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The laws of quantum physics provide intriguing possibilities for a tremendous 

increase in speed compared to classical computation1. Because this power is 

achieved through the controlled evolution of entangled quantum states, a clear 

demonstration of entanglement represents a key milestone towards the 

construction of a scalable quantum computer2,3.  Although entanglement can be 

inferred from simple experiments, a direct demonstration is challenging because 

all of the DiVincenzo criteria4 for quantum computation must be met 

simultaneously. Only subsets of these key requirements have been demonstrated 

previously for superconducting qubits5-9.  Here, we demonstrate all of the 

DiVincenzo criteria simultaneously, thus taking a significant step forward towards 

placing superconducting qubits on the roadmap for scalable quantum computing. 

Specifically, capacitively-coupled Josephson phase qubits are used to create Bell 

states, which when measured using state tomography on both qubits show an 

entangled state with fidelity of up to 87%.  Our results demonstrate a high degree 

of unitary control of the system, indicating that larger implementations are within 

reach. 

Circuits made of superconductors and Josephson junctions are promising candidates for 

scalable quantum computation because of their compatibility with integrated-circuit 

fabrication technology5-9. The Josephson phase qubit stands apart from other 
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superconducting qubits because it does not require an optimal operating point. Coupling 

of phase qubits is thus straightforward, allowing for multiple control methods10.  With 

recent improvements in coherence times and amplitudes11, and the ability to measure 

both qubit states simultaneously5, it is possible to use phase qubits to produce entangled 

states and measure them with high fidelity. We believe that demonstrations of quantum 

algorithms are also feasible.  

A schematic of the phase qubit circuit is drawn in Fig. 1a.  The Josephson junction (with 

critical current 0I ) has a superconducting phase differenceδ that serves as the quantum 

variable. When biased close to the critical current, the junction and its loop inductance 
L  give a cubic potential that has qubit states 0  and 1 , with an energy spacing that 

corresponds to a transition frequency πω 2/10 ~ 5 GHz (see Fig. 1b). This frequency can 

be adjusted by ~30% via the bias current )(tIφ .   

Single qubit logic operations, corresponding to rotations about the x, y, and z-axes of the 

Bloch sphere, are generated as follows. Rotations about the z-axis are produced from 

current pulses )(tI Z  on the qubit bias line that adiabatically change the qubit frequency, 

leading to phase accumulation between the 0  and 1  states of the qubit11. Rotations 

about any axis in the x-y plane are produced by microwave pulses resonant with the 

qubit transition frequency. They selectively address only the qubit energy levels because 

transitions to higher lying energy levels are off-resonance due to the anharmonicity of 

the potential and the shaping of the pulses12. The phase of the microwave pulses defines 

the rotation axis in the x-y plane. The pulse duration and amplitude control the rotation 

angle. 

The qubit state is measured by applying a strong pulse to ZI  so that only the 1  state 

tunnels out of the cubic well (see Fig. 1c). Once tunnelled, the state quickly decays into 
an external ground state that can be easily distinguished from the 0  state by an on-chip 

SQUID amplifier. 
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Two separate phase qubits are coupled with a fixed capacitor5, as sketched in Fig. 1d. 

With the qubits labelled A and B, the coupling Hamiltonian is 
( )( )011010012/int += SH , where 

BA
1001 ⊗= . The coupling strength 

( ) 10/ ωhCCS x= is proportional to the coupling capacitance 3≈xC fF, and 3.1≈C  pF is 

the value of the shunting capacitor (see Methods section).  The two qubits may easily be 

brought into resonance, even though they are not identical, because each can be tuned 

over a large frequency range.  On resonance, the interaction produces an oscillation with 
frequency hS /  between the states 01  and 10i . For an interaction time of Sh 4/ the 

coupling produces the iSWAP  gate: this gate, together with single qubit gates, is 

universal13. The coupling also manifests itself as an avoided level crossing of strength 

hS /  in the spectroscopy of the individual qubits14.    

The performance of each qubit can be determined separately by strongly detuning the 

two qubits relative to hS /  so that they behave independently.  A standard set of 

experiments, including Rabi and Ramsey oscillations, spin echo sequences and 

inversion recovery experiments, give an energy relaxation time 1301 =T ns and a 

dephasing time 80*
2 =T ns for each qubit.  These results are consistent with measured 

values of an uncoupled sample11, indicating no additional loss due to the second qubit. 

The measurement fidelities, defined as the probability of correctly identifying the state 
0  ( 1 ), are 95.00 =F  ( 85.01 =F ). 

We next tune both qubits to 1.52/10 =πω  GHz and determine the splitting 

10/ =hS MHz by qubit spectroscopy. The time dynamics of the coupling is verified by 

initializing the qubits to the 00  state and applying to qubit B a 180o rotation about the 

x axis (180x pulse) of duration 10ns. This pulse is sufficiently long to avoid unwanted 

transitions to other energy levels, but short on the time scale of the coupling.  The 
resulting state 01  is not an eigenstate of the coupling Hamiltonian, and thus evolves in 

time according to ( ) ( )102/sin012/cos)( hh StiStt +=ψ . After a variable free-
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evolution time freet , we simultaneously measure the state of the two qubits.  Repeating 

the experiment approximately 1,000 times, we determine the occupation probabilities 

00P , 01P , 10P , and 11P . This sequence of operations is depicted in Fig. 2a, and the 

measured probabilities are plotted in Fig. 2b. 

