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Abstract

Over the past five years the Artificial Intelligence Center at SRI has been developing
a new technology to address the problem of automated information management within
real-world contexts. The result of this work is a body of technigues for auiomated
reasoning from evidence that we call evidential reasoning. The techniques are based
upon the mathematics of belief functions developed by Dempster and Shafer and have
been successfully applied to a variety of problems including computer vision, mudtisensor
integration, and intelligence analysis.

We have developed hoth a formal basis and a framework for implementating auto-
mated reasoning systems based upon these techniques. Both the formal and practical
approach can be divided into four parts: (1) specifying a set of distinct propositional
spaces, (2) specifying the interrelationships among these spaces, (3) representing bodies .
of evidence as belief distribntions, and (4) establishing paths for the bodies of evidence
to move through these spaces by means of evidential operations, eventually converging
on spaces where the target questions can be answered. These steps specify a means for
arguing from multiple bodies of evidence toward a particular (probabilistic) conclusion.
Argument construction is the process by which such evidential analyses are consirucied
and is the analogue of constructing proof trees in a logical context.

This technology features the ability to reason from uncertain, incomgplete, and oc-
castonally inaccurate information based upon seven evidential operations: fusion, dis-
counting, tranglating, projection, summarization, interpretation, and gisting., These
operation are theoretically sound but have intuitive appeal as well.

In implementing this formal approach, we have found that evidential arguments can
be represented as graphs. To suppert the construction, modification, and interroga-
tion of evidential arguments, we have developed Gister. Gister provides an interactive,
menu-driven, graphical interface that allows these graphical structures to be easily ma-
nipulated.

QOur goal is to provide effective antomated aids to domain experts for argument
consteuction. Gister represents our first attempt at such an aid.
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1 Introduction

Over the past five years [GLF81,Low82,L.G83b,L.G832,L5G86,L.GS86,Wes88], the Artificial
Intelligence Center at SRI has been developing a new technology to address the problem of
automated information management within real-world contexts. The result of this work is a
body of techniques for automated reasoning from evidence that we call evidential reasoning.
The techniques are based upon the mathematics of belief functions developed by Dempster
and Shafer [Dem68,5ha76,5ha86] and have been successfully applied to a variety of problems
including computer vision, multisensor integration, and intelligence analysis.

We have developed both a formal basis and a framework for implementating automated
reasoning systems based upon these techniques. Both the formal and practical approach can
be divided into four parts: (1) specifying a set of distinct propositional spaces (i.e., frames
of discernment), each of which delimits a set of possible world situations; (2) specifying the
interrelationships among these propositional spaces (i.e., compatibility relationsin a gallery);
(3) representing bodies of evidence as belief distributions over these propositional spaces
(i.e., mass distributions); and (4) establishing paths (i.e., analyses) for the bodies of evidence
to move through these propositional spaces by means of evidential operations, eventually
converging on spaces where the target questions can be answered. These steps specify
a means for arguing from multiple bodies of evidence toward a particular (probabilistic)
conclusion. Argument construction is the process by which such evidential analyses are
constructed and is the analogue of constructing proof trees in a logical context.

This technology features the ability to reason from uncertain, incomplete, and occasion-
ally inaccurate information (these being the characteristics of the information available in
real-world domains). It provides options for the representation of information: independent
opinions are expressed by multiple (independent) bodies of evidence; dependent opinions

*This research was sponsored in part by the 1.S. Navy Space and Naval Warfare Systems Command and
the Defense Advanced Research Project Agency under contract N00039-83-K-0656 and by the U.S. Army
Signal Warfare Center under contract DAALO2-85-C-0082.
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" opinions are expressed by multiple (independent) bodies of evidence; dependent opinions
can be expressed either by a single body of evidence or by a network (i.e., analysis) that
describes the interrelationships among several bodies of evidence. These networks of bod-
jes of evidence capture the genealogy of each body (similar in spirit to [Coh85]) and are
used in a manner similar to data-flow models [WA84] automatically updating interrelated
beliefs (i.e., for belief revision [Doy81]). The technology includes the following evidential
operations, which are based in theory but have intuitive appeal as well:

o FUSION—This operation pools multiple bodies of evidence into a single body of evi-
dence that emphasizes points of agreement and deemphasizes points of disagreement.

o DISCOUNTING—This operation adjusts a body of evidence to reflect its source’s
credibility. If a source is completely reliable, discounting has no effect; if it is com-
pletely unreliable, discounting strips away all apparent information content; otherwise,
discounting reduces the apparent information content in proportion to the source’s un-
reliability.

o TRANSLATION—This operation moves a body of evidence away from its original
context to a related one, to assess its impact on dependent hypotheses. For example,
a body of evidence pertaining to the location of a ship can be translated to estimate
its activity.

o PROJECTION—This operation moves a body of evidence away from its original tem-
poral context, to a related one. For example, a report might make direct statements
that pertain to a ship’s location at a particular time. Through projection, this evi-
dence can be used to estimate the possible locations of this ship at other times, either
future or past.

o SUMMARIZATION—This operation eliminates extraneous details from a body of
information. The resulting body of evidence is slightly less informative, but remains
consistent with the original.

o INTERPRETATION—This operation calculates the “truthfulness” of a given state-
ment based upon a given body of evidence. It produces an estimate of both the
positive and negative effects of the evidence on the truthfulness of the statement.

o GISTING—This operation produces a single statement that captures the general sense
of a body of evidence, without reporting degrees of uncertainty.

