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Abstract. In this paper we consider ad-hoc networks of robotic agents with double integrator
dynamics. For such networks, the connectivity maintenance problems are: (i) do there exist control
inputs for each agent to maintain network connectivity, and (ii) given desired controls for each
agent, can one compute the closest connectivity-maintaining controls in a distributed fashion? The
proposed solution is based on three contributions. First, we define and characterize admissible sets
for double integrators to remain inside disks. Second, we establish an existence theorem for the
connectivity maintenance problem by introducing a novel state-dependent graph, called the double-

integrator disk graph. Finally, we design a distributed “flow-control” algorithm to compute optimal
connectivity-maintaining controls.

1. Introduction. This work is a contribution to the emerging discipline of mo-
tion coordination for ad-hoc networks of mobile autonomous agents. This loose ter-
minology refers to groups of robotic agents with limited mobility and communica-
tion capabilities. In the not too distant future, these groups of coordinated devices
will perform a variety of challenging tasks including search and recovery operations,
surveillance, exploration and environmental monitoring. The potential advantages of
employing arrays of agents have recently motivated vast interest in this topic. For
example, from a control viewpoint, a group of agents inherently provides robustness
to failures of single agents or of communication links.

The motion coordination problem for groups of autonomous agents is a control
problem in the presence of communication constraints. Typically, each agent makes
decisions based only on partial information about the state of the entire network
that is obtained via communication with its immediate neighbors. One important
difficulty is that the topology of the communication network depends on the agents’
locations and, therefore, changes with the evolution of the network. In order to ensure
a desired emergent behavior for a group of agents, it is necessary that the group does
not disintegrate into subgroups that are unable to communicate with each other.
In other words, some restrictions must be applied on the movement of the agents
to ensure connectivity among the members of the group. In terms of design, it is
required to constrain the control input such that the resulting topology maintains
connectivity throughout its course of evolution. In [2], a connectivity constraint was
developed for a group of agents modeled as first-order discrete time dynamic systems.
In [2] and in the related references [3, 4], this constraint is used to solve rendezvous
problems. Connectivity constraints for line-of-sight communication are proposed in
[5]. Another approach to connectivity maintenance for first-order systems is proposed
in [6]. In [7], a centralized procedure to find the set of control inputs that maintain
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k-hop connectivity for a network of agents is given. However, there is no guarantee
that the resulting set of feasible control inputs in non-empty. In this paper we fully
characterize the set of admissible control inputs for a group of agents modeled as
second order discrete time dynamic systems, which ensures connectivity of the group
in the same spirit as described earlier.

The contributions of the paper are threefold. First, we consider a control system
consisting of a double integrator with bounded control inputs. For such a system,
we define and characterize the admissible set that allows the double integrator to
remain inside disks. Second, we define a novel state-dependent graph – the double-
integrator disk graph – and give an existence theorem for the connectivity maintenance
problem for networks of second order agents with respect to an appropriate version
of this new graph. Finally, we consider a relevant optimization problem, where given
a set of desired control inputs for all the agents it is required to find the optimal
set of connectivity-maintaining control inputs. We cast this problem into a standard
quadratic programming problem and provide a distributed “flow-control” algorithm
to solve it.

The paper is organized as follows. In Section 2, we define and characterize the
admissible sets for a double integrator to remain inside a disk and based on this we
define a new graph – the double-integrator disk graph. In Section 3, we provide an
existence theorem for the set of control inputs for the whole network of second order
agents that maintains connectivity with respect to an appropriately scaled version of
this new graph. We also characterize and give an inner polytopic representation of
the constraint set for these connectivity-maintaining control inputs. In Section 4, we
consider the problem of searching this constraint set for the optimal set of controls
in a distributed way. Section 5 has some illustrative simulations which also suggest
an alternative way of achieving a weak form of flocking of the agents. Finally we
conclude with a few remarks about future work in Section 6.

2. Preliminary developments. We begin with some notations. We let N,
N0, and R+ denote the natural numbers, the non-negative integer numbers, and the
positive real numbers, respectively. For d ∈ N, we let 0d and 1d denote the vectors in
Rd whose entries are all 0 and 1, respectively. We let ‖p‖ denote the Euclidean norm
of p ∈ Rd. For r ∈ R+ and p ∈ Rd, we let B(p, r) denote the closed ball centered at
p with radius r, i.e., B(p, r) = {q ∈ Rd | ‖p − q‖ ≤ r}. For x, y ∈ Rd, we let x � y
denote component-wise inequality, i.e., xk ≤ yk for k ∈ {1, . . . , d}. We let f : A ⇉ B
denote a set-valued map; in other words, for each a ∈ A, f(a) is a subset of B. We
identify Rd × Rd with R2d.

2.1. Maintaining a double integrator inside a disk. For t ∈ N0, consider
the discrete-time control system in R2d

p[t + 1] = p[t] + v[t],

v[t + 1] = v[t] + u[t],
(2.1)

where the norm of the control is upper-bounded by rctr ∈ R+, i.e., u[t] ∈ B(0d, rctr) for
t ∈ N0. We refer to this control system as the discrete-time double integrator in R

d or,
more loosely, as a second-order system. Given (p, v) ∈ R2d and {uτ}τ∈N0

⊆ B(0d, rctr),
let φ(t, (p, v), {uτ}) denote the solution of (2.1) at time t ∈ N0 from initial condition
(p, v) with inputs u1, . . . , ut−1.

In what follows we consider the following problem: assume that the initial position
of (2.1) is inside a disk centered at 0d, find inputs that keep it inside that disk. This
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task is impossible for general values of the initial velocity. In what follows we identify
assumptions on the initial velocity that render the task possible.

For rpos ∈ R+, we define the admissible set at time zero by

Ad
0(rpos) = B(0d, rpos) × R

d.

For rpos, rctr ∈ R+, we define the admissible set for m time steps by

Ad
m(rpos, rctr) =

{
(p, v) ∈ R

2d | ∃{uτ}τ∈[0,m−1] ⊆ B(0d, rctr)

s.t. φ(t, (p, v), {uτ}) ∈ Ad
0(rpos) ∀t ∈ [0, m]

}
,

and the admissible set by

Ad(rpos, rctr) =
{
(p, v) ∈ R

2d | ∃{uτ}τ∈N0
⊆ B(0d, rctr)

s.t. φ(t, (p, v), {uτ}) ∈ Ad
0(rpos), ∀t ∈ N0

}
.

With slight abuse of notation we shall sometimes suppress the arguments in the defini-
tions of admissible sets. The following theorem establishes some important properties
of the admissible sets.

