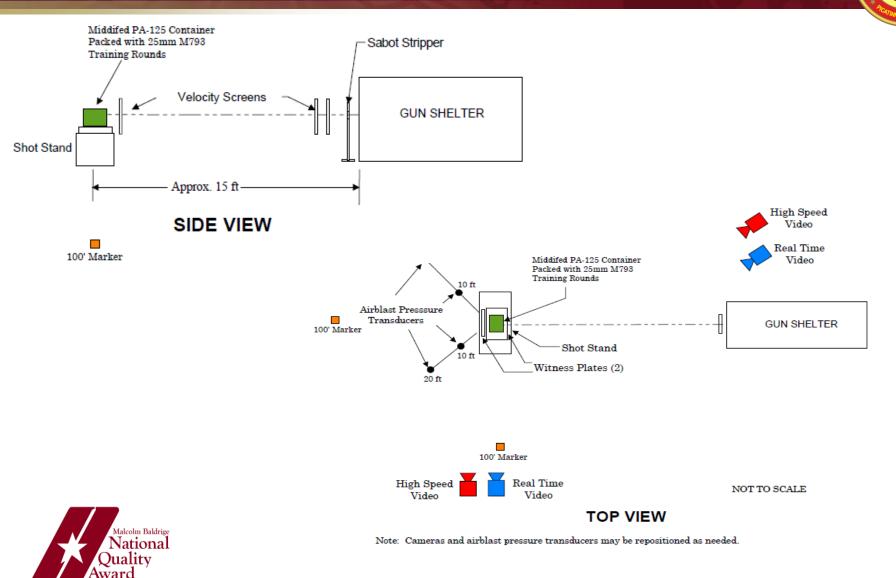
S/N: T/S 331-361										
Temperature				78°F		Relative Humidity			28%	
Barometric Pres	sure		30	0.03 inHg		Wind Spe	Wind Speed/Direction			
Bottom Witness	Plate	10">	(20"x1" T	hick Aluminu	ım Plate	Witness F	Witness Plate Damage			
Side Witness Pl	ate	18"x	(20"x1" T	hick Aluminu	ım Plate	Witness F	Plate Dam	nage	Gouge	
Reaction Type		Туре	e V Reac	tion	Bullet	Туре	3) .50	Cal M2 AP		
	Bullet Velocity						Time			
Gun 1 Veloc	ity		2801.1	Ft/Sec	Gun 1 to Gun 2				92.8 ms	
Gun 2 Veloc	ity		2830.2	Ft/Sec	Gun 2 to Gun 3				99.7 ms	
Gun 3 Veloc	ity		2846.3	Ft/Sec						
Probe Number	Dista	nce	ce PSI Probe Nun			Distance	PSI			
1	10'	2"	2" 0 3			10'2"	0			
2	20'	2"	2" 0 4			20'	0			
A:				C 11	1 7 5 1 1					

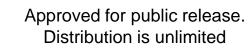
Aim Point: 2.50" up from the bottom of the round and .75" for the second bullet centered between the side walls

Test Results: Unit was impacted with all three rounds. The unit and the shot stand both were knocked over from the impact of the rounds. The units started to burn and smoked for about two minuets. The bottom witness plate had no visual damage and the side witness plate had a gouge that looked to be from a bullet coming out of the container. All rounds remained in the container. The test article was oriented with the handles on the container to 90° and 270°.

Post Test Results T/S 331-360 / Test 2 Bullet Impact Test Post Test Results T/S 331-360 / Test 2 Bullet Impact Test

Post Test Results T/S 331-360 / Test 2 Bullet Impact Test




Fragment Impact

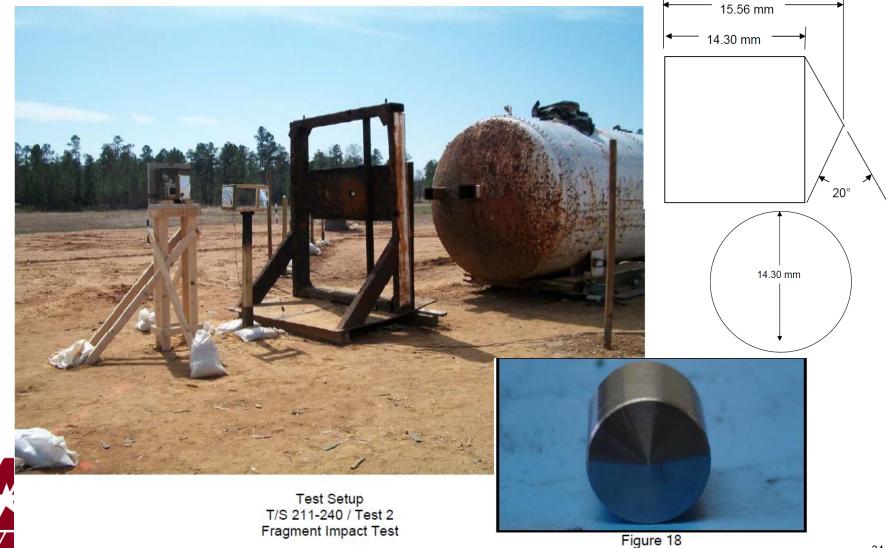
- The Fragment Impact (FI) tests were conducted IAW MIL-STD-2105C, 14 Jul 2003 and STANAG 4240(Edition 2), 15 Apr 2003 and the test plan to determine and evaluate the response of the PA125 container packed with 30 rounds of M793 25-mm vented cartridge cases to the impact of a 50-in mild steel conical fragment army fragment travelling at a speed of 8,300 fps.
- One (1) ammunition container per test
- Standard projectile is .50" diameter mild steel with a velocity of 8,300±300 ft/sec
- Gun To Be Located 15' From Test Article
- Fragment gun positioned, test stand was constructed, and a 10"x20"x1" thick steel witness plate was placed on top of the shot stand
- One conical fragment was shot into the Test Unit. The aim point was handle side of the shipping container 3" from the bottom. Line of fragment impact will be the same as the bullet impact test
- Velocity screens placed along the gun line
- Four (4) blast transducers to the rear of the test units gages positioned as shown on next page
 - Second aluminum witness panels located on the side of test unit.
- Two (2) video cameras and two (2) high-speed camera positioned as Shown on next page for public release. Distribution is unlimited *TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.*³⁷

Fragment Impact Test Set-Up

RDECOM

2007 Award

Recipient


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.³³

местриени

Fragment Impact Test Set-Up

Distribution is unlimited

.50-in. mild steel conical army fragment

Fragment Impact Test 1 Result

S/N: T/S 181-210									
Temperature			52°	F	Rela	tive Humidity			47%
Barometric Pressure		30.09 inHg			Wind Speed/Direction				0 MPH
Bottom Witness Plate		10"x20"x1" Thick Mild Steel				Witness Plate Damage			Scarring/ ndentions
Side Witness Plate		18"x20"x1" Thick Mild Steel			Witness Plate Damage				Scarring/ ndentions
Reaction Type		Type IV Reaction			Fragment Velocity			82	37.7 Ft/Sec
Probe Number	Dista	nce	ce PSI Probe Nu		ber	Distance	PS	I	,
1	10'()"	0.96	3		10'0"	0.48	8	
2	20'4	1"	" 0.33 4			19'11"	0.22	2	
Aims Daimti									

Aim Point:

Test Results: Test article was impacted on aim point and was knocked off of the test stand. The container split open and the rounds all came out with the packing materials. Both blow out ports were blown out of the container, with the lid staying attached. The furthest piece recovered was located at a distance of 90' 4" on the angle of 345°. There was minimal damage to the witness plates with some scarring and indentations from the test article. The test article was oriented with the handles on the container to 90° and 270°.

2007 / Recipies

Post Test Results T/S 1-30 / Test 1 Shaped Charge Jet Impact Test Post Test Results T/S 211-240 / Test 2 Fragment Impact Test

Fragment Impact Test 2 Result

S/N: T/S 211-240									
Temperature		81.3°F			Relative Humidity			27%	
Barometric Press	sure		30.00	30.00 inHg		Wind Speed/Direction		7.6mph/WSW	
Bottom Witness	Plate	10":	10"x20"x1" Thick Mild Steel		Witness Plate Damage		nage	Scratching	
Side Witness Pla	de Witness Plate 18		18"x20"x1" Thick Mild Steel			ness Plate Dar	nage	Scratching	
Reaction Type		Type IV Reaction			Frag	gment Velocity	/	8235.2 Ft/Sec	
Probe Number	Dista	nce	PSI	Probe Num	ber	Distance	PS	1	
1	10'2	2"	['] 2.03 3			10'3"	0.44	4	
2	20'6	5"	0.4 4			19'11"	N/A	4	

Aim Point:

Test Results: Test article was impacted on target and knocked off of the test stand. The container was split open with the rounds being strewn out of the container. The lid came off of the container and was recovered at a distance of 11' 1" on the respected degree of 90°. The blow out port frame broke off and landed at a distance of 196' 7" and at 25°. Rounds were found from 3° to 100° and out to 130' 8". The witness plates showed some slight scratching from the test article. Test article was set with the handles on the container to 90° and 270°.

Post Test Results T/S 211-240 / Test 2 Fragment Impact Test

Post Test Results T/S 211-240 / Test 2 Fragment Impact Test

VARFIGHTER FOCUSED.

RDECOM Shaped Charge Jet Impact

- The Shaped Charge Jet (SCJ) tests were conducted IAW MIL-STD-2105C, 14 Jul 2003 and STANAG 4240(Edition 2), 15 Apr 2003 and the test plan to determine and evaluate the response of the PA125 container packed with 30 rounds of M793 25-mm vented cartridge cases to the impact of an aluminum cased 81mm shaped charge loaded with LX-14 explosive.
- One (1) ammunition container per test

Award

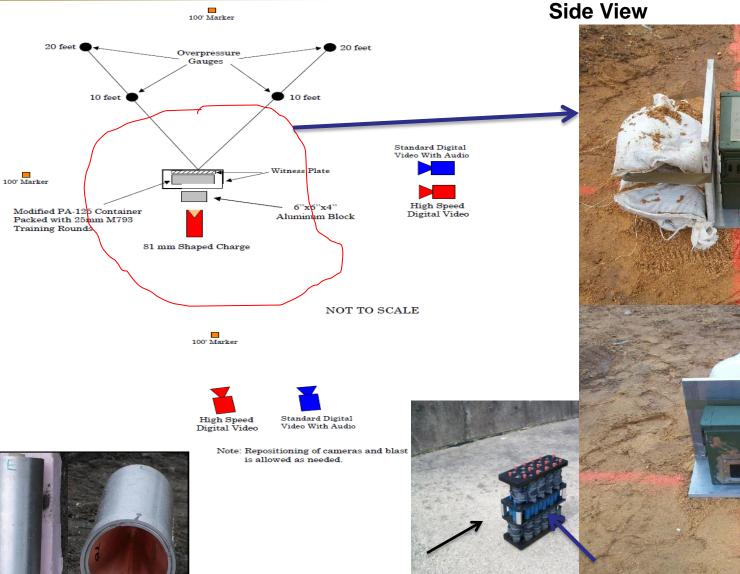
Recipient

2007 Award

- 81mm shaped charge to be placed 243mm from the test article. Used an LX-14 explosives and a 4 inch conditioning plate between the 81mm SC and Test Article.
- Test Unit S/N's 1-30 placed on support stand with a 2" standoff. Aim point was 3" from the bottom of the shipping container and centered on the side.
- Four(4) blast transducers positioned 45^o angle to the rear of the Test Unit as shown on the next page
- □ One (1)18" x 20" x 1" thick aluminum plate placed behind ammunition can
- Two (2) video cameras and two (2) high-speed camera positioned as shown on the next page

One (1) RP detonator was secured to the firing line and placed in contact with the PIC of the secure of the secure

Approved for public release. Distribution is unlimited


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.³⁷

Shaped Charge Jet Impact Test Set-Up

TECHNO

Approved for public release.

Distribution is unlimited

Test Setup T/S 31-60 / Test 2

RDECOM) Shaped Charge Jet Impact

	(Interspectra)											
S/N: 1-30												
Temperature	63.5°F				Relative Humidity			60%				
Barometric Pres	sure	29.76 inHg				Wind Speed/Direction			2.1mph/SE			
Back Witness	Plate	18"x	20"x1" ⁻	Thick Mild St	eel	Witness Plate Damage		Hole/Scratching/ Pitting				
Bottom Witness	10"x20"x1" Thick Mild Steel			Witness Plate Damage			Scratching/Pitting					
Shaped Charge	Size	81m	m with o	copper liner a	and L	X-14 explosiv	/e					
Reaction Type		Туре	e IV Rea	action								
Probe Number	Dista	nce	PSI	Probe Num	ber	Distance	PSI					
1	10'0	0.5"	16.5	3		10'3"	15.2					
2	20'3	8.5"	5.6	4		20'1"	5.6					
			6.11									

Aim Point: 3" from the bottom of the can and centered on the side of the container Test Results: Container was impacted on target with jet and separated into several pieces. The rounds were scattered from 0° to 360° with the furthest round being recovered at 347.67'. Both witness plates were located at 5' and 90° in tact but did have some scratching and pitting from debris, with the back witness plate having a hole from the jet in it. The orientation of the test was with the shape charge aimed at 90° and the blast pressure probes at 45° and 135°.

Test Setup T/S 1-30 / Test 1 Shaped Charge Jet Impact Test

Post Test Results T/S 1-30 / Test 1 Shaped Charge Jet Impact Test

RDECOM) Shaped Charge Jet Impact ATK **Test Results**

S/N: 31-60										
Temperature		67.8°F				Relative Humidity			76%	
Barometric Pressure		29.73 inHg				Wind Speed/Direction			5.8mph/SE	
Back Witness Pl	ate	18"x	20"x1" 1	Thick Mild Ste	eel	Witness Plate Damage			Scratching/Pitting	
Bottom Witness	Plate	10"x	20"x1" 7	Thick Mild Ste	teel Witness Plate Damage			Scratching/Pitting		
Shaped Charge	Size	81mm with copper liner and				X-14 explosiv	ve			
Reaction Type	_	Туре	e IV Rea	oction						
Probe Number	Distar	nce	PSI	Probe Num	iber	Distance	PSI			
1	10'1	10'1.5" 15.6		3		10'0"	14.0			
2	4"	5.5	4		19'8"	5.9				
	-							~		

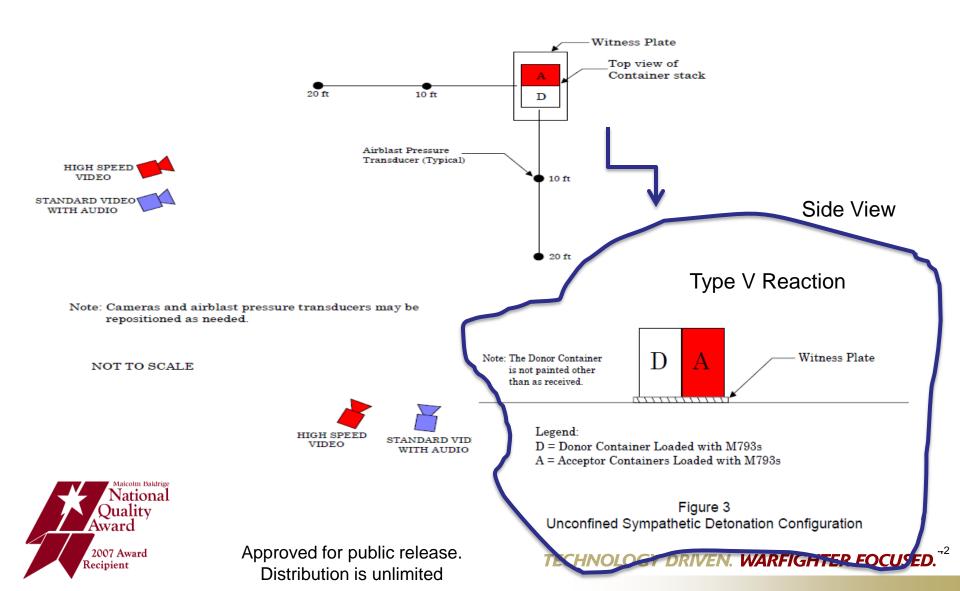
Aim Point: 3" down from the top of the can and centered on the latch end of can

Test Results: Test article was impacted on target with the jet and separated into several pieces. The furthest piece that was recovered was found to be at 210.25' and at the angle of 15°. Rounds were scattered from 0° to 110°, and at a distance up to 127'. The witness plates were in tact and suffered minimal damage with pitting and scratching from debris. The shape charge was aimed at the end of the container 3 inches down from the top and centered. The container was oriented with the blow out ports to 0° and 180°.

Ap

IEN. WARFIGHTER FOCUSED.