The occupation probabilities 01P  and 10P  oscillate out of phase with a period of 100 ns, 

consistent with the spectroscopic measurements. The amplitude and decay of the data is 

also compatible with the separately measured lifetimes and measurement fidelities of 

the single qubits. Compared to earlier experiments5, the amplitude of the measured 

oscillations is significantly larger because of improvements in single qubit fidelities. We 

note that the oscillations persist longer than the dephasing time 80*
2 =T  ns because the 

period of the coupled qubit oscillations shown in Fig. 2 is, to first order, insensitive to 

the detuning of the qubits. For these states, this represents “self-refocusing” of low-

frequency noise, or equivalently, a degeneracy point that is also tunable. 

Although this data is consistent with the production of an entangled state at time 
25=freet  ns, a more stringent test includes performing coherent single qubit operations 

on this entangled state to verify the predicted unitary evolution of the system. After the 
application of a180x pulse on qubit B and a free evolution time of 25=freet  ns, the 

system is in the entangled state ( ) 2/10011 i−=ψ . By then applying a 90z pulse 

on qubit B, we create the Bell state ( ) 2/10012 −=ψ . Because 2ψ  is an 

eigenstate of the coupling Hamiltonian, it should not evolve with time. Implementation 

of this sequence of operations is complicated by the coupling interaction that occurs 

during the single qubit operations. Compared with the coupling interaction time 
25=freet  ns, the duration of the single qubit gates 180x and 90z are 10 ns and 4 ns, 

respectively, and are thus not negligible. The excess coupled interaction during the 

single qubit gates can be significantly compensated by reducing the free evolution 
time15 to  16=freet  ns, which we checked numerically. Upon executing this sequence of 
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operations, we verify that indeed 01P  and 10P  no longer oscillate as a function of freet , 

as shown in Fig. 2c.  

This observed behaviour, however, could also be attributed to the destruction of 
coherence between the states 01  and 10  caused by the application of the 90z pulse. 

To check this possibility, we instead apply a 180z pulse on qubit B when the system is in 
the state 1ψ , creating the state ( ) 2/10013 i+=ψ . Because 3ψ  is equivalent 

to 1ψ  but delayed by 50=freet ns, a reversal of the oscillations is predicted for this 

experiment. This prediction is verified by the data in Fig. 2d, and provides further 

evidence of an entangled state. 

A full and unambiguous test of entanglement comes from state tomography2,3,16, which 

involves the measurement of the quantum state in all nine combinations of three 

measurement bases (x, -y, and z) for each qubit. Each measurement gives three unique 

probabilities (e.g. P01, P10, P11) for a total of 27 numbers, which are used to compute the 

15 independent parameters of the unknown density matrix ρ  via a least squares fit16. 

The measurement basis change from z to x (-y) arises from applying a 90y (90x) 

microwave pulse before measurement11.  

After calibrating the phase of the microwave pulses for the two qubits (see Methods 
section) we perform state tomography on 1ψ , as indicated by the sequence of 

operations in Fig. 3a. As in the previous experiment, we reduced the duration of the free 

evolution to compensate for coupled qubit interaction during the initial 180x pulse and 

the tomography pulses. After executing all nine tomography sequences and measuring 
the resulting occupation probabilities, we compute the density matrix expρ . The real and 

imaginary parts of the reconstructed density matrix expρ  are shown in Fig 3b. The 

imaginary off-diagonal elements 1001  and 0110  have nearly the same magnitude 

as the diagonal components 0101  and 1010 , clearly revealing a coherent 

superposition of the states 01  and 10 .  This measurement unambiguously verifies 
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that the two qubits are indeed entangled. Compared to the ideally expected density 
matrix 11 ψψσ =  , we compute the fidelity of the reconstructed quantum state and 

find 75.02/1
exp

2/1
exp == σρσtrF .  

To identify the sources of fidelity loss, we first correct for measurement error. Based on 

the measurement fidelities discussed earlier, we renormalize the measured occupation 

probabilities and calculate the intrinsic occupation probabilities (see Methods). From 
this we compute a density matrix corrected for measurement Mexp,ρ  (see Fig. 3c) that 

gives an improved fidelity 87.02/1
exp,

2/1
exp, == σρσ MM trF . We attribute most of the 

remaining fidelity loss to single-qubit decoherence. By modelling decoherence effects15 

using the measured relaxation times, we obtain an expected density matrix thρ that gives 

a fidelity 89.02/12/1 == σρσ thth trF , which is close to the normalized measured 

value17. The fact that our error is dominated by decoherence indicates good unitary 

control of our system and thus suggests that improvements in coherence times will 

directly translate to enhanced gate fidelities.  Dramatic increases in coherence should be 

possible based on straightforward improvements in the dielectric material of the 

shunting capacitor11,19. 

