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1. Summary 
The GnoSys project’s central mantra—something we quoted to each other over 
and over during the four years of the project to motivate and guide our research— 
was a single sentence: “Raise the level of discourse in programming.” 

This mantra sprang from our belief that the central problem with the tools we 
use today to construct computational systems is their inexpressivity. Programmers 
know a tremendous amount about their programs that is not captured in the pro- 
gram, because their programming language lacks the means to express this knowl- 
edge. When multiple programmers develop an application, when an application 
grows over time, or simply when the complexity of the application overwhelms 
a single programmer, these tacit assumptions become violated, inviting bugs and 
creating security holes. 

The Clean-slate Design of Resilient, Adaptive, Secure Hosts (CRASH) pro- 
gram’s clean-slate mandate gave us an opportunity to synthesize language design 
and analysis, systems structure, and formal methods in a mutually enabling way 
into a single, harmonious whole: a language-centered approach to constructing 
robust systems. The fundamental premise underlying our approach was that by 
changing the way programmers specify the systems they are constructing, we 
can capture more of the important design knowledge—knowledge that can 
be used to ensure the robustness of the final system. We set out to build a pro- 
gramming environment to change the way programs are designed, implemented 
and executed, permitting programmers to capture this missing knowledge in forms 
that can be exploited for qualitative improvements in robustness and security. 

At the outset of the effort, the elements of our system were intended to be: 
 

• A meta-programming system permitting designers to easily construct domain- 
specific languages for program components; 

• A language suite permitting programs to be written with associated design 
rationale and behavioral contracts; 

• A high-level operating system factored into distinct modules; 

• A compiler framework and automated reasoning system that could ex- 
ploit the extra knowledge captured in the form of program annotations, little 
languages, and component contracts to deliver final systems; and 
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• A program-development environment permitting programmers to engage 
in a “dialogue” with the automated reasoning tools and compiler analyses 
about the behavior of the computational systems they are designing. 

 
As we’ll discuss in this report, we actually did all of this. 

In some sense, our intention was to build a Lisp Machine for the new mil- 
lennium, exploiting the advances in programming-language research that have 
occurred since the Lisp Machine was designed over 30 years ago. We hoped to 
construct a system that shares the same kind of advantage in programmer produc- 
tivity and software assurance over the standard programming systems and execu- 
tion environments of today that the Lisp Machine enjoyed over the systems of its 
era. We feel that we did this, as well—and the resulting programming environ- 
ment is available, for free, on the internet, with open-source licensing. 

Where our track record was less than perfect, however, is in the integration of 
all of our research point results into a unified whole. This was really the central 
point of the GnoSys effort, but also the most difficult to accomplish, structurally. 
We were able to integrate perhaps 80% of our work—at a university, that’s a B 
grade. 

The new technologies that we were able to integrate together were our results 
in domain-specific language metaprogramming, software contracts, “virtual OS” 
resource management, and some compiler optimization. The elements that we 
did not manage to integrate are more ambitious results in program analysis and 
optimization, more foundational metaprogramming work, and gradual typing. 

Looking back over the four years of the project, the principal difficulty was 
simply that some of the more difficult “kernel” results took a full four years to 
develop simply as point technologies: a DARPA-hard problem worth a doctoral 
thesis takes about six years to complete, while the CRASH program lasted for 
four. The process of slotting these results into their proper place in the unified 
whole is still ongoing as of the date of this final report. 
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2. Introduction 
GnoSys, the system we developed under CRASH, increases the expressiveness of 
programmers to specify robust, correct systems in three ways. 

 
Domain-specific languages and model-based design First, we developed a 
new system that permits programmers to capture their designs using custom, 
domain-specific languages (DSLs). The novelty of our DSL technology is that it 
permits the language designer to express the rich static semantics associated with 
DSLs. Thus the benefits of programming in a customized notation are extended 
not only to programmers who read and write programs, but to the automatic tools 
that check these programs for bugs and security violations. 

The ability to easily design “little languages” for custom application domains 
makes it possible for programmers to engage in model-based design: by working 
with a high-level notation, they can use its increased static semantics to make 
stronger predictions about the programs they write. 

 
A high-level functional operating system Second, we designed and imple- 
mented a high-level virtual operating system that expresses basic systems services, 
such as resource management, task coordination and scheduling, and protection, 
directly using the linguistic mechanisms of a modern, high-level functional lan- 
guage, such as continuations, modules, contracts, and higher-order functions. 

Directly encoding operating-system mechanisms in an advanced language is a 
strong co-design element of our system: all the advantages of our language tech- 
nology now apply to the operating system and its client interfaces. The compiler 
and other program-reasoning tools are now able to interact with the operating sys- 
tem to provide services. Services can easily be virtualized, simply by providing 
alternative implementations for system interfaces. The operating system can be 
factored from a vulnerable, monolithic block of code into a set of interacting com- 
ponents, with cross-component interaction managed and checked by our contract 
technology. 



Approved for Public Release; Distribution Unlimited. 
4 

 
 
 
 

Machine-checkable assertions about programs Finally, we took advantage 
of the CRASH program’s clean-slate opportunity to infuse formal methods per- 
vasively throughout the design. We used declarative, logic-based languages to 
specify system properties, including contracts, invariants, and models. The free- 
dom to create such logical specifications, in domain-specific terminology, is key 
to “raising the level of discourse.” It is a prerequisite for capturing programmer 
knowledge about the domain and about the program. Such specification allows 
the programmer and the compiler to import knowledge about the model. Fur- 
thermore, by expressing this knowledge in declarative, logic-based languages, we 
make it possible for the compiler and other system components to reason about the 
program and to take advantage of such reasoning both to verify desired properties 
and to generate potential counterexamples. 

 
Architectural themes 

The GnoSys effort concerned itself with the design and implementation of a new 
software architecture, allowing programmers to write software that can be under- 
stood and reasoned about, by both humans and software tools. The design of the 
architecture followed several themes: 

 
Language-oriented Our approach is fundamentally language-oriented. Our high- 
level, virtual operating system exploits the idea that “the language is the operating 
system.”  Similarly, we see domain-specific languages as a source of reasoning 
power—a means of capturing more design-time knowledge about a system. 

Our goal was to enable programmers to move from encoding a computation to 
encoding knowledge about a computation. This shift is what we mean by “raising 
the level of discourse.” 

 
Integrated approach—exploiting co-design We pursued designs that integrate 
distinct technologies together, in order to optimize global properties of the system. 
This sort of co-design manifested itself in multiple ways: 

 
• Dynamic and static 

We integrate static reasoning, in the form of program analysis and formal 
methods, with the expressiveness of dynamic functional languages and con- 
tracts. 