Post Test Results T/S 31-60 / Test 2 Shaped Charge Jet Impact Test

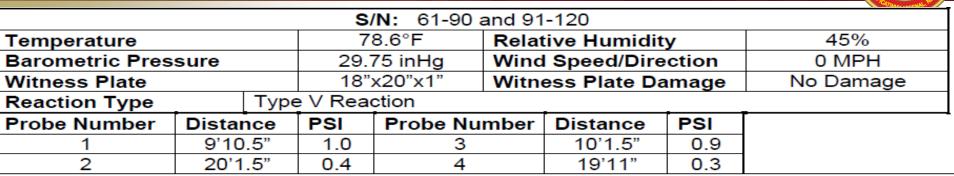


- Test Set-Up is Identical to Shaped Charge Jet Impact Test
- Two (2) Ammunition Containers Per Test
- Four(4) blast transducers placed at 45⁰ angle of the Test Unit.
- Two(2) high speed camera and two (2)std video camera. All instrumentation were connected and calibration shot performed using 1 pound C-4 explosives.
- One(1) 18"x20"x1" thick aluminum witness plate placed on level ground in the range set up as shown in the figure.
- Test Units placed next to each other
- One (1) blasting cap with a short piece of det cord was secured during firing. Blasting cap inserted into the fuze of th etest Unit and secured in place.
- From the safe area, blasting cap was detonated.

Approved for public release. Distribution is unlimited

RDECOM Unconfined Sympathetic ATK Detonation Test Set-Up

Unconfined Sympathetic Detonation Test Set-Up


Test Setup T/S 61-120 Unconfined Sympathetic Detonation Test

ATK

Approved for public release. Distribution is unlimited TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁴³

Unconfined Sympathetic Detonation Test Set-Up

Test Results: The Donor round was detonated and caused one blowout port to blow out, and the other, that was facing the acceptor, to crack around the edge. The bottom of the donor box where round was detonated, was cracked and the primer housing was forced through the bottom of the can. The lid of the donor can remained latched, but was bulged which created a gap. All other rounds inside of the donor box remained inside of the box. The cases of the rounds surrounding the donor round were dented. Both Donor and Acceptor cans were laying on their sides after detonation. There was no damage to the acceptor cans except for small dents on the can from screws of the donor box. Units were oriented with the outer face of the Donor box at 315° and the outer face of the Acceptor box at 135°. There was no visual damage to the witness plate.

RDECOM

Approved for public Distribution is unlimited

Recommended Testing

IM Test	MIL-STD- 2105C	Actual IM Test Results	Test Parameters
Fast Cook-Off (Liquid Fuel/External fire)	V	IV	 Per STANAG 4240 (Edition 2) Complete engulfment of the test item by the fire for a min of 20 min
Slow Cook-Off (Slow Heating)	V	V	 Per STANAG 4382 (Edition 2) Test item to be pre -conditioned at +50°C for 8 hours prior to test or until it reaches equilibrium at +50°C (+122°F) Oven temperature to be increased +6°F per hour from +50°C until reaction occurs
Bullet Impact	V	V	 Per STANAG 4241 (Edition 2). 0.50 cal Type M2 AP bullet @velocity of 2790±66 ft/sec
Fragment Impact	V	IV	 Per STANAG 4496 (Edition 1). 0.50 inch mild steel conical fragment@velocity of 8,300±300 ft/sec
Shaped Charge Jet Impact	II,IV,V	PASS	 Per STANAG 4526 (Edition 1, Ratification Draft 1) 81mm shaped charge loaded with LX-14 and 4"Conditioning Plate bet ween SC and Test Article Impact at the propellant location
Sympathetic Detonation	II,IV,V	PASS	 Per STANAG 4396 (Edition 2) Required if SCJI test is a failure 81mm shaped charge Radia WHERXFQCUSED.

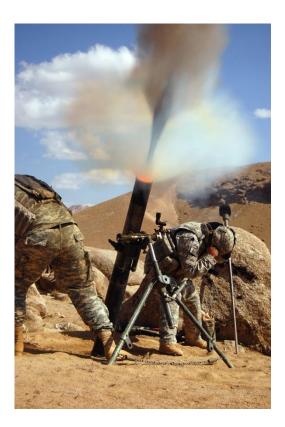
BIOGIDAGION IO ANIMINOA

CONCLUSIONS

- Ballistic Performance Test Results met the Mil Spec requirements.
- IM Test completed. Results show great IM improvement

Approved for public release. Distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.44


Leveraging Proven Systems to Develop a Guided Mortar for APMI

Agenda

ATK

- Overview of Accelerated Precision Mortar Initiative (APMI) Program
- Mortar Guidance Kit (MGK) ATK's Solution to APMI
- Leveraging Proven Systems Design Methodology
- Development Timeline
- Summary of Test Results
- Current APMI Program Status

Current Threat Requires Precision Capability

- Seeks cover in reinforced structures and vehicles
- Executes widely dispersed, often well-equipped, small unit operations
- Seeks sanctuary in urban and complex terrain
- Intentionally uses civilians as obstacles
- Exploits terrain and geography
- Capitalizes on media's response to U.S. military power.

Logistics challenges and the need to avoid collateral damage make it difficult, if not impossible, to provide indirect fire support using conventional munitions

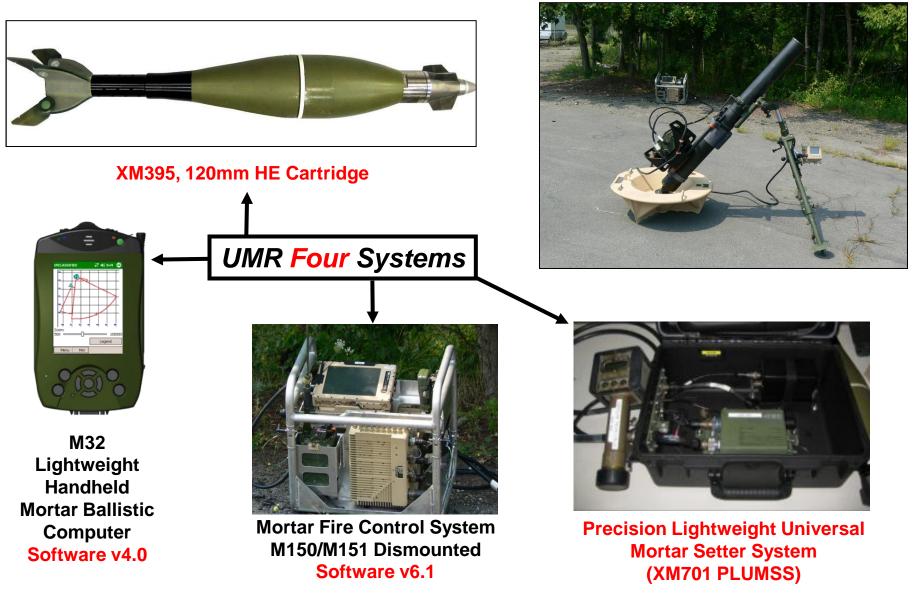
Accelerated Precision Mortar Initiative (APMI)

APMI responds to an Operational Need Statement (ONS) from troops deployed in Afghanistan

- Requested a responsive, all-weather precision 120mm mortar capability
- Need precision capability to
 - Minimize collateral damage
 - Respond to smaller, fleeting targets
 - Reduce risk to soldiers by providing first round effects, and
 - Reduce logistics burden

APMI is a complete precision system

- 120mm XM395 precision munition
- Fuze setter and fire control software

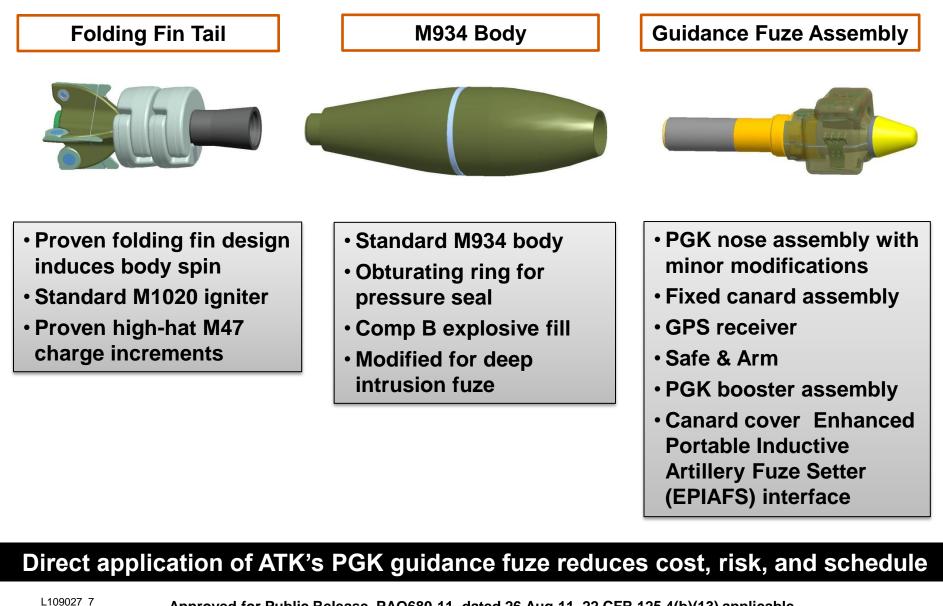


APMI provides affordable precision capability for the battalion commander

L109027_4

APMI – A System of Systems

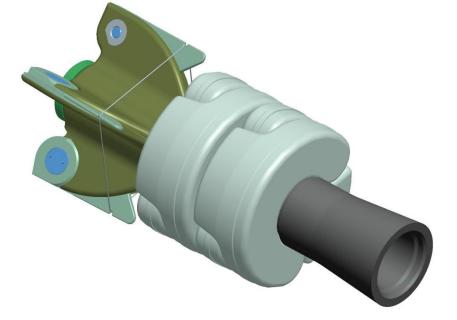
XM395 Required Capabilities


- Accuracy: 10m Circular Error Probable (CEP) (Threshold); 5m (Objective)
- Lethality: Similar kinetic effects of current munitions
- Maximum Range: 6.2km (Threshold); 7.0km (Objective)
- Guidance: GPS Selective Availability Anti-Spoofing Module (SAASM)
- Compatibility: US 120mm Smooth Bore Mortar System

XM395 meets or exceeds all threshold requirements

L109027_6

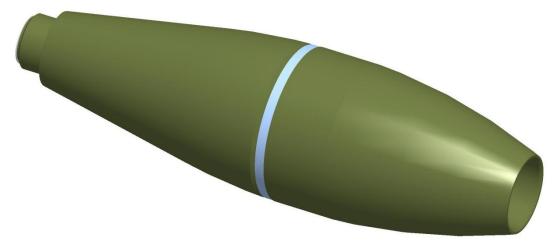
XM395 – JDAM for the Infantry Soldier



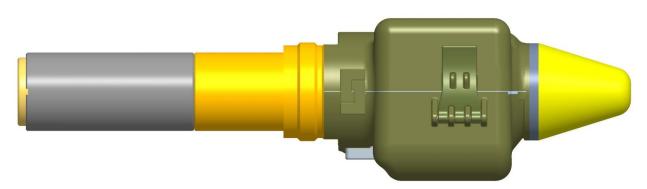
Approved for Public Release, PAO680-11, dated 26 Aug 11, 22 CFR 125.4(b)(13) applicable

Leveraging Proven Systems – Fin Assembly

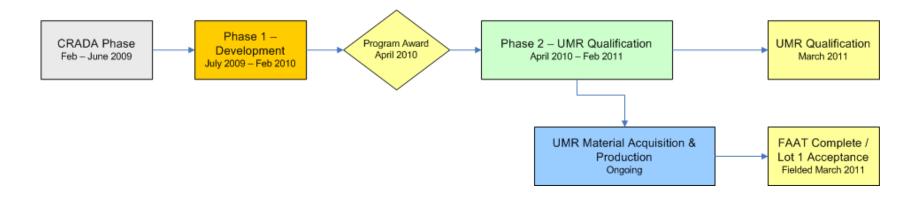
- Folding fin assembly developed under Precision Guidance Mortar Munition (PGMM) program
- Gun-hardened design proven successful in numerous PGMM shots
- Modified for MGK:
 - Shortened fin span
 - Optimized hub cant to improve spin rates
- Benefits of Leveraging:
 - Proven design concept
 - High confidence of passing qualification testing, such that separate fin/tail assembly testing wasn't necessary



Leveraging Proven Systems – Mortar Body

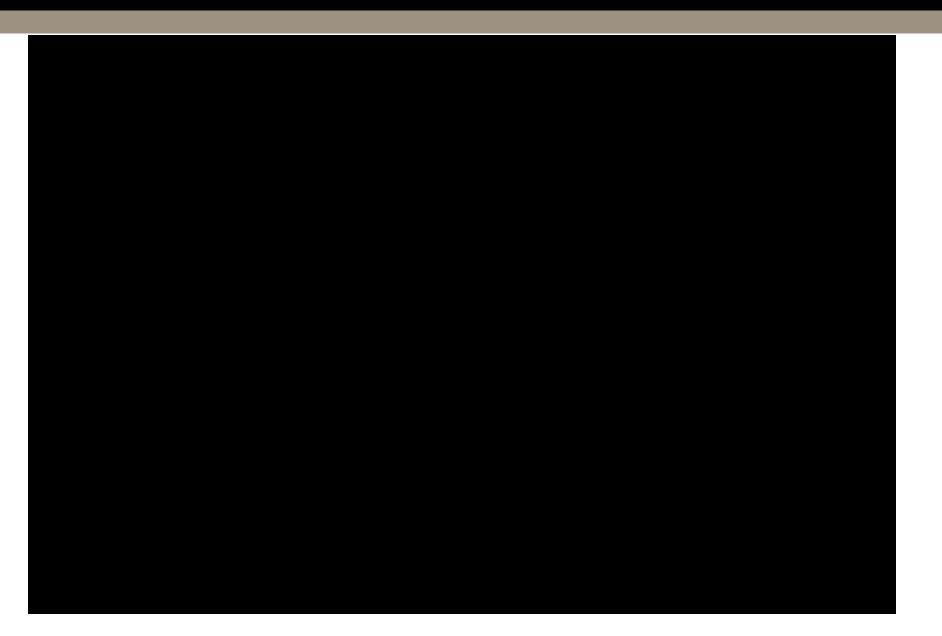

- Modified for MGK Explosive content machined away to create deep intrusion fuze well
- Benefits of Leveraging:
 - Utilizes current M934 loaded mortar bodies
 - Only requires simple modification to enable interface with MGK fuze
 - Maintains lethality of existing M934 cartridge

^{L109027_9} Approved for Public Release, PAO680-11, dated 26 Aug 11, 22 CFR 125.4(b)(13) applicable



- Fuze assembly adapted from Precision Guidance Kit (PGK), which is designed to guide a 155mm spin-stabilized projectile
- Modified for MGK:
 - Added thermal battery for power management
 - Integrated common mortar S&A to accommodate lower spin rates
 - Modified fuze thread interface
 - Optimized electronics for operating in a mortar environment

- Benefits of Leveraging:
 - Utilize proven guidance, navigation, and control system
 - System proven on PGK under more severe artillery launch environment
 - Commonality of parts allows for purchasing efficiencies



- APMI is part of an Urgent Material Release (UMR) due to the critical operational need
- ATK was selected as winner of competitive demonstration in April 2010
- Completed UMR system qualification testing in February 2011
- UMR Qualification received and Lot 1 fielded to theater in March 2011
- Less than 1 year from Qualification Program Award to first unit fielded

Use of existing proven systems allowed for rapid development to meet APMI urgent need request

L109027_11

Qualification Testing Summary

Qualification Objectives

- Demonstrate performance to CEP and reliability requirements in operational environments such as temperature extremes, blowing rain, sand and dust, thermal shock, low altitude, high elevation
- Demonstrate no safety issues with cartridge after exposure to sequential environments representing extreme storage, transportation and handling; Electromagnetic Environmental Effects (E3) and other safety-related exposures; fuze safety – jolt, jumble, thermal shock, temperature and humidity cycling, vibration

Requirement	СЕР <u><</u> 10 m	Reliability <u>></u> 90%
~60 Rounds Fired for Performance Scoring		
~150 Rounds Fired Overall in Qualification – ALL SAFE		

APMI meets or exceeds all threshold requirements

L109027_13

XM395 Program Status

- ATK under contract for full UMR production quantity– February 2011
- Urgent Material Release of APMI approved March 2011
- First lot of production hardware shipped to Afghanistan March 2011
- Production builds continue at ATK facilities

Summary

- APMI addresses an Urgent Material Release to provide the Army war fighter with a precision mortar capability
- ATK was able to respond rapidly to this request by integrating proven systems to shorten the lifecycle to field deployment
- Keys to Rapid Development and Deployment
 - Leveraging success of other programs by implementing proven design concepts
 - Optimizing existing systems to be more effective in a new application
- XM395 is now in production and in the field
- APMI gives the battalion commander needed precision capability
 - Effective attack of fleeting targets with limited collateral damage and first round effects
 - Fewer rounds to complete mission with significantly reduced logistics burden

APMI will change the way infantry units fight

Approved for Public Release, PAO680-11, dated 26 Aug 11, 22 CFR 125.4(b)(13) applicable

Contact Information

Kelly Hanink Program Manager, Projectile Systems

ATK Advanced Weapons Division Plymouth, MN 55442

Phone: 763.744.5174

Email: kelly.hanink@atk.com

Composite Sabot Technology For 105-mm Gun System

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ATINNY ARSEN

Velan Mudaliar

August 2011

UNCLASSIFIED

Background

120MM

- Long Rod Kinetic Energy(KE) Penetrator
 - Armor-Piercing defeat mechanism against enemy tanks.
- Sabot and Obturator Sub-Assembly
 - Provides sealing and structural support for KE Penetrator as projectile is accelerated inside gun tube upon ignition of cartridge's internal propellant bed
 - Obturator band separates and three segments of sabot are discarded upon exiting the muzzle of the gun tube
- Defeating Target
 - Long Rod KE Penetrator flies downrange towards the target and provides enough kinetic energy to pierce armor of enemy Tank.

