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Abstract

The main achievement is the development of a computational system which allow us to di�erentiate between
arti�cially generated textures, as well as natural ones with the detection of objects within the image. The
main tool is the use of mathematical methods to represent an image in terms of texture and the cartoon area in
2D examples. We improve the classical methods by detecting objects that have the same average of intensity,
or may have the same texture but slightly shifted, since the classical discrimination lies on the comparison
of the statistical distribution of the local image intensities while for the proposed method the comparison is
between the patches of the surrounding area. As a consequence, we automatically detect the periodicity of
the texture and obtain a representation of the texture elements, as a dictionary of gabor functions. So far,
the latter has been implemented in 1D and we are extending it to 2D. This issue is important since a library
of textures may be obtained from a database of images. Therefore, it is possible to generate a classi�cation
and a common basic texture for each particular scenario.
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1. Introduction

1.1 Background of the project

Camou�age plays an important role in order to increase the e�ectiveness of a mission and the survivability
of soldiers. Camou�age can be de�ned as a method for concealing personnel or equipment from an enemy by
making them appear to be part of the natural surroundings. Therefore, the purpose of a given camou�age
pattern is to break the contour of a target in order to blend this target with the background where is placed.
To this extent, the measurement of the performance of a camou�age pattern gives a quantitative base at the
moment comparison between di�erent patterns in speci�c scenarios.

The high cost that entails choosing and implementing a new camou�age pattern for armed forces, implies
that the decision should be based on carefully designed patterns to ensure e�ectiveness in the largest set of
possible scenarios, considering di�erent lightness conditions, land surfaces, weather conditions, among other
variables. Hence, the development of an automatic assessment system for camou�age pattern is a very useful
and cost-saving tool, which complements human-visual techniques based on empirical testing.

Traditionally, the evaluation of camou�ages is based on direct observation of an imagery collection by
a group of observers, considering di�erent conditions of lighting, background variation, noise and distance,
among others. And recently, many methods have been proposed to assess camou�age pattern based on cluster
analysis or the use of descriptor to quantify the similarity between the background and the camou�age texture
(structural similarity).

In the present work, we propose a scheme using of mathematical modeling, image processing and human
vision models to estimate the e�ectiveness of the camou�age patterns or the probability to detect the soldiers,
under di�erent parameters of design, background or illumination conditions. In particular we expect to
develop a computational tool for assessing camou�age patterns to be used by the US Armed Forces.

Since this is a speci�c model for the assessment of camou�age, it is possible to process large quantities of
images at high resolution and in the most diverse situations obtaining results similar to those that might result
from an equivalent process with human evaluators. Contrasted with traditional human visual camou�age
evaluations, where the personnel spend several days in the �eld, control over environmental variables turns in
a severe drawback, including basic and unpredictable lightning conditions, weather, background variations,
and many others. Setting new standards for computational image analysis, combining mathematical tools
and several methodologies, could signi�cantly reduce random or uncontrolled variables to a minimum by
arti�cially exposing relevant information with the consequent improvement in results.

The aim of this project is to develop and evaluate indexes for the efectiveness of the camou�age of soldiers.
This work may be considered as the starting point for a new type of camou�age assessment tool, reducing time,
cost and almost every aspect on current standard methodologies based on human visual inspection at a �nal
long-term integration. With the use of this evaluation tool, in the next steps, we plan to develop friendly
software for the evaluation process of camou�ages. Moreover, we will propose to create a computational
camou�age design modulus. This computational tool will propose one (maybe several) patterns for di�erent
combat conditions.
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1.2 Objectives and Goals

As stated in the proposal, the main objective of our research is to develop a computational tool, based
on mathematical models, computational algorithms and human vision models, to allow us the assessment of
camou�age patterns, considering di�erent environmental variables.

From the main objective we can consider the following speci�c goals:

• Develop new image processing techniques for the representation lower stages of human vision.

• Develop and implement mathematical algorithms, based on variational models of image processing, for
identifying images edges and textures.

• Build indexes for assessing the detectability of camou�age patterns.

• To implement the developed algorithms on a computational platform for assessing the e�ectiveness of
camou�age patterns.

• In the next steps, to develop a desing modulus for new patterns and textures.

1.3 Summary

In the �rst report, we delivered a bibliographic survey on texture segmentation for using in camou�age
assessment, considering a variational approach to this problem. In particular, we made a review of papers
related to the following subjects:

• Stochastic-Variational Model for Soft Mumford-Shah Segmentation

• Nonlocal Image and Movie Denoising

• Nonlocal Linear Image Regularization and Supervised Segmentation

• Generalized Nonlocal Image Smoothing

• Nonlocal Mumford-Shah Regularizers for Color Image Restoration

• Index Camou�age Measurements.

We note that in the analysis of a camou�age, one of the main elements is the so-called texture. The texture
can be seen as a repetition of basic texture elements called texels or textons, where the texels correspond
to the fundamental unit of texture space whose placement obey some rule. In general, camou�age can be
de�ned as a method for concealing animals, military vehicles, soldier or other objects to remain unnoticed by
blending with their environment. A camou�age pattern will be successful if the visual system of the observer
(or enemy) is unable to discriminate (or segment) the two textures of the background (environment) and the
target. Then, an objective method to assess the e�ectiveness of camou�age pattern is the texture pattern
analysis, in particular, the texture segmentation.

The objective of the algorithm is to recover both image structures by using our nonlocal approach.
As showed in the previous �gure, the combination of the non-local means and the non-local Mumford-Shah

regularization may improve the performance of �nding the contours between regions with di�erent textures.
For more details, we refers to the following sections of the report.
The two-dimensional case...
Index for the evaluation of the camou�age patterns...
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2. The texture segmentation problem

As the �nal objective of the project is to calculate an index of the performance of camou�age, a powerful
segmentation of texture algorithm is necessary. For a good segmentation algorithm, texture analysis is
important in order to better achieve a relieable processing. Techniques having texture analysis may be
divided into �ve groups [11]: structural, statistical, signal processing, model-based stochastic, morphology
based, arti�cial intelligence and variational PDEs:

• Structural: where a given texture is generated by a set of texture primitives related by a set of rules

• Statistical: uses numerical indexes such as contrast, energy, entropy and relationship between pairs of
pixels in a certain spatial orientation with given gray-levels.

• Signal Processing: usually is related with the use of the Fourier Transform where characteristics such
as periodicity and directionality are considered. Many times, the use of �lters is also included.

• Stochastic: where 2D ARMA models or Markov Random �elds are usually applied.

• Morphology: through the morphological operators with structuring elements having di�erent shapes
are applied in order to discriminate between various textures.

• Arti�cial Intelligence: the use of an Arti�cial Neural Network trained with back-propagation has been
used as classi�ers.

• Variational PDEs (Partial Di�erential Equations): the minimization of a functional is used to obtain a
non-linear PDE. The solution involves �nding the contours of the di�erent objects within the image.

For the present work, we will be focused on a combination of Variational PDE methods together with some
statistical properties of the textures.

Other approches such as neural-networks will not be considered due to the fact that the training for
detection have to be on a speci�c set of textures. On the other hand, it is important to recall that the �nal
goal is to obtain a performance index, therefore black-box approaches are not that well suited for these kind
of tasks.

2.1 Variational PDE models

As previously mentioned, the variational PDE models consists of de�ning a cost function (the functional),
where the unknown variables are the pixels of an image or set of pixels of more than one function (e.g. image
and contour). Because this problem is solved by obtaining the minimum and the number of variables is of
the order of the size of the image, the use of e�cicient optimization algorithms is necessary. Discretization
issues should also be considered in order to obtain results of better quality. A general introduction is found
in [6].

An example of these type of algorithms is the calculation of the Total Variation of a given function

min
u
TV [u,K|u0] = min

K,u

{∫
Ω

(u− u0)2dΩ + α

∫
Ω

|∇u|dΩ

}
(2.1)

as is exposed in [5]. The �rst term corresponds to the similarity term and is the one in charge of keeping the
output image close to the input one. The second term is the smoothing (or regularization) term, in charge
of the smoothness of the output image. The variable to minimize is the whole output image.

More mathematical details are to be foun in Appendix B and the summaries of the some state-of-the-art
work involving non-local segmentation considering the variational approach (as in Report Dec 2011) are also
included in the appendix.
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2.2 The non-local means

The key idea here is that this formulation estimates the value of x as an average of the values of all
pixels whose Gaussian neighborhood looks like the neighborhood of x, this is important because with this
formulation we can take advantage of the high degree of redundancy of natural images, or, in other words, we
can detect textures and preserve it, instead of consider them as noise, like the usual algorithms for denoising
does. For more detailed information please refer to section B.2 at the appendix.

2.3 Non-local variational image models

We will focus on the variational formulation of the segmentation problems where the (smoothness) regu-
larization measurements consider the neighbourhood of the pixel [10]. The energy of the functionals de�ne
the forces of the active contours, but the non-local versions of some classical active contour approaches use
the notion of patch distance instead of usual point-wise di�erence of luminosity.

Because the main modi�cation is in the gradient, we focus on the classical de�nition of the derivative of
the function f : [a, b] → (−∞,∞), in a point x0 ∈ [a, b], giving local information about the behavior of the
function. Actually, |f ′(x0)| is a measure of the function's variation in the point x0. Then is natural to think
that

|f ′(x)|2 =

∫ b

a

(
f(x)− f(y)

|x− y|

)2

δx(y)dy =

∫ b

a

(f(x)− f(y))2

(
δx(y)

|x− y|2

)
dy, (2.2)

where δx is the Dirac function concentrated at x, the idea of the non-local is consider a more general expression
for (2.2). Therefore, we replace δx(y) −→ w(x, y). If we choose a speci�c location x, the repetition of the
texture will be at the y positions where w(x, y) has higher values.
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3. The Index Measurement

One of the main issues of this research project, is the elaboration of an index for measuring, in some
sense, wheter or not an object in a natural image, can be easily recogniced. Our aim is to develop an index
associated to a given image under study, such that high values of the index means that the object(s) in the
image can be easily recogniced by a human observer. We propose a de�nition and computation of an index
based on the non-local Mumford-Shah framework. In this context, the two main factors that determines
the capability of human vision to recognize objects in natural images, are the change in intensity level and
change in texture of the object respect to the background. We de�ne the Contour-Index as the change of
texture and intensity level along the object's contour and we compute it based on the results from the non-
local Mumford-Shah algorithm. We describe below the main components of the process and in the appendix
section, we will provide the mathematical de�nitions and discuss implementation details.

3.1 Previous Steps

3.1.1 Implementation of the non-local Mumford-Shah regularization

Given an initial image u0, we consider the variational regularization problem consisting in �nding a
regularized image u∗ and its associated soft-characteristic border function v∗ : Ω → [0, 1] such that (u∗, v∗)
minimizes the Mumford-Shah (MS) cost functional

FMSNL(u, v) = Fsim(u) + αFRegL2NL(u, v) + γFAT (v) (MS), (3.1)

where Fsim(u) =
∫

Ω
(u−u0)2dx is the similarity, FRegL2NL(u, v) =

∫
Ω
v2(x)|∇wu|2(x)dx is the MS regulariza-

tion term, FAT (v) =
∫

Ω
(ε|∇v|2 + (v−1)2

4ε )dx is the Ambrosio-Tortorelli term and α, γ are positive parameters
for controlling the relative importance among the di�erent terms.

We also consider an alternative of the previous problem, based on the Total Variation (TV) cost functional

FTV NL(u, v) = Fsim(u) + αFRegL1NL(u, v) + γFAT (v) (TV), (3.2)

where FRegL1NL =
∫

Ω
v2(x)|∇wu|(x)dx is the TV regularization term.

3.1.2 Minimization of MS cost functional FMSNL

In this section we will provide numerical implementation details for the minimization of FMSNL de�ned
in (3.1). Observe that FMSNL is di�erentiable and FMSNL(·, v), FMSNL(u, ·) are convex, therefore a gradient
based alternating minimization scheme is well suited for minimizing FMSNL. Our algorithm takes as input
an initial image u0 and an initial characteristic function v0 (for instance, v0 ≡ 1). In a �rst step, the weight
function w is computed, based on the initial image u0. Then, a gradient descent alternating minimization
scheme is carried out, considering K outer iterations and J inner iterations. For each (outer) iteration
k = 1, ...,K, we compute uk by gradient descent minimization of F (·, vk−1) with step δ and J (inner)
iterations. Then we compute vk by gradient descent minimization of F (uk, ·) with the same step δ and the
same number of inner iterations J . The algorithm is summarized in Algorithm 3.1.

3.1.3 Gradient of FMSNL

When computing the Gateaux derivatives of the di�erent terms that conforms FMSNL with respect to
smooth functions g, h : Ω → R with compact support, the Gateaux derivative of Fsim with direction g is
given by

DFsim(u)(g) = 2

∫
Ω

(u(x)− u0(x))g(x)dx.

Also, DFAT (v)(h) = 2ε
∫

Ω
∇v(x)∇h(x)dx + 1

2ε

∫
Ω

(v(x) − 1)dx. Now, recall the gradient-divergence adjoint
relation

∫
Ω
f(x) · ∇h(x)dx = −

∫
Ω

div f(x)h(x) where f : Ω→ Rq. Hence, taking f = ∇v, we obtain

DFAT (v)(h) = −2ε

∫
Ω

∆v(x)h(x)dx+
1

2ε

∫
Ω

(v(x)− 1)dx.
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Algorithm 3.1 Alternating-Gradient NLMS
Require: u0 initial image and v0 initial characteristic function.
Ensure: u regularized image and v �nal characteristic function.
Compute sparse weights w using initial image u0

for k = 1, . . . ,K do
uk := uk−1 , vk := vk−1

for j = 1, . . . , J do
gu := DuFMSNL(uk, vk), according to (3.9)
uk := uk − δgu

end for
for j = 1, . . . , J do
gv := DvFMSNL(uk, vk), according to (3.10)
vk := vk − δgv

end for
end for
u := uK , v := vK

On the other hand, the partial derivative of FRegL2NL respect to u with direction g is given byDuFRegL2NL(u, v)(g) =
2
∫

Ω

∫
Ω
v2(x)∇wu(x, y)∇wg(x, y)dydx. By the non-local version of the gradient-divergence adjoint relation∫

Ω

∫
Ω
p(x, y)∇wu(x, y)dxdy = −

∫
Ω

divwp(x)u(x)dx, we obtain

DuFRegL2NL(u, v)(g) = −2

∫
Ω

divw(v2∇wu)(x)g(x)dx.

Now, the partial derivative of FRegL2NL respect to v with direction h in given by

DvFRegL2NL(u, v)(h) = 2

∫
Ω

v(x)|∇wu|2(x)h(x)dx.

From the previous equations we obtain the partial derivatives of E:

DuFMSNL(u, v) = 2(u− u0)− 2αdivw(v2∇wu) (3.3)

DvFMSNL(u, v) = 2αv|∇wu|2 − 2γε∆v +
γ

2ε
(v − 1). (3.4)

We recall that, the de�nition of the non-local gradient is

|∇wu|2 =

∫
Ω

(u(y)− u(x))2w(x, y)dy (3.5)

and taking p(x, y) = v2(x)∇wu(x, y) in the de�nition of the non-local divergence divwp =
∫

Ω
(p(x, y) −

p(y, x))
√
w(x, y)dy, with divwp : Ω→ R of a function p : Ω× Ω→ R, we have

divw(v2∇wu)(x) =

∫
Ω

(u(y)− u(x))(v2(x) + v2(y))
√
w(x, y)dy (3.6)

Local and non-local gradient based algorithms are capable of detecting edges in natural images. Local
gradient is based only on local changes (with the neighbour positions) in intensity level. Therefore, one
important limitation of the local gradient, is that it detects edges within a texture that might not correspond
to the contour of an object. In contrast, non-local gradient is based on non-local information extracted from
the image, therefore, it can detect a contour when there is a di�erence between the textures inside and outside
the object, even if there is no apparent jump in gray level intensity. The non-local framework considers that
textures are characterized by the repetition of a pattern within a determined neighborhood. Such patterns
are associated to small connected regions or patches in the image, therefore it is necessary to de�ne a proper
notion of distance between patches for computing the non-local gradient of an image. Such distance, leads
to the concept of weight function w, wich can be considered as an intrinsic descriptor of the texture changes
in the image. In the appendix section we will discuss these concepts in more detail.

