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ABSTRACT

Thlis paper describes the results obtained in a research program
ultimately concerned with deriving a physical sketch of a sceﬁe from one
or more images. Our approach involves modeling physically meanlingful
information that can be used to constralin the interpretation process, as
well as modeling the actual scene content. In particular, we address
the problems of modeling the imaging process {camera and i1llumination),
the scene geometry (edpge classification and surface reconstruction), and
elements of scene content {material composition and skyline

delineation).

1 INTRODUCTION

Inages are inherently ambiguous representations of the scenes they
depict: dimsges are 2-D views of 3-D space, they are single slices in
time of ongoing physical and semantic processes, and the light waves
from which the images are constructed convey limited informatlon about
the surfaces from which these waves are Teflected. Therefore,
interpretation cannot be strictly based on information contained in the
image; it must involve, additionally, some combination of a priori
models, constralnts, and assumptions. In current machine-vision systems
this additional information is usually not made explicit as part of the
machine”s data base, but rather resides in the human operator who choses
the particular techniques and parameter settings to reflect his
understanding of the scene context. This paper deseribes a portion of
the SRI program 1in machine vision research that is concerned with
identifying and modeling physically meaningful information that can be
used to automatically coostrain the Interpretation process. In
particular, as an adjunct to any autonomous system with a generalized
competence to analyze imaged data of 3-D real-world scenes, we believe
that it is necessary to explicitly model and use the following types of
knowledge:



(1) Camera model and geometrlic constraints (location and
orlentation 1in space from which the image was acquired,
vanishing points, ground plane, geometriec horizon,
geometric distortion).

{(2) Photometric and 1llumination models (atmospheric and
image-processing system Intensity-transfer functions,
location and spectrum of sources of i1llumination,
shadows, highlights).

(3) Physical surface models (description of the 3-D geometry
and physical characteristics of the visible surfaces;
€eg., orlentation, depth, reflectance, material
composition).

{(4) Edge classification (physical nature of detected edges;
e.g., occlusion edge, shadow edge, surface intersection
edge, material boundary edge, surface marking edge).

(5) Delineation of the visible horizon (skyline)

(6) Semantic context (e.g., urban or rural scene, presence of
roads, buildings, forests, mountains, clouds, large water
bodies, etc.).

In the remainder of this paper, we will describe in greater detail
the nature of the above models, our research results concerning how the
parameters for some of these models can be automatically derived from
image data, and how the models can be used to constrain the

interpretation process In such tasks as stereo compilation and image

matching.

If we categorize constraints according to the scope of thelr
influence, then the work we describe i1s primarily concerned with global
and extended constraints rather than with constraints having only a
local influence. To the extent that constraints can be categorized as
geometric, photometric, or semantic and scene dependent, it would appear
that we have made the most progress in understanding and modeling the

geometric constraints.



IT CAMERA MODELS AND GEOMETRIC CONSTRAINTS

The camera wmodel describes the relatlionship between the 1maging
device and the scene; e.g., where the camera i1s 1in the scene, where it
1s looking, and more specifically, the precise mapping from points in
the scene to points in the image. In attempting to match two views of
the same scene taken from different locations in space, the camera model
provides essential information needed to contend with the projective

differences between the resulting images.

In the case of stereo reconstruction, where depth (the distance
from the camera to a point in the scene) is determined by finding the
corresponding scene point in the two Images and using triangulation, the
camera models (or more precisely, the relative camera model) limit the
search for corresponding points to one dimension in the image via the
"epipolar” constraint. The plane passing through a given scene point
and the two lens centers intersects the two image planes along straight
lines; thus a polnt in one image must Iie along the corresponding
(epipolar) line in the second image, and one need only search along this

line, rather than the whole image to find a match.

When human interaction is permissible, the camera model can be
found by having the human identify a number of corresponding points in
the two images and using a least-squares technique to solve for the
parameters of the model [5]. If finding the corresponding points must
be carried out without human intervention, then the differences in
appearance of local features from the two viewpoints will cause a
significant percentage of false matches to be made; under these
conditions, least squares is not a reliable method for model fitting.
Qur approach to this problem [3] 1s based on a philosophy directly
opposite to that of least—squares —— rather than using the full
collection of matches in an attempt to "average out” errors in the
model-fitting process, we randomly select the smallest number of points
needed to solve for the camera model and then enlarge this set with

additional correspondences that are compatible with the derived model.



