O

S

SR P

Sau s T L 2

SH Intermart

®

How to Clear a Block:
A Theory of Plans

Technical Note 397

December 1986

By: Zohar Manna
Computer Science Department
Stanford University

Richard Waldinger
Artificial Intelligence Center
Computer and Information Sciences Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research was supported by the National Science Foundation under Grants
DCR~82-14523 and DCR-B5-12358, by the Defense Advanced Research Prejects
Ageney under Contract NOOU39-84-C-0211, by the United States Air Force Office
of Scientific Resesrch under Contract AFOSR-85-0383, by the Office of Naval
Research under Contract N00014-84-C-0708, by United States Army Research
under Contract DAJA-45-84-C-0040, and by a contract from the Internaiional
Business Machines Corporation.

Preliminary versions of parts of this paper ware prasented at the Eighth Interna-
tional Conference on Aulomated Deduction, Oxford, England, July 1986, and the
Workshep on Planning and Reasoning sboui Actions, Timberline, Oregon, July
1986,

333 Ravenswood Ave. * Menio Park, CA 84025
14151 326-6200 » TWX: ©10-373-2046 = Telex: 334-486







ABSTRACT

Problems in commonsense and robot planning are approached by methods adapted from
program synthesis research; planning is regarded as an application of automated deduc-
tion. To support this approach, we introduce a variant of situational logic, called plan
theory, in which plang are explicit objects.

A machine-oriented deductive-tablean inference system is adapted to plan theory.
Equations and equivalences of the theory are buiit into a unification algorithm for the
system. Frame axioms are buijt into the resolution rule.

Special attention is paid to the derivation of conditional and recursive plans. Induc-
tive proofs of theorems for even the simplest planning problems, such as clearing a block,
have been found to require challenging generalizations.
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1. INTRODUCTION

For many years, the authors have been working on program synthesis, the automated
derivation of a computer program to meet a given specification. We have settled on a
deductive approach to this problem, in which program derivation is regarded as a task in
theorem proving (Manna and Waldinger [80], [85a]). To construct a program, we prove a
theorem that establishes the existence of an output meeting the specified conditions. The
proof is restricted to be constructive, in that it must describe a computational method
for finding the output. This method becomes the basis for the program we extract from
the proof.

For the most part, we have focused on the synthesis of applicative programs, which
yield an output but produce no side effects. We are now interested in adapting our deduc-
tive approach to the synthesis of imperative programs, which may alter data structures or
produce other side effects. '

Plans are closely analogous to imperative programs, in that actions may be regarded
as computer instructions, tests as conditional branches, and the world as a huge data
structure. This analogy suggests that techniques for the synthesis of imperative programs
may carry over into the planning domain. 'Conversely, we may anticipate that insights
we develop by looking at a relatively simple planning domain, such as the blocks world,
would then carry over to program synthesis in a more complex domain, involving array
assignments, destructive list operations, and other alterations of data structures.

Consider the problem of clearing a given block, where we are not told whether the
block is already clear or, if not, how many biocks are above it. Assume that we arein a
blocks world in which blocks are all the same size, so that only one block can fit directly
on top of another, and in which the robot arm may lift only one block at a time. Then
we might expect a planning system to produce the following program:

if clear(a)

then A

else makeclear(hat(a));
put(hat(a), table).

makeclear(a) <+

In other words, to clear a given block a (the argument), first determine whether it is
already clear. I not, clear the block that is on top of block @, and then put that block
on the table. Here A is the empty sequence of instructions, corresponding to no action
at all, and hat(a) is the block directly on a, if one exists. The action put(u,v) places the
block = on top of the object v. ' '

Note that the makeclear program requires a conditional (if-then-else) and a recursive
call to makeclearitself. Planning systems have often attempted to avoid constructing plans
using these constructs by dealing with completely known worlds. Had we known exactly
how many blocks were to be on top of block a, for example, we could have produced a
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plan with no conditionals and no recursion. Once we begin to deal with an uncertain
environment, we are forced to introduce some constructs for testing and for repetition.

A fundamental difficulty in applying a theorem-proving approach to plan construction
is that the meaning of an expression in a plan depends on the situation, whereas in ordinary
logic the meaning of an expression does not change. Thus, the block designated by hat(a)
or the truth-value designated by clear{a) may change from one state to the next. The
traditional approach to circumventing this difficulty relies on a situational logic, i.e., one
in which we can refer explicitly to situations or states of the world.

2. THE TROUBLE WITH SITUATIONAL LOGIC

In this section, we describe conventional situational logic and point out some of its de-
ficiencies when applied to planning. These deficiencies motivate the introduction of our
own version of situational logic, called “plan theory.”

Conventional Situational Logic

Situational logic was introduced into the literature of computer science by McCarthy
[63]. A variant of this logic was incorporated into the planning system QA3 (Green [69]).
In the QA3 logic, function and predicate symbols whose values might change were given
state arguments. Thus, rather than speaking about hat(z) or clear(z}, we introduce the
situational function symbol hat'(w,z) and the situational predicate symbol Clear(w,z),
each of which is given an explicit state argument w; for example, hat'{w, z) is the block
on top of block z in state w. Actions are represented as functions that yield states; for
example, put'(w, z,y) is the state obtained from state w by putting block z on object y.

Facts about the world may be represented as axioms in situational logic. For example,
the fact that the hat of an unclear block is on top of the block is expressed by the axiom

if not Clear(w, )
" then On(w, hat'(w,z), ).

Actions can also be described by situational-logic axioms. For example, the fact that
after block 2 has been put on the table, block z is indeed on the table is expressed by the
axiom : : , )

if Clear(w,z)
then On(put'(w,z,table), z, table).

In a conventional situational logic, such as the QA3 logic, to construct a plan that
will meet a specified condition, one proves the existence of a state in which the condition
is true. More precisely, let us suppose that the condition is of the form Q[so, a, z], where
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¢ is the initial state, a the argument or input parameter, and z the final state. Then the
theorem to be proved is

(Vso{Va)(32)Q[ss, @, z].
For example, the plan to clear a block is constructed by proving the theorem
(Vs )(Va)(3z) Clear(z, a).

From a situational-logic proof of this theorem, using techniques for the synthesis of ap-
plicative programs, one can extract the program

if Clear(sg,a)

then sg

else let sy be makeclear' (s, hat'(sg,a)) in
put'(s1, hat'(s1,a), table).

makeclear'(sg,a) <

This program closely resembles the makeclear program we proposed initially, except that
it invokes situational operators, which contain explicit state arguments.

Executable and Nonexecutable Plans

It would seem that, by regarding plans as state-producing functions, we can treat an
imperative program as a special kind of applicative program and use the same synthesis
methods for both. In other words, we can perhaps extract programs from situational-logic
proofs and regard these programs as plans. Unfortunately, there are some programs we
can extract from proofs in this formulation of situational logic that cannot be regarded
as plans.

For example, consider the problem illustrated in Figure 1. The monkey is presented
with two boxes and is informed that one box contains a banana and the other a bomb,
but he is not told which. His goal is to get the banana, but if he goes anywhere near
the bomb it will explode. As stated, the problem should have no solution. However, if
we formulate the problem ir conventional situational logic, we can prove the appropriate
theorem,

(Vs0)(3z)Hasbanana(z).
The “program” we extract from one proof of this theorem is

if Hasbanana(goto'(sg, a))
getbanana(sg) < < then gotd'(sy,a)
else goto'(sg,b) .