Theorem 2.1 (Properties of the admissible sets). For all d ∈ N and rpos, rctr ∈
R+, the following statements hold:

(i) for all m ∈ N, Ad
m(rpos, rctr) ⊆ Ad

m−1(rpos, rctr) and

Ad(rpos, rctr) = lim
m→+∞

Ad
m(rpos, rctr) = lim

m→+∞
∩m

k=1 Ad
k(rpos, rctr) ;

(ii) Ad(rpos, rctr) is a convex, compact set and is the largest controlled-invariant1

subset of Ad
0(rpos);

(iii) Ad(rpos, rctr) is invariant under orthogonal transformations in the sense that,
if (p, v) ∈ Ad(rpos, rctr), then also (Rp, Rv) ∈ Ad(rpos, rctr) for all orthogonal2

matrices R in Rd×d;
(iv) if 0 < r1 < r2, then Ad(rpos, r1) ⊂ Ad(rpos, r2) and Ad(r1, rctr) ⊂ Ad(r2, rctr).

Proof. The two facts in statement (i) are direct consequences of the definitions
of Ad

m and Ad. Regarding statement (ii), each Ad
m, m ∈ N, is closed, the intersection

of closed sets is closed, and, therefore, Ad = limm→+∞ ∩m
k=1 Ad

k is closed. To show
that Ad is bounded it suffices to show that Ad

1 is bounded. Note that (p, v) ∈ Ad
1

implies that there exists u ∈ B(0d, rctr) such that (p, v) ∈ Ad
0 and (p + v, v + u) ∈ Ad

0.
This, in turn, implies that p ∈ B(0d, rpos) and p + v ∈ B(0d, rpos). Therefore, Ad

1 is
bounded. Next, we prove that Ad

m is convex. Given (p1, v1) and (p2, v2) in Ad
m, let u1

and u2 be controls that ensure that φ(t, (pi, vi), {ui}) ∈ Ad
0, t ∈ [0, m], i ∈ {1, 2}. For

λ ∈ [0, 1], consider the initial condition (pλ, vλ) = (λp1 + (1 − λ)p2, λv1 + (1 − λ)v2)
and the input uλ = λu1 + (1 − λ)u2, and note that, by linearity,

φ(t, (pλ, vλ), uλ) = λφ(t, (p1, v1), {u1}) + (1 − λ)φ(t, (p2, v2), {u2}), t ∈ [0, m].

Because φ(t, (p1, v1), {u1}) and φ(t, (p2, v2), {u2}) belong to the convex set Ad
0, then

also their convex combination does. Therefore, (pλ, vλ) belongs to Ad
m, and Ad

m is
convex. Finally, Ad is convex because the intersection of convex sets is convex.

1A set is controlled invariant for a control system if there exists a feedback law such that the set
is positively invariant for the closed-loop system.

2A matrix R ∈ Rd×d is orthogonal if RRT = RT R = Id.
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Next, we show that Ad is controlled invariant. Given (p, v) ∈ Ad (with corre-
sponding control sequence {uτ}τ∈N0

), we need to show that there exists a control
input x ∈ B(0d, rctr) such that φ(1, (p, v), x) ∈ Ad. Such input can be chosen as
x = u0. Indeed, the control sequence {uτ+1}τ∈N0

keeps the trajectory starting from
φ(1, (p, v), x) inside Ad

0 and, therefore, φ(1, (p, v), x) ∈ Ad. Additionally, it is easy to
see that Ad ⊂ Ad

0. Finally, we need to prove that Ad is the largest controlled-invariant
subset of Ad

0. Assume that there exists Ad∗ with the same properties and larger than
Ad. This means that there exists (p, v) ∈ Ad∗ \ Ad. This is equivalent to saying that
∃ τ∗ ∈ N0 such that, for every choice of the input u, φ(τ∗, (p, v), u) /∈ Ad

0. But, since
Ad∗ ⊂ Ad

0, this leads to a contradiction.
Regarding statement (iii), observe that, if (p, v) ∈ Ad

0, then (Rp, Rv) ∈ Ad
0 and,

if u ∈ B(0, rctr), then Ru ∈ B(0, rctr). Therefore, using again the linearity of the
maps φ, the proof follows. Regarding statement (iv), the two results follow from the
definition of Ad(rpos, rctr) and the facts that, for all 0 < r1 < r2, B(0, r1) ⊂ B(0, r2)
and Ad

0(r1) ⊂ Ad
0(r2).

Next, we study the set-valued map that associates to each state in Ad(rpos, rctr)
the set of control inputs that keep the state inside Ad(rpos, rctr) in one step. We define
the admissible control set Ud(rpos, rctr) : Ad(rpos, rctr) ⇉ B(0d, rctr) by

Ud(rpos, rctr) · (p, v) = {u ∈ B(0d, rctr) | (p + v, v + u) ∈ Ad(rpos, rctr)},
or, equivalently,

Ud(rpos, rctr) · (p, v) = B(0d, rctr)∩{w − v | (p + v, w) ∈ Ad(rpos, rctr)}. (2.2)

Lemma 2.2 (Properties of the admissible control set). For all (p, v) ∈ Ad(rpos, rctr),
the set Ud(rpos, rctr) · (p, v) is non-empty, convex and compact. For generic (p, v) ∈
Ad(rpos, rctr), the set Ud(rpos, rctr) · (p, v) does not contain 0d.

Proof. The non-emptiness of the set Ud(rpos, rctr) · (p, v) derives directly from the
definition of Ad(rpos, rctr). Clearly, from equation (2.2), Ud(rpos, rctr) · (p, v) is closed
(it is the intersection of two closed sets). It is also bounded (Ud(rpos, rctr) · (p, v) ⊂
B(0d, rctr)), hence it is compact. To prove that it is convex, we need to show the
following: given (p, v) ∈ Ad(rpos, rctr), if there exist u1 and u2 in Ud(rpos, rctr) ·
(p, v) such that φ(1, (p, v), u1) and φ(1, (p, v), u2) belong to Ad(rpos, rctr), then u12 =
λu1 + (1 − λ)u2, λ ∈ [0, 1], belongs to Ud(rpos, rctr) · (p, v), that is, φ(1, (p, v), u12) ∈
Ad(rpos, rctr). But this fact follows directly from the linearity of φ and the convexity
of Ad(rpos, rctr). This proves that Ud(rpos, rctr) · (p, v) is convex. The fact that it does
not necessarily contain the origin can be proven by contradiction as follows. Consider
a (p, v) ∈ Ad(rpos, rctr) such that v 6= 0d and Ud(rpos, rctr) · (p, v) contains 0d. This
means that (p+v, v) also belongs to Ad(rpos, rctr). Now, either Ud(rpos, rctr)·(p+v, v)
does not contain 0d, in which case we have proved the statement, or Ad(rpos, rctr) also
contains (p + 2v, v). Continuing along these lines, if it were true that Ud(rpos, rctr) ·
(p, v) contains the origin for all (p, v) ∈ Ad(rpos, rctr), then one could show that
(p+ tv, v) belongs to Ad(rpos, rctr) for all t ∈ N. However, Ad(rpos, rctr) is bounded by
Theorem 2.1. Hence, one can always find a t∗ ∈ N such that (p+t∗v, v) ∈ Ad(rpos, rctr)
but (p + (t∗ + 1)v, v) /∈ Ad(rpos, rctr), thereby proving that Ud(rpos, rctr) · (p + t∗v, v)
does not contain 0d.