Contributors

ARDEC – Velan Mudaliar, Saif Musalli, Shri Singh, Nicholas Payne, Daniel Prillaman ARL – Michael Minnicino, William Drysdale General Dynamics Ordnance Tactical Systems (GD-OTS) Alliant Tech Systems (ATK)

M43 (LOVA) PROPELLAN

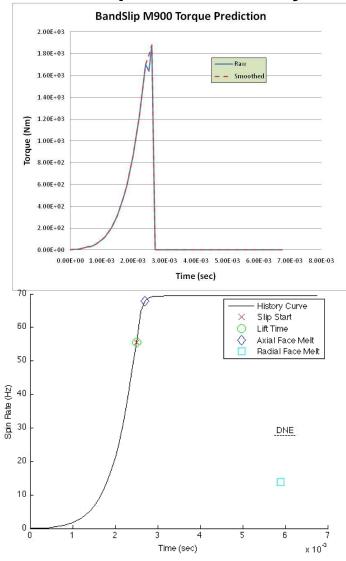
M13 TRACER

M128 PRIMER

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

M82942

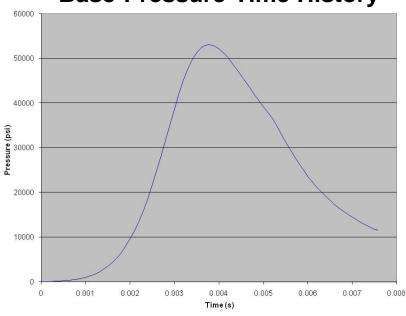
Performance Enhancement Opportunity



- Current 105-mm anti-armor ammunition uses aluminum sabot
- Lightweight composite sabot reduces the sabot mass, which increases velocity
 - Increased velocity delivers more kinetic energy to target or defeats enemy tanks at an extended range
 - Composite technology currently used in the 120MM smooth bore gun system.
- 105-mm gun system is rifled
 - The spin environment provides unique challenge to composite sabot technology
 - Survivability against spin environment favors strength enhancement in the hoop direction
 - Current manufacturing process for 120-mm composite sabot does not offer a good solution to provide strength in the hoop direction.
- ARDEC and ARL concepts should enable lightweight composite sabot structure to survive launch from 105-mm gun system
- Goal: Reduce sabot weight by at least 25%

Torque in 105-mm Gun System

Torque-Time History

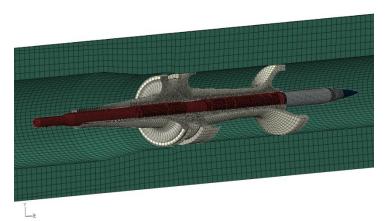

(MBA

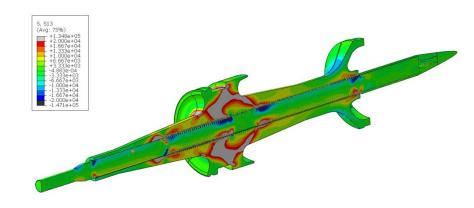
Spin Rate-Time History

Bandslip Torque-Time History Estimation

- Bandslip Input: projectile & gun geometry, projectile inertial properties, base pressure-time history
- Bandslip Output: projectile dynamic time histories

Base-Pressure-Time History


RDECOM)



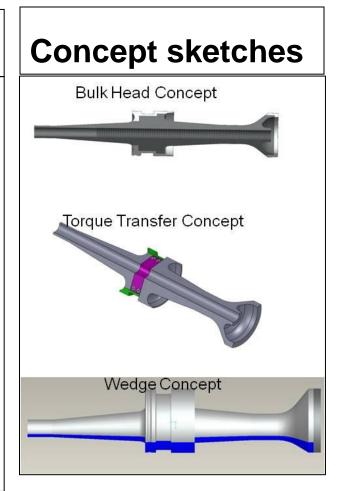
Initial Modeling & Simulation

- Modeling & Simulation of spin environment in 105-mm rifled gun tube system is very complex.
 - Considers spin induction from the rifling of the gun system and the obturator with the slip band.
 - Empirical values were used for inputs
 - Initial torque when the obturator is engaged in the forcing cone of the gun tube
 - Spin data
- M&S Results:
 - Composite sabot structure lacks sufficient strength in the hoop direction to survive 105-mm gun launch.

- 1. Reduce Torque
- 2. Increase Interlaminar Shear Strength
- 3. Rotate Architecture
- 4. Hybrid Concepts (Current Focus)

Four Approaches

Examined



Hybrid Concepts

Concept description

- Bulk Head Concept
 - Provides a metallic surface for interfacing with the obturator/slip band
 - Protects composite sabot from exposure to propellant gases inside gun tube.
- Torque Transfer Concept
 - Same capabilities as Bulk Head
 Concept but with an additional function: transfer of torque to the penetrator.
- Wedge Concept
 - Transfers the torque along the length of the sabot.

•Contracts awarded to GD-OTS and ATK to develop full-scale prototypes of hybrid concepts discussed

•Live-fire testing of prototypes will take place at Yuma Proving Ground in October 2011

•Concepts will be refined based on test results and prototypes will be fabricated for final iteration of testing in early FY12

Velan Mudaliar U.S. Army RDECOM-ARDEC Munitions Engineering Technology Center (METC) LOS-BLOS Munitions Division Ph: 973-724-6177 velan.mudaliar@us.army.mil

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

120 mm Tank Ammunition Advanced Case System (ACS) Phase 2

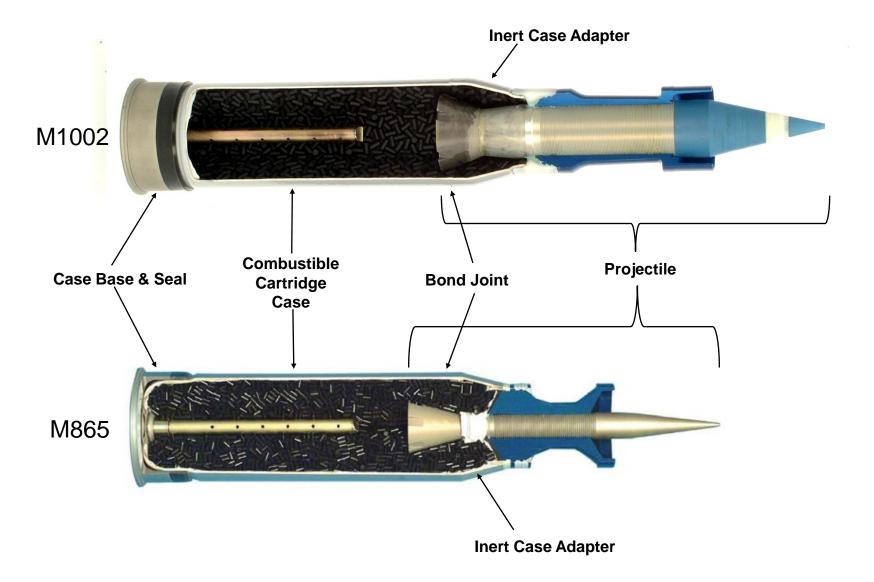
Presented At The National Defense Industrial Association's 46th Annual Gun and Missile Systems Conference and Exhibition

31 August 2011

M1002

Jeff Berg Project Engineer 120mm Training Ammunition ATK

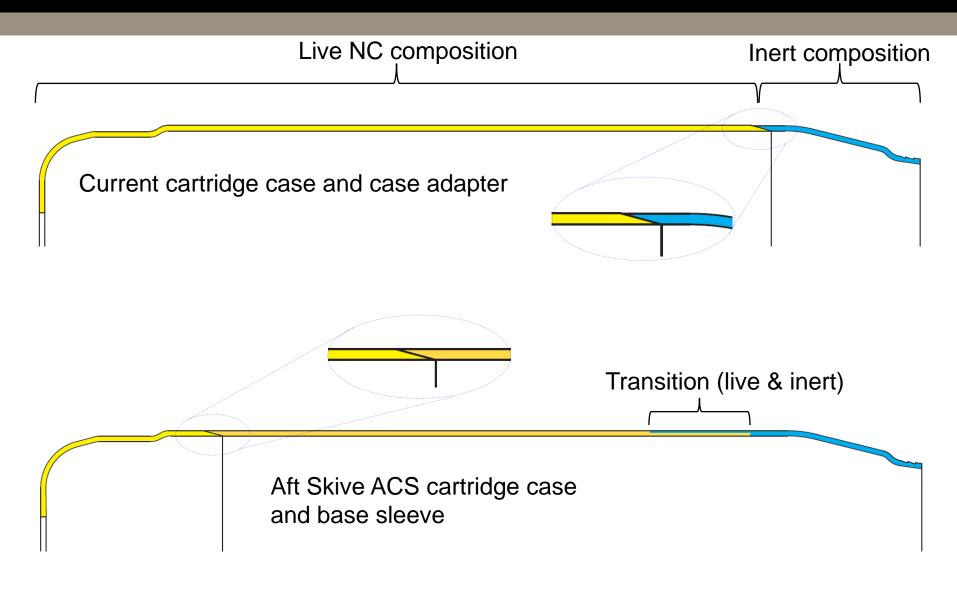
M865



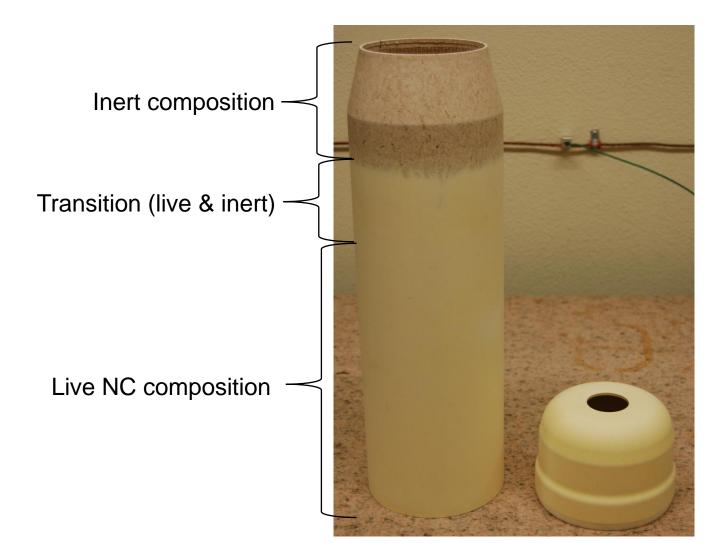
120 mm Tank Ammunition Advanced Case System (ACS)

- Background and Program Summary
- M865 Qualification
- M865 Transition to Production
- M865 Refurbishment to ACS Design
- M1002 Qualification
- Technical Challenge M1002 case-to-obturator joint
- M1002 Recovery Plan
- M1002 Transition to Production
- Summary Current Program Status
- Questions

M1002/M865 Cartridge (current case design)

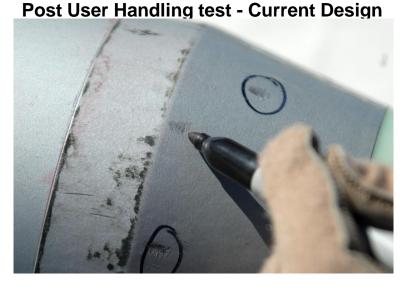

Background

Advanced Case System (ACS)


- Program:
 - Product Manager Large Caliber Ammunition: Program Management and Guidance
 - Joint Munitions Command (JMC): Executes and Manages the 120mm Multi-Year contracts
- <u>Members</u>: PM-MAS, PM-LC, JMC, ARDEC, ATK, GD-OTS, Esterline Defense Technologies (EDT), American Ordnance
- <u>Objective</u>: Redesign cartridge to eliminate a contributing cause of damaged rounds during training.
 - Relocate the cartridge bond joint
 - Qualify the modified cartridge design
 - Transition into production with qualified design

ACS Objective – Relocate Cartridge Joint

M865 ACS Case and Base Sleeve



Qualification

- M865 ACS aft skive joint has passed qualification testing.
 - All results were as good or better than the current design.

Post User Handling test - ACS Aft Skive

Transition to Production

- Production of M865s for the next production year will be ACS
- Facilitization efforts are underway at both American Ordnance and Esterline Defense Technologies
 - ATK leading the AO Facilitization efforts
 - GD-OTS leading the EDT Facilitization efforts
- Tooling, gages, and facility requirements are on schedule
- Component and cartridge level First Articles are planned for summer and fall of 2011
- ACS design will replace current design in M865 production effective December, 2011
 - Production of M865 in the current configuration will end in September, 2011

M865 AO Facilitization

Cartridge Bonding

Adhesive Application

M865 EDT Facilitization

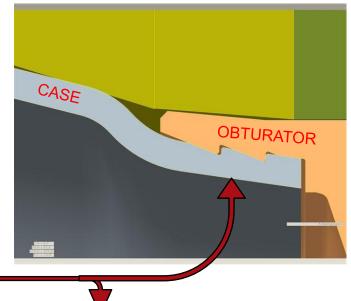
Case Trimmer

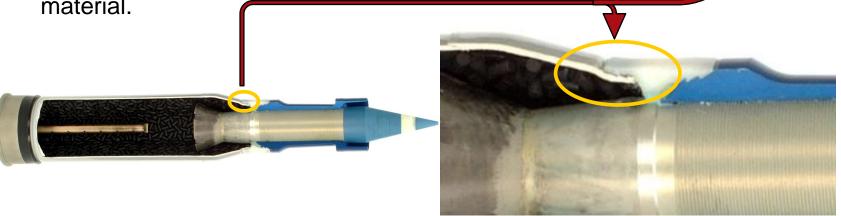
M865 Refurbishment

- Significant inventory of M865s with the current design
- Design allows for removal of current case / adapter and replacing with the ACS case / base sleeve.
- Process has been developed and proven.
- Refurbished M865s have been provided for evaluation in a gunnery exercise.
- Plan is to refurbish M865 existing inventory starting in calendar year 2013.

Qualification

- M1002 qualification testing has been suspended prior to completion.
- User handling tests resulted in failure of saw-tooth joint between ACS case and projectile obturator.
 - Inert material failed internally on the ACS cases.
 - Control M1002 cartridges (current design) had zero failures.




M1002 Sawtooth Joint:

- ACS Case: Inert wood pulp material.
- Obturator: Extruded Nylon

Failure Investigation:

- Focused on mechanical properties of case.
- Process adjustments and refinements.
- Increased mechanical properties in inert material.

ATK

M1002 Recovery Plan:

- Demonstrate improved mechanical properties based on lab testing.
- Build test samples to validate results.
- Build cartridges full scale simulated handling and comparative testing.
- Build qualification cartridges
 - Repeat qualification tests to complete qualification

Transition to Production – Current Plan

- Production of M1002 for next production year will be current design (Sep 2011 through Dec 2011)
- Comparable facilitization efforts required at both American Ordnance and Esterline Defense Technologies.
 - Anticipate ATK leading the AO Facilitization efforts.
 - Anticipate GD-OTS leading the EDT Facilitization efforts.
- Planning for component and cartridge level First Articles during spring of 2012.
- ACS design will replace current design in M1002 production effective in the fall 2012.
 - Production of M1002 in the current configuration will end in December, 2011.

