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FINAL REPORT: Scalable High-order Methods for Multi-scale Problems:
Analysis, Algorithms and Applications

AFOSR Grant Number:FA9550-12-1-0463

George Em Karniadakis

Division of Applied Mathematics
Brown University

Abstract
It is anticipated that in future generations of massively parallel computer systems a significant portion of
processors may suffer from hardware or software faults rendering large-scale computations useless. In
this project, the PI and his students address this problem from the algorithmic side, proposing resilient
frameworks that can recover and continue the solution with gappy fields from such faults irrespective of
their fault origin. In addition to its robustness and resilience, the new framework generalizes previous
multiscale and multifidelity approaches in a unified parallel computational framework.

Objectives

The general objective of this project was to develop a general CFD framework for multifidelity simula-
tions to target multiscale problems but also resilience in exascale simulations. The specific objective was to
develop a fault-recovery and fault-resilient algorithm using approximation theory, domain decomposition,
and machine learning based information-fusion together.

Approach

Fault-recovery algorithm
We employ three different types of recovery algorithms, namely (1) projective integration (temporal

estimation), (2) coKriging (spatial estimation), and (3) resimulation (spatio-temporal estimation). We intro-
duce the concepts of the three approaches briefly next, for detail see (S. Lee et al. 2015).

First, if numerical solutions are sufficiently smooth in time, the temporal estimation based on previous
saved data can give a highly accurate result on a missing part of the solution. To accomplish this, we
employ an equation-free/Galerkin-free projective integration. The projective integration is based on the
proper orthogonal decomposition (POD) for a dimension reduction. The basic algorithm of the projective
integration consists of three stages: the restriction (a dimension reduction by POD), estimation (of the
coefficient for the POD basis), and lifting (a reconstruction of the gappy field).

While for the temporal estimation we use the previous flow field data and smoothness in time, in the spa-
tial estimation we need to use geometrically neighboring data points at the current time to exploit smooth-
ness in space. In this project, a “multi-fidelity coKriging interpolation method”, the unbiased linear inter-
polation, is introduced for estimating the missing part.

The “resimulation” method is employed to solve the Navier-Stokes equations again on the missing part
only with estimated initial condition (by the coKriging) and estimated field variables at the boundary (by
the projective integration), see Figure 1.
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Figure 1: “Re-simulation” with estimated boundary condition: First, we estimate the initial condition for the missing part (blue)
with two sample sets: refined (orange) and coarse (red). Subsequently, we use the projective integration to update the boundary
using the refined sample set. Finally, we solve the Navier-Stokes equation in the missing part only.

Fault-resilient algorithm – Gappy simulation

In the gappy simulation framework, we compute explicitly the solution to a PDE not on the entire do-
main but only partially on some sub-domains with some auxiliary data that span the entire domain and
obtained independently. The main idea is to combine the global coarse information with some finely re-
solved sub-domains and appropriately combine the two solutions to obtain a more accurate solution on the
entire domain. This set up admits two different interpretations. From the multiscale perspective, the global
coarse solution represents the large scales whereas the fine-resolution sub-domains represent regions of
finer scales. The gappy regions may also be regions of finer scales but with spatial correlations determined
by the resolved regions. From the parallel computing perspective, the gappy sub-domains may be regions
corrupted by random software or hardware faults whereas the global coarse solution is obtained on an inde-
pendent small set of processors, which is assumed to be immune to such faults that the big computer system
may suffer from.

A flow chart of the gappy simulation is shown in Figure 2. First, upon notification of a fault detection
(not discussed here), we check which domains are affected by errors, and define computational subdomains
and gaps, respectively. Next, we choose a proper buffer size, and the gappy simulation estimates the fields at
the local boundaries of each subdomain by the information fusion method using also the independent auxil-
iary data. After setting-up all the parameters and variables, the gappy simulation solves each subdomains on
independent nodes during non-interaction time steps τ. After time τ, all subdomains are re-joined together
and the buffer region of each subdomain is cut-off. Finally, using the auxiliary data, the new field variables
at the boundaries can be updated via coKriging. The gappy simulation repeats again this procedure until the
main simulation ends or all faults are fixed.

Main Results

The first main algorithmic result of this project is the reconstruction of missing data using three differ-
ent approaches according to three fault scenarios. These lead to a robust and effective recovered solution
in various fault scenarios. We have also developed the fault-resilient CFD algorithm in a unified parallel
computational framework. Combining approximation theory and domain decomposition together with ma-
chine learning techniques, this results in robustness and resilience with low-resolution auxiliary data. We
highlight some of the simulation results next.
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Figure 2: A flow chart for a gappy simulation (start from left-top): We first check where the gappy domains are located. Next,
we choose a buffer size and estimate field variables at local boundaries. Each sub-domain is solved in parallel and independently
during non-interaction time τ. After τ, all gappy domains are re-joined together after cutting-off the buffer region. Finally, using
information fusion method with auxiliary data, all field variables are updated at the local boundaries of the subdomains. This is
one complete cycle of the gappy simulation algorithm.