If the size of the enlarged compatibility set is greater than a bound
determined by simple statistical arguments, the resulting point set is
passed to a least-squares routine for a more precise solution. We have
been able to show that as few as three correspondences are sufficient to
directly solve for the camera parameters when the three-space
relationships of the corresponding points are known; a recent result
[13] indicates that 5 to 8 polnts are necessary to solve for the
relative camera model parameters when three space Information is not

avallable a priori.

The perspective imaging process (the formation of images by lenses)
introduces glohal constraints that are Independent of the explicit
avallability of a camera model; particularly important are the detection
and use of "vanishing points.” A set of parallel 1lines in 3-D space,
such as the vertical edges of buildings in an urban scene, will project
onto the image plane as a set of straight lines intersecting at a common
point. Thus, for example, i1f we can 1locate the wvertical wvanishing
point, we can strongly constrain the search for vertical objects such as
telephone or power polas or building edges, and we can also verify
conjectures about the 3-D geometric configuration of objects with
stralight edges by observing which vanishing points these edges pass
through. The two horizontal vanishing points corresponding to the
rectangular layout of urban areas, the vanishing point assoclated with a
point of illumination [8], and the vanishing point of shadow edges
projected onto a plane surface in the scene, provide additional
constraints with speclal semantic significance. The detection of
clusters of straight parallel Ilines by finding their vanishing points
can also be used to automatically screen large amounts of imagery for

the presence of man-made structures.

The technique we have employed to detect potential vanishing points
involves local edge detection by finding zero-crossings 1n the 1mage
cbnvolved with both Gaussian and Laplacian operators [9], fitting
straight 1ine segments to the closed zero—crossing contours, and then

finding clusters of intersection points of these straight lines. 1In



order to avoid the combinatorial problem of computing intersection
points for all pairs of lines, or the even more unreascnable approach of
plotting the infinite extension of all detected line segments and noting
those locations where they cluster, we have Implemented the following
technique. Consider a unit radius sphere physically positioned in space
somewhere over the image plane (there are certaln advantages to locating
the center of the sphere at the camera focal polnt 1f this is known, 1n
which case it becomes the Gaussian sphere [6,7], but any location is
acceptable for the purpose under consideration here}. Each line segment
in the image plane and the center of the sphere define a plane that
intersects'the sphere in a great circle —— if two or more stralight lines
intersect at the same point on the image plane, their great circles will
intersect at two common points on the surface of the sphere, and the
line passing through the center of the sphere and the two intersection
points on the surface of the sphere will also pass through the

intersection point in the image plane.

ITTI EDGE CLASSIFICATION

An Intensity discontinuity 1in an image can correspond to many
different physical events in the scene, some very significant for a
particular purpose, and some merely confusing artifacts. For example,
in matching two 1mages taken under different lighting conditions, we
would not want to use shadow edges as features; on the other hand,
shadow edges are very important cues In looking for (say) thin raised
objects. In stereo matching, occlusion edges are boundaries that area
correlation patches should not cross (there will also.be a region on the
“"far"” side of an occlusion edge in which no matches can be found);
occlusion edges also define a natural distance progression in an image
even in the absence of stereo information. If it is possible to assign
labels to detected edges describing thelr physical mnature, then those

interpretation processes that use them can be made much more robust.



We have implemented an approach to detecting and identifying both
shadow and occlusion edges, based on the following general assumptions
about lmages of real scenes:

(1) The major portion of the area 1in an image (at some

reasonable resolution for interpretation) represents
continuous surfaces.

(2) Spatially separated parts of a scene are independent, and
their image projectiong are therefore uncorrelated.

(3) Nature does not conspire to fool us; if gome systematic
effect 1s observed that we normally would anticipate as
caused by an expected phenomena due to 1maging or
lighting, then it is likely that our expectatlions provide
the correct explanation; e.g., coherence in the image
reflects real coherence 1n the scene, rather than a
colncidence of the structure and alignment of distinct
scene constituents.

