

GNOSYS: RAISING THE LEVEL OF DISCOURSE IN
PROGRAMMING

NORTHEASTERN UNIVERSITY

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-080

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2016-080 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
WILLIAM E. McKEEVER, JR JOSEPH CAROLI
Work Unit Manager Acting Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAR 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2010 – SEP 2015
4. TITLE AND SUBTITLE

GnoSys: RAISING THE LEVEL OF DISCOURSE IN PROGRAMMING

5a. CONTRACT NUMBER
FA8750-10-2-0233

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Olin Shivers

5d. PROJECT NUMBER
CRSH

5e. TASK NUMBER
NO

5f. WORK UNIT NUMBER
RU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northeastern University
360 Huntington Avenue
Boston, MA 02115

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-080
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
GnoSys produced research in the following five areas: 1) A meta-programming system permitting designers to easily
construct domain-specific languages for program components; 2) A language suite permitting programs to be written with
associated design rationale and behavioral contracts; 3) A high-level operating system factored into distinct modules; 4) A
compiler framework and automated reasoning system that could exploit the extra knowledge captured in the form of
program annotations, little languages, and component contracts to deliver final systems; and 5) A program-development
environment permitting programmers to engage in a “dialogue” with the automated reasoning tools and compiler
analyses about the behavior of the computational systems they are designing.

15. SUBJECT TERMS
Formal Methods, meta-programming, domain-specific languages, Software Engineering

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM E. McKEEVER, JR

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

42

Contents
1. Summary ... 1

2. Introduction .. 3

Architectural themes .. 4

Advanced program analysis for higher-order programs ... 10

• PDA-based control abstraction .. 11

• Higher-order semantics and abstract state traces ... 12

Capturing design knowledge with domain-specific languages ... 12

3. Methods, Assumptions and Procedures ... 15

4. Results and discussion .. 16

Racket on a router .. 16

Compositional asynchronous architecture .. 17

Eliminating C from Racket .. 17

Metaprogramming and DSL technology.. 18

Scopes as sets of binders ... 18

Hygiene and nominal types ... 19

Contracts and Types ... 21

PDA-based analysis for higher-order languages .. 22

General framework for higher-order abstract interpretation .. 23

Package management .. 24

Profiling secure code .. 25

Optimization coaching ... 25

5. Conclusions ... 27

7. References .. 31

Macros and domain-specific languages... 31

Software contracts ... 31

Static analysis ... 33

Operating-system structures in functional-language settings ... 34

Types and gradual typing ... 35

Networking and communications-oriented languages .. 35

Formal methods ... 36

Other ... 37

List of Acronyms ... 38

Approved for Public Release; Distribution Unlimited.
1

1. Summary
The GnoSys project’s central mantra—something we quoted to each other over
and over during the four years of the project to motivate and guide our research—
was a single sentence: “Raise the level of discourse in programming.”

This mantra sprang from our belief that the central problem with the tools we
use today to construct computational systems is their inexpressivity. Programmers
know a tremendous amount about their programs that is not captured in the pro-
gram, because their programming language lacks the means to express this knowl-
edge. When multiple programmers develop an application, when an application
grows over time, or simply when the complexity of the application overwhelms
a single programmer, these tacit assumptions become violated, inviting bugs and
creating security holes.

The Clean-slate Design of Resilient, Adaptive, Secure Hosts (CRASH) pro-
gram’s clean-slate mandate gave us an opportunity to synthesize language design
and analysis, systems structure, and formal methods in a mutually enabling way
into a single, harmonious whole: a language-centered approach to constructing
robust systems. The fundamental premise underlying our approach was that by
changing the way programmers specify the systems they are constructing, we
can capture more of the important design knowledge—knowledge that can
be used to ensure the robustness of the final system. We set out to build a pro-
gramming environment to change the way programs are designed, implemented
and executed, permitting programmers to capture this missing knowledge in forms
that can be exploited for qualitative improvements in robustness and security.

At the outset of the effort, the elements of our system were intended to be:

• A meta-programming system permitting designers to easily construct domain-
specific languages for program components;

• A language suite permitting programs to be written with associated design
rationale and behavioral contracts;

• A high-level operating system factored into distinct modules;

• A compiler framework and automated reasoning system that could ex-
ploit the extra knowledge captured in the form of program annotations, little
languages, and component contracts to deliver final systems; and

Approved for Public Release; Distribution Unlimited.
2

• A program-development environment permitting programmers to engage
in a “dialogue” with the automated reasoning tools and compiler analyses
about the behavior of the computational systems they are designing.

As we’ll discuss in this report, we actually did all of this.

In some sense, our intention was to build a Lisp Machine for the new mil-
lennium, exploiting the advances in programming-language research that have
occurred since the Lisp Machine was designed over 30 years ago. We hoped to
construct a system that shares the same kind of advantage in programmer produc-
tivity and software assurance over the standard programming systems and execu-
tion environments of today that the Lisp Machine enjoyed over the systems of its
era. We feel that we did this, as well—and the resulting programming environ-
ment is available, for free, on the internet, with open-source licensing.

Where our track record was less than perfect, however, is in the integration of
all of our research point results into a unified whole. This was really the central
point of the GnoSys effort, but also the most difficult to accomplish, structurally.
We were able to integrate perhaps 80% of our work—at a university, that’s a B
grade.

The new technologies that we were able to integrate together were our results
in domain-specific language metaprogramming, software contracts, “virtual OS”
resource management, and some compiler optimization. The elements that we
did not manage to integrate are more ambitious results in program analysis and
optimization, more foundational metaprogramming work, and gradual typing.

Looking back over the four years of the project, the principal difficulty was
simply that some of the more difficult “kernel” results took a full four years to
develop simply as point technologies: a DARPA-hard problem worth a doctoral
thesis takes about six years to complete, while the CRASH program lasted for
four. The process of slotting these results into their proper place in the unified
whole is still ongoing as of the date of this final report.

Approved for Public Release; Distribution Unlimited.
3

2. Introduction
GnoSys, the system we developed under CRASH, increases the expressiveness of
programmers to specify robust, correct systems in three ways.

Domain-specific languages and model-based design First, we developed a
new system that permits programmers to capture their designs using custom,
domain-specific languages (DSLs). The novelty of our DSL technology is that it
permits the language designer to express the rich static semantics associated with
DSLs. Thus the benefits of programming in a customized notation are extended
not only to programmers who read and write programs, but to the automatic tools
that check these programs for bugs and security violations.

The ability to easily design “little languages” for custom application domains
makes it possible for programmers to engage in model-based design: by working
with a high-level notation, they can use its increased static semantics to make
stronger predictions about the programs they write.

A high-level functional operating system Second, we designed and imple-
mented a high-level virtual operating system that expresses basic systems services,
such as resource management, task coordination and scheduling, and protection,
directly using the linguistic mechanisms of a modern, high-level functional lan-
guage, such as continuations, modules, contracts, and higher-order functions.

Directly encoding operating-system mechanisms in an advanced language is a
strong co-design element of our system: all the advantages of our language tech-
nology now apply to the operating system and its client interfaces. The compiler
and other program-reasoning tools are now able to interact with the operating sys-
tem to provide services. Services can easily be virtualized, simply by providing
alternative implementations for system interfaces. The operating system can be
factored from a vulnerable, monolithic block of code into a set of interacting com-
ponents, with cross-component interaction managed and checked by our contract
technology.

Approved for Public Release; Distribution Unlimited.
4

Machine-checkable assertions about programs Finally, we took advantage
of the CRASH program’s clean-slate opportunity to infuse formal methods per-
vasively throughout the design. We used declarative, logic-based languages to
specify system properties, including contracts, invariants, and models. The free-
dom to create such logical specifications, in domain-specific terminology, is key
to “raising the level of discourse.” It is a prerequisite for capturing programmer
knowledge about the domain and about the program. Such specification allows
the programmer and the compiler to import knowledge about the model. Fur-
thermore, by expressing this knowledge in declarative, logic-based languages, we
make it possible for the compiler and other system components to reason about the
program and to take advantage of such reasoning both to verify desired properties
and to generate potential counterexamples.