<u>M865 ACS</u>:

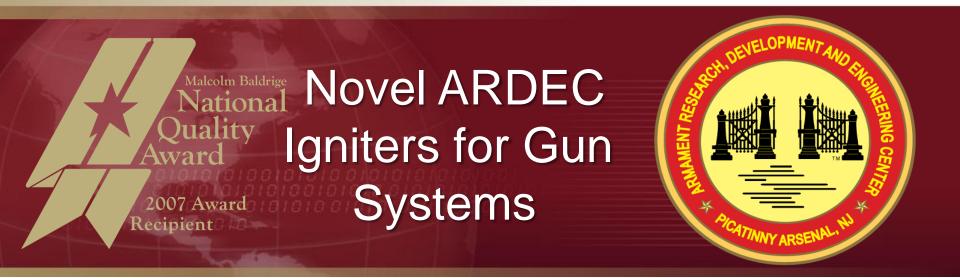
- ACS Qualification complete.
- Last M865 with the current design: Sept 2011
- Facilitization and First Articles are on schedule
- First M865 with the ACS design: Dec 2011
- Refurbishment of inventory to ACS planned for 2013

M1002 ACS:

- ACS Qualification interrupted to resolve joint strength.
- Complete recovery plan / re-qualification testing: Apr 2012
- Last M1002 with the current design: Dec 2011
- First M1002 with the ACS design: Fall 2012

QUESTIONS???

Jeff Berg


Project Engineer – 120mm Tank Training Ammunition

Alliant Techsystems – Advanced Weapons Division

763-744-5523

jeff.berg@atk.com

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Dr. Eugene Rozumov, D. Park, T. Manning, C.P. Adam, J. O'Reilly, J. Laquidara, E. Caravaca

Armament Research Development Engineering Center

NDIA – 46th Annual Gun & Missile Systems Conference & Exhibition August 2011

Distribution authorized for Public Release: March, 2011.

STAR ATO High Performance Igniter

Problems:

RDEGO

- Benite doesn't perform as well as BKNO₃ in 120MM tank rounds
- Benite gives inconsistent performance results.
- Future rounds need smaller igniter tubes.

Solution:

ARDEC has developed an igniter formulation

- Excellent and consistent performance
- Less sensitive than Benite
- Is more energetic than Benite.
- Extrudable
- Smaller Ignition Delays

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

High Performance Igniter

Possible Causes:

RDECON

Type IV BKNO₃ igniter has an oxygen balance of -35%

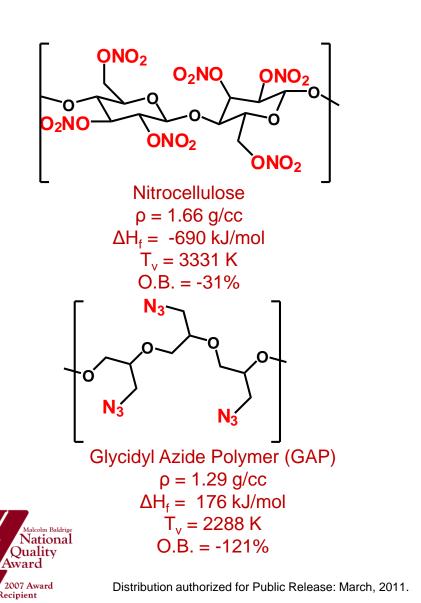
- After firing, all of the oxygen in the barrel is exhausted
- Boron combustion requires large amounts of oxidizer
- Opening of breach allows a rapid influx of oxygen which ignites uncombusted boron (or other fuel)

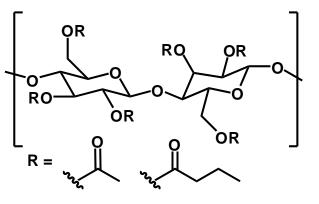
BKNO₃ Made of: 70% Potassium Nitrate 30% Boron Easily ignited at low P. High Gas Content Burn Rate insensitive to P. Hygroscopic (less than Black Powder) Flare Back (Incomplete oxidation)

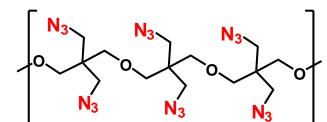
Benite

Made of:

- 40% Nitrocellulose
- 6.3% Sulfur
- 44.3% Potassium Nitrate
- 9.3% Charcoal
- 0.5% Ethyl Centralite


Performance as an igniter is adequate for tank applications.



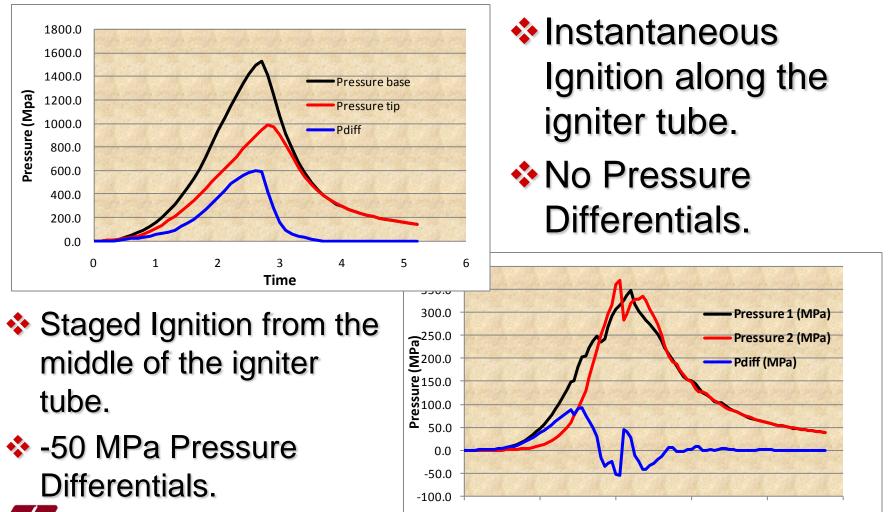

Properties of Binders Considered

Cellulose Acetate/Butyrate $\rho = 1.22 \text{ g/cc}$ $\Delta H_f = -1630 \text{ kJ/mol}$ $T_v = 1052 \text{ K}$ O.B. = -160%

poly-Bis-AzidoMethyl-Oxetane $\rho = 1.30 \text{ g/cc}$ $\Delta H_f = 373 \text{ kJ/mol}$ $T_v = 2246 \text{ K}$ O.B. = -124%

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Malcolm Baldrige


National Duality

2007 Award

Recipient

FNGUN Analysis

0.000

2.000

4.000

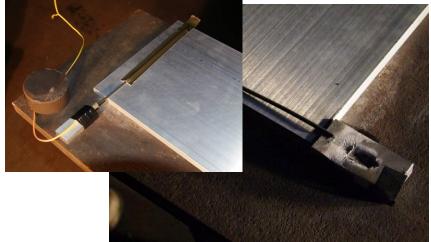
Time

Distribution authorized for Public Release: March, 2011.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

6.000

8.000


10.000

Sensitivity Analysis

	Igniter Sensitivity				
Formulation	Impac t ERL (cm)	BOE	Friction (GO / No GO) (N)	ESD (J)	
Benite	18.8	6 of 10	288 / 252	>0.25	
BKNO3	23.2	10 of 10	> 360	>0.25	
PAI-8556	22.4	7 of 10	240 / 216	>0.25	
PAI-8557	24.6	5 of 10	324 / 288	>0.25	
PAI-8558	>100	0 of 10	252 / 240	>0.25	

Small Scale Burn

Material	Burn Time	Explosion	Detonation	Pass/ Fail
	Less 1 Sec.	NO	NO	Pass
PAI-8556	Less 1 Sec.	NO	NO	Pass
	Less 1 Sec.	NO	NO	Pass
CHARLES (C)	Less 1 Sec.	NO	NO	Pass
PAI-8557	Less 1 Sec.	NO	NO	Pass
	Less 1 Sec.	NO	NO	Pass
Cown Str.	2.01 Sec.	NO	NO	Pass
PAI-8558	2.79 Sec.	NO	NO	Pass
	3.05 Sec.	NO	NO	Pass

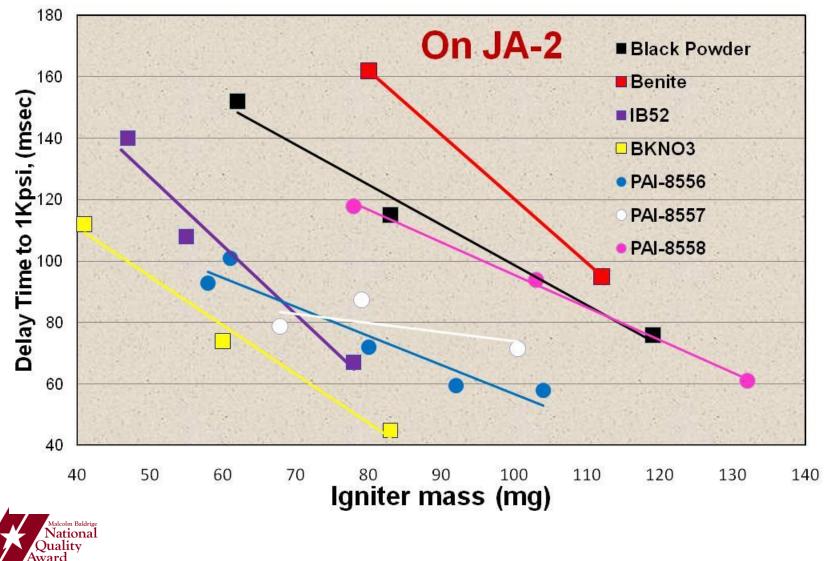
Thermal Stability

Material	Starting Weight	Total Loss	Pass - Fail
PAI 8556	50.4135gms	.1464gms	PASS
PAI 8557	50.2485gms	.2614gms	PASS
PAI 8558	50.2745gms	.1545gms	PASS

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Lot #	Diameter	Result
8551	0.1345	NOGO
8551	0.1350	NOGO
8558	0.1405	NOGO
8558	0.1415	NOGO
8556	0.1420	NOGO
8556	0.1440	NOGO
8557-3	0.1400	NOGO
8557-3	0.1385	NOGO

Malcolm Baldrige National Quality Award 2007 Award Recipient

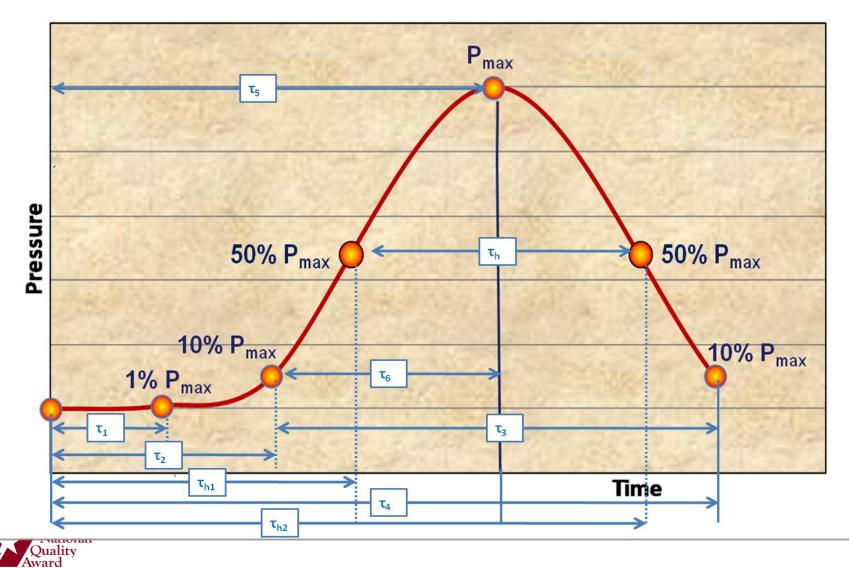

Distribution authorized for Public Release: March, 2011.

2007 Award Recipient

Small Scale Ignitability Study

Distribution authorized for Public Release: March, 2011.

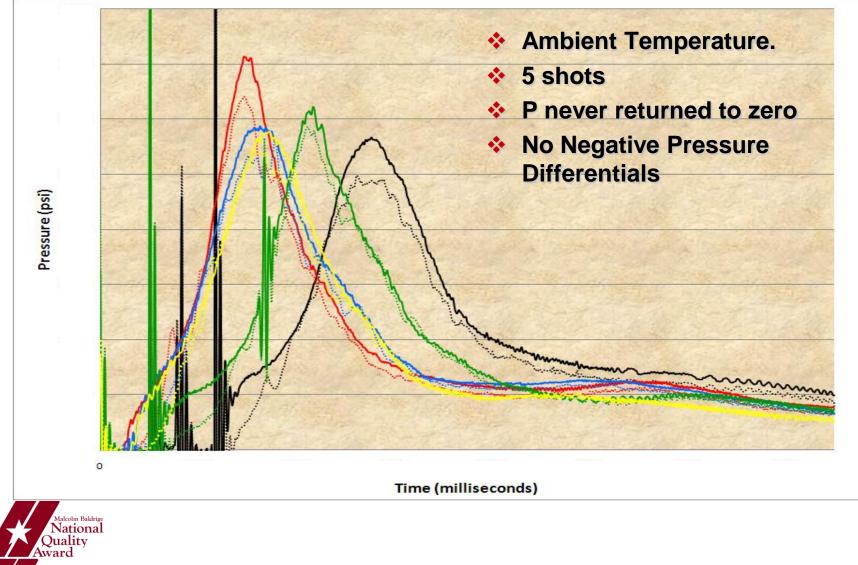
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



2007 Award

Recipient

Expected Data

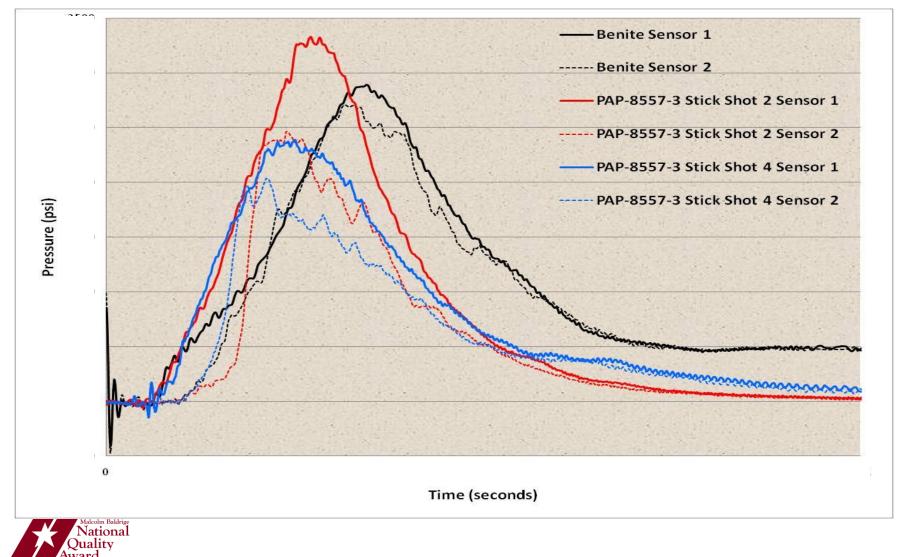


Distribution authorized for Public Release: March, 2011.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Benite at Ambient Temperature

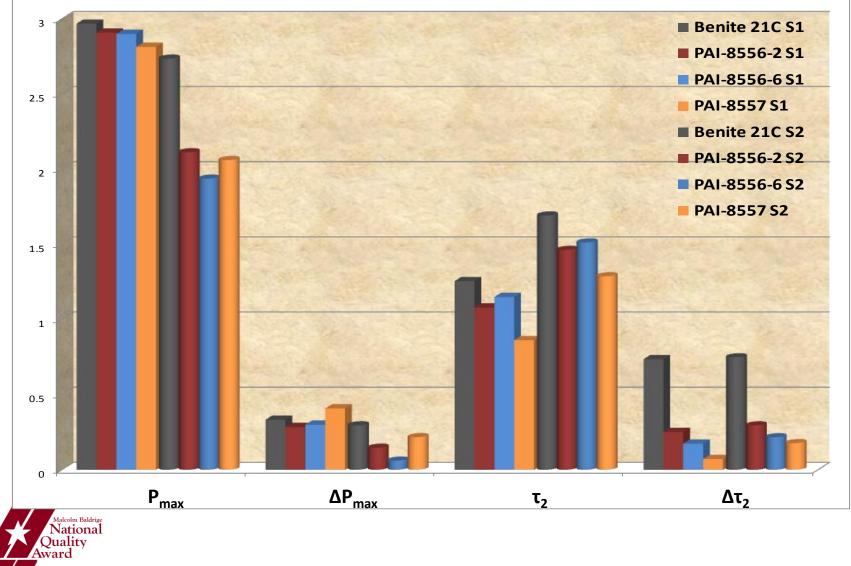
Distribution authorized for Public Release: March, 2011.


