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Kevlar: Transitioning Helix from Research to Practice  

1.0 SUMMARY 

Security weaknesses in DoD (Department of Defense) information systems remain a major 
challenge for system stakeholders. We have advanced the transition of technology developed 
under the Helix and PEASOUP (Preventing Exploits Against Software of Uncertain Provenance ) 
projects to protect Air Force systems of interests. The results are expected to be an asset that, if 
widely deployed by the DoD, would enable a high level of confidence in the security of DoD 
systems, in particular, confidence that certain classes of critical vulnerabilities were no longer 
subject to possible exploitation. 

Weaknesses in software code (such as memory overwriting errors, fixed-width integer 
computation errors, input validation oversights, and format string vulnerabilities) remain 
common. Exploiting these weaknesses, attackers are able to hijack an application’s intended 
control flow to violate security policies (exfiltrating secret data, allowing remote access, 
bypassing authentication, or eliminating services). To mitigate and defend against attacks that 
seek to exploit such weaknesses, we have developed the Helix architecture. Helix represents the 
culmination of over 10 years of R&D with support from Defense Advanced Research Projects 
Agency (DARPA), the National Science Foundation (NSF), the Army and the Air Force, and 
ongoing support from the Intelligence Advanced Research Projects Agency (IARPA). 

We have leveraged the opportunity to take the Helix architecture one step closer to 
deployment in real systems by enhancing it to be a completely automatic system for securing 
applications against attack by well-funded, determined malicious adversaries. Helix/Kevlar 
armors binary programs and protects them from attacks, which could arise from the inevitable 
vulnerabilities that remain after deployment. Source code of the application to be protected is not 
required nor is any other development artifacts. These features make Helix/Kevlar of particular 
value for software systems that have to be used but for which no development information is 
available, or for which significant portions of the system include handwritten assembly code and 
special-purpose libraries. 

The key security technologies used by Helix/Kevlar are protective transformations and 
targeted recovery. The protective transformations are applied to application binaries before they 
are deployed. Conceptually, these transformations are tailor-made, lightweight “armor” that 
prevent an attacker from exploiting residual vulnerabilities in a wide variety of classes. 
Helix/Kevlar uses novel, fine-grained, high-entropy diversification transformations to prevent an 
attacker from successfully exploiting vulnerabilities. To prevent attacks from causing the system 
to act in undesirable ways, such as crashing or performing unintended actions, Helix/Kevlar also 
provides custom-made, application-specific remediation strategies that may be invoked in the 
event of an attack. 

An important development for the project was the integration of our static binary rewriting 
technology into Helix/Kevlar. With the addition of the binary rewriting technology (called Zipr) 
into Helix/Kevlar, we can instantiate protections statically using Zipr or dynamically using 
Strata. Zipr is appropriate for resource-constrained devices (e.g. embedded systems, Internet of 
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Things) and applications that include virtual machines such as Java and Javascript, while Strata is 
appropriate for systems where a moving target defense is appropriate.  

Helix/Kevlar has several major strengths: (a) it is applied to binaries and does not depend on 
particular languages, compilers, or libraries, (b) it is complementary to other security techniques 
including inspection, static analysis and testing, (c) it requires no changes to the software 
development process, and (d) preliminary performance measurements show that the armoring 
provided by Helix/Kevlar is lightweight incurring modest run-time performance overhead of 
around 10% when dynamic translation is used, and less than 5% when static rewriting is used. 

Another notable achievement of the project was that we retargeted Strata to Windows (64-
bit). With this addition, Helix/Kevlar can now be applied to Windows applications. 

In summary, major accomplishments of the project include:  

• Retargeted Strata, Helix/Kevlar’s dynamic translator, to 64-bit Windows,  

• Integrated Zipr, an efficient static binary rewriter into Helix/Kevlar,  

• File a U.S. Patent on the Zipr technology (Title: System, Method and Computer Readable 
Medium for Space-Efficient Binary Rewriting),  

• Demonstrated the ability to apply Helix/Kevlar transforms to the core libraries of the Java 
VM,  

• Collaborated with Northrop Grumman to do an evaluation of the effectiveness of 
Helix/Kevlar in protecting applications,  

• Accepted paper at the 10th IET System Safety and Cyber-Security Conference describing 
Helix/Kevlar’s protection of binary programs,  

• Accepted paper at the 45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks describing a new taint inference technique for defeating web 
application attacks, and  

• Accepted paper at the 11th Annual Cyber and Information Security Research Conference 
describing how Helix/Kevlar can be used to defeat blind ROP attacks.  

2.0 INTRODUCTION 

Security weaknesses in DoD information systems remain a major challenge for system 
stakeholders. To mitigate and defend against attacks that seek to exploit such weaknesses, we 
have developed the Helix architecture. Helix represents the culmination of over 10 years of 
Research and Development (with support from DARPA, the National Science Foundation, the 
Army and the Air Force, and IARPA). Salient features of Helix/Kevlar include developing high-
entropy randomization techniques, automated program repairs, leveraging highly-optimized 
virtual machine technology, and in general, developing a novel framework for program analysis, 
transformation and composition. We propose to transition technology developed under the Helix 
and PEASOUP projects to protect Air Force systems of interests. We expect the result to be an 
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asset that, if widely deployed by the DoD, would enable a high level of confidence in the security 
of DoD systems, in particular, confidence that certain classes of critical vulnerabilities were no 
longer subject to possible exploitation. 

The next two sections describe the Helix/Kevlar architecture and our plans to transition this 
technology so that it can be used to protect current and future Air Force systems. The major 
component of this effort is to develop Helix/Kevlar, a robust easy to use tool for applying the 
Helix technology to real systems. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Helix 

A fundamental problem with current defenses is that they do not redress the asymmetry between 
attackers and defenders, changing the target system only slowly and reactively in response to 
attacks. Even approaches that incorporate intrusion detection and tolerance have proven 
ineffective against determined and well-funded attackers who have at their disposal a growing 
arsenal of evasive, stealthy, adaptive, polymorphic and metamorphic attacks. To cope with such 
sophisticated attacks, the Helix architecture uses a combination of defense mechanisms that is 
both highly effective and metamorphic, i.e., a high-entropy metamorphic shield, that presents 
attackers with a continuously changing attack surface.  

Figure 1 provides a high-level conceptual overview of the Helix architecture. An application 
running in Helix is treated in a holistic way, with information being shared across development, 
deployment, execution, and response phases in ways that are not possible with traditional 
architectures.  

Instead of viewing the standard tool chain as just a series of steps to transform an application 
from source code to executable form, we take a more comprehensive view in which program 
metadata can be deposited in the Intermediate Representation Database (IRDB), and 
subsequently manipulated and enhanced at all phases of a program’s lifecycle, to enable the 
development of novel and accurate security protection algorithms. Starting with applications in 
source or binary form as input, Helix proactively analyzes and transforms applications to 
augment them with self-sensing and self-protection capabilities. Helix enables innate and 
adaptive actions in response or in anticipation to attacks by running applications under control of 
Strata, a lightweight virtual machine known as a software dynamic translator (SDT). Strata 
provides the ability to rewrite application code on-demand for deploying security protections 
and/or dynamically shifting the attack surface of applications.  
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Figure 1: High-level conceptual overview of the Helix architecture 

 

Instead of viewing the standard tool chain as just a series of steps to transform an application 
from source code to executable form, we take a more comprehensive view in which program 
metadata can be deposited in the Intermediate Representation Database (IRDB), and 
subsequently manipulated and enhanced at all phases of a program’s lifecycle, to enable the 
development of novel and accurate security protection algorithms. Starting with applications in 
source or binary form as input, Helix proactively analyzes and transforms applications to 
augment them with self-sensing and self-protection capabilities. Helix enables innate and 
adaptive actions in response or in anticipation to attacks by running applications under control of 
Strata, a lightweight virtual machine known as a software dynamic translator (SDT). Strata 
provides the ability to rewrite application code on-demand for deploying security protections 
and/or dynamically shifting the attack surface of applications.  