In implementing this formal approach, we have found that the gallery, frames, compati-
bility relations, and analyses can all be represented as graphs consisting of nodes connected
by directed edges. To support the construction, modification, and interrogation of eviden-
tial structures, we have developed Gister’™, Gister provides an interactive, menu-driven,
graphical interface that allows these graphical structures to be easily manipulated. The
user simply makes menu selections to add an evidential operation to an analysis, to modify
operation parameters {e.g., discount rates), or to change any portion of a gallery, includ-
ing its frames and compatibility relations. In response, Gister automatically updates the
analyses.



Unlike other expert systems, Gister is designed as a tool for the domain expert. With
this tool, an expert can quickly and flexibly develop an argument (i.e., a line of reasoning)
specific to a given domain situation. Gister helps the expert keep track of the complex inter-
relationships among the components of his arguments, insure that the relevant information
has been properly incorporated, and reveal the more tenative aspects of the arguments. This
differs markedly from other expert systems where a single line of reasoning is developed by
an expert and then is instantiated over different situations by nonexperts.

Our goal is to provide effective automated aids to domain experts for argument con-
struction. Gister represents our first attempt at such an aid.

2 Background

Over the last five years, ezpert-system technology has emerged from the artificial intelligence
(AI) research laboratories and has entered the market place. This technology has emerged
in the form of ezpert-system shells, application-independent software systems that support
the construction and automated use of knowledge bases. As a result, expert systems are
being developed for a wide variety of applications.

Most of the commercially available shells use production rules as their formalism for
representing knowledge. In its simplest form, the production rule (also termed an “if-then”
rule) consiste of an antecedent (i.e., the “if” part) and a conseguent (i.e., the “then” part).
The interpretation of the rule is: given information establishing the truth of the antecedent,
the truth of the consequent can be inferred. In practice, a production rule is applied by
attempting to match its antecedent against a database of facts; when a successful match is
made, the consequent is added to the database.

However, expert knowledge is frequently suggestive rather than conclusive; the rules may
therefore include a strength that is related to the conditional probabilities of the consequent
given the antecedent and the antecedent given the consequent. Thus, based upon the current .
confidence in the antecedent in the database of facts and on the rule’s stength, a confidence
is derived for the consequent. This consequent may match the antecedent of other rules
and thereby trigger their activation, thus resulting in the propagation of the influence of
the original match throughout the database. Of course, multiple rules may share a common
consequent, in which case it is necessary to have a means of resolving different confidence
estimates that are derived through the use of different rules.

One way to visualize such a knowledge base is as a directed graph (Figure 1), where
each antecedent and consequent is represented by a node and each rule is represented by a
directed arc connecting its antecedent to its consequent. In essence, this tnference network
[DHNB81] represents an argument, a line of reasoning that explains how certain premises
support certain conclusions. Given probabilistic estimates of the truthfulness of certain
facts, probabilistic conclusions can be automatically drawn. Thus, if the knowledge base
(i.e., argument) was developed by an expert in the domain of application, his expertise
becomes accessible to nonexperts.

In complex domains, it is frequently extremely difficult to select and coordinate all of
the potentially relevant rules. The strength, and simultaneous weakness, of the rule-based



Figure 1: Inference Network of Production Rules.

approach is that the knowledge is represented in small chunks. In principle, each rule
captures a very limited piece of knowledge (i.e., how one concept is directly related to
another), and each is easily elicited from an expert and is easily understood. The original
concept was that one could establish the validity of each rule in isolation and that the validity
of the entire rule base would follow. Unfortunately, this is not the case. The confidences and
strengths often do not represent sufficient probabilistic information to solve uniquely for the
probabilities of the facts. In addition, the confidences and strengths represent subjective
estimates, which are invariably inconsistent. In theory, a holistic approach, where more
detailed information is required and inconsistencies are resolved during construction of the
knowledge base, solves this problem, but in practice, such an approach makes construction
of the knowledge base a monumental task. Therefore, heuristic methods for confidence
propagation have been adopted.

