
Chapter 1
Network Abstract Linear Programming with
Application to Cooperative Target Localization∗

Giuseppe Notarstefano and Francesco Bullo

Abstract We identify a novel class of distributed optimization problems, namely a
networked version of abstract linear programming. For suchproblems we propose
distributed algorithms for networks with various connectivity and/or memory con-
straints. Finally, we show how a suitable target localization problem can be tackled
through appropriate linear programs.

1.1 Introduction

This paper focuses on a class of distributed computing problems and on its appli-
cations to cooperative target localization in sensor networks. To do so, we study
abstract linear programming, that is, a generalized version of linear programming
that was introduced by Matousĕk, Sharir and Welzl in [1] and extended by Gärtner
in [2]. Abstract linear programming is applicable also to some geometric optimiza-
tion problems, such as the minimum enclosing ball, the minimum enclosing stripe
and the minimum enclosing annulus. These geometric optimization problems are
relevant in the design of efficient robotic algorithms for minimum-time formation
control problems as shown in [3].

Giuseppe Notarstefano
Department of Engineering, University of Lecce, Via per Monteroni, 73100 Lecce, Italy,e-mail:
giuseppe.notarstefano@unile.it

Francesco Bullo
Center for Control, Dynamical Systems and Computation, University of California at Santa Bar-
bara, Santa Barbara, CA 93106, USA, e-mail: bullo@engineering.ucsb.edu

∗ This material is based upon work supported in part by ARO MURI Award W911NF-05-1-0219
and ONR Award N00014-07-1-0721. The research leading to theseresults has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 224428 (CHAT Project).

1

2 Giuseppe Notarstefano and Francesco Bullo

Linear programming and its generalizations have received widespread attention
in the literature. The following references are most relevant in our treatment. The
earliest (deterministic) algorithm that solves a linear program in a fixed number of
variables subject ton linear inequalities in timeO(n) is given in [4]. An efficient ran-
domized incremental algorithm for linear programming is proposed in [1], where a
linear program ind variables subject ton linear inequalities is solved in expected
timeO(d2n+eO(

√
d logd)); the expectation is taken over the internal randomizations

executed by the algorithm. An elegant survey on randomized methods in linear pro-
gramming is [5]; see also [6]. The survey [7], see also [8], discusses the application
of abstract linear programming to a number of geometric optimization problems.
Regarding parallel computation approaches to linear programming, we only note
that linear programs withn linear inequalities can be solved [9] byn parallel pro-
cessors in timeO((log log(n))d). The approach in [9] and the ones in the references
therein are, however, limited to parallel random-access machines (usually denoted
PRAM), where a shared memory is readable and writable to all processors. In this
paper, we focus on networks described by arbitrary graphs.

The problem of target localization has been widely investigated and the related
literature is therefore quite rich. Recently, the interestin sensor networks and dis-
tributed computation has lightened the attention on this problem from this new per-
spective. A good reference for localization and tracking insensor networks is [10].
Two approaches may be used to tackle target localization, a stochastic and a deter-
ministic one. As regards the deterministic approach (the one we use in this paper),
a set membership estimation technique was proposed in [11].Recently, a sensor
selection problem for target tracking was studied in [12]. References for target lo-
calization and tracking in sensor networks, even by use of a stochastic approach,
may be found therein.

The contributions of this paper are three-fold. First, we identify a class of dis-
tributed optimization problems that appears to be novel andof intrinsic interest.
Second, we propose a novel simple algorithmic methodology to solve these prob-
lems in networks with various connectivity and/or memory constraints. Specifically,
we propose three algorithms, prove their correctness and establish halting condi-
tions. Finally, we illustrate how these distributed computation problems are relevant
for distributed target localization in sensor networks. Specifically, we cast the tar-
get localization problem in the problem of approximating the intersection of convex
polytopes by using a small number of halfplanes (among all those defining the poly-
topes). We show that suitable linear programs running in parallel, in fact, solve the
problem, so that the proposed distributed algorithms may beused.

The paper is organized as follows. Section 1.2 introduces abstract linear pro-
grams. Section 1.3 introduces network models. Section 1.4 contains the definition
of network abstract linear programs and the proposed distributed algorithms. Sec-
tion 1.5 shows the relevance of the proposed distributed computing algorithms in
the context of cooperative target localization.