Helix is a multi-faceted research vision that has lead to many key results. However, as a 
research project, some ideas are more suited to current, real-world use than others. To transition 
the best, most deployable of these ideas to practice, from Technical Readiness Level 5 (TRL-5: 
testing of integrated technology components in representative environment) to Technical 
Readiness Level 6 (TRL-6: prototype implementation on full-scale realistic systems), we 
introduce Helix/Kevlar. Kevlar directly leverages the following capabilities from the Helix 
project: 

• The concept of analyzing and storing meta information regarding software in the 
Intermediate Representation Database is key to enabling various security transformations.  
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• High precision static and binary analysis of binaries.  

• Helix incorporates several novel high-entropy randomization techniques.  

• Helix significantly advanced the use of fast dynamic binary rewriting techniques for 
armoring binaries without requiring the availability of source code.  

• Helix leverages the Strata virtual machine technology for transparently augmenting 
binaries with self-sensing, self-diversification, self-protection and self-repair capabilities.  

Overall, Helix provides the intellectual framework for quickly developing and fielding new 
security transformations. The next section describes how Helix/Kevlar will exploit Helix-
developed capabilities in order to begin an effective transition from research to practice.  

3.2 Helix/Kevlar Architecture 

Helix/Kevlar is a completely automatic system for securing applications against attack by well-
funded, determined malicious adversaries. It armors binary programs and protects them from 
attacks which could arise from the inevitable vulnerabilities that remain after deployment. The 
source code is not required nor are any other development artifacts (such as object files, 
debugging information, linker maps, etc.) Enabling the rapid development of security 
transformations and enabling their safe composition are hallmarks of the Helix/Kevlar system. 
Helix/Kevlar consists of two phases: (1) an offline phase in which Helix/Kevlar performs deep 
analyses on binaries and records results in an intermediate representation database (called the 
IRDB). Helix/Kevlar then uses the database to generate and vet sprockets, i.e. specifications for 
security transformations; and (2), an online phase in which these sprocket specifications are 
applied. They can be applied using Strata, a state-of-the-art dynamic binary rewriter [25, 34]. In 
addition, in this project, we developed Zipr, a highly efficient static binary rewriter [8]. Zipr 
provides the ability to apply Helix/Kevlar protections to systems that use self-modifying code 
(e.g., just-in-time compilers such as Java). 

Figure 2 shows the high-level architecture of the off-line or redeployment portion of 
Helix/Kevlar. Helix/Kevlar consists of a static analyzer, called STARS [10], that disassembles 
x86 binaries, performs extensive static analysis of the binary, and then stores the results of the 
analysis along with the binary persistent in the IRDB.  
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Figure 2: Helix/Kevlar Architecture: Offline generation of Sprockets programs. 

A Helix/Kevlar transformation phase uses information in the IRDB to create new versions of 
a binary, called variants, where various armoring transformations and remediation policies have 
been applied. A novel aspect of Helix/Kevlar is that, rather than statically rewrite the binary, 
Helix/Kevlar produces programs, called Sprockets, that are used by the Helix/Kevlar rewriters to 
transform the original binary into the corresponding variant at run time.  

To ensure that the variants produced by Helix/Kevlar run appropriately, they are then 
“vetted” by a tool called BED (Behavior Equivalence Detection) and TSET (Test Suite 
Evaluation Technology). BED runs each variant using a regression test suite to ensure that the 
variant produces the same output as the original binary while TSET seeks to measure confidence 
levels of the results reported by BED. In addition, BED uses a fault injector to inject faults into 
the application to determine the effectiveness of the Helix/Kevlar remediation policies. 

  

Figure 3: Helix/Kevlar Architecture: Online Selection of Sprocket programs. 
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Figure 3 shows a deployed binary that is protected by Helix/Kevlar. In this diagram, the 
vetted Sprocket programs are applied to the binary by the software dynamic translator, Strata. 
Helix/Kevlar has the ability to dynamically select from the set of Sprocket programs to effect 
temporal change in the protections that are applied. Such changes could be triggered periodically 
or because an attack has been sensed and remediated and it is desired to add additional 
protections or to apply different remediation policies. 

We highlight several major analysis and security transformations supported by Helix/Kevlar. 
Each transformation can be used in isolation, or composed with other transformations for added 
protection. 

3.2.1 Intermediate Representation Database (IRDB) 

To facilitate multiple simultaneous transformations to a program, Helix/Kevlar uses an 
intermediate representation (IR) held in a database, which we term the IR database (IRDB). 

The IRDB is similar to the IR for a traditional compiler. It contains information about the 
program, such as the instructions which make up the program, their addresses, their control and 
data flow, etc. Furthermore, it contains information about each function including the stack 
layout, entry points, exit points, etc., the global data layout of the program, targets of indirect 
branches, etc. Program information is added to the IRDB by various tools including a binary 
static analyzer called STARS that is discussed in the next section (Section ). 

Unlike a traditional IR for a compiler, the IR in the database is not guaranteed to be 100% 
accurate. We realistically assume that information such as perfectly accurate disassembly of the 
program is not available. We make this assumption to facilitate binary analysis and 
transformation where such information is rarely available. Issues of imperfect analysis can be 
compounded if different analyses disagree on information. For example, we use both STARS and 
the Linux utility objdump to populate the list of instructions in the IRDB. The two tools 
typically agree on instruction start addresses, but occasionally they disagree. The IRDB 
facilitates the use of conflicting information by supporting conflicting information with a 
confidence metric.  

Another key feature of the IRDB is the ability to “clone” a program. A cloned program is 
identical to the program it was cloned from, except with a new name, and extra information to 
track the creation of clones. The primary purpose of a clone is to facilitate programmatic 
experimentation. For example, suppose that we wish to determine which remediation technique 
would be effective for a given program. We might choose to clone the program, then instrument 
the program with the remediation technique for testing.  

The clone feature has one other primary purpose: namely we need a “before” and “after” 
version of the program to support automatic generation of the Sprockets needed to execute the 
modified program. By tracing a cloned program’s hierarchy back to the untransformed program, 
we can successfully generate Sprockets to represent the changes between the original program 
and the transformed program. By examining these differences, automatic generation of the 
Sprockets is fast, efficient and reliable. 
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Helix/Kevlar’s IRDB is implemented using PostgreSQL. Measurements show that it is fast 
and efficient. 

3.2.2 Static Analysis for Reliability and Security (STARS) 

A key component of Helix/Kevlar is STARS (STatic Analyzer for Reliability and Security).  It 
was developed to determine certain security properties of a binary program [10]. STARS is 
implemented as a plug-in to the popular IDA Pro disassembler [9]. The static analyzer currently 
operates on Linux/x86 binaries, although it can be targeted to any platform that is targeted by 
IDA Pro. Currently, IDA Pro targets more than 40 processors and operating platforms. 

A key function of STARS in Helix/Kevlar is the identification of the instructions of the 
application. As discussed by Debray and Andrews, precisely disassembling a binary is, in 
general, not a solvable problem [24]. In practice, STARS rarely misidentifies data as code. As 
noted by Debray and Andrews, such misidentifications would be disastrous for a static code 
rewriter. Because Helix/Kevlar uses software dynamic translation to transform code, 
Helix/Kevlar is able to tolerate any inaccuracies—we will never rewrite data as code as the 
rewrite process occurs during the fetch/execute/translate phase of the dynamic translator. That is, 
only code that should be executed is processed. 