The use of heuristic methods for uncertain reasoning in expert systems complicates con-
struction of the knowledge base. [For example, one must determine what is to play the roles
of antecedent and consequent. However, if one does not know ahead of time which of two
- events that tend to co-occur might be observed first, then one cannot establish which event
should be the antecedent and which the consequent. One might suggest that two rules be
included, with antecedent and consequent reversed, relative to each other. However, this
solution is explicitly prohibited because of instability in the heuristic propagation methods.]
In addition, since no true theoretical foundation exists, validity of a knowledge base can
only be verified through experimental testing, often in the context of a set of hypotheti-
cal situations. The knowledge-base designer must coordinate the collective impact of the
rules over the many long interacting chains of potential inferences, adding, modifying, and
deleting rules, without benefit of any substantial structural guidelines.

Laboratory successes with this technology required close collaboration between appli-
cation domain experts and Al researchers. The domain experts know their field, but not
how to represent their knowledge in terms of a rule base; Al researchers understand how
rules might be used to codify knowledge for automated reasoning, but lack expertise in the
application domain. Each had to learn something of the other’s field if a successful system
was to be constructed. More recently the concept of a knowledge engineer has emerged as
someone who specializes in eliciting and representing knowledge in terms of rules.

Despite the fact that most of the major laboratory successes in expert systems relied
heavily upon uncertain reasoning (e.g., MYCIN [Sho76], an expert system for medical con-



sultation and PROSPECTOR [DHR77), & consultation system for mineral exploration), the
major expert-system shells available in the market place today provide no true facility for
uncertain reasoning. This deficiency can be directly traced to the diffculty of coping with
uncertainty in rule-based systems.

Rule-based expert systems are applicable to those application domains where a single
argument can be prespecified (including the relevant inputs, outputs, interrelationships,
and flow of inferences), then instantiated over different situational data, without change to
the argument, to solve the selected problem. Manipulation of the rule base is prohibited
during its application to a specific situation, because of its fragility. Any change to match
the current situation might adversely effect the validity of the knowledge base, thereby
requiring that it be thoroughly retested before further application.

3 Requirements for Automated Argument Construction

Expert-system techniques are adequate for applications where the potential relevance of
pertinent information can be prespecified. However, an important aspect of some applica-
tion domains (e.g., intelligence analysis) is the ability to link what might first seem to be
both irrelevant and unrelated pieces of information in unique ways that permit new conclu-
sions to be drawn. This linking requires far more flexible interaction of the expert with the
knowledge.

A system that can support automated argument construction must satisfy a number
of requirements. First, its knowledge representations and operations, with which the user
needs to interact, should be intuitive and easily understood. The user, who is interested in
an answer to his problem and not in uncertain-reasoning techniques, should not be burdened
with technical matters that are a function of the underlying technology. Although it is by
no means a requirement, we have found that graphically oriented representations are often
a particularly good choice.

Second, the knowledge should be represented in such a way as to be independent of how
it is eventually used during argument construction. That is, the user should be able to state
the facts directly as he sees them, without having to specify how they might be used in an
argument. If two events tend to co-occur, then the user should be able to so state, without
having to select one event as an indicator for the other.

Third, the knowledge must be easily modifiable. This requirement includes both the
ability to make a modification quickly and the ability to understand its impact. Toward this
end, the system should guide the user through any modification step by step, if multiple
actions are required on the part of the user. Once a modification is complete, the argument
should automatically react to the change, updating any conclusions that depend upon it.
Thus, the system serves as an experimental environment in which a space of alternative
formulations can be easily explored.

Fourth, the system’s information requirements should match the availability and preci-
sion of the information in the problem domain. If prior probabilities cannot be reasonably
assessed, they should not be required, or they should be representable in a form that retains
their tentative nature.



Finally, the system needs to be theoretically well grounded. If it is not, both its stability
and understandability suffer. If the user is to be free to explore his problem, the system must
be flexible enough to support the user’s exploration, without fear of its collapse because
of heuristic frailties. In addition, there should be opportunity for true analysis, not just
experimental testing. The user must be able to analyze his argument to understand its
structure and its sensitivities.

Although satisfying these requirements will obviously be very difficult, we have taken
some initial steps toward developing such automated aids for argument construction.

4 Constructing Arguments

Gister divides the problem of argument construction into two major steps: framing the
problem and analyzing the evidence. In framing the problem, the user establishes a gallery
of frames and compatibility relations that delimits a space of possibilities. In analyzing
the evidence, each body of evidence is represented relative to a frame in the gallery and a
sequence of evidential operations is established. This sequence determines how the evidence
is transformed into pertinent conclusions. Collectively the gallery of frames and compati-
bility relations, together with the analyses, are the rough equivalent of an expert system'’s
knowledge base.