The norm of the non-local gradient ‖∇wu(~x)‖ at a given point of ~x of the image u, is a measure of texture
discrepancy within a neigborhood of the point. An small value of this measure, implies that the texture is
homogeneous in a neighborhood of the point and a large value means that a texture change may ocurr in a
neighborhood ot the point, indicating the presence of an adge contour.
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3.1.4 Object Contour Detection:

We detect the object's contour based on the non-local Mumford-Shah algorithm. This algorithm is based
on the concept of non-local gradient norm, described above, therefore, it is able to deal with images with
texture changes between the object and background. The algorithm tries to identify regions in the image
where ‖∇wu(~x)‖ is small, leading to the identi�cation of di�erent regions according to the di�erent textures
in the image.

3.2 Computation of the Index

3.2.1 Contour-index Computation:

Once the object's contour has been detected, the following step is to calculate the contour-index I that
we de�ne as the average of the norm of non-local gradient ‖∇wu(~x)‖ along the contour. Observe that if a
low value of I means that the texture inside and outside the object's contour C is similar. Remmark that the
contour-index I depends on the weight function w and the contour C and the correct estimation of them is
a di�cult task as it involves several parameters that model di�erent aspect of the image textures.

3.2.2 Implementation of the calculation of the index

The continuous setup Given an image u and the contour of the object C ⊂ Ω, we de�ne I(u, C) as the
mean-integral of the norm of the non-local gradient over the contour, that is,

I(u, C) =
1

l(C)

∫
C
|∇wu|(x)dµ(x), (3.7)

where l(C) is the length of C and µ is the contour measure. We observe that, if the texture in the interior
region of C is similar to the texture in the exterior region of C , then I(u, C) would be small. Similarly, in the
case of large texture's dissimilarities between the interior and exterior region of C then I(u, C) will be large.
We also note that the normalization factor 1

l(C) makes possible the comparison of the index of the object
using di�erent contour's length. We approximate I(u, C) in 3.7 by

I(u∗, v∗) =

∫
Ω
|∇wu∗|(x)dx− FRegL2NL(u∗, v∗)

FAT (v∗)
,

where (u∗, v∗) are the minimizers of the Mumford-Shah cost functional 3.1, FRegL2NL is the MS regularization
term and FAT is the Ambrosio-Tortorelli term. Hence, we have

I(u∗, v∗) =

∫
Ω

(1− v∗2(x))|∇wu∗|(x)dx∫
Ω

(ε|∇v∗(x)|2 + (v∗(x)−1)2

4ε )dx
(3.8)

The discrete setup Now we will focus in the case of 2-dimensional images, i.e. q = 2. We follows the
implementation of the non-local weights w in [14]. For each pixel i we consider a neighborhood Ni including
the s most similar pixels (according to the distance d) within a search window of size t. Imposing symmetry
of w leads to at most 2s elements in Ni. By making w[i, j] = 0 if j 6∈ Ni, an sparse implementation of w and
the consequent savings in memory consumption are obtained. Let u[i] be the image value at pixel location i
with i = 1, . . . , n. The discretized version of the partial derivatives (3.9) and (3.10) are given by:

DuFMSNL(u, v)[i] = 2(u[i]− u0[i])− 2αdivw(v2∇wu)[i] (3.9)

DvFMSNL(u, v)[i] = 2αv[i]|∇wu|2[i]− 2γε∆v[i] +
γ

2ε
(v[i]− 1). (3.10)

From (3.5) and (3.6),

|∇wu|2[i] =
∑
j∈Ni

(u[j]− u[i])2w[i, j]. (3.11)

divw(v2∇wu)[i] =
∑
j∈Ni

(u[j]− u[i])(v2[i] + v2[j])
√
w[i, j] (3.12)
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Similarly, the discretized version of 3.8 is

I(u∗, v∗) =

∑
i

∑
j∈Ni(1− v

∗2[i])(u∗[j]− u∗[i])2w[i, j]∑
i(ε|∇v∗[i]|2 + (v∗[i]−1)2

4ε )
. (3.13)
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4. Some numerical examples

4.1 A �rst approach in 1D

In order to better understand segmentation in textured images, we have to �rst study a simpli�ed situation.
For that reason we created some synthetic examples in 1D in order to have an initial idea of the in�uence of
the di�erent parameters on the result of the detection.

We started by having function with a 1D region (element) having an average value higher than the rest of
the 1D domain (background). In the �rst stage we assume that the global re�ected (signal) light intensity of
the element is di�erent from the background. If this object has no texture, assuming homogenous materials,
we have that several di�erent already proposed algorithms are capable of recovering the original edges of the
objects. That is the case of the Total Variation (TV) �lter, and the basic Mumford-Shah algorithm with the
Ambrosio-Tortorelli approximation (MSAT).

The Total Variation �lter consisits of an input image u0(·) that will be regularized by a L1 norm term for
the gradient of the denoised image as in equation 2.1, where the problem consists of �nding the image u(·)
that minimizes the functional F (u). On the other hand, the MSAT functional is the local speci�c version of
the non-local Mumford-Shah functional, where |∇wu|2 is replaced by the usual gradient |∇u|2.

Preliminary numerical implementation for non-local segmentation. For the �rst synthetic example, which
is a one dimensional case, we can have a more graphical idea of the performance of the di�erent algorithms.
We start with an object with constant signal level (1.0) inserted in a black background (level 0.0). We add
a simulated texture which is a sinusoidal signal with amplitude 0.1.

For the �rst synthetic example, in order to have a more graphical idea of the performance of the di�erent
algorithms, we start with an object with constant signal level (1.0) inserted in a black background (level 0.0).
The di�erence with the usual examples is that we add a simulated texture, where we tested two cases:

• a sinusoidal signal with amplitude 0.1

• a periodic squared signal with amplitued 0.2

functions that were added to the previous generated signal. The above signal reproduce the two e�ects in the
image. The big jump represents the discontinuity of the image that can be obtained by classical segmentation
methods. The small oscilations of the signal represents the texture of the image which is a periodic structure.

We consider additive gaussian (white) noise in order to simulate a signal that would be acquired in a
more real context. The corresponding generated signals are shown in Figures 4.1(a) and 4.2(a), respectively.

The denosing problem consists of recovering the original signal, �ltering the noise, but keeping the sharp
transitions, and the idea is to also recover the added periodic texture.

For the simulations and denoising, we implemented the following cases:

• regularization with the L2 norm of the gradient, corresponding to a convolution with a laplacian kernel,

• regularization with the L1 norm of the gradient, problem known as the Total Variation,

• regularization with the Mumford-Shah functional, using the Ambrosio-Tortorelli approximation,

• regularization with the non-local shift invariant wighted gradient, for the Mumford-Shah functional,

• the non-local means �ltering.

From the results shown in Figures 4.1 and 4.2 we can obtain the following preliminary observations:

• the linear L2 norm of the gradient regularization is not capable of recovering the sharp transitions
(edges of the objects). Whereas, the non-linear �lters such as the Mumford-Shah, Total Variation and
Non-Local means are capable of keeping the sharp transitions.

• the Mumford-Shah based algorithms (local with Ambrosio-Tortorelli approximation and non-local shift-
invariant gradient) are not capable of recovering the texture.

• The non-local means can recover the sharp transitions and is able to detect texture, but greately
diminishes the contrast of this texture.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a) original synthetic signal with and without noise, (b) regularization with the L2 norm of the
gradient (α = 20), (c) regularization with the L1 norm of the gradient (α = 0.5) (d), regularization with
Mumford-Shah (α = 50,γ = 1E − 4,ε = 0.5) (e) regularization with non-local Mumford-Shah (α = 10,γ =
1E − 4,ε = 0.5, quadratic spline m = 3), and (f) non-local means (h = 0.5, a = 0.5, m = 10)

(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) original synthetic signal with and without noise, (b) regularization with the L2 norm of the
gradient (α = 20), (c) regularization with the L1 norm of the gradient (α = 0.5) (d), regularization with
Mumford-Shah (α = 50,γ = 1E − 4,ε = 0.5) (e) regularization with non-local Mumford-Shah (α = 10,γ =
1E − 4,ε = 0.5, quadratic spline m = 3), and (f) non-local means (h = 0.5, a = 0.5, m = 10)
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: (a) image regularized with usual Ambrosio-Tortorelli approximation of MS functional, (b) with
non-local gradient with B-spline of order n=4 and expansion m=3, non-local gradient with expansion m=5,
(d), (e) and (f) the corresponding contours v of (a), (b) and (c), respectively.

• The L1 norm of the gradient regularization can, to a certain degree, recover the texture when its regions
have constant gray levels (�at regions)

• The outputs of the local Mumford-Shah and non-local Mumford-Shah regularizations give more infor-
mation than the other methods since we have the additional information of the contour of the objects
within the image.

From the previous observations, we can conclude that a combination between the idea of the non-local means
and the non-local Mumford-Shah regularization may improve the performance of �nding the contours between
regions with di�erent textures.

4.2 The numerical solution for 2D

4.2.1 First approach with non-textured images

The images of the numerical implementation where we have the MS Local Regularizer, and the non-local
regularized images. As we can see in Figure 4.3, the image is softened as we increase the width of function f(·),
while the transition of the contour function v is preserved, but having a wider width. This last consequence
implies an easier contour �nding procedure.

Given the preliminary results, in the future work, we will tackle the problem of regularizing images with
texture. Therefore, we will continue with the study of the weight function w(·) for di�erent cases. We believe
that some clue of the texture information will be embedded in this weight function.

4.2.2 Experiments with Textured Images

The non-local MS regularization was applied to a set of arti�cial and natural images, the latter taken
from the the Berkeley Segmentation Dataset [16]. Also, we illustrate the bene�ts of non-local MS over local
MS. In our experiments, we realize that the quality of the results, highly depends on the parameters involved
in the computation of the weight function: patch size (m), window search size (s), numbers of neighbors
(t), scale parameter for weight function (h) and apodization function (A). These parameters model di�erent
aspects of the image texture, thus are intrinsic to each image and we have determined experimentally.

After we have computed the wight function w we carry out the minimization of 3.1 using the gradient
descent alternating minimization algorithm described in Section 3.1.2. This algorithm also depends on several
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parameters that we determine experimentally for each image: weight of regularization term (α), weight of
Ambrosio-Tortorelli term (γ), gamma convergence parameter (ε), gradient descent step (δ ), number of outer
iterations (K) and number of inner iterations (J). We also compute the local MS segmentation in order to
compare with the non-local MS results. Figure 4.4 shows 4 arti�cial images (�rst row) and the segmentation
results after the non-local (second row) and local (third row) MS algorithm. Each image consist of an
object's texture and a background's texture. We have created such texture by the regular replication of a
given pattern. We observe that the non-local MS algorithm successfully detects the object's contour. In
contrast, the local MS algorithm detects edges within texture so is not able to detect object's contour. The
�rst row in Figure 4.5 shows the same images as in the �rst row of Figure 4.4 after the addition of random
Gaussian noise. Second and thirds rows of Figure 4.5 show, non-local and local MS segmentation results
respectively. We observe that the presence of noise a�ects the capability of the algorithm to detect the
object's contour. Figure 4.6 shows 3 natural images (�rst row) and the segmentation results after the non-
local (second row) and local (third row) MS algorithm. In contrast to the arti�cial images, natural images
exhibits textures with a complicated pattern structure. Such patterns present di�erences in gray level, shape
and sizes. To partially overcome this issue, a Gaussian smoothing �lter preprocessing step is applied, to
makes such features more homogeneous. We observe that non-local MS algorithm performs better than the
local MS algorithm, in the identi�cation of contours in areas with a change of texture. On the other hand,
the local-MS seems to perform better in the identi�cation of contours in areas with a change of intensity
level.

Figure 4.4: arti�cial image no noise.
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Figure 4.5: arti�cial image with noise.

Now, we asses behavior of the contour-index described in Section 3.2.2 by considering an arti�cial image
with di�erent levels of noise. Figure 4.7 exhibits from left to right, an arti�cial image with no noise and
additive random Gaussian noise with variance 20, 40, 60 and 80 respectively. The respective contour-index
values are 1.83, 0.58,0.19, 0.09 and 0.04. Observe that the contour-index value decrease with the level of
noise and the object is more di�cult to be distinguish visually.
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Figure 4.6: natural image no noise

Figure 4.7: index noise
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5. Concluding Remarks and Future Work

So far, none of the tested methods give a satisfactory result in terms of recovering the original texture,
from an image with noise. It is expected that a combination of some of those methods would greately improve
the performance. However, an e�cient numerical implementation of such a combination of algorithms is not
straightforward.

For the next stage we consider the issue of �nding the local periodicity between the texture elements
(textels). The local periodicity may be obtained from the information provided by the analysis of the weight
function of the non-local Mumford-Shah functional. While the textels should be expressed in terms of a
multiscale base such as the one provided by wavelets.

On the other hand, the images to be tested will have to include some camou�age-like textures.

5.1 Implementation of algorithms

As pointed out in Section 4, the next step involves the implementation of the minimization of non-local
Mumford-Shah, including the optimization of the weight function w(x, y). This would enable a more accurate
de�nition of the countours of the objects with textures. Our assumption is that the optimization involving
the weight function would improve the performance of the already proposed methods.

5.2 Segmentation Problems and Textured Images

In a future report some modi�cations will be added in order to consider the segmentation of di�erent
textured regions, but with a similar brightnes levels. In the current stage, we tested some of the algorithms in
1D with arti�cial texture, being sinusoidal or staircase, but di�erent average gray levels. Since this analysis
was based on the 1D simulations, still the extention to 2D has to be considered, since this extention is not
always straightforward. The examples given in this work present less di�culties, since many algorithms are
able to segment by taking advantage of the di�erent mean levels of each texture. Therefore, more di�cult
images will be tested, where the biggest di�erence between the textures will be in the periodicity or the phase
of the texels. Special attention will be payed to this last issue of change of phase in the texels, since this may
be considered as a change in the texture. Therefore, this discontinuity would mean the border of an object
within the measured image.

5.3 Calculation of the index of the camou�age

Once the countour is established by one of the algorithms described in the report, the numerical (dis)continuity
index has to be calculated, considering the characteristics of the texels or di�erence between the textels along
the border. The relation between this index and the reaction of a human observer has to be checked, since
this is part of the original idea of the �rst stage of the design a camou�age pattern.
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A. Some concepts about texture

Try to characterize the texture concept takes relevance when we want to camou�age something, because
our �rst impression is that the human eye recognizes the change between di�erent textures, see Figure A.

Figure A.1: The change between di�erent textures

De�ne texture is a di�cult task, because we don't have a precise and unique mathematical de�nition or a
clear concept. The basic idea is that the texture can be seen as a repetition of basic texture elements called
texels or textons made of pixels whose placement obey some rule.

Let us give some recompilations ideas about textures:

1. The textured region can contain texture elements of various sizes, each of which can itself be textured.

2. The order consists in the nonrandom arrangement of elementary parts.

3. The parts are roughly uniform entities having approximately the same dimension everywhere within
the textured region.

4. The parts are roughly uniform entities having approximately the same dimension everywhere within
the textured region.

5. A region in an image has a constant texture if a set of local statistics or other properties of the picture
function are constant, slowly varying, or approximately periodic.

20DISTRIBUTION A: Distribution approved for public release



B. Mathematical aspects of the Variational PDE Models

In the framework of the local Variational PDE Models, the approaches are proposed with rather local
based measurements (such as gradients) for the smoothness term. This is quite suitable for segmenting objects
with constant luminosity characteristics. However for the cases where texture is present, these algorithms
fail to output a good quality segmentation. For that purpose non-local regularity measurents have been
proposed.

B.1 The Mumford-Shah regularization

We recall that the segmentation problem, considering a variational approximation, was introduced by
David Mumford and Jayant Shah in 1989 [19]. The problem addressed by the authors can be describe as
follows: Given and image I ⊂ R2, we want to decompose the image in a �nite number of subsets Ri ⊂ R2

and edges Ki, such that at the interior of each component Ri the intensity of the image is almost constant
and the edges are smooth.

This problem corresponds to an optimization problem of given and image u0, where u0 represents the
intensity of the image, to �nd a function u and a curve K, which minimizes the functional

min
K,u

MS[u,K|u0] = min
K,u
H1(K) + α

∫
Ω

|∇u|2 + λ

∫
Ω

(u− u0)2,

where H1(K) corresponds to the arc length of K.

To solve the above optimization problem, Luigi Ambrosio and Vincenzo Maria Tortorelli in 1990 (see
Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Comm. Pure
Appl. Math., 43(8), 999�1036) introduced an aproximated proble for MS functional. This approximated
problem have several advantages from theoretical and numerical point of view, for details of the presentation
of these functional we refer to the report of bibliographic discussion.