Architectural themes

The GnoSys effort concerned itself with the design and implementation of a new
software architecture, allowing programmers to write software that can be under-
stood and reasoned about, by both humans and software tools. The design of the
architecture followed several themes:

Language-oriented Our approach is fundamentally language-oriented. Our high-
level, virtual operating system exploits the idea that “the language is the operating
system.” Similarly, we see domain-specific languages as a source of reasoning
power—a means of capturing more design-time knowledge about a system.

Our goal was to enable programmers to move from encoding a computation to
encoding knowledge about a computation. This shift is what we mean by “raising
the level of discourse.”

Integrated approach—exploiting co-design We pursued designs that integrate
distinct technologies together, in order to optimize global properties of the system.
This sort of co-design manifested itself in multiple ways:

• Dynamic and static

We integrate static reasoning, in the form of program analysis and formal
methods, with the expressiveness of dynamic functional languages and con-
tracts.

Approved for Public Release; Distribution Unlimited.
5

• Operating system and compiler
By integrating the compiler with the operating system, traditional OS ser-
vices can be provided using the linguistic mechanisms of advanced pro-
gramming languages, such as modules, contracts, automatic resource man-
agement, and continuations. This means that client use of OS services can
be checked by our tools, increasing program assurance.

• Language and analysis
We co-design our programming languages and their analyses in tandem.
This allows us to use analyses to drive down the cost of expressive lan-
guage features, or to tune language elements to enable analysis. Even bet-
ter, we provide this co-design ability to our programmers, as well, using our
domain-specific language technology.

• Human programmers and automated reasoning agents
We develop language and system designs that are intended to facilitate in-
teraction between human programmers and the automated reasoning agents
that assist them in delivering high assurance for their programs.

• Cross-disciplinary research team
Our team was carefully chosen for its cross-disciplinary expertise, which we
believe is critical for technology development that is integrated across the
technology stack. Members of the team made a point on collaborating on
multiple elements of the system, to help ensure that the pieces fit together.

Using what we build The project team has a long track record of doing our re-
search, teaching, and standard programming within the systems we build. In par-
ticular, we had multi-decade experience living day-to-day “inside” the program-
development environment DrRacket and a precursor systems-programming envi-
ronment Scheme Shell (scsh). We were able to do this pretty consistently through-
out the four years of the CRASH program.

Bug-free software is secure and robust Our view is that the way to provide
high-assurance software is to provide means of making guarantees about the soft-
ware. Claiming that bug-free software is secure is true in more ways than one. It
is true in practice, in that systems are typically penetrated by exploiting bugs in
the program, such as buffer overflows or SQL-injection holes. Every time such
a bug is eliminated, a security hole is closed. It is also true by definition: the

Approved for Public Release; Distribution Unlimited.
6

ability to penetrate a system in any way is clearly a bug in either its design or
implementation.

Providing mechanisms to ensure that programs satisfy some specification or
contract was our consistent means of addressing security and assurance.

Guarding the borders with modules and contracts Contracts are a programming-
language construct developed by members of the GnoSys team for expressing
invariants that govern the flow of all kinds of values (plain values, closures, ob-
jects) across an interface between components of a program (procedures, modules,
classes). The theory of contracts ensures that they have sensible semantics even
in a higher-order setting, where active computation can be passed from one com-
ponent of a program, through some intermediary, and finally invoked by a third
component. Among the subtle issues addressed by contract technology is blame
assignment, which correctly determines which component is at fault in these com-
plex higher-order cases, when a contract is violated.

It’s important to note that contracts are not subject to the static restrictions
we place on type systems; they can be any computable property. This is in keep-
ing with the general design philosophy of GnoSys: we put expressiveness first,
then use static techniques, such as program analysis, to win back efficiency where
possible.

Contracts play several important roles in the GnoSys architecture. They are
the basic way that programmers in GnoSys express the required invariants and
preconditions for a given program component. Once written down, these condi-
tions can be used to protect components from each other. A run-time monitoring
system guarantees that if something goes wrong, the violator will be exposed and
corrective action taken. In a modular, compartmentalized system such as GnoSys,
the run-time system can issue a notification and then convert the violation into a
micro-reboot of the associated service.

Contracts also support integration: not only the integration of code compo-
nents, but the integration of distinct languages By virtue of our DSL technology,
GnoSys is a multi-linguistic platform. Contracts provide key infrastructure for
ensuring that components written in different languages respect the requirements
of every other component’s language at a language boundary. That is, contracts
provide a dynamic bridge between the static requirements of different languages.

Because contracts are frequently placed on module boundaries, they ease the
burden placed on our analysis and verification tools, factoring problems that re-

quire global, system-wide analysis into problems that can be solved locally.

Approved for Public Release; Distribution Unlimited.
7

Finally, we can use program analysis and specialized domain-specific con-
tract languages to extract static knowledge about a program from its associated
contracts. This, again, illustrates the expressiveness-first philosophy of GnoSys:
contracts specified with restricted DSLs can be processed at compile time, while
we preserve an “escape hatch” of general procedural encodings for properties that
are too complex for static treatment.

Racket as a high-level, functional operating system The principal software
artifact constructed during the GnoSys project is the Racket programming sys-
tem. In some sense, the Racket language, compiler and run-time system, taken
as a whole, can be considered to be a high-level operating system that provides
basic OS services in the context of a functional programming language. It is a vir-
tual OS, sitting on top of some low-level, high-assurance OS that provides device
drivers and otherwise abstracts over some machine details. In Racket, the pro-
gramming language is the operating system. By this, we mean that sophisticated
languages provide essentially all of the mechanisms and services that traditional
operating systems provide—but in a way that facilitates reasoning about the pro-
grams and permits more complex static mechanisms to be used.

In a sense, Unix and the C programming language are symbiotic. Unix is
dependent on C, in that C is the language used to implement Unix. But C is
dependent on Unix, in that it was co-designed with Unix, and requires the run-
time services provided by Unix. For example, Unix makes up for C’s lack of
memory safety by providing separate, protected address spaces for cooperating
agents (which were traditionally written in C), and provides the mechanism, pipes,
by which these agents communicate and cooperate. To give another example,
Unix’s SIGPIPE signal papers over C’s lack of exception handlers, providing for
the global shutdown of a pipeline of cooperating agents when one of these agents
terminates unexpectedly due to an error.

This raises the question, which we address with Racket: what is the structure
of an operating system that is symbiotic with a modern programming language—
one providing many elements not found in C: higher-order functions, contracts,
continuations, memory safety, exceptions, modules, and so forth? To answer this
question, we must restructure both the operating system and the applications built
on top of it in terms of the mechanisms provided by modern functional languages.
In the following subsections, we’ll consider multiple views of an operating sys-
tem, and show how these views are reflected in the language-oriented Racket sys-
tem.

Approved for Public Release; Distribution Unlimited.
8

Operating systems and modularity An operating system is a kind of crude,
awkward module system. It provides two modules per application: kernel and
user. The data structures and code of each module are separated from the other,
and cross-module communication happens in carefully controlled ways.

This two-compartment division is, of course, very coarse, and leads to the all-
or-nothing vulnerabilities of the monolithic kernel: because all data that must be
protected from the user-space code is lumped together in the “kernel” module,
once an attacker has broken into the kernel, every piece of kernel-secured data is
laid bare.

The means by which these two “modules” are integrated is similarly coarse
and awkward. The data typically passed across the user/kernel boundary are sim-
ple and passive; the exceptions that are higher-order (e.g., packet-filter interfaces)
are rare and difficult to use. The preconditions and invariants attached to module
interfaces (that is, to system calls) are informally specified and not subject to any
kind of automated static checking. Thus, instead of being able to check correct-
ness statically, interface preconditions must be left as dynamic checks. There can
be no static assurance; modularity is provided by expensive, heavyweight run-time
artifacts.