2.2. Computing admissible sets. We characterize Ad for d = 1 in the follow-
ing result and we illustrate the outcome in Figure 2.1.

Lemma 2.3 (Admissible set in 1 dimension). For rpos, rctr ∈ R+, the following
holds:
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(i) A1(rpos, rctr) is the polytope containing the points (p, v) ∈ R2 satisfying

−rpos

m
− m − 1

2
rctr ≤ v +

p

m
≤ rpos

m
+

m − 1

2
rctr, (2.3)

for all m ∈ N, and p ∈ [−rpos, rpos];
(ii) If m̂(rpos, rctr) ∈ N is defined by

m̂(rpos, rctr) =

⌈
−1

2
+

√
1

4
+

4rpos

rctr

⌉
, (2.4)

then A1 = A1
m = A1

bm(rpos,rctr)
, for m ≥ m̂(rpos, rctr).

Proof. Regarding statement (i), it suffices to show that, for m ∈ N, A1
m(rpos, rctr)

is the set of points in A1
m−1(rpos, rctr) that satisfy equation (2.3). If we show that this

property holds for all m, then we can use statement (i) of Theorem 2.1 to complete
the proof. Consider the set of equations (2.1) for m consecutive time indices after t.
The solution of the linear system can be written in terms of the state at instant t as

[
p[t + m]
v[t + m]

]
=

[
1 m
0 1

] [
p[t]
v[t]

]
+

m−1∑

τ=0

[
1 (m − 1 − τ)
0 1

] [
0
1

]
u[t + τ ], (2.5)

where we used the equality

Aτ =

[
1 1
0 1

]τ

=

[
1 τ
0 1

]
, τ ∈ N.

It is clear that the points on the boundary of A1
m have the property that the maximum

control effort is needed to enforce the constraint. In other words we look for the points
(p[t], v[t]) ∈ A1

0 with v[t] ≥ 0 (the case v[t] ≤ 0 can be solved in a similar way) such
that the points p[t + m] ≤ rcmm are reached by using the maximum control effort
u[t + τ ] = −rctr, τ ∈ {0, . . . , m − 1}.

Substituting the expression of the control in (2.5) we obtain

p[t + m] = p[t] + mv[t] − rctr

m−1∑

τ=0

(m − 1 − τ),

v[t + m] = v[t] − mrctr,

and using the equality
∑m−1

τ=0 (m − 1 − τ) = m(m−1)
2 , we have

p[t + m] = p[t] + mv[t] − rctr
m(m − 1)

2
,

v[t + m] = v[t] − mrctr,
(2.6)

In order to belong to A1
m, the point (p[t], v[t]) must satisfy the constraint p[t + τ ] ≤

rcmm, τ ∈ {1, . . . , m}, or equivalently

v[t] ≤ −p[t]

τ
+

rcmm

τ
+ rctr

(τ − 1)

2
, τ ∈ {1, . . . , m}.

Using the same procedure for the points in the half plane v[t] ≤ 0 (in this case the
control is u[t + τ ] = rctr, τ ∈ {0, . . . , m− 1}), it turns out that A1

m is equal to the set
of all pairs (p, v) ∈ A1

0 satisfying

−p

τ
− rcmm

τ
− τ − 1

2
rctr ≤ v ≤ −p

τ
+

rcmm

τ
+

τ − 1

2
rctr, τ ∈ {1, . . . , m}.
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By using statement (i) of Theorem 2.1 the proof is complete.

Regarding statement (ii), let us consider the case v[t] ≥ 0 and evaluate the points
on the boundary such that (p[t + m], v[t + m]) = (rcmm, 0), m ∈ N. These points are
obtained by substituting the above value of (p[t + m], v[t + m]) in (2.6). The points
obtained are (p, v) such that

p = rcmm − m
(m + 1)

2
rctr, m ∈ N0.

It is easy to see that m̂(rpos, rctr), as defined in equation (2.4), is the lowest m such
that p ≤ −rcmm.

p

v

m
=

1

m
=

1

m
=

2

m
=

2
m = 3

m = 3

−rpos

rpos

Fig. 2.1: The admissible set A1 for generic values of rpos and rctr

Remarks 2.4.

(i) If rctr ≥ 2rpos, then A1 = A1
1, that is, for sufficiently large rctr/rpos, the

admissible set is equal to the admissible set in 1 time step.
(ii) The methodology for constructing A1(rpos, rctr) is related to the procedure for

constructing the so-called isochronic regions for discrete time optimal control
of double integrators, as outlined in [8]. �

Next, we introduce some definitions useful to provide an inner approximation of
Ad when d ≥ 2. Given p ∈ Rd and v ∈ Rd \ {0d}, define p‖ ∈ R and p⊥ ∈ Rd by

p = p‖
v

‖v‖ + p⊥,

where p⊥ · v = 0. For rpos, rctr ∈ R+, define

Ad
‖(rpos, rctr) =

{
(p, v) ∈ B(0d, rpos) × R

d | v = 0d or

(p‖, ‖v‖) ∈ A1
(√

r2
pos − ‖p⊥‖2, rctr

)}
. (2.7)

Lemma 2.5. For rpos, rctr ∈ R+, Ad
‖(rpos, rctr) is a compact subset of Ad(rpos, rctr).
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Proof. We begin by showing that definition (2.7) is equivalent to

Ad
‖(rpos, rctr) =

{
(p, v) ∈ Ad

0 | v = 0d or ∃{u‖τ}τ∈N0
⊆ [−rctr, rctr]

s.t. φ
(
t, (p, v), {u‖τ}

v

‖v‖
)
∈ Ad

0(rpos), ∀t ∈ N0

}
. (2.8)

To establish this equivalence, we use the definition of the set A1. For v 6= 0d, we
rewrite the solution of the system as

φ(t, (p, v), {uτ}) = φ‖(t, (p, v), {uτ})
v

‖v‖ + φ⊥(t, (p, v), {uτ}),

where φ⊥(t, (p, v), {uτ}) · v = 0 for all t ∈ N0. It is easy to see that, if {uτ}τ∈N0
=

{u‖τ
}τ∈N0

v
‖v‖ , then φ⊥(t, (p, v), {uτ}) = (p⊥, 0d) for all t ∈ N0. Therefore,

φ(t, (p, v), {uτ}) = φ‖(t, (p, v), {uτ})
v

‖v‖ + (p⊥, 0d).

Note that, if p = p‖
v

‖v‖ + p⊥, then ‖p‖ ≤ rpos if and only if p‖ ≤
√

r2
pos − ‖p⊥‖2.