Title Suppressed Due to Excessive Length 3

Notation

We letN, N0, andR+ denote the natural numbers, the non-negative integer numbers,
and the positive real numbers, respectively. Forf ,g : N → R, we say thatf ∈ O(g)
if there existn0 ∈ N andk∈ R+ such that| f (n)| ≤ k|g(n)| for all n≥ n0.

1.2 Abstract linear programming

In this section we present an abstract framework that captures a wide class of opti-
mization problems including linear programming and various geometric optimiza-
tion problems. These problems are known asabstract linear programs(or LP-type
problems). They can be considered a generalization of linear programming in the
sense that they share some important properties. A comprehensive analysis of these
problems may be found for example in [7].

1.2.1 Abstract framework

We consider optimization problems specified by a pair(H,ω), whereH is a finite
set, andω : 2H → Ω is a function with values in a linearly ordered set (Ω ,≤); we
assume thatΩ has a minimum value−∞. The elements ofH are calledconstraints,
and forG⊂ H, ω(G) is called thevalueof G. Intuitively, ω(G) is the smallest value
attainable by a certain objective function while satisfying the constraints ofG. An
optimization problem of this sort is calledabstract linear programif the following
two axioms are satisfied:

(i) Monotonicity: if F ⊂ G⊂ H, thenω(F) ≤ ω(G);
(ii) Locality: if F ⊂ G⊂ H with −∞ < ω(F) = ω(G), then, for allh∈ H,

ω(G) < ω(G∪{h}) =⇒ w(F) < w(F ∪{h}).

A setB⊂ H is minimal if ω(B) > ω(B′) for all proper subsetsB′ of B. A minimal
setB with −∞ < ω(B) is a basis. GivenG ⊂ H, a basis of Gis a minimal subset
B⊂ G, such that−∞ < ω(B) = ω(G). A constrainth is said to beviolatedby G, if
ω(G) < ω(G∪{h}).

Thesolutionof an abstract linear program(H,ω) is a minimal setBH ⊂ H with
the property thatω(BH) = ω(H). Thecombinatorial dimensionδ of (H,ω) is the
maximum cardinality of any basis. Finally, an abstract linear program is calledbasis
regular if, for any basis with card(B) = δ and any constrainth ∈ H, every basis
of B∪{h} has the same cardinality ofB. We now define two important primitive
operations that are useful to solve abstract linear programs.

(i) Violation test: given a constrainth and a basisB, it tests whetherh is violated by
B; we denote this primitive byViol(B,h);

4 Giuseppe Notarstefano and Francesco Bullo

(ii) Basis computation: given a constrainth and a basisB, it computes a basis of
B∪{h}; we denote this primitive byBasis(B,h).

Remark 1 (Examples of abstract linear programs).We present three useful geomet-
ric examples; see Figure 1.1.

(i) Smallest enclosing ball:Givenn points inR
d, compute the center and radius of

the ball of smallest volume containing all the points. This problem has combina-
torial dimensiond+1.

(ii) Smallest enclosing stripe:Givenn points inR
2 in generic positions, compute the

center and the width of the stripe of smallest width containing all the points. This
problem has combinatorial dimension 5.

(iii) Smallest enclosing annulus:Givenn points inR
2, compute the center and the two

radiuses of the annulus of smallest area containing all the points. This problem
has combinatorial dimension 4.

Fig. 1.1 Smallest enclosing ball, stripe and annulus

More examples are discussed in [1, 2, 5, 7]. �

1.2.2 Randomized sub-exponential algorithm

A randomized algorithm for solving abstract linear programs has been proposed
in [1]. Such algorithm has linear expected running time in terms of the number of
constraints, whenever the combinatorial dimensionδ is fixed, and subexponential
in δ . The algorithm, calledSUBEX lp, has a recursive structure and is based on the
two primitives introduced above, i.e., the violation test and the basis computation
primitives. For simplicity, we assume here that such primitives may be implemented
in constant time, independent of the number of constraints.Given a set of constraints
G and a candidate basisC⊂ G, the algorithm is as follows.