According to this plan, the monkey should ask whether, if it were to go to box a,
it would get the banana? If so, it should go to box a; otherwise, it should go to box b.
We cannot execute this “plan” because it allows the monkey to consider whether a given
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Fig. 1: The Monkey, the Banana, and the Bomb

proposition Hasbanana is true in a hypothetical state goto'(sq, a), which is different from
the current state sg. ’

We would like to restrict the proofs in situational logic to be constructive, in the
sense that the programs we extract should correspond to executable plans. This kind
of consideration has influenced the design of our version of situational logic, called plan
theory.

3. PLAN THEORY

In plan theory we have two classes of expressions. The static (or situational) expressions
denote particular objects, states, and truth-values. For example, the static expressions
hat'(s,b), Clear(s,b), and put’(s,b,c) denote a particular block, truth-value, and state,
respectively (where b and ¢ denote blocks and s denotes a state). We shall also introduce
corresponding fluent terms, which will not denote any particular object, truth-value, or
state, but which will designate such elements with respect to a given state. For example,
the fluent terms

hat(d), clear(d), and put(d,d)

will only designate a block, truth-value, or state, respectively, with respect to a given
state (where d and d are themselves fluent terms that designate blocks).

Fluent terms themselves do not refer to any state explicitly. To see what element a
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fluent term e designates with respect to a given state s, we apply a linkage operator to s
and e, obtaining a static expression. We use one of three linkage operators,

se, Ss:e, OT S,

depending on whether e designates an object, truth-value, or state, respectively. For
example, the static expressions

s:hat(d) s:clear(d), and sjput(d,d)
will indeed denote a particular block, truth-value, and state, respectively.

While we shall retain static expressions as specification and proof constructs, we shall
restrict our proofs to be constructive in the sense that the programs we extract from them
will contain no static expressions, but only fluent terms. Because fluent terms do not refer
to states explicitly, this means that the knowledge of the agent will be restricted to the
implicit current state; it will be unable to tell what, say, the hat of a given block isin a
hypothetical or future state. In this way, we ensure that the programs we extract may be
executed as plans. Nonplans, such as the getbanana “program” mentioned above, will be
excluded.

Now let us describe plan theory in more detail.

Elements of Plan Theory
Plan theory is a theory in first-order predicate logic that admits several sorts of terms.

s The static (situational) terms, or s-terms, denote a particular element. They
include

= object s-terms, which denote an object, such as a block or the table.
m slate s-terms, which denote a state.

For example, hat'(s, b) is an object s-term and put'(s,b,¢) is a state s-term, if s is a state
s-term and b and ¢ are object s-terms.

» The static ( situational) sentences, or s-sentences, denote a particular truth-value.
For example, Clear(s,b) is an s-sentence, if s is a state s-term and b an object s-term .

o The fluent terms, or f-terms, only designate an element with respect to a given
state. They include

» object {-terms, which designate an object with respect to a given state.

= propositional f-terms, which designate a truth-value with respect to a given
state.

= plan f-terms, which designate a state with respect to a given state.
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For example, hat(d), clear(d), and put(d, é) are object, propositional, and plan {-terms,
respectively. The plan f-constant A denotes the empty plan.

Object f-terms denote object fluents, propositional f-terms denote propositional flu-
ents, and plan f-terms denote plans. We may think of object fluents, propositional fluents,
and plans as functions mapping states into objects, truth-values, and states, respectively.
Syntactically, however, they are denoted by terms, not function symbols. To determine
what elements these terms designate with respect to a given state, we invoke the in func-

9 1301 o,
- .

tion “:”, the in relation , and the execution function *;

The in Function “:”
If 5 is a state s-term and e an object {-term,
s:e

is an object s-term denoting the object designated by e in state s. For example, so:hat(d)
denotes the object designated by the object f-term hat(d) in state so.

In general, we shall introduce object f-function symbols f(u1, ...,%,) and object
s-function symbols f'(w, z1, ..., 2Z,) together, where f takes object fluents u;, ..., u, as
arguments and yields an object fluent, while f’ takes a state w and objects zy, ..., 2z, as
arguments and yields an object. The two symbols are linked in each case by the object
linkage axiom '

wif(ug, «ooytn) = ff(w, wing, ..., wy,) (object linkage)

(Implicitly, variables in axioms are universally quantified. For simplicity, we omit sort
conditions such as state(w) from the axjoms.)

For example, corresponding to the object f-function hat(u), which yields a block
fluent, we have an object s-function hat’(w,z), which yields a fixed block. The appropriate
instance of the object linkage axiom is

wihat(u) = hat'(w, wm).

Thus s:hat(d) denotes the block on top of block s:d in state s. (This is not necessarily
the same as the block on top of s:d in some other state s'.)

The in Relation “:"

The in relation :: is analogous to the in function :. If s is a state s-term and e a
propositional f-term,
sue

is a proposition denoting the truth-value designated by e in state s. For example,
sp ::clear(d) denotes the truth-value designated by the propositional f-term clear(d) in
state sg.
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In general, we shall also introduce propositional {-function symbols »{uy, ..., u,)and
s-predicate symbols R(w,z), ...,z,) together, with the convention that r takes object
fluents 11, ...,u, as arguments and yields a propositional filuent, while R takes a state
w and objects z;, ...,z, as arguments and yields a truth-value. The two symbols are
linked in each case by the propositional-linkage axiom

war(ug, -..,u) = Rw, wiug, ..., winy) (propositional linkage)

For example, corresponding to the propositional f-function elear(u), which yields a
propositional fluent, we have an actual relation Clear(w,z), which yields a truth-value.
The instance of the propositional-linkage axiom that relates them is

wiclear(n) = Clear{w,w:u).

Thus s::clear(d) is true if the block s:d is clear in state s.

The Execution Function “;”
If s is a state s-term and p a plan f-term,
5P

is a state s-term denoting the state obtained by ezecuting plan p in state s. For example,
s; put(d, d) is the state obtained by putting block d on object d in state s.

In general, we shall introduce plan f-function symbols g(u;, ..., %s) and state s-
function symbols ¢'(w,z1, ..., Z,) together, where g takes object fluents u;, ..., un 2as
arguments and yields a plan, while g’ takes a state w and objects z;, ...,z as arguments

and yields a new state. The two symbols are linked in each case by the plan linkage axiom
wig(ug, ... tn) = g'(w, wiur, ..., wity) (plan linkage)

For example, corresponding to the plan f-function put (u, v), which takes object fluents
% and v as arguments and produces a plan, we have a state s-function put'(w, z,y), which
takes a state w and the actual objects z and y as arguments and produces a new state.
The appropriate instance of the plan linkage axiom is

wiput(u,v) = put'(w, wiu, ww).

The empty plan A is taken to be a right identity under the execution function; that
is, :

wih = w o (empty plan)

for all states w.

Rigid Designator

Certain fluent constants ({-constants} are to denote the same object regardless of the
state. For example, we may assume that the constants table and banana always denote
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the same objects. In this case, we shall identify the object fluent with the corresponding
fixed object.

An object f-constant u is a rigid designator if
wu = U (rigid designatof)
for all states w.
For example, the fact that table is a rigid designator is expressed by the axiom
witable = table

for all states w. In the derivation of a plan, we shall assume that our argument (or input
parameter) ¢ is a rigid designator. On the other hand, some f-constants, such as here,
the-highest-block, or the-president, are likely not to be rigid designators.

The Composition Function %;;”
We introduce a notion of composing plans.
If p; and p, are plan f-terms, p;;;po is the composition of p; and pa.

