

SPARCHS: SYMBIOTIC, POLYMORPHIC, AUTOMATIC,
RESILIENT, CLEAN-SLATE, HOST SECURITY

COLUMBIA UNIVERSITY

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-070

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2016-070 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

/ S / / S /
TODD CUSHMAN WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information

Exploitation & Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2010 – SEP 2015
4. TITLE AND SUBTITLE

SPARCHS: SYMBIOTIC, POLYMORPHIC, AUTOTOMIC, RESILIENT,
CLEAN-SLATE, HOST SECURITY

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-10-2-0253

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Simha Sethumadhavan, Salvatore Stolfo, Angelos D. Keromytis,
Junfeng Yang (Columbia University)

David August (Princeton University)

5d. PROJECT NUMBER
CRSH

5e. TASK NUMBER
CO

5f. WORK UNIT NUMBER
LU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Columbia University
Department of Computer Science M.C. 0401
1214 Amsterdam Avenue
New York, NY 10027-7003

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA DARPA/I2O
525 Brooks Road 675 North Randolph St
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-070
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES
14. ABSTRACT

The SPARCHS project proposed a new computer systems design methodology that considers defensive security as a
first-order design requirement at all levels in computer systems stack.
A defensive mindset to system design means that each component, be it hardware, software or the security mechanism,
should be designed assuming that it can be compromised, each component must individually have the ability to detect
attacks, limit losses, recover from attacks and learn to prevent future attacks.

15. SUBJECT TERMS

Vulnerability Detection and Mitigation, Static Analysis, Dynamic Confinement, Code Diversification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
TODD CUSHMAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

44

i

Table of Contents
LIST OF FIGURES ... II

1.0 SUMMARY ... 1

2.0 INTRODUCTION .. 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 3

4.0 RESULTS AND DISCUSSION .. 3

4.1 HARDWARE SECURITY .. 3
4.1.1 SECURING HARDWARE DESIGN ... 4
4.1.2 MEASURING AND MITIGATING MICRO-ARCHITECTURAL SIDE CHANNELS ... 6

4.1.2.1 Spy in the Sandbox: A vulnerability study .. 6
4.1.2.2 Time Warp.. 7
4.1.2.3 Side-Channel Vulnerability Factor .. 9

4.1.3 ARCHITECTURAL SUPPORT .. 11
4.1.3.1 A Hardware Anti-Virus ... 11
4.1.3.2 Instruction Set Randomization ... 12
4.1.3.3 Information Flow Tracking ... 14

4.2 FIRMWARE SECURITY ... 17
4.2.1 ROUTER VULNERABILITY STUDY ... 17
4.2.2 PRINTER VULNERABILITY STUDY .. 17
4.2.3 SYMBIOTIC EMBEDDED MACHINES... 18

4.3 OPERATING SYSTEM SECURITY.. 19
4.3.1 KGUARD ... 19
4.3.2 RET2DIR: RE-THINKING KERNEL ISOLATION.. 20

4.4 APPLICATION SECURITY .. 20
4.4.1 INFORMATION FLOW TRACKING USING BINARY REWRITING .. 20
4.4.2 ROP MITIGATIONS .. 22
4.4.3 DESTRUCTIVE CODE READS IN HEISENBYTE .. 24

4.5 CONCURRENT SYSTEM SECURITY .. 25
4.5.1 A VULNERABILITY STUDY .. 25
4.5.2 SOLUTIONS .. 25
4.5.3 APPLICATIONS .. 28

4.6 COMPILER OPTIMIZATIONS FOR SECURITY .. 31
4.6.1 INFORMATION FLOW TRACKING .. 31
4.6.2 REGION BASED MEMORY SAFETY .. 31

4.7 MISCELLANEOUS WORKS .. 32

4.8 TRANSITION EFFORTS ... 33
4.8.1 AFRL FANCI/CRADA TRANSITION .. 33
4.8.2 WHCA SYMBIOTE TRANSITION ... 33
4.8.3 NAVY PLC TRANSITION ... 33

4.9 SYSTEM DEVELOPMENT .. 33

5.0 CONCLUSIONS .. 34

6.0 REFERNCES ... 34

ii

List of Figures

Figure 1: Summary of Contributions .. 1
Figure 2: Stages of Hardware Design ... 5
Figure 3: Algorithm for computing control value .. 5
Figure 4: Algorithm for flagging suspicious wires in the design ... 5
Figure 5: ISR Encryption Process .. 14
Figure 6: DIFT modifications in WHISK .. 16

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY

The SPARCHS project proposed a new computer systems design methodology that
considers defensive security as a first-order design requirement at all levels in computer systems
stack.
A defensive mindset to system design means that each component, be it hardware, software or the
security mechanism, should be
designed assuming that it can be
compromised, each component must
individually have the ability to detect
attacks, limit losses, recover from
attacks and learn to prevent future
attacks.

To achieve defensive security,
the SPARCHS project drew
inspiration from biological organisms
that have survived centuries of
predatory behavior. Specifically,
SPARCHS adapts the following
biological primitives to improve
security of computer systems: (1)
Innate Immunity for detection and
isolation of exploits, (2) Diversity
for attack prevention, (3) Symbiotic
Immunity for protection and
detection techniques, (4) Adaptive
Immunity for prevention, (5)
Optimized redundant execution for
continued execution, and (6)
Autotomy to contain damage when
all else fails.

We advanced security at all
levels in the computer systems stack. The table on the right provides a summary of these advances
starting from hardware. Works recognized with academic prizes (best paper award, best poster
award, invited articles etc.) are marked with *. While we studied the traditional trade-offs involved
in implementing our security techniques in software and hardware for both legacy and new systems,
we also conducted vulnerability studies to inform our research.

In addition to academic honors, our project resulted in three technology transition efforts so
far: two for the Symbiote technology, and one for the technology that detects hardware backdoors.
Further our vulnerability research has resulted in security patches for millions of devices in the field
today.

Figure 1: Summary of Contributions

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

Defensive strategy is pervasive at all levels in the animal and plant kingdom where existence
is constantly threatened due to predators and environmental vagaries. At the molecular level, our
genetic code is suspected to contain high-level of redundancy, at the cellular level lymphocytes
offer innate protection against viruses and microbes, at the organ level, redundancy (e.g., two
kidneys) and regeneration (e.g., skin cuts, lizards dropping tails under attacks) allow continuous
function and recovery under attack, and organisms have amazing ability to learn from past attacks
(e.g., vaccination.) In many cases, multiple organisms co-operate (e.g., microbiomes) from
symbiotic relationship to provide immunity over and above innate and adaptive immunity. In the
biological world, the attackers have also evolved many sophisticated techniques to thwart existing
defenses. The most notorious of the attackers attack the immune system itself (e.g., HIV) and is
difficult to destroy because it constantly changes its tertiary structure (polymorphism), which
guarantees the virus a safe harbor in the host. To provide these amazing security features organisms
spend nearly 30% of their energy in defense. Given the success of flora and fauna, the defensive
strategies used in biological systems are certainly worth emulating.

Computer systems today, however, are minimally defensive, if at all. Some programmers
who use assertions as a defensive mechanism remove them during deployment for performance
reasons. Each layer of software blindly trusts the layer beneath it for security guarantees. Anomaly
detection engines are usually turned off because of the high rate of false positives. Anti-virus
software itself can be hijacked and turned off. Further both hardware and software remains fairly
static during their lifetime making systems a sitting duck. And despite many advances in silicon
technology, there is very little defensive support available at the hardware level.