Consider a curve overlayed on an image as representing the location
of a potential occlusion edge in the scene. If we construct a series of
curves parallel to the given one, then we would expect that for an
occlusion edge, there would be a high correlation between adjacent
curves on both sides of the given curve, but not across this curve.
That i1s, on each side, the surface continuity assumption should produce
the required correlation, but across the reference curve the assumption
of remote parts of the scene being independent should produce a low
correlation score. In a case where the reference curve overlays a
shadow edge, we would expect a continuous high (normalized) correlation
between adjacent curves on both sides and across the reference curve,
but the regression coefficlents should show a discontinuity as we cross
the reference curve. This technique 1is described in greater detail in
[14]. Figures 1 and 2 show experimental results for shadow and

occlusion edges.



Iv INTENSITY MODELING (and Material Classification)

Given that there 1is a reasonably consistent transform between
surface reflectance and image intensity, the exact nature of this
transform is not required to recover rather extensive Information about
the geometric configuration of the scene. It is even reasonable to
assume that shadows and highlights can be detected without more precise
knowledge of the intensity mapping from surface to ilmage; but if we wish
to recover Information about actual surface reflectance or physical
composition of the scene, then the problem of intensity modeling must be

addressed.

Even relatively simple intensity modeling must address three
issues: (1) the relationship between the incident and reflected light
from the surface of an object in the scene as a function of the material
composition and orientation of the surface; (2) the light that reaches
the camera lens from sources other than the surface being viewed (e.g.,
light reflected from the atmosphere); and (3) the relationship between
the light reaching the film surface and the intensity value ultimately
recorded In the digital image array.

Qur approach to Intensity modeling assumes that we have no scene—
specific information available to us other than the image data. We use
a model of the imaging process that incorporates our knowledge of the
behavior of the recording medium, the properties of atmospheric
transmission, and the reflective properties of the scene materials. For
aerlal imagery we use an atmospheric model that assumes a constant
amount of light, (independent of scene radiance), is scattered by the

atmosphere into the camera.
I=R+S

where I is the image irradiance, R the scene radiance, and S the image
irradiance caused by atmospheric scattering. We use a logarithmic

relationship between ilmage irradiance and £ilm density D,



D=a*log(l)} + d

where a and 4 are film constants, whose values mneed to be calculated.
For a surface radiance model we assume Lambertian behaviour (the
reflected l1light 1s proportional to the incident 1light, the constant of
proportionality 1s a function of the surface material, and the relative

brightness of the surface is independent of the location of the viewer).
R=EAN

where E 1s the illumination strength (scene irradiance), A the surface
reflection or albedo, and N a function related to the effects of surface
orientation (for Lambertian surfaces this i1s a function of the angle

between the surface normal and the light direction).

If for the present we ignore surface orientation effects, that is
we assume all surfaces are orientated in the same direction, then our

model has the form
D=a*log(A+b)+ec

where a,b,and ¢ are constants that need to be determined. b is the

ratlo of atmospheric scattering to illumination irradiance.

We calibrate our model by identifying a few regions of known
material in an image. Three materials are sufficlent. The fitting is
achieved by guessing b - we know b lies in the range O to 1 — applying
the least squares method to the resultant linear equation to calculate
a,c, and the residual sum, and adjusting b to minimize this residual

Sum.

The resultant model is used to transform the given image into a new
image depicting the scene albedo. The albedo image has been used to
provide an initial classification (and partitioning) of the scene using
straight forward classification techniques based on "known” surface
albedos. This technique allows classification without the need to

provide training samples of all classes that are present in the image.



v SHADOW DETECTION (and Ralsed Object Cueing)

The abllity to detect and properly 1dentify shadows 1s a major
asset 1n scene analysis. For certaln types of features, such as thin
raised objects in a vertical aerlal imape, 1t is often the case that
only the shadow 1s visible. Knowledge of the sun”s location and shadow
dimensions frequently allows us to recover geometrlc Information about
the 3-D structure of the objects casting the shadows, even 1n the
absence of stereo data [8,10]; but perhaps just as 1wmportant,
distinguishing shadows from other intensity variations ellminates a

major source of confusion in the interpretation process.