Therefore, the property φ
(
t, (p, v), {u‖τ

} v
‖v‖

)
∈ Ad

0(rpos) is equivalent to

φ‖
(
t, (p, v), {u‖τ

} v

‖v‖
)
∈ A1

0

(√
r2
pos − ‖p⊥‖2

)
,

and, in turn, definitions (2.7) and (2.8) are equivalent. In order to prove that
Ad

‖(rpos, rctr) is compact, we simply observe that it is a closed subset of the com-

pact set Ad(rpos, rctr).
Remark 2.6. In what follows we use our representation of Ad

‖ to compute an

inner approximation for the convex set Ad, for d ≥ 2. For example, for fixed p ∈
B(0d, rpos), we compute velocity vectors v such that (p, v) ∈ Ad by considering a
sample of unit-length vectors w ∈ R

d and computing the maximum allowable velocity
v parallel to w according to equation (2.7). Furthermore, we perform computations
by adopting inner polytopic representations for the various compact convex sets. �

2.3. The double-integrator disk graph. Let us introduce some concepts
about state dependent graphs and some useful examples. For a set X , let F(X)
be the collection of finite subsets of X ; e.g., P ∈ F(Rd) is a set of points. For a finite
set X , let G(X) be the set of undirected graphs whose vertices are elements of X ,
i.e., whose vertex set belongs to F(X). For a set X , a state dependent graph on X
is a map G : F(X) → G(X) that associates to a finite subset V of X an undirected
graph with vertex set V and edge set EG(V ) where EG : F(X) → F(X × X) satisfies
EG(V ) ⊆ V × V . In other words, what edges exist in G(V ) depends on the elements
of V that constitute the nodes.

The following three examples of state dependent graphs play an important role.
First, given rpos ∈ R+, the disk graph Gdisk(rpos) is the state dependent graph on Rd

defined as follows: for {p1, . . . , pn} ⊂ Rd, the pair (pi, pj) is an edge in Gdisk(rpos) ·
({p1, . . . , pn}) if and only if

‖pi − pj‖ ≤ rpos ⇐⇒ pi − pj ∈ B(0d, rpos).

Second, given rpos, rctr ∈ R+, the double-integrator disk graph Gdi-disk(rpos, rctr) is the
state dependent graph on R2d defined as follows: for {(p1, v1), . . . , (pn, vn)} ⊂ R2d,
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the pair ((pi, vi), (pj , vj)) is an edge if and only if the relative positions and velocities
satisfy

(pi − pj , vi − vj) ∈ Ad(rpos, rctr).

Third, it is convenient to define the disk graph also as a state dependent graph on
R2d by stating that ((pi, vi), (pj , vj)) is an edge if and only if (pi, pj) is an edge of the
disk graph on Rd. We illustrate the first two graphs in Figure 2.2.

Fig. 2.2: The disk graph and the double-integrator disk graph in R
2 for 20 agents with

random positions and velocities.

Remark 2.7. As is well known, the disk graph is invariant under rigid transfor-
mations and reflections. Loosely speaking, the double integrator disk graph is invariant
under the following class of transformations: position and velocities of the agents may
be expressed with respect to any rotated and translated frame that is moving at constant
linear velocity. These transformations are related to the classic Galilean transforma-
tions in geometric mechanics. �

3. Connectivity constraints among second-order agents. In this section
we state the model, the notion of connectivity, and a sufficient condition that guar-
antees connectivity can be preserved.

3.1. Networks of robotic agents with second-order dynamics and the

connectivity maintenance problem. We begin by introducing the notion of net-
work of robotic agents with second-order dynamics in Rd. Let n be the number of
agents. Each agent has the following computation, motion control, and communica-
tion capabilities. For i ∈ {1, . . . , n}, the ith agent has a processor with the ability
of allocating continuous and discrete states and performing operations on them. The
ith agent occupies a location pi ∈ Rd, moves with velocity vi ∈ Rd, according to the
discrete-time double integrator dynamics in (2.1), i.e.,

pi[t + 1] = pi[t] + vi[t],

vi[t + 1] = vi[t] + ui[t],
(3.1)

where the norm of all controls ui[t], i ∈ {1, . . . , n}, t ∈ N0, is upper-bounded by
rctr ∈ R+. The communication model is the following. The processor of each agent
has access to the agent location and velocity. Each agent can transmit information
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to other agents within a distance rcmm ∈ R+. We remark that the control bound rctr

and the communication radius rcmm are the same for all agents.

Remarks 3.1.

(i) Our network model assumes synchronous execution, although it would be im-
portant to consider more general asynchronous networks.

(ii) We will not address in this paper the correctness of our algorithms in the
presence of measurement errors or communication quantization. �

We now state the control design problem of interest.

Problem 3.2 (Connectivity Maintenance). Choose a state dependent graph
Gtarget on R2d and design (state dependent) control constraints sets with the follow-
ing property: if each agent’s control takes values in the control constraint set, then
the agents move in such a way that the number of connected components of Gtarget

(evaluated at the agents’ states) does not increase with time. �

This objective is to be achieved with the limited information available through
message exchanges between agents. This problem was originally stated and solved for
first-order agents in [2].

3.2. A known result for agents with first-order dynamics. In [2], a con-
nectivity constraint was developed for a set of agents modeled by first-order discrete-
time dynamics:

pi[t + 1] = pi[t] + ui[t].

Here the graph whose connectivity is of interest, is the disk graph Gdisk(rcmm) over
the vertices {p1[t], . . . , pn[t]}. Network connectivity is maintained by restricting the
allowable motion of each agent. In particular, it suffices to restrict the motion of each
agent as follows. If agents i and j are neighbors in the rcmm-disk graph Gdisk(rcmm) at

time t, then their positions at time t+1 are required to belong to B
( pi[t]+pj [t]

2 , rcmm

2

)
.

In other words, connectivity between i and j is maintained if

ui[t] ∈ B
(pj [t] − pi[t]

2
,
rcmm

2

)
,

uj [t] ∈ B
(pi[t] − pj [t]

2
,
rcmm

2

)
.

The constraint is illustrated in Figure 3.1.

pj

pi

Fig. 3.1: Starting from pi and pj , the agents are restricted to move inside the disk centered

at
pi+pj

2
with radius rcmm

2
.
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Note that this constraint takes into account only the positions of the agents;
this fact can be attributed to the first-order dynamics of the agents. We wish to
construct a similar constraint for agents with second order dynamics. It is reasonable
to expect that this new constraint will depend on positions as well as velocities of the
neighboring agents.

3.3. An appropriate graph for the connectivity maintenance problem

for agents with second-order dynamics. We begin working on the stated problem
with a negative result regarding two candidate target graphs.

Lemma 3.3 (Unsuitable graphs). Consider a network of n agents with double
integrator dynamics (3.1) in Rd. Let rcmm be the communication range and let rctr

be the control bound. Let Gtarget be either Gdisk(rcmm) on R
2d or Gdi-disk(rcmm, 2rctr).