Fault-recovery Simulations

We present results for two benchmark problems – a lid-driven cavity flow (quasi-steady) and a flow past
a cylinder (quasi-periodic), for details see (Lee et al, 2015). To this end, we consider three types of available
fault scenarios: (1) a gappy region but with no previous gaps and no contamination of surrounding simula-
tion data, (2) a space-time gappy region but with full spatiotemporal information and no contamination, and
(3) previous gaps with contamination of surrounding data. To recover from such faults, we employ different
reconstruction and simulation methods, namely the projective integration, the co-Kriging interpolation, and
the resimulation method. The results with respect to RMS error and capability are shown in Tables 1 and 2.
We summarize here the main findings of our study:

• For sufficiently small time gaps, the projective integration method is the best while for longer time
gaps the co-Kriging method is better.

• Overall, the “resimulation” method seems to be the most robust method, performing well in all three
fault scenarios.

• Estimating the boundary condition using projective integration leads to accurate results for the “res-
imulation” method in scenario 3 where the other two methods fail.

Fault-resilient Simulations

We apply our fault-resilient framework to the heat equation and the Navier-Stokes equations, and obtain
important first results via a parametric study. Specifically, we employ the finite difference method to perform

3
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Table 1: Comparison of RMS error for three different methods in lid-driven cavity flow. “–” represent inability for corresponding
scenario.

Velocity Time gaps (∆Tg) Scenario P.I. CoKriging Resimulation
streamwise 0.5 1 0.0044 0.0136 0.0075

2 — 0.0136 0.0074
3 — — 0.0078

1.0 1 0.0156 0.0150 0.0124
2 — 0.0150 0.0122
3 — — 0.0158

crossflow 0.5 1 0.0007 0.0177 0.0060
2 — 0.0177 0.0059
3 — — 0.0088

1.0 1 0.0116 0.0192 0.0108
2 — 0.0192 0.0106
3 — — 0.0105

Table 2: Comparison of RMS error for three different methods in flow past a circular cylinder. “–” represent inability for corre-
sponding scenario.

Velocity Time gaps (∆Tg) Scenario P.I. CoKriging Resimulation
streamwise 0.27 1 0.0039 0.0219 0.0060

2 — 0.0219 0.0172
3 — — 0.0175

0.47 1 0.0193 0.0251 0.0144
2 — 0.0251 0.0235
3 — — 0.0291

crossflow 0.27 1 0.0046 0.0178 0.0065
2 — 0.0178 0.0168
3 — — 0.0189

0.47 1 0.0231 0.0159 0.0149
2 — 0.0159 0.0241
3 — — 0.0374
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Figure 3: Time history of the RMS error in the heat equation with different parameters. In (a), a fixed parameters is τ=1. In (b),
fixed parameters are the buffer=30% and the auxiliary data=6 × 6 grid.

a gappy simulation in both benchmark problems. The gappy domains looks like a checker board, see Figure
2. We observe that the RMS error of all test simulations are converging to zero at steady-state. Moreover,
we investigate the key parameters of this framework: 1) type of correlation kernel, 2) size of buffer, 3)
accuracy of auxiliary data, and 4) non-interaction time, τ. The results of our parametric study are shown in
Figure 3 and 4. We summarize here the main findings of our study below:

• Kernel: the Matérn kernel is found to be the best kernel with respect to RMS error and stability in
both problems.

• Buffer: the bigger buffer can guarantee the smaller RMS error in both problems because the error at
the local boundary can be diffused in a buffer region. Moreover, as the auxiliary data is inaccurate or
auxiliary data may not be available, the size of buffer enhances the effectiveness in this framework.

• Auxiliary data: the finer resolution auxiliary data gives the smaller RMS error in both problems
because of increasing accuracy of results by information fusion. As shown in Figure 3 and 4, the
accuracy of auxiliary data is found to be the most important parameter to reduce the RMS error
effectively.

• Non-interaction time (τ): In the heat equation (only diffusion), near the allowable τ, calculated by the
estimation of a penetration length for a diffusion, we can guarantee the smaller RMS error. However,
in the Navier-Stokes equations (combined diffusion and advection), the smaller τ (update boundary
values more frequently) gives the smallest RMS error.
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Figure 4: Time history of the RMS error in a Naiver-Stokes equation with different parameters. In (a), fixed parameters are τ=5
and auxiliary data=8×8 grid. In (b), fixed parameters are the buffer = 25% and the τ=5. In (c) fixed parameters are the buffer=25%
and the auxiliary data= 8 × 8 grid.
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