It’s not enough simply to split a kernel into modules. This was attempted by
the microkernel work in the late 1980’s. Microkernels were an attempt to mod-
ularize operating systems in a programming language, C, that had no support for
abstraction and modularity. As a result, the OS was factored using a heavyweight,
dynamic mechanism: separate processes. Cross-module control and data flow
thus involved expensive context-switch transfers, which proved to be unaccept-
able in practice. Microkernels did not take off because their designers did not
have the tools they needed to realize their robust, modular architectures.

In GnoSys, we abandoned the simplistic kernel/user division. Once we had
broken the operating system into multiple components, we could manage them
with the same expressive language technology we use to manage all GnoSys com-
ponents. The contracts at the boundaries of the components provide run-time
assurance that kernel invariants are maintained. Contracts provide semantic spec-
ifications for reasoning tools that provide assurance.

Likewise, the compiler manages module isolation for kernel components just
as it does for all components, eliminating the run-time cost of modular structure.
In particular, by handling module isolation at compile and link time, the compiler
is free to optimize across module boundaries—even when the boundary lies at the

Approved for Public Release; Distribution Unlimited.
9

user/kernel interface; even when the data flowing across the interface is higher-
order.

In short, GnoSys committed to the thesis that modularity and abstraction are
architectural elements best left to programming languages and their associated
tools, where they can be checked, optimized and otherwise processed.

Operating systems as models of computation An operating system is an

abstract model of computation: we have file systems instead of hard drives; threads,
instead of CPUs; and so forth. An application written for the Unix operating sys-
tem is coded to an abstract specification that permits it to be executed on multiple
distinct hardware platforms.

A programming language is also an abstract model of computation, but with
a key teleological distinction. It is an abstraction that is adapted to static reason-
ing: programs are analyzed and otherwise processed at construction time, while
operating systems are purely dynamic artifacts.

When we provide OS structures via linguistic mechanisms, we expose them
to the suite of static-reasoning engines that are a part of program-language imple-
mentations. The compiler can work together with the operating system to provide
system services.

In GnoSys, this specifically becomes a task of modelling operating-system
structures in a functional language. For example, consider continuations, a no-
tion from lambda calculus that is a central concern of optimizing compilers for
functional languages. Continuations are an abstraction—in the operating-system
sense—of CPU state; asynchronous continuations abstract the state of a preempted
process. This abstraction naturally leads to a complete picture of the processor re-
source: hardware interrupts become abstract events, and processors become con-
tinuation transformers. It is possible, given this representation, to design virtualiz-
able thread schedulers that operate purely with abstractions based on the lambda-
calculus. These schedulers can be run in a nested fashion: a user application can
write an application-specific, preemptive scheduler to manage sets of threads us-
ing CPU cycles that are passed to it by some superior scheduler. At the root of this
tree of virtualized schedulers, we have the real hardware, managed with exactly
the same kind of scheduler code.

Another example of modelling OS mechanisms in a functional language is the
representation of network-protocol stacks. As we will see in a following section,

Approved for Public Release; Distribution Unlimited.
10

we were able to implement these, during the GnoSys project, using communications-
oriented domain-specific notations that facilitated the compositional construction of
high-assurance implementations.

Operating systems as resource guardians An operating system provides

guarded access to the machine resources, limiting both the way that resources are
used and the quantity of resources that are consumed by a part of the system. By
directly encoding the OS services in the programming language, the compiler can
assist in management of these resources, provide more flexible rules about their
use, and provide more fine-grained accounting for the consumption of resources.
For example, traditional operating systems provide “file descriptors,” which are

essentially references to OS-protected resources. All manipulations of these
resources by the user code must occur at arms length across a context-switch bar-
rier, which forces the operating system into a particular way of tracking process-
specific file-descriptor use and a particularly narrow capability of processes to
trade file descriptors. Similarly, the memory resource is provided by the operat-
ing system to the user code at page-level granularity, which does not match well
with the fine-grained allocation needs of typical user programs. Worse, the access
guards the operating system can place on memory are crude and simple, consisting
only of read, write and execute capabilities on page-sized blocks of memory.

Racket, in contrast, can use the language’s contract machinery to provide more
sophisticated, application-oriented constraints on the way clients may use a re-
source. Contracts can encode a kernel’s requirements on the use of a resource, but
also allow layers to add their own contracts or allow applications to apply con-
tracts on the use of a resource that is shared with other applications. Contracts on
high-level values replace the parsing of byte streams to ensure that components
communicate properly. Domain-specific languages allow programmers to specify
such contracts in terms that are best suited to the task.

Advanced program analysis for higher-order programs

Although GnoSys permits programmers to work with domain-specific notations,
the core language we used for our general computing platform is Typed Racket,
which is a higher-order functional programming language based on the lambda
calculus. The attraction of lambda calculus as a foundation for programming lan-
guages is that it sits in a “sweet spot” for computational notations: it is simultane-
ously a practical programming paradigm as well as a powerful theoretical model

Approved for Public Release; Distribution Unlimited.
11

of computation. Because GnoSys has a design commitment to formal, automated
reasoning, it was important that programs have the sort of clean semantics we get
from solid theoretical foundations.

We view lambda calculus as computational glue for connecting together gen-
eral computations. It’s important, then, to have tools for reasoning about systems
composed with this kind of structure: program analyses that work with higher-
order functional languages.

The core analysis we developed for GnoSys is a novel form of higher-order
flow analysis Flow analysis is one of the most powerful tools available for op-
timizing, debugging and reasoning about programs. Every serious optimizing
compiler uses flow analysis to discover the information that drives program opti-
mization. Flow analyses can also be used to perform safety analyses, help debug
programs, and improve the user experience in interactive program-development
environments.

The flow analysis we developed is novel in three main ways, all of which are
motivated by co-design considerations with other elements of GnoSys:

• PDA-based control abstraction

Traditional flow analyses are graph algorithms that consider all paths through
a fixed control-flow graph. Since the set of all such paths is a regular
language, we are essentially abstracting the Turing-equivalent computation
represented by the program with a finite-state automaton. Such approxi-
mation was reasonable in the 1960s world of Fortran programs, where the
important control constructs are conditional branches and loops, which are
well modeled by this paradigm.
Modern functional languages, however, are poorly modelled by such an ab-
straction. Their key control construct, function call/return, produces control
traces that are not regular languages: the calls and returns have a nested
parenthesis-like structure. Far better precision can be obtained by abstract-
ing the computation with a push-down automaton (PDA).
This is particularly important in GnoSys, given its systemic emphasis on
modular composition. Module boundaries in GnoSys programs are crossed
by means of function calls and returns. Because PDA-based analyses don’t
muddy and mix together caller context on return flows, they hold the promise
of keeping distinct the information flow from and to the different clients of
a module. This is critical, for example, when doing a security analysis on
information flow: if, for example, a hash-table module is invoked by two

Approved for Public Release; Distribution Unlimited.
12

clients of differing security ratings, erroneously including spurious cross-
flows between the two client modules would produce false positives that
would render the security analysis useless.
PDA-based analyses also enable precise reasoning about resources with dy-
namic extent, such as stack-allocated data, or nested locks.

• Higher-order semantics and abstract state traces
Classical flow analysis considers only traces through the program structure.
That is, they are focussed on control structure to the exclusion of other
elements of the program state, such as environment and data structure.
When we shift to a higher-order setting, the analysis’ control-flow graph
morphs into a more general and expressive abstract state graph, which adds
in abstractions of the program’s data and environment structure.

The role of program analysis in GnoSys Program analysis is a technology

that enables other components of the GnoSys architecture. Just as lambda calculus
is general-purpose glue for composing computations, PDA-based flow analysis is
a general-purpose “weak method” for composing knowledge gained from multiple
sources about a program.

Besides yielding knowledge about a program to the program designer, pow-
erful analysis is the critical means of optimizing across module boundaries. In
a modular, component-based system such as GnoSys, these module boundaries
even include what other operating systems consider the kernel/user interface, and
virtual-machine abstraction layers. Thus, the ability to statically melt away these
boundaries after they have served their purpose at system design and assembly
time is critical. It liberates programmers to construct their programs in modular
ways, knowing there will be no run-time penalty for using the GnoSys structure.