The static analyzer analyzes the control flow and data flow of the entire program binary. The 
analyzer builds a fully pruned SSA (Static Single Assignment) form representation of the 
program and performs numerous data flow analyses on this representation [4,31]. The data flow 
analyses include a simplified type system, in which registers and stack locations are typed as 
being data pointers, integers, floating-point values, strings, or code pointers. 

All information determined by STARS is recorded in the IRDB. Later analysis and 
transformation phases of Helix/Kevlar use this information. During these phases, as additional or 
more accurate information becomes known, information in the IRDB is updated. 

3.2.3 Sprocket Execution Engines 

In Helix/Kevlar, transformations to the binary are either applied statically or dynamically. Each 
approach has advantages. Static rewriting typically has a smaller memory footprint and lower 
run-time overhead. Dynamic rewriting supports a moving target defense by constantly 
transforming the application. It also permits a single binary to be deployed with transformations 
applied dynamically to create an ever-changing attack surface—the metamorphic shield. While 
the overhead of dynamic rewriting is reasonable, for resource-constrained devices, static 
rewriting may be preferred. The rewrites to be applied are specified by sprocket program 
expressed using the Sprocket Program Rewriting Interface (SPRI). 

SPRI and Sprocket Generation 
SPRI defines simple rewriting rules that come in two forms. The first form, the redirect form, 
transfers control to a specified target address (lines 1 and 3 in Figure 4). The second form, the 
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instruction definition form, indicates that there is an instruction at a particular location (line 2). 
The net effect of applying the SPRI rules shown in Figure 4 is to rewrite the instruction sub 
esp, 20 instruction at address 0x8000 to be sub esp, 40. The stack layout transformation 
(described in Section 3.3.2) uses such rules to transform stack frame allocations. 

Together these two types of rules provide the foundation for building a wide range of 
Sprocket programs. The example shown illustrates the equivalent of a small patch that modifies 
only 1 instruction. At the other end of the scale, transformations such as ILX (instruction location 
transformation, described in Section 3.3.1) seek to rewrite all instructions in a binary. 

 

Figure 4: Sprocket rewrite rule to change stack frame allocation. For exposition purposes, 
all instructions are 1-byte long. 

Despite its conceptual simplicity, manually writing Sprockets in SPRI would be a tedious 
and error-prone process. Instead, Sprocket developers apply their transformations using a high-
level C/C++ API (application program interface) to manage the creation and deletion of program 
variants, and to manipulate program state, e.g. to insert, delete, or replace instructions and re-
route control flow. The API transparently interacts with the IRDB to commit any changes. 

With this architecture, the composition of Sprockets is naturally performed by chaining 
together transformations: one Sprocket encodes its transformation in the IRDB, the next Sprocket 
then takes as input the new database state, and then effects its own transformations. Helix/Kevlar 
then automatically generates SPRI rules for any program variants by essentially performing a 
“smart diff” between the IRDB representations of a variant and the original binary. 

Once the SPRI rules are generated, Helix/Kevlar can use either Strata or Zipr to instantiate 
the transformations. 

Strata 
Figure 3 shows the dynamic translation of a binary using Strata to apply the transformations 
specified by the Sprockets. While we use Strata as our underlying SDT infrastructure, we note 
that Sprockets could be similarly implemented via any SDT tool [3, 17, 19, 25, 26, 29]. 

Original Program Fragment: 
(a) 0x8000 sub esp,20 

Rewrite rule: 
(1) 0x8000 -> 0xFF00 
(2) 0xFFF0 ** sub esp,40 
(3) 0xFF01 -> 0x8001 
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Strata dynamically loads an application and mediates application execution by examining 
and translating an application’s instructions before they execute on the host CPU. Strata operates 
as a co-routine with the application that it is protecting. Translated application instructions are 
held in a managed cache called a fragment cache. Strata is first entered by capturing and saving 
the application context (e.g., program counter (PC), condition codes, registers, etc.) Following 
context capture, Strata processes the next application instruction. If a translation for this 
instruction has been previously cached, Strata transfers control to the cached translated 
instructions. 

If there is no cached translation for the next application instruction, Strata allocates storage 
in the fragment cache for a new fragment of translated instructions. Strata then populates the 
fragment by fetching, decoding, and translating application instructions one-by-one until an end-
of-fragment condition is met (e.g., an indirect branch). As the application executes under Strata’s 
control, more and more of the application’s working set of instructions materialize in the 
fragment cache. 

Implementation of Sprockets requires several simple extensions to a typical software 
dynamic translator. First, we must modify Strata startup code to read the SPRI rewrite rules (not 
pictured). Next, Strata’s instruction fetching mechanism is overridden to first check, then read 
from SPRI rewrite rules as appropriate. Lastly, the next-PC operation is modified to obey any 
redirection rules that are specified. 

Finally, we must take steps to protect Strata itself. To thwart a compromised application 
from overwriting Strata’s own code or data, we use standard hardware memory protection 
mechanisms. When executing the untrusted application code, Strata turns off read, write, and 
execute permission on the pages of memory it uses, leaving only execute (but not write) 
permission on the code cache. Strata also watches for attempts by the application to change these 
permissions. Previous work has shown this technique to be effective and that it costs very 
little [13]. 

Zipr 
As noted previously, dynamic rewriting and software dynamic translation are not appropriate in 
all cases. One type of program that causes dynamic rewriting techniques to have high overhead is 
a program that generates code dynamically, such as Java JIT Compiler or JavaScript engine. 
Dynamic translation must flush cached code whenever new code is generated, which causes the 
translation system to do extra work. Typically slowdowns might be at least 3 times slower than 
the untranslated program. A new addition to the Helix/Kevlar toolchain during the performance 
period was Zipr, a highly efficient static binary rewriter. 

Zipr addresses many of the problems suffered by existing static binary rewriters such as high 
space overhead (as much as 2X), the inability to translate arbitrarily compiled programs (such as 
code compiled to be position independent), high runtime overhead, and requiring additional 
compiler information which may not be available [2, 6, 15, 23, 28, 30, 32, 33, 37]. 
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As part of this contract, we created a new type of static rewriter. Our breakthrough 
technology, called Zipr, is capable of re-using existing code segments and disambiguating any 
data that may reside within the code. Using deep static analysis provided by STARS and the 
analyses provided to build the IRDB, our prototype vastly outperforms existing static rewriting. 
Zipr can transform arbitrary binaries, compiled by any compiler, and has modest runtime and 
memory overheads. The following paragraphs provide additional details. 

Our technique uses pinned addresses, locations of instructions in the original 
program/library that may be targeted indirectly at runtime. Addresses of units of data are always 
pinned. On the other hand, the address, a, of an instruction, i, in the original program is pinned if 
the original program calculates dynamic program control references to a at runtime. In this case, 
a will be stored as the pinned address value of i. In other words, pinned address analysis depends 
directly on correct calculation of indirect control flow. 

Addresses of instructions may be pinned for a number of reasons. Most commonly, however, 
address are pinned because they are the targets of indirect branches (IB). IB targets (IBTs) appear 
in jump tables, immediately after call instructions, the beginning of functions, etc. Just because 
program control reaches an instruction indirectly does not mean that it’s address must be pinned. 
There are cases where the program’s behavior with respect to an IBT can be analyzed and 
modeled statically. 

For our rewriting methodology to operate correctly it is not necessary to determine the set of 
possible targets for every particular indirect branch instruction. Our technique relies only on the 
fact that P, the set of all pinned addresses, contains at least all the addresses of IBTs in the 
original program. In other words, we rely on the creation of P such that B⊆P where B is the set 
containing the addresses of every IBT from the original program. 

It is possible to calculate P naively by making the address of every instruction of the original 
program a member. This assignment clearly satisfies the requirement. As explained when 
describing reassembly such an assignment does not give the reassembly technique the flexibility 
to re-place instructions. Moreover, it does not allow for the creation of an efficient rewritten 
binary program.  