There exist states {(pi, vi)}i∈{1,...,n} such that
(i) the graph Gtarget at {(pi, vi)}i∈{1,...,n} is connected, and
(ii) for all {ui}i∈{1,...,n} ⊆ B(0d, rctr), the graph Gtarget at {(pi+vi, vi+ui)}i∈{1,...,n},

is disconnected.
Proof. The proof of the statement for Gtarget = Gdisk(rcmm) is straightforward.

Consider two agents whose relative position and velocity belong to Ad
0 \ Ad

1. Then,
after one time step, the two agents will not be connected in Gdisk(rcmm) no matter
what their controls are. Next, consider the case Gtarget = Gdi-disk(rcmm, 2rctr). For
d = 1, let v̄ be the maximal velocity in A1(rcmm, 2rctr) at p = 0, that is, v̄ =
min{rcmm/m + (m − 1)rctr | m ∈ N}. Take three agents with positions p1 = p2 =
p3 = 0 and velocities v1 = −v̄, v2 = 0, and v3 = v̄. At this configuration, the graph
Gdi-disk(rcmm, 2rctr) contains two edges: between agent 1 and 2 and between agent 2
and 3. Connectivity is preserved after one time step if agent 2 remains connected to
both agents 1 and 3 after one time step. However, to remain connected with agent
1, its control u2 must be equal to −rctr and, analogously, to remain connected with
agent 3, its control u2 must be equal to +rctr. Clearly this is impossible.

Remarks 3.4.
(i) The result in Lemma 3.3 on the double integrator graph has the following

interpretation. Assume that agent i has two neighbors j and k in the graph
Gdi-disk(rcmm, rctr). By definition of the neighboring law for this graph, we
know that there exists bounded controls for i and j to maintain the ((pi, vi), (pj , vj))
link and that there exists bounded controls for i and k to maintain the ((pi, vi), (pk, vk))
link. The lemma states that, for some states of the agents i, j, and k, there
might not exist controls that maintain both links simultaneously.

(ii) In other words, Lemma 3.3 shows how the disk graph Gdisk(rcmm) and the
double integrator disk graph Gdi-disk(rcmm, 2rctr) are not appropriate choices
for the connectivity maintenance problem. �

The following theorem suggests that an appropriate scaling of the control bound
is helpful in identifying a suitable state dependent graph for Problem 3.2.

Theorem 3.5 (A scaled double-integrator disk graph is suitable). Consider a
network of n agents with double integrator dynamics (3.1) in Rd. Let rcmm be the
communication range and let rctr be the control bound. For k ∈ {1, . . . , n− 1}, define

ν(k) =
2

k
√

d
.

Assume that k ∈ {1, . . . , n−1} and the state {(pi, vi)}i∈{1,...,n} together have the prop-
erty that the graph Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} contains a spanning
tree T with diameter at most k. Then there exists {ui}i∈{1,...,n} ⊆ B(0d, rctr) such

10



that if ((pi, vi), (pj , vj)) is an edge of T , then ((pi + vi, vi + ui), (pj + vj , vj + uj)) is
an edge of Gdi-disk(rcmm, ν(k)rctr) at {(pi + vi, vi + ui)}i∈{1,...,n}.

These results are based upon Shostak’s Theory for systems of inequalities, as
exposed in [9]. We provide the proof in Appendix B. The following results are
immediate consequences of this theorem.

Corollary 3.6 (Simple sufficient condition). With the same notation in Theo-
rem 3.5, define νmin = 2

(n−1)
√

d
. Assume that the state {(pi, vi)}i∈{1,...,n} has the prop-

erty that the graph Gdi-disk(rcmm, νminrctr) is connected at {(pi, vi)}i∈{1,...,n}. Then
(i) there exists {ui}i∈{1,...,n} ⊆ B(0d, rctr), such that the graph Gdi-disk(rcmm, νminrctr)

is also connected at {(pi + vi, vi + ui)}i∈{1,...,n}; and
(ii) if T is a spanning tree of Gdi-disk(rcmm, νminrctr) at {(pi, vi)}i∈{1,...,n}, then

there exists {ui}i∈{1,...,n} ⊆ B(0d, rctr), such that, for all edges ((pi, vi), (pj , vj))
of T , it holds that ((pi+vi, vi+ui), (pj+vj , vj+uj)) is an edge of Gdi-disk(rcmm, νminrctr)
at {(pi + vi, vi + ui)}i∈{1,...,n}.

Remark 3.7 (Scaling of νmin with n). The condition νmin = 2√
d(n−1)

implies

that according to the sufficient conditions in Corollary 3.6, as the number of agents
grows, the velocities of the agents must be closer and closer in order for the agents to
be able to remain connected.

If Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} is not connected for some k, then
Theorem 3.5 applies to its connected components. In what follows we fix k and without
loss of generality assume the graph Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} to be
connected. �

Remark 3.8 (Distributed computation of connectivity and of spanning trees).
Each agent can compute its neighbors in the graph Gdi-disk(rcmm, ν(k)rctr) just by
communicating with its neighbors in Gdisk(rcmm) and exchanging with them position
and velocity information. Alternatively, this computation may also be performed if
each agent may sense relative position and velocity with all other agents at a distance
no larger than rcmm.

It is possible to compute spanning trees in networks via standard depth-first search
distributed algorithms. It is also possible [10] to distributively compute a minimum
diameter spanning tree in a network. �

3.4. The control constraint set and its polytopic representation. We
now concentrate on two agents with indices i and j. For t ∈ N0, we define the
relative position, velocity and control by pij [t] = pi[t] − pj [t], vij [t] = vi[t] − vj [t] and
uij [t] = ui[t] − uj[t], respectively. It is easy to see that

pij [t + 1] = pij [t] + vij [t],

vij [t + 1] = vij [t] + uij [t].

Assume that agents i, j are connected in Gdi-disk(rcmm, ν(k)rctr) at time t. By defini-
tion, this means that the relative state (pij [t], vij [t]) belongs to Ad(rcmm, ν(k)rctr). If
this connection is to be maintained at time t + 1, then the relative control at time t
must satisfy

ui[t] − uj[t] ∈ Ud(rcmm, ν(k)rctr) · (pij [t], vij [t]). (3.2)

Also, implicit are the following bounds on individual control inputs ui[t] and uj [t]:

ui[t] ∈ B(0d, rctr), uj [t] ∈ B(0d, rctr). (3.3)
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This discussion motivates the following definition.
Definition 3.9. Given rcmm, rctr, ν(k) ∈ R+ and given a set E of edges in

Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n}, the control constraint set is defined by

Ud
E(rcmm, rctr, ν(k)) · ({pi, vi}i∈{1,...,n})

= {(u1, . . . , un) ∈ B(0d, rctr)
n | ∀((pi, vi), (pj , vj)) ∈ E,

ui − uj ∈ Ud(rcmm, ν(k)rctr) · (pi − pj , vi − vj)}.

In other words, the control constraint set for an edge set E is the set of controls
for each agent with the property that all edges in E will be maintained in one time
step.