Title Suppressed Due to Excessive Length 5

function SUBEX lp(G,C)
if G = C, then returnC
else

choose a randomh∈ G\C
B := SUBEX lp(G\{h},C)
if Viol(B,h), i.e., h is violated

by B,
return

SUBEX lp(G,Basis(B,h))
elsereturnB
end if

end if

For the abstract linear program(H,ω), the routine is invoked withSUBEX lp(H,B),
given any initial candidate basisB.

In [1] the expected completion time for theSUBEX lp algorithm in conjunction
with Clarkson’s algorithms was shown to be inO(d2n+eO(

√
d logd)) for basis regular

abstract linear programs. In [5] the result was extended to problems that are not basis
regular.

1.3 Network models

Following [13], we define a synchronous network system as a “collection ofcom-
puting elementslocated at nodes of a directed network graph.” These computing
elements are sometimes calledprocessors.

1.3.1 Digraphs and connectivity

We letI = {1, . . . ,n} and letG = (I ,E) denote a directed graph, whereI is the set of
nodes andE ⊂ I × I is the set of edges. For each nodei of G , the number of edges
going out from (coming into) nodei is calledout-degree(in-degree) and is denoted
outdeg[i] (indeg[i]). The set of outgoing (incoming) neighbors of nodei are the
set of nodes to (from) which there are edges from (to)i. They are denotedNO(i)
andNI (i), respectively. A directed graph is calledstrongly connectedif, for every
pair of nodes(i, j) ∈ I × I , there exists a path of directed edges that goes fromi to
j. In a strongly connected digraph, the minimum number of edges between node
i and j is called thedistance from i to jand is denoted dist(i, j). The maximum
dist(i, j) taken over all pairs(i, j) is thediameterand is denoted diam(G). Finally,
we consider time-dependent directed graphs of the formt 7→ G (t) = (I ,E(t)). The
time-dependent directed graphG is jointly strongly connectedif, for every t ∈ N0,

∪+∞
τ=tG (τ) is strongly connected.

6 Giuseppe Notarstefano and Francesco Bullo

Moreover, the time-dependent directed graphG is uniformly strongly connectedif,
there existsS> 0 s.t. for everyt ∈ N0

∪t+S
τ=tG (τ) is strongly connected.

1.3.2 Synchronous networks and distributed algorithms

Strictly speaking, asynchronous networkis a directed graphG = (I ,Ecmm) where
the setI = {1, . . . ,n} is the set ofidentifiersof the computing elements, and the
time-dependent mapEcmm : N0 → 2I×I is the communication edge mapwith the
following property: an edge(i, j) belongs toEcmm(t) if and only if processori can
communicate to processorj at timet.

Definition 1 (Distributed algorithm). Let G = (I ,Ecmm) be a synchronous net-
work. A distributed algorithm consists of the sets

- W, set of “logical” statesw[i], for all i ∈ I ;
- W0 ⊂W, subset of allowable initial values;
- M, message alphabet, including thenull symbol;

and the maps

- msg :W× I → M, message-generation function;
- stf :W×Mn →W, state-transition function. �

Execution of the network begins with all processors in theirstart states and all
channels empty. Then the processors repeatedly perform thefollowing two actions.
First, theith processor sends to each of its outgoing neighbors in the communication
graph a message (possibly thenull message) computed by applying the message-
generation function to the current value ofw[i]. After a negligible period of time,
theith processor computes the new value of its logical variablesw[i] by applying the
state-transition function to the current value ofw[i], and to the incoming messages
(present in each communication edge). The combination of the two actions is called
acommunication roundor simply a round.

In this execution scheme we have assumed that each processorexecutes all the
calculations in one round. If it is not possible to upper bound the execution-time of
the algorithm, we may consider a slightly different networkmodel that allows the
state-transition function to be executed in multiple rounds. When this happens, the
message is generated by using the logical state at the previous round.

The last aspect to consider is thealgorithm halting, that is a situation such that
the network (and therefore each processor) is in a idle mode.Such status can be
used to indicate the achievement of a prescribed task. Formally we say that a dis-
tributed algorithm is inhalting statusif the logical state is a fixed point for the
state-transition function (that becomes a self-loop) and no message (or equivalently
thenull message) is generated at each node.

Title Suppressed Due to Excessive Length 7

1.4 Network abstract linear programming

In this section we define anetwork abstract linear programand propose novel dis-
tributed algorithms to solve it.