Executing p;;;p2 is the same as executing first p; and then p,. This is expressed by the
plan composition axiom .

wi(pip2) = (wip);ip2 (plan composition)

for all states w and plans p; and p;. Normally we shall ignore the distinction between
the composition function ;; and the execution function ; , writing ; for both and relying
on context to make the meaning clear.

Composition is assumed to be a,ssocia.tive;'tha.t is
(p13p2)iip3 = Puii(P2iipa) (associativity)
for all plans p;, p2, and ps. For this reason, we may write p;;;p2;;ps without parentheses.
The empty plan A is taken to be the identity under composition, that is,
Asp o= ph = p (identity)
for all plans p.

Specifying Facts.and Actions

As in conventional situational logic, ‘factsﬂ about the world may be expressed as plan
theory axioms. For example, the principal property of the hat function is expressed by
the hat axiom

if notClear(w,y)

then On(w, hat'(w,y), ¥) (hat)
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for all states w and blocks y. (As usual, for simplicity, we omit sort conditions such as
state{w) from the antecedent of the axiom.) In other words, if block y is not clear, its hat
is directly on top of it. (If y is clear, its hat is a “nonexistent” object, not a block.) It
follows, if we take y to be w:v and apply the propositional and object linkage axioms, that

if not (w:: clear(v))
then w::on(hat(v), v).

for all states w and block fluents v. Other axioms are necessary for expressing other
properties of the hat function.

The effects of actions may also be described by plan theory axioms. For example,
the primary effect of putting a block on the table may be expressed by the put-table-on
axiom

if Clear(w, z)

then On(put'(w,z, table), z, table) (put-table-on)

for all states w and blocks z. The axiom says that after a block has been put on the table,
the block will indeed be on the table, provided that it was clear beforehand. (The effects
of attempting to move an unclear block are not specified and are therefore unpredictable.)
It follows, if we take z to be w:u and apply the linkage axioms plus the r1g1d1ty of the
des:gna.tor table, that

if wiclear(u) L
then On(w;pui(u,table), wiu, table)

for all states w and block fluents u.
Note that, in the consequent of the above property, we cannot conclude that
(wiput(u,table)) :: on(u, table),

that is, that after putting » on the table, » will be on the table. This is because u is
a fluent and we have no way of knowing that it will designate the same block in state
w; put(u,table) that it did in state w. For'example, if  is taken to be hat(a), the property
allows us to conclude that, if s :: clear {hat(a)), then

On(so;put{hat(a), table), so:hat(a), table).

In other words; the block that was on block a initially is on the table after execution of
the plan step. On the other hand, we cannot conclude that

(so;put{hat(a), table)) :: on{hat(a), table),

that is, that hat(a) is on the table after the plan step has been executed. In fact, in this
state, a is clear and hat(a) no longer designates a block.
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Plan Formation

To construct a plan for achieving 2 condition Q[sg, a, z], where sq is the initial state,
a the input object, and z the final state, we prove the theorem

(VSQ)(VG)(HZ] )Q[So, a, 50.‘,.2'1].

Here z; is a plan variable. In other words, we show, for any initial state sy and input
object a, the existence of a plan z; such that, if we are in state sy and execute plan zj,
we obtain a state in which the specified condition @ is true. A program producing the
desired plan is extracted from the proof of this theorem. Informally, we often speak of
this program as a plan itself, although in fact it computes a function that only produces
a plan when it is applied to an argument.

Note that, in the QA3 version of situational logic, one proves instead the theorem

(Vs0)(¥e)(32)Q[so, a, 2.

The phrasing of the theorem in plan theory ensures that the final state z can indeed be
obtained from sy by the execution of a plan z;. For example, the plan for clearing a block
is constructed by proving the theorem

(Vso)(Va)(3z1) [Clear(so;z1, a)].

In other words, the block a is to be clear after execution of the desired plan z; in the
initial state sg.

In the balance of this paper, we present a machine-oriented deductive system for plan
theory in which we can prove such theorems and derive ‘the correspornding plans at the
same time. We shall use the proof of the above theorem, together with the concomitant
derivation of the makeclear plan, as a continuing exa,mple

4. THE PLAN-THEORY DEDUCTIVE SYSTEM

To support the synthesis of applicative programs, we developed a deductive-tableau theorem-
proving system (Manna and Waldinger [80], [85a]), which combines nonclausal resolution,
well-founded induction, and conditional term rewriting within a single framework. In this
paper, we carry the system over into plan theory. Although a full introduction to the
deductive-tableau system is not possible here, we descrlbe just enough to make this paper
self-contained.

Deductive Tableaux

The fundamental structure of the system, the deductive tableau, is a set of rows, each
of which contains a plan theory sentence, either an assertion or a goal, and an optional




12 4. THE PLAN-THEORY DEDUCTIVE SYSTEM

term, the plan entry. We can assume that the sentences are quantifier-free. Let us forget
about the plan entry for a moment.

Under a given interpretation, a tableau is true whenever the following condition holds:

If all instances of each of the assertions are true,
then some instance of at least one of the goals is true.

Thus, variables in assertions have tacit universal quantification, while variables in goals
have tacit existential quantification. In a given theory, a tableau is valid if it is true under
all models for the theory.

To prove a given sentence valid, we remove its quantifiers (by skolemization) and
enter it as the initial goal in a tableau. Any other valid sentences of the theory that we
are willing to assume may be entered into the tableau as assertions. The resultmg tableau
is valid if and only if the given sentence is valid.

The deduction rules add new rows to the tableau without altering its validity; in
particular, if the new tableau is valid, so is the original tableau. The deductive process
continues until we derive as a goal the propositional constant frue, which is always true,
or until we derive as an assertion the propositional constant false, which is always false.
The tableau is then automatically valid; hence. the original sentence is too.

In deriving a plan f(a), we prove a theorem of form
(Vs0)(Va)(3z)Qs0, a, so;21].
In skolemizing this, we.obtajn the sentence
Qlsa, a, so;21],

where s9 and a are skolem constants and z; is a variable. (Since this sentence is a
theorem or goal to be proved, its existentially quantified variables remain variables, while
its universally quantified variables become skolem constants or functions. The intuition
is that we are free to choose values for the existentially quantified variables, whereas the
values for the universally quantified variables are imposed on us. The situation is precisely
the opposite for axioms or assertions.) '

To prove this theorem, we establish the validity of the initial tableau

assertions goals plan: so;f(a)

Q[so, a, s0521] S0321

For example, the initial tableau for the makeclear derivation is
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pian:

assertions goals sp;makeclear(a)

1. Clear(sp;z1, a) $0321

Certain valid sentences of plan theory, such as the axioms for blocks- world actions, would
be included as assertions.

Plan Entry

Note that the initial tableau includes a plan entry sp;z1. The plan entry is the
mechanism for extracting a plan from a proof of the given theorem. Throughout the
derivation, we maintain the following correctness property:

For any model of the theory, and for any goal [or assertion] in the tableau,
if some instance of the goal is true [assertion is false],
then the corresponding instance sp;t of the plan entry (if a.ny)
will satisfy the specified condition Q[sp, a, so;t].

In other words, executing the plan ¢ produces a state sg;t that satisfies the specified
condition. The initial goal already satisfies the property in a trivial way, since it is the
same as the specified condition. Each of the deduction rules of our system preserves this
correctness property, as well as the validity of the tableau.

If a goal [or assertion] has no plan entry, this means that any plan will satisfy the
specified condition if some instance of that goal is true [assertion is false]. In other words,
we do not care what happens in that case.