Remark 3.10. We can now interpret the results in Theorem 3.5 as follows.
(i) To maintain connectivity between any pair of connected agents, we should si-

multaneously handle constraints corresponding to all edges of Gdi-disk(rcmm, ν(k)rctr).
This might render the control constraint set empty.

(ii) However, if we only consider constraints corresponding to edges belonging to
a spanning tree T of Gdi-disk(rcmm, ν(k)rctr), then the set Ud

T (rcmm, ν(k)rctr) ·
({pi, vi}i∈{1,...,n}) is guaranteed to be nonempty. �

Let us now provide a concrete representation of the control constraint set. Given
a pair i, j of connected agents, the admissible control set Ud(rcmm, ν(k)rctr) · (pij , vij)
is convex and compact (Lemma 2.2). Hence, we can fit a polytope with Npoly sides
inside it. This approximating polytope leads to the following tighter version of the
constraint in (3.2):

(Cη
ij)

T (ui − uj) ≤ wη
ij , η ∈ {1, . . . , Npoly}, (3.4)

for some appropriate vector Cη
ij ∈ Rd and scalar wη

ij ∈ R. Similarly, one can compute
an inner polytopic approximation of the closed ball B(0d, rctr) and write the following
linear vector inequalities:

(Cη
iθ)

T ui ≤ wη
iθ , η ∈ {1, . . . , Npoly}, (3.5)

where the symbol θ has the interpretation of a fictional agent. In this way, we have
cast the original problem of finding a set of feasible control inputs into a satisfiability
problem for a set of linear inequalities.

Remark 3.11. Rather than a network-wide control constraint set, one might
like to obtain decoupled constraint sets for each individual agent. However, (1) it
is not clear how to design a distributed algorithm to perform this computation, (2)
such an algorithm will likely have large communication requirements, and (3) such
a calculation might lead to a very conservative estimate for the decoupled control
constraint sets. Therefore, rather than explicitly decoupling the control constraint
sets, we next focus on a distributed algorithm to search the control constraint set for
feasible controls that are optimal according to some criterion. �

4. Distributed computation of optimal controls. In this section we formu-
late and solve the following optimization problem: given an array of desired control
inputs Udes = (udes,1, . . . , udes,n)T ∈ (Rd)n, find, via local computation, the array
U = (u1, . . . , un) belonging to the control constraint set, that is closest to the de-
sired array Udes. To formulate this problem precisely, we need some additional no-
tations. Let E be a set of edges in the undirected graph Gdi-disk(rcmm, ν(k)rctr) at
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{(pi, vi)}i∈{1,...,n}. To deal with the linear inequalities of the form (3.4) and (3.5)
associated to each edge of E, we introduce an appropriate multigraph. A multi-
graph (or multiple edge graph) is, roughly speaking, a graph with multiple edges
between the same vertices. More formally, a multigraph is a pair (Vmult, Emult),
where Vmult is the vertex set and the edge set Emult contains numbered edges of
the form (i, j, η), for i, j ∈ V and η ∈ N, and where Emult has the property that
if (i, j, η) ∈ Emult and η > 1, then also (i, j, η − 1) ∈ Emult. In what follows,
we let Gmult denote the multigraph with vertex set {1, . . . , n} and with edge set
Emult = {(i, j, η) ∈ {1, . . . , n}2 × {1, . . . , Npoly} | ((pi, vi), (pj , vj)) ∈ E, i > j}. Note
that to each element (i, j, η) ∈ Emult is associated the inequality (Cη

ij)
T (ui−uj) ≤ wη

ij .
We are now ready to formally state the optimization problem at hand in the form of
the following quadratic programming problem:

minimize
1

2

n∑

i=1

‖ui − udes,i‖2,

subj. to (Cη
ij)

T (ui − uj) ≤ wη
ij , for (i, j, η) ∈ Emult,

(Cη
iθ)

T ui ≤ wη
iθ , for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly}.

(4.1)

Here, somehow arbitrarily, we have adopted the 2-norm to define the cost function.

Remark 4.1 (Feasibility). If E is a spanning tree of Gdi-disk(rcmm, νrctr) at a con-
nected configuration {(pi, vi)}i∈{1,...,n}, then the control constraint set Ud

E(rcmm, rctr, ν(k))·
({pi, vi}i∈{1,...,n}) is guaranteed to be non-empty by Theorem 3.5. In turn, this implies
that the optimization problem (4.1) is feasible. �

4.1. Solution via duality: the projected Jacobi method. The problem (4.1)
can be written in a compact form as:

minimize
1

2
‖U − Udes‖2,

subj. to BT
multU � w,

for appropriately defined matrix Bmult and vector w. A dual “projected Jacobi
method” algorithm for the solution of this standard quadratic program is described in
Appendix A. According to this algorithm, let λ∗ be the value of Lagrange multipliers
at optimality. Then the global minimum for U is achieved at

U∗ = Udes − Bmultλ
∗. (4.2)

The projected Jacobi iteration for each component of λ is given by

λα(t + 1) = max
{

0, λα(t) − τ

(BT
multBmult)αα

(
(w − BT

multUdes)α

+

Npoly(e+n)∑

β=1

(BT
multBmult)αβλβ(t)

)}
, (4.3)

where α ∈ {1, . . . , Npoly(e + n)} and τ is the step size parameter. We can select
τ = 1

Npoly(e+n) to guarantee convergence.
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4.2. A distributed implementation of the dual algorithm. Because of the
particular structure of the matrix BT

multBmult, the iterations (4.3) can be implemented
in a distributed way over the original graph G. To highlight the distributed structure
of the iteration we denote the components of λ by referring to the nodes that they
share and the inequality they are related to. In particular for each edge in Gmult, the
corresponding Lagrange multiplier will be denoted as λη

ij if the edge goes from node i to
node j, i > j, and the edge is associated to the inequality constraint Cη

ij(ui−uj) ≤ wη
ij .

This makes up the first Npolye entries of the vector λ. To be consistent with this

notation, the next Npolyn entries will be denoted λ1
1θ, . . . , λ

Npoly

1θ , . . . , λ1
nθ, . . . , λ

Npoly

nθ .
Additionally, define N (i) = {j ∈ {1, . . . , n} | {(pi, vi), (pj , vj)} ∈ E} ∪ {θ}. The
symbol θ has the interpretation of a fictional node.

Defining λη
ij := λη

ji and Cη
ij := −Cη

ji for i < j, we can write equations (4.2) and
(4.3) in components as follows. Equation (4.2) reads, for i ∈ {1, . . . , n},

u∗
i = udes,i −

∑

k∈N (i)

Npoly∑

η=1

Cη
ikλη

ik.

One can easily work an explicit expression for matrix product BT
multBmult in (4.3).