1.4.1 Problem statement

Informally we can say that anetwork abstract linear programconsists of three main
elements: a network, an abstract linear program and a mapping that associates to
each constraint of the abstract linear program a node of the network. A more formal
definition is the following.

Definition 2. A network abstract linear program (NALP) is a tuple(G ,(H,ω),B)
consisting of

(i) G = (I ,Ecmm), a communication digraph;
(ii) (H,ω), an abstract linear program;

(iii) B : H → I , a surjective map calledconstraint distribution map. �

Thesolutionof the network abstract linear program is attained when all processors
in the network have computed a solution to the abstract linear program.

Remark 2.Our definition allows for various versions of network abstract linear pro-
grams. Regarding the constraint distribution map, the mostnatural case to consider
is when the constraint distribution map is bijective. In this case one constraint is as-
signed to each node. More complex distribution laws are alsointeresting depending
on the computation power and memory of the processors in the network. In what
follows, we assumeB to be bijective. �

1.4.2 Distributed algorithms

Next we define three distributed algorithms that solve network abstract linear
programs. First, we describe a synchronous version that is well suited for time-
dependent networks whose nodes have bounded computation time and memory, but
also bounded in-degree or equivalently arbitrary in-degree, but also arbitrary com-
putation time and memory. Then we describe two variations that take into account
the problem of dealing with arbitrary in-degree versus short computation time and
small memory. The second version of the algorithm is suited for time-dependent
networks that have arbitrary in-degree and bounded computation time, but are al-
lowed to store arbitrarily large amount of information, in the sense that the number
of stored messages may depend on the number of nodes of the network. The third
algorithm considers the case of time-independent networkswith arbitrary in-degree
and bounded computation time and memory.

8 Giuseppe Notarstefano and Francesco Bullo

In the algorithms we consider a uniform networkS with communication digraph
G = (I ,Ecmm) and a network abstract linear program(G ,(H,ω),B). We assumeB
to be bijective, that is, the set of constraintsH has dimensionn, H = {h1, · · · ,hn}.
The combinatorial dimension isδ .

Here is an informal description of what we shall refer to as theFloodBasisalgo-
rithm:

[Informal description]Each processor has a logical state ofδ + 1 variables taking values
in H. The firstδ components represent the current value of the basis to compute, while
the last element is the constraint assigned to that node. At the start round the processor
initializes every component of the basis to its constraint, then, at each communication round,
performs the following tasks: (i) it acquires from its neighbors (a message consisting of)
their current basis; (ii) it executes theSUBEX lp algorithm over the constraint set given by
the collection of its and its neighbors’ basis and its constraint (that it maintains in memory),
thus computing a new basis; (iii) it updates its logical state andmessage using the new basis
obtained in (ii).

In the second scenario we work with a time-dependent networkwith no bounds
on the in-degree of the nodes and on the memory size. In this setting the execution of
theSUBEX lp may exceed the communication round length. In order to deal with
this problem, we slightly change the network model as described in Section 1.3,
so that each processor may execute the state transition function “asynchronously”,
in the sense that the time-length of the execution may take multiple rounds. If that
happens, the message generation function in each intermediate round is called using
the logical state of the previous round. Here is an informal description of what we
shall refer to as theFloodBasisMultiRoundalgorithm:

[Informal description]Each processor has the same message alphabet and logical state as in
FloodBasisand also the same state initialization. At each communication round it performs
the following tasks: i) it acquires the messages from its in-neighbors; ii) if the execution of
theSUBEX lp at the previous round was over it starts a new instance, otherwise it keeps
executing the one in progress; iii) if the execution of theSUBEX lp ends it updates the logi-
cal state and runs the message-generation function with the new state, otherwise it generates
the same message as in the previous round.

In the third scenario we work with a time-independent network with no bounds
on the in-degree of the nodes. We suppose that each processorhas limited memory
capacity, so that it can store at mostD messages. The memory is dimensioned so to
guarantee that theSUBEX lp is always solvable during two communication rounds.
The memory constraint is solved by processing only part of the incoming messages
at each round and cycling in a suitable way in order to processall the messages in
multiple rounds.