Approved for Public Release; Distribution Unlimited. 
5 

 
 
 
 

• Operating system and compiler 
By integrating the compiler with the operating system, traditional OS ser- 
vices can be provided using the linguistic mechanisms of advanced pro- 
gramming languages, such as modules, contracts, automatic resource man- 
agement, and continuations. This means that client use of OS services can 
be checked by our tools, increasing program assurance. 

• Language and analysis 
We co-design our programming languages and their analyses in tandem. 
This allows us to use analyses to drive down the cost of expressive lan- 
guage features, or to tune language elements to enable analysis. Even bet- 
ter, we provide this co-design ability to our programmers, as well, using our 
domain-specific language technology. 

• Human programmers and automated reasoning agents 
We develop language and system designs that are intended to facilitate in- 
teraction between human programmers and the automated reasoning agents 
that assist them in delivering high assurance for their programs. 

• Cross-disciplinary research team 
Our team was carefully chosen for its cross-disciplinary expertise, which we 
believe is critical for technology development that is integrated across the 
technology stack. Members of the team made a point on collaborating on 
multiple elements of the system, to help ensure that the pieces fit together. 

 
Using what we build The project team has a long track record of doing our re- 
search, teaching, and standard programming within the systems we build. In par- 
ticular, we had multi-decade experience living day-to-day “inside” the program- 
development environment DrRacket and a precursor systems-programming envi- 
ronment Scheme Shell (scsh). We were able to do this pretty consistently through- 
out the four years of the CRASH program. 

 
Bug-free software is secure and robust Our view is that the way to provide 
high-assurance software is to provide means of making guarantees about the soft- 
ware. Claiming that bug-free software is secure is true in more ways than one. It 
is true in practice, in that systems are typically penetrated by exploiting bugs in 
the program, such as buffer overflows or SQL-injection holes. Every time such 
a bug is eliminated, a security hole is closed.  It is also true by definition:  the 
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ability to penetrate a system in any way is clearly a bug in either its design or 
implementation. 

Providing mechanisms to ensure that programs satisfy some specification or 
contract was our consistent means of addressing security and assurance. 

 
Guarding the borders with modules and contracts Contracts are a programming- 
language construct developed by members of the GnoSys team for expressing 
invariants that govern the flow of all kinds of values (plain values, closures, ob- 
jects) across an interface between components of a program (procedures, modules, 
classes). The theory of contracts ensures that they have sensible semantics even 
in a higher-order setting, where active computation can be passed from one com- 
ponent of a program, through some intermediary, and finally invoked by a third 
component. Among the subtle issues addressed by contract technology is blame 
assignment, which correctly determines which component is at fault in these com- 
plex higher-order cases, when a contract is violated. 

It’s important to note that contracts are not subject to the static restrictions 
we place on type systems; they can be any computable property. This is in keep- 
ing with the general design philosophy of GnoSys: we put expressiveness first, 
then use static techniques, such as program analysis, to win back efficiency where 
possible. 

Contracts play several important roles in the GnoSys architecture. They are 
the basic way that programmers in GnoSys express the required invariants and 
preconditions for a given program component. Once written down, these condi- 
tions can be used to protect components from each other. A run-time monitoring 
system guarantees that if something goes wrong, the violator will be exposed and 
corrective action taken. In a modular, compartmentalized system such as GnoSys, 
the run-time system can issue a notification and then convert the violation into a 
micro-reboot of the associated service. 

Contracts also support integration: not only the integration of code compo- 
nents, but the integration of distinct languages By virtue of our DSL technology, 
GnoSys is a multi-linguistic platform.  Contracts provide key infrastructure for 
ensuring that components written in different languages respect the requirements 
of every other component’s language at a language boundary. That is, contracts 
provide a dynamic bridge between the static requirements of different languages. 

Because contracts are frequently placed on module boundaries, they ease the 
burden placed on our analysis and verification tools, factoring problems that re- 

quire global, system-wide analysis into problems that can be solved locally. 
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Finally, we can use program analysis and specialized domain-specific con- 
tract languages to extract static knowledge about a program from its associated 
contracts. This, again, illustrates the expressiveness-first philosophy of GnoSys: 
contracts specified with restricted DSLs can be processed at compile time, while 
we preserve an “escape hatch” of general procedural encodings for properties that 
are too complex for static treatment. 

 
Racket as a high-level, functional operating system The principal software 
artifact constructed during the GnoSys project is the Racket programming sys- 
tem. In some sense, the Racket language, compiler and run-time system, taken 
as a whole, can be considered to be a high-level operating system that provides 
basic OS services in the context of a functional programming language. It is a vir- 
tual OS, sitting on top of some low-level, high-assurance OS that provides device 
drivers and otherwise abstracts over some machine details. In Racket, the pro- 
gramming language is the operating system. By this, we mean that sophisticated 
languages provide essentially all of the mechanisms and services that traditional 
operating systems provide—but in a way that facilitates reasoning about the pro- 
grams and permits more complex static mechanisms to be used. 

In a sense, Unix and the C programming language are symbiotic. Unix is 
dependent on C, in that C is the language used to implement Unix. But C is 
dependent on Unix, in that it was co-designed with Unix, and requires the run- 
time services provided by Unix. For example, Unix makes up for C’s lack of 
memory safety by providing separate, protected address spaces for cooperating 
agents (which were traditionally written in C), and provides the mechanism, pipes, 
by which these agents communicate and cooperate. To give another example, 
Unix’s SIGPIPE signal papers over C’s lack of exception handlers, providing for 
the global shutdown of a pipeline of cooperating agents when one of these agents 
terminates unexpectedly due to an error. 

This raises the question, which we address with Racket: what is the structure 
of an operating system that is symbiotic with a modern programming language— 
one providing many elements not found in C: higher-order functions, contracts, 
continuations, memory safety, exceptions, modules, and so forth? To answer this 
question, we must restructure both the operating system and the applications built 
on top of it in terms of the mechanisms provided by modern functional languages. 
In the following subsections, we’ll consider multiple views of an operating sys- 
tem, and show how these views are reflected in the language-oriented Racket sys- 
tem. 
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Operating systems and modularity An operating system is a kind of crude, 
awkward module system. It provides two modules per application: kernel and 
user. The data structures and code of each module are separated from the other, 
and cross-module communication happens in carefully controlled ways. 

This two-compartment division is, of course, very coarse, and leads to the all- 
or-nothing vulnerabilities of the monolithic kernel: because all data that must be 
protected from the user-space code is lumped together in the “kernel” module, 
once an attacker has broken into the kernel, every piece of kernel-secured data is 
laid bare. 