4.1 Framing the Problem

The first step in applying evidential reasoning to a given problem is to delimit a propositional
space of possible situations, exactly one of which is true at any one time. Within the theory
of belief functions, this propositional space is called the frame of dizcernment. If the problem
to be addressed were that of locating a ship, then the frame of discernment would consist
of the set of all possible locations for that vessel, This frame might be represented by a set
684, in which each element ¢; corresponds to a possible location:

eA = {al,az,. ..,an} .

Once a frame of discernment has been established, propositional statements can be
represented by disjunctions of elements from the frame corresponding to those situations
for which the statements are true. For example, the proposition A; might correspond to the
statement that the vessel is docked, in which case A; would be represented by the subset of
elements from © 4 that correspond to possible locations adjacent to docks:

A; C Oy

In implementing this formal approach, we have found that frames, like the other formal
elements in this theory, can be straightforwardly represented as graphs consisting of nodes
connected by directed edges. Because they are graphs, these formal elements are easily
understood, and they provide an intuitive basis for man-machine interaction. A frame is

6
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Figure 2: LOCATIONS Frame.
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Figure 3: ACTIVITIES Frame.

represented by a named graph that includes a node for each element of the frame and may
include additional nodes representing aliases, i.e., named disjunctions of elements. Each
of these additional nodes has edges pointing to elements of the frame (or other aliases)
that make up the disjunction. Here, the possible locations for a ship might be repre-
sented by a graph named LOCATIONS (Figure 2)! that includes six elements (ZONEI,
ZONE2, ZONE3, CHANNEL, LOADING-DOCK, REFUELING-DOCK) and three aliases -
" (IN-PORT, DOCKED, AT-SEA).

If other aspects of ships are of interest besides their location, then additional frames
of discernment might be defined. For example, the activities of these ships might be of
interest. If so, an additional frame ©p might be defined to include elements corresponding
to refueling, loading cargo, unloading cargo, being enroute, and being under tug escort.
Propositional statements pertaining to a ship’s activity can then be defined relative to this
frame; e.g.,

©p
B;

{b1,b2,...,b,}
=77

I

N

The frame is represented by a graph named ACTIVITIES (Figure 3) that includes five
elements: ENROUTE, TUG-ESCORT, UNLOADING, LOADING, REFUELING.

1AM of the figures in this section are actual screen images from Gister,



So far, propositional statements pertaining to a ship’s location or to its activity can
be addressed separately, but they cannot be jointly considered. To do this, one must first
define a compatibility relation between the two frames. A compatibility relation simply
describes which elements from the two frames can be true simultaneously. For example, a
ship located at a loading dock might be loading or unloading cargo, but is not refueling,
or enroute. In other words, being located at a loading dock is compatible only with one of
two activities, loading or unloading. Thus, the compatibility relation between frames © 4
and ©p is a subset of the cross product of the two frames. A pair (a;, b;) is included if and
only if they can be true simultaneously. There is at least one pair (a, b;) included for each
a; in 84 (the analogue is true for each b;):

B4pCEB6,4x%x0p

Using the compatibility relation © 4 g, we can define a compatibility mapping Ca.p for
translating propositional statements expressed relative to 6 4 to statements relative to ©p.
If a statement Ay is true, then the statement Cy . p (Ak) is also true:

CA._.B:29"“ — 298
Ca-B(Ae) = {bjl(ai,b;) €EO4p,ai €A} .

A compatibility relation is represented as a graph that includes the nodes from the
frames that it relates with edges connecting compatible elements. For example, in the
LOCATIONS-ACTIVITIES compatibility relation {Figure 4) relating the LOCATIONS
and ACTIVITIES frames, ZONE1, ZONE2, and ZONE3 are all connected to ENROUTE
(becuase these zones represent areas at sea), CHANNEL is connected to TUG-ESCORT
(because a ship entering or leaving the port at the end of this channel would be under
tugboat control), LOADING-DOCK is connected to both LOADING and UNLOADING
(because either activity is consistent with being at that dock), and REFUELING-DOCK
is connected to REFUELING. The directed edges define the compatibility mapping from
LOCATIONS to ACTIVITIES, moving forward along the edges, and the mapping from
ACTIVITIES to LOCATIONS, moving backward along the edges.

Instead of translating propositional statements between these two frames via C4..p and
CB..4, we might choose to translate these staterments to a common frame that captures all of
the information. This common frame is identical to the compatibility relation 84 5. Frame
64 (and analogously ©p ) is trivially related to frame © 4 p via the following compatibility
relation and compatibility mappings:

4,48 = {(as, (ai, b,-))|(a,-, b;) € 64,8}
Care(a,5)(Ar) {(a:,b;)|(az, (a:,b5)) € Ba,(a,B) 3 € Ar}
{(as,5;)|(as, b;) € Oa,B,a: € Ax}
C(A,B)HA(xk) = {ail(a;,b;) € ©4,5,(as, b;) € Xe} .
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Figure 4: LOCATIONS-ACTIVITIES Compatibility Relation.