Basic Properties

It may be evident that there is a duality between assertions and goals; namely, in a
given theory,

a tableau that contains an assertion A is valid
if and only if
the tableau that contains mstea.d the goal (not.A), with the same plan entry, is valid.

On the other hand,

a tableau tha.t contains a goa.l G is valid
if and only if

the tableau that contains instead the assertion (notg) ‘with the same plan entry,
is valid.

This means that we could shift all the goals into the assertion column simply by negating
them, thereby obtaining a refutation procedure; the plan entries and the correctness
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properties would be unchanged. (This is done in conventional resolution theorem-proving
systems.) Or we could shift all the assertions into the goal column by negating them.
Nevertheless, the distinction between assertions and goals has intuitive significance, so we
retain it in our exposition.

Two other properties of tableaux are useful. First, the variables of any row in the
tableau are dummies and may be renamed systematically without changing the tableau’s
validity or correctness. Second, we may add to a tableau any instance of any of its rows,
preserving the validity and correctness.

Primitive Plans

We want to restrict our proofs to be sufficiently constructive so that the plans we
extract can be executed. For this purpose, we distinguish between primiiive symbols,
which we know how to execute, and nonprimitive symbols, which we do not. For example,
we regard the function symbols : and hat’ and the predicate symbols :: and Clear as
nonprimitive, because we do not want to admit them into our plans. On the other hand,
we regard the f-function symbols hat and clear as primitive.

In deriving a plan, we shall maintain the primitivity property, namely, that the final
segment ¢ of the plan entry sg;t for any assertion or goal of the tableau shall be composed
entirely of primitive symbols. Otherwise the new row is discarded.

Extractiné the Plan

As we have mentioned, the deductive process continues until we derive either the
final goal true or the final assertion false. At this point, the proofis complete and we may
extract the plan '

f(a) < t,
where sg;t is the plan entry associated with the final row.

This is because we have maintained the correctness property that the plan entry of
any goal [or assertion] must satisfy the specified condition Q[se,a, so;t] when that goal
[or assertion] is true [or false]. Since the truth symbol true is always true and the truth
symbol false always false, the plan entry so;t will always satisfy the specified condition.
We know also that the extracted plan will be executable, because we have maintained
the primitivity property, which requires that the plan term ¢ be expressed exclusively in
terms of primitive symbols. (Should the final plan still contain variables, these may be
replaced by any primitive terms.) '

In the next section we begin to introduce the deduction rules of our system, empha-
sizing those that need to be adapted for plan theory or that play a major role in plan
derivations.
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5. FORMATION OF CONDITIONALS

Tle resolution rule accounts for the introduction of conditionals, or tests, into the derived
plan and also is important for ordinary reasoning. Because a special adaptation of the
rule is necessary to form conditionals in plan theory without introducing the nonprimitive
predicate symbol :: into the plan, we first consider applications of the rule that do not
form conditionals.

The Resolution Rule: Ground Version

We begin by disregarding the plan entries and considering the ground version, in
which there are no variables. We describe the rule in a tableau notation.

assertions goals

F(true] or G[false]

More precisely, if our tableau contains two assertions, F[P] and G[P], which share a
common subsentence P, we may replace all occurrences of P in F[P] with true, replace
all occurrences of P in G[P] with false, take the disjunction of the results, and (after
propositional simplification) a.dd it to the tableau as a new assertion.

The rationale for this rule is as follows. We suppose that F[P] and G[P] are true
under a given model, and show that (F[true] or G[false]) is then also true. We distinguish
between two cases. In the case in which P is true, because F[P] is true, its equivalent
Fltrue] is true. On the other hand, in the case in w}uch P is false, because G[P] is tTue,
its equivalent G[false] is true. In elther case, the disjunction (F[true] or G[false]) is true.

Note that the rule is asymmetric in its treatment of F[P] and G{P]. In fact, it can be
restricted according to the “polarity” of the occurrences of P, the common subsentence.
We may réquire that some occurrence of 7 in F[P] be of negative polarity (i.e., it must
be within the scope of an odd number of implicit or explicit negations) and that some
occurrence of P in G[P] be of positive polarity (i.e., it must be within the scope of an even
number of implicit or explicit negations). The antecedent of an implication is considered
to be within the scope of an 1mphc1t negation. - Thus, in. a,pplymg the rule between two
assertions :

(if P then Q) and (P orR),

the role of F[P] must be played by (if P~ then @), in which P has negative polarity, and
the role of G[P] by (P* or R), in which P has positive polarity, yielding the new assertion

(if true then Q) or (false or R),
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that is, after propositional simplification, (Q or R). Reversing the roles of the two asser-
tions yields the trivial assertion frue, which is of no value in the proof. This strategy has
been shown by Murray [82] to retain completeness for first-order logic.

If only one of the goals has a plan entry; the new goal is given the same plan entry.
(The case in which both goals-have plan entries requires the introduction of a conditional
plan and is treated separately.) :

We have applied the rule between two assertions but, by duality, the rule can just
as well be applied between two goals or between an assertion and a goal. In these cases,
a new goal is introduced, which is a conjunction rather than a disjunction. In applying
the polarity strategy, each goal must be considered to be within the scope of an implicit
negation. - :

We assume that all the sentences in a tableau are subjected to full propositional
simplification. Rules such as :

P and true — P
Pand P — P
not(notP) — P

are applied repeatedly wherever possible before an assertion or goal is entered. Simplifi-
cation is always necessary when the resolution rule is applied.

The Resolution Rule: General Version

We have up to now been considering the g‘round case, in which the sentences ha.ve no -
variables. In the general case, the rule may be expressed as follows:

assertions . o .:goa.ISj

FIP]

G[P']

. Fé[true] or gﬁ[falsé]

More precisely, let us suppose that our tableau contains two assertions F[P] and G[P'],
which have been renamed so that they have no variables in common. The subsentences
P and P’ are not necessarily identical, but they are unifiable, with a most-general unifier
g; thus P8 = P'6. Then we may apply 8§ to F[P] and G[P'], replace all occurrences of
P8 in (G[P])8 with true, replace all occurrences of P8 in (G[P'])8 with false, take the
disjunction of the results, and (after propositional simplification) add it to our tableau
as a new assertion. In other words, after applying the most-general unifier §, we use the
ground version of the rule. If exactly one of the rows has a plan entry £, the appropriate
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instance t@ of that entry is inherited by the new row. If it turns out that {4 contains
nonprimitive symbols, the new row is discarded to maintain the primitivity property.

In general, there may be several unifiable subsentences Py, Pa, ... in F and several
unifiable subsentences P, Ps, ... in §. The substitution # must then be a most-general
unifier for all these sentences.

Equational Unification

Typically our knowledge of the world is represented by assertions in the tableau. It
is possible, however, to build certain of the equations and equivalences of a theory into an
equational-unification algorithm (Fay [79]; see also Hullot [80], Martelli and Rossi [86]),
so they need not be included among the assertions. Properties of plan theory may be
represented in this way, including the linkage, rigidity, and composition axioms.

For example, consider the sentences
Clear(spiz1, a) and Clear (put'(w, z, table), y).

Regarded as expressions in pure first-order logic, these sentences are not unifiable, because
the function symbols ; and put’ are distinct. Suppose we apply the substitution

{y — a, w — sp, T — spiw, z; — put(u,table)}.
Then we obtain the sentences

C!ear(so;put(u,table), a) and Clear(put' (s, sozﬁ; ‘ta_b‘le), a),
respectively. These are distinct sentences, but in plan theory we ‘ha,ve

Clear(sq;put(u, table), a) = Clear(put'(sg, soru, so:table), a) -

(by the plan linkage a.xjom)

Clear{put'(so, so:u, table), a)
(by the rigidity of the designator table).