The means by which these two “modules” are integrated is similarly coarse 
and awkward. The data typically passed across the user/kernel boundary are sim- 
ple and passive; the exceptions that are higher-order (e.g., packet-filter interfaces) 
are rare and difficult to use. The preconditions and invariants attached to module 
interfaces (that is, to system calls) are informally specified and not subject to any 
kind of automated static checking. Thus, instead of being able to check correct- 
ness statically, interface preconditions must be left as dynamic checks. There can 
be no static assurance; modularity is provided by expensive, heavyweight run-time 
artifacts. 

It’s not enough simply to split a kernel into modules. This was attempted by 
the microkernel work in the late 1980’s. Microkernels were an attempt to mod- 
ularize operating systems in a programming language, C, that had no support for 
abstraction and modularity. As a result, the OS was factored using a heavyweight, 
dynamic mechanism: separate processes. Cross-module control and data flow 
thus involved expensive context-switch transfers, which proved to be unaccept- 
able in practice. Microkernels did not take off because their designers did not 
have the tools they needed to realize their robust, modular architectures. 

In GnoSys, we abandoned the simplistic kernel/user division. Once we had 
broken the operating system into multiple components, we could manage them 
with the same expressive language technology we use to manage all GnoSys com- 
ponents. The contracts at the boundaries of the components provide run-time 
assurance that kernel invariants are maintained. Contracts provide semantic spec- 
ifications for reasoning tools that provide assurance. 

Likewise, the compiler manages module isolation for kernel components just 
as it does for all components, eliminating the run-time cost of modular structure. 
In particular, by handling module isolation at compile and link time, the compiler 
is free to optimize across module boundaries—even when the boundary lies at the 
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user/kernel interface; even when the data flowing across the interface is higher- 
order. 

In short, GnoSys committed to the thesis that modularity and abstraction are 
architectural elements best left to programming languages and their associated 
tools, where they can be checked, optimized and otherwise processed. 

 
Operating systems as models of computation An operating system is an 

abstract model of computation: we have file systems instead of hard drives; threads, 
instead of CPUs; and so forth. An application written for the Unix operating sys- 
tem is coded to an abstract specification that permits it to be executed on multiple 
distinct hardware platforms. 

A programming language is also an abstract model of computation, but with 
a key teleological distinction. It is an abstraction that is adapted to static reason- 
ing: programs are analyzed and otherwise processed at construction time, while 
operating systems are purely dynamic artifacts. 

When we provide OS structures via linguistic mechanisms, we expose them 
to the suite of static-reasoning engines that are a part of program-language imple- 
mentations. The compiler can work together with the operating system to provide 
system services. 

In GnoSys, this specifically becomes a task of modelling operating-system 
structures in a functional language. For example, consider continuations, a no- 
tion from lambda calculus that is a central concern of optimizing compilers for 
functional languages. Continuations are an abstraction—in the operating-system 
sense—of CPU state; asynchronous continuations abstract the state of a preempted 
process. This abstraction naturally leads to a complete picture of the processor re- 
source: hardware interrupts become abstract events, and processors become con- 
tinuation transformers. It is possible, given this representation, to design virtualiz- 
able thread schedulers that operate purely with abstractions based on the lambda- 
calculus. These schedulers can be run in a nested fashion: a user application can 
write an application-specific, preemptive scheduler to manage sets of threads us- 
ing CPU cycles that are passed to it by some superior scheduler. At the root of this 
tree of virtualized schedulers, we have the real hardware, managed with exactly 
the same kind of scheduler code. 

Another example of modelling OS mechanisms in a functional language is the 
representation of network-protocol stacks. As we will see in a following section, 
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we were able to implement these, during the GnoSys project, using communications- 
oriented domain-specific notations that facilitated the compositional construction of 
high-assurance implementations. 

 
Operating systems as resource guardians An operating system provides 

guarded access to the machine resources, limiting both the way that resources are 
used and the quantity of resources that are consumed by a part of the system. By 
directly encoding the OS services in the programming language, the compiler can 
assist in management of these resources, provide more flexible rules about their 
use, and provide more fine-grained accounting for the consumption of resources. 
For example, traditional operating systems provide “file descriptors,” which are 

essentially references to OS-protected resources. All manipulations of these 
resources by the user code must occur at arms length across a context-switch bar- 
rier, which forces the operating system into a particular way of tracking process- 
specific file-descriptor use and a particularly narrow capability of processes to 
trade file descriptors. Similarly, the memory resource is provided by the operat- 
ing system to the user code at page-level granularity, which does not match well 
with the fine-grained allocation needs of typical user programs. Worse, the access 
guards the operating system can place on memory are crude and simple, consisting 
only of read, write and execute capabilities on page-sized blocks of memory. 

Racket, in contrast, can use the language’s contract machinery to provide more 
sophisticated, application-oriented constraints on the way clients may use a re- 
source. Contracts can encode a kernel’s requirements on the use of a resource, but 
also allow layers to add their own contracts or allow applications to apply con- 
tracts on the use of a resource that is shared with other applications. Contracts on 
high-level values replace the parsing of byte streams to ensure that components 
communicate properly. Domain-specific languages allow programmers to specify 
such contracts in terms that are best suited to the task. 

 
Advanced program analysis for higher-order programs 

Although GnoSys permits programmers to work with domain-specific notations, 
the core language we used for our general computing platform is Typed Racket, 
which is a higher-order functional programming language based on the lambda 
calculus. The attraction of lambda calculus as a foundation for programming lan- 
guages is that it sits in a “sweet spot” for computational notations: it is simultane- 
ously a practical programming paradigm as well as a powerful theoretical model 
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of computation. Because GnoSys has a design commitment to formal, automated 
reasoning, it was important that programs have the sort of clean semantics we get 
from solid theoretical foundations. 

We view lambda calculus as computational glue for connecting together gen- 
eral computations. It’s important, then, to have tools for reasoning about systems 
composed with this kind of structure: program analyses that work with higher- 
order functional languages. 

The core analysis we developed for GnoSys is a novel form of higher-order 
flow analysis Flow analysis is one of the most powerful tools available for op- 
timizing, debugging and reasoning about programs. Every serious optimizing 
compiler uses flow analysis to discover the information that drives program opti- 
mization. Flow analyses can also be used to perform safety analyses, help debug 
programs, and improve the user experience in interactive program-development 
environments. 