In the case of texture segmentation, we want to use a similar approach to the one for the classic problem
of segmentation, however we must consider the aspect of the periodicity of the patterns, that is, we must
consider a non local approach. Nevertheless, it is necessary to include a term which allow us to compare
texels in the image, and for that reason we consider a functional including the nonlocal efects. In this way, we
introduce the non-local segmentation with the variational approach Gε : L1(Ω)× L1(Ω) → [0,+∞], de�ned
by

Gε(u, v) =



∫
Ω

(
ψ(v(~x)) ‖∇wu(~x)‖2δ +

1

ε
V (v(~x)) + ε‖∇v(~x)‖2)

)
dxN if u, v ∈ H1(Ω),

and 0 ≤ v ≤ 1 a.e.

+∞ otherwise,

where V : [0, 1]→ [0,+∞) be a continuous function vanishing only at the point 1, and let ψ : [0, 1]→ [0,+∞)
be an increasing lower semicontinuous function with ψ(0) = 0, ψ(1) = 1, ψ(t) > 0 if t 6= 0.

B.2 The non-local means

Recall that the non local means technique, based on the work of Buades et al., have been developed in
the context of denoising �ltering.

B.2.1 Basics

The idea of Buades is de�ned as:
Consider a continuous noisy image u0 de�ned on Ω, a bounded domain of R2 then, the �ltered image in

the pixel i is de�ned by:

NL(u0)(x) = u(x) =
1

C(x)

∫
Ω

e−
(Ga∗|u0(x+·)−u0(y+·)|2)(0)

h2 u0(y)dy =
1

C(x)

∫
Ω

w(x, y)u0(y)dy
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where C(x) is a normalizing factor and Ga(t) is a Gaussian Kernel with standard deviation a.
notice also that:

(Ga ∗ |u0(x+ ·)− u0(y + ·)|2)(0) =

∫
R2

Ga(t)|u0(x+ t)− u0(y + t)|2dt

In the discrete case (which is the one that we work in fact) we have the following formulation:
Consider a discrete noisy image u0 = {u0(i)/i ∈ Ω}, in this context, the estimated value NL(u0)(i) is

computed as a weighted average of all the pixels in the image, i.e. considering:

NL(u0)(i) = u(i) =
1

C(i)

∑
j∈Ω

w(i, j)u0(j)

where w(i, j) must be a sort of discretization of the continuous formula described before, it intends to
measure the similarity between pixels i and j; in a general context we have to consider w(i, j) such that:∑

j∈Ω

w(i, j) = 1 0 ≤ w(i, j) ≤ 1

The (sort of) discretization of the weight function is:

w(i, j) =
1

Z(i)
e−
||u0(Ni)−u0(Nj)||

2
2,a

h2

where Z(i) is a normalization factor, || · ||2,adenotes the Euclidean weighted distance (by a Gaussian
kernel of standard deviation a) and Ni denotes a �neighborhood� of the pixel i, centered at it, usually this
neighborhood is a square of length 2m, then u0(Ni) is a vector, so, the idea of this discretization is to compare
the patch centered on i between the one centered on j.

The important element here is the weight function w(x, y) used in the formula which perform the �aver-
aging� term. This function is considered in a di�erent context to perform segmentation (using it in the so
called non-local gradient or weighted gradient as we seen before). It is important to follow the behaviour of
this function in the task of denoising, specially in in terms of the pursued main characteristic of preservation
of textures in denoising procedure. Then, is important to have an implementation of this algorithm, in order
to have a checkpoint for next steps of this work.

B.2.2 Implementation of Non local means

In order to implement the denoising algorithm for NL-means we have to try to reduce the number of
calculations, as we seen before, the original �lter involves a high number of calculations (at least 2N2 for
each pixel if N is the number of pixels of the image). In order to do that, we will follow the �faster� version
of NL-means proposed by Buades, which try to reduce calculations:

Let I a grid of pixels, choose a subset {i1, . . . , ik} ⊂ I . Consider B = {i/||i|| ≤ m}, and then de�ne:
Wk = ik +B. The idea is to divide I in non-disconnected regions such that: I = ∪iWi and Wi ∩Wi+1 6= ∅.
The idea is to de�ne NL-means for the Wk objects (the so called vectorial NL-means) and then de�ning the
NL-means for a �xed pixel as the average of the vectorial NL-means where this pixel belongs.

Let us de�ne the vectorial NL-means, for each Wk as:

NL(Wk) =
1

Ck

∑
j∈I

u0(Wj)e
−
||u0(Wk)−u0(Wj)||

2
2

h2

where Ck is a normalization parameter.
Notice that in this case, the norm involved is the usual, since we restore at the same time the whole

neighborhood and do not want to give any privilege to any point in particular.
Finally, in order to restore the value at a pixel i, we must consider all Wk containing i, so, if we de�ne:

Ai = {k / i ∈Wk}, we have to de�ne:

NL(u0)(i) = u(i) =
1

|Ai|
∑
k∈Ai

NL(Wk)(i)
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NL(u0)(i) = u(i) =
1

|Ai|
∑
k∈Ai

NL(Wk)(i)

We attach an example of this implementation for the one dimensional case in numerical examples chapter,
the example consists on a signal with texture (like a castle) which have been exposed to pseudo-random noise,
the idea is to check if this implementation preserves the most important setting of the NL-means algorithm:
remove noise without removing texture.

B.3 Non-local variational image models

In other words, if we have a patch px(t) = f(x+ t),∀t ∈ [−τ/2, τ/2]2, with τ the width and height of the
patch. The L2 patch distance will be:

da(px, py) =

∫
Ω

ga(t)|px(t)− py(t)|2dt

where ga(t) is a gaussian with variance a.
On the other hand, non-local formulation involves the use of a weighted gradient, that is the continuos

equivalent of the graph-cut approach:

|∇wu|2(x) :=

∫
Ω

(u(y)− u(x))2w(x, y)dy

This formulation extends in a quite straight-forward way the original Mumford-Shah model to a non-local
setting. The disadvantage lies on the extra complexity of the additional integral on the region. Computa-
tionally, it is di�cult to determine the weight function w(x, y) for each speci�c case. Some examples for this
weight function are:

• Shift-invariant function such as a gaussian w(x, y) = ga(x− y) one.

• The patch distance da(px, py) as previously mentioned.

• The NL-means weight, where the w(x, y) = gh(da(px, py)).

B.4 The basic model for obtaining the contour

By de�ning the square of the module of the non-local gradient as:∥∥∥∇wu( ~x)
∥∥∥2

=

∫
Ω

(u(~x)− u(~y))2w(~x, ~y)dyN

we denote the speci�c shift invariant cases as w(~x, ~y) = g(~x− ~y).
The non-local segmentation with the variational approach we have the formula

FNLG =

∫
Ω

‖∇gu(~x)‖2 dxN

while the gradient (Gâteaux di�erential) of this function FNLG with respect to function u.

∂FNLG
∂u

= 4 |g|L1
u(~l)− 4g ∗ u(~l),

if parity of the function g is imposed: g(−~x) = g(~x), and ∗ is the convolution f ∗ g(~x) =
∫

Ω
f(~y)g(~x− ~y)dyN .

On the other hand, the regularization term of the output function which is described as

FNLRegAT (u, v) =

∫
Ω

‖∇gu(~x)‖2 v2(~x)dxN

has a Gâteaux di�erential of

∂FNLRegAT (u, v)

∂u
{δu~k} = 2u(~k)g ∗ v2(~k)− 2g ∗ (uv2)(~k)− 2v2(~k)g ∗ u2(~k) + 2 |g|L1

u(~k)v2(~k)
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As one of the objectives is to use B-spline functions in order to implement these procedures, the g(·)
function is an expanded B-spline of order n: g(x) = βn(x/m), where m is the scaling factor of expansion,
where integer values were used instead. By using these kind of functions, it is possible to have e�cient
convolutions, since bnm(x) = βn(x/m) = bn1 ∗unm(x), where unm(x) = 1

mn b
1
m ∗ · · · ∗ b1m︸ ︷︷ ︸

n times

(x). The previous function

may be regarded as applying n times a moving average process of window width m. One characteristic of
these families of fuctions is that they assimptotically converge to a gaussian function as n grows. Gaussian
functions are usually used since many e�ects on image acquisition such as bluring or other distortions may
be modelled with this function.

B.5 The convergence of the functional

Let us consider a regularity of the non-local gradient, given by

‖∇wu(~x)‖2δ =

∫
Ω

(u(~x)− u(~y))2w(~x, ~y)dyN + δ‖∇u(~x)‖2,

where δ > 0, the function w ∈ C1(Ω× Ω \ {(x, y) : x = y}), with w(~x, ~y) = w(~y, ~x) and satisfying

lim
~y→~x
‖~x− ~y‖2w(~x, ~y) = d0 > 0.

We introduce the non-local segmentation with the variational approach Gε : L1(Ω)× L1(Ω)→ [0,+∞]

Gε(u, v) =



∫
Ω

(
ψ(v(~x)) ‖∇wu(~x)‖2δ +

1

ε
V (v(~x)) + ε‖∇v(~x)‖2)

)
dxN if u, v ∈ H1(Ω),

and 0 ≤ v ≤ 1 a.e.

+∞ otherwise,

where V : [0, 1]→ [0,+∞) be a continuous function vanishing only at the point 1, and let ψ : [0, 1]→ [0,+∞)
be an increasing lower semicontinuous function with ψ(0) = 0, ψ(1) = 1, ψ(t) > 0 if t 6= 0.

We want to compute the Γ-limit of the Gε : L1(Ω)× L1(Ω)→ [0,+∞]. Following the ideas of Ambrosio-
Tortorelli, we proposed as Γ-limit as the functional G : L1(Ω)× L1(Ω)→ [0,+∞],

G(u, v) =



∫
Ω\Su

‖∇wu(~x)‖2δ dx
N + 4cVHn−1(Su) if u ∈ SV B(Ω),

and v = 1 a.e.

+∞ otherwise,

with cV =
∫ 1

0

√
V (s)ds. The di�erence between the Ambrosio-Tortorelli's result is the non-local gradient in

the above expressions.
This class of result says us that when we consider a numerical approximation of inf Gε for ε small, actually

we are consider an approximation of inf G.
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C. A Stochastic-Variational Model for Soft

Mumford-Shah Segmentation[20]

C.1 Introduction to the model.

Given an image I in L2(Ω), de�ned in Ω ⊂ R2, which we assume to be open, bounded and smooth, we
know that the goal of the classical segmentation problem is to �nd a closed `edge set' Γ and all the connected
components Ωi, i ∈ {1, . . . ,K} associated to Ω \ Γ, based in some desired visual measure (e.g. textures).
Notice that with this process the image I is discontinuous along Γ and relatively soft or homogeneous inside
each connected component Ωi.
In this context we will call to each patch Ii = I|Ωi a `pattern' with an associated support Ωi.
We will call this standard procedure a `hard' segmentation, because we make a partition of Ω based on the
�xed borders contained in Γ, giving us a collection of disjoint supports Ωi, so, with this segmentation we
have:

1Ω(x) =
K∑
i=1

1Ωi(x)

The main idea of the soft segmentation is make a `softer' or `weak' partition of Ω, in the following (formally)
sense:

1Ω(x) =
K∑
i=1

pi(x)

Where pi are a continuous (or even smooth) functions, formally we can choose: pi = 1Ωi ∗ ρε with ρε a
standard regularization function.
We can connect this idea with the widely know `mixture image models' in the following way:
Suppose that the image I could be decomposed in K patterns indexed by ω ∈ {1, . . . ,K}. Then, each pixel
x ∈ Ω could be assigned to a pattern by the `index random variable' ω(x) ∈ {1, . . . ,K}. In this context we
can take pi(x) = P(ω(x) = i) with i ∈ {1, . . . ,K}, this is the natural stochastic interpretation, also, we will
call each pi the `ownership' of the pattern i.
In contrast of the `hard' segmentation, this `soft' one allows to each pixel belong to all the patterns with some
probability, then, this is a generalization of the `hard' segmentation, and allows us to have more versatility
with some natural phenomena when we usually don't have a `clear' boundaries, instead of that we can assign
probabilities in the transtition regions.

The model that we will study is based in the widely known Mumford-Shah, which is based in the following
variational problem:

min
Γ,u

J [u,Γ|I] = min
Γ,u
H1(Γ) + α

∫
Ω

|∇u|2 + λ

∫
Ω

(u− I)2

The main advantage of using a stochastic-variational modelation is that we have more universality in modeling
due to stochastic approach, and also we have a rigorous mathematical analysis and better computational
methods due to variational-PDE approach.

C.2 The Soft Mumford-Shah (SMS) Model

Our aim is minimize the energy associated to K patterns, i.e. we want to minimize:

JSMS [P,U |I] =

=

λ
K∑
i=1

∫
Ω

(ui − I)2pi︸ ︷︷ ︸
FSMSsim

+

+

α
K∑
i=1

∫
Ω

|∇u|2︸ ︷︷ ︸
FSMSreg

+

+

K∑
i=1

∫
Ω

(
9ε|∇pi|2 +

(pi(1− pi))2

ε

)
︸ ︷︷ ︸

FSMSMM

with the constraint: P : Ω→ ∆K−1 this is: pi ≥ 0, i ∈ {1, . . . ,K} and
∑K
i=1 pi = 1.

Due to the structure of this energy we will need: pi ∈ H1(Ω) ∀i. Then, under the supposition: I ∈ L2(Ω)
the energy will be well-de�ned in the following admissible set:

admK := {(P,U) | pi, ui ∈ H1(Ω), i ∈ {1, . . . ,K}, P : Ω→ ∆K−1}
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The construction of this energy and main mathematical results about it can be seen on the appendix.

C.3 Euler Lagrange equations for the SMS Energy

C.3.1 Euler Lagrange equations in the (K − 1) simplex

To minimize JSMS [P,U |I] we can use a gradient-descent method or the Euler Lagrange equations. We
will compute this equations and bring a computational scheme to solve them.
The �rst-order partial variation on U given P leads to the following system of PDEs, for i ∈ {1, . . . ,K}:

α∆ui + λ(I − ui)pi = 0 in Ω (C.1)
∂ui
∂n

= 0 in ∂Ω (C.2)

the proof of this is standard and thus omitted.
Notice that the �rst equation could be rewritten in the form:

−α∆ui + (λpi)ui = (λpi)I

which is a Poisson equation with variable coe�cients (this is good because there exists numerical methods
to solve this equation e�ciently).
In the case of the �rst-orden partial variation on P given U we have the following system of PDEs: For
i ∈ {1, . . . ,K}

Vi(x)− 〈V 〉(x) = 0 in Ω (C.3)

vi(x)− 〈v〉(z) = 0 in ∂Ω (C.4)

with 〈w〉 = 1
K

∑K
i=1 wi, Vi = λ(ui − I)2 − 18ε∆pi + 2

ε (1− pi)(1− 2pi), vi =
18

ε

∂pi
∂n

.

Details are given in the appendix.

Joining this results we have the following theorem

Theorem C.3.1. [Euler Lagrange Equations of SMS]
We have the following system of equations: for i ∈ {1, . . . ,K}

− α∆ui + (λpi)ui = (λpi)I in Ω (C.5)

−18ε∆pi + 2ε−1pi(1− pi)(1− 2pi) = 〈V 〉 − λ(ui − I)2 in Ω (C.6)

with V = V (P,U) = (V1, . . . , VK) and Neumann condition in ui and vi.

C.3.2 Computation of Euler Lagrange equations

To solve the equations of the last theorem we will use a algorithm called `alternating minimization' (AM)
which is related with the widely known algorithm called `expectation maximization' (EM) used in statistics
with `hidden variables' [9][13]. In this context we will treat pi as a `hidden variables'.
AM is a progressive algorithm: Given the actual best estimate (t = n) of Un = (uni | i = 1, . . . ,K), we solve:

Pn = argminPJ
SMS [P |Un, I] (C.7)

or equivalently:

−18ε∆pi +
2

ε
pi(1− pi)(1− 2pi) = 〈V n〉 − λ(uni − I)2 i ∈ {1, . . . ,K}

with Neumann homogeneous conditions.
Then, after solving this, we get Pn, we get Un+1 via:

Un+1 = argminUE[U |Pn, I] (C.8)

26DISTRIBUTION A: Distribution approved for public release



or equivalently:
−α∆ui + (λpni )ui = (λpni )I i ∈ {1, . . . ,K}

with Neumann homogeneous conditions.
Notice that this last equations are a linear decoupled system, then, is easy to solve. The hard part is solve the
�rst system of equations, because is coupled and non-linear, we need to linearize this system in the following
way:
Let ei(x) := (ui(x)− I(x))2 and ~e = (ei | i ∈ {1, . . . ,K}), V = V (P,U) = V (P,~e).
We want to solve:

−18ε∆pi +
2

ε
pi(1− pi)(1− 2pi) = 〈V 〉 − λei

notice that:

〈V (p,~e)〉 =
1

K

K∑
i=1

(−18ε∆pi + λei + 2ε−1pi(1− pi)(1− 2pi)) =
λ

K

K∑
i=1

ei +
2

εK

K∑
i=1

(2p3
i − 3p2

i ) +
2

εK

this is because
∑
pi = 1 and ∆(

∑
pi) = 0

Notice also that: pi(1− pi)(1− 2pi) = pi(1− pi)2 − p2
i (1− pi).