Capturing design knowledge with domain-specific languages

Perhaps the single most powerful element in GnoSys for raising the level of pro-
grammer expressiveness is that programmers can easily design and use custom,
domain-specific notations for their programming. Our approach to this program-
ming paradigm grows out of the Lisp and Scheme macro experience, where it is
part of everyday programming to design “little languages” that are carefully cus-
tomized to the particular application domain being programmed. The technology
is quite lightweight: a programmer can implement an entire new language with

Approved for Public Release; Distribution Unlimited.
13

a day of work and a few hundred lines of code. Once defined, programmers can
switch between languages simply by entering an open parenthesis and a keyword;
the matching close parenthesis switches the notation back to the surrounding lan-
guage.

For example, the Scheme expression (written in the systems-programming
system, scsh)

(lambda (printer)

(& (| (gunzip) (html2ps) (lpr -P ,printer))
(<< ,(rx-subst

(| "John" "Paul" "George" "Ringo")

(run/string (wget -O - http://reviews.com/letitbe))
pre "Beatle" post))))

shifts between three distinct languages on a line-by-line basis: the general-purpose
functional language Scheme, a special “Unix shell” notation for specifying pipelines
of processes (lines 2 and 5), and a regular-expression notation (line 4) for speci-
fying string matches.

Because domain-specific languages are used in specialized contexts, they fre-
quently can be restricted in their computational power—which, consequently, en-
hances our ability to reason about the computations they describe. That is, these
custom notations typically have rich static semantics, which can be mined out by
program analyzers.

Consider, for example, two ways of specifying a string matcher: with a short,
one-line regular expression, or with the equivalent finite automaton written in C,
requiring perhaps a page or two of code. Of course, the regular expression is a
clearer way to program: it’s easier for the programmer to write; easier to read
and understand; easier to recognize that the expression matches exactly what we
intended it to match.

Not only is the regular expression easier for a human to understand, it is also
easier for automatic tools to analyze. For example, it is a challenging task to deter-
mine if the C code terminates on finite input—our program analyzer is up against
the halting problem. But this is a trivial task to carry out once the computation
has been encoded in the regular-expression form: all finite automata halt on finite
input. By using a domain-specific language, we have captured knowledge about
the program for free—it requires no work from the programmer. By working in
the DSL, the programmer works less, but says more.

http://reviews.com/letitbe))

Approved for Public Release; Distribution Unlimited.
14

All of this assumes, of course, that the extra static semantics associated with
DSLs can be made available to program-analysis tools. This is not, unfortunately,
true of the classic Scheme and Lisp macro technology: these linguistic tools only
provide clarity of notation to human programmers. The GnoSys team extended
this technology to permits us to attach this extra static semantics to the custom
notations designed by programmers for their applications.

Approved for Public Release; Distribution Unlimited.
15

3. Methods, Assumptions and Procedures
Except in ways that will be discussed below, our methods are the standard meth-
ods of academic research: the primary unit of investigation was a professor-
advisor/doctoral-student-advisee pair, carrying out some particular thrust of ex-
ploration. The project also had two post-docs, Tobin-Hochstadt and Van Horn
(who are now both professors, at Indiana and Maryland, respectively, doing work
for DARPA under their own contracts). Thus, much of our work was quantized
into doctoral-dissertation-sized chunks. The various results were published in
peer-reviewed conferences and journals, both to disseminate the work but also to
subject it to the scrutiny and rigor of peer review. This is pretty classic method-
ological stuff, but it’s robust and produces quality science.

On the other hand, our work is also realized in the construction of software ar-
tifacts, and here, our methodology is not quite so standard. Engineering research,
such as Computer Science, often centers on the construction of experimental pro-
totypes: expensive, laboriously hand-constructed one-off systems that are used
to evaluate theories; once the data is gathered, the system is discarded—the final
result is the data, not the artifact. Thus, the researcher has to build something
that is “toy” enough to be built on time and under budget by a small team, but
“real” enough for the data gathered to constitute compelling evidence for some
engineering claim.

In GnoSys, we did things differently. In brief, we use what we build. While we
did build some research toys as initial prototypes, we frequently scaled these first
implementations into full-on, delivered software: technologies developed under
the GnoSys contract were rolled out in successive releases of the Racket program-
ming environment throughout the four years of the project.

In particular, our work on contracts, gradual typing and domain-specific language-
development technology (that is, hygienic macros) are all now in daily use by
programmers around the world—Racket is publically available and open source.
Internally to Northeastern and the University of Utah, the programming environ-
ment is used by doctoral students and professors to do research, as well as by
hundreds of college freshmen learning the introductory rudiments of program-
ming. Outside our the GnoSys-project home institutions, it is used all over the
world for teaching as well as industrial software development. The research bene-
fits of this kind of methodology are clear: the ideas embodied by the software get
much, much more thoroughly exercised and evaluated, across a wide spectrum of
use cases.

Approved for Public Release; Distribution Unlimited.
16

4. Results and discussion
We’ve broken these results out, but the whole is greater than the sum of the parts.
All of this work happened in a common context, with the explicit goal of weaving
them together into a unified whole.

Racket on a router

As a testbed and driver application for GnoSys technology, we ported the Racket
programming system to a commercial, consumer-grade wifi access point, the Net-
gear WNDR3700 router. We were able to compile, link and execute Racket code
directly on the router. This includes all the advanced elements of the language:
first-class functions, full continuations, concurrent threads, the garbage collector,
the full module system, the full contract system, all of the language tower, and
access to the underlying TCP/IP stack.

Following this, we implemented a suit of network services on the Racket plat-
form: an ssh server permitting one to log into a Racket read-eval-print interac-
tion, two forms of DNS server (a root server, and a caching proxy server), and
a chat/instant-message service. The caching proxy DNS server has been in daily
use in the College of Computer Science for several years now, running on a wifi
access point that provides service to our floor of the building.

All of the various pieces of technology we developed for CRASH synergisti-
cally supported this application development. For example, our work on program
analysis and optimization of the Racket’s numeric types made the system accept-
ably performant. Contracts kept the system secure, at the virtual operating-system
level. We used macro technology to create domain-specific languages that let us
declaratively describe packet layouts; macros then automatically produced mar-
shalling and unmarshalling code for the packets, eliminating buffer-overflow and
other bug-exploiting security attacks.

One of the reasons we did the Racket-on-a-router work was to provide the
security people at Lincoln Labs a means of evaluating our security and robust-
ness improvements without requiring them to program in Racket themselves. A
network protocol is a powerful abstraction barrier: by providing them with a box
running these services, they could evaluate at the protocol level.

Our services closed essentially every known exploit on the DNS and SSH
services. Bottom line: it’s crazy to continue implementing these kinds of critical
services in languages such as C.

Approved for Public Release; Distribution Unlimited.
17

Compositional asynchronous architecture

Based on this experience gained building network services directly in Racket, we
developed a software architecture, delivered on top of Racket, specifically for
developing network services. Our “Compositional Asynchronous Architecture”
has a combination of features that mesh together to facilitate the construction of
network servers:

• a pub/sub system built around a tree-structured “topic” space;

• a self-virtualizing abstract machine that controls and constrains communi-
cations interactions;

• a set of system-provided messages which includes both “presence” and “ab-
sence” of potential pub/sub interactors for a given topic. Providing absence
notification is a key functionality that makes it much easier to build robust
services backed up by redundant servers.

We carried out a study of the architecture by using it to re-implement all of

our previous direct-in-Racket network services: ssh, root DNS, proxy DNS, and
a chat/instant-message server. We were then able to shape this architecture into
a core calculus, Minimart, and a new domain-specific programming language,
Marketplace, for developing robust, high-assurance (but performant) network ser-
vices. Marketplace is the topic of a forthcoming doctoral dissertation (and will be
rolled out in the general release of Racket in the near future).

Alan Kay’s Viewpoint Institute invited Tony Garnock-Jones, the graduate stu-
dent carrying out this work, to visit for six months this past year to investigate the
synergy between the GnoSys Network Calculus work and their work on “networks
all the way down.”