The flow analysis we developed is novel in three main ways, all of which are 
motivated by co-design considerations with other elements of GnoSys: 

 
• PDA-based control abstraction 

Traditional flow analyses are graph algorithms that consider all paths through 
a fixed control-flow graph. Since the set of all such paths is a regular 
language, we are essentially abstracting the Turing-equivalent computation 
represented by the program with a finite-state automaton. Such approxi- 
mation was reasonable in the 1960s world of Fortran programs, where the 
important control constructs are conditional branches and loops, which are 
well modeled by this paradigm. 
Modern functional languages, however, are poorly modelled by such an ab- 
straction. Their key control construct, function call/return, produces control 
traces that are not regular languages: the calls and returns have a nested 
parenthesis-like structure. Far better precision can be obtained by abstract- 
ing the computation with a push-down automaton (PDA). 
This is particularly important in GnoSys, given its systemic emphasis on 
modular composition. Module boundaries in GnoSys programs are crossed 
by means of function calls and returns. Because PDA-based analyses don’t 
muddy and mix together caller context on return flows, they hold the promise 
of keeping distinct the information flow from and to the different clients of 
a module. This is critical, for example, when doing a security analysis on 
information flow: if, for example, a hash-table module is invoked by two 
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clients of differing security ratings, erroneously including spurious cross- 
flows between the two client modules would produce false positives that 
would render the security analysis useless. 
PDA-based analyses also enable precise reasoning about resources with dy- 
namic extent, such as stack-allocated data, or nested locks. 

• Higher-order semantics and abstract state traces 
Classical flow analysis considers only traces through the program structure. 
That is, they are focussed on control structure to the exclusion of other 
elements of the program state, such as environment and data structure. 
When we shift to a higher-order setting, the analysis’ control-flow graph 
morphs into a more general and expressive abstract state graph, which adds 
in abstractions of the program’s data and environment structure. 

 
The role of program analysis in GnoSys Program analysis is a technology 

that enables other components of the GnoSys architecture. Just as lambda calculus 
is general-purpose glue for composing computations, PDA-based flow analysis is 
a general-purpose “weak method” for composing knowledge gained from multiple 
sources about a program. 

Besides yielding knowledge about a program to the program designer, pow- 
erful analysis is the critical means of optimizing across module boundaries. In 
a modular, component-based system such as GnoSys, these module boundaries 
even include what other operating systems consider the kernel/user interface, and 
virtual-machine abstraction layers. Thus, the ability to statically melt away these 
boundaries after they have served their purpose at system design and assembly 
time is critical. It liberates programmers to construct their programs in modular 
ways, knowing there will be no run-time penalty for using the GnoSys structure. 

 
Capturing design knowledge with domain-specific languages 

Perhaps the single most powerful element in GnoSys for raising the level of pro- 
grammer expressiveness is that programmers can easily design and use custom, 
domain-specific notations for their programming. Our approach to this program- 
ming paradigm grows out of the Lisp and Scheme macro experience, where it is 
part of everyday programming to design “little languages” that are carefully cus- 
tomized to the particular application domain being programmed. The technology 
is quite lightweight: a programmer can implement an entire new language with 
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a day of work and a few hundred lines of code. Once defined, programmers can 
switch between languages simply by entering an open parenthesis and a keyword; 
the matching close parenthesis switches the notation back to the surrounding lan- 
guage. 

For example, the Scheme expression (written in the systems-programming 
system, scsh) 

(lambda (printer) 

(&  (| (gunzip)  (html2ps)  (lpr -P ,printer)) 
(<< ,(rx-subst 

(| "John" "Paul" "George" "Ringo") 

(run/string (wget -O - http://reviews.com/letitbe)) 
pre "Beatle" post)))) 

 

shifts between three distinct languages on a line-by-line basis: the general-purpose 
functional language Scheme, a special “Unix shell” notation for specifying pipelines 
of processes (lines 2 and 5), and a regular-expression notation (line 4) for speci- 
fying string matches. 

Because domain-specific languages are used in specialized contexts, they fre- 
quently can be restricted in their computational power—which, consequently, en- 
hances our ability to reason about the computations they describe. That is, these 
custom notations typically have rich static semantics, which can be mined out by 
program analyzers. 

Consider, for example, two ways of specifying a string matcher: with a short, 
one-line regular expression, or with the equivalent finite automaton written in C, 
requiring perhaps a page or two of code.  Of course, the regular expression is a 
clearer way to program: it’s easier for the programmer to write; easier to read 
and understand; easier to recognize that the expression matches exactly what we 
intended it to match. 

Not only is the regular expression easier for a human to understand, it is also 
easier for automatic tools to analyze. For example, it is a challenging task to deter- 
mine if the C code terminates on finite input—our program analyzer is up against 
the halting problem. But this is a trivial task to carry out once the computation 
has been encoded in the regular-expression form: all finite automata halt on finite 
input. By using a domain-specific language, we have captured knowledge about 
the program for free—it requires no work from the programmer. By working in 
the DSL, the programmer works less, but says more. 

http://reviews.com/letitbe))
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All of this assumes, of course, that the extra static semantics associated with 
DSLs can be made available to program-analysis tools. This is not, unfortunately, 
true of the classic Scheme and Lisp macro technology: these linguistic tools only 
provide clarity of notation to human programmers. The GnoSys team extended 
this technology to permits us to attach this extra static semantics to the custom 
notations designed by programmers for their applications. 
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3. Methods, Assumptions and Procedures 
Except in ways that will be discussed below, our methods are the standard meth- 
ods of academic research: the primary unit of investigation was a professor- 
advisor/doctoral-student-advisee pair, carrying out some particular thrust of ex- 
ploration. The project also had two post-docs, Tobin-Hochstadt and Van Horn 
(who are now both professors, at Indiana and Maryland, respectively, doing work 
for DARPA under their own contracts). Thus, much of our work was quantized 
into doctoral-dissertation-sized chunks. The various results were published in 
peer-reviewed conferences and journals, both to disseminate the work but also to 
subject it to the scrutiny and rigor of peer review. This is pretty classic method- 
ological stuff, but it’s robust and produces quality science. 

On the other hand, our work is also realized in the construction of software ar- 
tifacts, and here, our methodology is not quite so standard. Engineering research, 
such as Computer Science, often centers on the construction of experimental pro- 
totypes: expensive, laboriously hand-constructed one-off systems that are used 
to evaluate theories; once the data is gathered, the system is discarded—the final 
result is the data, not the artifact. Thus, the researcher has to build something 
that is “toy” enough to be built on time and under budget by a small team, but 
“real” enough for the data gathered to constitute compelling evidence for some 
engineering claim. 