In short, by applying the substitution we have obtained sentences equivalent in plan
theory. This substitution is returned by the equational-unification algorithm. We shall
say that the two sentences have been unified invoking the two properties cited.

Most-general equational unifiers are not unique. For example, consider the substitu-
tion ' '

{y — a, w— sp;22, ¢ — (So;22):u, 2y — za;put(u,table)}.
Applying this substitution to the same two sentences, we obtain

Clear(so;{z2;put(u, table)), a)
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and
Clear(put'(sp;22, (S0;22)wu, table), a),
respectively. But
Clear (so;{z2;put(u, table)), a) = Clear ((sg;22);put(u,table), a)
(by the plan composition axiom)
= Clear (put'(soiz2, (S0;22):u, (So;22):table), a)
(by the plan linkage axiom)
= (Clear (put'(SO;Zg, (s0;22):u, table), a)'
(by the rigidity of the designator table).

In general, the equational-unification algorithm may yield an infinite stream of most-
general unifiers. We obtain a different resolvent for each of these substitutions.

Examples

Let us illustrate the resolution rule with an example from the makeclear derivation.

Ezample (resolution). Suppose our tableau contains the initial goal

plan:

assertions goals so;makeclear(a)

1. | Clear(so;21, @) |‘ 50321

and the put-table-clear axiom

if On(w,z,y) and Clear(w,z)
then ‘ Clear (put' (w, z,table), y) |+

The axiom asserts that, after a block has been put on the table, the block underneath it
is clear.

As we have seen above, the two boxed subsentences are equationally unifiable in the
blocks-world theory. One of the most-general unifiers is

{y — a, v~ sp322, T — (sos22 :u, 71 — zo;put(wu,table)}.

The polarity of the boxed subsentences is indicated by their annotation. (The goal is
negative because goals are within the scope of an implicit negation.) Let us apply the
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resolution rule, taking P and P’ to be the boxed subsentences and & to be the above
unifier. Recall that, according to the duality property, we can shift the assertion into the
goal column by negating it. We obtain

true
and
if On(so;z2, (s0iz2)iu, @) and so; 22; put(u, table)
not Clear(sg;22, (30?22):“)
then false

which simplifies propositionally to

2. On{so;z2, (s0;22):%, a) and ‘
(0 2, (S0522) ) So; 22; put(u, table)

Clear(so;zz, (s0522):)

In other words, if after execution of some plan z5, some block u is on block a but is itself
clear, we can achieve our specified condition by first executing plan 2z; and then putting

block u on the table. J

To present another step of the makeclear derivation, we give a further example of
branch-free resolution. '

Ezample (resolution).  The boxed subsentence of the new goal,

2. | On{sg;22, (s0322)iu, a) |~ and

Clear(so;z2, (Soize)w)

" 8p;22; put(u, table)

unifies equationally with the boxed subsentence of the hat axiom,

if not Clear(w,y)
then mn(W, hat'(w, y), y) |+

with a most-general unifier -
{y < a, u — hat(a), w — sp;22}.
The equational-unification algorithm here invokes the equalities

(so0;z2):hat(a) = hat'(soiz2, (s0jz2):a),
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which is an instance of the object linkage axiom, and
(soiza)a = a,

which is a consequence of the rigidity of the input parameter a. Applying the resolution
rule, we obtain (after propositional simplification)

3. Clear(.éo;zg, (so;zg):ha,t(a)) and 8p322;
not Clear(sg;22, a) put(hat(a), table)

In other words, if, after execution of some plan step z», the block a is not clear but the
block hat(a) is, we can achieve our specified condition by first executing plan z; and then

putting hat(a) on the table. P

Resolution with Conditional Formation .

In applying the resolution rule between two rows, both of which have plan entries, we
must generate a conditional plan entry. If we applied the ordinary resolution rule in such
a case, we would be forced to introduce tests that contain the predicate symbol :: . We
would have no way of executing the resulting nonprimitive plans. To avoid introducing
nonprimitives into the plan entry, we employ the following resolution rule. We present
the ground version of the rule as it applies to two goals:

assertions goals ' plan: sq;f(a)
Fls::p] . o s;€1
Gls::p] sie2
ifp
Fltrue] and G[false] s; | then e
: : else e

In other words, suppose our tableau contains two goals, both of which refer to the
truth of the same propositional fluent p in a common state s. Suppose further that sis an
initial segment of the plan entries for each of the two goals. Then we can introduce the
same new goal as the previous branch-free version of the rule. The plan entry associated
with this goal has as its initial segment the common state s of the given plan entries.
Its final segment is a conditional whose test is the matching propositional fluent p and
whose then-clause and else-clause are the final segments e; and e, respectively, of the
given plans. \

The rationale for this plan entry is as follows. We suppose that the new goal
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(F(true] and Glfalse]) is true and show that the associated plan entry satisfies the specified
condition.

We distinguish between two cases. In the case in which s::p is true, because the
conjunct F[true] is true, the given goal F[s::p] is also true, and hence the associated plan
entry s;e; satisfies the specified condition. In this case, the conditional plan

s;(if p then e; else ez)

will also satisfy the condition because, when executed in state s, the result of the test of
p will be true.

Similarly, in the case in which s::p is false, the given goal G[s::p] is true, the as-
sociated plan entry s;e; satisfies the specified condition, and the conditional plan will
also satisfy the condition. Thus, in either case the conditional plan satisfies the specified
condition.

Of course, the rule applies to assertions as well as to goals. The polarity strategy
may be imposed as before. We have given the ground version of the rule; in the general
version, in which the rows may have varjables, we first apply a most-general unifier of the
subsentences s::p and s’ ::p’, after renaming as necessary; we then use the ground version
of the rule.

We illustrate this with an example.

Ezample (resolution with conditional formation). Suppose our tableau contains the two
goals

plan:

goals sosmakeclear(a)

[ (s0;21) ::clear(a) |‘ $0321

so;A; makeclear (hat(a));

not| (so;A) ::clear(a) I put(hat(a), table)

The boxed subsentences are unifiable, with a most-general unifier {2; — A}. The unified
subsentences both refer to the truth of the same propositional fluent clear(a) in a commen
state, the state sp;A. The state sp is an initial segment for the plan entries of each of
the given goals. Therefore we can apply the resolution rule to obtain (after propositional
‘simplification)

if clear{a)

then A

else makeclear(hat(a));
put(hat(a), table)

true s03A;
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Using equational unification, we can take advantage of properties of plan theory in
applying the resolution rule. For instance, we could apply the rule in this example if our
two goals were '

Clear(sp;z1, @)
and
not (so :: clear(a))

to obtain the same result. (The first is our goal 1.) This could be the final step of a
makeclear derivation. 3

Let us remark that we could formulate a resolution rule without the restriction that
the common state be an initial segment of the plan entries. If these entries were s] and
s5, the plan entry for the derived goal could be taken to be

if s:up then s] else s5.

‘The unrestricted rule does preserve the validity and correctness of the tableau. However,
because the new plan entry contains the nonprimitive symbeol ::, the row would have to
be discarded immediately. This is why we are forced to restrict the rule.

Theory Resolution Rule

We have seen that we can build equations and equivalences of a theory into the
resolution rule by using an equational-unification algorithm. Stickel [85] has introduced
a further extension of the resolution rule that enables it to behave as if nonequational
properties of the theory were built in, so that they may be invoked as required. We
introduce a simplified version of Stickel’s rule here. (The actual version is more general.)