Gilven an intensity discontinuity in an 1mage, we can employ the
edge labeling technique described earlier to determine if it is a shadow
edge. However, some thin shadow edges are difficult to £find, and if
there are lots of edges, we might not want to have to test all of them
to locate the shadows. We have developed a number of techniques for
locating shadow edges directly, and will now describe a simple but
effective method for finding the shadows cast by thin raised objects

(and thus locating the objects as well).

We aséume we elther know the approximate sun direction, or
equivalently, the shadow vanishing point. We first employ a thin line
detector oriented parallel to the sun direction at every location in the
image, and then apply a moving—window averaging technique In the sun”s
direction to further enhance the line detector”s response and reduce
nolse. The result of these operations 1s to smear both the noise and
the thin shgdow lines. We next thin the shadow lines, eliminate all
weak responses, and overlay the result on the original image. The foot
of each shadow line now points to the base of the thin raised object
casting the shadow. Given the results from two (or more) images taken
at different times, the Intersections of shadow 1lines Ilocates the

objects more precisely and also eliminates false alarms.



The same technique has been applied to the detection of raised
objects of extended size. Shadow edges of the extended object are
detected and used to locate the object. Figures 3-10 show this approach
to detecting both thin and extended raised objects.

VI VISUAL SKYLINE DELINEATION

Although not always a well defined problem, delineation of the
land-sky boundary provides important constraining information for
further analysis of the image. Its very existence in an image tells us
something about the location of the camera relative to the scene (i.e.,
that the scene is being viewed at a high—oblique angle), allows us to
estimate visibility (i.e., how far we can see —- both as a function of
atmospheric viewing conditions, and as a function of the scene content),
provides a source of good landmarks for (autonomous) navigation, and
defines the boundary beyond which the image no longer depicts portions

of the scene having fixed geomefric structure.

In our analysis, we generally assume that we have a single right-
side~up image in which a (remote) skyline is present. Confusing factors
include c¢louds, haze, snow-covered land structures, close-in raised
objects, and bright bulldings or rocks that have iIntensity values
identical to those of the sky (a casual inspection of an image will
often provide a misleading opinion about the difficulty of skyline
delineation for the given case). OQur initial approach to this problem
was to 1nvestigate the use of slightly modified methods for linear
delineation [4] and histogram partitioning based on intensity and
texture measures; we employ fairly simple models of the relationship

between land, sky, and cloud brighthess and texture.

Currently, we are employing a reglon based technique which operates

as follows:

To eliminate spurious regions and gaps in region boundaries caused

by noise we first reduce the given I1mage by a factor of at least 4. We
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partition the 1lmage into a nested pyramid of regions; each region being
one 1in which every pixel has an intensity value which differs by less
than some given threshold, from a least one of 1its 4-neighbors. The
nested pyramid 1s constructed by using a sequence of 1ncreasing
threshold values (e.g. 2,4,8,...); thus if T1 and T2 are thresholds
such that T!I < T2, then any region found with threshold TI1 1is
neceggsarily identical to a subregion or a regiom found with threshold

T2.

A "sky seed” 1s found by identifying the region that dominates the
very top of the pilcture with a segmentation threshold of 2 (this is the
lowest threshold that allows a gradient to exist within a region). For
a clear sky, or a sky with cumulus c¢louds completely surrounded by clear
sky, this step usually identifies the entire sky. Figure 11 shows an
urban scene with overcast sky and figure 12 shows the same scene with

the sky seed overlayed.

As an additicnal plece of information, the sky seed 1is classified
as clear sky, overcast sky, or patchy clouds. Patchy cumulus clouds
appear as large bright regions within a clear sky region, while the
brightness function for a clear sky can be modeled as a linear function
of the image coordinates. Al though the equations governing clear sky
luminance are complex i1ntegro-differential equations, it was determined
empirically that for the viewing angles produced by a 50mm lens, a
(linear) planar model provided a good fit. To determine whether the sky
seed 1s clear sky or overcast sky, a least squares fit to the planer
model is made, and the mean square error, corrected by the measured
intensity wvariance, 1s compared to a fixed thresholded. The
clagsification of the sky into clear/overcast/patchy clouds can help to
resolve some of the confusing factors in skyline detection, but this

information 1s not currently used.

