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16.1 Abstract

In the study of mixing and reaction in turbulent flows, there are several phenomena that
can be usefully described in terms of surfaces. Examples are turbulent flames and the
turbulent mixing of different liquids. The most fundamental type of surface is the mate-
rial surface which, by definition, moves with the fluid. Because of the fluid’s turbulent
motion and deformation, the surface is continually stretched and bent. In this study
numerical simulations have been performed to understand and to quantify these proc-
esses.

A pseudo-spectral method is used to solve the Navier-Stokes equations which govern
the motion of the fluid. These equations are solved on a 1283 grid for the simplest pos-
sible turbulent flow — statistically stationary, homogeneous, isotropic turbulence. As the
results show, the direct numerical representation of a material surface is not feasible: for
the surface area grows exponentially (by a factor of10!7 over the duration of the simu-
lations); and radii of curvature less than a millionth of the grid spacing arise. Instead an
indirect method is used in which ensembles (4-8,000) of infinitesimal surface elements are
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41 See “Pui-Kuen Yeung” on page 975.
42 See “Sharath S. Girimaji” on page 965.
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followed. Statistics of interest are obtained from the stretching and curvatures of these
elements.

For the first time, the mean rate of stretching has been determined. It is found that the
surface area doubles every 2 1/2 Kolmogorov time scales. (The Kolmogorov time scale
is the smallest physical time scale in turbulence.) While this is certainly rapid growth, it is
only 40% of theoretical estimates, for reasons that are explained. Hitherto, little has
been known about the curvature of material surfaces. The results show that extremely
small radii of curvatures arise, as small as 108 of a Kolmogorov length scale (the
smallest turbulent scale). These highly curved elements are found to be almost perfectly
cylindrical in shape. Many other more refined statistics have been obtained.

The numerical simulations were performed on an IBM 3090-600E, with full exploitation
of its vector, parallel and large-memory facilities. A typical run requires a total of 80
CPU hours, but can be completed in 20 hours because all six processors are used in
parallel.

16.1.1 List of Index Terms

e Curvature of material surfaces ¢ Numerical simulations
* Fluid mechanics ¢ Pseudo-spectral method
* Isotropic turbulence « Surface stretching

* Kolmogorov scale » Turbulence

* Navier-Stokes * Turbulent mixing
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Stretching and Bending of Material Surfaces in
Turbulence

16.2 Introduction

In the work described here, supercomputer calculations are used to answer funda-
mental questions of long standing about the effects of turbulence on material sur-
faces.

Turbulence — because of its importance in the atmosphere, the oceans, engi-
neering equipment and elsewhere — has been the subject of theoretical study for
over 75 years. In many areas, including the study of material surfaces, the theory
is built on hypotheses that have not been tested because of insuperable exper-
imental difficulties. Now, however, by simulating turbulence using a supercom-
puter it is possible to test these hypotheses. But much more: the simulations
provide fresh insights into the basic physical processes of turbulence.

A material surface is defined by its initial condition (e.g. a specified plane at
t=0), and by the condition that every point on the surface moves with the local
fluid velocity. We now provide two examples to illustrate the physical signif-
icance of these surfaces.

Figure 147 shows a sketch of the mixing of two bodies of water (A and B) in a
closed vessel. Initially (t=0) A contains a trace solute of concentration ¢ = ¢y,
while B is pure water (¢ = 0). We consider the material surface that is initially
coincident with the interface between A and B. The water is set in turbulent
motion and as a result the material surface is convected, stretched and bent. In
the first stages of mixing, the concentration is uniform everywhere except in the
immediate vicinity of the material surface where there is a thin diffusive layer.
Locally, the behavior of the diffusive layer is (to an excellent approximation) the
same as a plane layer in a uniform strain field. Consequently, the mixing process
can be completely analyzed in terms of the statistics of straining on the material
surface [1, 2, 3]. (At later times the material surface folds over, and the analysis
breaks down once the distance between folds is comparable to the diffusive-layer
thickness.)
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Figure 147. Mixing Between Two Bodies of Water. Sketch of the mixing between two
bodies of water.
a) The material surface that initially (t =0) separates A from B.
b)Normalized concentration profiles normal to the surface. (Note 6 << L.)