Then, equation (4.3) reads, for (i, j, η) ∈ Emult,

λη
ij(t + 1) = max




0, λη
ij(t) −

τ

2(Cη
ij)

T Cη
ij

·




∑

k∈N (i)

Npoly∑

σ=1

(
(Cη

ij)
T Cσ

ikλσ
ik

)
+

∑

k∈N (j)

Npoly∑

σ=1

(
(Cη

ji)
T Cσ

jkλσ
jk

)

+ wη
ij − (Cη

ij)
T (udes,i − udes,j)








 ,

together with, for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly},

λη
iθ(t + 1) = max

{
0, λη

iθ(t)

− τ

(Cη
iθ)

T Cη
iθ

( ∑

k∈N (i)

Npoly∑

σ=1

((Cη
iθ)

T Cσ
ikλσ

ik) + wη
iθ − (Cη

iθ)
T udes,i

)}
.

We distribute the task of running iterations for these Npoly(e + n) Lagrange
multipliers among the n agents as follows: an agent i carries out the updates for
all quantities λη

iθ and all λη
ij for which i > j. By means of this partition and by means

of iterated one-hop communication among agents, it is possible to compute the global
solution for the optimization problem (4.1) in a distributed fashion over the double
integrator disk graph.

5. Simulations. To illustrate our analysis we focus on the following scenario.
For the two dimensional setting, i.e., for d = 2, we assume that there are n = 5 agents
with (randomly chosen) initial condition and such that they are connected according
to Gdi-disk. The bound for the control input is rctr = 2 and the communication radius
is rcmm = 10.
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We assigned to one of the agents a derivative feedback control ux[p, v] = (vx − 2),
uy[p, v] = (vy − 5) as desired input. For the other agents the desired input is set
to zero. We show the agent trajectories in Figure 5.1a, the velocities of the agents
with respect to time in Figure 5.1b, and the distances between agents which are
neighbors in the spanning tree in Figure 5.1c. Notice that the agents move with
approximately identical velocity reaching a configuration in which all of them are
at the limit distance rcmm = 10. The interesting aspect of this simulation is that
the maintenance of connectivity leads to the accomplishment of apparently unrelated
coordination tasks as velocity alignment and cohesiveness. This numerical result
illustrate how our connectivity maintenance approach might indeed be a starting
point for novel investigations into the problem of flocking with connectivity.
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Fig. 5.1: Velocity alignment and cohesiveness for 5 agents in the plane (d = 2)

6. Conclusion. We provide some distributed algorithms to enforce connectiv-
ity among networks of agents with double-integrator dynamics. Future directions of
research include (i) evaluating the communication complexity of the proposed dis-
tributed dual algorithm and possibly designing faster ones, (ii) studying the rela-
tionship between the connectivity maintenance problem and the platooning and mesh
stability problem, and (iii) investigating the flocking phenomenon and designing flock-
ing algorithms which do not rely on a blanket assumption of connectivity.
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Appendix A. Projected Jacobi method. We briefly review here a paral-
lel algorithm for the solution of a quadratic optimization problem. The technique
is known as the projected Jacobi method in the literature on network flow control
problems ([11], Section 3.4).

Consider the quadratic programming problem

minimize
1

2
xT Qx − bT x,

subj. to Ax � c,

where Q is a given n×n symmetric positive definite matrix, A is a given m×n matrix,
and b ∈ Rn and c ∈ Rm are given vectors. The dual problem is

minimize
1

2
yT Fy + sT y,

subj. to y � 0,

for F = AQ−1AT and s = c − AQ−1b. If y∗ solves the dual problem, then x∗ =
Q−1(b − AT y∗) solves the primal problem.

For a step size parameter τ > 0 and for j ∈ {1, . . . , n}, the projected Jacobi
iteration, when the jth coordinate is updated, has the form

yj(t + 1) = max
{
0, yj(t) −

τ

fjj

(
sj +

m∑

k=1

fjkyk(t)
)}

, (A.1)

where fjk is the j, kth element of the matrix F . As discussed in [11], this algorithm
converges to the global solution of the dual problem if the step size τ is chosen
sufficiently small; in particular, convergence is guaranteed for τ = 1/m.

Appendix B. Appendix on Shostak’s test. This section provides a proof for
Theorem 3.5. The proof amounts to showing that if E is the edge set of a spanning
tree T in Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n}, then the control constraint set

Ud
E(rcmm, rctr, ν(k)) · ({pi, vi}i∈{1,...,n}) is non-empty. We first consider a polytopic

approximation of constraints (3.2) and (3.3). Among all possible choices, we use
the conservative orthotope approximation that allows us to decouple the constraints
into d independent sets of linear inequalities (one for each dimension). Then we
use Shostak’s theory to obtain sufficient conditions for the feasibility of these linear
inequalities. For brevity, we drop the dependence of the quantities on t and we assume
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that the variables ui are scalars, for all i ∈ {1, . . . , n} and t ≥ 0. The resulting sets of
linear inequalities for one particular dimension are

δl
i,j ≤ ui − uj ≤ δu

i,j , and − rctr√
d
≤ ui ≤

rctr√
d

. (B.1)

where −ν(k)rctr ≤ δl
i,j ≤ δu

i,j ≤ ν(k)rctr, for all i, j ∈ {1, . . . , n} and i 6= j.

B.1. Shostak Theory. In this section we present Shostak’s theory for feasibility
of linear inequalities involving at most two variables, similar to the ones in (B.1).
These ideas will then be used to prove Theorem 3.5. The notations used in [9] adapted
to our case are presented next. Let u0 be an auxiliary zero variable that always occurs
with zero coefficient - the only variable that can do this. Without loss of generality,
we can thus assume that all the inequalities in L contain two variables. As a result
of this, the inequalities in (B.1) can be succinctly written as

ui − uj ≤ δi,j , ∀i, j ∈ {0, . . . , n}, (B.2)

where for all i, j ∈ {1, . . . , n}, i 6= j,−ν(k)rctr ≤ δi,j ≤ ν(k)rctr and for all i ∈
{1, . . . , n}, δi,0 = δ0,i = rctr√

d
. Also implicit in this formulation is the relation that

δi,j + δj,i ≥ 0 for all i, j ∈ {0, . . . , n} and i 6= j.
Let L denote the system of inequalities in (B.2). We construct the graph G(L)

with n + 1 vertices and 2(2n− 1) edges as follows: (a) For each variable ui occurring
in L, add a vertex i to G(L). (b) For each inequality of the form ai,jui + bi,juj ≤ δi,j

in L, add an undirected edge between i and j to G(L), and label the edge with
the inequality (see Figure B.1). It is easy to see the following relation between the
spanning tree T in Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} that is used to derive
the constraints in the inequalities (B.2) and the graph G(L): (a) The vertex set of
G(L) is the union of the vertex set of T and the auxiliary vertex 0 (b) For every edge
{i, j} in T , there are two edges between the vertices i and j in G(L) (c) Additionally,
G(L) contains two edges between 0 and every other vertex i, for all i ∈ {1, . . . , n}.

ui − uj ≤ δi,j

uj − ui ≤ δj,i−ui ≤ rctr√
d

−uj ≤ rctr√
d

uj ≤ rctr√
d

ui ≤ rctr√
d

0
i

j

Fig. B.1: Snippet of the graph G(L) for the system of inequalities in (B.2)

To every edge represented by the inequality of the form ai,jui + bi,juj ≤ δi,j , we
associate a triple 〈ai,j , bi,j , δi,j〉. Note that 〈bi,j , ai,j , δi,j〉 is also a triple associated
with the same edge. Without loss of generality, consider a path of G(L) determined
by the vertices {1, 2, . . . , l + 1} and the edges e1,2, e2,3, . . . , el,l+1 between them. A
triple sequence, P , associated with the path is defined as

〈a1,2, b1,2, δ1,2〉, 〈a2,3, b2,3, δ2,3〉, . . . , 〈al,l+1, bl,l+1, δl,l+1〉,
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where, for 1 ≤ i ≤ l, ai,i+1ui + bi,i+1uj ≤ δi,i+1 is the inequality associated with the
edge ei,i+1. If ai+1,i+2 and bi,i+1 have opposite signs for 1 ≤ i < l, then P is called
admissible.