Then, the non linear PDE can be solved in iterative scheme:

· · · → P (j) → P (j+1) → · · ·

via the following linealization:

− 18ε∆p
(j+1)
i +

2

ε
p

(j+1)
i (1− p(i)

j )2 = f
(j)
j (C.9)

with f (j)
i = −λei + 〈V (P (j), ~e〉+ 2

ε (p
(j)
i )2(1− p(j)

i ) and Neumann homogeneous condition.
This linear system of Poisson equations can be solve using known solvers. The theoric convergence is still an
open problem.

C.4 Numerical Examples

C.5 Appendix: Mathematical Facts

C.5.1 Construction of the Energy for The Soft Mumford-Shah (SMS) Model

In this section we will discuss the main points of the construction of the SMS Energy. First of all, let K
the number of patterns involved (which can be a variable of the model to be found optimally, but in [21][22]
they proved that is not necessary). Given I = I(x) an image in Ω open, bounded, regular domain, our �rst
objective is to compute the ownerships p1(x), . . . , pK(x)
Let P (x) = (p1(x), . . . , pK(x)) and ∆K−1 := conv(~e1, . . . , ~eK) where conv is the convex hull of the vectors ~ei
(The canonical basis of RK) this set is usually called the canonical (K − 1) simplex or probability simplex.
Then we have P : Ω→ ∆K−1.
Associated with the label of each pattern (ω = i), we have ui(x) ∈ H1(Ω).
De�ne also U(x) = (u1(x), . . . , uK(x)).
Our aim is estimate the optimum pair of ownerships and patterns given I, mathematically we want the pair
(P ∗, U∗) such that:

(P ∗, U∗) = argmax(P,U)P(P,U |I)

But, due to the Bayes formula and taking que logaritmic likelihood (i.e. using J [·] = − logP(·) known also
as the Gibbs Energy) we deduce that our problem will have the following form:

argmin(P,U)J [P,U |I] = argmin(P,U)J [I|P,U ] + J [P ] + J [U ]

Now, assuming that the pattern channels have independent components we can assume: J [U ] = J [u1, . . . , uK ] =∑K
i=1 J [ui|i] this is motivated by the fact that a 2D image is a projection of the 3D environment where dif-

ferent objects in 3D are located independently in range and depth.
Then, for patterns in H1, we can impose homogeneous energies (the idea is penalize changes in luminosity):

J [ui|i] = J [ui] = α

∫
Ω

|∇ui|2 i ∈ {1, . . . ,K} = Freg[ui]
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Figure C.1: SMS segmentation with three (left) and four phases (right). In the left we have the original
image and the three ownership distributions: p1(x), p2(x), p3(x). In the right we have the four ownership
distributions p1(x), p2(x), p3(x), p4(x). Notice that the ocean pattern is �absorbed� into the grass pattern in
the three phases segmentation due to the greenish color they happen to share. Also notice that if we add
more patches we will have more softly segmented patterns.

Where α is a weight to model the `visual sensitivity' to intensity roughness. Notice that, in contrast to
original Mumford-Shah model, the energy of each channel is de�ned in all Ω instead of each Ωi. This is a
good thing for the mathematical analysis because we are working in a �xed domain.

Now, for the term J [I|P,U ] we will study a particular case (Gaussian mixture with smooth mean �elds).
Assuming that all patterns are gaussian with means u1, . . . , uK . WLOG we can assume that they all have
the same variance σ2, then, for each pixel x ∈ Ω

(I|ω(x) = i) ∼ N(ui(x), σ2) i = 1, . . . ,K

Then, due to `Total probabilities' property and applying the Gibbs Energy we have:

J [I|P,U ] = Jµ[I|P,U ] = −µ
∫

Ω

log(
K∑
i=1

g(I|ui(x), σ)pi(x)) µ > 0

Where g denotes the Normal density function given by: g(I|m,σ) = 1√
2πσ

exp
(
− (I−m)2

2σ2

)
.

This formula is complicated in general, so the authors made the following reduction:
Considering each ownership pi(x) ∼ 1Ωi(x) so we have:

− log

(
K∑
i=1

g(I|ui(x), σ)pi(x)

)
∼ − log

(
K∑
i=1

g(I|ui(x), σ)1Ωi(x)

)

= −
K∑
i=1

log g(I|ui(x), σ)1Ωi(x) ∼ −
K∑
i=1

log g(I|ui(x), σ)pi(x)

=
1

2σ2

K∑
i=1

(I − ui)2pi(x) + Constant(K,σ)
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This suggest the following model:

J [I|P,U ] = λ

∫
Ω

K∑
i=1

(I − ui(x))2pi(x) = FSMS
sim

Finally, the modelling of the term J [P ] (i.e. the energy model for the ownerships) will be done considering
the following conditions:

• Each pattern ownership pi(x) have at most two phases: `inside' (pi = 1) and `outside' (pi = 0), the
transition between them is narrow

• The boundaries (transition bands) are regular, not in zig-zag

With this considerations we will use the following energy, due to Modica and Mortola [18] with double
potential: Given pi ∈ H1(Ω):

Jε[pi] =

∫
Ω

9ε|∇pi|2 +
(pi(1− pi))2

ε
= FSMS

MM i ∈ {1, . . . ,K} ε << 1

Notice that ε controls the transition band, and by this, we need also (to minimize the energy) that pi takes
only 0 or 1 values (which is our �rst condition). Also, due to smallness of ε we need regular pi (if not, the
gradient part explodes), which is the second condition.
This energy is widely studied, in particular in the context of Γ-convergence [17], the main results for that
studies made a strong link between SMS and classical Mumford-Shah functional, as we will see in the following
theorems: Before showing the theorems we will need a few de�nitions:
Let q ∈ L1, we will call the Total Variation (TV) of q (as a Radon measure) to the following formula:

TV [q] :=

∫
Ω

|∇q| = sup
ϕ∈C1

0 (Ω,B2)

〈q,∇ · ϕ〉

We also de�ne, for q ∈ L1:

J0[q] :=

{
TV [q] if q = 0 ∨ q = 1, a.e in Ω

+∞ if not

Notice that by this de�nition we have: if J0[q] = +∞ then q has only two phases, then J0[q] = TV [q] =
Per(q−1(1)) where Per(q−1(1)) denotes the perimeter of the support of q
Finally, consider the following subspace of L1(Ω):

L1
[0,1](Ω) := {q ∈ L1(Ω) | q(x) ∈ [0, 1] ∀x ∈ Ω}

After this de�nitions we can enounce the big theorems about the Modica and Mortola model:

Theorem C.5.1.
∀q ∈ L1

[0,1] \H
1(Ω) let Jε[q] = +∞. Then:

Jε → J0 in the sense of the Γ-convergence in L1
[0,1](Ω)

Theorem C.5.2.
Suppose we choose a subsequence pε in an optimal way (i.e. they converge optimally to a two-phase pattern
1V (x) with boundary Γ = ∂V ). Then

Jε[pε]→ length(Γ) =

∫
Ω

|D1V (x)|

This last theorem reveals the strong connection with the SMS model with the original Mumford-Shah
model.
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C.5.2 Problems and Solutions: Symmetry and `Weak Supervision'

Let SK the permutation group of {1, . . . ,K}. Given a K-tuple F = (f1, . . . , fK) we de�ne: Fσ :=
(fσ(1), . . . , fσ(K)) where σ ∈ SK .
We have the following `problematic' result, which leads to lose uniqueness (and even worse: using iterative
algorithms we can have new intermediate solutions)

Theorem C.5.3. [Hidden Symmetry of SMS]
Given σ ∈ SK we have: JSMS [Pσ, Uσ|I] = JSMS [P,U |I]
In particular, if we have: (P ∗, U∗) = argmin(P,U)∈admKJ

SMS [P,U |I]⇒ ∀σ ∈ SK (P ∗σ , U
∗
σ) is also an optimal point

The proof of this result is straightforward.
The obvious question is how to eliminate this symmetry, which lead us to lose uniqueness, the following
technique, called `weak supervision', lead us to `break the symmetry':
We de�ne K patches: Q1, . . . , QK and then we impose the following restriction:

pi|Qj = δij i, j ∈ {1, . . . ,K}

where δij is the Kronecker delta.

C.5.3 Existence Results

Theorem C.5.4. [Unsupervised SMS]
Suppose that I ∈ L2(Ω). Then given any positive modeling parameters (λ, α, ε), a minimizer to the unsuper-
vised soft Mumford-Shah (SMS) model must exist.

Theorem C.5.5. [Supervised SMS]
Suppose that I ∈ L2(Ω). Then given any positive modeling parameters (λ, α, ε), a minimizer to the supervised
soft Mumford-Shah (SMS) model must exist, assuming that each patch Qi has a positive Lebesgue measure.

The proof of this theorems can be found on the original paper of Shen, anyway the proof is relatively
standard except for one technical lemma.

C.5.4 Details on the deduction of Euler Lagrange equations for the SMS Energy

The �rst calculate the �rst-order partial variation on U given P is standard.
In the case of the �rst-order partial variation on P given U we have to be more careful, because in this case
we have the constraint P : Ω→ ∆K−1, so, the derivative must take values on the tangent subspace of ∆K−1.
To do this we will follow the technique developed by Chan and Shen [3]:
We �rst compute the �rst-orden variation in P , this give us to:

δJSMS =

∫
Ω

V · δPdx+

∫
∂Ω

v · δPdS

where V = (V1, . . . , VK) and v = (v1, . . . , vK) and Vi = λ(ui − I)2 − 18ε∆pi + 2
εpi(1− pi)(1− 2pi) de�ned in

Ω and vi = 18ε∂pi∂n de�ned in ∂Ω. So, the �rst partial variation without the constraint in P is:

∂J

∂fP
= V |Ω + v|∂Ω

Now, because P ∈ ∆K−1 we have to project appropriately, for this: Let TP∆K−1 the tangent space of ∆K−1

in P ∈ ∆K−1, and let π : TPRK → TP∆K−1 the ortogonal projection in the tangent space. Notice that, in
this case, the normal direction of the tangent plane is given by:

1K√
K

=
(1, . . . , 1)√

K

Then, the projection operator is given by:

π(w) = w − 1K〈w,1K〉
K

= w − 〈w〉1K
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where 〈w〉 = 1
K

∑K
i=1 wi.

Finally, the restricted gradient of E in ∆K−1 is:

∂JSMS

∂P
= π

(
∂JSMS

∂fP

)
= (V − 〈v〉1K)|Ω − (v − 〈v〉1K)|∂Ω

In particular, this leads to the Euler Lagrange equations on P : For i ∈ {1, . . . ,K}

Vi(x)− 〈V 〉(x) = 0 in Ω

vi(x)− 〈v〉(z) = 0 in ∂Ω

The following lemma allows us to take an homogeneous Neumann conditions:

Lemma C.5.6.
Let P : Ω→ ∆K−1. Then ∀x ∈ ∂Ω we have: 〈v〉(x) = 0

Proof:

〈v〉 =
1

K

K∑
i=1

vi =
18ε

K

K∑
i=1

∂pi
∂n

=
18ε

K

∂

∂n

(
K∑
i=1

pi

)
=

18ε

K

∂

∂n
(1) = 0

The second equality is because x ∈ ∂Ω �

31DISTRIBUTION A: Distribution approved for public release



D. Nonlocal Image and Movie Denoising - A. Buades, B.

Coll and J.M. Morel [1]

D.1 Introduction: Neighborhood Filters and NL-means

We will say that a �lter (for images or video) is a neighborhood/NBH �lter if this reduces the noise by
averaging similar pixels. (anyway, we can use another statistical estimates like the median).
General CCD noise models (as we will see later) are signal dependent. Fortunately two pixels which received
the same energy from the outdoor scene undergo the same kind of perturbations and therefore have the same
noise model.
We will accept the following general assumption (which is the basic idea where this models relies):
Assumption: At each energy level the noise model is additive and white, then denoising can be achieved by
�rst �nding out the pixels which received the same original energy and then averaging their observed grey
levels.

Since the original values of the image are lost the �lters proceed by picking for each pixel i the set of
pixels Ni spacially close to i and with similar grey value. The NBH �lters proceed by replacing the grey level
of i (which will be denoted u(i)) by the average NF (u(i)) = 1

|Ni|
∑
j∈Ni u(j) (again, we can use median also)

Under the assumption that the pixels of Ni have the same energy as i, we have that NF (u(i)) is a denoised
version of u(i).
Most popular NBH �lters are: σ−�lter (Lee 1983), SUSAN (Smith, Brady 1997) and the bilateral �lter
(Tomasi and Manduchi 1998) where the neighborhoods are Gaussian in space and grey level.

In contrast, the Non-local means (proposed by Buades et al. in 2005) �lter is based in the following idea:
Extend the concept of neighborhood to a wide class which they called non-local mans (NL-means). This
algorithms class de�nes the neighborhood Ni of i under the following condition:

j ∈ Ni ⇔ the grey level of a whole window around jis close to the grey level of the window around i

In simple words, we are relaxing the spatial constraint of the classical neighborhood �lters.

D.1.1 Comparison Principles

A systematic comparison of the huge variety of denoising methods is requested. The authors consider
that visual comparison of arti�cially noisy images with their denoised version is subjective (which is a usual
technique in papers), moreover this comparison methods depend strongly on the choice of the image and do
not permit to address the main issues: the loss of image structure in noise and the creation of artifacts.
The authors propose three comparison principles aiming at more objective benchmarks.

The �rst principle asks that noise and only noise be removed from an image. It has to be perceptually
tested directly on an image with no arti�cial noise added, then the idea is compare the di�erence between
the image and its denoised version for each method. We will call this di�erence `method noise'. With this
comparison method is much easier to evaluate whether a method noise contains some structure removed from
the image or not.

The second principle, which we will call `noise to noise' relies on the idea that a denoising algorithm trans-
forms a white noise into a white noise. This may be seen as a paradoxical requirement, but it is a good way to
characterize artifact-free algorithms. Also, we have a powerful mathematical tools for testing: Mathematical
analysis and Fourier spectrum testing.

The third principle, which we will call `statistical optimality' is restricted to neighborhood �lters, and is
based to question if a given NBH �lter is able or not to retrieve faithfully the neighborhood Ni of any pixel
i.

As we will see later, the NL-means is the one with the best results on this principles.
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D.2 Noise Model

In this section we study barely a classic model for noise, this is the model for the CCD devices and the
main result of this model is an hypothesis that will made the NBH �lters useful for denoising.

In CCD devices, we have three kinds of noise:

1. Shot Noise: This noise is proportional to the square root of the number of incoming photons in the
captors during the exposure time, namely:

n0 =

√
Φ
t

hν
·A · η = C

√
Φ

where Φ is the light power, hν the photon energy, t the exposure time, A the pixel area, and η the
quantum e�ciency. Joining all constants in C we have the last formula. Where Φ can be understood
as the true image.

2. Dark or Obscurity Noise: We will denote this noise as n1, is due to spurious photons produced by the
captor itself. We can assume the dark noise to be white, additive and with zero mean.

3. Read out Noise: We will denote this noise as n2, is another electronic additive and signal independent
noise. Can be assumed to have zero mean.

Also, we have to consider another correction, a �gamma� correction: a nonlinear increasing contrast change,
we will denote it as a function f applied to the noisy image. It is applied as an internal adjustment in
rendering of images through photography, television and computer imaging. Usually we take: f(x) = xα

with α ∈ (0, 1)
Summarizing we have:

u(i) = f(Φ(i) + c
√

Φ(i) + n1(i) + n2(i))

When Φ(i) is large the shot noise
√

Φ(i) dominates n1 and the signal Φ(i) dominates n2, this let us to expand
u(i):

u(i) ∼ f(Φ(i)) + f ′(Φ(i))(C
√

Φ(i) + n1(i) + n2(i)) =: f(Φ(i)) + n(i)

If instead Φ(i) is small with respect to n1(i) + n2(i):

n(i) ∼ u(i) ∼ f(n1(i) + n2(i))

in the particular (and interesting case) of α = 1/2 we have:

n(i) ∼

{
n0(i) bright parts of the image√
n1(i) + n2(i) dark parts of the image

In all cases the noise is signal dependent but independent at di�erent pixels.