The second example is an idealization of a turbulent premixed flame (such as
that in a spark-ignition automobile engine). Under appropriate conditions [4],
there is a thin flame sheet that forms a connected but highly wrinkled surface that
separates the reactants from the products (see Figure 148). This flame surface is
convected, bent and strained by the turbulence, and propagates (relative to the
fluid) at a speed w. If the propagation speed w is small compared to the turbu-
lent velocity scales (in a way made precise in [3], then the flame surface behaves
like a material surface. For this case the statistics of interest are, again, the
straining on the material surface and also its curvature — for this affects the prop-
agation speed w [5, 6].

The straining on material surfaces was first and most comprehensively studied
by Batchelor [1, 7] over 30 years ago. He introduced two conjectures:
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Figure 148. Development of a Turbulent Flame Sheet. Sketch of a turbulent flame
sheet developing from an initially spherical kernel.

1. straining is persistent (i.e. the time scale of change of the strain rate is large
compared to the time scale of strain itself);

and

2. the material surface becomes aligned with the principal axes corresponding to
the two greatest principal strain rates.

Subsequent workers (see Monin and Yaglom [8] for a review) have accepted
these conjectures and Corrsin [9] provides additional quantitative arguments for
the persistence of strain.

The curvature of material surfaces has not been examined in as much detail, but
it is often assumed (e.g. Klimov [10]) that

3. The radii of curvature of a material surface are no smaller than the smallest
turbulence scales.

Because of insuperable experimental difficulties, these conjectures could not be
tested experimentally. Our results show that none of them is correct.

The obijective of the work described is to use simulations of turbulence to study
the processes affecting material surfaces, in particular to characterize the statistics
of surface straining and curvature.



476 Pope, Yeung and Girimaji

The computational simulation of the turbulence is described in the next section,
while the algorithm used to determine surface properties is described in 16.4,
“Evolution of Material Surfaces.” The results are given in 16.5, “Results and
Discussion,” and the paper closes with conclusions in 16.6, “Conclusions.”

Space does not permit all the details to be presented here: more information
can be found in previous works of the authors [2, 3, 11, 12, 13].

16.3 Turbulence Simulations

16.3.1 Pseudo-Spectral Method

The governing equations of fluid motion — the Navier-Stokes equations — are
solved for the simplest possible turbulent flow: homogeneous, isotropic,
statistically-stationary turbulence. Since, according to the Kolmogorov 1941
hypotheses [8], the small scales of turbulence are universal, the study of this sim-
plest of turbulent flows has broad significance.

The Navier-Stokes equations are solved numerically using the pseudo-spectral
method developed by Rogallo [14]. The time-dependent Eulerian velocity field,
u(x, t), is represented on an equispaced grid of N® grid points which form a cubic
computational domain of length Lo. In the simulations reported N = 64 or N
= 128. The velocity field is continued periodically (i.e., u(x + zlo, t) = u(x, 1),
where z is any integer vector), and consequently u(x, t) has a finite Fourier repre-
sentation. There are N* corresponding discrete nodes in wavenumber space. Let
k be the wavenumber vector at a given node, and k be its magnitude. The lowest
nonzero wavenumber, denoted by ko, is 2z/Lo. The components of k are integer
multiples of ko, ranging from (1-N/2)k, to (N/2)k,. We denote by u(k,t) the
complex Fourier (wavenumber) coefficients of the velocity at time t: i.e., u(k, t)
1s the discrete Fourier transform of u(x, t).

For each wavenumber, the Fourier velocity u evolves by

- =2[um], M
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where a (obtained from the Navier-Stokes equations) represents the velocity time
derivative in wavenumber space and is dependent on u at all k. This (vector)
equation is integrated in time by an explicit second-order Runga-Kutta method.
The essence of the pseudo-spectral method is that the velocity products (that
arise, for example, in the convective term) are evaluated in physical space, and
then transformed to wavenumber space. This avoids the costly evaluation of the
products in physical space as convolutions in wavenumber space. On the other
hand, spatial derivatives (that would have to be approximated in physical space)
are evaluated without approximation in wavenumber space. Most of the compu-
tational work (70% of it) is consumed in the Fast Fourier Transforms (FFT’s)
used to transform the data between physical and wavenumber spaces.

A forcing scheme [11] is used to maintain the turbulence energy against viscous
decay. This is achieved by adding an artificial random term ar(k, t) to the right-
hand side of Eq. (1). It has been verified [15] that forcing the large-scale motions
has a negligible effect on the small-scale motions that strain and bend material
surfaces.