In GnoSys, we did things differently. In brief, we use what we build. While we 
did build some research toys as initial prototypes, we frequently scaled these first 
implementations into full-on, delivered software: technologies developed under 
the GnoSys contract were rolled out in successive releases of the Racket program- 
ming environment throughout the four years of the project. 

In particular, our work on contracts, gradual typing and domain-specific language- 
development technology (that is, hygienic macros) are all now in daily use by 
programmers around the world—Racket is publically available and open source. 
Internally to Northeastern and the University of Utah, the programming environ- 
ment is used by doctoral students and professors to do research, as well as by 
hundreds of college freshmen learning the introductory rudiments of program- 
ming. Outside our the GnoSys-project home institutions, it is used all over the 
world for teaching as well as industrial software development. The research bene- 
fits of this kind of methodology are clear: the ideas embodied by the software get 
much, much more thoroughly exercised and evaluated, across a wide spectrum of 
use cases. 
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4. Results and discussion 
We’ve broken these results out, but the whole is greater than the sum of the parts. 
All of this work happened in a common context, with the explicit goal of weaving 
them together into a unified whole. 

 
Racket on a router 

As a testbed and driver application for GnoSys technology, we ported the Racket 
programming system to a commercial, consumer-grade wifi access point, the Net- 
gear WNDR3700 router. We were able to compile, link and execute Racket code 
directly on the router. This includes all the advanced elements of the language: 
first-class functions, full continuations, concurrent threads, the garbage collector, 
the full module system, the full contract system, all of the language tower, and 
access to the underlying TCP/IP stack. 

Following this, we implemented a suit of network services on the Racket plat- 
form: an ssh server permitting one to log into a Racket read-eval-print interac- 
tion, two forms of DNS server (a root server, and a caching proxy server), and 
a chat/instant-message service. The caching proxy DNS server has been in daily 
use in the College of Computer Science for several years now, running on a wifi 
access point that provides service to our floor of the building. 

All of the various pieces of technology we developed for CRASH synergisti- 
cally supported this application development. For example, our work on program 
analysis and optimization of the Racket’s numeric types made the system accept- 
ably performant. Contracts kept the system secure, at the virtual operating-system 
level. We used macro technology to create domain-specific languages that let us 
declaratively describe packet layouts; macros then automatically produced mar- 
shalling and unmarshalling code for the packets, eliminating buffer-overflow and 
other bug-exploiting security attacks. 

One of the reasons we did the Racket-on-a-router work was to provide the 
security people at Lincoln Labs a means of evaluating our security and robust- 
ness improvements without requiring them to program in Racket themselves. A 
network protocol is a powerful abstraction barrier: by providing them with a box 
running these services, they could evaluate at the protocol level. 

Our services closed essentially every known exploit on the DNS and SSH 
services. Bottom line: it’s crazy to continue implementing these kinds of critical 
services in languages such as C. 
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Compositional asynchronous architecture 

Based on this experience gained building network services directly in Racket, we 
developed a software architecture, delivered on top of Racket, specifically for 
developing network services. Our “Compositional Asynchronous Architecture” 
has a combination of features that mesh together to facilitate the construction of 
network servers: 

 
• a pub/sub system built around a tree-structured “topic” space; 

• a self-virtualizing abstract machine that controls and constrains communi- 
cations interactions; 

• a set of system-provided messages which includes both “presence” and “ab- 
sence” of potential pub/sub interactors for a given topic. Providing absence 
notification is a key functionality that makes it much easier to build robust 
services backed up by redundant servers. 

 
We carried out a study of the architecture by using it to re-implement all of 

our previous direct-in-Racket network services: ssh, root DNS, proxy DNS, and 
a chat/instant-message server. We were then able to shape this architecture into 
a core calculus, Minimart, and a new domain-specific programming language, 
Marketplace, for developing robust, high-assurance (but performant) network ser- 
vices. Marketplace is the topic of a forthcoming doctoral dissertation (and will be 
rolled out in the general release of Racket in the near future). 

Alan Kay’s Viewpoint Institute invited Tony Garnock-Jones, the graduate stu- 
dent carrying out this work, to visit for six months this past year to investigate the 
synergy between the GnoSys Network Calculus work and their work on “networks 
all the way down.” 

 
Eliminating C from Racket 

At the beginning of the CRASH program, we realized that the Racket run-time 
system was implemented using more C than we’d like, given the CRASH empha- 
sis on high-assurance systems. Our entire approach to high-assurance is based on 
exploiting high-level languages; code written in C is outside the domain of our 
technologies. We spent a fair amount of work hardening up Racket by rewriting 
entire subsystems of the Racket implementation from C to Racket. 
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In particular, we completely redesigned and rebuilt Racket’s metasyntactic 
programming facility, its hygienic macro system. The original one, which has 
been deployed for over well over a decade, had been written in C, for perfor- 
mance reasons. It has seen hard, industrial-scale use and performed well, but we 
were uncomfortable with the fact that such a critical, core element of the entire 
Racket platform was constructed as a very complex piece of C code, where none 
of the Racket technology could be looped around and brought to bear on the im- 
plementation. 

 
Metaprogramming and DSL technology 

This is the foundational work that lets us develop language-oriented solutions to 
the programming tasks we tackle in GnoSys: advanced macro systems are the 
technology we use to construct domain-specific languages (such as the Market- 
place communications-oriented programming language, above), and to implement 
languages with extended static semantics (such as contract systems, used to cap- 
ture programmer knowledge at software-construction time). Domain-specific lan- 
guages are a key means of raising the level of discourse: programmers can design 
custom notations purpose-built for a given application, and the information is ex- 
pressed in a means that is accessible to the language-processing technology, rather 
than hidden in comments or encoded in obfuscatory idioms or patterns of code. 

Our DSL technology is, again, something that we use everyday in our program- 
development work. At one count during the CRASH program, we were using over 
40 domain-specific languages in the implementation of Racket, and the technol- 
ogy is widely used by Racket users outside the GnoSys group. 

 
Scopes as sets of binders 

As mentioned above, one of the straightforward engineering tasks we carried out 
over the course of the CRASH effort was the reimplementation of Racket’s macro 
system in Racket itself, instead of C. This permitted us to move ahead with a new 
architecture for maintaining “hygiene,” that is, the compile-time structures avail- 
able to the DSL implementor for managing variable scope and variable capture. 

While we were doing this reimplementation, we were able to completely re- 
visit the core hygiene algorithm. Hygienic Scheme macro processors are an arcane 
and ill-understood branch of metaprogramming technology; when these systems 
are extended to work with module systems and sophisticated phase distinctions 
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(as Racket’s is), they become even more complex. Redesigning this system ad- 
vanced our understanding of the interactions between hygienic macro expanders, 
module systems and phase distinctions. 