We consider the ground case and ignore plan entries for the moment. Let us suppose
that H[P, Q).is a valid sentence of the theory. Then the theory resolution rule, invoking
the property H[P, @], is as follows:

assertions . goals
F{P]
Gl

not H|false, true] and
Fltrue] and
G[false]
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According to the polarity strategy, we may assume that some occurrence of P is
positive in H, that some occurrence of @ is negative in H, that some occurrence of P in F
is negative in the tableau, and that some occurrence of @ in G is positive in the tableau;
otherwise, other cases of the rule apply.

The soundness of the rule is evident, for we can derive an equivalent goal by two
applications of the ordinary resolution rule if we introduce the valid sentence H[P, Q] as
an assertion. The strategic benefit of the theory resolution rule is that, if A is built into
the rule, it is invoked only when needed, while if it is represented as an a,ssertlon it may
have numerous irrelevant consequences.

We have presented the rule as it applies to two goals. By duality, the rule can just as
well be applied to two assertions or to an assertion and a goal. Also, we have presented
only the ground version of the rule. To apply the general version, we first rename so that
the given rows F and G and the sentence H will have no variables in common. We then
apply a most-general unifier § that allows the ground version of the rule to be applied to
F6 and G#, invoking H6.

Ezample (theory resolution rule). Suppose we have incorporated into the theory resolu-
tion rule the sentence

if C'Ieﬁr(w, z)
4 . then if || Red(w, y} ||~
then |Red(put'(w,$,table)s v) |+

which is assumed to be valid in our theory. (In other words, a red object will remain red
after a block has been put on the table.)

Suppose our tableau contains the rows

assertions goals

F: | Red(put'(so,b,table), a) |~

G: [[Red(s0, ) ||*

(In other words, we know that block a is red in state sg, and we would like to show that
a is still red after block b has been put ¢n the table.}

The boxed subsentences of these rows unify with the correspondingly boxed subsen-
tences of the sentence H. The unifying substitution is

B: {y—a,z+b, w5}
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Therefore we may apply the theory resolution rule, invoking the above property H. After
the application of 6, the singly boxed subsentences play the role of 7, while the doubly
boxed subsentences play the role of Q. We obtain

if Clear(sg, b)
not | then if true and

then false
true and
not false

which simplifies to

Clear(sg, b)

(In other words, it suffices to show that block b is clear in the im"tia.l state sp.) 3

The treatment of the plan entries is analogous to that for the ordinary resolution
rules. If both given rows have plan-entries, the rule is restricted and a conditional plan is
introduced. We assume that an equational-unification algorithm is employed. Thus the
rule may also invoke built-in equations and equivalences of the theory in its search for
a unifying substitution. For exa.mple F a.bove could be Red(so;put(b, table), ) if b and
table are rigid designators.

The Frame Problem

One obstacle to employing a situational logic is the so-called frame problem (see
McCarthy and Hayes [69], Kowalski [79]). In addition to specifying what relations are
changed by a given action, it is also necessary to prov1de frame azioms that state explicitly
what relations are left unchanged.

For instance, we have provided the put-table-on axiom, which states that, after a
block has been put on the table, that block is indeed on the table. This may be regarded
as a primary aziom for the action. We must also provide an associated put-table-on frame
axiom, which states that the posmons of other blocks remain uncha,nged by the action,
namely, :

if Clear(w, z) and not(z = y)
then if On{w, y, §)
then On(put'(w,z,table), y, §)

for all states w, blocks z and y, and objects j. If we admit other relations into our theory,
we must provide additional frame axioms indicating that these relations are unchanged
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by the action, if indeed they are. For example, we might require a red frame axiom

if Clear(w, z)
then if Red(w, y)
then Red(put'(w,z,table), y)

(if block y is red before the action, it is red afterwards) and so forth.

Tt is clear that, in any rich theory, a large number of axioms must be introduced
to describe each action. If these axioms are expressed as assertions in our tableau, the
effect on the search space could be disastrous. For instance, suppose our goal is actually
Red(sp;z1, a), to make block a red. We can perfectly well apply the resolution rule to this
goal and the above red frame axiom, obtaining the suggestion that putting some block z
on the table may help us make block o red, if only it is red beforehand.

Aside from the strategic intrusiveness of the frame axioms, it seems fundamentally
wrong for a formalism to force us to spell out each one individually. We would like to be
able to give only the primary axioms for an action, and then say that all other relations
remain unchanged, unless a change is implied by these axioms. Although this approach is
intuitively clear, the technical obstacles to pursuing it appear formidable. One possibility
is to apply McCarthy’s circumscription principle (see Lifschitz [85]) or some other form
of “nonmonotonic™ reasoning.

We henceforth assume that the necessary frame axioms have been constructed, per-
haps by some circumscription-like mechanism. Rather than introduce these axioms as
assertions in the tableau, let us allow them and their consequences to be invoked by the
theory resolution rule.

Ezample (frame aziom). Suppose we have developed a goal

assertions goals ' plan

On(so;put(a, table), b, b) |~ - so; put(a, table)

and an assertion

Oﬂ(So, b: B) *

In other words we know that block b is on obJect b initially and would hLe to show that
it is still on & after block a is put on the table. '

We ca.nnot unify these sentences. However, the sentences do unify equationally with
the correspondingly boxed subsentences of the put-table-on frame axiom
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if Clear(@, z) and not(z = y)
then if || On(w, v, §) ||~

then ‘ On(put'(w, z, table), y, §) |+ .

In other words, if block ¥ is on object § in a given state, it is still on § after block = has
been put on the table, provided that block z is clear in the given state and that blocks =
and y are distinct. '

The unifying substitution is
{y = b, § b, we sp, 2+ a}.
The equational-unification algorithm invokes the property
so;put(a,table) = put'(sy, So:a, soitable),
which is an instance of the plar; linkage axiom, and the rigidity of the designators a and

table. Therefore we may apply the theory resolution rule, invoking the put-table-on frame
axiom, to get '

Clear(sg, @) and not(a = b) so; put(a,table)

In other words, it suffices to show t_ha,t block a is clear initially and that blocks e and b

are distinct. r

By building the frame axioms and their consequences into the theory resolution rule,
we have avoided the explosion of the search space that results if they are introduced into
the tableau as assertions.

Resolution with Equality Matching

Sometimes in an attempt to apply the resolution rule, two subsentences will fail to
unify completely but will “nearly” unify; that is, all but certain pairs of subterms will
unify. In such cases, instead of abandoning the attempt altogether, it may be advantageous
to go ahead and apply the rule but impose certain conditions upon the conclusion. This
is the effect of applying the resolution rule with eguality matching.

In its simplest (ground) version, the rule may be expressed as follows:
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assertions goals
FP{s)]
G[P()]

s =1t and F[true] and Glfalse]

Here P(s) and P(t) are identical except that certain occurrences of s in P{s) are replaced
by ¢t in P(t). If they were completely identical, we could apply the ordinary resolution
rule to obtain the new goal (F[true] and G[false]). Instead, we obtain this goal with the
additional conjunct s = ¢. The treatment of the plan entry is a.na.logous to that for the
original resolution rule. :

Our rule is a nonclausal version of the E-resolution rule (Morris [69]) or the RUE-
resolution rule (Digricoli and Harrison [86]). In Manna and Waldinger [86], we generalize
the rule to allow more than one pair of mismatched terms and to employ reflexive binary
relations other than equality, but we shall not require these extensions here.