In the following we aim at recovering f(Φ(i)), ie. the true image up to the unknown gamma correction.
The approximations we made for u(i) and the white noise and independence assumptions on n0, n1, n2 legit-
imate the following important hypothesis:

Hyphotesis: In a digital image, the noise model at each pixel i only depends on the original pixel value Φ(i)
and is additive. Let Ni the set of pixels with the same original value as i. Then n(j), j ∈ Ni are independent
and identically distributed. (i.i.d.)

This hypothesis leads us to give a �proof� of the correctness of NBH (and NL-means) algorithms:
Given a pixel i, let j ∈ Ni all the pixels that follow the same model of i, i.e. ∀j ∈ Ni : u(j) = v(i) + n(j),
where v(i) is a deterministic function, n(j) are i.i.d. noise. Then, considering the denoising �lter:

NF (u(i)) :=
1

|Ni|
∑
j∈Ni

u(j)
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Thanks to the hypothesis and variance formula for independent variables we have:

NF (u(i)) = v(i) + ñ(i)

where:

V ar(ñ(i)) =
1

|Ni|
V ar(n(i)) ≤ V ar(n(i))

i.e. these �lters reduce the variance of the residual noise.

D.3 General Neighborhood Filters

D.3.1 Local NBH Filters

We will present these �lters in order or complexity:
The �rst one, and then the most �primitive�, is based in replacing the color of a pixel with an average of the
nearby pixels colors, i.e. Ni is just a spatial neighborhood. The �ltered value for the pixel x is:

Mρ(u(x)) =
1

πρ2

∫
R2

e
− |x−y|

2

ρ2 u(y)dy

Where ρ is a parameter that controls (roughly) the size of the neighborhood. The problem of this �lter relies
on the case when a spatially closer pixels of the pixel i don't have similar colors as i. When the color is
replaced by an average of very distinct colors it produces blurring in the border of the transition of colors.
This suggest the needness of a model which includes a weight to discard closer but `too much' di�erent pixels
for the averaging, this is the idea for the Sigma �lter (Lee 1983, Yaroslavsky 1985): Average neighboring
pixels which also have a similar color value, the �ltered value is given by:

NFh,ρ(u(x)) =
1

C(x)

∫
Bρ(x)

e−
|u(x)−u(y)|2

h2 u(y)dy

Only pixels inside Bρ(x) are averaged, h controls the color similarity (is, roughly speaking, the tolerance for
the color similarity) and C(x) a is normalization factor.
Later, to avoid dependence of a �Ball Neighborhoods� we have the �lters SUSAN (Smith and Brady 1997) and
bilateral (Tomasi and Manduchi 1998) where the ball neighborhoods are replaced by exponential penalization
on space, ie. we have �bilateral� Gaussian depending on both space and grey level:

SNFh,ρ(u(x)) =
1

C(x)

∫
R2

e
− |x−y|

2

ρ2 · e−
|u(x)−u(y)|2

h2 u(y)dy

Another way to avoid the blurring of the spatial �lteringMρ is by a statistical correction due to Lee in 1980:

LMρ(u(x)) =Mρ(u(x)) +
σ2
x

σ2
x + σ2

(u(x)−Mρ(u(x)))

where

σ2
x = max

(
0,

1

πρ2

∫
R2

e−
|x− y|2

ρ2
(u(y)−Mρ(u(x)))2dy − σ2

)
The idea of this correction is based on the following observation: When the Gaussian mean is performed on an
edge, the variance of the performed mean can become larger than the variance of the noise, this phenomena
is not desired, and the correction tries to avoid this.
Bilateral �lters anyway have a better performance than Lee's correction.
Notice that we can replace the mean operation by nonlinear operator like the median �lter. Tukey in 1997
gives a median �lter, this chooses the median value, that is, the value which has exactly the same number of
grey level values above and below in a �xed neighborhood. It is equivalent to an average of the pixels in a
direction orthogonal to the gradient, that is to an anisotropic di�usion or mean curvature motion.
A small comparison of this neighborhood �lters that can be seen on the original paper gives us non fully
acceptable results: Gaussian �ltering don't maintain sharp edges, anisotropic �lter removes small details and
�ne structures, Lee's statistical �lter leave some areas untouched (then noisy), sigma and bilateral creates
irregularities on the edges. This comparison make the needness of consider a new model.
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D.3.2 Non Local Averaging

As we said before, the main idea of this model is based on the simply observation that the most similar
pixels to a given pixel have no reason to be close of it (for example in periodic patterns), then the idea is to
construct a �lter which consider pixels with neighborhoods with similar average values as the neighborhood
of the original pixel (then, we don't have spatial constraint). Then, the proposed formula is:

NL(u(x)) =
1

C(x)

∫
Ω

exp

(
−gρ ∗ |u(x+ ·)− u(y + ·)|2(0)

h2

)
u(y)dy

where gρ is a Gaussian kernel with standard deviation ρ, C(x) is the normalizing factor, h acts as a �ltering
parameter and:

gρ ∗ |u(x+ ·)− u(y + ·)|2(0) =

∫
R2

gρ(t)|u(x+ t)− u(y + t)|2dt

This last formula reveals the most important characteristic of this �lter, NL replace the value of u(x) by a
weighted mean of u(y). The weights is relevant only if a Gaussian window around y is similar to the same
window around x. This is the concept of self-similarity.
NL-means works great with text images, but is limited when an image have structured noise (like JPEG
compression), in that case NL lose details. More speci�c information can be seen on the original paper.

D.4 Principles for Denoising Algorithms Evaluation

We will enounce the formal assertions for this principles that we mentioned before in the introduction.

D.4.1 Method Noise

As we said before, the idea of this principle is to evaluate if an algorithm just removes noise, or it also
removes some structure of the image.
De�nition: Let u be a (not necessarily noisy) image and Dh a denoising operator depending on h. The
method noise of u is the image di�erence:

n(Dh, u) = u−Dh(u)

and the formal principle will be:
Principle 1: For every denoising algorithm, the method noise must be zero if the image contains no noise,
and should be in general an image of independent zero-mean random variables.
Examples of the evaluation of algorithms under this principle can be seen on the original paper, anyway,
roughly speaking, the NL-means have the best results for this principle.

D.4.2 Noise to Noise Principle

As we said before, the idea of this principle is; accepting that no algorithm can remove all the noise
from an image, at least we want to transform noise in noise with less variance. This is a way to check if an
algorithm reduces the noise, and also don't create artifacts on images.
Principle 2: A denoising algorithm must transform a white noisy image into a white noisy image (with
lower variance).
As we said before, this principle have a good way to be checked: Studying the Fourier transform of denoised
image, because we know that the Fourier Transform of a white Gaussian noise is a white Gaussian noise,
so, visualizing the FT of the denoised image we will see if it remain as a white Gaussian noise, or it have
changed in wrong way (creating artifacts).
Several algorithms have been checked with this principle (that can be seen on the original paper), and bilateral
�lters and NL-means report the best results.

D.4.3 Statistical Optimality

We will understand statistical optimality as the ability of a generalized neighborhood �lter to �nd the
right set of pixels Ni for performing the average yielding the new estimate for u(i), obviously this principle
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will be useful just for neighborhood (or averaging en general) methods.
Principle 3: A generalized neighborhood �lter is optimal if it �nds for each pixel i all and only the pixels j
having the same model as i. Obviously is impossible to check if the pixels in Ni satisfy Φ(j) = Φ(i), then in
general this condition is relaxed to check if the pixels j are likely to have the same value as i. Examples are
given in the original paper (anyway, this principle is more useful for movie denoising).

D.5 Numerical Examples

Figure D.1: Comparison of neighborhood �lters. From top to bottom and left to right: noisy image (with
gaussian noise with σ = 15), Gaussian �ltering, anisotropic �ltering, Lee's statistical �lter, sigma or bilateral
�lter and the NL-means algorithm. All methods except the Gaussian �ltering maintain sharp edges. However,
the anisotropic �ltering removes small details and �ne structures. These features are nearly untouched by
Lee's statistical �lter and therefore completely noisy. The comparison of noisy grey level values by the sigma
or bilateral �lter is not so robust and irregularities are created on the edges. The NL-means better cleans
the edges without losing too many �ne structures and details.
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Figure D.2: Method noise experiment on Lena (gray levels only). From top to bottom and left to right:
original image, Gaussian mean, mean curvature motion, total variation minimization, translation invariant
soft and hard thresholding, bilateral �lter and NL-means
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Figure D.3: Noise to noise principle: Upper images: Application of the denoising algorithms to a noise sample.
From left to right and top to bottom: noise sample, �ltered noise by the Gaussian �ltering, total variation
minimization, hard wavelet thresholding, bilateral �lter and the NL-means algorithm. The parameters of each
algorithm have been tuned in order to have a �ltered noise of standard deviation 2.5. For the neighborhood
or bilateral �lter the research zone has been �xed to 21×21 and for NL-means we have used the whole image.
Therefore, only the h parameter has been tuned in order to obtain the desired standard deviation Lower
Images: Noise to Noise principle: Fourier transforms of the �ltered noises displayed in the upper images.
The Fourier transform of a Gaussian white noise is a Gaussian white noise
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E. Nonlocal Linear Image Regularization and Supervised

Segmentation - G. Gilboa, S. Osher
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E.1 Introduction: Objective, Problems on NL-means and Varia-
tional Point of view

The main objective of this paper is to give an uni�ed approach to both denoising and segmentation tasks
using nonlocal functionals and their respective nonlocal evolutions.

Recall the NL-means �lter proposed by Buades, Coll and Morel in [1]

NL(u(x)) =
1

C(x)

∫
Ω

e−da(u(x),u(y))/h2

u(y)dy

where

da(u(x), u(y)) =

∫
Ω

ga(t)|u(x+ t)− u(y + t)|2dt

where ga(t) is a gaussian with variance a.
The normalization used here (performed by C(x)) does not guarantee that the mean value of the �ltered
image u is the same as the mean value of the input image, this is not desired (for example when we have
Gaussian white noise). Also, normalizing in this manner introduces some bias from the original distance
between points with many similar regions (high C(x)) to more rare and singular points (low C(x)). Dividing
by C(x) tends to diminish this distinction. The authors will show a di�erent normaliation, which retains
symmetric similarities between points, preserve the mean value and does not tend to blur singular regions.
They believe this may explain, in part, why their proposed iterative process outperforms the original �lter.

Kindermann-Osher-Jones interpreted the NL-means (and NBH �lters in general) as regularizations based
on nonlocal functionals in the general form:

JKOJ(u) :=

∫
Ω×Ω

f

(
|u(x)− u(y)|2

h2

)
w(|x− y|)dxdy

Particular cases are the Yaroslavsky functional JY ar where f
(
|u(x)−u(y)|2

h2

)
= 1− exp

(
− |u(x)−u(y)|2

h2

)
or the

NL-means functional JBCM where f
(
|u(x)−u(y)|2

h2

)
= 1− exp

(
−da(u(x),u(y))

h2

)
The idea is to solve a minimization problem using the above functionals to have a solution (which will be the
�ltered image). Notice that we have w(|x− y|), in this cases this represents a simple symmetric window and
f(·) is the most important part of the regularization. The main problem is that in general this functionals
are not convex.
The authors follow this approach, but simpli�ed to a quadratic functional by changing the roles of f and w.

E.2 Regularization Functional

The authors consider the following regularization functional:

Freg(u) :=
1

4

∫
Ω×Ω

(u(x)− u(y))2w(x, y)dxdy

This could be considered for Ω ⊂ Rn, and for images for n = 2. The weight function w(x, y) is positive
(w(x, y) ≤ 0) and symmetric: w(x, y) = w(y, x).
For our purposes w is based on image features and can be understood as the proximity between two points
x and y, based on features in their neighborhood. Notice the di�erence between the functional given before,
the role of w(x, y) is much more important now, it basically determinines the regularization.
Notice the corresopnding Euler-Lagrange descent �ow is:

ut(x) = −F ′reg(u)(x) = −
∫

Ω

(u(x)− u(y))w(x, y)dy (E.1)

De�ne now the following linear operator:

Lu(x) =

∫
Ω

(u(y)− u(x))w(x, y)dy (E.2)
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Notice that L can be seen as the continuous version of the graph Laplacian (where the undirected graph
G = (V,E) have weights in every arc). We will see that L have similar properties with the operator ÷(c(x)∇)
where c(x) is a symmetric matrix, c(x) > 0.
Assuming our initial condition as the initial input image f , we can write the descent �ow as the following
linear (non local) di�usion problem:

ut(x) = Lu(x), u|t=0 = f(x) (E.3)

E.3 Variational Denoising

One can add a convex �delity term to the convex functional J . For the L2 �delity we can consider:

J(u, f) = Freg(u) + Fsim(u) = Freg(u) +
λ

2
||u− f ||22 (E.4)

then, u satis�es the Euler-Lagrange equation:

− Lu+ λ(u− f) = 0 (E.5)

This can be seen as a constrained problem:

u := arg minFreg(u), s.t. ||u− f ||22 = |Ω|σ2
n

where σ2
n is the variance of an additive noise in a noisy image f . Then λ can be viewed as a Lagrange

multiplier and one can compute the constrained problem by initializing e.g. with u|t=0 = f , λ = 1 and
iterating:

ut = Lu+ λ(f − u)

λ =
1

|Ω|σ2
n

∫
Ω

(u− f)Ludx

E.4 Multichannel signals

For the case when we have a multichannel signals: let f(x) = (f1, f2, . . . , fM )(x) be a M channel signal.
A multi-valued a�nity function (as we will see later) is used to compute w(x, y) based on f (w(x, y) will be
the same for all channels). Let u(x) = (u1, . . . , uM )(x) be the regularized signal. The regularizing functional
in this case is:

Fmcreg(u) :=
1

4

M∑
i=1

∫
Ω×Ω

(ui(y)− ui(x))2w(x, y)dy (E.6)

and the multi-channel evolution for each channel ui is:

uit(x) =

∫
Ω

(ui(y)− ui(x))w(x, y)dy, ui|t=0 = f i (E.7)

E.5 Properties of L

The following properties of the linear operator L leads to establish some results for the �ow (E.3) and for
the variational problem (E.5)

Proposition E.5.1. The linear operator L de�ned by (E.2) satis�es the following properties:

1. If u(x) = const then Lu(x) = 0. For w(x, y) > 0, ∀x, y ∈ Ω, if Lu(x) = 0 then u(x) = const

2. Let u(x0) ≥ u(x), ∀x ∈ Ω, then Lu(x0) ≤ 0. For the minimum let u(x1) ≤ u(x) then Lu(x1) ≥ 0.

3. −L is a positive semide�nite operator i.e. 〈−Lu(x), u(x)〉 ≥ 0 where we consider the L2 inner product.