We addressed these problems in the proposal. Security is a full-system property, i.e, the
software, the hardware, the system configuration, and its use should all be secure for a system to be
secure. Recognizing this, in the SPARCHS project, we worked across all layers of the system stack.
Further, current security research is largely top-down, where the most exposed layers --- the
network/ application layers --- are first secured, and the lower layers are secured as and when
threats appear. Security, thus, has become an arms race to bottom. For every software mitigation
strategy today, vulnerabilities in the software layer below it can be used to attack and weaken the
mitigation strategy. There are many examples of such attacks in the literature including those that
attack anti-virus, libraries, operating systems, hypervisors, and BIOS routines. We wanted to avoid
this problem in the SPARCHS project and thus we came devised a “hardware-up” method for
building secure systems. Hardware-up simply means that the hardware would be secured first
against intentional attacks, then against unintentional vulnerabilities (like a well-meaning cache
optimizations that leaks cryptographic keys), and finally we add hardware support for software
security so it is easy to build lean security software without a large attack surface. This work
compromises work on hardware design, the microarchitecture and the architecture.

Once the hardware is secure, we focused on securing the firmware, the next level to bare
hardware. For securing the firmware we invented Symbiotes. Symbiotes are diversified, embedded,
inline reference monitors. We also invented techniques to remove unnecessary parts of the firmware
to reduce the attack surface.

Approved for Public Release; Distribution Unlimited.
3

The next target was the operating system. Here we focused on mechanism to reduce
concurrency bugs. We also discovered and fixed Linux kernel vulnerabilities. Following this we
strengthened applications (mostly legacy ones) through binary instrumentation. Specifically we
created tools to implement instruction set randomization and information flow tracking on existing
binaries. Concurrently we also developed compiler techniques to implement information-flow
techniques and improve robustness of programs against general reliability failures.

In the rest of the document we describe techniques by the level at which they apply. Often
we implemented techniques in two different levels in the system stack; for instance, we created a
tool for implementing instruction-set randomization in hardware and also created a run-time binary
re-writing tool for improving legacy applications. We describe the techniques in individual sections
to highlight the tradeoffs involved in implementing these techniques at the respective layer.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

A systems-level approach was taken to designing, prototyping, and evaluating the individual
components. For hardware prototyping we used FPGAs and programmed in VHDL, System Verilog
and System C. We prototyped software approaches on Windows and Linux machines, on x86 and
ARM machines. In addition to prototyping we also conducted vulnerability studies on printers,
routers, IP phones and web browsers. All vulnerabilities were responsibly disclosed to vendors or
maintainers (in the case of open source software) and have resulted in patches.

In all performance measurements we used a variety of applications to test runtime overhead.
Runtime overhead is highly dependent upon the application being tested, as well as the particular
inputs provided to the application, and the runtime overhead of each detection technology will vary
based upon that application and workload. Further, all detection technology components can be
executed in concurrently and complementarily to enhance security of the system.

4.0 RESULTS AND DISCUSSION

4.1 Hardware Security

A solution to the above problem is to push the security mechanisms down to hardware,
which is typically immutable. Growing on-chip transistor budgets provide the opportunity to
explore this possibility. In addition to offering immutable security, there are two further advantages
to implementing security mechanisms in hardware. First, hardware supported security mechanisms
can be much more energy-efficient compared to software only mechanisms. Given that energy- and
power-efficiency significantly influence computing today, hardware support could very well be
necessary for security mechanisms to gain traction in many real world settings. Second,
implementing security mechanisms can provide unmatched visibility into execution. This provides
an opportunity for new security techniques.

Approved for Public Release; Distribution Unlimited.
4

4.1.1 Securing Hardware Design

Hardware is the root of trust in computing systems, because all software runs on it. But is
the hardware we use trustworthy? How can we ensure it has not been corrupted? Can we design it
so it cannot be easily corrupted? Many factors conspire to make hardware more susceptible to
malicious alterations and less trustworthy than in the past, including the growing use of third-party
intellectual property components in system-on-chip designs, global scope of the chip-design
process, increased design complexity and integration, and design teams with relatively few
designers responsible for each subcomponent. There are unconfirmed reports of compromised
hardware leading to undesirable economic consequences. A nontechnical solution is to design and
manufacture hardware locally in a trusted facility with trusted personnel. However, this solution is
not long term or viable, as it is neither efficient nor guaranteed to be secure. As a part of this project
we created the first static analysis technique for discovering hardware backdoors.

To understand how hardware can be compromised, we need to understand how hardware is
designed (see Figure 1). The first few steps are similar to software design and construction,
beginning with the specification of design requirements. The hardware is then designed to meet
operational requirements and coded into a hardware design language (HDL) (such as Verilog) either
by designers working with the company designing the chip or with code purchased as intellectual
property (such as for a USB controller) from third-party vendors around the world. The next step is
slightly different from software. Hardware undergoes much more rigorous validation than most
software, as hardware bugs, unlike their software counterparts, are often more expensive to fix after
deployment. To minimize bugs, reputable hardware companies often employ validation teams that
are much larger than the design team. They work either in tandem with designers or after the fact in
the case of third-party IP components. The design, with all its components, is then processed using
computer-aided design (CAD) tools from commercial companies that convert the high-level code
into gates and wires. When this is done, the result is a functional design that can be reviewed for
security but in practice is simply sent off to a foundry for manufacture. Reviews are encumbered by
the complexity of the design and pressure of time-to-market constraints. We refer to everything
until compilation with CAD tools as the front end of the process and the physical design and
manufacturing at the foundry as the back end of manufacturing.

Thousands of engineers may have access to hardware during its creation and are often
spread across organizations and continents. Each hardware production step must be considered a
possible point of attack. Designers (either insiders or third-party providers) might be malicious.
Validation engineers might seek to undermine the process. CAD tools that could be applied for
design synthesis prior to manufacture might be malicious. Moreover, a malicious foundry could
compromise security during the back-end manufacturing process. The root of trust is the front-end
design phase; without a “golden design” to send off to the foundry, hardware designers as well as
end users have no basis on which to secure foundries.

As the first line of defense, we have developed the first algorithm for performing static
analysis to certify designs as backdoor free and built a corresponding tool called Functional
Analysis for Nearly unused Circuit Identification, or FANCI.

Key Insight: A stealthy hardware backdoor is activated when rare inputs called triggers are
processed by the hardware. Since the trigger inputs are rare, the trigger-processing circuit rarely

Approved for Public Release; Distribution Unlimited.
5

influences the output of the hardware circuit; it switches the output of the circuit from the good sub-
circuit to the malicious sub-circuit only when a trigger is received. If security evaluators can
identify portions of a hardware circuit that rarely influence output, then they can narrow down the
set of sub-circuits that are potentially malicious, stealthy circuits.

Boolean functional analysis helps security evaluators identify sub-circuits that rarely
influence the outputs. The idea is to quantitatively measure the degree of influence one wire in a
circuit has on other wires using a new metric called “control value”. The control value of an input
wire 1 on a wire w2, quantifies how much the truth table representing the computation of w2 is
influenced by the column corresponding to w1. FANCI detects stealthy sub-circuits by finding
wires with anomalous, or low control values compared to other wires in the same design.