Here is an informal description of what we shall refer to as the FloodBasisCy-
cling algorithm:

[Informal description]The firstδ + 1 components of the logical state are the same as in
FloodBasisand are initialized in the same way. A further component is added. It is sim-
ply a counter variable that keeps trace of the current round.At each communication round
each processor performs the following tasks: (i) it acquires fromits neighbors (a message
consisting of) their current basis; (ii) it choosesD messages according to a scheduled pro-
tocol, e.g., it labels its in-neighboring edges with natural numbers from 1 up toindeg[i]

Title Suppressed Due to Excessive Length 9

and cycles over them in increasing order; (iii) it executes theSUBEX lp algorithm over the
constraint set given by the collection of theD messages plus its basis and its constraint (that
it maintains in memory), thus computing a new basis; (iv) it updatesits logical state and
message using the new basis obtained in (iii).

Remark 3.For the algorithm to converge it is important that each agentkeeps in
memory its constraint and thus implements theSUBEX lp on the bases received
from its neighbors together with its constraint. This requirement is important be-
cause of the following reason: no element of a basisB for a setG⊂ H needs to be
an element in the basis ofG∪{h} for anyh∈ H \G. �

We are now ready to prove the algorithms’ correctness.

Proposition 1 (Correctness ofFloodBasis). LetS be a synchronous time-dependent
network with communication digraphG = (I ,Ecmm) and let (G ,(H,ω),B) be a
network abstract linear program. IfG is jointly strongly connected, then theFlood-
Basisalgorithm solves(G ,(H,ω),B), that is, in a finite number of rounds each
node acquires a copy of the solution of(H,ω), i.e., the basis B of H.

Proof. In order to prove correctness of the algorithm, observe, first of all, that each
law at every node converges in a finite number of steps. In fact, using axioms from
abstract linear programming and finiteness ofH, each sequenceω(B[i](t)), t ∈ N0,
is monotone nondecreasing, upper bounded and can assume a finite number of val-
ues. Then we proceed by contradiction to prove that all the laws converge to the
sameω(B) and that it is exactlyω(B) = ω(H). Suppose that fort > t0 > 0 all the
nodes have converged to their limit basis and that there exist at least two nodes,
call them i and j, such thatω(B[i](t)) = ω(B[i]) 6= ω(B[j]) = ω(B[j](t)), for all
t ≥ t0. For t = t0 + 1, for everyk1 ∈ NO(i), B[i] does not violateB[k1], otherwise
they would compute a new basis thus violating the assumptionthat they have con-
verged. Using the same argument att = t0 + 2, for everyk2 ∈ NO(k1), B[k1] does
not violateB[k2]. Notice that this does not imply thatB[i] does not violateB[k2], but it
implies thatω(B[i]) ≤ ω(B[k2]). Iterating this argument we can show that for every
S> 0, everyk connected toi in the graph∪t0+S

t=t0 G (t) must have a basisB[k] such
thatω(B[i]) ≤ ω(B[k]). However, using the joint connectivity assumption, there ex-
istsS0 > 0 such that∪t0+S0

t=t0 G (t) is strongly connected and thereforei is connected
to j, thus showing thatω(B[i]) ≤ ω(B[j]). Repeating the same argument by starting
from node j we obtain thatω(B[j]) ≤ ω(B[i]), that impliesω(B[i]) = ω(B[j]), thus
giving the contradiction. Now, the basis at each node satisfies, by construction, the
constraints of that node. Since the basis is the same for eachnode, it satisfies all the
constraints, thenω(B) = ω(H).

Remark 4.Correctness of the other two versions of theFloodBasisalgorithm may
be established along the same lines. For example, it is immediate to establish that the
basis at each node reaches a constant value in finite time. It is easy to show that this
constant value is the solution of the abstract linear program for theFloodBasisMulti-
Roundalgorithm. For theFloodBasisCyclingalgorithm we note that the procedure
used to process the incoming data is equivalent to considering a time-dependent
graph whose edges change with that law. �

10 Giuseppe Notarstefano and Francesco Bullo

Proposition 2 (Halting condition). Consider a networkS with time-independent,
strongly connected digraphG where theFloodBasisalgorithm is running. Each
processor can halt the algorithm execution if the value of its basis has not changed
after2diam(G)+1 communication rounds.