16.3.2 Implementation on the IBM 3090-600E

Rogallo’s original pseudo-spectral code [14] was written in the Vectoral program-
ming language and run on the Cray 1 computer at NASA Ames. Because of the
very limited memory of this computer, a great deal of the coding is concerned
with transferring data between memory and secondary storage.

While maintaining the same numerical algorithm, we completely rewrote the
code in FORTRAN to exploit fully the vector, parallel and large-memory capa-
bilities of the IBM 3090-600E. In a 128 simulation (i.e. N = 128) the grid con-
sists of over 2 million nodes. As shown in Figure 149, these nodes can be
considered to be N x-y planes (of N? nodes each), or as N x-z planes. The
essence of the parallel implementation is to perform operations on planes of data,
assigning each plane to a separate process. Thus in each phase of the calculations
N processes are generated, each pertaining to an x-y or an x-z plane of data; and,
at a given time, each of the 6 processors of the IBM 3090-600E is executing one
of these processes. This is an extremely simple and effective use of parallelism
which depends upon two properties: the large shared memory of the IBM
3090-600E; and, the ability to split the algorithm into operations requiring only
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Figure 149. Data Structure. Sketch showing an N® of data as: a) N x-y planes, and b) N
x-z planes.

lines or planes of data. The speed-up achieved (compared to using a single
processor) is greater than 4.

The usual measures have been taken to exploit the speed-up made possible by
the vector processors of the IBM 3090. Since about 70% of the CPU time is
consumed in performing FFT’s, particular attention was paid to their implemen-
tation. The ESSL vector routines are used for this purpose, with the optimum
data structure and calling sequence having been determined by experimentation.

The computational requirements of a (128)° simulation are very large. Each
time step takes a total of 2 CPU minutes, and a full run requires, typically, 2,400
time steps. Thus the total CPU time required is about 80 hours. However,
because of the use of parallelism, the turnaround time can be less than 20 hours.

16.3.3 Physical and Numerical Parameters

Results are reported from four simulations, which are distinguished by the
Reynolds number R,. Table 26 on page 495 contains a summary of the specified
physical and numerical parameters and the resulting basic turbulence properties.

The accuracy of the simulations is determined by the spatial and temporal resol-
ution. Detailed tests have been performed [11, 12, 15] to establish that resol-
ution is excellent for all the simulations.
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Figure 150. Spectrum Against Kolmogorov-Scaled Wavenumber. Spectrum k3E(k)
(arbitrary scale) against Kolmogorov-scale wavenumber. A 128°R; 63; [0 64°R;
59; dashed line, experimental data of Comte-Bellot & Corrsin [16], R; 65.

To illustrate the veracity of the simulations, on Figure 150 we show computed
and experimentally measured dissipation spectra. With E(k) being the energy
spectrum function, the quantity shown on the figure is proportional to k*E(k) —
thus accentuating the high wavenumber (i.e. small scale) components of the
velocity field. From this figure (and other tests performed [11, 12, 15]) we can
conclude:

1. the spatial resolution is excellent (the whole dissipation spectrum is captured),
2. the small scale motions are unaffected by the details of the forcing,

3. the simulated small scales have the same statistics as experimentally realized
turbulence.

16.4 Evolution of Material Surfaces
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16.4.1 Direct Method

Given that the time-dependent three-dimensional velocity field u(x, t) is known
from the simulations described in the previous section, a direct method of the
computing the evolution of a material surface immediately suggests itself.

For definiteness consider the material surface that initially (t=0) is the plane
x;=0. Let X(t) denote the location of a point on the surface. Then, since by
definition the surface moves with the fluid, we have:

X(1) =5 X () = u(X(),v. %)

The direct method is to represent the surface discretely by M nodes, the m-th
having position X™(t). Because turbulence stretches and bends the surface,
adaptive gridding (to re-position nodes and to introduce new ones) would be
required to maintain resolution of the surface.

Our results show that the deformation of the surface is so severe as to make this
approach impracticable. During the simulation the area of the surface increases
by a factor of 10V, and radii of curvature as small as 108 of a grid spacing occur.
Clearly it is hopeless (and misguided) to attempt to represent such a massive
surface with the necessarily fine resolution.