Clearly, as more aspects of these ships become of interest, the number and complexity
of the frames and compatibility mappings increases. However, there is a trade-off between
the complexity of individual frames and the complexity of the network of compatibility
mappings connecting them. We might define a single (complex) frame that encompasses
all aspects of interest or, alternatively, define a {complex) network of frames that includes
a distinct frame for each aspect of interest. In fact, Gister provides facilities for generating
composite frames from multiple interrelated frames.

Of course, a network of interrelated frames and a single (complex) frame may not be
equivalent. For example, consider the following frame:

84,8, = {(a1,b1,¢1),(az,b1,¢2),(az,b2,¢2)} .

If this frame properly captures the relationship among frames 64, ©g, and 8¢, then ¢,
is the only element from 8¢ compatible with a; from 6 4. However, if we maintain these
as three separate frames connected by compatibility mappings, C45,CBr4,CB~c, and
Cc—pB, both ¢; and ¢; are compatible with a; because a; is compatible with &;, and &;
is compatible with both ¢; and ¢3; i.e., Canc{Ca~p{{a1})) = {c1,c2}. However, if a, is
true, then it follows that either ¢; or ¢z is true, Thus, the reasoning based on a well-formed
gallery of interconnected frames is sound but not necessarily complete. A gallery is well
formed if there exists a single all-encompassing frame whose answers are always included in
the answers based upon the gallery.

In dynamic environments, compatibility relations can be used to reason over time. If
©4; represents the possible states of the world at time one and 64, represents the possible
states at time two, then a compatibility relation, ©4; 42, can capture the possible state
transitions. For example, if 8 4; and 8 42 both represent the possible locations of a ship (i.e.,
they are identical to © 4 as previously defined), then 8 43 42 could represent the constraints
on that ship’s movement. A pair of locations {g;, a;) would be included in 8 4; 42 if a ship
located at a; on Day 1 (i.e., time) could reach a; by Day 2. If we assume that the possible
movements of a ship are constrained in the same way over any two-day period, then the
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Figure 6: DELTA-ACTIVITIES Compatibility Relation. )

compatibility mapping associated with this compatibility relation can be reapplied as many
times as necessary to constrain the possible locations of a ship across an arbitrary number
of days.

DELTA-LOCATIONS and DELTA-ACTIVITIES (Figures 5 and 6) are two compatibil-
ity relations that relate frames to themselves. They represent possible state transitions in
their respective frames over any two day period. Edges connect compatible elements from
one day to the next. DELTA-LOCATIONS indicates that the zones are linearly ordered and
that a ship must pass through the channel to get to either the loading or refueling docks. It
also indicates that a ship will remain at the refueling dock or in the channel only for one day
at a time but may remain anywhere else for any number of days. In DELTA-ACTIVITES
it can be seen that a ship must progress through TUG-ESCORT from ENROUTE before
proceeding to REFUELING or UNLOADING and that REFUELING and TUG-ESCORT
are one-day activities. Further, a ship must go through LOCADING after UNLOADING
before returning to TUG-ESCORT.

Finally, the overall topology of the gallery is represented as a graph. Here (Figure 7),
the LOCATIONS and ACTIVITIES frames are represented as nodes, and the three com-
patibility relations are represented as edges. LOCATIONS-ACTIVITIES, the compatibility
relation that relates the LOCATIONS frame to the ACTIVITIES frame, is represented by an
edge from LOCATIONS to ACTIVITIES. The other two compatibility relations, DELTA-
LOCATIONS and DELTA-ACTIVITIES, relate frames to themselves and are represented
by edges that begin and end at the same node.

10
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Figure 7: SHIP-GALLERY Gallery.

4.2 Analyzing the Evidence

Once a gallery has been established, Gister can analyze the available evidence. The goal of
this analysis is to establish a line of reasoning, based upon both the possibilistic information
in the gallery and the probabilistic information from the evidence, that determines the
most likely answers to some questions. The gallery delimits the space of possible situations,
and the evidential information establishes the likelihoods of these possibilities. Within an
analysis, bodies of evidence are expressed relative to frames in the gallery, and paths are
established for the bodies of evidence to move through the frames via the compatibility
mappings. An analysis also specifies if other evidential operations are to be performed,
including whether multiple bodies of evidence are to be combined when they arrive at
common frames. Finally, an analysis specifies which frame and ultimate bodies of evidence
are to be used to answer each target question. Thus, an analysis specifies a means for
arguing from multiple bodies of evidence toward a particular (probabilistic) conclusion. An
analysis, in an evidential context, is the analogue of a proof tree in a logical context.