Ideally B=P. As |P−B| grows, our method generates an increasingly less space-efficient 
rewritten binary. Therefore, our algorithm leverages a set of heuristics that analyze the original 
program’s CFG to select pinned addresses. Again, it is imperative that our technique be 
conservative; missing a pinned address will cause our rewriting algorithm to generate a 
transformed binary that does not operate correctly. 

For a more detailed description of the algorithms used to identify pinned addresses of 
instructions and data, see Hiser et al. [11] and Zhang et al. [36]. For binaries generated by GCC, 
target compiler of Helix/Kevlar, our prototype implementation, we are able to handle very 
complex programs including libraries such as glibc. Empirical evidence suggests that 
Helix/Kevlar works for programs generated by LLVM as well. 
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Pinned addresses of instructions play an important role in reassembly. Throughout the 
rewriting algorithm, a pinned address, a, of an instruction in the original program corresponds to 
exactly one instruction, i. IR Construction assigns the original correspondence between a and i. 
During the Transformation phase, one or more transformations will change i to i' and a will still 
correspond to i'. For the modified program to function according to the semantics of the original 
program, as subsequently modified through user-specified transformations, when the transformed 
program’s program counter (PC) reaches address a, instruction i' must be executed. The 
Reassembly phase (described later) maintains this condition. 

 

Figure 5: Pinned addresses, transformations and references. 

Figure 5 shows an example of this process. Instruction i is associated with pinned address a. 
The Pad Stack transformation modifies i so it allocates a larger stack. The modified instruction, 
i', is still associated with a. When i' is eventually placed at address 0x30A3 in the modified 
program, the reference at a is updated appropriately.  

Zipr’s Transformation phase modifies the original program’s IR. User-specified transforms 
are optional transformations that modify or add/remove functionality to/from the original 
program. Mandatory transforms make it possible for the user-specified transforms to modify the 
original program’s IR without regard for the details of the specific target platform. 

Mandatory transformations in the Transformation phase produce a modified IR that makes it 
possible for the reassembly algorithm to place recreated instructions arbitrarily in the modified 
program’s address space. 
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Mandatory transformations most commonly address issues with the target platform and its 
ISA. For example, many x86 instructions can use PC-relative addressing. The jump instruction is 
one such instruction.  

Assume instruction i1 transfers control to i2 with a jump. On an x86, i1 is a jump to ai2
, the 

address of i2. However, ai2
 is encoded in i1 relative to ai1

. To be able to relocate instructions, 

relationships like these that rely on the instructions’ addresses in the original program have to be 
translated into logical links. Fortunately, the IR is built using logical connections among 
instructions. Returning to the example, the IR links i1 to i2, not ai2

. Memory operations (loads 

and stores) may also be PC-relative. 

Unless this situation is handled, PC-relative instructions’ placement in the modified program 
at different addresses will cause an error during execution of the modified program. Each target 
platform’s ISA is different and our method’s modular approach makes it possible for the user to 
apply as many mandatory transformations as necessary to accommodate the target platform. 
Helix/Kevlar includes all the required mandatory transformations for the x86 and x86-64 
platform. 

Once all the mandatory transformations are applied, our technique applies any user-specified 
transformations. These are transformations that the user implements that will modify the original 
program. As mentioned earlier, there are many ways a user could modify the original program to 
improve its security, reliability and dependability.  

Instead of forcing the user to choose from a set of predefined transformations, Helix/Kevlar 
provides the user an API to develop their own. The API allows the user to iterate through the 
functions and instructions of the original program. Users can change (modify or replace) or 
remove instructions. They can even add new instructions or specify how to link in pre-compiled 
program code and execute functions therein. 

At the heart of our approach’s novel reassembly technique is an algorithm that carefully 
reassembles the modified IR into a series of instructions and units of data which are then 
assigned a location in the modified program’s address space.  

The process begins by creating references in the modified program at the pinned addresses 
from the original program. These references target an pinned address’ associated instruction or 
unit of data, as explained previously. The targets of those references (and their fall-through 
instructions) are placed arbitrarily in the remaining free space and the references are marked as 
resolved. In the process of resolving the initial set of references, new unresolved references may 
be introduced. The targets of those references are again placed arbitrarily in the remaining free 
space and the references are resolved. The process continues until there are no more unresolved 
references. 
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Figure 6 illustrates the internal state of the algorithm as it reassembles a program. The 
following subsections explain the reassembly algorithm in detail. 

At the outset, the modified program’s text segment is empty. The data segment is copied 
directly from the original program. The reassembly algorithm begins by placing unresolved 
constrained references at pinned addresses.  

A reference is a link to data or instructions in a dollop. A dollop is a linear sequence of 
instructions linked by their fallthroughs. References are unresolved when they link to data or 
dollops in IR form. When a dollop is reconstructed from its IR into instructions and assigned a 
location in the modified program’s address space, references are resolved to those particular 
addresses. In Figure 6, r1, r2 and r3 are references. r1 and r2 are resolved and r3 is unresolved. 

A reference is constrained when there is a restriction on where its target may be placed 
within the modified program’s address space. Because a reference includes an address (its 
target), the implementation of the reference itself must be at least as large as the encoding of that 
address. The size available for encoding the address may be limited when the address of two 
adjacent instructions are pinned.  

In Figure 6, there is a 2-byte instruction i1 at 0x400EE and a 3-byte instruction i2 at 
0x400F0 and both have pinned addresses. The reference to the transformed instruction i1' will 
have to encode the instruction’s address when it is placed. No matter how the ISA encodes 
addresses (relative or absolute), the encoding cannot exceed two bytes without interfering with 
the reference at the adjacent pinned address. If the ISA does not support addressing the full 
address space in two bytes, the reference at 0x400EE must be constrained. 

Once a constrained unresolved dollop reference is placed at each pinned address, the 
reassembly algorithm determines which references can be unconstrained. Depending upon the 
ISA of the implementation target, there is a minimum size, s, necessary to store an instruction 
that addresses the entire address space. If the space between adjacent constrained unresolved 
references r1 and r2 is greater than s, our algorithm converts r1 to an unconstrained unresolved 
reference. In Figure 6, r2 would initially have been a constrained unresolved reference but has 
been converted to an unconstrained unresolved reference because there are no pinned addresses 
in [0x4000F0,0x4000F0+s). 

For every remaining constrained unresolved reference, r, that references instruction i, a new 
unresolved unconstrained dollop reference, r', is added in the modified program’s address space. 
r is resolved to r' through one or more intermediate references and r' is set to reference i. This is a 
process known as chaining [16]. In Figure 6, r1 is a reference to d1 that is chained through r3. 

At this stage of the reassembly, all unresolved references are unconstrained. Besides the 
information from the IRDB, the reassembly algorithm relies on three data structures:  
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• uDR: The list of unresolved references,  

• D: A list of unplaced dollops (this list is initially empty),  

• M: A mapping between instructions and their location in the modified program’s address 
space.  

The final stage of the reassembly algorithm is iterative: Every unresolved reference, ru, to 
instruction i in list uDR is considered in turn until the list is empty. 

Reference ru is handled in one of two ways. Either i is already placed in the modified 
program’s address space or it is not. In the former case, the reassembly algorithm simply emits a 
resolved unconstrained reference to M[i]. ru is removed from uDR and the loop continues. The 
latter case is more involved — a dollop containing i must be retrieved or constructed and then 
placed. The reassembly algorithm searches D for d, the dollop containing i.  

If no dollop is found, the reassembly algorithm constructs a dollop that contains i. The 
dollop construction process is straightforward. Dollop d begins with instruction i0 and includes i0
’s fallthrough i1, i1’s fallthrough i2, and so on. The last instruction in d, in, is the first instruction 
that has no fallthrough. The reassembly algorithm places the instructions of d linearly in a 
consecutive block of addresses. In Figure 6, d2 is a placed dollop. 