16.4.2 Infinitesimal Surface Elements

Rather than attempting to represent and resolve the whole surface, we study,
instead, a large number (M = 4,096 or 8,192) of representative infinitesimal
surface elements. A comprehensive account of the definition and properties of
such elements is provided by Pope [2].

Figure 151 is a sketch of an infinitesimal surface element at time t. Its position
is X(t), its infinitesimal area is dA(t), and the unit normal to the surface is N(t).
For each element, a time-dependent Cartesian coordinate system is introduced,
with its origin at X(t), and with orthonormal basis vectors ei(t) (i = 1,2,3). The
unit vector es(t) is coincident with the normal, i.e. es(t) = N(t), and consequently
ei(t) and e(t) are in the tangent plane of the surface at X(t). Initially at (t=0)
e1(0) is specified arbitrarily in the tangent plane, and ey(0) is determined by
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e
=1

Figure 151. Sketch of an Infinitesimal Area Element

orthogonality. Subsequently, e;(t) and e,(t) rotate with the fluid. These specifica-
tions lead [2] to the following evolution equations:

0
. aUs  oU ou, )" . ou, )’
e, = 1 e -—= 5% +e 3 g3 =—¢ 3 3
S 2 =g 0ya ayp =3 ayo; » X3 2 aya

Here y, and y, are coordinates in the ¢; and e, directions; Greek suffices take the
values 1 or 2; the summation convention applies; U; = ¢; * u; and, the superscript
0 indicates that the quantities are evaluated at the ongin.

With dA(t) being the infinitesimal area of the surface element, the area amplifi-
cation factor A(t) is defined by A(t)=dA(t)/dA(0). Note that A(0) is unity. The
area increases due to straining according to

A=Aa, C))

where a(t)= { aa}()]“

The curvature of the infinitesimal surface element is completely described by the
(second-order symmetric) curvature tensor h%(t) (see Pope [2]). The principal
curvatures ki(t) and ky(t) are the eigenvalues of this tensor, with the convention
k; > k,. The exact evolution equation for hl; 1s [2]:

0
} is the rate of strain in the tangent plane.

0
. o’U
0 _ 3 0 0 0
o { 3Y,0Y5 } = 2hap = by ¥ i) )
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_1fou. oy )°
where 3 =75 s B is the strain-rate tensor in the tangent plane.
(Note that a = 3,,.)

A complete set of equations has now been presented for the surface properties
X,N =g ¢, A and hY; (Egs. 2-5). From given initial conditions, these can be
integrated, given the time series of u, du;/dx; and #%u;/9x;0x, following the fluid
particle. Hence the curvatures k; and k; are determined as the eigenvalues of hS.

Since the turbulence is isotropic, the initial condition N(0) is arbitrary. For
convenience we specify €(0) to be coincident with the axes used in the Direct
Numerical Simulation. The infinitesimal surface elements are specified to be
plane initially: that is hls(0) = 0.

16.4.3 Numerical Implementation

As the turbulence simulation steps through time, the set of ordinary differential
equations describing the infinitesimal surface elements is solved by a second-order
Runga-Kutta method for each of the M elements considered.

The set of differential equations for the elements (Egs. 2-5) contains the velocity
and its spatial gradients evaluated at the element location X(t). These quantities
are obtained from the velocities at the grid nodes by cubic-spline interpolation,
which has been shown to be extremely accurate [17]. The formation of the
splines requires significant computational effort. It is implemented on the
IBM3090 exploiting the parallel processing capabilities in much the same way as
in the pseudo-spectral code.

16.4.4 Numerical Accuracy

The numerical accuracy depends on the spatial resolution (indicated by Ax/y
being small), and on the temporal resolution (indicated by At[z, and the Courant
number C being small), where » and 7, are the Kolmogorov length and time
scales. For the Eulerian simulation it has been demonstrated in previous studies
[11, 15, 17] that good resolution is achieved with Kmam=1.5 (corresponding to
Ax[nx2) and Cx0.5
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The results show that surface radii of curvature, R, less than a millionth of the
Kolmogorov scale # are observed. Since both Ax/R and the Courant number
based on R can be very large ( ~ 10%), careful consideration needs to be given to
whether numerical accuracy for the radii of curvature can, nevertheless, be
claimed.