To begin, each body of evidence is expressed relative to a frame in the gallery. Each is
represented as a mass distribution (e.g., m4) over propositional statements discerned by a
frame (e.g., 84):

my:2%4 — [0,1]
Z mA(A,) = 1
Ace,
mA(ﬂ) = 0

Intuitively, mass is attributed to the most precise propositions a body of evidence sup-
ports. If a portion of mass is attributed to a proposition A;, it represents 2 minimal com-
mitment to that proposition and all the propositions it implies. Additional mass attributed
to a proposition A; that is compatible with A;, but does not imply it (i.e., @ # A;NA; # A;),
represents a potential commitment: mass that neither supports nor denies that proposition
at present but that might later move either way based upon additional information.

To interpret this body of evidence relative to the question A;, we calculate its support
and plausibility to derive its evidential interval as follows:

11



Spt(A;) = D  ma(A)
A.‘_C_A,‘
Pis(A;) = 1-Spt(84— A;)
[Spt(A;), Pls(A;)] € [0,1] .

The lower bound of an evidential interval indicates the degree to which the evidence
supports the proposition, while the upper bound indicates the degree to which the evidence
fails to refute the proposition, i.e., the degree to which it remains plausible.

Digcounting is an evidential operation that adjusts a mass distribution to reflect its
source’s credibility (expressed as a discount rate r € [0,1]). If a source is completely
reliable (r = 0), discounting has no effect; if it is completely unreliable (r = 1), discounting
strips away all apparent information content; otherwise, discounting lowers the apparent
information content in proportion to the source’s unreliability. It has the effect of widening
the evidential intervals, reflecting increased ignorance. Discounting is defined as follows:

L= maay), A #©
mﬁ(Au) = { r+(1- ‘:)mA(eA): otherwge

If a body of evidence is to be interpreted relative to a question expressed over a frame
different from the one over which the evidence is expressed, a path of compatibility relations
connecting the two frames is required. The mass distribution expressing the body of evi-
dence is then repeatedly translated from frame to frame, by way of compatibility mappings,
until it reaches the ultimate frame of the question. In translating m4 from frame 84 to
frame Op by way of compatibility mapping Ca— g, the following computation is applied to
derive the translated mass distribution mp:

mp(Bj)= 3.  malA) .
Ca~5 (Al')=BJ'

Intuitively, if we (partially) believe A;, and A; implies B;, then we should have the same
{partial) belief in B;. This method is also applied to move mass distributions among frames
that represent states of the world at different times; however, when this is the case, the
operation is called prejection.

Once two mass distributions m) and m? representing independent opinions are ex-
pressed relative to the same frame of discernment, they can be fused (i.e., combined) using
Dempster’s Rule of Combination. Dempster’s rule pools mass distributions to produce a
new mass distribution mi that represents the consensus of the original disparate opinions.
-That is, Dempster’s rule produces a new mass distribution that leans toward points of agree-
ment between the original opinions and away from points of disagreement. Dempster’s rule
is defined as follows:

12



my (A}

(1—1'=)'1A AZA m (Ai}m (As)

ko= 3 mi(A)mL(A;)#1
A;I"!A,'-.:D

Because Dempster’s rule is both commutative and aseociative, multiple (independent}
bodies of evidence can be combined in any order without affecting the result. If the initial
bodies of evidence are independent, then the derivative bodies of evidence are independent
as long as they share no common ancestors. Thus, in the course of constructing an analysis,
we must take care that evidence is propagated and combined in such a way as to guarantee
the independence of the evidence at each combination. Gister protects the user by tracking
the evidence and preventing such dependent combinations.

Another evidential operation is summarization. Summarization eliminates extraneous
details from a mass distribution by collecting all of the extremely small amounts of mass
(determined by a threshold ¢ € [0,1]} attributed to propositions and attributing the sum
to the disjunction of those propositions. The resulting mass distribution is slightly less
informative than the original (i.e., some evidential intervals based upon this resulting mass
distribution will be wider than those based upon the original), but it remains consistent
with the original (i.e., the intervals based on the resulting distribution contain those based
on the original}:

mi(A) = {""A(Ai): A#S

8+ mu(S), otherwise

S = U A;
O£m,(A;)<t

8 = Z mA(A,) .
OiﬁmA(Al‘)<l

Another form of summarization can be defined in terms of translation. If mass is dis-
tributed over a fairly fine-grained frame (i.e., a frame with a large number of elements
because it preserves subtle distinctions}, but the question at hand could be resclved in the
context of a coarser frame (i.e., one with fewer elements that makes fewer distinctions) that
is related to the finer by means of 2 compatibility relation, then the mass distribution can be
translated to the coarser frame to reduce its complexity. Like the thresholded summariza-
tion operation defined above, the resulting mass distribution is generally less informative
but consistent, so long as the gallery is well formed. Thus, the first summarization opera-
tion defined above discards information that will have a miniscule impact on any questions,
while the second summarization technique discards details that are irrelevant to a particular
set of questions (i.e., the set of propositions discerned by the frame).