The new design, which took several years to design, prototype and release, is 
based on a notion of scope as consisting of sets of binders or “binding contours.” 
The new system is much simpler and more straightforward. A paper describing 
the new mechanism was presented at POPL in January of 2016, just as CRASH 
was winding down. The new system is now deployed in the current release of 
Racket; users have reported that they are quite happy with it. 

 
Hygiene and nominal types 

We have also performed foundational work on adapting nominal types and nom- 
inal logic to develop an implementable theory of hygiene for next-generation 
macro systems. 

A key problem in meta-programming and the development of domain-specific 
languages is binding-safe term manipulation—that is, manipulating terms (or syn- 
tax trees) in such a way that variables are guaranteed to refer to their correct 
binders, neither escaping from their scopes nor being introduced into scopes where 
they don’t belong. Existing methods for dealing with this problem either impose 
unrealistic constraints on syntax or depend on dynamic solutions that do not give 
definition-time  guarantees. 

In the early days of GnoSys, one of our graduate students, David Herman, for 
his doctoral thesis, developed a system for the specification of binding patterns, 
and gave an algorithm for determining (at macro-definition time, not at macro- 
use time) whether a macro defined using patterns and templates would respect 
those binding patterns. The technical development was based on the idea of α- 
conversion; that is, systematic renaming of bound variables and their references. 
Each binding specification gives rise to a notion of α-conversion on its terms, 
and binding-safe programs are ones that take α-equivalent inputs to α-equivalent 
outputs. 

Herman’s dissertation advanced the state of understanding of these mecha- 
nisms. In fact, it was the first coherent theory explaining what hygiene was and 
meant, twenty-five years after the introduction of the idea. But it was not practical 
to deploy for real programming: the price of the static guarantees was unrealistic 
restrictions on the expressiveness of the system. 
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After Herman’s dissertation was completed, we turned our attention to extend- 
ing his ideas to macros defined by tree-manipulating procedures. Our new design 
was based on Pottier’s Pure Fresh ML, but with a far richer language of binding 
patterns, and with stronger guarantees than those of Pottier. A program written 
in the language is analyzed to generate proof obligations, which are discharged 
automatically by an SMT prover (in our case, Z3). Because new variable names 
must be generated, programs in the language are non-deterministic. 

The next round of work we did in this area under CRASH was establishing the 
theoretical underpinnings of the new, more powerful and expressive mechanism. 
In particular we needed to establish 

 
1. Soundness: Given two α-equivalent inputs, a program that passes its static 

checks can only produce α-equivalent outputs. 

2. Determinacy: For any input, all the possible outputs of a program that 
passes its static checks will be α-equivalent (and therefore, all strategies 
for generating fresh names yield equivalent answers) 

 
Because of the richness of the binding-specification language, each of these pre- 
sented a formidable technical challenge. 

By the end of 2013, we had completed the proofs of these theorems, and began 
turning this core mechanism into a proof-of-concept prototype language, named 
Romeo. We published a paper on this work in ICFP. 

In a follow-up redesign of Romeo, we were able to produce a more user- 
friendly language, Romeo-L, with a better surface syntax, and with a better con- 
nection to the SMT backend. An outstanding feature of Romeo-L is error local- 
ization, which translates failures from the SMT back into messages that convey 
this information in terms of the user’s program. 

The Romeo-L work was a Master’s thesis; the larger Romeo effort has been a 
doctoral thesis whose defense is scheduled for April of this year. Eventually, we 
hope to have this technology rolled out into general use in Racket. 

We should add that Herman, who started this original line of work under 
CRASH funding for his doctorate, is now Chief Technology Officer at Mozilla, 
where the Rust programming language is being developed. Rust is being designed 
to have hygienic macros, so there is a clear path to exporting the technology de- 
veloped under CRASH out beyond the Racket community. 
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Contracts and Types 

GnoSys exploits “contracts” to attach what amount to security and safety checks 
to software modules. We have multiple technology results related to contracts: 

 
• The design of analyses to check and discharge contract checks at compile 

time: safety without cost. 

• New run-time support (“chaperones” and “impersonators”) to make the re- 
maining overhead for contract checking lightweight. 

• New developments in “blame theory,” the mathematics associated with con- 
tracts that provide the ability to identify the responsible agent when a com- 
plex contract is violated. 

 
We have also done significant work extending the typing mechanisms of Racket 

to work on the full language. This includes Racket’s class-oriented object sys- 
tem, as well as its powerful, difficult-to-type “delimited control” operators. The 
delimited control operators are particularly relevant to the goals of CRASH, as 
they give programmers the ability to tightly constrain non-local control transfers 
in subsystems. (For example, when beginning students enter Racket code into 
the Dr.Racket development environment, Dr.Racket’s evaluator uses delimited- 
control operators to prevent runaway, buggy code from crashing or taking over 
the system.) 

This is an example of where we were able to achieve the kind of cross-layer op- 
timization and restructuring of the system stack that was part of DARPA’s charter 
for CRASH. The Racket run-time system is a kind of virtual operating system, re- 
sponsible for allocating and controlling resources to various systems implemented 
in Racket. For example, programs require both processor cycles and memory to 
execute; Racket not only hands out these resources to client systems, but con- 
trols access to them. Delimited control operators are the language-level means by 
which we enforce control constraints on the various systems that run on top of 
Racket. 

By providing these mechanisms at the language level, we were also able to 
subject them to program analysis. Again, here we achieved cross-layer synergy: 
as we’ll describe below, our work on PDA-based flow analysis was able to handle 
analysis of programs that used these mechanisms. 
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We also did work extending the expressiveness of the contracts that Racket 
provides. Behavioral contracts supplement interface information with logical as- 
sertions, often written in the same programming language as the component itself. 
Temporal contracts further enrich interfaces with a language for specifying adher- 
ence to stateful protocols. Together, these assertions can provide strong invariants 
that are monitored at run-time, giving a precise explanation of blame when failures 
occur. 

Contracts offer significant software engineering benefits, but they come with 
certain costs. Contract monitoring can be expensive, particularly in the case 
of higher-order values, which must be wrapped as they flow across component 
boundaries, and temporal monitoring significantly increases the run-time burden. 
We invested a fair amount of work into the design and implementation of tech- 
nology to make the run-time overhead of contract enforcement lightweight. This 
new technology is now provided in the standard release of Racket. 