Next, a line spanning the pilcture from right to left is found that
is either at or below the true skyline; this line is found by doubling
the threshold for segmentation wuntil the reglon containing the sky seed

touches the bottom of the picture. Since we make an initial assumption
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that the sky does not touch the bottom of the picture, this threshold is
then backed off by a factor of 2 and a "land seed” is defined as the
complement of the sky region. The assumption here is that the skyline,
or some boundary 1in the land region, is of higher contrast than any
extended boundary within the sky. For all 15 test plctures that we
employed in our experiments, this assumption was only violated once
(where a particularily bright cumulus cloud on the horizon formed a
brighter boundary with the sky than a bright rock on the horizon; such a
situation can be easily detected after 1initial processing). Figure 13
shows the case in which a region contalning the sky seed touches the
bottom of the pilcture at a threshold of 16, and Figure 14 shows the
plcture split into a sky seed, land seed, and ambiguous unclassified
portion. The land seed is determined by using a threshold of 8. Figure
15 shows an additional and more typical example of skyline delineation.

In a substantial number of plctures the sky and land seeds touch,
thereby delineating the skyline. If the sky and land seeds do not have
a common boundary, a portion of the pilecture i1s left unclassified,
bounded by the sky seed above and the land region below. Current work
focuses on developing methods to disambiguate the unclassified portion
of the picture. The methods under development are generic to all types
of scenes and our approach does not use semantic knowledge of particular
land features. Prior work on this topic, employing considerable

semantlc knowledge, is contained in Sloan [11].

VII SURFACE MODELING

Obtaining a detailed representation of the visible surfaces of the
scene, as (say) a set of point arrays depicting surface orientation,
depth, reflectance, material composition, etc., is possible from even a
single black and white image [12,2]. A large body of work now exists on
this topic,(see [15,16] for recent work by our group), and although
directly relevant to our efforts, it 1s not practical to attempt a

discussion of this material here. There is, however, one key difference
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between surface modeling and the other topics we have discussed —— the
extent to which the particular physical knowledge modeled constrains the
analysis of other parts of the scene. In this paper we have been
primarily concerned with physical models that provide global or extended
constraints on the analysis; surface modeling via point arrays provides

a very localized constrailning influence.

VIII  CONSTRAINT-BASED STEREQ COMPILATION

The computational stereo paradigm encompasses many of the important
task domains currently being addressed by the machine-vision research
community [1}; it is also the key to an application area of significant
commercial and military 1mportance —-— automated stereo compilation.
Conventional approaches to stereo compilation, based on finding dense
matches 1In a stereo image pair by area correlation, £fall to provide
acceptable performance in the presence of the following conditions
typically encountered in mapping cultural or urban sites: widely
separated views (in space or time), wide angle views, oblique views,
occlusions, featureless areas, repeated or perlodic structures. As an
integrative focus for our research, and because of 1ts potential to deal
with the factors that cause failure in the conventional approach, we are
constructing a constralnt—based stereoc system that encompasses many of

the physical modeling techniques discussed above.

Figure 16 show how a stereoc system can exploit global geometric
constralnts. First, straight lines and vanishing points are found in
the two stereo images as described earlier (see Section II). Lines are
first classified according to which vanishing point they pass through.
Those 1lines not assocliated with the detected vanishing points are
1gnored. The vanishing points in the two stereo views are then matched.
The direction In space established by a vanishing point 1s a feature of
the scene which is 1Invariant under translation of the camera. Two
matches of wvanishing points are sufficient to calculate the rotational

differences between the cameras i.e., the rotation required to bring one

13



camera”s vanishing points into congruence with the other”s. Two matches
of ordinary polnts are now sufficient to determine the translation of

one camera with respect to the other {(up to an unknown scaling factor).