Gisting is another evidential operation that can be included in an analysis. Gisting
produces a {Boolean-valued) statement that attempts to capture the essence of a mass
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distribution. In other words, it attempts to summarize the contents of a body of evidence
in terms of a single statement from the frame, void of any uncertainty or ignorance. Such
a summary is particularly useful when explaining lines of reasoning. As defined below, the
gist of a mass distribution is the most pointed statement from the frame whose support
meets or exceeds a selected level. The gist>'3, G, of a mass distribution, mp, is defined
relative to a gist level, g € [0, 1]:

6 = UA
AeG
G C 284

for oll Aj,A; €EG,ALEG
Spt(A) = Spt(A;) 29
|Ail |Ajl
Spt(A,') > Spt(Ak) or |Ak| > ]Ail

Still other evidential operations allow an established analysis to be examined and revised.
These operations are not included in analyses, but are used as tools to assist in their
development.

After the gallery and its supporting frames and compatibility relations have been estab-
lished, evidential analyses can be constructed. These analyses are represented as data-flow
graphs where the data and the operations are evidential. Figure 8 is one such analysis.
Here primitive bodies of evidence are represented by elliptical nodes, and derivative bodies
of evidence are represented by circular nodes. Diamond-shaped nodes represent interpre-
tations of bodies of evidence. The values of these nodes are used as repositories for the
information (i.e., data) that they represent (Figure 9). For bodies of evidence, this infor-
mation includes a frame of discernment (including the day to which the evidence pertains),
a mass distribution, and other supporting information. Edges pointing to a derivative node
are labeled with the evidential operation that is applied to the bodies of evidence, at the
other ends of the edges, to derive the body of evidence represented by this node.

Figure 8 includes the menus for working with analyses. On the left side of the screen
15 a menu of nouns. The user determines with what class of objects he wishes to work
and selects the appropriate noun from the menu. Once a noun has been selected, a menu
of verbs appears on the right side of the screen. A selection from this menu invokes the
operation corresponding to the selected verb on the previously selected noun. The user
then designates the appropriate nodes, edges, and the like for the selected operation. Gister
provides a similar set of menus for interacting with the gallery.

2This definition uses cardinality as a measure of specificity (i.e., pointedness) and thereby assumes that
all elements of &4 are equally apecific. It also ignores problems of instability stemming from small variations
in the support, specificity, and the gist level.

30Other definitions are under investigation.
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Figure 8: ANALYSIS1 Analysis.
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REPORT1
TYPE: EVIDEHCE
FOD: (LOCATIONS 1.)

IMASSFUN: {(({CHANNEL) ©.7) ({ZOMEl) 8.3))

Exit [l

P
TYPE: PROJECTION

PELTA=-T: 1.

FOD: (LOCATIONS 2.}

MRSSFUN: { ((REFUELING-DOCK LOADING-DOCK ZONE1) ©.7) ({ZONE2 CHANNEL ZONEL) 9.3))

Exit 1]
i

[EEFQRIZ

TYPE: EVIDENGE

FOD: (LOCATIONS 2.)

KASSFUN: (( {CHANNEL LDRDING-DOCK REFUELING-DOCK) 1.83)

Exit [}

D2
TYPE: DISCOUNT
DISCOUNT~RATE: 28.

FOD: {LOCATIONS 2.)
HASSFUN: ({(CHAMHEL LDADING-DOCK REFUELING-BOCK) @.8) ((REFUELING-DOCK ZONEZ CHRNNEL LOADIMG-DOCK ZOME1 ZONE3) 8.23)

Exie O

F12
T1YPE: FUSIDN

FOD: (LOCATIONS 2.)

HASSFUN: ((LORDING-DOCK REFUELING-DOCK) ©.56)
{(CHANNEL) 8.24880981)

( (REFUELIHG-DOCK LOADING-DOCK ZONEL) 0.14)
((ZO0NE2 CHANNEL 2ONE1l) 0.868888832))
COHFLICT: 8.8

Exit J
-

PEFQORTA

TYPE: EVIDENCE

FOD: (RCTIVITIES 3.)
HASSFUN: {({LOADING} 1.8})

Exit O

TYPE: DISCOUNT
DIGCOUNT-RATE: 48.

FOP: (RCTIVITIES 3.)
MASSFUN: ({(LOADING} ©.6) {{TUG-ESCORT UNLOADING EHROUTE LORDING REFUELING) ©.4))

FOD: (ACTIVITIES 2.)
: ({{UNLORDING LOADING) ©.6) ((REFUELING LOADING EMROUTE UNLOADING TUG-ESCORT) 0.4))
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TYPE: TRANSLATIDM

THETA: LOCATIONS

FOD: (LOCATIONS 2.)