Proof. First, notice that, for allt ∈ N0 and for every(i, j) ∈ Ecmm,

ω(B[i](t)) ≤ ω(B[j](t +1)). (1.1)

This holds by simply noting thatB[j](t + 1) is not violated byB[i](t) by construc-
tion of the FloodBasisalgorithm. Assume that nodei satisfiesB[i](t) = B for all
t ∈{t0, . . . , t0+2diam(G)}, and pick any other nodej. Without loss of generality as-
sume thatt0 = 0. Because of equation (1.1), ifk1 ∈NO(i), thenω(B[k1](1))≥ ω(B)
and, recursively, ifk2 ∈ NO(k1), then ω(B[k2](2)) ≥ ω(B[k1](1)) ≥ ω(B). Iterat-
ing this argument dist(i, j) times, the nodej satisfiesω(B[j](dist(i, j))) ≥ ω(B).
Now, consider the out-neighbors of nodej. For everyk3 ∈ NO(j), it must hold
thatω(B[k3](dist(i, j)+1)) ≥ ω(B[j](t)). Iterating this argument dist(j, i) times, the
nodei satisfiesω(B[i](dist(i, j)+ dist(j, i))) ≥ ω(B[j](dist(i, j))). In summary, be-
cause dist(i, j)+dist(j, i) ≤ 2diam(G), we know thatB[i](dist(i, j)+dist(j, i)) = B
and, in turn, that

ω(B) ≥ ω(B[j](dist(i, j))) ≥ ω(B).

This shows that, if basisi does not change for a duration 2diam(G)+1, then it will
never change afterwards because all basesB[j], for j ∈ {1, . . . ,n}, have cost equal
to ω(B) at least as early as time equal to diam(G)+1. Therefore, nodei can safely
stop after a 2diam(G)+1 duration.

Title Suppressed Due to Excessive Length 11

1.5 Distributed computation of the intersection of convex
polytopes for target localization

In this section we discuss an application of network abstract linear programming to
sensor networks, namely a distributed solution for target localization. We consider
a set of (fixed) sensors{1, . . . ,n} deployed on a plane. These sensors have to detect
a target located at positionx ∈ R

2. Each sensori detects a region of the plane,
m[i](x)⊂R

2, containing the target; we assume that this region, possibly unbounded,
can be written as the intersection of a finite number of half-planes. Fori ∈ {1, . . . ,n},
let ci denote the number of half-planes defining the sensing regionof sensori. An
example scenario withci = 2 for i ∈ {1, . . . ,n} is illustrated in Figure 1.2. From now
on, in order to simplify the notation, we assume thatci = c for all i ∈ {1, . . . ,n}, so
that the number of half-planes (and thus the number of constraints) isnc.

Fig. 1.2 Target localization: set measurements

The intersection of the regions detected by each sensor provides the best estimate
of the target location,M(x) = ∩i∈{1,...,n}m

[i](x). It easy to see thatM(x) is a non
empty convex set, since it is the finite intersection of convex sets all containing the
positionx of the target.

Here, we are interested in approximating the intersection of convex polytopes by
means of a “small” number of halfplanes. We consider the following approximation
problem. Given a finite collection of convex polytopes with nonempty intersection,
find the smallest axis-aligned rectangle that contains the intersection. We refer this
rectangle as the “bounding rectangle.”

The bounding rectangle has two important features. First, the rectangle provides
bounds for the coordinates of the target. That is, letpo = (p1

o, p2
o) be the center of the

rectangle with sides of lengtha andb respectively. For anyp= (p1, p2)∈M(x), then
|p1−p1

o| ≤a/2 and|p2−p2
o| ≤b/2. Second, the bounding rectangle is characterized

by at most four points of the polytope or, equivalently, by atmost eight halfplanes.

12 Giuseppe Notarstefano and Francesco Bullo

It can be easily shown that computing the bounding rectangleis equivalent to
solving four linear programs respectively in the positive and negative directions of
each reference axis. More formally, letvθ ∈ S1 be a vector forming an angleθ with
the first reference axis. Given a set of half-planesH = {h1, . . . ,hn}, hi ⊂ R

2 for
i ∈ {1, . . . ,n}, we denote(H,ωθ) the linear program

min vT
θ x

subj. toaT
i x≤ bi , i ∈ {1, . . . ,n}

wherehi = {x ∈ R
2 | aT

i x ≤ bi ,ai ∈ R
2 andbi ∈ R}. The bounding rectangle may

be computed by solving the linear programs(H,ωθ), θ ∈ {0,π/2,π,3π/2}. An
example is depicted in Figure 1.3

Fig. 1.3 Target localization: bounding rectangle

Remark 5.(i) A tighter approximation of the intersection may be obtained by choos-
ing a finer grid for the angleθ . Choosing angles at distance 2π/k, k ≥ 4, the
intersection is approximated by ak-polytope.