RDECOM

2007 Award

Recipient

PAI-8557 Un-Ground BKNO₃

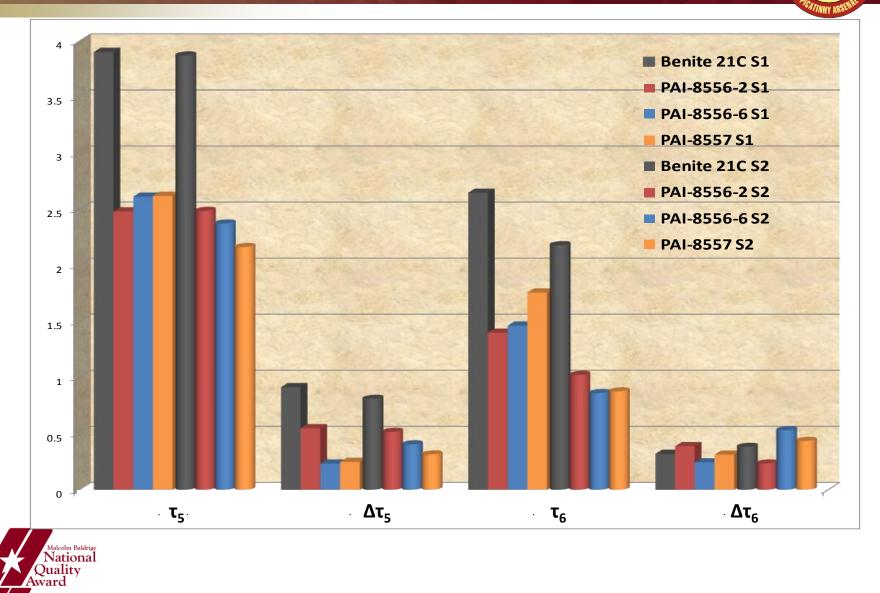

Distribution authorized for Public Release: March, 2011.

RDECOM)

2007 Award

Recipient

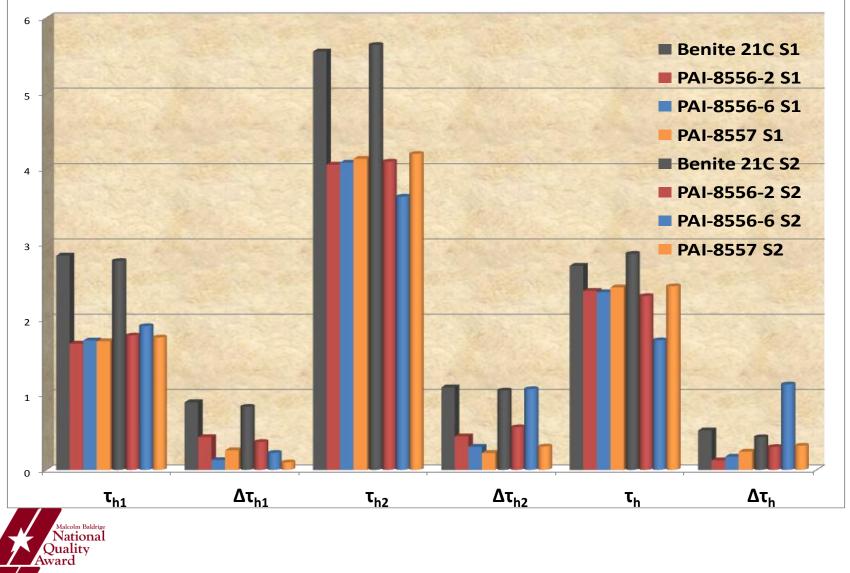
Analysis of P_{max} and t₂



Distribution authorized for Public Release: March, 2011.

RDECOM

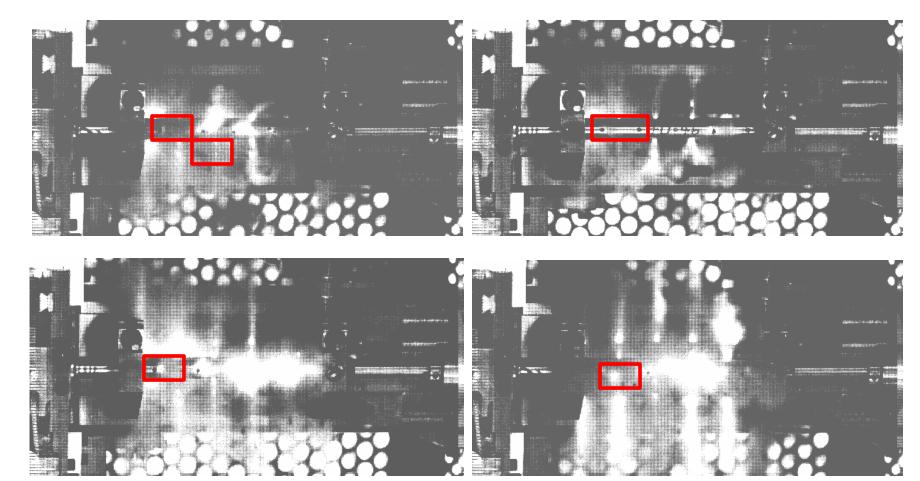
2007 Award Recipient



Distribution authorized for Public Release: March, 2011.

RDECOM

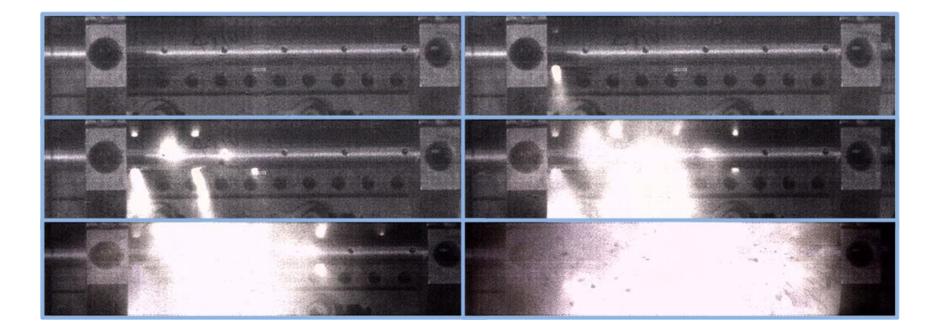
2007 Award Recipient


Distribution authorized for Public Release: March, 2011.

2007 Award

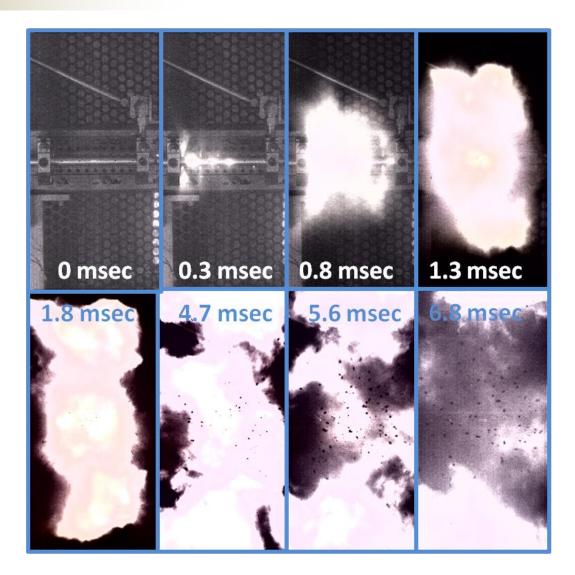
Recipient

High Speed Video Stills of Benite Igniter at Ambient Temperature



RDECOM

Distribution authorized for Public Release: March, 2011.



Distribution authorized for Public Release: March, 2011.

RDECOM High Speed Video Stills of PAI-8556 at Ambient Temperature

Distribution authorized for Public Release: March, 2011.

- Benite was found to have significant shot to shot variability in terms of pressure and time.
- Extrudable BKNO₃ analogue igniters were able to achieve P_{max} faster than benite with less variance in ignition delays and output pressures than benite demonstrating that the analogue igniters are more consistent.
- High speed video of the ignition events also demonstrated more hot particle and flame generation in the BKNO₃ analogue igniters in comparison to benite.

Scalable Gen-Set Concept for Directed Energy Weapons

Presented for: The 46th Annual NDIA Armaments Systems, Gun & Missiles Conference, Abstract 11828 Aug 29 – Sept 1, 2011

Presented by: Mr. Bryan Bockmon, President Rocky Mountain Scientific Laboratory Denver, CO Tel: (303) 792-3336 bbockmon@rmsl.net WWW.RMSL.NET

RMSL Background

Energetic Materials Specialists

- Explosives, propellants, pyrotechnics, nano-composites, fuels, oxidizers, etc.
- Design & Synthesis
- Chemical and Material Characterization
- Performance Evaluations

Test Engineering

- Laboratory & Field Studies
- Improvised Explosive Devices
- Munitions

Modeling

• FEA, CFD, Hydrocode, Multi-Physics

2

Directed Energy Overview

Pros – Tunable Energy

- Anti-Materiel
- Area Denial
- Vehicle/Vessel Disablement
- Counter-Personnel
- Crowd Dispersal
- Distract/Disorient
- Reversible Effects

Cons – Power & Weight

- Rapid Start
- High Demand
- Short Duration
- Proportional Control
- Portability

Area Denial System – 95 GHz

Problem Definition

Develop a power supply system that offers the following:

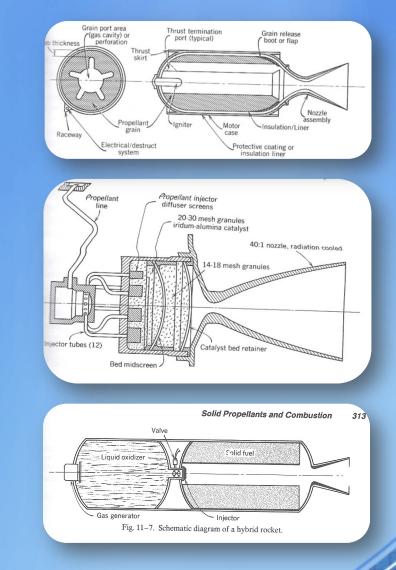
- Near instant response
- High-demand capabilities
- Refueling/recharging/reloading convenience
- Smaller, lighter, and more scalable than other gen-sets
- Potential for man-portable DE systems

IT BECOMES A POWER TO WEIGHT RATIO PROBLEM WITH INTERESTING CONSTRAINTS!

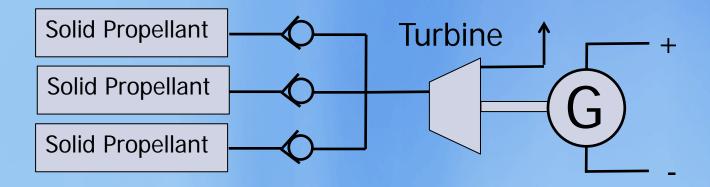
Power to Weight Statistics

Generator	Туре	Power	Weight	Power/Weight
Smart Fuel Cell Jenny 600S ⁷	Fuel Cell	.0038 hp	3.8 lbs	.001 hp/lb
Energizer 522 Alkaline 9V ⁶	Battery	.006 hp	.1 lbs	.06 hp/lb
GM 6.6L V8 turbo Diesel ³	ICP	330 hp	825 lbs	.4 hp/lb
Mazda 13B-MSP 1.3 L Wankel ⁴	ICR	247 hp	268 lbs	.92 hp/lb
BMW V10 3L P84/5 ⁵	ICP	925 hp	201 lbs	4.6 hp/lb
Pratt and Whitney J58 ¹	Jet	160,000 hp	6000 lbs	26.7 hp/lb

Generator	Туре	Thrust	Weight	Thrust/Weight
Pratt and Whitney J58 ¹	Jet	150,000 N	26,700 N	5.62 N/N
GE90-115B ⁸	Jet	511,545 N	81,221 N	28 N/N
Pratt and Whitney RD-180 ²	L Rocket	4,152,000 N	53,700 N	77.3 N/N
Rocketdyne F-19	L Rocket	7,740,500 N	82,290 N	94.1 N/N
Solid Rockets ¹⁰	S Rocket	Varies	Varies	5 to 200 N/N


¹ http://www.marchfield.org/sr71a.htm ² http://www.astronautix.com/engines/rd180.htm ⁸ http://www.geae.com/engines/commercial/ge90/ge90-115b.html ³ http://eogld.ecomm.gm.com/images/mediumduty/techspecs/engine.pdf ⁴ http://www.mazda.com/mazdaspirit/rotary/about/

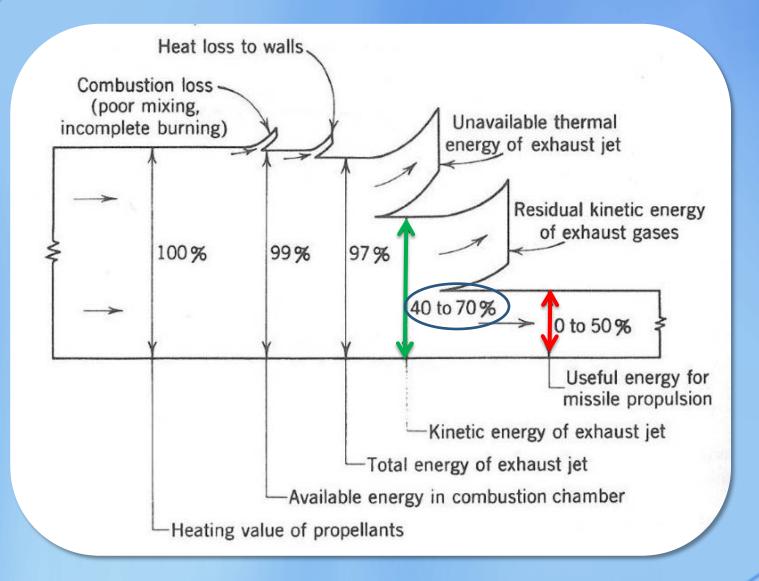
⁵ http://www.allf1.info/engines/bmw.php⁶ http://data.energizer.com/PDFs/522.pdf⁷ http://www.sfc.com/en/man-portable-jenny.html


⁹ http://www.rocketdynearchives.com/engines/f1.html ¹⁰ Sutton, George. Rocket Propulsion Elements (1986)

Types of Rocket Motors

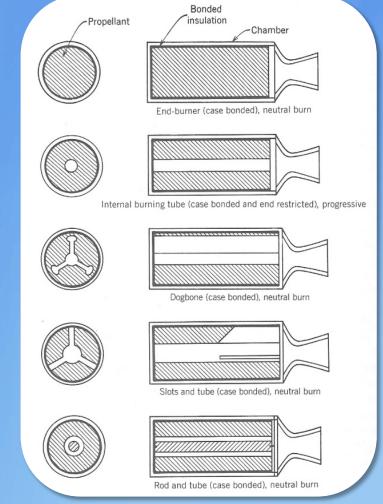
- Solid Propellant carries all of it's own oxygen, can be single or multi component.
- Liquid Liquid propellant is injected into combustion chamber. Propellant carries all of it's own oxygen, can be single or multicomponent.
- Hybrid Solid fuel with injection of liquid oxidizer, allows for easy adjustment of power.