Figure 2: Stages of Hardware Design

FANCI. The algorithm to compute the control value of w1 on
w2 is presented here as Algorithm 1. The control value is a

fraction between zero and one,
quantifying what portion of the rows
in the truth table for w2 is directly
influenced by w1. In step 3 of the
algorithm, we do not actually construct the exponentially large truth table. Instead, we construct the
corresponding Boolean function. Since the size of truth tables grows exponentially, to scale FANCI,
the algorithm approximates control values using a constant-size subset of the rows in the truth table.

As a simple example, suppose we have a wire w2 that is dependent on an input wire w1. Let
w2 have n other dependencies. From the set of possible values for those n wires (2n), we choose a
constant number, say, for instance, 10,000. Then for those 10,000 cases, we toggle w1 to zero and
then to one. For each of the 10,000 cases, we see if changing w1 changes the value of w2. If w2
changes m times, then the approximate control value of w1 on w2 is m ÷ 10,000. Once we have

Figure 3: Algorithm for computing
control value

Figure 4: Algorithm for flagging suspicious wires in the design

Approved for Public Release; Distribution Unlimited.
6

computed all control values for a given wire (an output of some intermediate circuit), we have a
vector of floating-point values we can combine to make a judgment about stealth. We find that
using simple aggregating metrics (such as the arithmetic mean and median) are effective for
identifying stealthy wires. Other metrics may be possible and interesting in the future. The complete
algorithm used by FANCI is summarized in Algorithm 2.

In addition to running against the TrustHub Benchmark suite we performed a red team/blue
team experiment, where several teams from the U.S. and Europe tried to defeat FANCI. FANCI
performed well, catching all stealthy attacks and even a few non-stealthy (frequently or always-on)
attacks. While FANCI is not normally expected to detect frequently-on backdoors, sometimes even
frequently-on backdoors use somewhat stealthy or abnormal logic for trigger recognition.

This work received the best paper award at the CCS conference and was selected for a
transition effort through Chip Scan LLC. As part of the transition effort, software was delivered to
AFRL, Rome.

4.1.2 Measuring and Mitigating Micro-architectural Side Channels

The next step in our hardware-up method is to secure against unintentional micro-
architectural side channels. Any computation has an impact on the environment in which it runs.
This impact can be measured through physical effects such as heat or power signatures, or through
how the computation consumes system resources such as memory, cache, network or disk
footprints. In a side channel attack, an attacker collects these unintentional leakages to compromise
the confidentiality of the computation.

A particular class of side channel attacks that rely on micro-architectural leaks has gained
notoriety in the last decade. In these attacks, shared on-chip resources like caches or branch
predictors have been used to compromise software implementations of cryptographic algorithms. A
particularly dangerous attack demonstrated in 2009 revealed that an attacker could record
keystrokes typed in a console from another co-resident virtual machine in a cloud setting by
measuring cache utilization. But micro-architectural side channel dangers are not limited to
cryptographic software or cloud installations: as system-on-chip designs become popular, the tight
integration of components may make physical side channels more difficult to exploit. Attackers will
likely turn to micro-architectural leaks to learn sensitive information.

In this area of research we a) conducted a vulnerability study to show how micro-
architectural side channel attacks can be conducted remotely and even when software undergoes
multiple levels of translation. The objective was to illustrate the dangers of micro-architectural side
channels This vulnerability study resulted in all major browser vendors changing their browser
code, b) we proposed a general-purpose mitigation for a large class of micro-architectural attacks,
and c) we devised a notion of side-channel vulnerability factor to determine leakages in micro-
architectural structures at run time (where they can be fixed).

4.1.2.1 Spy in the Sandbox: A vulnerability study

Even though the effectiveness of side-channel attacks is established without question, their
application to practical settings is debatable, with the main limiting factor being the attack model

Approved for Public Release; Distribution Unlimited.
7

they assume; excluding network-based timing attacks, most side-channel attacks require an attacker
in “close proximity” to the victim. Cache attacks, in particular, assume that the attacker is capable
of executing binary code on the victim’s machine. While this assumption holds true for IaaS
environments, like Amazon’s cloud platform, where multiple parties may share a common physical
machine, it is less relevant in other settings. In this paper, we challenge this limiting assumption by
presenting a successful cache attack that assumes a far more relaxed and practical attacker model.
Specifically, in our model, the victim merely has to access a website owned by the attacker. Despite
this minimal model, we show how the attacker can launch an attack in a practical time frame and
extract meaningful information from the victim’s machine. Keeping in tune with this computing
setting, we choose not to focus on cryptographic key recovery, but rather on tracking user behavior.
For our attack we assume that the victim is using a computer powered by a late-model Intel
processor. In addition, we assume that the victim is accessing the web through a browser with
comprehensive HTML5 support. This covers the vast majority of personal computers connected to
the Internet. The victim is coerced to view a webpage containing an attacker-controlled element,
like an advertisement, while the attack code itself, executes a JavaScript-based cache attack, which
lets the attacker track accesses to the victim’s last-level cache over time.

Using standard prime and probe algorithm with some modifications specific to Intel
platforms we were able to track user behavior in private browsing mode on Safari and the Tor
Browser with reasonable accuracy (80%) for the limited number of web sites. Based on the proof of
concept published in the paper and a vulnerability disclosure Mozilla, Chrome, Safari and IE
browsers provided a temporary countermeasure to restrict the use of high-fidelity timers in the
design.

4.1.2.2 Time Warp

To close micro-architectural side-channels, broadly speaking, two strategies can be used.
First, the software programmers can change the application so that there are no differences in
execution times between different routines that operate on sensitive data (such as squaring and
multiplication in an encryption routine). This strategy essentially slows down all operations to the
slowest operation. Further, often it is difficult to identify where changes are needed. Even if these
changes are made, the attacker can only be sure that only a particular known attack no longer works,
and newer attacks on other parts of code may still be feasible. Second, computer architects have
tried to secure micro-architectural structures themselves. For instance, if information is being leaked
through a cache an architect may statically partition the cache or apply a randomized hashing
scheme. This approach is reasonable, however, it requires that all leaky structures be identified in
the first place. Again, while it often foils existing attacks, these protections offer little assurance
against newer attacks on other shared unprotected structures. As microprocessors become more
complex the number of shared structures increases (including NoC, memory controllers) and
protecting them individually may prove to be difficult.

In our work we took an orthogonal approach. Rather than attempt to secure leaky structures
or programs one by one -- an onerous task -- we remove attackers' ability to detect micro-
architectural events. Put simply, we fuzz timing sources available to the attacker so that the
attackers can no longer accurately measure fine-grained events. As a result, attackers can no longer

Approved for Public Release; Distribution Unlimited.
8

measure interference among contending processes and virtually all fine-grained micro-architectural
attacks are foiled. This is a single simple solution that significantly raises the bar for the attacker.

The primary source of fine-grained timing information for applications is the time stamp counter
(abbreviated TSC following its name in x86 architectures). The TSC is simply a free running
counter that increments once every clock cycle. Simply turning off this counter would, therefore,
defeat many micro-architectural attacks. Unfortunately, it would also break a large amount of
existing software. Multimedia programs, games, encryption software and even the Linux kernel
require RDTSC to function properly. Instead we fuzz the TSC. In doing so we follow several rules
so as not to break legacy applications. In particular, we find that software expects the following of
the time stamp counter:

• Monotonicity: Clocks generally only count up. Should the TSC ever appear to run
backwards, negative time can be put into unsigned variables, wreaking havoc. Software
generally doesn't like time going backwards.