(ii) An inner approximation to a polytope in dimensiond with np facets can also
be computed via the largest ball contained in the polytope. This center and ra-
dius of this ball are referred to as the incenter and inradiusof the polytope. It
is known [14] that the incenter and the inradius may be computed by solving a
linear program of dimensiond+1 with np constraints.

(iii) The computation of a boundingk-polytope is a sensor selection problem in which
one wants to select a few representative among a large set of sensors by optimiz-
ing some appropriate criterion. Indeed, the 2k sensors solving the problem are
the only ones needed to localize the target. �

In the following we want to design a distributed algorithm running on a network
to approximate the intersection of planar convex polytopes. We assume the sensor
network may be described by the mathematical model introduced in Section 1.3. Let

Title Suppressed Due to Excessive Length 13

G = (I ,Ewsn) be the associated communication graph, where the setI = {1, . . . ,n}
is the set of identifiers of the sensors andEwsn is the communication edge map.
We assume thatG is a fixed undirected connected graph. We consider the network
(abstract) linear programs defined by(G ,(H,ωθ),B) where(H,ωθ) are the linear
programs defined above andB is the mapping associating to each node thec con-
straints describing its sensing region. Therefore, the distributed algorithm to com-
pute the bounding rectangle (k-polytope) consists of 4 (k) instances ofFloodBasis
running in parallel (one for each linear program). We denoteFloodRect(FloodPoly)
the algorithm consisting of the 4 (k) instances ofFloodBasisrunning in parallel and
the routine to compute the bounding rectangle (polytope).

Next, we are interested in estimating the position of a moving target. The pro-
posed algorithm can be generalized according to the set membership approach, de-
scribed for example in [11]. The idea is to track the target position by means of
a prediction and “measurement update” iteration. The idea may be summarized as
follows. We consider the sensor network described above, but with the objective
of tracking a moving target. The sensors can measure the position of the target ev-
ery T ∈ N communication rounds, so that during theT rounds they can perform
a distributed computation in order to improve the estimate of the target. The tar-
get moves in the sensing area with bounded velocity|v| ≤ vmax. That is, given its
positionx(t), the position afterτ ∈ N communication rounds may be bounded by
x(t + τ) ∈ B(x(t),vmaxτ), where we have assumed the inter-communication interval
to be of unit duration.

In order to simplify notation we assume that each sensor can measure only one
halfplane containing the target, i.e., we setc = 1. Also, we suppose that the sensors
may keep in memoryk past measures and use them to improve the estimate.

We begin the algorithm description by discussing theprediction step. Leth[i](t) =
{x ∈ R

2 | a[i](t)Tx ≤ b[i](t)} be the halfplane (containing the target) measured by
sensors[i] at timet. Since the target moves with bounded velocity, it follows easily
that at instantt + τ the target will be contained in the halfplaneh[i](t + τ|t) = {x∈
R

2 |a[i](t)T(x−vmaxτa[i](t)/‖a[i](t)‖)≤b[i](t)}. The idea is illustrated in Figure 1.4.

Fig. 1.4 Constraint after the prediction step

We are now ready to describe the estimation procedure. Informally, between
two measurement instants each sensor runs aFloodRectalgorithm such that each

14 Giuseppe Notarstefano and Francesco Bullo

FloodBasisinstance has constraints given by the current measured halfplane and
the prediction at timet of the latestk measures. More formally, each node solves the
network linear programs(G ,(H(t),ωθ),B), θ ∈ {0,π/2,π,3π/2}, whereH(t) =
{H [1](t), . . . ,H [n](t)}, with

H [i](t) = {h[i](t|t −kT),h[i](t|t − (k−1)T), . . . ,h[i](t|t −T),h[i](t)}.

Then each node computes the corresponding bounding rectangle. The following
result follows directly.