4.
∫

Ω
Lu(x) = 0
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We will need an additional technical condition on the weight function. The idea of this condition is that
w(x, y) can have zero values, but we need a certain level of connectivity, in the context of that there will not
be any disjoint regions where no information is exchange between them throughout the evolution. Consider:

−Lhas a zero eigenvalue of multiplicity 1. (E.8)

This condition is equivalent to state that −L has only a constant function in its null-space. In graphs, this
condition is equivalent to a connected graph (in the sense that we stated before) when the linear operator is
the graph Laplacian. In our case the speci�c relation is given by the following lemma:

Lemma E.5.2. Condition (E.8) holds if and only if for any two points x, y there exists a sequence of points:
z1, . . . , zk such that w(x, z1) · . . . · w(zk, y) > 0

With this technical condition and the properties of the linear operator L we can prove some important
properties of the �ow (E.3):

Proposition E.5.3. The �ow de�ned by (E.3) satis�es:

1. Preservation of mean value:
1

|Ω|

∫
Ω

u(x, t)dx =
1

|Ω|

∫
Ω

f(x)dx

2. The extremum principle holds

min
x
f(x) ≤ u(x, t) ≤ max

x
f(x) ∀x ∈ Ω, ∀t ≥ 0

3. For w(x, y) which admits condition (E.8), the solution converges to a constant

u(x, t→∞) = const =
1

|Ω|

∫
Ω

f(x)dx

4. The following estimate holds:
1

2

d

dt
||u(x, t)||22 ≤ 0

Notice that from properties (i) and (iv) we have d
dtvar(u(t)) ≤ 0, where var(u) is the (empirical) variance

of u, de�ned by:

var(u) :=
1

|Ω|

∫
Ω

(
u(x)−

∫
Ω

u(y)dy

)2

dx

Similar properties can be found for the variational formulation (E.5):

Proposition E.5.4. The minimizer uλ of (E.5) admits the following properties:

1. Preservation of mean value:

1

|Ω|

∫
Ω

uλ(x)dx =
1

|Ω|

∫
Ω

f(x)dx, ∀λ ≥ 0

2. The extremum principle holds

min
x
f(x) ≤ uλ(x) ≤ max

x
f(x) ∀x ∈ Ω,∀λ ≥ 0

3. For w(x, y) which admits condition (E.8), the solution converges to a constant when λ→ 0

lim
λ→0

uλ(x) = const =
1

|Ω|

∫
Ω

f(x)dx

4. The following estimate holds:
1

2

d

dλ
||f − uλ||22 ≤ 0
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E.6 Weights based on a�nity functions

As we seen before, the weights w(x, y) will de�ne the regularization induced by the functional J(u). The
idea is to consider a basic a�nity structure as the similarity between image features. For a point x ∈ R2

we will assign a feature vector denoted by Ff (x) (a image feature could be grey level value, edge indicator,
dominant direction, dominant frequency, etc.) We will consider also the region Ωw(x) ⊂ Ω as the points y
where w(x, y) > 0. Due to symmetry of w(x, y) we will have the symmetry of this sets in the following sense:
y ∈ Ωw(x)⇔ x ∈ Ωw(y).
Then, in general we will have the general weight function based on a�nities:

w(x, y) =

{
h(Ff (x), Ff (y)) y ∈ Ωw(x)

0 otherwise
(E.9)

where h(s1, s2) is a similarity function with the following properties:

• Positive: h(s1, s2) > 0

• Symmetric: h(s1, s2) = h(s2, s1)

• Bounded: h(s1, s2) ≤M <∞

• Maximal at equality: h(s1, s1) ≥ h(s1, s2) ∀s1, s2

Then, in general, for features in a suitable Banach space, with a norm || · || a typical choice for similarity
function is:

h(s1, s2) = e−(||s1−s2||/m)p (E.10)

where m is a threshold parameter. The power p ≥ 1, in general is set to p = 2 in case of Euclidean norm.

E.6.1 Weights examples

Intensity, local

h(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2

Ff (x) = f(x)

Ωw(x) = {y ∈ Ω | |y − x| ≤ ∆x}

where ∆x is the grid size. This results in a 4 nearest neighbors discretization.

Intensity, weighted, semi-local:

h(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2e−|x−y|
2/(2σ2

d)

Ff (x) = f(x)

Ωw(x) = {y ∈ Ω | |y − x| ≤ r}

where σd controls the spatial decay and r is the window radius (should be in order of σd)

For textures, letK1(x), . . . ,KM (x) beM linear �lters of di�erent directions and frequencies. Let vi := u∗Ki.
The weights can be computed by:

h(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2

Ff (x) = (v1, . . . , vM )(x)

Ωw(x) = {y ∈ Ω | |y − x| ≤ r}

The nonlocal version of Yaroslavsky a�nity:

h(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2

Ff (x) = f(x)

Ωw(x) = Ω
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NL-means a�nity:

h(Ff (x), Ff (y)) = e−(|Ff (x)−Ff (y)|/h)2

Ff (x) = f(x) ∈ Bx where Bxis a patch centered at x

Ωw(x) = Ω

E.7 Discretization

We will require that the weights are sparse enough, this will made the complexity of the algorithm linear.
This constraint is usually not very limitating since in the general case if we have a large window many
connections have very low weight values which can be set to zero. If there are many connections with high
weight values we suggest to take randomly only a part of them. The iterative process can usually compensate
this random choice.
Let uk the value of the pixel k in the image (1 ≤ k ≤ N), wkl is the sparsely discrete version of w(x, y).
Recall the neighborhood notation: l ∈ Nk = {l : w : kl > 0}. The �ow (E.3) is implemented by the explicit
in time forward Euler approximation:

un+1
k = unk + ∆t

∑
l∈Nk

wkl(u
n
l − unk ) (E.11)

where unk = uk(n∆t) All the coe�cients on the right side are nonnegative if:

1 ≥ ∆t
∑
l∈Nk

wkl (E.12)

This is the well known CFL restriction on the time step ∆t. This leads to maximum norm stability, in fact a
maximum principle, for this approximation to (E.3) For the problem with �delity term, we have the following
discretization:

un+1
k = unk + ∆t

∑
l∈Nk

wkl(u
n
l − unk ) + λ∆t(fk − unk ) (E.13)

and this implies the analog CFL condition:

1 ≥ ∆t

(∑
l∈Nk

wkl + λ

)
(E.14)

E.8 Computing weights for non local means

The most important (and demanding in computational terms) part of the method is the approximation
of w(x, y) into a sparse discrete version wkl (where we need the conditions established before). The authors
propose two algorithms: the �rst, a semilocal one, is proposed for denoising purposes; the second, a fully
nonlocal (with random choices instead of checking all the possibilities) is intended for nonlocal segmentation.

E.8.0.1 Semi-local version

Algorithm. For each pixel k:

1. 1) Compute the similarity of all the patches in the window (Authors use 5 × 5 patch Bx and 11 × 11
window Ωw). Construct Nk by taking the m (Authors use m = 5) most similar and the four nearest
neighbors (for conexity condition) of the pixel.

2. 2) Compute the weights wkl, l ∈ Nk using the desired weight function and set to zero all the other
connections. (i.e. wkl = 0, l 6∈ Nk

3. 3) Set wlk = wkl (symmetry of weight)

For the CFL condition needed, if we have a weight function bounded by 1, we can choose ∆t = 1
2m+4 to

satisfy this condition. If we add a �delity term, this is also enough (if λ < 1).
The complexity of this algorithm is O(N ×Windowsize × (Patchsize + logm)).
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E.8.1 Fast approximation for the fully nonlocal version

The following algorithm is based on ideas presented in [15]. It is simpler and faster but not accurate,
anyway the results are better than the original fully nonlocal version.

Algorithm:

1. 1) Compute the mean and the standard deviation of all patches in the image. Create a two dimensional
bin table such that all patches in a bin are within a speci�c range of mean and s.d. from each other.
Both types of bins are spaced in h/2 increments.

2. 2) To construct the set Nk: For each pixel k we consider the 9 bins around it (3×3 window in the table,
this ensures that patches which are very similar are taken into account). Pick randomly 3m patches
from these bins, check their similarity to the patch of pixel k and take the most similar m of them.
Add to Nk also the four nearest neighbors (for connectness)

3. 3) Compute wkl as in the local algorithm.

E.9 Conclusions for denoising

The main conclusions for the denoising scheme proposed by the authors (based on the several examples
that can be found on the original paper) can be summarized as follows:

1. 1) A semi-local search window Ωw = {y ∈ Ω / |y − x| ≤ r} performs better than a fully nonlocal one
(i.e. Ωw(x) = Ω)

2. 2) The steepest descent �ow performs better than the variational minimization for the same regularizer
J(u).

3. 3) The proposed �ow performs better than the original NL-means �lter as well as several well-known
local PDE based regularizations.

E.10 Algorithm for (Supervised) Segmentation

The following algorithm for nonlocal segmentation is based on method that are used in the �eld of clas-
si�cation and machine learning. The key point is realize that we use the same �ow for this task, the only
thing that change is the initial condition. For more information about the deduction of this model see the
original paper.
Let f the input image and w(x, y) the corresponding weight function. Let ΩO0 be an initial set which corre-
sponds to the object to be segmentated, and let ΩB0 be an initial set which corresponds to the background.
In the following algorithm these regions are de�ned by the users, who marks them as an initial condition,
specifying the object to be segmentated and the corresponding background.

Algorithm

1. 1) Initialize

u0 :=


1 x ∈ ΩO0
−1 x ∈ ΩB0
0 otherwise

2. 2) Evolve for a duration T the �ow
ut = Lu, u|t=0 = u0 (E.15)

3. 3) De�ne ΩO, the set of nodes approximating the Object, by:

ΩO := {x ∈ Ω : u(x, T ) > 0}

and the Background by: ΩB = Ω \ ΩO
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In the case of multiple objects the algorithm can be generalized in the following way: Let Ω1
0, . . . ,Ω

M
0 M

disjoint sets which are parts ofM regions to be segmented (including the background), this is the data de�ned
by the user, then the algorithm is:
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Algorithm

1. 1) Initialize a M channel signal ui, i = 1, . . . ,M as follows:

ui0 :=

{
1 x ∈ Ωi0
0 otherwise

2. 2) Evolve for a duration T the �ow
uit = Lui, ui|t=0 = ui0 (E.16)

3. 3) De�ne Ωi, the set of nodes approximating the Object i, by:

Ωi := {x ∈ Ω : i = arg max
j
uj(x, T )}

As a few remarks:

1. This algorithms can be related to image coloring, where a grey-scale image can be colored by user-
provided coloring examples

2. A typical example where this algorithm fail is when the user marks are not even (geometrically speaking)
and this marks dont sorround the object. An example of this can be found on the original paper.
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E.11 Numerical Examples

Figure E.1: Top row: Test images. Clean image g (left), noisy image f . Cameraman image �ltering result
u. Second row: NL-means (nonlocal), and �ltering by nonlocal scale-space (proposed �ow). Third row:
NL-means (11× 11 window), proposed nonlocal scale space (11× 11 window).
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Figure E.2: Horse silhouette, with spots in both object and background, white Gaussian noise is added.
4-neighbor scheme. In the second and third rows, the advancement of the information with the iterations is
illustrated

Figure E.3: Failure example: Marks of the background are too sparse and uneven.
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F. Generalised Nonlocal Image Smoothing - L. Pizarro,

P. Mrázek, S. Didas, S. Grewenig, J. Weickert [12]

The main idea of this paper is to provide a discrete variational approach for image smoothing based on
non local similarity and regularization constraints which penalize general dissimilarity measures de�ned in
image patches.
The classical similarity measure is the weighted L2 distance between patches, as we seen before in NL-means.
For this purpose the authors �rst introduce the NDS model de�ned by Mrázek, which generalizes other
models in the sense that with a choice of parameters this model reduces to known others.
After that, the authors propose a modi�cation of the NDS model, the Generalised NDS model or GNDS,
which includes the patch similarity ideas that can be seen on the NL-means �lter which leads to more
versatility and robustness for local structure of the image.

F.1 NDS model: Nonlocal Data and Smoothness

Let f, u : Ω → R scalar images de�ned in the discrete domain Ω, f must be understood as the original
(noisy) image while u represents the �processed� version of f . Also, let J = {1, . . . , N} the index set of all
pixels in the images. We denote the pixel i as xi.
The discrete Energy JNDS of the NDS �lter proposed by Mrázek in 2006 is a convex combination of a
nonlocal data (or similarity) term Fsim and a nonlocal smoothness (or regularization) term Freg, which are
given by:

Fsim(u) :=
∑
i,j∈J

Ψs(|ui − fj |2)ws(|xi − xj |2) (F.1)

Freg(u) :=
∑
i,j∈J

Ψr(|ui − uj |2)wr(|xi − xj |2) (F.2)

Where Ψ· : R+
0 → R+

0 are increasing functions which penalizes large tonal distances (in greyscale).
The weights w· : R+

0 → R+
0 are non negative functions which penalizes large distances between pixels.

Then, the complete NDS model could be understood as a discrete nonlocal variational method which combine
data and smoothness:

JNDS(u) = (1− α)Fsim(u) + αFreg(u) (F.3)

where α ∈ [0, 1] is a regularization parameter.

F.1.1 Critical Points and Numerical Implementation

Is interesting to study the critical points of this functional, this leads to a �xed point scheme for minimizing
the energy functional and, under suitable hypothesis, this leads to a stable procedure.
First of all, we need to calculate the derivatives of main terms:

∂Fsim
∂uk

= 2
∑
j∈J

Ψ′s(|uk − fj |2)(uk − fj)ws(|xk − xj |2) (F.4)

∂Freg
∂uk

= 4
∑
j∈J

Ψ′r(|uk − uj |2)wr(|xk − xj |2) (F.5)

Notice that derivatives on Ψ are respect of its arguments, then by linearlity:

∂JNDS

∂uk
= (1− α)

∂Fsim
∂uk

+ α
∂Freg
∂uk

Then, for a critical point we want: ∇JNDS(u) = 0⇔ ∂JNDS

∂uk
= 0 ∀k ∈ J .

If we call: si,j := Ψ′s(|ui − fj |2)ws(|xi − xj |2)
ri,j := 2Ψ′r(|ui − uj |2)wr(|xi − xj |2), then the critical point condition becomes to:

0 = (1− α)
∑
j∈J

si,j(ui − fj) + α
∑
j∈J

ri,j(ui − uj) (F.6)
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which can be rewritten in the �xed point form:

ui =
(1− α)

∑
j∈J si,jfj + α

∑
j∈J ri,juj

(1− α)
∑
j∈J si,j + α

∑
j∈J ri,j

(F.7)

To have a well de�ned expression we will need that Ψ· are increasing functions, also we need a positive weight
functions (i.e. w·(s2) > 0). Then, from the last expression, the authors propose the following �xed point
scheme:

u0
i := fi uk+1

i =
(1− α)

∑
j∈J s

k
i,jfj + α

∑
j∈J r

k
i,ju

k
j

(1− α)
∑
j∈J s

k
i,j + α

∑
j∈J r

k
i,j

(F.8)

or, in a compact form: uk+1 = F (uk) where F : RN → RN is a vector function de�ned on each coordinate
by the right side expression of (F.7). This is usually called as �Nonlinear Jacobi Method�
This �xed point scheme has two simple but important properties:

Proposition F.1.1. Under the hypothesis on Ψ· and w· as above, the scheme (F.7) satis�es a maximum-
minimum principle:

min
j∈J

fj ≤ ukj ≤ max
j∈J

fj ∀i ∈ J, k ∈ N (F.9)

This proposition leads to an important theorical result, which guarantees the existence of minimizers (due
to their behaviour of critical points as a �xed points of the operator F )

Proposition F.1.2. The �xed point equation (F.7) has a solution.

The proof relies on Brouwer �xed point theorem and continuity of the operator F due to the �rst propo-
sition.

Alternatively, the minimization of the NDS energy can be found using a gradient descent optimization,
i.e. considering:

uk+1
i − uki

τ
= −∂J

NDS

∂uki
∀i ∈ J

where τ > 0 is the step size. In the same way as the �rst iterative scheme, for this we have:

u0
i := fi uk+1

i = (1− τ)uki + τ
(1− α)

∑
j∈J s

k
i,jfj + α

∑
j∈J r

k
i,ju

k
j

(1− α)
∑
j∈J s

k
i,j + α

∑
j∈J r

k
i,j

(F.10)

Notice that if we set τ = 1 we obtain the �xed point iteration (F.8)

F.1.2 Important Cases

Let us rewrite the equation (F.7) in a more speci�c way (in the sense as we can see the dependances on
parameters like the window size for w (which we will denote by w), for example)
Then, consider the following notation:

hsi,j := Ψ′s(|ui − fj |2) hri,j := 2Ψ′r(|ui − uj |2)

ws,wi,j := ws(|xi − xj |2) wr,wi,j := wr(|xi − xj |2)

notice that a small w denotes a local operation (or a smaller window), and a larger one denotes a large-scale
e�ects. The window size for the data and smoothness may di�er (because the functions are not necesarily
the same), with this notation (F.7) becomes to:

ui =
(1− α)

∑
j∈J h

s
i,jw

s,w
i,j fj + α

∑
j∈J h

r
i,jw

r,w
i,j uj

(1− α)
∑
j∈J h

s
i,jw

s,w
i,j + α

∑
j∈J h

r
i,jw

r,w
i,j

(F.11)

From this equation, and choosing apropiate con�guration of w,α and functions involved we can reduce this
model to a variety of classical models. the following picture shows the landscape covered by the NDS model,
we refer to the original paper for more detailed deduction for this reductions.
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F.2 Generalised Nonlocal Data and Smoothness (GNDS) Model

From the NDS model one can see that the tonal weights (Ψ·) just depend on di�erences between single
pairs of pixels (i.e. the similarity measure just depends on single pixels), this single di�erences have limited
ability to express local image structure and geometry, moreover, for practical purposes usually this di�erences
applies only on a relatively small neighborhood.
The idea for this generalized model is to add the a more powerful measure to evaluate similarity, so the
authors consider the concept of self-similarity of the whole image based on models like NL-means of Buades
et al. to extend the previous model to a more versatile one. Then, the idea is to consider a measure which
compares the similarity of a whole patch around a pixel between the whole patch around the other pixel, this
idea is usually called patch-similarity.