When there is no block of free space big enough to accommodate the instructions of d, the 
dollop may be split. Furthermore, large dollops may be split to fill small blocks of free space. 
Dollop d of instructions i1...is...in is split by choosing a split point, is. Dollop d is truncated to 
contain instructions {i1...is−1} and d' is built to contain instructions {is...in}. An unconstrained 
unresolved reference r that references is is appended to the end of d. The unresolved reference r 
is added to uDR and d' is added to D. 

After d is placed, ru is resolved and the map M is updated for all instructions in d. Any other 
unresolved references that target instructions in d are resolved as well. In Figure 6, r2 is resolved 
to d2.  

An instruction i1 in the just-placed dollop d may reference another instruction, i2. If i2 is 
already placed, that reference is resolved immediately. Otherwise, an unresolved reference r2 is 
created that references i2 and r2 is added to uDR. 

The modified program is completely reassembled when uDR is empty. 
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Figure 6: The reassembly algorithm in the process of reassembling a modified program. 

Again, Figure 6 illustrates these concepts in the context of an program being reassembled. In 
this example we will describe Helix/Kevlar, the prototype implementation of our technique for 
the x86 ISA where there are variable length instructions. A jump — the implementation of 
references for this target — can be as short as two bytes (program control transfer is constrained 
to nearby locations) and as long as five (program control can be transferred anywhere in the 
program).  

In this example there are two pinned addresses, two dollops and three references. Dollop d2 
is already placed; dollop d1 is not. Reference r1 began as a constrained unresolved reference to 
an instruction in dollop d1. For expository purposes, assume that d1 could not be placed at an 
address that is addressable in 2 bytes from r1. Jump chaining was used and reference r1 was 
resolved to r3 and r3 became an unresolved unconstrained reference to the instruction in d1. 

Because dollop d2 is already placed, reference r2 is resolved. Reference r2 began as a 

constrained reference but because there were no pinned addresses in [0x4000F0,0x4000F5), 
r2 was converted to an unconstrained reference. 

We have evaluated Zipr’s robustness and efficient using SPEC2006 on 32- and 64-bit 
machines. Zipr was able to properly transform every application in the benchmark suite. All 
quantitative results presented are from 32-bit executions of SPEC2006 on a test host with a quad-
core 3.0GHz CPU (AMD Phenom II X4 B55) and 4GB of RAM that ran Ubuntu 10.04 LTS with 
version 4.4.3 of the GCC compiler suite. The baseline results for comparison were generated 
with a native run of SPEC2006 on that same host. All values presented in Figure 7 are 
normalized against those baseline results. 

To quantify the overhead of the Helix/Kevlar technique itself, we compared the performance 
and size of the C-based SPEC applications before and after applying a user-specified Null 
Transformation. The Null Transformation is the most basic transformation. In fact, it is not a 
transformation at all. It is simply a no-op modification invoked on the IR during the User-
specified Transformation stage of the Transformation Phase. In other words, the original and the 
modified programs are semantically equivalent. Therefore, any change in program size (on disk) 
or performance is a consequence of the rewriting algorithm per se. 
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Figure 7: Inherent overhead of programs transformed using Helix/Kevlar prototype 
implementation. 

The left bars of Figure 7 shows the size overhead for the C-based SPEC2006 benchmark 
applications when modified with the Null Transformation. On average, the modified binary 
programs are 4% larger than the original. The right bars of Figure 7 shows the performance 
overhead for each of the C-based SPEC2006 benchmark applications when modified with the 
Null Transformation. On average, the modified binary programs execute 5% slower than the 
original.  

To reiterate, although we are presenting only the results for the C-based SPEC applications, 
Helix/Kevlar correctly transforms all of the SPEC2006 benchmarks whether they are 
implemented in C, C++ or Fortran. While there is ongoing work to improve the performance of 
the prototype implementation, the overall results prohibitively validate the feasibility and 
inherent efficiency of the rewriting technique.  

Rodes et al. [21] describe an SLX program transformation (hereafter referred to as P1) that 
“[defends] binaries against intra-frame stack-based attacks, including overflows into local 
variables” even without access to the program’s source code. P1 “[applies] a combination of 
transformations, including variable reordering, random-sized padding between variables, and 
placement of canaries.” 

P1 was initially implemented using Strata using the same API that Helix/Kevlar exposes to 
its users to rewrite programs statically. Helix/Kevlar applied P1 to a subset of the C-based 
SPEC2006 benchmark applications using the very same implementation. Therefore, the resulting 
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statically rewritten programs benefitted from all the security afforded by P1 without the 
additional requirement of a runtime engine and without reimplementation. 

 

Figure 8: Overhead of P1. 

The left bar of Figure 8 shows that the Helix/Kevlar methodology can add the security 
protection afforded by stack layout transformation with less than 6% increase in the program’s 
on-disk size, on average. The right bar of Figure 8 shows that adding the security of P1 through 
the Helix/Kevlar methodology incurs less than a 5% performance penalty. Our experiments show 
GCC’s built-in stack protection mechanism increases on-disk size by 4% and adds more than 5% 
to execution time on these same benchmarks, demonstrating Zipr’s efficiency. 

3.3 Helix/Kevlar Protections 

The Helix/Kevlar architecture is flexible and powerful. It can dynamically apply a wide range of 
diversity transformations on a running binary, it can check and enforce various program 
properties that have been extracted from the binary or specified by an administrator, and it can 
insert remediation code. The following sections describe some of the Helix/Kevlar protections.  

3.3.1 Instruction Location Transformation (ILX) 

A powerful diversity technique is to randomize the location of code so an attacker has difficulty 
precisely locating targets of attack (e.g., entry point to functions, tables of pointers to functions, 
etc.). For example, most systems now routinely use Address Space Layout Randomization 
(ASLR) to make exploiting weaknesses difficult [35]. ASLR has several positive attributes. It is 
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cheap to apply incurring little or no run-time overhead, and it can It can be applied to any binary, 
It is applied automatically—no user intervention or action is necessary. 

Unfortunately, ASLR implementations have low entropy. ASLR on a 32-bit architecture 
only provides 16 bits of entropy. Furthermore, ASLR is not applied universally throughout the 
address space. Even when using dynamically-linked libraries, it is common for the main program 
text to start at a known fixed location. Because of these limitations, ASLR-protected code is 
subject to attack [5, 22, 27]. 

Instruction Location Transformation (ILX) is a technique that seeks to scatter instructions in 
a program randomly throughout the address space. In contrast to ASLR, ILX provides 31 bits of 
entropy on a 32-bit machine. Furthermore, ILX is applied universally to all segments. Thus, the 
major limitations of ASLR are eliminated. 

Figure 9 conceptually illustrates ILX. The top left of the figure shows the control-flow graph 
of a particular program segment. The compiler and the linker collaborate to produce an 
executable file where instructions are laid out so they can be loaded into memory when the 
program is executed. A typical layout of code is shown at the bottom left of the figure. The right 
side of the figure shows the layout of the code when ILX is applied. 

 

 
Figure 9: ILX code example 
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To link instructions together, an ILX Sprocket contains a fallthrough map shown at the top 
right of Figure 9. This map uses SPRI to specify the execution successor of each instruction in 
the program.  

Together, we call the fallthrough map and randomized instruction locations an ILX 
Sprocket. Figure 10 shows how an ILX program could be created. First, STARS detects the 
instructions and functions in a program. Next, the program is analyzed for indirect branch targets, 
call sites, branches, etc. Finally, the reassembly engine uses this information to relocate the entire 
program with each instruction in a randomized location, and creates the fallthrough map.  