The sources of numerical error in determining k,(t) and k,(t) — beyond those
incurred in the Eulerian simulation — are threefold. First there is the time-
stepping error in integrating the surface-element ordinary differential equations.
Inspection of Eq. (5) suggests that the time scale of change of k, is no smaller
than the Kolmogorov time scale z,: this is confirmed by the result. Hence the
time step of size 0.1 7, is sufficiently small, as tests verify.

Second, there is some error involved in interpolating for the velocity derivatives.
As the tests performed by Yeung and Pope [17] show, with the current resol-
ution (kma®=1.5) and using cubic spline interpolation, this error is less than 1%.

Third, there is a numerical error (again investigated by Yeung and Pope [17]) in
the integration of Eq. (2) to determine the element location X(t). Given the
dispersive nature of turbulence, for t large compared to z,, this error could be
large — certainly large compared to 10-¢;. But the error in X(t) can, alterna-
tively, be viewed as a small error in the initial condition. That is, the numerically
determined particle position X(t) is the exact position of the particle originating
from X(0) + 6X where |6X| is small (compared to # ). And the time series of
the velocity gradients of the particles originating from X(0) and X(0) + 6X differ
little. Since we are interested in the statistics of a statistically homogeneous
surface, the precise initial condition of the surface elements considered is unim-
portant.

In summary, in the current method of tracking infinitesimal surface elements,
good resolution of the Kolmogorov length and time scales is sufficient for the
accurate calculation of surface statistics. Resolution on the scales of the surface
radii or curvature is not required. This conclusion is in marked contrast to that
for the direct method (16.4.1, “Direct Method” on page 480) in which the whole
surface is represented numerically.
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16.5 Results and Discussion

16.5.1 Straining on Material Surfaces

In this subsection we first present statistics characterizing the straining of material
surfaces. The fundamental quantity is a(t), the (total) rate of strain in the tangent
plane of the material surface, which determines the rate of surface area increase
(Eq. 4). It is appropriate to consider one-time area-weighted statistics, such that
equal areas contribute equally to the mean. We note that straining statistics from
our four simulations display no significant Reynolds number dependence [3].

The rate of strain in the tangent plane of a slowly propagating surface (w < v,,
where v, is the Kolmogorov velocity scale) is well approximated by a; whereas for
a rapidly propagating surface (w>v, ) it is close to «, the rate of strain acting on a
randomly oriented element, which is statistically identical to — 0u,/0x;.
Figure 152 shows the area-weighted (f4(a)) and unweighted (f,(a)) probability
density functions (pdf’s) of a, and the pdf of a(f,(a)~f#(2)). The strain rates are
Kolmogorov-scaled (a* = ar,o* = at,).

It is seen that, relative to f,(a), f4(a) is displaced to the right, since large areas are
associated with strong stretching (positive a). In fact, the area-weighted mean
< a* >, =0.28 is almost twice the unweighted mean. The mean of « is iden-
tically zero, and its skewness is nearly 0.5, consistent with previous results [18].
The variance of «* is close to 1/15, its theoretical value in isotropic turbulence.

Two principal strain rates, S; and S, (with S;>S,, and S, + S, =a), are the
eigenvalues of the strain-rate tensor in the tangent plane of a material surface s,.
The area-weighted joint pdf of Kolmogorov-scaled S, and S, (St = Sz, S¥ = S,7,)
is shown in Figure 153. The isoprobability contours indicate that S, is almost
always positive (with 98% probability), and that there is relatively high proba-
bility for the magnitude of S, to be small. The mean values of St and S¥ are
found to be approximately 0.315 and -0.035 respectively. The probability of net
compressive straining in the tangent plane, i.e., S; + S, < 0, is about 19%.

We now examine the conjectures made by Batchelor [1, 7] on the straining of
material surfaces (see 16.2, “Introduction”). As noted above, the area-weighted
mean value of the surface strain is approximately < a > = 0.28/r,. Thus the
time scale of surface strain can be taken as 1/<a >s~3.57,. The question of
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Figure 153. Joint pdf of Principal Surface Strains. Contour plot of the area-weighted

joint pdf of the Kolmogorov-scaled principal surface strain rates S*1 and S*2. The
indicated regions and their probabilities are:
A:S1>82>0 =Sy, Prob(A) = 0.498
B:S1 >0 >S2>Sy, Prob(B) = 0.201
C:$1>0 >Sy > Sz, Prob(C) = 0.110
D:S1 >SNy =0 >S2, Prob (D) = 0.100
E:Sy>S1>0 >82, Prob (E) = 0.077
F: Sy =0 =81 >S2, Prob (F) = 0.014
where S\y = -a = -S1-S2