In conclusion, we have performed experiments on coupled phase qubits and verified by 

state tomography the creation of an entangled Bell state with 87% fidelity. Given that 

most of the loss in fidelity can be attributed to decoherence, we believe that more 

complex implementations are well within reach with only modest improvements in 

qubit coherence times.   

Methods 

Phase Qubit The design concepts behind this phase qubit have been discussed 

previously11. A ~1 µm2 area tunnel junction was shunted by a capacitor to reduce the 

effective density of two-level defects of the tunnel barrier, improving the coherence 
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amplitude of the qubit11. Amorphous silicon nitride was used for the dielectric material 

of the shunting capacitor: its loss tangent is consistent with the measured energy 

relaxation time. Parameters of the circuit are C ~ 1.3 pF, L ~ 850 pH, and I0 ~ 1.1 µA. 

The two phase qubits are coupled via a 3 fF interdigitated capacitor, giving an 

interaction strength of 10/ =hS MHz. Measurement crosstalk5 between the qubits is 

expected to be insignificant because of the small interaction strength, as confirmed by 

measurements.  

Microwaves The microwave pulses are generated using an IQ mixer. Phase and 

amplitude control is achieved by adding the signal of the two quadrature components (I 

and Q) of a continuous wave microwave signal, with separate amplitude control for 

each channel11. One microwave source and two IQ mixers were used to achieve phase 

and amplitude control of the microwave pulses for both qubits. 

State Tomography Implementing state tomography requires calibration of the 

phase difference between the microwave pulses reaching the qubits, as the rotation axis 

depends on phase. Even if the same microwave pulse is generated by both mixers, the 

actual phase observed by the qubits differs because the microwave lines have slightly 

different lengths. Calibration of this phase offset is done in a separate experiment by 

simultaneously applying a 90x pulse on qubit A and a 90θ pulse on qubit B, where θ is an 

adjustable microwave phase angle.  A plot of the occupation probabilities versus free 

evolution time gives oscillations whose amplitude depends on the phase angle θ.  The 

oscillation amplitudes of 01P  and 10P  are maximized (minimized) whenever the relative 

phase between the 01  and 10  states is 90 (0) degrees. When the oscillation 

amplitude is maximized and P10 peaks first, θ corresponds to a y-rotation for the second 

qubit and serves as our calibration. 
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The intrinsic occupation probabilities Pi for the two qubits can be inferred from 

the measured probabilities T
m PPPPP ),,,( 11100100=  and the measurement fidelities 

95.00 =F and 85.01 =F  (see text). The intrinsic occupation probabilities are computed 

as mi PFP 1−=  where 

( ) ( ) ( )
( ) ( )( ) ( )
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We verified that none of the inferred intrinsic probabilities were negative. The measured 

probabilities were computed from 20,000 executions of the same experiment. 
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Figure 1 Qubit circuit and experimental operation.  (a) Circuit schematic for a 

single Josephson phase qubit, where the X symbol represents the Josephson 

junction. The measurement is implemented with a broadband 50 Ω transmission 

line with cold attenuators that is connected to the flux bias line with a bias tee.  

(b) Operation mode of the qubit showing the potential energy U  versus junction 
phase δ . The qubit is formed from the two lowest eigenstates 0  and 1 , with 

a transition frequency πω 2/)(10 dcI =5.1 GHz that can be adjusted by varying the 

bias Iφ. (c) Measurement mode of the qubit.  During the measurement pulse, the 
energy barrier U∆  is lowered to increase the tunnelling probability of 1 . (d) An 

interdigitated capacitor with 3~xC  fF couples the qubits, giving rise to an 

interaction strength of magnitude 10/ =hS MHz. 

Figure 2 Coherent operations on coupled phase qubits. (a) Sequence of 
operations. A 10ns long, 180x pulse is applied to qubit B, populating the 01  

state. Following a free evolution period freet  in which the qubits interact, the 

state occupation probabilities are measured using 10 ns current pulses that 
induce selective tunnelling of the 1  state. For data in (c) and [(d)], a 90z [180z] 

pulse is applied to qubit B after 16 ns. (b) Plot of measurement probabilities of 
the states 01 , 10 , and 11   as a function of freet . Note that 

11100100 1 PPPP −−−= . The solid lines are the results of simulations using known 
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measurement fidelities, relaxation times, and microwave crosstalk. (c) Plot of 

measurement probabilities for a sequence that creates the eigenstate 
( ) 2/10012 −=ψ  of the coupling Hamiltonian. After the eigenstate is formed 

by the 90z pulse, it ceases to evolve with time. (d) As in (c), but with an 180z 

pulse.  Here, the phase of the oscillation changes by 180 degrees.   

Figure 3 State tomography of entangled quits. (a) Sequence of operations. A 

180x pulse is first applied to qubit B, followed by a free evolution period of about 
16 ns, creating the entangled state ( ) 2/10011 i−=ψ . State tomography is 

then performed using 4 ns single qubit rotations. (b) Reconstructed density 
matrix expρ  (real and imaginary parts) using the directly measured occupation 

probabilities. (c) Reconstructed density matrix Mexp,ρ after correcting the state 

occupation probabilities based on the single qubit measurement fidelities. 
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