To execute the randomized program, we use Strata to fetch and execute the instructions from 
the ILX Sprocket. Strata interprets the fallthrough map to fetch and execute instructions on the 
host hardware. Preliminary results indicate that this process can be made very efficient. The 
preliminary prototype achieved only 13% runtime overhead on the SPEC2006 benchmark suite. 
Furthermore, randomly scattering instructions throughout the address space significantly reduces 
the attack surface for mounting any arc-injection attacks, including attacks based on return-
oriented programming techniques. Hiser et al. provides a more complete discussion of the 
benefits of ILX and full details of its implementation [11]. 

  

Figure 10: ILX Static Analysis 

3.3.2 Stack Layout Transformation (SLX) 

A common target of malicious attacks are locations on the stack (e.g., return addresses, frame 
pointers, function pointers, and critical data). SLX is a transformation that is applied to a running 
application to dynamically randomize the location of variables on the stack and place canaries to 
determine if an attack has been attempted. 
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Transformation of the stack frame layout for a function requires determination of:  

1. The current layout of the stack frame, e.g. the addresses and sizes of various stack data 
objects (incoming arguments, saved registers, return address, local variables, outgoing 
arguments)  

2. The instructions that generate an address of a data object on the run-time stack.  

In principle, if this information were available, the layout of the stack frame could be 
changed and the instructions that generate stack addresses modified to reflect the new layout. The 
new layout of the stack frame could be based on any security-relevant criteria, e.g., memory 
objects could be placed in random order, padding introduced before, after or within the stack, 
canaries included, variables promoted to the heap, etc. While this information is readily available 
to the compiler when given a program in source code form, Helix/Kevlar must recover this 
information solely based on the binary representation. 

In our approach, static analysis (STARS) is used to determine all the necessary details of the 
binary program. However, when starting with a binary program, precise determination of the 
stack layout and the instructions that generate stack addresses for any given function is 
problematic (indeed, even the very basic notion of a function is problematic at the binary level). 
Modern compilers employ a wide range of techniques to minimize both the use of storage and 
program execution time. The result is binary programs with unpredictable structures. 

Our approach to determination of the stack layout and the instructions that reference the 
stack is based on two assumptions about addressing: (a) the predominant mechanism by which 
instructions access stack variables is through scaled or direct addressing based on an offset 
indicating the variable starting location, and (b) where indirect addressing is used, that use is for 
access to variables whose locations can be inferred from previous direct or scaled addressing. 
Starting with these assumptions, layout inferences are produced using a set of simple heuristics 
that rely upon additional assumptions concerning: (c) the manner in which the stack is allocated 
and deallocated, and (d) the general stack frame layout. 

The assumptions listed above do not necessarily hold (although assumptions (c) and (d) hold 
for binaries produced by C/C++ compilers that use the cdecl x86 calling convention). Indeed 
through BED and TSET, the Helix/Kevlar architecture explicitly compensates for any 
transformations that might rely on erroneous information. Our approach to stack layout 
transformation is speculative. Initial inferences about the stack are created, and these inferences 
are then evaluated and refined if necessary to ensure that they preserve the program’s semantics. 

In our current approach, we limit transformations to placement of memory objects in random 
order and the introduction of random length padding. Vetting of these transformations is by 
testing with BED and TSET. Furthermore, we use diversity as an error amplification technique 
to detect bad stack layout inferences. The basic idea behind error amplification is as follows: if a 
hypothesized stack layout inference is correct, then any semantic-preserving transformations 
should result in a correct program variant. We can therefore develop a multitude of such 
transformations, e.g., permutation of the order of variables, and vet each of the variants. If any of 
them fail, and assuming that our transformation is correctly implemented, we can then not only 
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reject the variant but also the inferred stack layout. Note that this process is the exact opposite of 
validating transformations by using testing to validate optimizing compiler transformations. 

For each detected function in a binary, SLX randomizes the stack layout using an aggressive 
inference to reorder variables, e.g. using offsets in the disassembly of the program to infer 
variables. If the tests are passed, we use error amplification before creating the final variant. The 
layout is randomized a second time and the resulting program tested again. If the tests are passed 
following the second randomization, a third randomization is effected that reorders the stack 
elements and places padding between stack objects. If the tests are passed with this 
randomization, then the transformation is assumed to be satisfactory, and the analysis continues 
with the next function. 

If one or more tests fail during analysis of a function, the inference about the stack layout is 
abandoned, and a simpler, less aggressive inference is used. The least aggressive inference 
besides not changing the function at all is one in which the entire stack frame is relocated but the 
order of variables is left unchanged. Preliminary work suggests that reordering variables is an 
effective error amplification technique as reordering misidentified variables will most likely 
result in a program crash. Thus, three rounds of error amplification appears sufficient to vet SLX 
transformations. 

Our current approach has been evaluated on a variety of benchmarks, and the results are 
promising [21]. The use of BED and TSET resulted in binaries whose functions were 
transformed with different levels of aggressiveness, ranging from no transforms, to transforms 
that reordered a subset of the local variables, and in some cases, we were able to infer and reorder 
all local variables on the stack frame. The ability to reorder stack variables for security purposes 
is standard in some compilers, e.g., the ProPolice extension to gcc reorders buffers higher in 
memory than other variables to prevent local overflows [7]. Our results demonstrate that we can 
enable similar transformations but using only binaries. 

3.3.3 Heap Randomization and Transformation (HLX) 

Helix/Kevlar’s Heap Layout Transformation (HLX) provides protection against a variety of 
common memory errors, such as buffer-overflows, use-after-free, and double-free errors. It 
achieves these protections by detecting (using STARS analysis) memory allocations within the 
program and rewriting the allocations to randomly increase the allocation size. HLX also detects 
memory deallocation sites and maintains a pool of objects that were marked as free. When 
additional memory is needed (such as the free object pool has become too large), the free pool is 
checked and objects are randomly selected for deallocation.  

 Table 1 provides an example. The left portion shows unprotected source code that allocates 
a buffer, and uses that buffer to manipulate input. Unfortunately, the code has a off-by-one error, 
and allocates too few bytes to hold the newly formed string, perhaps because additional 
characters were were added to the manipulation, but the size of the buffer was not updated. The 
right side of the figure shows how HLX would transform the program. The amount of memory 
allocated gets increased by a random amount, and free pool management code is inserted. In this 
case, the off-by-one error is converted from a possibly crash-inducing bug, into a fully-correct 
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program. While not all programs can be completely repaired, the transform still prevents exploits 
because an attacker cannot reliably predict where heap items may be located, or what size a 
buffer might be to predictably overrun the buffer. 

 Table 1: Example without and with HLX, respectively 

int size = strlen(input);  
char* newValue = malloc(size+1); 
strcpy(newValue,input); 
sprintf(newValue, "%s!\n", input);  
log("The input is %s", newValue);  
free(newValue); 

int size = strlen(input); 
cleanup_free_pool(); 
char* newValue = 
malloc(random_increase(size+1));  
strcpy(newValue,input);  
sprintf(newValue, "%s!\n", input);  
log("The input is %s", newValue);  
add_to_free_pool(newValue);  

 

Unlike the example, however, HLX provides high-entropy randomization on a binary 
program where no source code is available, like the rest of Helix/Kevlar. 

3.3.4 Instruction Set Randomization (ISR) 

A common and very dangerous form of security attack involves exploiting a vulnerability to 
inject malicious code into an executing application and then cause the injected code to be 
executed. A theoretically-strong approach to defending against any type of code-injection attack 
(irrespective of the vulnerability) is to create and use a process-specific instruction set that is 
created by a randomization algorithm. Code injected by an attacker who does not know the 
randomization key will be invalid for the randomized processor effectively thwarting the attack.  