Eliminating C from Racket

At the beginning of the CRASH program, we realized that the Racket run-time
system was implemented using more C than we’d like, given the CRASH empha-
sis on high-assurance systems. Our entire approach to high-assurance is based on
exploiting high-level languages; code written in C is outside the domain of our
technologies. We spent a fair amount of work hardening up Racket by rewriting
entire subsystems of the Racket implementation from C to Racket.

Approved for Public Release; Distribution Unlimited.
18

In particular, we completely redesigned and rebuilt Racket’s metasyntactic
programming facility, its hygienic macro system. The original one, which has
been deployed for over well over a decade, had been written in C, for perfor-
mance reasons. It has seen hard, industrial-scale use and performed well, but we
were uncomfortable with the fact that such a critical, core element of the entire
Racket platform was constructed as a very complex piece of C code, where none
of the Racket technology could be looped around and brought to bear on the im-
plementation.

Metaprogramming and DSL technology

This is the foundational work that lets us develop language-oriented solutions to
the programming tasks we tackle in GnoSys: advanced macro systems are the
technology we use to construct domain-specific languages (such as the Market-
place communications-oriented programming language, above), and to implement
languages with extended static semantics (such as contract systems, used to cap-
ture programmer knowledge at software-construction time). Domain-specific lan-
guages are a key means of raising the level of discourse: programmers can design
custom notations purpose-built for a given application, and the information is ex-
pressed in a means that is accessible to the language-processing technology, rather
than hidden in comments or encoded in obfuscatory idioms or patterns of code.

Our DSL technology is, again, something that we use everyday in our program-
development work. At one count during the CRASH program, we were using over
40 domain-specific languages in the implementation of Racket, and the technol-
ogy is widely used by Racket users outside the GnoSys group.

Scopes as sets of binders

As mentioned above, one of the straightforward engineering tasks we carried out
over the course of the CRASH effort was the reimplementation of Racket’s macro
system in Racket itself, instead of C. This permitted us to move ahead with a new
architecture for maintaining “hygiene,” that is, the compile-time structures avail-
able to the DSL implementor for managing variable scope and variable capture.

While we were doing this reimplementation, we were able to completely re-
visit the core hygiene algorithm. Hygienic Scheme macro processors are an arcane
and ill-understood branch of metaprogramming technology; when these systems
are extended to work with module systems and sophisticated phase distinctions

Approved for Public Release; Distribution Unlimited.
19

(as Racket’s is), they become even more complex. Redesigning this system ad-
vanced our understanding of the interactions between hygienic macro expanders,
module systems and phase distinctions.

The new design, which took several years to design, prototype and release, is
based on a notion of scope as consisting of sets of binders or “binding contours.”
The new system is much simpler and more straightforward. A paper describing
the new mechanism was presented at POPL in January of 2016, just as CRASH
was winding down. The new system is now deployed in the current release of
Racket; users have reported that they are quite happy with it.

Hygiene and nominal types

We have also performed foundational work on adapting nominal types and nom-
inal logic to develop an implementable theory of hygiene for next-generation
macro systems.

A key problem in meta-programming and the development of domain-specific
languages is binding-safe term manipulation—that is, manipulating terms (or syn-
tax trees) in such a way that variables are guaranteed to refer to their correct
binders, neither escaping from their scopes nor being introduced into scopes where
they don’t belong. Existing methods for dealing with this problem either impose
unrealistic constraints on syntax or depend on dynamic solutions that do not give
definition-time guarantees.

In the early days of GnoSys, one of our graduate students, David Herman, for
his doctoral thesis, developed a system for the specification of binding patterns,
and gave an algorithm for determining (at macro-definition time, not at macro-
use time) whether a macro defined using patterns and templates would respect
those binding patterns. The technical development was based on the idea of α-
conversion; that is, systematic renaming of bound variables and their references.
Each binding specification gives rise to a notion of α-conversion on its terms,
and binding-safe programs are ones that take α-equivalent inputs to α-equivalent
outputs.

Herman’s dissertation advanced the state of understanding of these mecha-
nisms. In fact, it was the first coherent theory explaining what hygiene was and
meant, twenty-five years after the introduction of the idea. But it was not practical
to deploy for real programming: the price of the static guarantees was unrealistic
restrictions on the expressiveness of the system.

Approved for Public Release; Distribution Unlimited.
20

After Herman’s dissertation was completed, we turned our attention to extend-
ing his ideas to macros defined by tree-manipulating procedures. Our new design
was based on Pottier’s Pure Fresh ML, but with a far richer language of binding
patterns, and with stronger guarantees than those of Pottier. A program written
in the language is analyzed to generate proof obligations, which are discharged
automatically by an SMT prover (in our case, Z3). Because new variable names
must be generated, programs in the language are non-deterministic.

The next round of work we did in this area under CRASH was establishing the
theoretical underpinnings of the new, more powerful and expressive mechanism.
In particular we needed to establish

1. Soundness: Given two α-equivalent inputs, a program that passes its static

checks can only produce α-equivalent outputs.

2. Determinacy: For any input, all the possible outputs of a program that
passes its static checks will be α-equivalent (and therefore, all strategies
for generating fresh names yield equivalent answers)

Because of the richness of the binding-specification language, each of these pre-
sented a formidable technical challenge.

By the end of 2013, we had completed the proofs of these theorems, and began
turning this core mechanism into a proof-of-concept prototype language, named
Romeo. We published a paper on this work in ICFP.

In a follow-up redesign of Romeo, we were able to produce a more user-
friendly language, Romeo-L, with a better surface syntax, and with a better con-
nection to the SMT backend. An outstanding feature of Romeo-L is error local-
ization, which translates failures from the SMT back into messages that convey
this information in terms of the user’s program.

The Romeo-L work was a Master’s thesis; the larger Romeo effort has been a
doctoral thesis whose defense is scheduled for April of this year. Eventually, we
hope to have this technology rolled out into general use in Racket.

We should add that Herman, who started this original line of work under
CRASH funding for his doctorate, is now Chief Technology Officer at Mozilla,
where the Rust programming language is being developed. Rust is being designed
to have hygienic macros, so there is a clear path to exporting the technology de-
veloped under CRASH out beyond the Racket community.

Approved for Public Release; Distribution Unlimited.
21

Contracts and Types

GnoSys exploits “contracts” to attach what amount to security and safety checks
to software modules. We have multiple technology results related to contracts:

• The design of analyses to check and discharge contract checks at compile

time: safety without cost.

• New run-time support (“chaperones” and “impersonators”) to make the re-
maining overhead for contract checking lightweight.

• New developments in “blame theory,” the mathematics associated with con-
tracts that provide the ability to identify the responsible agent when a com-
plex contract is violated.

We have also done significant work extending the typing mechanisms of Racket

to work on the full language. This includes Racket’s class-oriented object sys-
tem, as well as its powerful, difficult-to-type “delimited control” operators. The
delimited control operators are particularly relevant to the goals of CRASH, as
they give programmers the ability to tightly constrain non-local control transfers
in subsystems. (For example, when beginning students enter Racket code into
the Dr.Racket development environment, Dr.Racket’s evaluator uses delimited-
control operators to prevent runaway, buggy code from crashing or taking over
the system.)

This is an example of where we were able to achieve the kind of cross-layer op-
timization and restructuring of the system stack that was part of DARPA’s charter
for CRASH. The Racket run-time system is a kind of virtual operating system, re-
sponsible for allocating and controlling resources to various systems implemented
in Racket. For example, programs require both processor cycles and memory to
execute; Racket not only hands out these resources to client systems, but con-
trols access to them. Delimited control operators are the language-level means by
which we enforce control constraints on the various systems that run on top of
Racket.

By providing these mechanisms at the language level, we were also able to
subject them to program analysis. Again, here we achieved cross-layer synergy:
as we’ll describe below, our work on PDA-based flow analysis was able to handle
analysis of programs that used these mechanisms.