Prior-Art Analysis

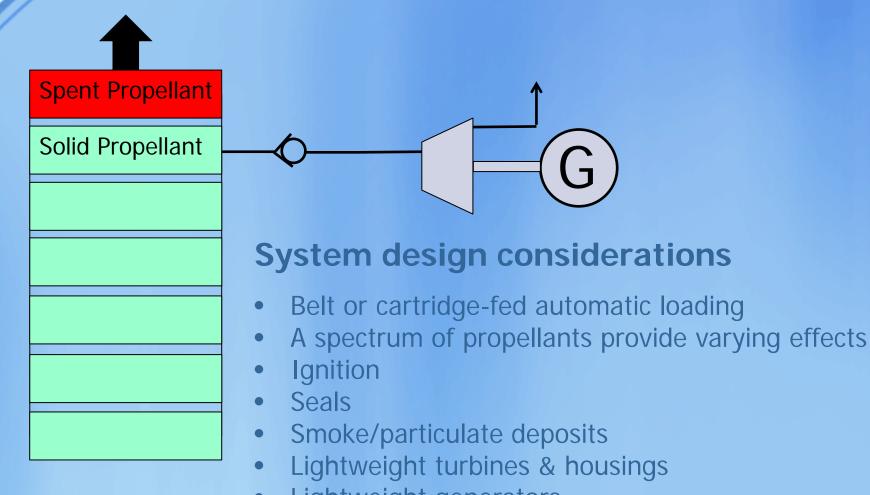


Existing Patent

- Backup electrical power for aircraft with engine failure
- One or more solid propellant motors
- Turbine power extraction
- Instant response, short duration, light weight (compared to batteries)



Efficiencies


Motor Design Considerations

- Up to 98% of the mass in solid propellant motors can be energetic
- Neutral burn rates keep constant power applied to the turbine
- End-burning propellant configuration increases duration of burn
- Center-perforated motors
 maximize power
- Hybrid motors allow throttling

All pictures from Sutton, George. Rocket Propulsion Elements (1986)

System Integration

Lightweight generators
Capatteries (Batteries/Capacitors)

ROCKY MOUNTAIN SCIENTIFIC LABORATORY

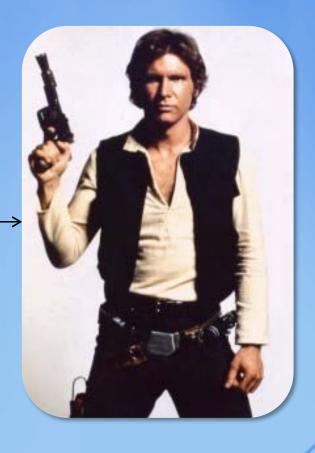
Weekend Research Project

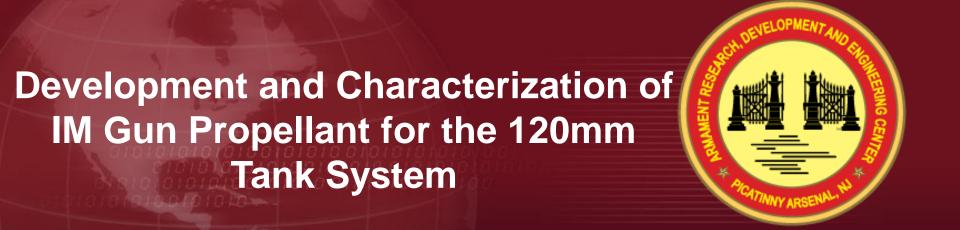
Version 1.0

- Hobby grade motors (Estes)
- Die grinder turbine
- 18VDC generator, 20,000 RPM
- Worked with air supply
- Worked for seconds with motors

Version 2.0

- Custom motors
- Double based propellant
- Motorcycle turbo
- Size mismatch
- Ruptured motor casings


Desired End-State



Conclusions

- Solid propellant gen-sets show promise for DE applications
 - Extensive scalability
 - Propellant motors already in logistics chain
 - Instant response, high power, light weight, reloadable, compact,
- Quantum-leap developments are not always necessary for a significant capability increase
- Recycling/re-applying existing technologies offers a wealth of potential
- Questions?

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

April 13, 2011

Duncan Park, S. Moy, T. Manning, E. Rozumov, D. Chiu, and A. Eng

U.S. Army RDECOM-ARDEC, Picatinny, NJ

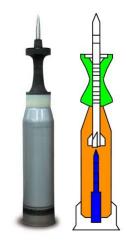
duncan.park@us.army.mil; 973-724-4398

Distribution A: Unlimited Distribution. Approved for public release.

- Approach
- Results
- Summary and Conclusions
- Acknowledgments

2

OBJECTIVES


Goal

RIJEHN

Develop high energy and less sensitive propellants to minimize soldier and weapon platform vulnerability from unplanned stimuli

- Technical Objectives:
 - Maintain High Performance:
 - Performance Baseline → JA2 propellant in M829A2
 - Lower the sensitivity of propellants against:
 - Shape charge jet (SCJ):
 - Spall:
 - No anomalies in gun environment:
 - Test fire in a sub-scaled gun \rightarrow 30 mm gun firing

APPROACH

Formulation

- Use less sensitive ingredients
- Use less of energetic solid fills
- Conduct various characterization tests
 - To observe any trends
 - To discriminate and downselect formulations
 - Tests/Calculations conducted:
 - Closed bomb
 - Interior ballistic (IB) calculation
 - Erosivity Calculation
 - Critical diameter
 - Shock initiation sensitivity \rightarrow predictor against shock stimulus
 - Uniaxial Compression (Mechanical Properties)
 - Hot fragment conductive ignition \rightarrow predictor against spall threat
 - Small scale (1.77 lbs) and 5 lb SCJ ballistic pendulum → predictor against SCJ threat
 - 30mm gun firing (to be completed)

Most of the work was performed during 2005-2008

RESULTS: Muzzle Velocity and Erosion

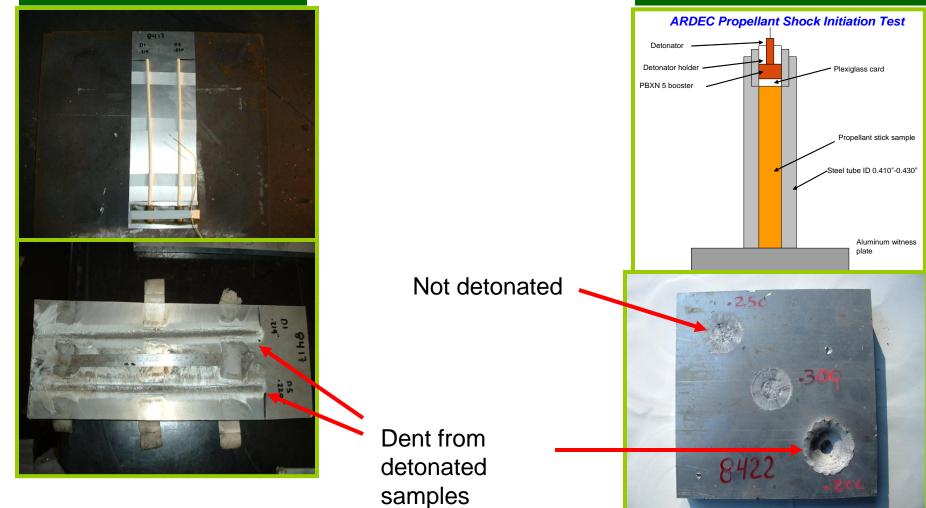
5

Theoretical Muzzle Velocity and Erosion Prediction

				Relative	
	Solid Load	Relative Muzzle	Tflame	Erosivity	
Formulation	(wt%)	Velocity (%JA2)	(K)	(%JA2)	
JA2	0	100	3450	100	
A	40	103	3454	72	
С	50	103	3558	92	
D	30	102	3348	57	
E	40	102	3486	80	
F	40	102	3432	70	
G	40	102	3362	58	
н	25	101	3299	52	
l I	25	101	3290	51	
J	0	99	3043	32	
K	20	100	3246	46	
L	10	99	3138	38	
М	0	98	3149	41	
В	40	102	3454	72	
Relative Muzzle Velocity Range: 98-103%					
Relative Erosivity Range: 32-92%					

RDECOM

RESULTS: Shock Sensitivity

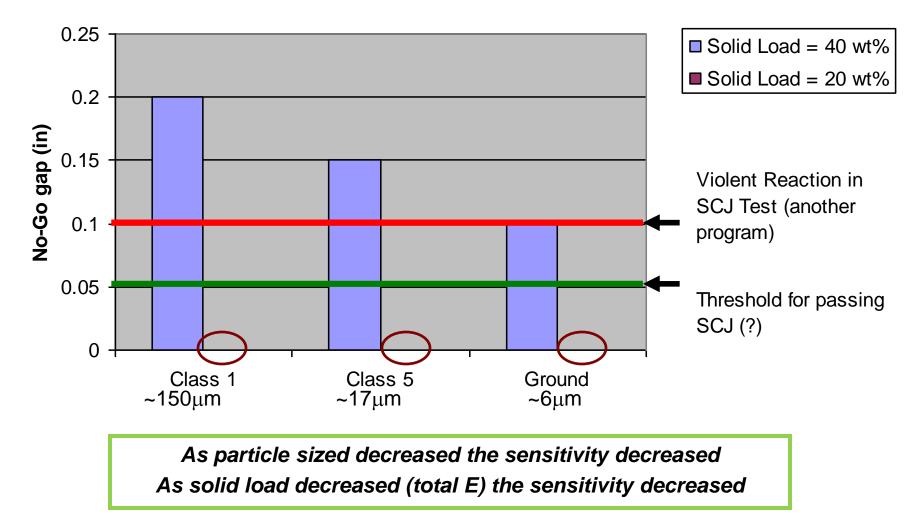


Critical Diameter and Shock Initiation

Critical Diameter Setup

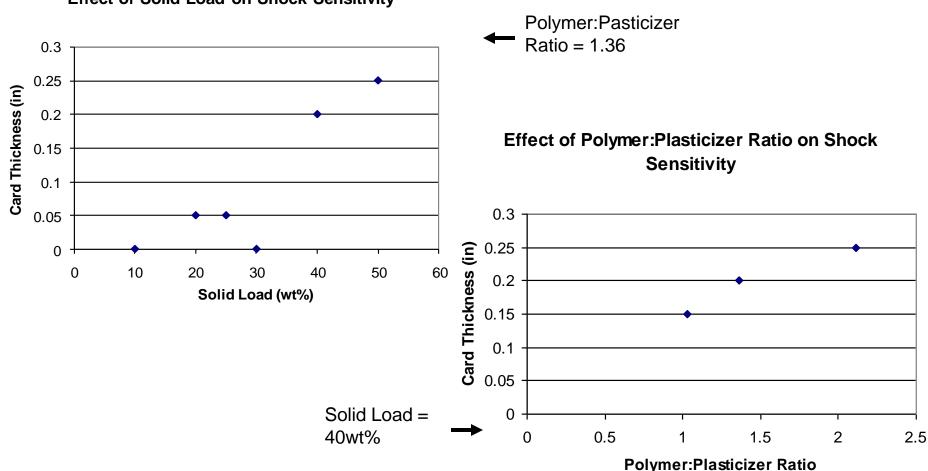
RDECOM

Shock Initiation Setup



TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Distribution A: Unlimited Distribution. Approved for public release.



Shock Sensitivity of iRDX Based Propellants

RESULTS: Shock Sensitivity (Cont.)

Effect of Solid Load on Shock Sensitivity

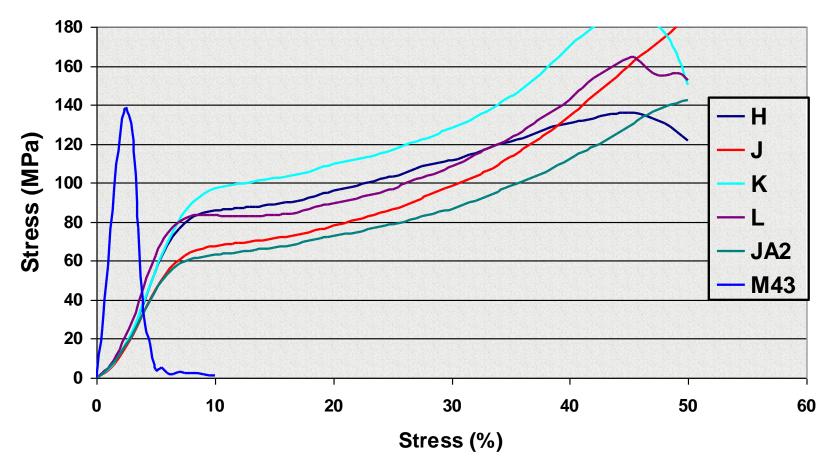
RDECOM

RESULTS: Mechanical Properties

9

Trends in Mechanical Properties

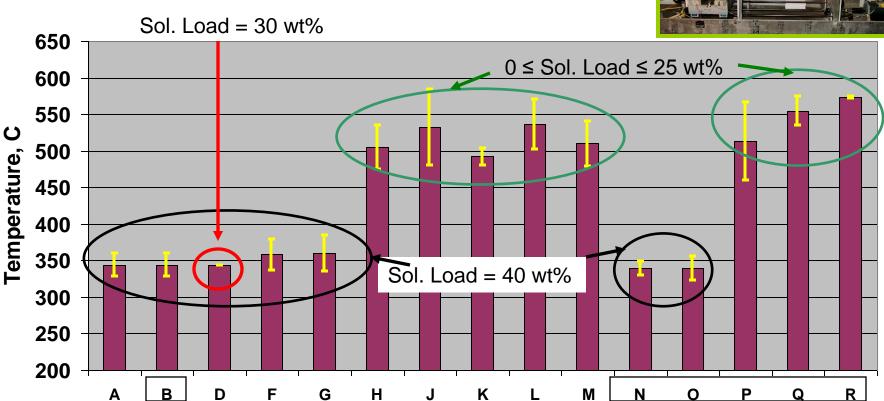
Polymer:	Mech.	
Plasticizer Ratio	Prop.	Solid Load (wt%)
1.03	Best	40
1.36	Good	40
2.11	Accept.	40
1.5	Best	0
4	Accept.	0
	Mech.	Polymer:
Solid Load (wt%)	Prop.	Plasticizer Ratio
0	Best	1.5
10	Good	1.36
20	Good	1.36
30	Good	1.36
40	Good	1.36
50	Good	1.36


RESULTS: Young's Modulus

10

Uniaxial Compression (Mechanical Properties)

Four Downselected Propellants Uniaxial Compression, -32 C


RDEGON

RESULTS: Thermal Sensitivity

Hot Fragment Conductive Ignition

Ignition Level

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

SD=490C

RDECOM

RESULTS: Downselection

12

Ranking for Downselection

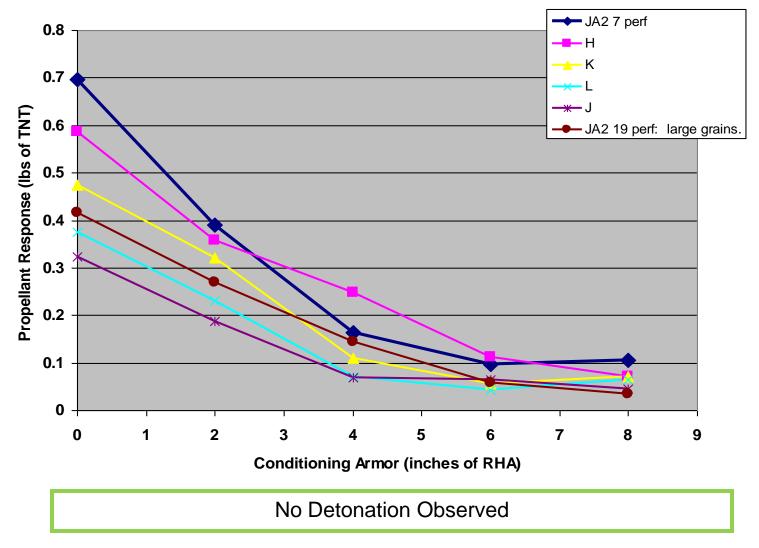
		Erosiv. Ranking		HFCI T _{ig} Ranking
JA2	10	13	-	-
A	2	10	10	8
С	1	12	11	-
D	6	7	1	9
E	3	11	11	-
F	4	9	9	7
G	5	8	8	6
Н	8	6	6	4
1	7	5	1	-
J	12	1	1	2
K	9	4	6	5
L	11	2	1	1
М	13	3	1	3

•Formulations H, J, K, and L were downselected

RESULTS: Small Scale SCJ Test

Small Scale SCJ Ballistic Pendulum Test Setup

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

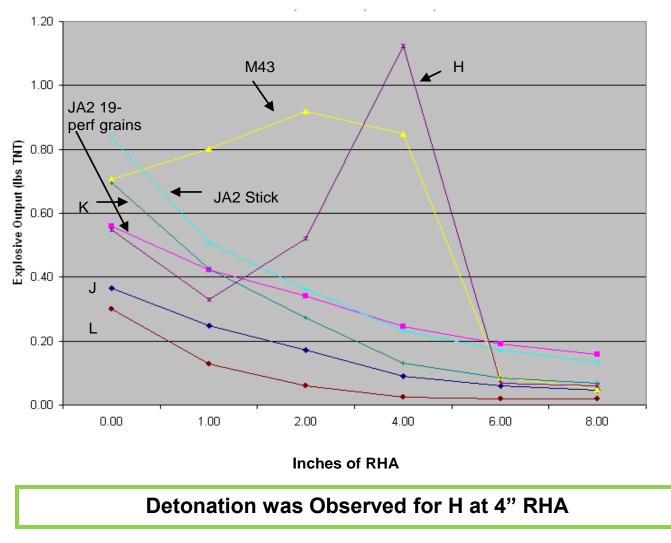

RDECOM

14

Small Scale Ballistic Pendulum Tests

Distribution A: Unlimited Distribution. Approved for public release.