Using wvanishing points can Improve stereo matching even when the
exact camera model is unknown. In Figures 161 and 16j, lines passing
through a vanishing point in one image are first matched to the set of
lines passing through the corresponding vanishing point in the other
lmage. TFor example, right-image lines passing through the vertical
vanishing point are only matched to left-image lines that also pass
through the vertical vanishing point. Within these subsets, lines are
matched according to a score based on four features: (1) difference in
distance from the vanishing peint to the lines, (2) ratio of lengths,
(3) difference in contrast and, (4) difference 1in phase i.e., the angle
the line makes with the lmage-horizontal. Each subscore 1s a value in
the Interval [O0,1]. The value represents the 1likelihood of this
combination of the four features. The  subscores are combined
multiplicatively, and the combination with the maximum score (above a
preset threshold) is chosen. Even this simple matching technique, using

no search or relaxation, finds an adequate number of correct matches.

IX CONCLUDING COMMENTS

When a person views a scene, he has an appreclation of where he 1is
relative to the scene, which way 1s wup, the general geometric
configuration of the surfaces (especlially the support and barrier
surfaces), and the overall semantic context of the scene. The research
effort we have described is intended to provide similar information to
constrain the more detalled interpretation requirements of machine

vision (e.g., such tasks as stereo compilation and image matching).
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FIGURE 1 EXAMPLE QF CAST-SHADOW EDGE
{Edge Classification)
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FIGURE 2 EXAMPLE OF EXTREMAL EDGE
(Edge Classification)

18



:" gy
w fp' 3 o A

.

2 - o~

® MASK a b c

“

APPLIED AT RIGHT ANGLES
TO SHADOW DIRECTION

e.qg. SHADOW SHADOW
DIRECTION OCIRECTION
a
al|p|c b
[

® SCORE = MINIMUM (ac) —b
® HIGH SCORE IMPLIES LINE PRESENT

FIGURE 3 THIN SHADOW LINE DETECTOR FIGURE 4 QRIGINAL IMAGE
(Shadow Detection}

{Shadow Detection)
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{Shadow Detection}

FIGURE 5 RESULTS OF APPLYING THE LINE FIGURE ©
DETECTOR TO ORIGINAL IMAGE
{Shadow Detection)
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FIGURE 7 LINE THINNING FIGURE 8 THRESHOLDED LINES OVERLAYED
{Shadow Detection) ON ORIGINAL IMAGE: COMPARE
WITH FIGURE 4
{Shadow Detection}

FIGURE 8§ RESULTS USING TWO ADDITIONAL FIGURE 10 RESULTS FOR DETECTING
IMAGES: COMPARE WITH FIGURE EXTENDED OBJECTS
10

{Shadow Detection)
(Shadow Detection}
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FIGURE 11

FIGURE 13

URBAN SCENE WITH OVERCAST
SKY

(Skyline Delineation)

THRESHOLD 1S DOUBLED UNTIL
REGION CONTAINING SKY SEED
TOQUCHES “BOTTOM” 15% OF
PICTURE

(Skyline Delineation)
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FIGURE 12 SKY SEED FQUND WITH REGION

SEGMENTATION AT THRESHOLD 2

{Skyline Delineation}

FIGURE 14 PICTURE SEGMENTED INTQ SKY
SEED, UNCLASSIFIED PORTION,
AND LAND SEED
(Skyline Delineation)



(a) ORIGINAL IMAGE

{b) SKY AND LAND SEED BOUNDARIES COINCIDE AT SKYLINE TO
PRODUCE UNAMBIGUOUS DELINEATION

FIGURE 15 SKYLINE DELINEATION
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{al {b)
A STEREO PAIR

(e} LINE SEGMENTS td

FIGURE 16 STEREO MATCHING USING GLOBAL PERSPECTIVE CONSTRAINTS
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{e) {f)
GALUSSIAN MAPPING QF LINES

{Bright spots indicate vanishing points.
The imagses ara also mapped onto the
sphere for referance.)

PARALLEL LINES

FIGURE 16 STEREO MATCHING USING GLOBAL PERSFPECTIVE CONSTRAINTS (Continued)
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i i
: MATCHED LINES i

FIGURE 16 STEREQO MATCHING USING GLOBAL PERSPECTIVE CONSTRAINTS (Continued)
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