MASSFUN: {({LOADING-DOCK) ©.6) ((ZONE3 ZOMEZ ZOHEY LOADING-DOCK REFUELIMG-DOCK CHRNHEL) ©.4))

Exit L}

ff1z3

TYPE: FUSION

FOD: (LOCATIONS 2.)

HASSFEM: ({LORDING-DOCK) @.5121951)
{{LORDING-DOCK REFUELING-DOCK} ©.2731787)
({CHANNEL) ©.117@7317)
({ZDHE1 LORDING-DOCK REFUELIMNG-DOCK) ©.86B25268)
({ZOME2 ZONE1 CHRHHEL) B.629266293))

CONFLICT: ©.17999995

Entt L]
I

Figure 9: Data from ANALYSISI.
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In the analysis of a ship in Figures 8 and 9, there are three primitive bodies of evidence.
REPORT1 locates the ship on Day 1, saying that there is a 70 percent chance that it can be
found in the CHANNEL and a 30 percent chance that it is in ZONE1; REPORT?2 says that
the ship was IN-PORT on Day 2; and REPORT3 indicates that the ship was LOADING
cargo on Day 3. REPORT1 is taken at face value, but REPORT2 and REPORT3 have
been discounted by 20 percent and 40 percent, respectively, to derive D2 and D3, reflecting
doubt in the credibility of these reports. REPORT1 has been projected forward by one day
to derive P1. D3 has been projected backward in time by one day to derive P3 and then
has been translated from the ACTIVITIES frame to the LOCATIONS frame. Finally, this
result, T'3, has been fused with F12 to derive a consensus, based on all three reports, about
the ship’s location on Day 2,

The interpretation nodes in this analysis track the evidential intervals for some key
propositions. Il is based solely on REPORT1 and indicates that there is precisely a 70
percent chance of the ship being IN-PORT[0.7,0.7] and no chance of it being DOCKED
[0.0,0.0}on Day 1. IP1 indicates that, based solely upon REPORT1, after one day has
elapsed, nothing is known about whether the ship is IN-PORT [0.0,1.0], but that it may
now be DOCKED [0.0,.7.0]. If REPORT? is included after being discounted, IF12 indicates
that there is strong reason to believe that the ship is IN-PORT [0.8,1.0], but there is
conflicting information concerning whether or not it is DOCKED [0.56,0.7]. IT3 indicates
that, based solely upon REPORT3, after having been discounted, projected backward a
day, and translated to the LOCATION frame, that there is 0.6 support and 1.0 plausibility
for both IN-PORT and DOCKED. Finally, when all three reports are considered, IF123
indicates strong belief that the ship is IN-PORT [0.9, 1.0] on Day 2 and a reasonably strong
belief, though mixed, that it is also DOCKED [0.78,0.85].

4.3 Exploring Alternative Arguments

Of course, the example above is not the only argument that can be constructed from these
data. For example, the credibility given to the initial reports might be assessed differently.
To explore such alternatives using Gister, the user has only to modify the discount rates
stored on the appropriate discount nodes in ANALYSIS1. In response, Gister recalculates
the dependent conclusions. Alternatively, the user might decide to develop a parallel line
of reasoning within ANALYSIS1, constructing a new sequence of evidential operations with
different parameters to argue for the same or a different conclusion. Or a completely new
analysis under a different name might be constructed.

In addition, variations in the gallery can be explored. Here, elements might be deleted
or new elements added to frames and compatibility relations to determine their effect on
established analyses. Alternatively, different frames and compatibility relations might be
constructed, after which new analyses might be created or old analyses modified to examine
the data relative to a set of different possibilistic assumptions.

Gister separates the specific data about the current situation, from the general knowl-
edge of what is possible, from the way in which this data and knowledge are utilized to
draw conclusions. Further, it allows these to be independently varied, giving the user the
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freedom to create and examine alternative formulations. Through this interaction, the user
comes to better understand the basis and sensitivities of his arguments and conclusions.

In essence, our approach reflects the view that there is not so much a correct argument,
but rather a set of alternative competing arguments that must be explored.

5 Summary

We have develped a system, Gister, that supports the construction, modification, and anal-
ysis of evidential arguments. Gister supports an interactive, menu-driven, graphical inter-
face that allows these structures to be easily understood and manipulated. The user simply
selects from a menu to add an evidential operation to an analysis, to modify operation
parameters, or to change any portion of a gallery. In response, Gister updates the analyses,
allowing the user to explore quickly the space of alternative arguments.

Unlike other expert systems, Gister is designed as a tool for the domain expert. With
this tool, an expert can quickly and fiexibly develop a line of reasoning specific to a given
domain situation. At SRI, this approach has been applied to naval intelligence problems.
New work is focusing on adapting this technology to multisource data fusion for the Army.
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