In the nonground version, in which the sentences may contain variables, we apply a
substitution to the given rows and then apply the ground version of the rule to the results.
The substitution is the outcome of an abortive attempt to unify the subsentences. We
shall see that, for a given pair of sentences, the substitution we employ and the pair of
mismatched subterms we obtain are not necessarily unique. Some of the strategic aspects -
of choosing the substitution and term pair are discussed by Digricoli and Harrison [86].

Ezample (resolution with equality matching).  Suppose our tableau contains the goal

Cl 122, 129 ):hat - 805 22;
Endetg‘(gs;)22 (s0;22):ha (a))J pizt(hat(a),table)

and the assertion

if R(w, u)
then | Clear (w;makeclear(u), w:‘u) |+

The two boxed subsentences are not unifiable. However, if we apply the substitution
{u — hat(a), w — so;22},
we obtain the sentences

Clear(sg;za, (S0522):hat(a))
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and

Clear ((s0;22 )imakeclear (hat(a)), (so;22):hat(a)).
Oﬁr mismatched terms are then

S9;z2 and (so;Zg);_makeclear(hat(a)).

The conclusion of the rule is then (before simplification)

S0;22 = (S0;20 );makeclear(hat(a)) and
true and (J(z2) and
not (z'f R(sg;z2, hat(a)) then false)

S03 223 ' .
put(hat(a), table)

On the other ha.ﬁd, if we apply the substitution
{w + so, 22 ~ makecélear(u)},
the boxed subsentences become |
Clear(so;makeclear(u), (so;makeclear(u)): hat(a))
and
. C'lear(so;makeclear(u), sozu).
Qur mismatched terms are then
| (so;makeclear(u)):hat(a) and  soiu,

and the conclusion of the rule (after simplification this time) is then

(so;makeclear(u)):hat(a) = so:u
and
Q(makeclear(u)) and R{sg,u)

s makeclear(u);
put(hat(a), table)

. |

In applying resolution with equality matching, we have altered an ordirary unification
algorithm to return mismatched terms instead of failing. If we alter instead an equational-
unification algorithm, we can invoke properties of our plan theory in our search for near-
unifiers. '

6. FORMATION OF RECURSION

The mathematical-induction rule accounts for the introduction of the basic repetitive
construct — recursion — into the plan being derived. We employ well-founded induction,
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i.e., induction over a well-founded relation; this is a single, very general rule that applies
to many subject domains.

The Mathematical-Induction Rule

A well-founded relation <, is one that admits no infinite decreasing sequences, i.e.,
sequences I,,%2,%a, ... such that

Ty > T2 and &z >4, T3 and

For instance the less-than relation < is well-founded in the theory of nonnegative integers
but not in the theory of real numbers. A well-founded relation need not be transitive.

The instance of the well-founded induction rule we require can be expressed as follows
(the general rule is notationally more complex):

-

Suppose that our initial tableau is

assertions goals V plan: sp;f(a)

Q.[SO, a, 30;21] 30;21__

In other words, we are trying to construct a program f that, for a given input g,
yields a plan f(a) = z; satisfying our condition Q[sg, @, Sp;21]- According to the well-
founded induction rule, we may prove this under the induction hypothesis that, for a
given state w and input u, the program f will yield a plan f(u) satisfying the condition
Q[w, wiu, w;f(u)], provided that the input w:u is less than the original input sp:a, that is,
a, with respect to some well-founded relation. More precisely, we may add to our tableau,
as a new assertion, the induction hypothesis

if {(w, wiu) <4 (s0, a)
then Qlw, wiu, w;f(u)]

Here w and u are both variables, and <, is actually a well-founded relation on pairs of
states and objects. The relation <, is arbitrary; its selection may be deferred until later
in the proof.

Ezample (well-founded induction rule). The initial tableau in the makeclear derivation
is

plan:

assertions oals :
& so:makeclear(a)

1. Clear(sg;z, @) 50321
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By application of the well-founded induction rule, we may add to our tableau the new
assertion

if {w, wiu} <4 (0, @)
then Clear(wsmakeclear(u), wiu)

In other words, we may assume inductively that the makeclear program will yield a
plan makeclear(u) that satisfies the specified condition for any input u in any state w,
provided that the state-block pair (w, w:u) is less than the pair (sp, a) with respect to

some well-founded relation <,. 3

Use of the induction hypothesis in the proof may account for the introduction of a
recursive call into the derived program.

Ezample (formation of recursive calls). In the makeclear derivation, we have obtained
the goal

3. |C'lear(so;22, (so;zg):hat(a.)ﬂ_ and S0; 223
put(hat(a), table)

not Clear(sgiza, a)

The boxed subsentence “nearly” unifies with the boxed subsentence of our induction
hypothesis, '

if {w, wiu) <4 (0, a)

then | Clear (wymakeclear(u), w:u) I+

| If we take the substitution to be
{w + 3o, 20 — makeclear(u)},
the misma.fc.héd subterms are
(so;makeclear(u)):hat(a) and so:u.

We obtain the new goal

. 4. (so;makeclear(u)):hat(a) = spu and so; makeclear(u);
not Clear(soiymakeclear(u), a) and put(hat(a), table)

{50, s0:u) <o (S0, a)

Other substitutions are possible, resulting in other new goals. I
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Note that, at this stage of the derivation, a recursive call makeclear(u) has been in-
troduced into the plan entry for the new goal 4. The condition {sp, so:2) <& (S0, @} in the
goal ensures that this recursive call will not contribute to nontermination. Any nontermi-
nating computation involves an infinite sequence of nested recursive calls makeclear(a),
makeclear(u), makeclear(u'), .... From any such sequence we can construct an infinite
decreasing sequence of pairs {sp, a), {50, 50:2), {50, 50:u'}, ..., which is contrary to the
well-foundedness of <. :

The Choice of a Well-founded Relation

Although the well-founded induction principle is the same from one theory to the next,
each theory has its own well-founded relations. We actually take well-founded relations to
be objects in each theory and regard the expression z <, ¥ as a notation for a three-place
relation <(a, z,y), where « is a variable that ranges over well-founded relations.

For the blocks-world theory, one relation of particular importance is the on relation,
which holds if one block is directly on top of another. In a given state, this relation is
well-founded because we assume that towers of blocks cannot be infinite. More precisely,
for each state w, we define the well-founded relation <., by the following on-relation
axiom: .

T <om, ¥ = On(w,z,y) ~ (on relation)

(Note that for each state w we obtain a different relation <,,_.} This relation has the
hat property

(%) if not(w::clear(v))
' then w:hat(v) ~on, wiv.

The on relation <., applies to blocks, but the desired relation <, in goal 4 applies to
state-block pairs. However, for any well-founded relation <, there exists a corresponding
well-founded second-projection relation <r,(s) on pairs, defined by the following second-
projection axiom:

{Z1, T2) <mp(p) (Y1, 92) = 2245 P2 ( second projection)

In other words, two pairs are related by the second-projection relation (g if their
second components are related by <. As usual we omit the sort conditions, but here g
is a variable that ranges over well-founded relations. (Of course, there is a first-projection
axiom also, but the second projection is the one we shall use.)

By applying rules of the system to the above properties, we may reduce our most
recent goal : :

4. (so;makeclear(u)):hat(a) = so:u and
not Clear (so;makeclear(u), a) and
{50, 50:%) <o (50, @)

50; makecledr(u);
put(hat(a), table)
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to obtain, by the second-projection axiom, taking « to be w,(4),

5. (so;makeclear(u)):hat(a) = spv and so; makeclear (u);
n.ctt Clear (so;makeclear(u), a) and put (hat(a), table)
Soiu < @

and then, by the above hat property (x), taking # to be on,,,

6. (so;makeclear(hat(a))):hat(a) ' _
= so:hat(a) end | so; makeclear (hat(a));

not Clear (sp;makeclear(hat(a)), a) and put (hat(a), table)
not (so ::clear(a)) . |

Through these steps, the well-founded relation <, on state-block pairs is chosen to be
= ra(0nag)s the second projection of the on relation in the initial state sq.