• Entropy: Encryption software like OpenSSL often obtain entropy from randomness in the
computer system through the TSC. Should we do something like mask out lower order
bits of TSC, OpenSSL would be supplied with less entropy.

• Relative Accuracy: We desire to fuzz the TSC, but only a small amount -- the same order
of magnitude as micro-architectural events. Applications measuring time at coarser
granularities should not be severely affected. As such, speeding up, slowing down or
periodically stopping time are unacceptable solutions.

• Absolute Accuracy: Applications sometimes use the TSC to get the date/time (i.e. to
timestamp log messages). As such, results from TSC must always be accurate +/- our fuzz
factor (which we call the wrap factor).

In short, our key idea is to divide up all time into variable sized epochs which we call the Warp
factor. Within each epoch, TSC can only be read at most one time. We ensure this by adding a delay
(stalling) on each read to TSC in the pipeline. We call this the real offset and it delays each TSC
read into the next epoch. Additionally, we add an apparent offset to values returned by TSC. This
offset changes return value to be any time within the new epoch, chosen at random. As a result of
these two random offsets, attackers can read times no more often than the Warp Factor and
measurements are guaranteed to be no more accurate than the Warp Factor. Further, there is no
correlation between the actual time and the time measured by the user for measurements less than
the Warp factor. An important aspect of our fuzzing scheme is that it makes the attacker pay a price
by slowing down the attack (by stalling TSC) in contrast to prior software approaches where the
user who needs security pays the price by equalizing execution times to the slowest component.

While RDTSC is by far the most common way to make fine granularity time measurements
there are others. One is software timekeeping or virtual timestamp counter (VTSC) which is made
possible by multi-core machines. In this scheme, a thread continuously increments a variable stored
in shared memory. Disregarding scheduling and DVFS (both of which can be corrected for), this
variable will increment at a constant rate, thus is a good proxy for time. Instead of reading the

Approved for Public Release; Distribution Unlimited.
9

hardware TSC, a thread can instead simply read this memory location. Just like TSC fuzzing we
also fuzz VTSC. In short, VTSC relies on the ability of threads to communicate with very low
latency. In order to break VTSC, therefore, we simply increase this latency (and make it more
variable) by detecting very quick write to read communications and inserting an interrupt on the
reading thread. This interrupt adds enough delay and variability to VTSC measurements that fine
grained events such as cache misses can no longer be detected. This technique can be implemented
on hardware available today for some performance degradation or minimal degradation with minor
modifications. Using Intel's performance counters, we added an interrupt on all cache-based write
to read communications on PARSEC (by monitoring the HITM performance counter). The
geometric mean slowdown was measured at 4\%: this is an upper bound. We proposed a hardware
modification to detect and delay only short write to read communications. This modification
prevents 96% of the read-write communications from taking an interrupt in PARSEC benchmark
suite. As a result, we would expect the slowdown of typical applications with this modification to
be minimal.

By preventing the attacker’s ability to measure information leakage, TimeWarp secures systems
against a far larger set of attacks than any previous proposal. It secures against both known and as-
of-yet undiscovered micro-architectural attack -- any attack which requires fine-grained
measurements is thwarted. Although parts of TimeWarp can cause small performance
degradations, the security implications are vast, especially in shared data centers.

Our technique does have limitations: it may be possible to average multiple runs to remove the
effects of our randomization scheme. However, this increases the amount of work that an attacker
has to do. Further combined with the rate-limiting effect of our fuzzing scheme (because of physical
delays) it nearly makes this averaging attack infeasible. For instance, a recently published attack on
cross-VM side channels took about 6 hours to extract a El-Gamal encryption key. With our
protections that same attack would take nearly 190 years on a processor at 3GHz. Our solution
likely puts micro-architectural side channel attack beyond the reach of most attackers. Another way
this work is unique is that it gives the attacker most of the performance losses by physically slowing
down the timing measurements. Prior works on security either impact the attacker or victim equally,
or make the victim pay for higher penalty for security. Our mechanism thus has an inbuilt notion of
punishment for the attacker.

Finally our work significantly simplifies life for a security conscious micro-architect. By
creating an environment in which fine-grained micro-architectural events cannot be detected, we
allow developers to design highly efficient shared micro-architectural structures and policies that
would, under current standards, be considered to leak unacceptable amounts of information. Thus
time warp is a simple design modification that enhances both security and also pave way for secure,
higher performance architectures in domains ranging from embedded to cloud environments.

4.1.2.3 Side-Channel Vulnerability Factor

Existing processor designs often optimize for performance, power, energy or some
combination thereof. However, there is growing interest in design for security. Side-channel
security in particular is extremely important for a number of applications. For instance, mobile
phones -- which are used for everything from authentication to accounting to entertainment systems
-- hold a lot of sensitive information. Securing these processors to side channel attacks is now of

Approved for Public Release; Distribution Unlimited.
10

interest to both industry and academia. Being able to find leaks and quantify them is clearly an
important topic.

While side-channel attacks and defenses are known before our work there was no way for a
designer at design time to understand the security impact of a micro-architectural decision.
Consequently designers have made micro-architectural design choices solely based on performance.
We created a metric called as Side-Channel Vulnerability Factor (SVF) to guide micro-architects
understand the security impact of their design decisions.

SVF is a metric and methodology for measuring the leakiness of aside-channel. It is based
on our observation that there are two relevant pieces of information in a side-channel attack: the
information which an attacker is trying to obtain (secret data) and the information which an attacker
can actually obtain. In order to measure leakiness, we simply want to compute the correlation
between these two pieces of information. Essentially, SVF represents the signal-to-noise ratio of
information flowing through the side-channel; if there is a high correlation between attacker
observations and the secret data, then the attacker can easily deduce the secret. If, however, there is
no correlation, then the secret information is not available to the attacker.

While measuring correlation sounds easy, it is complicated by the fact that attacker's
observations are not directly comparable to the secrets. For instance, in a cache side-channel the
attacker measures access latencies to each cache line. These measurements effectively probe a
victim's usage patterns in various cache sets. The victim's usage patterns are, of course, determined
by the memory addresses used by the victim which are, it turns out, affected by things like bits in an
encryption key. As a result, we wish to compute correlation between attackers' memory load
latencies and the addresses which a victim is actually using. We can solve this problem with one
more observation: attackers do not directly decode their observations to secrets. Rather, they look
for patterns in this data. For instance, additional misses in cache set 4 may indicate that the victim
encountered a 1 in the encryption key whereas misses in set 7 indicates the opposite.

These micro-architectural behavior patterns bear a strong resemblance to program phase
shifts. In fact, we can consider attackers to be nothing more than phase shift detectors -- by
identifying phases in victims' execution, attackers gather information about victim's inputs.
Therefore, instead of directly comparing secrets data to attackers' observations, we can apply well
known phase detection techniques to the problem. SVF directly measures the correlation between
phases in victims' execution and phases in observations that attackers can obtain through aside-
channel. Side-channel Vulnerability Factor is a methodology for measuring information leakage in a
system. That is, given a system we must define SVF. SVF measurements require three components
to be defined clearly:

The Victim is the application which is being attacked. SVF requires that the sensitive information in
the victim be identified. For instance, memory addresses may be sensitive. Bits from encryption
keys could also be used.