Define 〈aP , bP , δP 〉, the residue of P , as

〈aP , bP , δP 〉 = 〈a1,2, b1,2, δ1,2〉 ⊙ 〈a2,3, b2,3, δ2,3〉 ⊙ . . . ⊙ 〈al,l+1, bl,l+1, δl,l+1〉,

where ⊙ is the associativity binary operator defined on triples by

〈a, b, δ〉 ⊙ 〈a′, b′, δ′〉 = 〈κaa′,−κbb′, κ(δa′ − δ′b)〉,
where κ = a′/|a′|.

Intuitively, the operator ⊙ takes two inequalities and derives a new inequality by
eliminating a common variable; e.g., ax+by ≤ δ and a′y+b′z ≤ δ′ imply −aa′x+bb′z ≤
−(δa′ − δ′b) if a < 0 and b > 0. Note that the signs of aP and a1,2 agree, as do the
signs of bP and b1,2.

A path is called a loop if the initial and final vertices are identical. (A loop is not
uniquely specified unless its initial vertex is given.) If all the intermediate vertices of
a path are distinct, the path is simple. An admissible triple sequence P associated
with a loop with initial vertex x is infeasible if its residue satisfies aP + bP = 0 and
δP < 0. A loop which contains an infeasible triple sequence is called an infeasible
loop. Thus if G(L) has an infeasible loop, the system of inequalities L is unsatisfiable.
However, the converse is not true in general. Next, we show how to extend L to an
equivalent system L′ such that G(L′) has an infeasible simple loop if and only if L is
unsatisfiable.

For each vertex i of G(L) and for each admissible triple sequence P with aP +bP 6=
0 associated with a simple loop of G(L) and initial vertex i, add a new inequality
(aP + bP )ui ≤ δP to L. This new system L′ is referred to as the Shostak extension
of L. We now state the necessary and sufficient condition on the extended system of
inequalities L′ for the satisfiability of the original system L.

Theorem B.1 (Shostak’s Theorem [9]). Let L′ be the Shostak extension of L.
The system of inequalities L is satisfiable if and only if G(L′) contains no infeasible
simple loop.

B.2. Satisfiability test. In this section we use the Shostak criterion to derive
conditions for the satisfiability of the inequalities in (B.2).

Lemma B.2. Let L be the system of inequalities of the form (B.2) obtained
by considering pairwise neighbors in a spanning tree T in Gdi-disk(rcmm, ν(k)rctr) at
{(pi, vi)}i∈{1,...,n}. Then the Shostak extension of L is itself.

Proof. Consider a simple loop of G(L) with the initial vertex i ∈ {0, 1, . . . , n}.
Consider an admissible triple sequence P associated with the loop. Since ai,j , bi,j ∈
{−1, +1}, for all i, j ∈ {1, . . . , n}, i 6= j, and a0,i, ai,0, bi,0, b0,i ∈ {−1, 0, +1}, for all
i ∈ {1, . . . , n}, the residue of P , 〈aP , bP , δP 〉, is such that ap + bp = 0. Hence, no new
inequality must be added to obtain the Shostak extension of L.

Lemma B.3. Let L be the system of inequalities of the form (B.2) obtained by con-
sidering pairwise neighbors in a spanning tree T of depth at most k in Gdi-disk(rcmm, ν(k)rctr)
at {(pi, vi)}i∈{1,...,n}. If ν(k) = 2

k
√

d
, then there is no infeasible simple loop in G(L).

Proof. Looking at figure B.1 it is clear that there are two types of simple loops
with admissible triple sequences in G(L):
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(i) 〈+1,−1, δi,j〉, 〈+1,−1, δj,i〉 or 〈−1, +1, δi,j〉, 〈−1, +1, δj,i〉,
where i, j ∈ {0, . . . , n − 1} and {i, j} is an edge in T .

(ii) 〈0,−1, rctr√
d
〉, 〈+1,−1, δi1,i2〉, . . . , 〈+1,−1, δil−1,il

〉, 〈+1, 0, rctr√
d
〉 or

〈0, +1, rctr√
d
〉, 〈−1, +1, δi2,i1〉, . . . , 〈−1, +1, δil,il,l−1

〉, 〈−1, 0, rctr√
d
〉,

where il ∈ {1, . . . , ζ} for all l ∈ {1, . . . , ζ} and {il, il+1} is an edge in T .
The residue for the first set of loops is 〈+1,−1, δi,j + δj,i〉 or 〈−1, +1, δi,j + δj,i〉. The
feasibility condition is trivially satisfied by construction since δi,j + δj,i ≥ 0. For the
second set of loops, the residue is:

〈
0,−1,

rctr√
d

〉
⊙ 〈+1,−1, δi1,i2〉 ⊙ . . . ⊙ 〈+1,−1, δiζ−1,iζ

〉 ⊙
〈

+ 1, 0,
rctr√

d

〉

=
〈
0, 0, 2

rctr√
d

+

ζ−1∑

l=1

δil,il+1

〉
,

or

〈
0, +1,

rctr√
d

〉
⊙ 〈−1, +1, δi2,i1〉 ⊙ . . . ⊙ 〈−1, +1, δiζ,iζ−1

〉 ⊙
〈
− 1, 0,

rctr√
d

〉

=
〈
0, 0, 2

rctr√
d

+

ζ−1∑

l=1

δil,il+1

〉
.

In order to guarantee the feasibility of the second set of loops, we need that 2 rctr√
d

+
∑ζ−1

l=1 δil,il+1
≥ 0. We derive conditions for the worst case which occurs when the loop

is written for the longest path in T , i.e., when ζ = k+1 and when δil,il+1
= −ν(k)rctr,

for all l ∈ {1, . . . , k}. In this case, there is no infeasible simple loop if and only if

2
rctr√

d
− kν(k)rctr ≥ 0,

that is, if and only if ν(k) = 2
k
√

d
.

Finally, the proof of Theorem 3.5 follows from Theorem B.1, Lemma B.2 and
Lemma B.3.
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