Graduate student Dimoulas, with others in the GnoSys team, introduced the 
notion of “option contracts” because full-fledged contracts remain expensive. In 
analogy to the business world, option contracts are the right to impose a contract, 
but they are not a contract. With option contracts, programmers can dynamically 
add/remove contracts as trust for a component grows/shrinks. This gives us a kind 
of “security knob” that we can turn up or down as circumstances warrant, trading 
off performance for safety. 

 
PDA-based analysis for higher-order languages 

GnoSys has been developing powerful program analyses based on push-down au- 
tomata models of computation. These models give strikingly more precise results 
for languages where function calls are the dominant control structure (such as the 
functional programming languages we use). 

The languages we use in GnoSys have additional elements, called “first-class 
control operators” that permit extremely general control transfers in the program: 
call-with-current-continuation, prompt and reset are three examples of 
such operators. They are particularly important in the systems-programming con- 
text of GnoSys, as their use tends to pop up in the context of “operating-system- 
like” mechanisms, such as thread schedulers, and language elements for “locking” 
software systems into control-bounded sandboxes. We rely upon these opera- 
tors in the virtual operating system we’ve provide in Racket, to enforce strong, 
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language-based resource barriers for systems. This is part of the cross-layer re- 
architecting of the computational stack we’ve explored for CRASH: we use lan- 
guage elements (like prompt and reset) to provide the kind of application se- 
curity and protection that other operating systems provide with separate address 
spaces and, say, the fork() system call. 

 
General framework for higher-order abstract interpretation 

We’ve also published work on “monadic abstract interpreters.” This is a result that 
will make it much easier for others to build custom analyses using our techniques. 
The problem addressed here is that our PDA-based techniques are pretty esoteric. 
The “monadic abstract interpreter” result shows how one can package up these 
analyses as a set of building blocks that can be assembled into a complete analysis. 
It represents a kind of “unified theory” that encompasses a wide range of analytic 
techniques: polyvariance, context-sensitivity, flow-sensitivity, heap-cloning, etc. 
Our entire analysis framework is parameterized so that monads may be swapped 
in and out to determine flow-, path- and context-sensitivity—all for the kind of 
advanced and difficult-to-analyze programming languages we use in the GnoSys 
project. 

We then took our initial work on mathematical frameworks for doing advanced 
analyses of higher-order languages and captured this framework in a language 
itself: a domain-specific language making it simple to specify sophisticated, task- 
specific analyses for higher-order languages such as Racket. 

Doing so provided two big benefits. First, it improved correctness: it is much 
easier for non-specialists to develop analyses of interest and get the implementa- 
tion right. The kind of analyses we’ve been developing over the lifetime of the 
CRASH program are subtle, arcane and easy to get wrong. Packaging up these 
algorithms in a DSL means that a specialist can get the general algorithm right, 
once, and non-specialist consumers can plug their own analysis problems into 
these algorithms without having to understand all their intricacies. 

The second benefit is efficiency. By specifying our analyses in a DSL, we were 
able to subject the specification to automatic optimization, producing analyses 
that run, not 10% or 15% faster, but 2-3 orders of magnitude faster. In the first 
several years of CRASH, we worked out techniques for doing so, by hand. In 
the final phase of CRASH, we did the DSL work that automated it. Providing 
these speedups is important: PDA-based analyses are very precise, but can be 
unworkably expensive to apply to large code bases. What we got was a system 
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that had no tradeoffs: it provided analyses that were faster and more precise and 
easier to implement. 

Might, Van Horn and graduate student Johnson worked out techniques for 
analyzing higher-order control operators using our PDA analysis. These operators 
are very, very difficult to analyze, as their whole raison d’être is to provide non- 
standard paths of control, which deeply affect the control- and data-flow of the 
computation. We had worked out ways to handle these control operators in our 
analyses in the early days of GnoSys, but these solutions were ad hoc, and didn’t 
fit into our general “Abstracting abstract machines” analysis framework—hence, 
they did not fit into the tools we were constructing based on this framework. By 
the end of the CRASH program, we were able to do this kind of analysis within 
the general framework. This final result was the culmination of work carried out 
throughout the entire project. 

 
Package management 

We designed, implemented and released a new package manager for Racket; it is 
now in use in the general Racket system. 

Racket’s package manager reflects the “raising the discourse of programming 
languages” theme of GnoSys: packages include documentation that can be inter- 
twined with the source code and require compilation and possibly execution steps 
to produce. Not only is the documentation embedded within the source code, but 
vice versa, which is a way to ensure that the documentation does not become stale 
or invalidated by code changes. Note that Racket documentation is written in 
one of Racket’s many domain-specific languages; as this language can switch into 
general Racket, the documentation language is Turing-complete. 

We are working on technology to build binaries and documentation for poten- 
tially untrusted packages. In keeping with the “eat your own dogfood” practices 
we’ve observed throughout GnoSys, this work is being channeled into Racket’s 
general package manager—this is how we stress our designs to find issues with 
them. 

The new package-build service in Racket’s package manager handles two key 
issues: (1) Racket’s powerful and dynamic build-phase facilities raise security 
concerns not just when executing foreign code, but also simply when building 
foreign code; and (2) the documentation for Racket packages is deeply intertwined 
with its source code, being written in one of Racket’s domain-specific languages 
(one which permits general-purpose computation). 
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Based on our experience constructing this package system, we are developing 
a general model of build systems and package managers, to make the lessons 
learned available for other programming languages. 

 
Profiling secure code 

Dynamic languages (such as Racket) are well suited to profile-driven optimiza- 
tion. We made significant progress on improving and deploying Racket’s feature- 
specific profilers. While the original plan called for the use of such a profiler to 
determine the cost of interactions between typed and untyped components in a 
system, we found a second exciting use for the technology during the CRASH 
program. Graduate students St-Amour and Andersen applied the profiler to Di- 
moulas and Chong’s SHILL secure scripting language (at Harvard University), 
which is implemented in Racket. They were able to diagnose bottlenecks in the 
interaction between OS-level sandboxes and SHILL programs. 

This is another example of the kind of OS/application cross-layer win in the 
spirit of the CRASH charter. Andersen, St-Amour, and Felleisen are preparing a 
paper on this work and its case study. 

 
Optimization coaching 

Because GnoSys is centered on the use of expressive languages, an important 
component of the project was performance optimizations to make it possible to 
use these languages in resource-sensitive application domains. One of the subpro- 
jects of GnoSys that addressed this need was the “optimization coach,” a compiler 
phase that engaged the programmer in a dialogue aimed at optimizing his pro- 
gram. The optimization coach had “meta” knowledge of the optimization task, 
and was able to compile lists of possible optimizations that were blocked due 
to insufficient knowledge on the part of the compiler. The coach would make 
suggestions to the programmer for ways to alter the code to enable the blocked 
optimizations. 