The Attacker is a model of an attack type. It implements a data collection method which an attacker
can feasibly implement. For instance, to measure the SVF of cache systems, a generic cache
scan attacker could be used.

Approved for Public Release; Distribution Unlimited.
11

The System itself is whatever hardware is being shared by the victim and the attacker. For instance,
it could be a processor.

To compute SVF, we simply run the victim and attacker on the target system. During
execution, we record the victim's sensitive data and attacker's observations as time-series data. To
measure SVF, we wish to compute the correlation between these two time-series. If the attacker's
observations have been influenced by the victim's sensitive data, we will observe a non-zero
correlation. The greater that influence and less noise in the observations, the higher the correlation.
If, however, an attacker's observations contain no trace of the secret data, the correlation will be
zero or very close to zero. We cannot, however, simply compute a simple correlation (like Pearson
correlation coefficient) because the two time-series have different data types -- they are likely to be
vectors representing things like memory addresses or cache line misses. Instead, we analyze each
time-series independently, searching for patterns. In particular, we run the same type of pattern
detection used in the popular SimPoint -- comparing each data point to every other data point. This
reveals repetitious behavior -- phases, in other words. This pattern analysis results in a matrix for
each time-series. We can then compute a simple Pearson correlation coefficient between the two
matrices.

Conclusion: SVF is a novel method for identifying application interference and leakage of
sensitive data which helps us discover new vulnerabilities. From our case study, we find several
general rules. Although they are derived from and specific to our simulation infrastructure, they
strongly motivate the use of a quantitative metric for side-channel security: 1) Any shared structure
can leak information. Even structures intended to protect against side channel leakage can increase
leakage. 2) No single cache design choice makes a cache absolutely secure or completely
vulnerable. Although some choices have larger effects than others, several security-conscious
design choices are required to create a secure shared system. 3) The leakiness of caches is not a
linear combination of design choices. Some features leak information in some configurations but
protect against it in others. Others only offer effective protection in certain situations. Predicting
this leakiness is, therefore, extremely difficult and probably requires simulation and quantitative
comparison like did in this study.

4.1.3 Architectural Support

4.1.3.1 A Hardware Anti-Virus

Most defenses to date focus on detecting malware using features in the upper layers of the
system stack. Recent works have shown promise in detecting malware programs based on their
runtime micro-architectural execution patterns. Compared to their higher-level counterparts like OS
and application observables, these micro-architectural features are more efficient to audit and harder
for adversaries to control directly in evasion attacks.

In this work, we advance the use of these hardware supported lower-level features to
detecting malware exploits in anomaly-based and signature-based detectors to detect a wider range
of malware, even zero days. To perform the data collection and monitoring at low overheads, we
leverage widely available hardware performance counters (HPC) in modern commodity processors
(both x86 and ARM). This further enables us to protect user programs transparently without
requiring modifications.

Approved for Public Release; Distribution Unlimited.
12

Research has shown that programs, be it malicious or benign ones, exhibit regular,
reproducible behavior at the micro-architectural level. While these execution signatures vary to
some degree in identical or very similar programs, they can differ radically across different types of
programs. Based on this observation, we empirically demonstrate the feasibility of detecting
Android malware programs given variant samples from known malware families.

We collect HPC measurements from both Android malware and typical Android good-ware,
and train models that describe what constitutes malicious and benign behavior using a series of
supervised machine learning techniques (such as Decision Trees, Artificial Neural Networks).
Using measurements collected from the execution of another different testing set of malware and
good-ware for the evaluation of the trained models, we observe we can correctly detect up to 90%
of malicious malware packages with a less than 5% false positive rate.

The key intuition for the anomaly-based detection of malware exploits stems from the
observation that the malware, during exploitation, alters the original program flow to execute
peculiar non-native code in the context of the victim program. Such unusual code execution tends to
cause perturbations to the dynamic execution characteristics of the program. If these perturbations
are observable, they can form the basis of detecting malware exploits.

As we show empirically, the micro-architectural characteristics of benign programs are
noisy, and the deviations exhibited by malware exploits are indeed minute. We demonstrate that
with careful selection and extraction of the features combined with unsupervised machine learning,
we can build baseline models of benign program execution and use these profiles to detect
deviations that occur as a result of malware exploitation. In a series of experiments, we
systematically evaluate the detection efficacy of the models over a range of operational factors,
events selected for modeling and sampling granularity. For IE exploits, we can identify 100% of the
exploitation epochs with 1.1% false positives. Since exploitation typically occurs across nearly 20
epochs, even with a slightly lower true positive rate, we can detect exploits with high probability.
These are achieved at a sampling overhead of 1.5% slowdown using sampling rate of 512K
instructions epochs.

We also examine the limits and challenges in implementing this approach in face of a
sophisticated adversary attempting to evade anomaly-based detection. We model mimicry attacks
that craft malware to exhibit event characteristics that resemble normal code execution to evade our
anomaly detection models. With generously optimistic assumptions about attacker and system
capabilities, we observe that the models can be susceptible to the mimicry attack with a worst-case
deterioration of up to 6.5% in detection performance. The proposed detector is complementary to
previously proposed signature-based detectors and can be used together as part of an ensemble of
detectors to improve security.

4.1.3.2 Instruction Set Randomization

Instruction Set Randomization (ISR) was proposed in the last decade as a countermeasure
against code injection attacks. ISR involves “randomizing” the ISA, thus giving the appearance of a
unique instruction set for every target program. This prevents an unauthorized party (attacker) from

Approved for Public Release; Distribution Unlimited.
13

using the same exploit on all machines -- any code has to be in the ISA of the host program to be
effective.

Current mechanisms against code-injection, such NX and its variants, are fairly effective.
The fundamental drawback preventing ISR's wider acceptance stems from the fact that code-
injection has ceased to be a major tool for system subversion. Increasingly modern attacks are
employing code-reuse attacks to gain a foothold in the system, from which to launch other attack
mechanisms, code-injection being one of them. Once such a foothold has been established, NX-bit
can be bypassed and in the same manner, so can ISR. ISR, by itself, is completely ineffective
against code-reuse attacks (CRA), since CRAs use legitimate code already present in a program. As
such, it is powerless against one of the major modern attack vectors. Additionally, prior ISR
implementations had other significant problems that challenged its practicality. Unfavorable
performance-security tradeoff: Since instructions are decrypted at runtime, the decryption process
falls squarely in the critical path of instruction fetch and execution (exactly where depends on the
implementation). As a result, the associated latency is added to it. To offset this latency, weak
encryption schemes were used to avoid impractically high performance overheads. Consequently,
many attacks have been published against these schemes.

Security scheme itself prone to attack: Since most previous solutions were software based,
they exposed a large TCB. Additionally they could also be turned off easily since the enabling
framework did not run with extra privileges.

Required un-scalable software design: They provide limited or no support for shared
libraries and page-sharing due to their restrictive trust models, although disallowing page-sharing of
libraries among applications has been shown to incur impractically large memory overheads.