Approved for Public Release; Distribution Unlimited.
22

We also did work extending the expressiveness of the contracts that Racket
provides. Behavioral contracts supplement interface information with logical as-
sertions, often written in the same programming language as the component itself.
Temporal contracts further enrich interfaces with a language for specifying adher-
ence to stateful protocols. Together, these assertions can provide strong invariants
that are monitored at run-time, giving a precise explanation of blame when failures
occur.

Contracts offer significant software engineering benefits, but they come with
certain costs. Contract monitoring can be expensive, particularly in the case
of higher-order values, which must be wrapped as they flow across component
boundaries, and temporal monitoring significantly increases the run-time burden.
We invested a fair amount of work into the design and implementation of tech-
nology to make the run-time overhead of contract enforcement lightweight. This
new technology is now provided in the standard release of Racket.

Graduate student Dimoulas, with others in the GnoSys team, introduced the
notion of “option contracts” because full-fledged contracts remain expensive. In
analogy to the business world, option contracts are the right to impose a contract,
but they are not a contract. With option contracts, programmers can dynamically
add/remove contracts as trust for a component grows/shrinks. This gives us a kind
of “security knob” that we can turn up or down as circumstances warrant, trading
off performance for safety.

PDA-based analysis for higher-order languages

GnoSys has been developing powerful program analyses based on push-down au-
tomata models of computation. These models give strikingly more precise results
for languages where function calls are the dominant control structure (such as the
functional programming languages we use).

The languages we use in GnoSys have additional elements, called “first-class
control operators” that permit extremely general control transfers in the program:
call-with-current-continuation, prompt and reset are three examples of
such operators. They are particularly important in the systems-programming con-
text of GnoSys, as their use tends to pop up in the context of “operating-system-
like” mechanisms, such as thread schedulers, and language elements for “locking”
software systems into control-bounded sandboxes. We rely upon these opera-
tors in the virtual operating system we’ve provide in Racket, to enforce strong,

Approved for Public Release; Distribution Unlimited.
23

language-based resource barriers for systems. This is part of the cross-layer re-
architecting of the computational stack we’ve explored for CRASH: we use lan-
guage elements (like prompt and reset) to provide the kind of application se-
curity and protection that other operating systems provide with separate address
spaces and, say, the fork() system call.

General framework for higher-order abstract interpretation

We’ve also published work on “monadic abstract interpreters.” This is a result that
will make it much easier for others to build custom analyses using our techniques.
The problem addressed here is that our PDA-based techniques are pretty esoteric.
The “monadic abstract interpreter” result shows how one can package up these
analyses as a set of building blocks that can be assembled into a complete analysis.
It represents a kind of “unified theory” that encompasses a wide range of analytic
techniques: polyvariance, context-sensitivity, flow-sensitivity, heap-cloning, etc.
Our entire analysis framework is parameterized so that monads may be swapped
in and out to determine flow-, path- and context-sensitivity—all for the kind of
advanced and difficult-to-analyze programming languages we use in the GnoSys
project.

We then took our initial work on mathematical frameworks for doing advanced
analyses of higher-order languages and captured this framework in a language
itself: a domain-specific language making it simple to specify sophisticated, task-
specific analyses for higher-order languages such as Racket.

Doing so provided two big benefits. First, it improved correctness: it is much
easier for non-specialists to develop analyses of interest and get the implementa-
tion right. The kind of analyses we’ve been developing over the lifetime of the
CRASH program are subtle, arcane and easy to get wrong. Packaging up these
algorithms in a DSL means that a specialist can get the general algorithm right,
once, and non-specialist consumers can plug their own analysis problems into
these algorithms without having to understand all their intricacies.

The second benefit is efficiency. By specifying our analyses in a DSL, we were
able to subject the specification to automatic optimization, producing analyses
that run, not 10% or 15% faster, but 2-3 orders of magnitude faster. In the first
several years of CRASH, we worked out techniques for doing so, by hand. In
the final phase of CRASH, we did the DSL work that automated it. Providing
these speedups is important: PDA-based analyses are very precise, but can be
unworkably expensive to apply to large code bases. What we got was a system

Approved for Public Release; Distribution Unlimited.
24

that had no tradeoffs: it provided analyses that were faster and more precise and
easier to implement.

Might, Van Horn and graduate student Johnson worked out techniques for
analyzing higher-order control operators using our PDA analysis. These operators
are very, very difficult to analyze, as their whole raison d’être is to provide non-
standard paths of control, which deeply affect the control- and data-flow of the
computation. We had worked out ways to handle these control operators in our
analyses in the early days of GnoSys, but these solutions were ad hoc, and didn’t
fit into our general “Abstracting abstract machines” analysis framework—hence,
they did not fit into the tools we were constructing based on this framework. By
the end of the CRASH program, we were able to do this kind of analysis within
the general framework. This final result was the culmination of work carried out
throughout the entire project.

Package management

We designed, implemented and released a new package manager for Racket; it is
now in use in the general Racket system.

Racket’s package manager reflects the “raising the discourse of programming
languages” theme of GnoSys: packages include documentation that can be inter-
twined with the source code and require compilation and possibly execution steps
to produce. Not only is the documentation embedded within the source code, but
vice versa, which is a way to ensure that the documentation does not become stale
or invalidated by code changes. Note that Racket documentation is written in
one of Racket’s many domain-specific languages; as this language can switch into
general Racket, the documentation language is Turing-complete.

We are working on technology to build binaries and documentation for poten-
tially untrusted packages. In keeping with the “eat your own dogfood” practices
we’ve observed throughout GnoSys, this work is being channeled into Racket’s
general package manager—this is how we stress our designs to find issues with
them.

The new package-build service in Racket’s package manager handles two key
issues: (1) Racket’s powerful and dynamic build-phase facilities raise security
concerns not just when executing foreign code, but also simply when building
foreign code; and (2) the documentation for Racket packages is deeply intertwined
with its source code, being written in one of Racket’s domain-specific languages
(one which permits general-purpose computation).

Approved for Public Release; Distribution Unlimited.
25

Based on our experience constructing this package system, we are developing
a general model of build systems and package managers, to make the lessons
learned available for other programming languages.

Profiling secure code

Dynamic languages (such as Racket) are well suited to profile-driven optimiza-
tion. We made significant progress on improving and deploying Racket’s feature-
specific profilers. While the original plan called for the use of such a profiler to
determine the cost of interactions between typed and untyped components in a
system, we found a second exciting use for the technology during the CRASH
program. Graduate students St-Amour and Andersen applied the profiler to Di-
moulas and Chong’s SHILL secure scripting language (at Harvard University),
which is implemented in Racket. They were able to diagnose bottlenecks in the
interaction between OS-level sandboxes and SHILL programs.

This is another example of the kind of OS/application cross-layer win in the
spirit of the CRASH charter. Andersen, St-Amour, and Felleisen are preparing a
paper on this work and its case study.

Optimization coaching

Because GnoSys is centered on the use of expressive languages, an important
component of the project was performance optimizations to make it possible to
use these languages in resource-sensitive application domains. One of the subpro-
jects of GnoSys that addressed this need was the “optimization coach,” a compiler
phase that engaged the programmer in a dialogue aimed at optimizing his pro-
gram. The optimization coach had “meta” knowledge of the optimization task,
and was able to compile lists of possible optimizations that were blocked due
to insufficient knowledge on the part of the compiler. The coach would make
suggestions to the programmer for ways to alter the code to enable the blocked
optimizations.

This technology was used by Racket programmers outside the GnoSys project
to optimize application codes. In some case, scientific programs got integer mul-
tipliers in performance.

The optimization coach is an example of very fast technology transfer out into
industry from the GnoSys project. The work was done as the doctoral thesis of a

Approved for Public Release; Distribution Unlimited.
26

GnoSys graduate student. Mozilla invited the student to apply his technology to
their JavaScript compilers, which he did.

Approved for Public Release; Distribution Unlimited.
27

5. Conclusions
The GnoSys project has been an effort to weave together multiple technical threads
of work that we believed would constitute the kind of cross-layer whole sought
by the CRASH program. We had some successes, and we had some failures—
which includes successful research results that we were unable to integrate into
the whole by the end of the program.