RDECOM

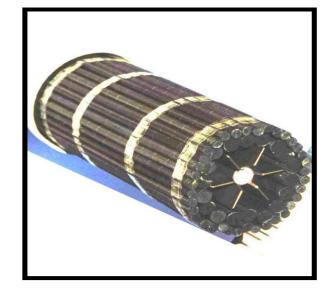


RESULTS: 51b SCJ Pendulum Test

15

5lb SCJ Pendulum

RESULTS: Shock Sensitivity of End Item


5lb SCJ Pendulum Test Sample vs End Item Loading Configuration

RDECON

Propellant Sticks loaded in 6 in x 6 in Cardboard Tube

Cardboard Tube Source: Boyd, K. et. al., ARL, MD (Aug 2006)

Tank KE Charge Configuration Source: ATK, Radford, VA

- Formulation H has lower critical diameter of bed than JA2
- It may not react violently in actual charge configuration due to space made by projectile
- Further testing is needed to confirm this

RESULTS: Gun Firing

17

60mm Gun Firing

- One slot became available in Novel Energetics Material ATO
- Formulations H was selected to test (before 5lb SCJI pendulum test data was available)
- 60mm Gun:
 - sub-scaled from 120mm
 - Base pad electrothermal-chemical (ETC) igniter
- Formulation H performed better than JA2 as expected
- Formulation K was not test fired but should have similar performance as JA2
- Some shots displayed high negative delta P
 - Data under further evaluation
 - Blocked pressure ports on several shots

SUMMARY and CONCLUSIONS

- Eighteen IM gun propellant formulations were thoroughly characterized in this program
 - One formulation met performance requirement and had better IM properties than JA2
 - One formulation exceeded performance requirement and had better IM properties than JA2 except against SCJ – critical diameter of the bed is smaller than that of JA2
 - This formulation also had higher ballistic efficiency than JA2 in the 60mm sub-scale gun firing
 - Two formulations had slightly lower performance than required but had much better IM properties than JA2
 - All Four formulations mentioned above have much lower erosivity than JA2

Patent Pending

AKNOWLEDGMENTS

- Dr. Pai Lu Consultations and mentoring
- Dr. Brian Fuchs, Ms. Amy Wilson, and Mr. Gerard Gillen for Critical diameter, Shock initiation, and other safety testing
- Dr. Avi Birk and Mr. Steve Aubert's Team for HFCI and Small scale SCJ pendulum testing
- Mr. Charlie Leveritt and Dr. Stephanie Piraino for erosion calculations and good technical exchange
- Drs. Rob Lieb and Stephanie Piraino for Uniaxial compression test and SEM
- Dr. Barrie Homan for Closed bomb and Strand burn testing
- Mr. Ken Klingaman for Closed bomb and Critical diameter testing
- Mr. Kevin Boyd for 5lb SCJ Pendulum testing
- Dr. Jim Luoma for 60mm gun firing
- Mr. Joe Colburn for 30mm gun firing
- Dr. Pat Baker and Ms. Nora Eldredge for program management and funding

Revolutionary Research . . . Relevant Results

46th Annual NDIA Gun & Missile Systems Conference Non-Traditional Weapons I

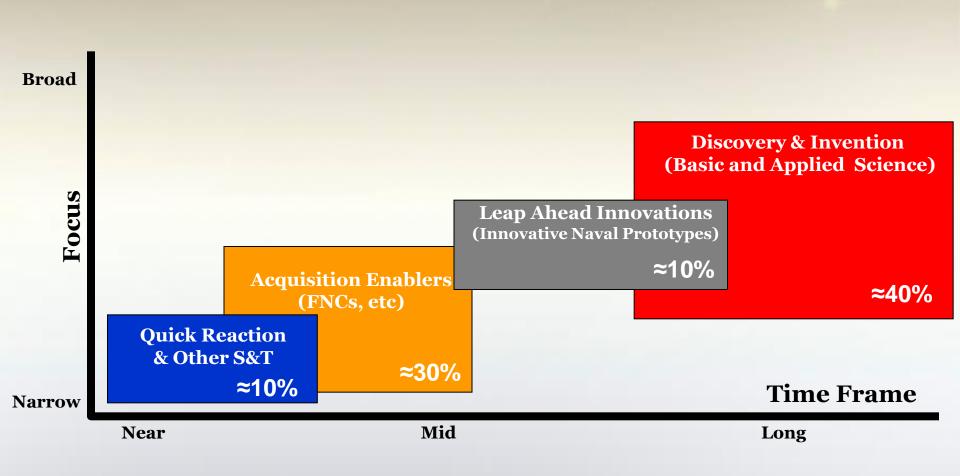
Development of a Large Caliber Naval EM Railgun

Mr. Roger Ellis / Mr. Ryan Hoffman Office of Naval Research

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

Is this what you think of when you hear RAILGUN?

80 cm German Gun "Dora" circa 1942


THINK AGAIN!!

9/22/2011

2

ONR Shaping S&T Investment

Innovative Naval Prototypes

INP Objective

- Explore high-risk, game-changing technologies
- Provide a venue to experiment with innovative technologies to advance the capabilities of the Warfighter
- Reduce the acquisition risk of disruptive technologies and capabilities

PLUS

FEL

SBE

INTOP

Technical Approach

- Transition investments within 4 to 8 years
- Leverage previously untapped D&I investments
- Force function on the basic and applied research community
- Move the risk from acquisition (\$B) back to S&T (\$M)
- Accept higher technological risk than FNCs
- Cultivate significant high level interest (Executive Steering Committees from SECNAV, OPNAV, SYSCOM and S&T communities)
- Useable prototype available at completion
- Deputy PMs from acquisition PEOs to facilitate transition

Primary S&T Focus Areas

- Affordability, Maintainability, and Reliability
- Information, Analysis, and Communications
- Survivability and Self Defense

Current INP Projects

- Electromagnetic Railgun
- Sea Base Enabler
- Tactical Satellites
- Persistent Littoral Undersea Surveillance
- Free Electron Laser
- Integrated Topside

Distribution A: Approved for public release; distribution is

C E N H 5

ONR

Counter-Directed Energy

Rotary Wing Aircraft

1 tim

APPLICATION

00 - 13-

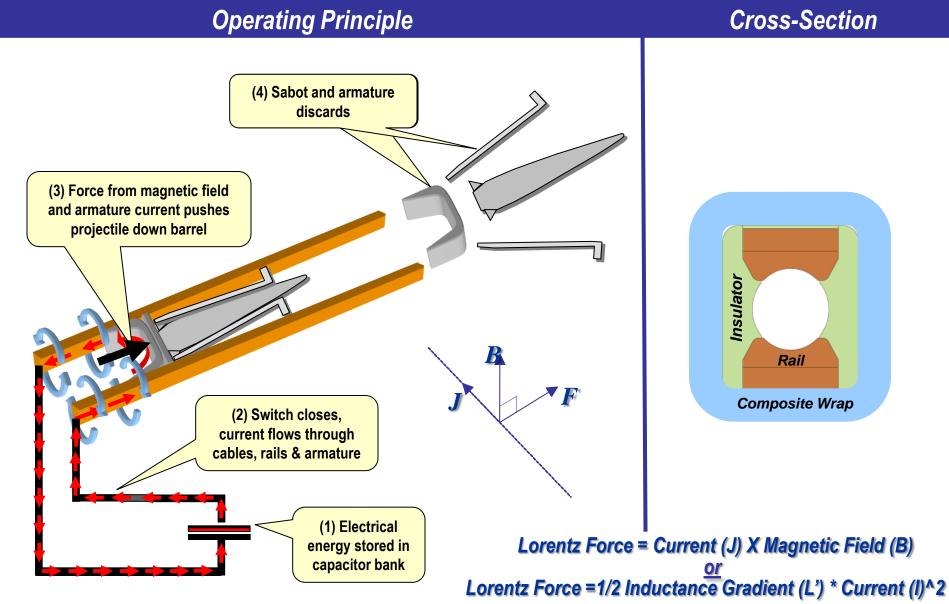
SYSTEM ONR Curre

APPLICATION

SYSTEM ONR TRACK DOLLAR

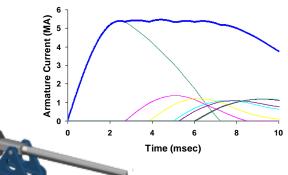
Directed Energy

Electromagnetic Weapons

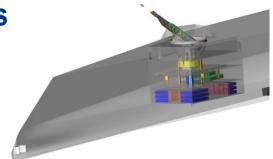

SYSTEM INR STREET, SQUARE, SQUARE,

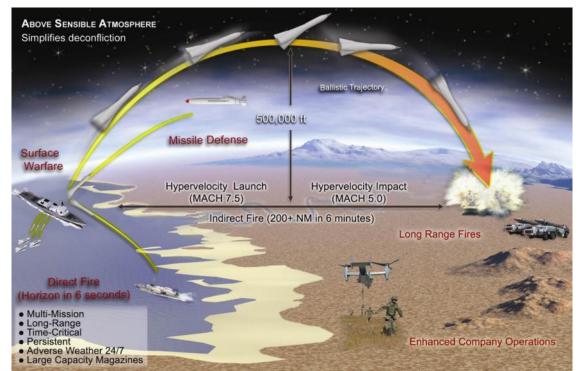
Naval Air Warfare and Weapons Code 35

How Railgun Works



9/22/2011


- Electrical energy vs. chemical propellants for projectile launch
 - Enables variable velocity
 - Optimized in-bore acceleration profile
- Non-electrical conducting barrel structure
- Greater launch velocities than conventional (2.5km/sec)
- Greater ranges (200+nm)
- **Enables non-round bore geometries**
- Ballistic trajectory with guided projectile correction
 - Endo-exo-endo
 - Aerodynamic profile
- Kinetic energy kill through dispensed fragments variable height of burst



Railgun Operational Impact

- Wide Area Coverage
 - Increased speed to target
 - 200+ NM
- Accelerates operational tempo
 - Faster attrition of enemy personnel and equipment
 - Operation timeline shifts left
- Reduces Cost per Kill
 - Lower Unit Cost
 - Lower handling cost
- Enhances Safety
 - No risk of sympathetic detonation
 - Simplified storage, transportation and replenishment
 - Reduced collateral damage
 - No unexploded ordnance on battlefield
- Reduces Logistics
 - Eliminates gun powder trail
 - Deep magazines

- Multi-Mission Capability
 - Surface Warfare
 - Missile Defense
 - Long Range Fires
 - Direct Fire
 - ASuW

Multi-Mission Capable for Offense and Defense

EM Railgun INP Phase I

	FY05		FY06	▲ FY	07	▲ FY08	▲ FY09	FY10) FY11
Milestones		Program August 2	Initiation 2005	Initial 8MJ Capability	Test	World Record Launch 10MJ	Initial 16MJ Test Capability	S&T Go No-Go Decision Point	
Launcher Bore Life Development						32MJ Lab Gun	Bore Life Developm	nent	32 MJ Launcher 100 Shot Bore Life Demo
Advanced Containment Development	3 Conce Desig		BAE General A	tomics	Techn and F	ology Developme Preliminary Desig	ent n Detail Desig	n Fabrica	32 MJ Launcher 100 Shot Bore Life Demo
Pulsed Power System Development	For Launcher Testing 100MJ Capacitor Bank Alternative Studies Alternative Studies Rep Rate Capacitor Test Bed							Bed Pulsed Power Recommendation	
Integrated Launch Package Development	01	Ca	Boeing Draper Governme pncept rades	Comp	aseline Des onent Deve	sign & Critical lopment Unitary Lethality Demo	Baseline De Dispense Demo	esign Critical Component Demos	Integrated Launch Package (ILP) Demos

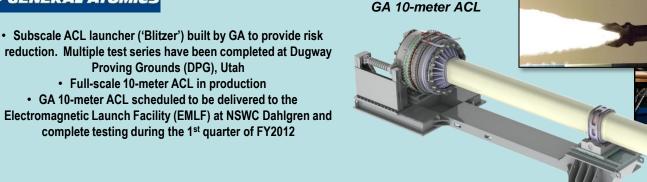
Progress FY05 – FY11

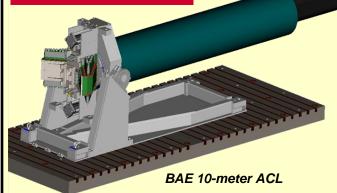
Lab Launcher

GA Med-Cal Blitzer (IRAD)

Rep-Rate Test Bed

Dispense Test Slide 10


- Muzzle energy:
 - From 6MJ to 32MJ
- Bore Life
 - From 10s to 100s
 - Multiple configurations & materials
- Industry Launcher Prototypes
 - From concept to hardware
- Pulsed power
 - From single shot
 - To multi-shot capable design
- Projectile
 - From slugs & sand catch
 - To instrumented and dispensing flight bodies on open range
- Mission
 - From Land Attack
 - To Multi-Mission Initiative

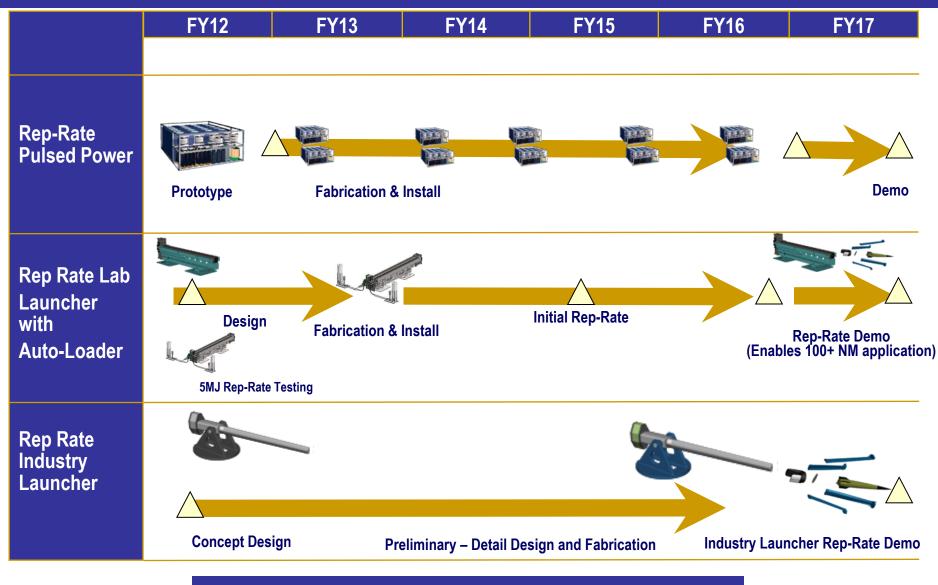

The industry developed Advanced Containment Launchers (ACLs) detailed designs are competition sensitive and each include unique materials, however they both share the following attributes:

- Advanced composite containment designs
 - Advanced insulator materials

 5-meter version of 10-meter ACL recently tested at EMLF (1/2011) with full-scale bore (cross-section), breech, muzzle and mount.