To counter the above problems, we have implemented Polyglot, a hardware-assisted
instruction randomizing scheme with a small, untrusted software component that allows us to
address all the aforementioned concerns effectively and more. By combining ISR with basic fine-
grained randomization, Polyglot not only significantly improves upon the traditional security
properties of ISR, it also counters state-of-the-art code-reuse attacks, which are an entirely novel
and more relevant target for this technique. It utilizes strong encryption techniques (AES and ECC,
in our implementation) while successfully overcoming challenges of impractical performance.
Unlike most prior work, we encrypt at the page instead of application granularity. This not only
enables richer diversification, but also allows us to trivially support page sharing and seamlessly
scale its application to the OS, and conceptually to the hypervisor as well. With Polyglot, we also
extend ISR to operate from system boot, so hardened code is available from the very first
instruction the system executes. Our hardware prototype implements Polyglot on a modified Leon3-
based SPARC32 processor, that runs Linux 3.8.

Approved for Public Release; Distribution Unlimited.
14

All ISR-enabled processors have
an asymmetric key-pair
associated, with the private key
never leaving the chip confines.
To prepare a binary for an ISR
system, its code sections are
symmetrically encrypted (AES in
our case). The target processors
public key is then used to encrypt
the symmetric keys, which are
then embedded inside the binary
itself in a separate section. Upon

Figure 00: ISR Encryption Process execution the OS and loader
extract the key-mappings from the

binary and set up the page appropriately in the manner expected by the hardware. Note that since
the keys are themselves encrypted, anyone with access to the binaries (including the OS and loader)
cannot read extract the plaintext keys, and therefore, the plaintext code. On encountering a fault to a
code, the MMU walks the page table and finds the corresponding ISR PTE consisting of the
translation and the asymmetrically-encrypted key. At this point, it sequentially fetches the actual
translation as well as the encrypted key. The key is decrypted by an ECC module and deposited into
the ITLB with the original translation. Here onwards, all code originating from this page is
decrypted with this key, before being stored in the I-cache. As long as this instruction is not evicted,
all execution uses the decrypted instruction from this point.

Although our design only has an overhead associated with ITLB misses on regular systems,
our prototype, due to its minimal nature, additionally incurs some overhead on each I-cache miss. In
other words, for regular systems with multi-level cache the I-cache miss overhead would be zero.
On an average, the SPEC benchmarks exhibit a 38.4% slowdown on the 16kB cache. Increasing the
cache size not only reduces the number of I-cache misses drastically, it also reduces the number of
ITLB misses as a result. This results in much shorter runtimes so that now the benchmarks are only
5.52% slower. The most marked reduction is observed in Omnetpp which goes from 3x to 12.5%
slowdown. The reason is the drastic reduction of ITLB misses in this case. We also see speedups for
some benchmarks. This is probably due to the fact that encrypting a binary involves moving around
code sections a bit for alignment, and this somehow interfered with the instruction access pattern
favorably.

4.1.3.3 Information Flow Tracking

Dynamic Information Flow Tracking (DIFT) is a valuable system primitive that finds
widespread use in security, privacy, and program analysis applications. For example, DIFT has been
used to ensure that private data does not leave a smart phone, detect security attacks such as SQL
injection or buffer overflows or identify fault locations in programs when they fail. To support
DIFT in a computing system each data item in a program is enhanced to include a tag that identifies
some property of that data item. Then during program execution, as old data items are modified the
properties of their tags are also modified, or as new data items are produced they get new property

Figure 5: ISR Encryption Process

Approved for Public Release; Distribution Unlimited.
15

tags according to some DIFT policy. The specific policy for creating and propagating tags is based
on how DIFT is used: in a privacy application, for instance, data from the GPS receiver may be
tagged as confidential, and this data and derivatives may be unsafe to leave the phone through any
network interface. The size of the tags used in DIFT can vary widely depending on the application,
and range from 1-bit taint tags for security to multi-byte object tags that specify data type or object
evanescence.

The central question we address in this paper is: What SoC platform architecture will allow
us to easily integrate DIFT support? The question of platform architecture for DIFT had not been
addressed previously. The main focus before our work in the DIFT research area has been how to
enhance processor architectures with DIFT. In our work we asked how we can design the DIFT
mechanism at the platform level so that it is simple for third-party IP components, be it accelerators,
controllers or even special cores, to be easily integrated in the SoC without intrusive changes.
Towards this goal, we provided a set of recommendations for platform designers to implement
DIFT as a general hardware service.

The capability we provide can be explained with a simple but realistic example. Let us say
we want to build a SoC with DIFT support. Assume that our SoC only has a general-purpose core
and a controller, say a DMA engine. Let us also say that on this system the data and tags for the data
are stored in different locations in DRAM memory (for efficiency reasons). If the DMA engine is
unaware of the separation of tags and data it will miss the tags associated with the data during
copies and thus break information flow tracking. Clearly the DMA engine needs to be aware of the
tag storage mechanism, i.e., it should know how to compute the address of the tags given the data
address. Now, in our simple SoC, instead of a DMA engine, let us say we had a compression
accelerator (or any other computational accelerator that modifies the input data). In addition to
being aware of the tag storage, it should also be capable of propagating the tags through the data
path within the accelerator. In this paper, we show how to extend the platform architecture so that
any SoC component can easily find the tags stored in memory; the issue of tag propagation is
orthogonal and not described in this work.

To easily integrate third-party IP components in a DIFT aware platform we propose a new
architecture called WHISK. In our architecture the data and tags are stored separately in memory to
keep a low area overhead and improve flexibility.

(a) Implicit Addressing of Tags and Data: We propose an architecture in which a NoC client on the
SoC does not have to know anything about the tag layout or storage. Instead of sending a pair of
addresses to access a data and its associated tag, which forces the clients to know the association
mechanism between data and tags, in WHISK we allow clients to send only the data address and
automatically receive or send the requested data along with its associate tag in the same packet.
This strategy lowers the complexity of adapting DIFT to IP components since tags are automatically
and transparently accessed with data. Further since the tag calculation is isolated from the clients,
the system supports flexible tag layout and storage in memory, allowing DIFT to be easily
customized for different applications.

 (b) Atomic transmission: While the data and tags are stored separately in memory to keep a low
area overhead, they are transported together from memory through the interconnect instead of being
fetched separately as is done in single processor DIFT implementations. This coupled atomic

Approved for Public Release; Distribution Unlimited.
16

transport decreases the complexity of adapting accelerators to DIFT by avoiding subtle memory
coherence and consistency problems between tags and data.

(c) Pipelined transfer: In our WHISK NoC protocol we send the data from/to memory one cycle
after the tag. This has three main benefits. First it reduces the area overhead and design complexity
since the data and tags can be sent on the same interconnect. Second the tags are already available at
the clients when the data arrives at the client mitigating or completely avoiding serialization
latencies during DIFT processing. Finally, since the tag and data use the same interconnect, the tag
can be arbitrarily large: it can be as large as the data or if needed even larger by sending the tag over
multiple packets. This allows flexible implementations of DIFT policies.

 (d) Configurable, multi-granular caching: In DIFT applications, often large portions of nearby data
items tend to have the same tag properties. This property can be used to reduce the area overhead of
tags by representing common properties for many addresses using one tag instead of one tag per
address. WHISK supports this multi-granular tag optimization. Further, in WHISK we allow clients
to cache these tags to allow temporal reuse of tags to avoid latency overhead of tag accesses. These
caches are also implicitly addressed with data.

(e) Standard wrapper for SoC clients: Finally, and perhaps most importantly, we show how all of
the above features -- implicit addressing, atomic transmission, pipelined transfer and tag caching --
can be built in a way that allows these functions to be wrapped around existing clients in the SoC
with minimum changes to the NoC or the SoC memory architecture. (Figure below). Our wrappers
also handle OS interrupt processing. The wrappers are placed on the path between the NoC and the
clients.