Helix/Kevlar takes advantage of ISR to help defeat these kinds of attacks. ISR uses 
Helix/Kevlar’s static analysis and runtime support to identify code locations, and encrypt them 
during a process’ loading procedure. Helix/Kevlar versions of ISR is based on the first practical 
version of ISR [12]. Helix/Kevlar further extends this technology to monitor the application for 
dynamically loaded code (shared objects or .dll’s) and encrypts that code as it enters the runtime 
system. 

Helix/Kevlar’s code-injection security can be further enhanced by configuring it as a 
metamorphic shield [18]. The metamorphic shield (MMS) technology not only randomizes the 
code at program startup, but periodically re-randomizes the code’s encryption characteristics as 
the program is running. Such randomization prevents attackers from exhaustively searching for 
the encryption key, keeping the program safe from code injection from even the most determined 
attackers. 
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3.3.5 PC Confinement (PCC) 

ISR provides diversity which prevents malicious code from being injected into the running 
application, but an attacker may still be able to re-use code that is already in the application to 
enact security violations, called an arc-injection attack [20]. Indirect branches, such as function 
calls via function pointers and function return instructions, are vulnerable to such an attack if the 
branch’s data is overwritten with a buffer overflow, format string issue, or other program 
weakness. Table 2 contains an example of a possible arc-injection attack.  

Table 2: Example of arc-injection attack 

void main(){ 
   auth = authenticate(); 
   vulnerable_code(); 
   if(auth) { 
      send_secret_data(); 
   } 
} 

 

In the table, if the code in vulnerable_code() can overwrite the function’s return 
address (or even just part of the function’s return address via a partial overwriting attack!  [1]), 
the return instruction can possibly jump anywhere in the program. It may jump to the system() 
function to execute shell commands, or to the send_secret_data() call, to more steathily violate 
the application’s security policy. 

Helix/Kevlar’s ILX feature can defeat many of these attacks by randomizing the 
application’s code. However, Strata’s translation and Sprocket execution code are at static 
locations, which may still be targets of arc-injection attacks. Helix/Kevlar can protect all 
statically located code by employing PC confinement (PCC). PCC is a type of program 
shepherding where indirect branches are monitored and only allowed to transfer control to ILX-
randomized code [14]. 

Helix/Kevlar’s static analysis identifies the location of valid indirect control transfers, and 
the run-time environment efficiently monitors the execution of indirect branches. Indirect control 
flow is only allowed if the destination is acceptable. Consequently, PCC and ILX can disallow 
control transfers to unrandomized code, such as Strata’s Sprocket execution code, thereby 
eliminating the vast majority of arc-injection attacks. 

3.4 Technology Communication 

As part of our approach to transitioning the Helix/Kevlar technology, we participated in a variety 
of meetings, prepared various publications, and gave several presentations during this period. 
Our most significant and visible communications are: 
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• At the request of Patrick Hurley of AFRL, we provided a demonstration copy of 
Helix/Kevlar to members of the Technical Cooperation Program (TTCP). The partners 
include Australia, New Zealand, Canada, United Kingdom, and the United States.  

• We presented a paper, Security Protection of Binary Programs, at the 10th IET System 
Safety and Cyber-Security Conference in Bristol, UK on October 21, 2015 through 
October 22, 2015.  

• Jack Davidson presented a briefing on Helix technology to the United States Postal Service 
(USPS) on October 16, 2015.  

• Jack Davidson was an invited participant in the Moving Target Workshop held at George 
Mason University on August 31, 2015 through September 1, 2015. The title of his talk was 
"Evaluating the Effectiveness of the Helix’s Metamorphic Shield."  

• Anh Nguyen-Tuong met with Azbil, a maker of industrial automation and control products, 
to discuss the use of Helix/Kevlar to protect industrial systems.  

• Jack Davidson made a presentation on cyber security research to the Department of 
Computer Science’s Industrial Advisory Board on July 16, 2015. Representatives of 
Capital One, Palantir, Appian, Lockheed Martin, and Excella were in attendance.  

• We presented a paper, Joza: Hybrid Taint Inference for Defeating Web Application SQL 
Injection Attacks, at the 45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks in Rio de Janeiro, Brazil on June 22–25, 2015.  

• Jack Davidson presented a technology briefing to Northrop Grumman on May 28, 2015.  

• Anh Nguyen-Tuong Airbus presented a briefing on Helix technology to Airbus cyber 
security group on October 19, 2015. 

4.0 RESULTS AND DISCUSSION 
We present our results (as indicated in the following subsections) for each reporting period 
during the project. 

4.1 Period 1: 19-FEB-2015 through 30-JUN-2015 

4.1.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 
technology developed under contract FA8650-10-C-7025, FA8650-13-2-0096, and others. 
Towards this goal, we provided Northrop Grumman with a virtual machine image that contained 
the complete Helix tool chain, directions for applying the tools to applications, and sample 
programs that had already been protected. We worked with the Northop Grumman personnel 
(Russ Hall and Kevin Reynolds) to enable Northrop Grumman to perform red team attacks 
against protected applications to demonstrate the effectiveness of the Helix protections. We 
expect the results of this exercise in the near future (i.e., a few weeks). 
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4.1.2 Technical Accomplishments this Period 

There were several major technical accomplishments this period. First, we completed the 
retargeting of Strata, our software dynamic translator, to Windows (64-bit). Strata is a key 
component of Helix in that it provides the capability to dynamically translate code. This 
capability provides the ability to apply various diversity transformations and to shift the attack 
surface if desired. Akshay Joshi (asj5b@virginia.edu) is doing this work as part of his 
Ph.D. research. 

A second major technical accomplishment was to use Zipr, our static binary rewriting 
technology, to rewrite, diversify and protect several interpreters/JIT such as the main executable 
of Java VM, Python, and Node.js, the Javascript runtime). 

A third major technical accomplishment was to demonstrate that Zipr was able to apply and 
compose diversity transformations (i.e., block-level location randomization and stack padding) to 
a small JIT program. 

A fourth major accomplishment was a demonstration that Zipr with a moving target defense 
could defeat blind ROP attacks. A paper is being written for submission to a major security 
conference. Will Hawkins (whh8b@virginia.edu) is doing this work as part of his Ph.D. 
research. 

4.1.3 Improvements to Prototypes This Period 

We enhanced Zipr to handle the main executable of the Java VM and other interpreters such as 
Python and Javascript. 

We continued to fix both software errors and performance and scalability issues throughout 
the Helix tool chain (e.g., STARS, Strata, Zipr, etc.) 

4.2 Period 2: 01-JUL-2015 through 15-AUG-2015 

4.2.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 
technology developed under contract FA8650-10-C-7025, FA8650-13-2-0096, and others. 
Towards this end, we have been improving our technology to work on the Java VM (JVM) and 
the Windows 7 platform. 

Our focus with Java has been on the Ubuntu platform, with ultimate goals of using this for 
GCCS under Solaris. To achieve our goal, we’ve been using Zephyr’s static binary rewriter, Zipr, 
to effect changes in binary programs. Zipr’s main benefit is that it is interoperable with dynamic 
code generation (or just in time compilation also known as JITting). We have block-level ILR 
working on the JVM core components, and initial prototypes working on Solaris with smaller 
programs. 
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On Windows, our core analysis and dynamic transformation engines are working with all 
major program features (such as threads and exception handling). 

4.2.2 Technical Accomplishments this Period 

There were several major technical accomplishments this period. First, we enhanced Strata, our 
software dynamic translator, to Windows (64-bit). Strata is a key component of Helix in that it 
provides the capability to dynamically translate code. This capability provides the ability to apply 
various diversity transformations and to shift the attack surface if desired. Akshay Joshi 
(asj5b@virginia.edu) is doing this work as part of his Ph.D. research. Another student, 
Jian Xiang (jx5c@virginia.edu), is working on benchmarking Strata under Windows to identify 
and fix performance issues. 