'Blitzer' Testing at DPG

- Full-length ACL in production.
- BAE 10-meter ACL scheduled to be delivered to the Electromagnetic Launch Facility (EMLF) at NSWC Dahlgren and complete testing during the 4th quarter of FY2011


Gun Launch

Distribution A: Approved for Public Release Distribution is Unlimited

EM Railgun INP Phase II

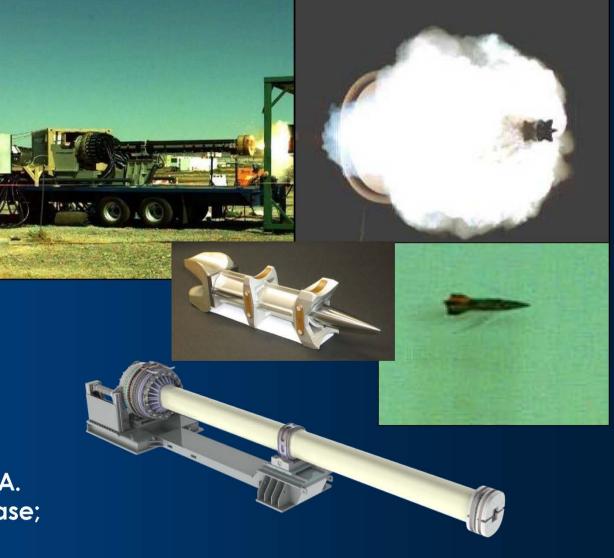
INP II Focused on Rep-Rate and Thermal Management

Railgun INP Contact Information

Mr. Roger Ellis (Program Manager) Office of Naval Research (Code 352) 875 N. Randolph Street Arlington, VA 22203 703.696.9504 roger.ellis@navy.mil

CDR Michael Ziv (Deputy PM)

Naval Sea Systems Command Directed Energy / Electric Weapons (PMS-405) 1333 Isaac Hull Ave SE Washington Navy Yard Washington, DC 20376-5013 Phone: (202)781-3975 Cell: (202)306-0976 michael.ziv@navy.mil

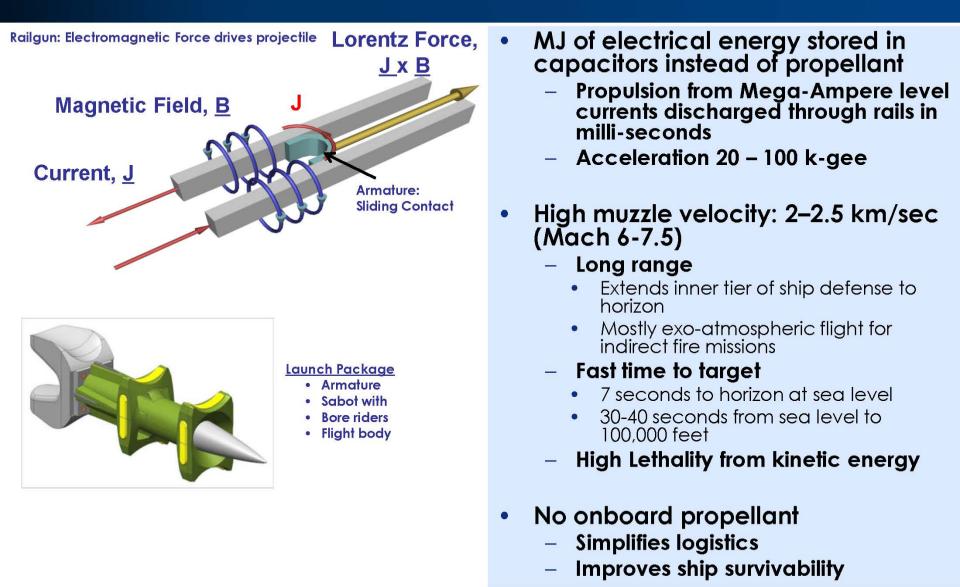

Electromagnetic Railgun, A Multi-Mission Weapon System

by Alan Kull and Thomas Hurn General Atomics

46th NDIA Gun and Missile Systems Conference

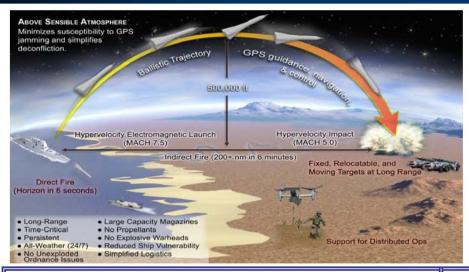
August 30, 2011

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.



Briefing Outline

- Introduction to electromagnetic railguns
- General Atomics' role in ONR program
- Application of railguns to multiple missions
- Testing of Blitzer [™] prototype system



Introduction to Physics of Railguns

GA is Providing Tactical Launcher Development and Pulsed Power for ONR's Railgun Program

GA Pulsed Power for NSWCDD Railgun Facility

- 81 MJ Laboratory Modular Capacitor Bank
- All units delivered and operating reliably

GA Advanced Containment Launcher

Develop and demonstrate tactically relevant launcher at full muzzle velocity and half muzzle energy (32 MJ)

Railguns Have Potential to Dramatically Improve Ship Defense Against Emerging Air and Surface Threats

Problem: Rapid proliferation of low cost cruise & ballistic missiles

- Overwhelm our ship defense system through swarm attack
- Denies access to key regions
- Cost to defeat threat many times higher than threat cost

Supersonic sea skimming cruise missiles can travel at Mach 3 (1 km/sec)

Ballistic Missile

High Performance, Low Cost Solution: Multi-Mission Blitzer Railgun

- > 2x muzzle velocity of current guns
- Faster time to target
- Greater range
- Higher lethality at range
- No onboard propellant
- Smaller rounds, deeper magazines

Blitzer Railgun System: Developed to Demonstrate Technical Maturity and Practicality of a Smaller Scale Railgun System

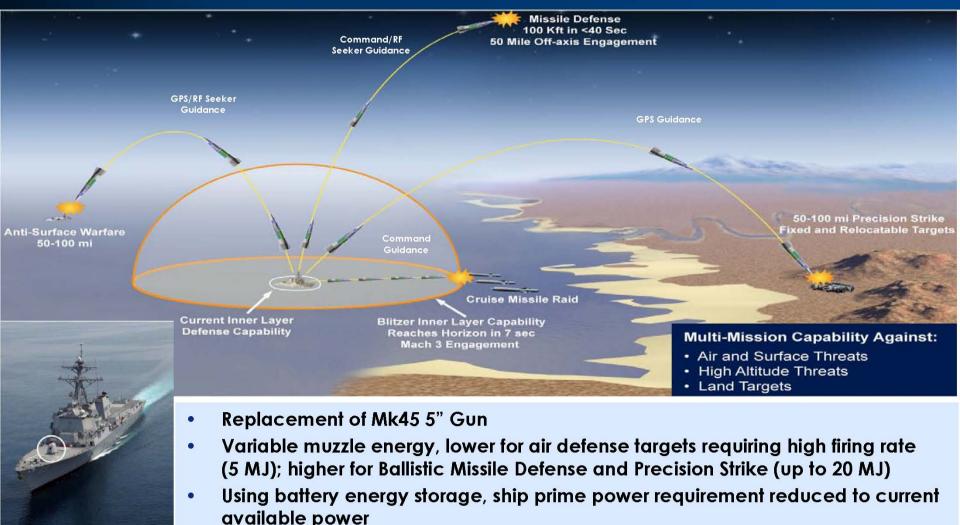
System was built for testing in a Proving Grounds environment

Blitzer Testing at Dugway Proving Grounds Provides a Significant Demonstration of Railgun Maturation

2 MJ Blitzer EM Gun

Mobile Pulser

Testing at Dugway


Launch Package in Flight

- Launcher and mobile pulsed power system developed on internal GA funds
- Testing on ONR funds provided through support from UT delegation
- 71 rounds fired to date (9 tests with ³/₄ scale aerodynamic projectile)
- Minimal bore wear; significant increase in state of the art

Demonstration validates major elements of the Blitzer System

PEAK PERFORMANCE TO DATE						
Parameter	Performance					
Velocity (km/sec)	2.0					
Gun Energy (MJ)	1.8					
Peak Current (MA)	2.12					
Peak Voltage (kV)	2.8					

Blitzer Railgun Provides a Lower Cost, Deep Magazine, Multi-Mission Solution on Surface Combatant

One launcher firing a family of projectiles to accomplish multiple missions

Excellent Progress Being Made on Railgun Development

- ONR program and GA's Blitzer [™] efforts have significantly matured railgun technology
- Rapid advances in railgun technology motivate near term applications on surface combatants
- A 20 MJ Blitzer multi-mission railgun system on today's surface combatants appears viable
 - Using today's technology
 - Substantially improve defense of our fleet against rapidly emerging threats
- Navy leadership showing significant interest

The rapid pace of technology maturity and evolving threats are accelerating the drive toward railgun deployment

IM in the Field – Experience of Reduced Sensitivity Mortar Cartridges to Actual Combat Threat Stimuli April 2011

120mm M120 / M121

RDECOM-ARDEC Malcolm Baldrige National Quality Award - 2007 Recipient **Presented by:**

Pamela Ferlazzo

Idea Catalyst - RDECOM-ARDEC

I-81mm M252

60mm M224

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

IM Design Features Incorporated into 60mm HE Ammo (M720A1 & M768)

>PBXN-5 Explosive Fuze Booster

Improved thermal response than former COMP A5 explosive -Burning / pressure rupture vs. partial detonation in Variable Confinement Cook-off tests (VCCT).

- > Approved in-line explosive (MIL-STD-1316).
- > Already utilized in M734A1 and M783 Fuzes (lead charge).

➢Plastic Fuze Adapter

Provides warhead venting.

> Prevents internal pressure buildup and acceleration of a burning reaction to a deflagration / explosion (upon auto-ignition / cook-off of explosive fill in a fire or exposure to thermal stimuli).

➢PAX-21 Explosive Main Charge

Less shock sensitive than former COMP B explosive fill – 165 cards vs. 208 cards NOL gap tests (LSGT).

- Improved behavior in burning reactions.
- > Non-TNT based, melt-pour explosive
- > Minimal impact on existing loading facilities.

3

IM Design Features Incorporated into Packaging for 60mm M720A1 & M768 HE Mortar Ammo

Fibertube Container

Eliminated metal packing clip (inserted into fuze wrench slots) -Cartridge presently supported on projectile body by a new plastic ring/fiberboard sleeve system.

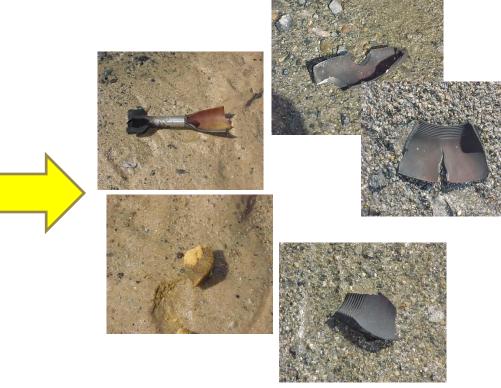
Longer container to provide additional space for fuze separation and optimal warhead venting.

PA78 FIBER TUBE W/ METAL FUZE SUPPORT CLIP

PA164 FIBER TUBE W/ PLASTIC PROJECTILE BODY SUPPORT RING

Metal Ammo Container

- **>** Taller can for longer PA164 fibertubes.
- Intumescent paint coating eliminated due to unresolved durability problem (i.e. cracking / de-lamination during rough handling tests at extreme cold environment).



Δ

Developmental IM Testing (Fast Cook-off)

Non IM- 60mm M720 HE Cartridges

Projectile Body Fragments and Unconsumed COMP B Explosive (TYPE II Response)

Developmental IM Testing (Fast Cook-off)

Burned-out Projectiles (TYPE V Response)

IM Enhanced - 60mm M720A1 / M768 HE Cartridges

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

6

Mine Resistant Ambush Protected (MRAP) Vehicles

Afghanistan (September 2009)

- MRAP vehicle hit by an Improvised Explosive Device (IED).
- IED ruptured the vehicle's hull and fuel tank, which engulfed the vehicle in flames.
- Seven-man crew and 60mm M768 HE mortar ammunition were inside the cabin.
- Although several soldiers were seriously injured, all survived.
- Insensitive Munitions (IM) features of 60mm M768 HE cartridges credited with averting a greater disaster.

Exterior of MRAP

Burned out projectile

Interior of MRAP after IED attack and resulting fire.

Response to Actual Combat Threat (IED) Stimuli

Burned-out 60mm M768 projectiles recovered from MRAP

9

Mortar Ammunition IM Enhancements

Real Benefits

- Increased Soldier Survivability
- Reduced Collateral Damage
- Enhanced Safety
- Logistics (Improved Ammo Storage)
- > Additional (Ongoing) Design Improvements
 - > IMX-104 Explosive Fill
 - > PBXW-14 Fuze Booster Explosive

Time for an Upgrade in US Propellant Manufacturing

Teaming for Performance

Alliant Techsystems and Rheinmetall Nitrochemie 2011 NDIA Guns and Missiles Conference Miami, FL 30 August – 1 September 2011 Presenter:

Operational Environment & Tactical Transformation

A premier aerospace and defense company

Operational Environment

WW II

Volume (Quantity over Quality)

Large number or formations

Area denial

Area targeting

Enemy: Large State Actors

10% of the population in Uniform

Korea / Vietnam

Increased investment in technology

Enemy: Soviet Sponsored States

Gulf War

Introduction of precision weapons

Stand down of Armor units

Expectation of quick victories

Enemy: Rouge States

Increase in simulation

GWOT

Precision

Point Targets Elimination of Collateral Damage

Reduced reliance on Artillery Reduced reliance on Armor

Increased reliance on drones

Enemy: Rouge States and Non State Actors

Less than 1% in Uniform

Lower volumes Consistency

Sensitive to Variation Repeatable

Large volumes Not Sensitive to Variation 2

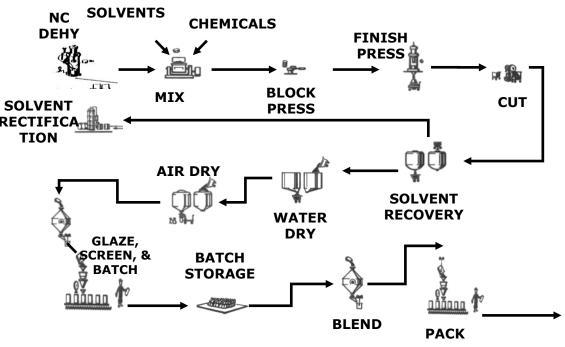
Propellant Requirement

Bringing Advanced Propellants to the US DOD Market

A premier aerospace and defense company

Combining Nitrochemie's Advanced Technology with ATK's High Volume Manufacturing to Provide our DOD Customers with Key Requirements

Combining Nitrochemie's modern world class propellant production capabilities with the US Army's propellant production facility

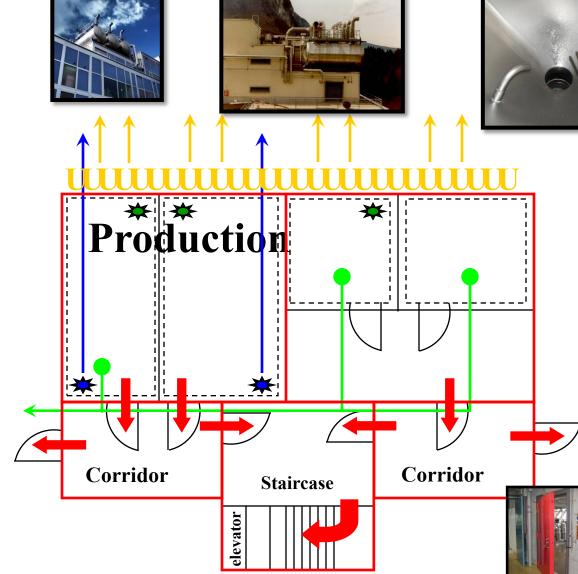


Maintaining the current US GOCO infrastructure is costly: electricity, steam, water, roads, buildings, equipment

By reducing the footprint, one can also reduce the environmental and utility impact

By implementing advanced safety technologies, energetics processing can be consolidated and co-located

Modernization Goals: safe, flexible, scalable, environmentally responsible with low operating costs, high quality product



Safe, Clean, Reproducible, Efficient

- Separate operator from product
- No detonation
 - Separation of production rooms from infrastructure
 - Light walls
 - Fast acting fire detection and deluge
 - Solvent detection and emergency ventilation
 - Ventilation of rooms and at source

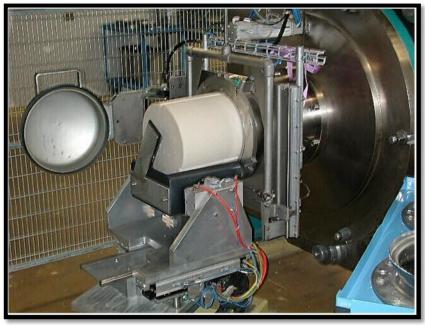
Nitrocellulose Improvements

•Current US manufacture of NC up to a month

•By implementing pressure boiling, process times can be reduced by 70% with a similar reduction in utilities

•Ability to handle alternative pulp sources – various tree types, various nitration levels

A premier aerospace and defense company



Automated, Instrumented Mixing and Blocking

A premier aerospace and defense company

- •Bar coding to prevent formulation errors
- •Sealed mixing capability and robot addition of ingredients
- Advanced safety controls
- •80% reduction in man hours

ATK

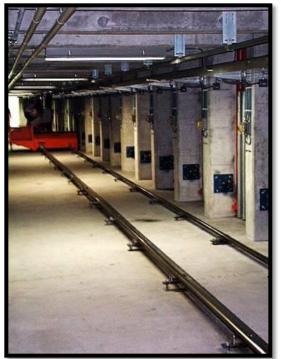
Solvent Equilibration and Pressing

Strand Collection and Cutting

A premier aerospace and defense company

Introducing automation and high speed cutting reduce labor costs by 80%

Reduction in Costs - Finishing



A premier aerospace and defense company

Modernization is on the horizon for the US Industrial Base

A successful modernization effort will focus on :

- Reducing the foot print and upgrading the infrastructure
 - Maintaining the level of safety and security
- Designing low cost/low labor processes
 - Operations that are scalable and flexible
- Implementing modern environmental practices
- Building a facility that manufactures a high quality product at a competitive price in the market

Thanks and Questions?

A premier aerospace and defense company

Thanks for your attention!

Questions???

For Sales and Technical Assistance, please contact the program offices:

Outside North AmericaNorth American MarketNitrochemieATKMartin WengerDouglas MessnerWimmis, SwitzerlandRadford Army Ammunition Plant41 33 228 1022540 639 8514martin.wenger@nitrochemie.comdouglas.messner@atk.com

Approved for Public Release OSR 10-S-2902