To examine the practicality of WHISK
we developed a cycle accurate SoC in
SystemC. We were able to integrate
different types of accelerators with DIFT
into the system (e.g., compression,
cryptography). We were also able to boot
an embedded Operating System and run
full applications. To test the utility of
DIFT as a service we measure the impact
of DIFT for different amounts of tagging
by varying the fraction of the program's
input data that can be tagged, and the
width of the tags. This is different from
prior works where overheads of DIFT
were measured for specific applications
of DIFT such as buffer overflows. Our
experimental results with micro-
benchmarks show that WHISK exhibits
security-proportionality: the performance

Figure : DIFT modifications in WHISK overhead is relatively proportional to the
amount of tagging in the system. When

running full software applications, however, the performance overhead stays almost constant, i.e., is

Figure 6: DIFT modifications in WHISK

Approved for Public Release; Distribution Unlimited.
17

less impacted by the amount of tagging, because the cost of WHISK is amortized with micro-
architectural optimizations, and also because of tag aggregation and caching. Finally, when active
but not used, i.e., when the amount of tagging is null, the overhead of WHISK is negligible.

4.2 Firmware Security

4.2.1 Router Vulnerability Study

Cisco devices running IOS firmware constitutes a significant portion of our global
communication infrastructure. Recent works demonstrate that there are vast numbers of these
unsecured, vulnerable routers on the Internet. While various exploitable vulnerabilities have been
reported in public, the diversity and close-source nature of embedded device hardware and firmware
is touted to create a effective deterrent against practical and widespread exploitation.

In this work, we show that a new class of version-agnostic attacks is feasible by
demonstrating two different reliable shellcodes that operate correctly over many Cisco hardware
platforms and all known IOS versions. We develop a novel two-phase attack strategy against Cisco
routers and the use of offline analysis of existing IOS images to defeat IOS firmware diversity. The
key intuition behind the technique is that some IOS invariant exists in spite of the firmware
diversity. The first half of the attack leverages some IOS invariant to compute a host fingerprint,
and injects a stage-two shellcode to exfiltrate the host fingerprint back to the attacker. The second
half of the attack then consists of a version-specific persistent rootkit with covert command and
control capability.

A key contribution of this work is the conception of this new IOS rootkit that hijacks all
interrupt service routines within the router. This rootkit intercepts and modifies process-switched
packets just before they are scheduled for transmission. This ability allows the attacker to use the
payload of innocuous packets, like ICMP, as a covert command and control channel. The same
mechanism can be used to stealthily exfiltrate data out of the router, using response packets
generated by the router itself as the vehicle.

Furthermore, we present the implementation and quantitative reliability measurements by
testing both shellcode algorithms against a large collection of IOS images. As our experimental
results show, the techniques proposed in this work can reliably inject command and control
capabilities into arbitrary IOS images in a version-agnostic manner. This work underscores the
importance of an effective host-based defense for routers to maintain the integrity of our global
communication infrastructures.

4.2.2 Printer Vulnerability Study

In this work, we present firmware modification attacks, a general strategy that is well suited
to the exploitation of embedded devices. This strategy makes arbitrary, persistent changes to victim
devices’ firmware by leveraging design flaws commonly found within embedded software.
Firmware modification attacks can affect entire families of devices adhering to the same system
design flaw, transcending operating system versions and instruction set architectures.

Approved for Public Release; Distribution Unlimited.
18

To demonstrate such attacks in practice, we present techniques to exploit such vulnerable
functionality and the implementation of a proof-of-concept printer malware capable of network
reconnaissance, data exfiltration and propagation to general-purpose computers and other embedded
device types. We present a specific case study of the HP-RFU (Remote Firmware Update) LaserJet
printer firmware modification vulnerability, which allows arbitrary injection of malware into the
printer’s firmware via standard printed documents.

We presented the results of exhaustive scans of IPv4 to track the size and distribution of all
publicly accessible vulnerable LaserJet printers over time. Out of over 90,000 vulnerable units, only
1.08% of the vulnerable population has been patched since the release of firmware updates in
response to the disclosure of HP-RFU. Furthermore, 24.8% of all patched printers are configured to
have open telnet interfaces with no root password. In other words, we only identified 766 printers
out of over 90,000 units that are simultaneously not vulnerable to the HP-RFU attack and have
properly configured root passwords.

The scientific evidence, quantitative analysis and the proof of concept HP-RFU vulnerability
exploitation presented in this work demonstrate the importance of introducing effective host-based
defense into vulnerable embedded devices

4.2.3 Symbiotic Embedded Machines

A large number of embedded devices on the internet, such as routers and VOIP phones, are
typically ripe for exploitation. Little to no defensive technology, such as AV scanners or IDS’s, are
available to protect these devices.

To plug this defensive gap for commodity embedded devices, we propose a host-based
defense mechanism, which we call Symbiotic Embedded Machines (SEM) specifically designed to
inject intrusion detection functionality into the firmware of the device. A SEM or simply the
Symbiote, may be injected into deployed legacy embedded systems with no disruption to the
operation of the device. We devise a Symbiote as a code structure that can be embedded in situ
within the firmware of an embedded system.

The Symbiote can tightly co-exist with arbitrary host executables in a mutually defensive
arrangement, sharing computational resources with its host while simultaneously protecting the host
against exploitation and unauthorized modification. This has two main advantages. First, the
Symbiote has full visibility into the code and execution state of its host program, and can either
passively monitor or actively react to the observed events at runtime.  Second, s
functions together with the host firmware, it is extremely challenging for the attacker to disable the
Symbiote without rendering the device non-functional.

Furthermore, no two instantiations of the same Symbiote is the same. Each time a Symbiote
is created, its code is randomized and mutated, and is stealthily embedded in a randomized fashion
within an arbitrary body of firmware to protect itself from removal. This makes signature-based
detection methods and attacks requiring predictable memory and code structures within the
Symbiote ineffective.

Approved for Public Release; Distribution Unlimited.
19

Using a specific SEM implementation we call Doppelganger, we were able to automatically
inject a rootkit detection payload into a Cisco 7120 router running multiple firmware images across
two major IOS versions, 12.2 and 12.3. By injecting fewer than 1400 bytes of code into the IOS
firmware, Doppelganger protects the router from all function hooking and interception attempts.
Our white-list based rootkit detection payload does not require a priori knowledge of IOS internals,
or signatures of known rootkits, and can protect the router against any code modification attempts.
We demonstrate that the Symbiote injected in situ into Cisco IOS incurs negligible performance
penalty and does not impact the routers functionality.

Due to the unique nature of network embedded devices, we posit that retrofitting these
widely deployed vulnerable devices with defensive SEM’s is the best hope of mitigating a
significant emerging threat on our global communication infrastructure. SEM is a generic defensive
mechanism suitable for general-purpose host protection. This research demonstrates the advantages
of the Defensive Mutualistic paradigm and Symbiotes over traditional AV solutions.