whether the straining is persistent is best addressed by examining the two-time
statistics of a, in particular its autocorrelation function. This is shown in
Figure 154 for the R, 38 and R, 93 cases. It may be seen that the autocorrelation
decays to small values well before a time lag of 3.57, is reached, and in fact
crosses the zero line at about 2.75¢,, The integral time scale of a is about
1.07,(0.967, at R, 38, 1.037, at R, 93), which is small compared to 3.57,. From
these observations, we conclude that the time scale of change of strain is certainly
not large compared to the time scale of strain itself — i.e., the straining on a
material surface is not persistent.
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Figure 154. Autocorrelations of Surface Strain Rate a(t). Vertical axis is p,(z*). Hor-
izontal axis is " =</7,, A R; =38 OR; = 93.

The second conjecture mentioned in 16.2, “Introduction” is that the surface
element becomes aligned with the principal axes corresponding to the two
greatest principal strain rates. Let 'y be the angle between the normal to the
surface N, and the principal axis corresponding to the least principal strain rate.
Then the conjecture is equivalent to I'a = 0. Figure 155 shows the evolution of
the mean <I', > from the simulations. Initially <I'sy > has a value close to
unity, corresponding to the initial condition of I'y being uniformly random.
After a transient, < I'4 > attains a value close to 0.75 radians. Clearly then, the
conjecture (I"'A=x0) is far from the truth.
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Figure 155. Evolution of The Mean Angle <I's>. The evolution of the mean angle <
I'a> between the normal to the surface and the principal axis corresponding to the
least principal strain rate: (O), R, 38; (*), R; 63; (%), R; 90.

16.5.2 Curvature of Material Surfaces

Curvature statistics have been determined for the R, 38 simulation, by calculating
the properties of an ensemble of 8,192 infinitesimal surface elements. For each
element the principal curvatures k; and k, are determined as the eigenvalues of
his; and the area amplification A is used to construct area-weighted statistics [3].

The curvature is characterized by the following quantities: the normalized
mean-square curvature, M*(¢), the logarithm of curvature, L, and , the normal-
ized radius of curvature of the material element R*(¢):

Lo =M 0, M*)=3rn 00+ KBw), R*=—A— (6)

2M*
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Figure 156. Standardized pdf of Logarithm of Curvature. Vertical axis is loglo[ﬁA(f ).

Horizontal axis is ? . Standardized area-weighted pdf of the logarithm of curvature
L = InM* (Eq. 12). Dashed line corresponds to lognormal distribution for M*;
straight line corresponds to Eq. (16).
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It is found that an essentially statistically stationary state is attained after about
15 Kolmogorov time scales. (Some subtleties about this state, and methods of
reducing statistical errors in the state are discussed in Yeung et al.[3] and Pope et
al.[12]). The area-weighted pdf pA(:) of the standardized logarithm of curvature,
L = (L — < L >,)/oa, is shown in Figure 156. The mean and standard deviation
of L are <L >,=—4.77and 65, = 2.18. The dashed line on the figure is the
parabola corresponding to the pdf if M* were log-normally distributed. Clearly
the log-normal distribution does not, even qualitatively, describe the shape of the
pdf.

It appears from the figure, that for large curvatures, the pdf of L, p(:), has the
asymptotic form

pr)~be ()
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Figure 157. Time Series of Normalized rms Curvature. Verticle axis is ./M"(z) . Hori-
zontal axis is 7/7,. Normalized rms curvature against time for a typical element (O),
and for the element that attains the greatest curvature (A).

with b = 0.0172 and ¢ = 0.55. An immediate consequence of this result is that
the expectation of the mean-square curvature < M* >, is infinite. For, if the
integral converged, < M* >, would be given by

<M*>, = f - e'p™(1)du. (8)

—00

Clearly, with the asymptotic form of Eq. (7) with ¢ < 1, the integral does not
converge.

To illustrate directly the occurrence of large curvatures, in Figure 157 we show
the time series ./M* for the surface element that attains the largest value of M"
It can be seen that at parts it experiences a rapid rise in M", at the approximate
exponential rate of dZ/dt~1.8/r,. The peak value of M* corresponds to a radius
of curvature R less than 10-%y.