At this stage, we have completed the derivation of the entire else-branch of the
makeclear program.

The Need for Generalization

One might believe that the derivation is nearly complete; all that remains is to
dispense with the first two conjuncts of our goal 6,

(i) (so;makeclear(h.dt(a))):hdt(a) = sp:hait(a)
and
(1) not Cleqr(sb;makeEIear(fzat(a)),‘a).

(The third conjunct, not(so :: clear(a)), will then be eliminated by resolution with the
initial goal 1, resulting in the introduction of the conditional construct into the final
plan.) In fa,ct closer examination of the above two conditions indicates that they are not
so straightforward.

The first condition ({) requires that, after hat(a) has been cleared, the value of hat(a)
should be the same as it was before. In other words, we must show that the makeclear
program we are constructing will not move hat(a) in the process of clearing it. In fact,
the program does not move hat(a), but nothing in its specification forces it to be so well-
behaved. If makeclear were trying to be economical with table space, it might clear hat(a)
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by putting underneath it all the blocks that were previously on top of it, as illustrated
below: '

mloljlo|
wmlajo]lo

So sy; makeclear(hat(a))

Here a hypothetical makeclear program has cleared hat(a), that is, b, by putting ¢ and
d underneath 5. The subsequent value of hat(a) is d, not b, which is contrary to the
condition. An attempt to put Aat(a) on the table will then lead to unpredictable results
because d is not clear.

The second condition (}) of the goal requires that, in the process of clearing hat(a),
we do not inadvertently clear a. Again the program we are constructing will not do
this, but there is nothing in the specification that prevents an over ambitious makeclear
program from clearing a or any other block when it was asked only to clear hat{a), as
illustrated below: IR

‘c
b
a a
b c
5o 5o; makeclear(hat(a})}

Attempting to move hat(a) will then lead to unpi'edictable results because hat{a) is not
a block. : i

The only knowledge we have about makeclear is that given in our induction hypothe-
sis, which depends in turn on what is required by our specification. We have not specified
what makeclear(a) does to blocks underneath its input parameter a or elsewhere on the
table. Thus it is actually impossible to prove the two conditions.

In proving a given theorem by induction, it is often necessary to prove a stronger,
more general theorem, so as to have the benefit of a stronger induction hypothesis. Such
strengthening is mentioned by Polya [57] (see also Manna and Waldinger [85b]) and is
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done automatically by the system of Boyer and Moore [79]. By analogy, in construct-
ing a program to meet a given specification, it is often necessary to impose a stronger
specification, so as to have the benefit of more powerful recursive calls.

This turns out to be the case with the makeclear problem; the program must be
constructed to meet not the given specification, but the following stronger one:

Clear(sg;z1, a) and

if Over(so, a, g)
v
(Vso)(Va)(321) (Vg) |then not Clear(spiz1, g) and

hat'(so;21, g) = hat'(sq, g)

{Here Over(w, z,y) holds if block z is directly or indirectly supported by object y in state
w.) In other words, in clearing block @, we do not clear any block ¢ that is underneath a,
nor do we change ‘the hat of any such block g. In short, the relative positions of all the
blocks underneath a remain unchanged. This theorem gives us an induction hypothesis
strong enough to show that, in clearing hat(a), or hat(hat(a)), or hat(hat(hat{a))), 0

., we do not move hat(a) itself. The induction hypothesis is also strong enough to
enable us to prove the new condition in the theorem.

With human intuition, it may not be difficult to formulate such strengthened theo-
rems. But the strengtliening required by this problem seems to be beyond the capabilities
of the Boyer-Moore system or other current theorem provers.

Although we do not know exactly how the condition could be strengthened automat-
ically, let us suppose that it can be done. In this case, we must “edit” the derivation by
adding the new condition as a conjunct in the initial goal, to obtain

plan:

goals sg;makeclear(a)

LC'lear(so;zl, a) |' and

if Ovef(so, a, g’(zl))
then not CIear(so;zl, g’(zl))
and hat'(so3z1, g'(21))
= hat' (s, ¢'(21))

50521

Here g'(z1) is a skolem function obtained by removing the quantifier (Vg) from the given
goal. In presenting the derivation, we shall drop the argument of this functlon and wnte
¢ throughout.

We attempt to mimic the original derivation, applying the same sequence of rules to
the altered goals.

For example, in the original derivation we applied the resolution rule to goal 1 and
the put-table-clear axiom
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if On(w,z,y) and Clear(w,z)
then ‘ Clear (put'(w, z, table), y) |+

In the altered derivation, we apply the resolution rule to the altered goal 1* and this
axiom, to obtain

2=. On(sg;z2, (s0;22):u, a) and
Clear(so;22, (So;22):u) and

if Over(sg, a, g) So; 22}
then not Clear(so;22 iput(u, table), g) put(u, table)
and hat'(sp;z0;put(u,table), g)
= hat/(so, 9)

This goal is the same as goal 2 except for the addition of a third conjunct.

We proceed by mimicking the remaining steps of the original derivation. We allow
ourselves to interpose additional steps as necessary. Although the induction hypothesis is
now strong enough to establish the two troublesome conditions in our original derivation,
additional deductive steps must be introduced to handle the new conjunct in our goal.
These steps do not affect the final program.

Ultimately we derive the goal

so;makeclear(hat(a));

not(sp clear(a)) put(hat(a), table)

As we have seen, we can apply the resolution rule to our initial goal 1 and this one, to
obtain the final goa.l

if clear(a)

then A

else makeclear (hat(a));
put(hat(a), table)

irue 50,

From this goal we extract the plan

if clear(a)

then A

else makeclear (hat(a));
put(hat(a), table).

makeclear(a) <
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7. DISCUSSION

In this section we touch on some matters we have not treated in this paper.

Comparison with Human Planning

The reader may have been struck by the complexity of the reasoning required by the
makeclear derivation, as contrasted with the apparent simplicity of the original planning
problem. In fact the most difficult parts of the proof are involved not with generating
the plan itself, but with proving that it meets the specified conditions successfully. We
might speculate that human beings never completely prove the correctness of the plans
they develop, relying instead on their ability to draw plausible inferences and to replan at
any time if trouble arises. By a process of successive debugging, the HACKER system of
Sussman [73] developed a plan similar to our makeclear plan, but it never demonstrated
the plan’s correctness. (It also relied on somewhat higher-level knowledge.) While impre-
cise inference may be necessary for planning applications, fully rigorous theorem proving
seems better-suited to more conventional program synthesis.

The Problem of Strategic Control

Many people believe that a theorem-proving approach is inadequate for planning
because a general-purpose theorem prover will never be able to compete with a system
whose strategies are designed especially for problem solving. Although we have not yet
dealt with the strategic question, we propose to overlay a general-purpose theorem prover
with a special strategic component for planning. For example, the WARPLAN system
(Warren [74]) might be regarded as a situational-logic theorem prover equipped with a
strategy that enables it to imitate the STRIPS planning system (Fikes and Nilsson {71]).
We speculate that, in the same way, a theorem prover could be induced to mimic any
dedicated planning system, given the requisite strategic component.
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