F.2.1 GNDS Functional and Its Minimization

Let us consider the following functions called �tonal distance�: ds, dr : R2p → R+
0 in the similarity and

the regularization term. For example, in the similarity term, such a function calculates the distance between
two image patches u(Pi) and f(Pj) of the initial image (in the case of the regularization term we change this
by u(Pj)). Where the index set Pi denotes the image patch as neighborhood of the pixel i. Both patches are
assumed to have the same size p ∈ N and the same shape.
The standard distance function for this purpose is the weighted L2 norm used in NL means algorithm, de�ned
by:

|d(u(Pi), f(Pj))|2 =
∑
p

gσ(p)(ui+p − fj+p)2

where gσ(p) := exp(−p2/(2σ2)).
With this de�nitions, the GNDS model is de�ned by:

JGNDS(u) = (1− α)FGsim(u) + αFGreg(u)

= (1− α)
∑
i,j∈J

Ψs(|ds(u(Pi), f(Pj))|2) · ws(|xi − xj |2)

+ α
∑
i,j∈J

Ψr(|dr(u(Pi), u(Pj))|2) · wr(|xi − xj |2)

The minimization strategy is the same as for the NDS model, the idea is to �nd a �xed point form for this
new functional. The minimizer of JGNDS necessarily satis�es:

∂JGNDS

∂ui
= (1− α)

∂FGsim
∂ui

+ α
∂FGreg
∂ui

= 0 ∀i ∈ J

where:
∂FGsim
∂ui

= 2
∑
j∈J

gσ ∗Ψ′s(d
2
s;k−·,j−·)(0)(uk − fj) · ws(|xi − xj |2)

∂FGreg
∂ui

= 4
∑
j∈J

gσ ∗Ψ′r(d
2
r;k−·,j−·)(0)(uk − uj) · wr(|xi − xj |2)
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Now if we consider the following notation:

hGSi,j := gσ ∗Ψ′s(|ds(u(Pi), f(Pj))|2)(0)

hGRi,j := 2gσ ∗Ψ′r(|dr(u(Pi), u(Pj))|2)(0)

we have the following �xed point equation for the GNDS model:

ui =
(1− α)

∑
j∈J h

GS
i,j w

s,w
i,j fj + α

∑
j∈J h

GR
i,j w

r,w
i,j uj

(1− α)
∑
j∈J h

GS
i,j w

s,w
i,j + α

∑
j∈J h

GR
i,j w

r,w
i,j

(F.12)

In the same way as in the NDS �xed point equation we can deduce a min-max principle and the existence of
a �xed point, also, a minimizer can be found via gradient descent method.
The most important di�erence between this model and the NDS model is the use of patch distances instead
of single di�erence between pairs of pixels, this induces a patch similarity measure, with is more powerful
and versatile for our purposes.

F.2.2 Double Weighting: Generalization of the model and Particular cases

Let us focus only on the similarity term (the same applies analogously for the regularization term) and
expand the terms of the �xed point equation:

ui =
1

Mi,j

∑
j,p∈J

gσ(p) ·Ψ′
∑
q∈J

gσ(q)|ui+p+q − fj+p+q|2
wi,jfj (F.13)

where Mi,j denotes the normalization term.
Notice that we have the Gaussian term gσ two times in the formula, once during the patch similarity calcu-
lation (sum over q), we will call this inner weighting of patch pixels, and then it appears in the sum over
p, we will call this the outer weighting which is applied when summing the results of the function Ψ′.
Is interesting to see that what this formula means is: For pixels ui and fj we �rst calculate the patch distances
of all patches at positions i+p and j+p taken with the o�set p around ui and fj respectively. Then, average
this patches distances (transformed by the nonlinearlity Ψ′) using the outer weight gσ. Thus, the pixel fj
will contribute to the result ui with a high weight only if the patches around ui and fj are similar AND the
patches around ui+p and fj+p are similar.

A natural question arises when we look at the expression (F.13), we have the two weights (inner and outer)
with the same parameter (σ) but with di�erent role in the expression, the parameter is the same because
this becomes from the derivation of the energy functional, but, since the role between them is di�erent, is
natural to ask what happens if one change the parameter of the weights. If we consider that the weights have
di�erent parameters we have:

ui =
1

Mi,j

∑
j,p∈J

gρ(p) ·Ψ′
∑
q∈J

gσ(q)|ui+p+q − fj+p+q|2
wi,jfj (F.14)

This simple observation makes a more generalized version of the model (obviously this is not derived from
the original functional, but is the generalized version of this one since if we take ρ = σ we are in the original
model again), and establishes a family of �lters from the GNDS model. This is the most general version
of the model, and the following table shows the particular cases that reduces the model to a known other
models. (by adjusting the parameters AND the involved functions).
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Table F.1: Filtering Methods Belonging to GNDS Family
Regularization parameter Patch size Integration Scale Method

[0.5ex] 0 ≤ α ≤ 1 σ > 0 ρ = σ Original GNDS
α ∈ {0, 1} σ > 0 ρ→ 0 NL-means (original)
α ∈ {0, 1} σ → 0 ρ > 0 NL-means (anisotropic)
0 ≤ α ≤ 1 ρ→ 0 σ → 0 Original NDS

[1ex]

A remark on the complexity of this scheme: Given an image of N pixels, a square search window w with
s2 pixels and a circular patch of radius r, the computational complexity of the generalized �lter family (i.e.
the �xed point scheme in the most general version, with two di�erent weights: gρ, gσ is: O(N × s2× r2

ρ × r2
σ)

And �nally, a remark in the case of multichannel images: The extension of GNDS model to multichannel
images is natural, we just need to consider a patch distance based in a vector way, computing the norm
between vectors ~u and ~f (these are vectors with d components, where each component correspond to a
di�erent channel), i.e.:

|d(~u(Pi), ~f(Pj))|2 =
∑
p

gσ(p)||~ui+p − ~fj+p||22

using the euclidean norm. The optimality conditions are the same as the original model, just considering it
on each channel.
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F.3 Numerical Examples

Figure F.1: Comparison to state-of-the-art methods. Top Row: Test images degraded by Gaussian noise
with standard deviation 20. 2nd Row: Restored images by Dabov et al. (2007). 3rd Row: Restored images
by Kervrann and Boulanger (2008). Bottom Row: Restored images by the proposed GNDS model.
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G. Nonlocal Mumford-Shah Regularizers for Color

Image Restoration [14]

The main goal of this paper is to develop several functionals based on approximations of the original
Mumford-Shah functional with nonlocal characteristics incorporated, this nonlocal characteristics are based
on the work of Buades et al. and Gilboa et al.
Is important to incorporate the nonlocal characteristics in new models because this perform better than
local methods in image denoising and restoration when the image have textures (for example, local methods
usually consider textures as noise, and then, in denoising tasks this algorithms just remove the textures).
The authors presents non local extensions for the widely known approximations for the Mumford-Shah
functional, this approximations are due to Ambrosio-Tortorelli and Shah with the primary objective of better
restoration of �ne structures and textures. Some applications (and algorithms) are presented for the following
image tasks:

1. Color Image Deblurring and Denoising

2. Color Image Inpainting

3. Color Image Super-Resolution

4. Color Filter Array Demosaicing

G.1 Introduction - Background

First of all, we need to recall some basic results and concepts about image regularization methods.

G.1.1 Local Regularizers

The basic Mumford-Shah regularizating functional is used commonly in segmentation and restoration
algorithms, it is given by the following formulation:
Given u : Ω→ R and K its edge set, the MSH1 regularizer is:

JMSH1

(u,K) = β

∫
Ω\K
|∇u|2dx+ α

∫
K

dH1

where |∇u| =
√
u2
x1

+ u2
x2
, x = (x1, x2), H1 is the 1-D Hausdor� measure and Ω ⊂ R2 is the open image

domain. Notice that the �rst term enforces u to be smooth everywhere except on the edge set K, and the
second term enforce to minimize the total length of edges.
In general is very hard to minimize (in practice) this functional, due to its non convex behaviour. A way to
solve this problem is to consider another functionals (with better structure) which approximate this one in
some sense that asserts that the minimum points of this new functionals approximates the minimum points
of the original one.
Ambrosio and Tortorelli approximated the Mumford-Shah functional by considering a sequence of more
regular functionals denoted by Jε which converges to JMSH1

in the sense of Γ-convergence. The idea of this
functional is to approximate the edge set K by a smooth function v, the approximation is given by:

JMSH1

ε (u, v) = β

∫
Ω

v2|∇u|2dx+ α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx

where 0 ≤ v(x) ≤ 1 represents the edges: v(x) ∼ 0 if x ∈ K = Ju (jump set of u), v(x) ∼ 1 otherwise; ε is
a small positive constant, α, β positive weights. If we add a �delity term to this functional we have that a
minimizer u = uε of JMSH1

ε approaches a minimizer of JMSH1

as ε→ 0

Another approach is given by Shah using the total variation regularization proposed in image restoriation
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mainly by Rudin, Osher and Fatemi, this is very useful due to its bene�ts of preserving edges and convexity.
The total variation regularization is de�ned in the following way: given a locally integrable function u de�ne:

JTV (u) = sup{
∫

Ω

u∇ · φdx : φ ∈ C1
c (Ω,R), ||φ||L∞(Ω)≤1}

which coincides with
∫

Ω
|∇u|dx when u ∈W 1,1(Ω).

Based on this, Shah proposed a modi�ed version of Ambrosio-Tortorelli approximation by replacing the term
|∇u|2 by |∇u| in the �rst term, then, the Shah approximation for the Mumford-Shah functional is given by:

JMSTV
ε (u, v) = β

∫
Ω

v2|∇u|dx+ α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx

This functional Γ-converges to the JMSTV functional given by:

JMSTV = β

∫
Ω\K
|∇u|dx+ α

∫
K

|u+ − u−|
1 + |u+ − u−|

dH1 + |Dcu|(Ω)

Where u+, u− denotes the values of u `at each side' of K and Dcu is the Cantor part of Du. This last
functional is very similar with the total variation of u ∈ BV (Ω) that can be written for K = Ju as:

JTV = β

∫
Ω\K
|∇u|dx+ α

∫
K

|u+ − u−|dH1 + |Dcu|(Ω)

The only di�erence is that the MSTV regularizer does not penalize the jump part as much as the TV regu-
larizer does.

This functionals are considered only for monochromatic images, but is naturally extended to color images by
Blomgren and Chan, which propose a color TV regularization by coupling the channels, i.e. considering:

JTV =

∫
Ω

||∇u||dx =

∫
Ω

√
|∇uR|2 + |∇uG|2 + |∇uB |2dx

Bar et al. extend this idea for the Mumford-Shah approximations for color images, by replacing |∇u| by
||∇u|| in JMSH

ε and JMSTV
ε . Notice that the scalar-valued edge map v is common for the three channels and

provides the necessary coupling between colors.

G.1.2 Nonlocal Methods

As we seen before in review of the paper of Buades et al. the importance of nonlocal methods is based on
their well adaptation to texture denoising in contrast to standard local methods. Recall that the basic idea is
to extend the concept of neighborhood �lters which replace the value of a pixel with an average of its spatial
neighbors, the nonlocal �lters extend this concept to the one of patch-similarity, i.e. we will replace the value
of a pixel for an averaging of pixels which have similar patch values. (and then, the spatial restriction is
relaxed). The classical �lter for this task is the NL-means �lter due to Buades et al.:

NL(f(x)) =
1

C(x)

∫
Ω

exp

(
−da(f(x), f(y))

h2

)
f(y)dy

da(f(x), f(y)) =

∫
R2

ga(t)||f(x+ t)− f(y + t)||2dt

where da is the patch distance, f is the image to be �ltered and ga is a Gaussian kernel with standard
deviation a which determines the patch size. For more information of this method you can see the chapter 3
of this review.

G.1.3 Nonlocal Regularizers

The idea of this regularizers is to see the nonlocal �ltering as a quadratic regularization based upon a
nonlocal graph (a graph with weights). The most important contributions on this �eld are given by Gilboa
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and Osher.
We will need some operators from this theory, the so called �non local di�erential operators over graphs�
which are proposed by Gilboa and Osher.
Let u : Ω → R and w : Ω × Ω → R a non negative and symmetric weight function. We de�ne the non local
gradient vector ∇wu : Ω× Ω→ R as:

(∇wu)(x, y) = (u(y)− u(x))
√
w(x, y)

And the norm of the nonlocal gradient of u is de�ned by:

|∇wu|(x) :=

√∫
Ω

(u(y)− u(x))2w(x, y)dy

We also de�ne the non local divergence of the vector ~v : Ω× Ω→ R by:

(divw~v)(x) :=

∫
Ω

(v(x, y)− v(y, x))
√
w(x, y)dy

Inspired in this operators, Gilboa and Osher propose the following general form for nonlocal regularizating
functionals:

J(u) =

∫
Ω

φ(|∇wu|2)dx

where s 7→ φ(s) is positive, increasing and convex in
√
s, and φ(0) = 0.

If φ(s) =
√
s, they propose the NL/TV (NonLocal Total Variation) regularizer:

JNL/TV (u) =

∫
Ω

|∇wu|dx =

∫
Ω

√∫
Ω

(u(y)− u(x))2w(x, y)dydx

Which coincides, in the 2D local case to JTV (u) =
∫

Ω
|∇u|dx

G.2 Proposed Nonlocal Mumford-Shah Regularizers

Based on the above, the authors propose nonlocal versions of the approximating functionals of Ambrosio-
Tortorelli and Shah for the Mumford-Shah functional, and considering an appropiate �delity term they
develop functionals for the following image tasks:

1. Deblurring-Denoising

2. Inpainting

3. Super-Resolution

4. Demosaicing

Is important to recall that they also incorporate the vector case (i.e. color images) in their formulation, in
the way as we seen above.

Then, the general model proposed by the authors is:

JNL/MS(u, v) := β

∫
Ω

v2φ(||∇wu||2)dx︸ ︷︷ ︸
F
NL/MS
reg

+α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx︸ ︷︷ ︸

FAT

= FNL/MS
reg (u, v) + FAT (v)

where u : Ω→ R3, v : Ω→ [0, 1] and φ(s) = s or φ(s) =
√
s (the �rst choice correspond to NL/MSH1 and

the second to MS/TV ) i.e.:

JNL/MSH1

(u, v) := β

∫
Ω

v2||∇wu||2dx︸ ︷︷ ︸
F
NL/MS
regAT

+α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx = F

NL/MS
regAT (u, v) + FAT (v)
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JNL/MSTV (u, v) := β

∫
Ω

v2||∇wu||dx︸ ︷︷ ︸
F
NL/MS
regS

+α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx = F

NL/MS
regS (u, v) + FAT (v)

and recall that:

||∇wu||(x) =

√ ∑
i=R,G,B

|∇wui|2(x) =

√ ∑
i=R,G,B

∫
Ω

(ui(x)− ui(y))2w(x, y)dy

as we said before, adding a �delity term to this functionals we will be able to perform a speci�c restoration
task, we will discuss this in the next section.
As an additional remark, in the practice the weight function that will be used is the classic NL-means weight
(given an image q):

w(x, y) = exp

(
−da(q(x), q(y))

h2

)
and we use search windows S(x) = {y / |x− y| ≤ r}

G.3 Image Restoration Tasks with NL/MS Regularizers

As we said before, choosing an appropiate �delity term we will construct functionals for several tasks of
image restoration, also sometimes we will need to do a pre-process to image in order to construct the weight
function appropriately.

G.3.1 Deblurring-Denoising

The standard degradation model for deblurring and denoising is:

f = k ∗ u+ n (f i = k ∗ ui + ni, i = R,G,B)

where k is the associated (known) blurring kernel and n is an additive noise (which can be Gaussian, Laplacian
or impulse noise (in the last case a preprocessing is needed, because the model is no longer valid in this case)).
Then, in the case of Gaussian noise, the L2 �delity term is commonly used (this is led by maximum likelihood
estimation)

Φ(f − k ∗ u) =

∫
Ω

∑
i

|f i − k ∗ ui|2dx

For the impulse noise (or Laplacian) the L1 �delity term is more appropriate (due to its better results on
removing outlier e�ects), then, considering the case of independent channels noise we have:

Φ(f − k ∗ u) =

∫
Ω

∑
i

|f i − k ∗ ui|dx

Then, the proposed types of total energy for color image deblurring-denoising are:

JGau(u, v) =
1

2

∫
Ω

∑
i

|f i − k ∗ ui|2dx︸ ︷︷ ︸
FGausim

+JNL/MS(u, v) = FGausim (u) + JNL/MS(u, v)

JImp(u, v) =

∫
Ω

∑
i

|f i − k ∗ ui|dx︸ ︷︷ ︸
F Impsim

+JNL/MS(u, v) = F Impsim (u) + JNL/MS(u, v)

The proprocess needed for the construction of a image g needed for the construction of weight function w is
given by:

1. Initialize: ri0 = 0, gi0 = 0, i = R,G,B
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2. do (iterate m = 0, 1, 2, . . .)