Pope, Yeung and Girimaji 491

We examine in Figure 158 the area-weighted pdf p:(r) and the unweighted pdf
p, (1) of the normalized mean radius of curvature (Eq. 6). The mean < R* >, is
12.0 (corresponding to about half the integral length scale). Even though the
mean-square curvature < M* >, tends to infinity, Figure 158 shows that only
about 5% of the surface has mean radius of curvature R smaller than the
Kolmogorov length scale #. The unweighted and the area-weighted pdf's differ
greatly, especially at the origin. The implication is that highly curved elements
tend to have less area than more mildly curved elements.

The shape of the surface element at each point is determined by the relative
values of the two principal curvatures. We define the shape parameter § by
0 = k/k,, where, k; and k, are the smaller and larger of kjandk; in absolute magni-
tude. Possible values of 6 lie between —1 and +1. The value § = 1 corresponds
to a spherical element; the value 8 = 0 corresponds to a cylindrical element; and
the value § = —1 corresponds to a pseudo-spherical element.
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Figure 158. PDF of Normalized Mean Radius of Curvature. Area-weighted (O) and
unweighted (A ) pdf of normalized mean radius of curvature.
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Figure 159. Area Pdf of the Shape Parameter 0. Area weighted pdf of the shape
parameter ©.

In Figure 159 we present the pdf of 6, and in Figure 160 a contour-plot of the
joint pdf of 6 and L is presented. From Figure 159 it is clear that the cylindrical
shape is more probable, and the probability of a material element being spherical
in shape is very small compared to either the cylindrical shape or the pseudo-
spherical shape. The joint pdf of 8 and L in Figure 160 shows that cylindrical
shaped elements are associated with much higher than average curvatures,
whereas the pseudo-spherical elements are more mildly curved.

16.6 Conclusions

Since the earliest work on turbulence almost a century ago, there has been no
shortage of imaginative theories. But these theories have been based on hypoth-
eses and conjectures that, at the time, were impossible to test. The present work
clearly demonstrates that turbulence research is entering a new era, one in which
supercomputers are used to extract detailed information about turbulence —
information that can be used to test hypotheses and suggest new ones.



Pope, Yeung and Girimaji 493

Contrary to previous wisdom, it has been shown that turbulent straining is
fleeting, rather than persistent. As a consequence material elements do not
become aligned with the principal axes of the strain time.

It is found that material surfaces become extremely contorted due to the
straining and bending of the turbulence. Radii of curvature as small as 10-% of
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Figure 160. Joint pdf of In M* and 6. Contour plot of the (unweighted) joint pdf of L =
InM* and @.
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the Kolmogorov scale are observed. And these highly-curved elements are almost
cylindrical in shape.

The simulations described here are for the simplest possible turbulent flow —
homogeneous isotropic turbulence. But the result have general applicability since
the behavior of the small scales is (nearly) universal — as evidenced by the lack of
dependence of our results of Reynolds number R,.
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Table 26. Numerical Parameters and Eulerian Statistics

Taylor-scale R, 38 59 63 90 93
Reynolds

number

Grid Size N 64 64 128 128 128
Length of sol- Ly 27 2z 2z 27 2m
ution domain

Kinematic v 0.025 0.0158 0.0105 0.006546 0.006546
viscosity

Turbulence u’ 1.60 1.276 1.637 1.274 1.356
intensity

Dissipation rate <e> 2.69 0.775 2.673 0.780 0.893
Longitudinal L 0.369 0.528 0.321 0.448 0.398
integral length -1 .

scale L; (7 Lo)

Dissipation T, 1.43 3.184 1.510 3.174 3.099
time scale

T, = .:2;_ w2 <e> ‘

Eddy turnover Te/7, 0.507 0.406 0.407 0.343 0.297
time T, = Lj/u’

Kolmogorov Tyl Te 0.067 0.045 0.041 0.029 0.0028
time scale 7,

Duration of T/T. 13.8 8.35 5.85 5.51 6.53
simulation T

Time step Atz Atfzy, 0.52 0.042 0.024 0.027 0.029
Kolmogorov niL 0.042 0.029 0.025 0.018 0.019
length scale »

Maximum Kmax? 1.48 1.43 1.54 1.48 1.42
resolved

wavenumber

kmax

Taylor micro- AlLy 0.521 0.437 0.399 0.326 0.359
scale 4
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