Some of the major components that we were able to integrate and field in
Racket are the following.

• The utility of higher-order, functional languages as an expressive substrate

specifically for developing secure, robust systems software seems well es-
tablished. (We’re not claiming to have invented higher-order, functional
programming; we simply saying that we have pushed its implementation
technology forward as a necessary component of our total platform.)

• Software contracts are clearly a valuable means of capturing design knowledge—
“checkable documentation”—of a kind that exceeds the boundaries of static type
systems. Over the course of the CRASH program, we extended the ex- pressive
power of these contracts and also greatly reduced their overhead. There’s no
tradeoff here: we got improvements in both areas, and the im- provements are
available to anyone who downloads and uses Racket.

• We’ve also clearly demonstrated the value of domain-specific languages for
constructing components of large, complex software systems. Racket it-
self is written using about 40 DSLs that all interoperate (using a module
system that is, itself, another DSL) to provide a single system; the Racket
documentation is written in yet another DSL implemented with the same
meta-programming technology. Programming with DSLs confers not only
clarity and concision, but is also a great aid to preventing security attacks,
as discussed earlier in this report.

We delivered on the spirit and vision of CRASH here: these three technologies
work together harmoniously to deliver secure, robust software, and they do so in
the language-oriented way that we originally planned: all three help to “raise the
level of discourse” in programming. That was the vision, and that’s what we did.

Approved for Public Release; Distribution Unlimited.
28

To give one supporting example, the network router and network services that
we implemented in Racket completely shut down the vast majority of known at-
tacks on the device—and this software exploited all of the individual technologies
listed above.

However, there are important elements of our original program of research
where we got results that we were not able to weave into the whole over the
lifetime of CRASH:

• Macro hygiene, a topic of study in the programming-languages for the past

thirty years, is only now just beginning to have a clear underlying formal
theory—courtesy of CRASH-funded work. We had two different, signifi-
cant results here: the work on scope-as-contour-sets, and the work on ap-
plying nominal type theory to the problem of hygiene.
The former work did eventually get integrated into Racket, but only in the
year after CRASH had ended. It is now in daily use by the entire Racket
user community—both by those who develop DSLs and other syntactic ex-
tensions, and those who program in the resulting languages completely un-
aware of the technology. The first paper on this technology appeared at
POPL January 2016.
The latter, more ambitious, work is even more early-stage: it has been cap-
tured in the design of the experimental prototype language, Romeo, and
described in a doctoral dissertation only now out being distributed in draft
form to the members of the graduate student’s thesis committee. So, at
the time of this final report, the meta-linguistic mechanisms articulated in
Romeo have not made it out into use in any real way.

• PDA-based flow analyses remain a standalone result; We’ve shown that flow
analyses for higher-order languages can be computed with much higher pre-
cision than heretofore possible, and that this precision can be obtained with
surprisingly good efficiency. That’s a good thing to have done, as an iso-
lated, standalone research result.
But we were unable, in the four-year time frame of CRASH, to get these
powerful new analyses rolled into the Racket development environment for
general use. Just bringing down the cost of these analyses was the work of
an entire doctoral effort; the shift from research experimentation into daily
engineering practice remains before us.

Approved for Public Release; Distribution Unlimited.
29

At the CRASH program wound down, we were just beginning work on us-
ing these analyses to reduce the run-time overhead of complex temporal
software contracts, which was the integration point we had originally con-
ceived five years prior when we assembled the entire GnoSys vision. This
work has not stopped: it’s the subject of a current graduate student’s doc-
toral thesis and is ongoing. Static analysis and contracts were made for each
other; we’ll get there.

• The boundary between gradual types and contracts turns out be shock-
ingly expensive in terms of computational overhead. Both technologies
have been successful as independent mechanisms, but when programmers
use both statically checked types and dynamically checked contracts, the
checking overhead that must be inserted into the program when values
flow across the boundaries between regions of code managed by these two
mechanisms can require more processing than the actual main computation
itself—sometimes much more.
When we rolled these mechanisms out into Racket, our more aggressive
external users attempted use them together, with unhappy, performance-
destroying results. This was a surprising discovery; it got our attention.
In short, these two ideas ought to go well together, but this turns out to
be much, much more difficult to realize than would initially seem to be
the case. As a result of the GnoSys investigations into the topic, this topic
has become a research area that is receiving intense study in the research
community (beyond the GnoSys team, that is). In January 2016, an entire
session of the POPL conference was devoted to papers on this subject. The
best we can say, as of the date of this report, is the following:

– The simple idea that this is a difficult technical problem is a result in
and of itself.

– The problem is now receiving a large amount of attention from various
researchers, which, we hope, bodes well for the future.

• Gradual types fit in with a long-term research program we have on the sub-
ject of “script evolution,” that is, taking programs written in dynamic lan-
guages (such as Perl, Python, and Scheme) and gradually evolving them,
on a module-by-module basis, to “harden” them up in terms of their static
semantics. Programs grow organically, and it is frequently not possible to
throw out a program that has grown from an initial, small script into a large,

Approved for Public Release; Distribution Unlimited.
30

unmaintainable mess, and start fresh. Instead, the program must be evolved,
by adding statically checked annotations to the existing code in an incre-
mental way.
It was our hope, when CRASH began, to be able to extend the gradual typ-
ing machinery we were developing over the course of the project to handle
Racket’s complex object-oriented language elements. This is a necessary
step to transitioning the technology from Racket (and other functional lan-
guages) out to industry-standard OO languages. We are not there yet: as of
the end of the CRASH program, this is an ongoing doctoral thesis—it is,
again, a problem requiring more than four years of work.

Approved for Public Release; Distribution Unlimited.
31

7. References
This list of 55 conference and journal publications that resulted from the GnoSys
project has been broken up by topic.

Macros and domain-specific languages
Parsing reflective grammars.
Paul Stansifer and Mitchell Wand.
Workshop on Language Descriptions, Tools, and Applications (LDTA), March

2011.

Languages as libraries.
Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and

Matthias Felleisen.
ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), June 2011.

Parsing with derivatives.
Matthew Might, David Darais and Daniel Spiewak.
International Conference on Functional Programming 2011 (ICFP 2011),

September, 2011.

Romeo: A system for more flexible binding-safe programming.
Paul Stansifer and Mitchell Wand.
Proceedings of the 19th ACM SIGPLAN International Conference on Functional

Programming (ICFP 2014), September 2014.

Binding as sets of scopes.
Matthew Flatt.
Principles of Programming Languages, POPL 2016.

Software contracts
Correct blame for contracts: No more scapegoating.
Christos Dimoulas, Robby Findler, Cormac Flanagan, Matthias Felleisen.
ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), June 2011.

Approved for Public Release; Distribution Unlimited.
32

Complete monitors for behavioral contracts.
Christos Dimoulas, Sam Tobin-Hochstadt and Matthias Felleisen.
European Symposium on Programming (ESOP), March 2012.

Chaperones and impersonators: Runtime support for reasonable interposition.
T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler and Matthew

Flatt.
Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA), October 2012.

Higher-order symbolic execution via contracts.
Sam Tobin-Hochstadt and David Van Horn.
Object Oriented Programming, Systems, Languages and Applications

(OOPSLA), October 2012.

Constraining delimited control with contracts.
Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt.
European Symposium on Programming (ESOP), March 2013.

Contracts for First-Class Classes.
T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa and Matthias

Felleisen.
TOPLAS: ACM Transactions on Programming Languages and Systems 35(3):

11 (2013).

Option contracts.
Christos Dimoulas, Robert Bruce Findler and Matthias Felleisen.
Object-Oriented Programming Systems Languages and Applications (OOPSLA),

October 2013.

Soft contract verification.
David Van Horn, Phuc C. Nguyen and Sam Tobin-Hochstadt.
International Conference on Functional Programming (ICFP), 2014.