Proposition 3. Let t∈ N be a time instant when a new measure arrives. We denote
Rect[i](t +τ) the estimate of the bounding rectangle at instant t+τ obtained by run-
ning theFloodRectalgorithm for the network linear programs(G ,(H(t),ωθ),B),
θ ∈ {0,π/2,π,3π/2}. Then

(i) For any τ ∈ [0,T] and any i∈ {1, . . . ,n}, the rectangle Rect[i](t + τ) is a subset
of the rectangle Rect[i](t) and it contains the target.

(ii) For sufficiently large T , there existsτ0∈ [0,T] such that Rect[i](t+τ)= Rect[i](t+
τ0) = Rect0 for all τ0 ≤ τ ≤ T, where Rect0 solves the network linear programs.

Proof. To prove statement i) first note that for anyi ∈ {1, . . . ,n} each constraints in
H [i](t) contains the target. Therefore each estimate of the bounding rectangle will
contain the target. The monotonicity property of Rect[i](t +τ) follows by the mono-
tonicity property of eachFloodBasisalgorithm solving the corresponding network
linear program.

Statement ii) follows easily by the fact that eachFloodBasisalgorithm running
in parallel solves the respective network linear program.

1.6 Conclusions

In this paper we have shown how to solve a class of optimization problems, namely
abstract linear programs, over a network in a distributed way. We have proposed
distributed algorithms to solve such problems in network with various connectivity
and/or memory constraints. The proposed methodology has been used to compute
an outer approximation of the intersection of convex polytopes in a distributed way.
In particular, we have shown that a set approximation problem of this sort may be
posed to perform cooperative target localization in sensornetworks.

References

1. J. Matousek, M. Sharir, and E. Welzl, “A subexponential boundfor linear programming,”
Algorithmica, vol. 16, no. 4/5, pp. 498–516, 1996.

2. B. Gärtner, “A subexponential algorithm for abstract optimization problems,”SIAM Journal
on Computing, vol. 24, no. 5, pp. 1018–1035, 1995.

Title Suppressed Due to Excessive Length 15

3. G. Notarstefano and F. Bullo, “Network abstract linear programming with application to
minimum-time formation control,” inIEEE Conf. on Decision and Control, New Orleans,
LA, Dec. 2007, pp. 927–932.

4. N. Megiddo, “Linear programming in linear time when the dimension is fixed,”Journal of the
Association for Computing Machinery, vol. 31, no. 1, pp. 114–127, 1984.

5. B. Gärtner and E. Welzl, “Linear programming - randomization and abstract frameworks,”
in Symposium on Theoretical Aspects of Computer Science, ser. Lecture Notes in Computer
Science, vol. 1046, 1996, pp. 669–687.

6. M. Goldwasser, “A survey of linear programming in randomized subexponential time,”
SIGACT News, vol. 26, no. 2, pp. 96–104, 1995.

7. P. K. Agarwal and S. Sen, “Randomized algorithms for geometric optimization problems,” in
Handbook of Randomization, P. Pardalos, S. Rajasekaran, J. Reif, and J. Rolim, Eds. Kluwer
Academic Publishers, 2001.

8. P. K. Agarwal and M. Sharir, “Efficient algorithms for geometric optimization,”ACM Com-
puting Surveys, vol. 30, no. 4, pp. 412–458, 1998.

9. M. Ajtai and N. Megiddo, “A deterministic poly(log logn)-time n-processor algorithm for
linear programming in fixed dimension,”SIAM Journal on Computing, vol. 25, no. 6, pp.
1171–1195, 1996.

10. F. Zhao and L. Guibas,Wireless Sensor Networks: An Information Processing Approach.
Morgan-Kaufmann, 2004.

11. A. Garruli and A. Vicino, “Set membership localization of mobile robots via angle measure-
ments,”IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp. 450–463, 2001.

12. V. Isler and R. Bajcsy, “The sensor selection problem for bounded uncertainty sensing mod-
els,” IEEE Transactions on Automation Sciences and Engineering, vol. 3, no. 4, pp. 372–381,
2006.

13. N. A. Lynch,Distributed Algorithms. Morgan Kaufmann, 1997.
14. F. Bullo, J. Cort́es, and S. Martı́nez,Distributed Control of Robotic Networks, ser. Applied

Mathematics Series. Princeton University Press, Sept. 2008, manuscript under contract.
Available electronically at http://www.coordinationbook.info.