This technology was used by Racket programmers outside the GnoSys project 
to optimize application codes. In some case, scientific programs got integer mul- 
tipliers in performance. 

The optimization coach is an example of very fast technology transfer out into 
industry from the GnoSys project. The work was done as the doctoral thesis of a 
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GnoSys graduate student. Mozilla invited the student to apply his technology to 
their JavaScript compilers, which he did. 
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5. Conclusions 
The GnoSys project has been an effort to weave together multiple technical threads 
of work that we believed would constitute the kind of cross-layer whole sought 
by the CRASH program. We had some successes, and we had some failures— 
which includes successful research results that we were unable to integrate into 
the whole by the end of the program. 

Some of the major components that we were able to integrate and field in 
Racket are the following. 

 
• The utility of higher-order, functional languages as an expressive substrate 

specifically for developing secure, robust systems software seems well es- 
tablished. (We’re not claiming to have invented higher-order, functional 
programming; we simply saying that we have pushed its implementation 
technology forward as a necessary component of our total platform.) 

• Software contracts are clearly a valuable means of capturing design knowledge— 
“checkable documentation”—of a kind that exceeds the boundaries of static type 
systems. Over the course of the CRASH program, we extended the ex- pressive 
power of these contracts and also greatly reduced their overhead. There’s     no 
tradeoff here: we got improvements in both areas, and the im- provements are 
available to anyone who downloads and uses Racket. 

• We’ve also clearly demonstrated the value of domain-specific languages for 
constructing components of large, complex software systems. Racket it- 
self is written using about 40 DSLs that all interoperate (using a module 
system that is, itself, another DSL) to provide a single system; the Racket 
documentation is written in yet another DSL implemented with the same 
meta-programming technology. Programming with DSLs confers not only 
clarity and concision, but is also a great aid to preventing security attacks, 
as discussed earlier in this report. 

 
We delivered on the spirit and vision of CRASH here: these three technologies 
work together harmoniously to deliver secure, robust software, and they do so in 
the language-oriented way that we originally planned: all three help to “raise the 
level of discourse” in programming. That was the vision, and that’s what we did. 
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To give one supporting example, the network router and network services that 
we implemented in Racket completely shut down the vast majority of known at- 
tacks on the device—and this software exploited all of the individual technologies 
listed above. 

However, there are important elements of our original program of research 
where we got results that we were not able to weave into the whole over the 
lifetime of CRASH: 

 
• Macro hygiene, a topic of study in the programming-languages for the past 

thirty years, is only now just beginning to have a clear underlying formal 
theory—courtesy of CRASH-funded work. We had two different, signifi- 
cant results here: the work on scope-as-contour-sets, and the work on ap- 
plying nominal type theory to the problem of hygiene. 
The former work did eventually get integrated into Racket, but only in the 
year after CRASH had ended. It is now in daily use by the entire Racket 
user community—both by those who develop DSLs and other syntactic ex- 
tensions, and those who program in the resulting languages completely un- 
aware of the technology. The first paper on this technology appeared at 
POPL January 2016. 
The latter, more ambitious, work is even more early-stage: it has been cap- 
tured in the design of the experimental prototype language, Romeo, and 
described in a doctoral dissertation only now out being distributed in draft 
form to the members of the graduate student’s thesis committee. So, at 
the time of this final report, the meta-linguistic mechanisms articulated in 
Romeo have not made it out into use in any real way. 

• PDA-based flow analyses remain a standalone result; We’ve shown that flow 
analyses for higher-order languages can be computed with much higher pre- 
cision than heretofore possible, and that this precision can be obtained with 
surprisingly good efficiency. That’s a good thing to have done, as an iso- 
lated, standalone research result. 
But we were unable, in the four-year time frame of CRASH, to get these 
powerful new analyses rolled into the Racket development environment for 
general use. Just bringing down the cost of these analyses was the work of 
an entire doctoral effort; the shift from research experimentation into daily 
engineering practice remains before us. 
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At the CRASH program wound down, we were just beginning work on us- 
ing these analyses to reduce the run-time overhead of complex temporal 
software contracts, which was the integration point we had originally con- 
ceived five years prior when we assembled the entire GnoSys vision. This 
work has not stopped: it’s the subject of a current graduate student’s doc- 
toral thesis and is ongoing. Static analysis and contracts were made for each 
other; we’ll get there. 

• The boundary between gradual types and contracts turns out be shock- 
ingly expensive in terms of computational overhead. Both technologies 
have been successful as independent mechanisms, but when programmers 
use both statically checked types and dynamically checked contracts, the 
checking overhead that must be inserted into the program when values 
flow across the boundaries between regions of code managed by these two 
mechanisms can require more processing than the actual main computation 
itself—sometimes much more. 
When we rolled these mechanisms out into Racket, our more aggressive 
external users attempted use them together, with unhappy, performance- 
destroying results. This was a surprising discovery; it got our attention. 
In short, these two ideas ought to go well together, but this turns out to 
be much, much more difficult to realize than would initially seem to be 
the case. As a result of the GnoSys investigations into the topic, this topic 
has become a research area that is receiving intense study in the research 
community (beyond the GnoSys team, that is). In January 2016, an entire 
session of the POPL conference was devoted to papers on this subject. The 
best we can say, as of the date of this report, is the following: 

– The simple idea that this is a difficult technical problem is a result in 
and of itself. 

– The problem is now receiving a large amount of attention from various 
researchers, which, we hope, bodes well for the future. 

• Gradual types fit in with a long-term research program we have on the sub- 
ject of “script evolution,” that is, taking programs written in dynamic lan- 
guages (such as Perl, Python, and Scheme) and gradually evolving them, 
on a module-by-module basis, to “harden” them up in terms of their static 
semantics. Programs grow organically, and it is frequently not possible to 
throw out a program that has grown from an initial, small script into a large, 
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unmaintainable mess, and start fresh. Instead, the program must be evolved, 
by adding statically checked annotations to the existing code in an incre- 
mental way. 
It was our hope, when CRASH began, to be able to extend the gradual typ- 
ing machinery we were developing over the course of the project to handle 
Racket’s complex object-oriented language elements. This is a necessary 
step to transitioning the technology from Racket (and other functional lan- 
guages) out to industry-standard OO languages. We are not there yet: as of 
the end of the CRASH program, this is an ongoing doctoral thesis—it is, 
again, a problem requiring more than four years of work. 
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