A second major technical accomplishment was to use Zipr, our static binary rewriting 
technology, to rewrite, diversify the core shared libraries of the Java virtual machine. A major 
component of the JVM is libjli.so, and we have achieved block-level ILR protection. 
Block-level ILR relocates all of the basic blocks in a program so that each machine can have a 
randomized binary to help break the software monoculture. This diversity transform helps defend 
against attacks that rely on knowing the location of key code sections. To ensure that 
performance overheads are acceptable, we have been working on benchmarking Zipr on Ubuntu 
with the help of a student, Will Hawkins (whh8b@virginia.edu). 

We have further improved our development infrastructure so that Ubuntu, Windows, and 
Solaris versions all integrated into one version of the source. This integration allows bug fixes to 
immediately be applied to all versions of the software. Further our testing infrastructure now 
includes nightly tests for Zipr, and we are working to include Windows and Solaris testing 
nightly.  

4.2.3 Improvements to Prototypes This Period 

On Ubuntu platforms, we enhanced Zipr to handle shared objects, including the core shared 
objects of the Java VM.  The core of the JVM is a 12MB shared object called libjli.so.  
Libjli makes up over 90% of the JVM's functionality.  We have tested the JVM against jedit, a 
production-quality, GUI-based, full-featured text editor.  Full functionality is retained.  Initial 
work on Zipr for Solaris is promising.  We have been able to rewrite small executables 
successfully.   

We further continued development on the Windows platform.  The dynamic translation 
execution engine now supports all major features of Windows executables (e.g., threads, 
exception handling, signal delivery, etc.)  Further, the analysis engine is now capable of 
analyzing Windows PE files, creating the IRDB representation of the program, and producing 
rewrite results that can be used by either static or dynamic binary rewriters.   

We continued to fix both software errors and performance and scalability issues throughout 
the Helix/Kevlar tool chain (e.g., STARS, Strata, Zipr, etc.) 
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4.3 Period 3: 16-AUG-2015 through 30-SEP-2015 

4.3.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 
technology developed under contract FA8650-10-C-7025, FA8650-13-2-0096 and others. During 
this period, we focused on robustness of our static analysis and binary rewriting technology. 

4.3.2 Technical Accomplishments this Period 

We leveraged a Red Team exercise performed by Raytheon for another project to test 
Helix/Kevlar’s ability to process the Global Positioning Navigation and Timing Systems 
(GPNTS) being developed by Raytheon for the Navy.  

The major technical accomplishments this period are:  

• Retargeted Helix/Kevlar to RedHat Enterprise Linux.  

• Refactored the STARS interfaces so that analysis could be done on transformed binaries. 
This change enables easy composition of defenses.  

• Worked on moving Helix/Kevlar to the Cloud to enable users to apply Helix/Kevlar 
protections through an easy-to-use web interface. It also allows the use of high-end, 
scalable computing resources for various tasks.  

4.3.3 Improvements to Prototypes This Period 

We have made numerous improvements to the Helix/Kevlar toolchain, in particular for x86-64. 
These include:  

• Ability to run Helix/Kevlar on Redhat Enterprise Linux (RHEL) and process RHEL 
binaries.  

• Fixed numerous bugs in STARS that were exposed through the Raytheon Red Team 
exercise.  

In addition we continue to fix bugs we encounter as part of the porting process to x86-64. 
The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-
64 bit versions. 

4.4 Results Discussion 

During the period of the project, we have done much to understand and promote the possible 
transition of Helix/Kevlar. It is important to note that Helix/Kevlar is playing a key role in two 
new efforts. First, Helix/Kevlar is a key component of our entry in DARPA’s Cyber Grand 
Challenge. We were one of seven (out of 104) teams that have advanced to the finals to be held at 
Def Con 24 to be held in Las Vegas August 4–7, 2016. 
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Second, Helix/Kevlar is also a key component of our effort within DARPA’s Cyber Fault-
tolerant Attack Recovery (CFAR) program. This project seeks to build N-variant systems that are 
provable able to withstand attack. Helix/Kevlar’s diversity transforms are heavily used. 

Third, various meetings, publications and presentations have helped us connect with possible 
transition parters and taught us the constraints customers may have for a transitionable 
technology. Our porting to Windows, Solaris and RedHat platforms has helped us both gain an 
deeper understanding these issues and constraints, as well as made our prototype technology 
more attractive to potential parters. We have learned much, namely that different operating 
systems have different default compilers, which can provide significant challenges to a tool that 
works on the compiler’s output (a binary program). 

5.0 CONCLUSIONS 
Security weaknesses in DoD information systems remain a major challenge for system 
stakeholders. We have advanced the transition of technology developed under the Helix and 
PEASOUP projects to protect Air Force systems of interests. The result are expected to be an 
asset that, if widely deployed by the DoD, would enable a high level of confidence in the security 
of DoD systems, in particular, confidence that certain classes of critical vulnerabilities were no 
longer subject to possible exploitation. 

We have leveraged the opportunity to take the Helix architecture one step closer to 
deployment in real systems by developing Helix/Kevlar, a completely automatic system for 
securing applications against attack by well-funded, determined malicious adversaries. 
Helix/Kevlar armors binary programs and protects them from attacks which could arise from the 
inevitable vulnerabilities that remain after deployment. The source code is not required nor are 
any other development artifacts. These features make Helix/Kevlar of particular value for 
software systems that have to be used but for which no development information is available. 

During this project we have done much to understand and promote the possible transition of 
Helix/Kevlar. First, various meetings, publications and presentations have helped us connect with 
possible transition partners and taught us the constraints customers may have for a transitionable 
technology. Our porting to Windows and Solaris platforms has helped us both gain a deeper 
understanding these issues and constraints, as well as made our prototype technology more 
attractive to potential partners. We have learned much, namely that different operating systems 
have different default compilers, which can provide significant challenges to a tool that works on 
the compiler’s output (a binary program). In particular, some of our Linux-based tools assumed a 
particular calling convention, and different systems use different calling conventions. Abstracting 
the calling convention as much as possible eases technology transition. 
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LIST OF SYMBOLS, ABREVIATIONS AND ACRONYMS 
 

DoD   Department of Defense 

PEASOUP Preventing Exploits Against Software of Uncertain Provenance 

DARPA Defense Advanced Research Projects Agency 

IARPA Intelligence Advanced Research Projects Agency 

NSF  National Science Foundation 

VM  Virtual Machine 

IET  Institution of Engineering and Technology 

IEEE  Institute of Electrical and Electronics Engineers 

ROP  Return-oriented programming 

IFIP  International Federation for Information Processing 

IRDB  Intermediate Representation Database 

SDT  software dynamic translator 

TRL  Technical Readiness Level 

STARS STatic Analysis of Reactive Systems 

BED  Behavior Equivalence Detection 
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TSET  Test Suite Evaluation Technology 

IR  Intermediate Representation 

SSA  Static Single Assignment 

SPRI  Sprocket Program Rewriting Interface 

ILX  Instruction Location Transformation 

API  Application Program Interface 

PC  Program Counter 

IB  Indirect Branches 

IBT  IB Target 

LLV  Low Level Virtual Machine 

RAM  Random Access Memory 

CPU  Central Processing Unit 

GB  Gigabyte 

SLX  Stack Layout Transformation 

ILX  Instruction Location Transformation 

ASLR  Address Space Layout Randomization 

BED  Behavior Equivalence Detection 

HLX  Heap Layout Transformation 

PCC  PC Confinement 

TTCP  Technical Cooperation Program 

USPS  United States Postal Service 

GCCS  Global Command and Control System 

JVM  Java Virtual Machine 

GUI  Graphical User Interface 

GPNTS Global Positioning Navigation and Timing Systems 

RHEL  Redhat Enterprise Linux 
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