On Contract Satisfaction in a Higher-Order World.
Christos Dimoulas and Matthias Felleisen.
TOPLAS: ACM Transactions on Programming Languages and Systems 33(5)

(2011).

Approved for Public Release; Distribution Unlimited.
33

Static analysis
Abstracting Abstract Machines.
David Van Horn and Matthew Might.
Communications of the ACM, Research Highlights, 54(9), September 2011.

A family of abstract interpretations for static analysis of concurrent higher-order
programs.

David Van Horn and Matthew Might.
ACM SIGPLAN Static Analysis Symposium (SAS), September 2011.

Pushdown flow analysis of first-class control.
Dimitrios Vardoulakis and Olin Shivers.
ACM SIGPLAN International Conference on Functional Programming (ICFP),

September 2011.

Flow-sensitive type recovery in linear-log time.
Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew Might, Arun

Chauhan and R. Kent Dybvig.
Conference on Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA), October, 2011.

A case for Galois connections.
Jan Midtgaard, Michael D. Adams, Matthew Might.
Static Analysis Symposium 2012 (SAS 2012), September, 2012.

Introspective pushdown analysis of higher-order programs.
Christopher Earl, Ilya Sergey, Matthew Might, David Van Horn.
International Conference on Functional Programming 2012 (ICFP 2012),

September, 2012.

Monadic abstract interpreters.
Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais,

Dave Clark, Frank Piessens.
Programming Language Design and Implementation (PLDI), June, 2013.

AnaDroid: Malware analysis of Android with user-supplied predicates.
Shuying Liang, Matthew Might and David Van Horn.
Workshop on Tools for Automatic Program Analysis, June 2013.

Approved for Public Release; Distribution Unlimited.
34

Concrete semantics for pushdown analysis: The essence of summarization.
J. Ian Johnson and David Van Horn.
Workshop on Higher-Order Program Analysis, June 2013.

Introspective pushdown analysis.
Christopher Earl, Ilya Sergey, Matthew Might and David Van Horn.
Journal of Functional Programming.

Optimizing abstract abstract machines.
J. Ian Johnson, Nicholas Labich, Matthew Might and David Van Horn.
International Conference on Functional Programming (ICFP), September 2013.

Monadic abstract interpreters.
Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais,

Dave Clark and Frank Piessens.
Programming Language Design and Implementation (PLDI), June 2013.

Pushdown flow analysis with abstract garbage collection.
J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might and David Van

Horn.
Journal of Functional Programming, 24(2-3), May 2014.

Fast flow analysis with Godel hashes.
Shuying Liang, Weibin Sun and Matthew Might.
IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM 2014), September 2014.

Abstracting abstract control.
David Van Horn and J. Ian Johnson.
Dynamic Languages Symposium, October 2014.

Pushdown control-flow analysis for free.
Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might and David Van

Horn.
Principles of Programming Languages (POPL), 2016.

Operating-system structures in functional-language settings
Modular rollback through control logging: a pair of twin functional pearls.
Olin Shivers and Aaron Turon.
International Conference on Functional Programming (ICFP), September 2011.

Approved for Public Release; Distribution Unlimited.
35

A family of abstract interpretations for static analysis of concurrent higher-order
programs.

Matthew Might and David Van Horn.
Static Analysis Symposium 2011 (SAS) September, 2011.

Automated specification analysis using an interactive theorem prover.
Harsh Chamarthi and Panagiotis Manolios.
Formal Methods in Computer-Aided Design (FMCAD), 2011.

Types and gradual typing
Typing the numeric tower.
Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt and Matthias Felleisen.
Practical Aspects of Declarative Languages (PADL), January 2012.

Gradual typing for first-class classes.
Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam

Tobin-Hochstadt and Matthias Felleisen.
Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA), October 2012. Best Student Paper.

Is sound gradual typing dead?
Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek and

Matthias Felleisen.
Principles of Programming Languages (POPL), January 2016.

Toward practical gradual typing.
Takikawa, Feltey, Dean, Flatt, Findler, Tobin-Hochstadt, and Felleisen.
European Conference on Object-Oriented Programming (ECOOP), 2015.

Networking and communications-oriented languages
The network as a language construct.
Tony Garnock-Jones, Sam Tobin-Hochstadt and Matthias Felleisen.
European Symposium on Programming (ESOP), 2014

Compositional asynchronous architectures.
Tony Garnock-Jones, Sam Tobin-Hochstadt and Matthias Felleisen.
(Currently under submission)

Approved for Public Release; Distribution Unlimited.
36

Formal methods
The ACL2 Sedan theorem-proving system.
Harsh Chamurthi, Peter Dillinger, Panagiotis Manolios, Daron Vroon.
International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, March 2011.

Integrating testing and interactive theorem proving.
Harsh Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagiotis Manolios.
The ACL2 Workshop, November 2011.

Run your research: On the effectiveness of lightweight mechanization.
Casey Klein, John Clements, et al.
Symposium on Principles of Programming Languages (POPL), January 2012.

Software for quantifier elimination in propositional logic.
Eugene Goldberg and Panagiotis Manolios.
International Congress on Mathematical Software (ICMS), 2014.

Data definitions in the ACL2 Sedan.
Harsh Chamarthi, Peter C. Dillinger and Panagiotis Manolios.
ACL2 Workshop, 2014.

Partial quantifier elimination.
Eugene Goldberg and Panagiotis Manolios.
Haifa Verification Conference, 2014.

ILP modulo data.
Panagiotis Manolios, Vasilis Papavasileiou and Mirek Riedewald.
Formal Methods in Computer-Aided Design (FMCAD 2014), October 2014.

Quantifier Elimination by Dependency Sequents.
Eugene Goldberg and Panagiotis Manolios.
Formal Methods in System Design, August 2014.

Software for quantifier elimination in propositional logic.
Eugene Goldberg and Panagiotis Manolios.
Proceedings of the Fourth International Congress on Mathematical Software

(ICMS), 2014.

Approved for Public Release; Distribution Unlimited.
37

Data definitions in the ACL2 Sedan.
Harsh Chamarthi, Peter C. Dillinger and Panagiotis Manolios.
ACL2 Workshop, 2014.

Other
Applying random testing to a base type environment.
Vincent St-Amour and Neil Toronto.
International Conference on Functional Programming (ICFP), 2013.

An array-oriented language with static rank polymorphism.
Justin Slepak, Olin Shivers and Panagiotis Manolios.
European Symposium on Programming (ESOP), 2014. (Best paper award)

Profiling for laziness.
Stephen Chang and Matthias Felleisen.
Symposium on Principles of Programming Languages (POPL), 2014.

Optimization coaching.
St-Amour, Tobin-Hochstadt, Felleisen
Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA), 2012

The call-by-need lambda calculus, revisited.
Stephen Chang and Matthias Felleisen.
European Symposium on Programming (ESOP), 2012.

Approved for Public Release; Distribution Unlimited.
38

List of Acronyms
CRASH Clean-slate design of Resilient, Adaptive, Secure Hosts
DNS Domain Name Server
DSL Domain Specific Lanuage
OS Operating System
PDA Push-Down Automaton
POPL Principles of Programming Languages
scsh Scheme Shell
SQL Structured Query Language
SSH Secure Shell

	1. Summary
	2. Introduction
	Architectural themes
	Advanced program analysis for higher-order programs
	• PDA-based control abstraction
	• Higher-order semantics and abstract state traces

	Capturing design knowledge with domain-specific languages

	3. Methods, Assumptions and Procedures
	4. Results and discussion
	Racket on a router
	Compositional asynchronous architecture
	Eliminating C from Racket
	Metaprogramming and DSL technology
	Scopes as sets of binders
	Hygiene and nominal types

	Contracts and Types
	PDA-based analysis for higher-order languages
	General framework for higher-order abstract interpretation
	Package management
	Profiling secure code
	Optimization coaching

	5. Conclusions
	7. References
	Macros and domain-specific languages
	Software contracts
	Static analysis
	Operating-system structures in functional-language settings
	Types and gradual typing
	Networking and communications-oriented languages
	Formal methods
	Other

	List of Acronyms