• gm+1 = median(f + rm, [s s])

• rm+1 = rm + f − k ∗ gm+1

while
∑
i ||f i − k ∗ gim||1 >

∑
i ||f i − k ∗ gim+1||1

G.3.2 Inpainting

In this problem we have an observed image f given by:

f = u in Ω \D

Where D = D0 is the region where the input data u is lost. Inspired in the work of Chan and Shen [4], the
authors propose the following energy functional for inpainting:

JInp(u, v) =
λ

2

∫
Ω

1Ω\D(x)
∑
i

|f i − ui|2dx︸ ︷︷ ︸
F Inpsim

+JNL/MS(u, v) = F Inpsim (u) + JNL/MS(u, v)

Also, the weights w are updated only in the damaged region D in the m-th iteration for u using the modi�ed
patch distance:

dRa (u(x), u(y)) =

∫
R2

1Ω\R(x+ t)ga(t)||u(x+ t)− u(y + t)||2dt

where R ⊂ D is a unrecovered region (still missing region).
Then, the missing region D = D0 can be recovered by the following iterative algorithm, which produces
regiones Di, i = 0, 1, 2, . . . con Dn ⊂ . . . ⊂ D0

Algorithm

1. Compute weights w for x ∈ Ω such that P (x) ∩ (Ω \D0) 6= ∅ using dD0

a (u0(x), u0(y)) with u0 = f in
Ω \D0 and ∞ in D0, a patch P (x) centered at x, and y ∈ S(x) ∩ (Ω \D0).

2. Iterate n = 1, 2, . . . to obtain a minimizer (u, v) starting with u = u0:

(a) For �xed u, update v in Ω to obtain vn

(b) For �xed v, update u in Ω to obtain un with a recovered region Ω \Dn: at every m-th iteration,
update weights w only in x ∈ D0 subject to P (x) ∩ (Ω \Dm,n) 6= ∅ with

dD
m,n

a (u(x), u(y))

where y ∈ S(x) ∩ (Ω \ Dn,m), Dn,m is and un-recovered region in D0 until m-th iteration with
Dn = Dn,n ⊂ · · · ⊂ Dn,2m ⊂ Dn,m

G.3.3 Super-Resolution

The idea of this process is to recover a high resolution image from a �ltered and down-sampled image
(This process is usual in a sequence of images in video). Our observed data is

f i = Dk(h ∗ ui) i = R,G,B

where h is a low-pass �lter, Dk : Rn×n → Rp×p, where p = [n/k2] is the down-sampling operator with a
factor k on each axis. We want to recover u ∈ (Rn×n)3, this could be done minimizing:

JSup(u, v) =
1

2

∫
Ω

∑
i

|f i −Dk(h ∗ ui)|2dx︸ ︷︷ ︸
FSupsim

+JNL/MS(u, v) = FSupsim (u) + JNL/MS(u, v)

In addition, for the computation of the weights w we need a super-resolved image g ∈ (Rn×n)3 obtained by
bicubic interpolation of f . Notice that g is only used for the computation.
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G.3.4 Demosaicing

The idea is to reconstruct a full color image from the incomplete color samples output from an image
sensor overlaid a color �lter array (CFA). A CFA is a mosaic of color �lters in front of the image sensor (we
use here the Bayer �lter [2]). Since each pixel of the sensor is behind a color �lter, the output is and array
of pixel values, each indicating a raw intensity of one of the three �lter colors. In this variational framework,
we consider the observed data f as:

f i = Hi · ui i = R,G,B

where · is the pointwise product, and Hi is the down-sampling operator; HG has alternating 1 and 0 values
for odd rows and alternating 0 and 1 values for even rows, HR has alternating 0 and 1 values for odd rows
and 1 and only 0 values for even rows, HB has only 0 values for odd rows and alternating 1 and 0 values for
even rows. The authors propose the following minimization problem to recover a full color image u:

JDemo(u, v) =
1

2

∫
Ω

∑
i

|f i −Hi · ui|2dx︸ ︷︷ ︸
FDemosim

+JNL/MS(u, v) = FDemosim (u) + JNL/MS(u, v)

Moreover, for the computation of the weight function w, the authors use the interpolated image obtained by
applying Hamilton-Adams algorithm [8] for the green channel and bilineal interpolation for R-G and B-G.

G.3.5 Numerical Discretizations

For minimize the proposed functionals in u and v we will consider the Euler Lagrange equations, notice
that:

∂JGau,Im,Inp,Sup,Demo

∂v
= 2βvφ(||∇wu||2)− 2εα∆v + α

(
v − 1

2ε

)
= 0

∂JGau

∂u
= k̃ ∗ (k ∗ u− f) + LNL/MSu = 0

∂JIm

∂u
= k̃ ∗ sign(k ∗ u− f) + LNL/MSu = 0

∂JInp

∂u
= 1Ω\D(u− f) + LNL/MSu = 0

∂JSup

∂u
= h̃ ∗ (DT

k (Dk(h ∗ u)− f)) + LNL/MSu = 0

∂JDemo

∂u
= H · (H · u− f) + LNL/MSu = 0

where k̃(x) = k(−x), h̃(x) = h(−x), DT
k is the transpose of Dk (i.e. the up-sampling operator) and:

LNL/MSu = −2

∫
Ω

{(u(y)− u(x))w(x, y) · [(v2(y)φ′(||∇wu||2(y)) + v2(x)φ′(||∇wu||2(x))]}dy

To solve two Euler-Lagrange equations simultaneously the alternate minimization (AM) approach (which we
seen in the second chapter) is applied. Since the energy functionals are not convex in (u, v) we may compute
only a local minimizer. The proposed iterative algorithm is:

• Initialization: u0 = f, v0 = 1

• Iterate n = 0, 1, 2, . . . until (||un+1 − un||2 < ν||un||2)

1. Solve the equation for vn+1 using Gauss-Seidel Scheme:

(2βφ(||∇wun||2) + α/(2ε)− 2εα∆)vn+1 = α/(2ε)

2. Set un+1,0 = un and solve for un+1 by iterating on l:

un+1,l+1 = un+1,l − dt · ∂J
∂u

(un+1,l, vn+1)
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where ν is a small positive constant.
The discretization of the functions involved is: Let uik the value of a pixel k in the image (1 ≤ k ≤ N)
with channel i = R,G,B i.e. the discretization of ui(x), let pik,l be the discretized version of pi(x, y) with
x, y ∈ Ω). Let wk,l the sparsely discrete version of the weight function w, this is constructed by the same
algorithm described by Gilboa and Osher in chapter 4. We follow the same notation for neighborhood sets
as in Gilboa and Osher paper (and in Buades paper): l ∈ Nk{l : wk,l > 0}. Then, we de�ne ∇wd and divwd,
the discretizations of ∇w and divw as:

∇wd(uik) := (uil − uik)
√
wk,l l ∈ Nk

divwd(p
i
k,l) :=

∑
l∈Nk

(pik,l − pil,k)
√
wk,l

Then we have:

|pi|k =

√∑
l

(pik,l)
2 the magnitude of pik,lat k

and then, the discretization of ||∇wu||2:

||∇wdu||2 =
∑

i∈{R,G,B}

|∇wduik|2 =
∑
i

∑
l

(uil − uik)2wk,l

For details on the construction of w we refer to the algorithm given in Gilboa and Osher paper, on chapter
4.

G.4 Numerical Examples

Figure G.1: DENOISING OR DEBLURRING IN THE PRESENCE OF GAUSSIAN NOISE. Top: (�rst)
noisy image (f = u + n) with noise variance (σ = 0.02), recovered images using (second) MSTV and (third
and fourth) NL/MSTV with edge set v. Bottom: (�rst) original, (second) blurry-noisy data (f = k ∗ u+ n)
and noise variance (σ = 0.02) recovered images using (third) MSTV and (fourth) NL/MSTV.
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Figure G.2: INPAINTING of 150 × 150) size image. First column: (top row) original, (middle) data f .
Second and third columns: recovered images using (top) MSH1, MSTV, (middle) NL/MSH1, NL/MSTV,
with 51× 51 search window and 9× 9 patch. Bottom row: process of inpainting with NL/MSH1 in 100th,
200th, and 350th iterations.

Figure G.3: SUPER-RESOLUTION of a still image. Top: original image of size 272 × 272, blurred image
h ∗ u with out of focus blur kernel h with radius r = 3, down-sampled data f = Dk(h ∗ u) of size 68 × 68
with k = 4, preprocessed (up-sampled) image ḡ using bicubic interpolation. Bottom: recovered images using
(left) MSTV, (right) NL/MSTV.
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Figure G.4: DEMOSAICING using NL/MSTV with iterative algorithm. Top: original image, data f ,
interpolated image using Hamilton-Adams for green and bilinear interpolation for R−G and B−G. Bottom:
demosaiced images with decreasing sequence of h = {16, 8, 4}

G.5 Summary and Conclusions

After several testings to check the performance of the methods proposed by the authors and other common
methods (results can be seen on the Numerical examples, and more information can be seen on the original
paper) the authors conclude:

1. NL/MSH1 and NL/MSTV outperform the local one methods on all the applications.

2. For deblurring-denosing NL/TV and NL/MSTV provide the best recovered images.

3. NL/MSTV brings the best results in super-resolution.

4. NL/MSH1 and NL/MSTV provide superior results to local models by better recovering textures and
large missing regions.

5. NL/MSTV reconstructs images best in demosaicing.

To sum up, NL/MSTV produces the best results in general. The next step of the project is to consider the
numerical implementation of these models.
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H. Index Measurements

H.1 Camou�age measure models

Camou�age is used to prevent detection of the individual combat soldier and his equipment by both
visual observation and other sensors, and thereby to increase the survivability of all soldiers and the mission
e�ectiveness. Camou�age achieves its purposes by blending the soldier with the background, and disrupting
the cues for perceiving the soldier as a single object (Killian & Hep�nger, 1992).

Since the mid 1990's, there has been a need to improve the understanding of how low contrast targets,
such as camou�age, are perceived by observers and acquired in complex surrounds. Although there has
been a long history of attempting to predict the probability of psychophysical task (Detection, Recognition,
Identi�cation) for target acquisition by means of electro-optical systems. Most of the models developed for
predicting psychophysical task performance of a given target have been expressed in terms of the model's
target signature metric and an ensemble average of observers. These models are not highly accurate in
predicting the psychophysical performance of a unique target in a unique surround due to the absence of
a su�ciently adequate description of the target signature and natural surround and the interactions of the
target signature with the local surround (Desmond, 2004). Figure 3 shows target acquisition models that
were developed for military purposes, with the primary emphasis on sensor performance (Desmond, 2004)

Figure H.1: Military and Academia Progress Toward Modeling Observer Target Acquisition Performance
(Desmond, 2004)

H.1.1 S-CIELAB Metric

The original digital image is decomposed into a color space based on opponent-colors, and each color
separation is convolved with a Gaussian shaped, two-dimensional separable spatial �lter to simulate the
blurring of the human visual system. Zhang and Wandell pointed out those psychophysical experiments
suggest the human visual system's representation of simple colored patterns is pattern-color separable. Thus,
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the image can be pre-processed with separate color and spatial �lters which correspond to the human visual
system prior to transformation to CIELAB color space. The delta E color di�erence is calculated between
the original and its copy to quantitatively describe any reproduction error. Spatially correlated color error
maps or histograms of color error can be generated using the 1978 CIELAB color space.

Figure H.2: The S-CIELAB Color Methodology

H.1.2 The Sarno� Visual Discrimination Model

The Sarno� model, requires two images as input for analysis and produces an output in terms of Just
Noticeable Di�erence (JND).

An image pair with one JND has a 75% probability of discrimination, two JNDs have has a 93% probability
of discrimination, and three JNDs have a 98% probability of discrimination. this model quanti�es an observer
psychophysical discrimination task, i.e., measuring the di�erence of comparing two similar images, rather than
measuring an observer military detection task

H.2 Patterns evaluation system

H.2.1 MACE (mobile army camou�age evaluation Killian & Hep�nger (1992))

The MACE system consists of hardware and software for acquiring, reducing and analyzing images
of camou�age-in-background scenes. Analysis with MACE system includes transformation from a set of
monochromatic images to standard color description coordinates, and direct comparisons of �rst and second
order statistical measures between the camou�aged soldier and the local background.

H.2.2 Data reduction

Is a transformation from a set of monochromatic images to standard color description coordinates. We
note that MACE system uses the standard system CIE (Commision Internationale de L'Eclairage) for color
matching built around Grassman's tristimulus laws for color mixing: X

Y
Z

 = k

∫ ∞
0

R(λ)S(λ)

 ϕx(λ)
ϕy(λ)
ϕz(λ)

 dλ,

where:

• R(λ) is the surface re�ectance of an object under observation.

• S(λ) is the spectral radiance of the illuminant.
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Figure H.3: The Sarno� JND Model

• ?(λ) are the tristimulus response functions for standar observer.

• k is a normalization constant.

The data reduction process consists of three steps: frame registration, re�ectance extraction, and �nally the
transformation, using the above equation.

H.3 Measures of similarity

Killian & Hep�nger ( 1992) implemented a set of object/background similarity measures that are sensitive
to transitions in intensity, color, and texture as a basis for camou�age evaluation. The measured the di�erence
in mean, standard deviation, minimum and maximum value, coe�cient of skewness, coe�cient of kurtosis,
and Bhattacharyya distance between the �rst order distribution of objet and background. They also used
measures based on spatial, gray level co-ocurrence matrix (SGLCM) and the spatial gray level di�erence
distribution of Weszka. All of these features are determined for each color-component image over a range in
scale space. The texture features are also calculated for four orientations of the displacement operator. The
�nal step of MACE system is to rank order a series of camou�age patterns, based on its features.

H.3.1 Georgia Tech Vision GTV

The Georgia Tech Research Institute developed a simulation of human vision and visual cognition that is
capable of automatically detecting and identifying targets and other types of visual features in visible, IR,
and SAR imagery. The simulation, called GTV (Georgia Tech Vision), was originally developed for the Army
AMCOM for the purpose of evaluating camou�age and IR suppression. It has since proven to be a powerful
tool when used in a number of ATR scenarios, including identi�cation of defects in agricultural products,
�nding areas of interest in multi-spectral overhead imagery, and identi�cation and classi�cation of lesions in
biomedical imagery.
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H.3.2 Synthetic Image Analyst (SynIA)

SynIA is a GTV-based software that incorporates a model of vision and visual cognition. Like a human
image analyst, SynIA must experience each target in a number of di�erent views and contexts before it can
reliably discriminate the targets from other objects and background clutter.

The normal sequence of operations in interpreting images is:

• Analyze the both the training and test images into their visual features.

Figure H.4: Examples of spatial frequency channel outputs for the Òbare vehicleÓ input image shown in
Figure 5

• Train SynIA by using the outputs of the SynIA Analysis for the training set. This generates target
knowledge �les. In training, the targets are speci�ed by mask images, in which the targets pixels are
set to non-zero values and other pixels are set to zero.

• Interpret the test images by using the outputs of SynIA analysis and specifying the target knowledge
�les generated by training SynIA with similar images.

In order to quantify the degree of similarity between signature of the various vehicle con�gurations, it used
a �gure of merit called the Spatial Pattern Angle. This measure is an analog of the spectral angle. The
spectral angle, commonly used in hyper-spectral signal analysis, is the resultant angle between two points in
multi-dimensional space made up of the various spectral dimensions. Analogously, the measure used in this
study is the resultant angle between points. The spatial pattern angle is de�ned in a hyper-space de�ned by
the 24 spatial-�lter channel outputs, as:

θ = cos−1

(
~a ·~b
‖~a‖‖~b‖

)
,

where ~a and ~b are vectors representing the 24 �lter channel outputs for two di�erent target con�gurations.
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Figure H.5: Input images showing target con�gurations and masks.
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