4.3 Operating System Security

4.3.1 KGuard

We focused mainly on the kernel / user space boundary violations. Notably, we have
identified a new, major threat for the security of the kernel and developed corresponding
countermeasures. The operating system (OS) kernel has become an increasingly attractive target for
attackers. This is basically due to the weak separation between user and kernel space; direct
transitions from more to less privileged protection domains are permissible, even though the reverse
is not. As a result, bugs like NULL pointer dereferences that would otherwise cause only system
instability, become serious vulnerabilities that facilitate privilege escalation attacks. When
successful, these attacks enable local users to execute arbitrary code with kernel privileges, by
redirecting the control flow of the kernel to a user process. Such return-to-user (ret2usr) attacks
have affected all major OSs, including Windows, Linux, and FreeBSD.

We developed a lightweight solution to the problem, which we call kGuard. kGuard is a
compiler plugin that augments kernel code with control-flow assertions (CFAs), which ensure that
privileged execution remains within its valid boundaries and does not cross to user space. This is
achieved by identifying all indirect control transfers during compilation, and injecting compact
dynamic checks to attest that the kernel remains confined. When a violation is detected, the system
is halted by default, while a custom fault handler can also be specified. kGuard is able to protect
against attacks that overwrite a branch target to directly transfer control to user space, while it also
handles more elaborate, two-step attacks that overwrite data pointers to point to user-controlled
memory, and hence hijack execution via tampered data structures.

Finally, we introduced two novel code diversification techniques to protect against attacks
that employ bypass trampolines to avoid detection by kGuard. A trampoline is essentially an
indirect branch instruction contained within the kernel. If an attacker manages to obtain the address
of such an instruction and can also control its operand, he can use it to bypass our checks. Our
techniques randomize the locations of the CFA-indirect branch pairs, both during compilation and
at runtime, significantly reducing the attackers’ chances of guessing their location.

Approved for Public Release; Distribution Unlimited.
20

4.3.2 Ret2dir: Re-thinking Kernel Isolation

As we described earlier, return-to-user (ret2usr) attacks redirect corrupted kernel pointers to
data residing in user space. In response, several kernel-hardening approaches have been proposed to
enforce a more strict address space separation, by pre- venting arbitrary control flow transfers and
dereferences from kernel to user space. Intel and ARM also recently introduced hardware support
for this purpose in the form of the SMEP, SMAP, and PXN processor features. Un- fortunately,
although mechanisms like the above prevent the explicit sharing of the virtual address space among
user processes and the kernel, conditions of implicit sharing still exist due to fundamental design
choices that trade stronger isolation for performance.

Although the above mechanisms prevent the explicit sharing of the virtual address space
among user processes and the kernel, conditions of implicit data sharing still exist. Fundamental OS
components, such as physical memory mappings, I/O buffers, and the page cache, can still allow
user processes to influence what data is accessible by the kernel. We studied the above problem in
Linux, and exposed design decisions that trade stronger isolation for performance. Specifically, we
presented a new kernel exploitation technique, called return-to-direct-mapped memory (ret2dir),
which relies on inherent properties of the memory management subsystem to bypass existing
ret2usr protections. This is achieved by leveraging a kernel region that directly maps part or all of a
system’s physical memory, enabling attackers to essentially “mirror” user-space data within the
kernel address space.

The task of mounting a ret2dir attack is complicated due to the different kernel layouts and
memory management characteristics of different architectures, the partial mapping of physical
memory in 32-bit systems, and the unknown location of the “mirrored” user-space data within the
kernel. We presented in detail different techniques for overcoming each of these challenges and
constructing reliable ret2dir exploits against hardened x86, x86-64, AArch32, and AArch64 Linux
targets. To mitigate the effects of such attacks, we designed and implemented an exclusive page
frame ownership scheme for the Linux kernel, which prevents the implicit sharing of physical
memory among user processes and the kernel. The results of our evaluation show that the proposed
defense offers effective protection with minimal runtime overhead.

4.4 Application Security

4.4.1 Information Flow Tracking using Binary Rewriting

Our work on this area, involved the development of techniques that aim to a) reduce the
overhead of the DFT approach (most implementations suffer from a high computational overhead),
and b) detect integer overflow defects in an efficient manner.

We developed libdft, a meta-tool in the form of a shared library that implements dynamic
DFT using Intel’s Pin dynamic binary instrumentation framework. libdft’s performance is
comparable or better than previous work, incurring slowdowns that range between 1.14× and 6.03×
for command-line utilities, while it can also run large server applications like Apache and MySQL
with an overhead ranging between 1.25× and 4.83×. In addition, it is versatile and reusable by

Approved for Public Release; Distribution Unlimited.
21

providing an extensive API that can be used to implement DFT-powered tools. Finally, it runs on
commodity systems. In addition, our implementation works with x86 binaries on Linux, and it can
be easily extended to run on 64-bit architectures and the Windows operating system (OS). libdft
introduces an efficient, 64-bit capable, shadow memory, which represented one of the most serious
limitations of earlier works, as flat shadow memory structures imposed unmanageable memory
space overheads on 64-bit systems, and dynamically managed structures introduce high
performance penalties. More importantly, libdft supports multi-process and multithreaded
applications, by trading off memory for assurance against race conditions, and it does not require
modifications to programs or the underlying OS.

We then developed a novel optimization approach to dynamic DFT, based on combining
static and dynamic analysis, which significantly improves its performance. Our methodology was
based on separating program logic from taint tracking logic, extracting the semantics of the latter,
and representing them using a Taint Flow Algebra. We have applied multiple code optimization
techniques to eliminate redundant tracking logic and minimize interference with the target program,
in a manner similar to an optimizing compiler. We relied upon the rich theory on basic block
optimization and data flow analysis, done in the context of compilers, to argue the safety and
correctness of our algorithm using a formal framework.

We evaluated the correctness and performance of our methodology by employing the
aforementioned framework: libdft. Additionally, we showed that the code generated by our analysis
behaves correctly when performing dynamic taint analysis (DTA). We evaluate the performance
gains achieved by our various optimizations using several Linux applications, including commonly
used command-line utilities (bzip, gzip, tar, scp, etc.), the SPEC CPU 2000 benchmarks, the
MySQL database server, the runtimes for the PHP and JavaScript languages, and web browsers.
Our results indicate performance gains as high as 2.23×, and an average of 1.72× across all tested
applications.

To improve the performance of dynamic DFT, we utilized libdft again, to develop
ShadowReplica. ShadowReplica accelerates DFT and other shadow memory-based analyses, by
decoupling analysis from execution and utilizing spare CPU cores to run them in parallel.
Decoupling analysis from execution to run it in parallel is by no means a novel concept. Previous
work can be classified into three categories. The first is based on recording execution and replaying
it along with the analysis on a remote host, or simply a different CPU. The second category uses
speculative execution to run application code including any in-lined analysis in multiple threads
running in parallel, and the third aims at offloading the analysis code alone to another execution
thread. ShadowReplica belongs to the third category of systems. The main contribution behind the
approach is an off-line application analysis phase that utilizes both static and dynamic analysis
approaches to generate optimized code for collecting information from the application, greatly
reducing the amount of data that we need to communicate. For running DFT independently from the
application, such data include dynamically computed information like memory addresses used by
the program, control flow decisions, and certain operating system (OS) events like system calls and
signals. ShadowReplica focuses on the first two that consist the bulk of information.

DFT is run in parallel by a second shadow thread that is spawned for each application
thread, and the two communicate using a shared data structure. The design of this structure is
crucial to avoid the poor cache performance issues suffered by previous work. The code

Approved for Public Release; Distribution Unlimited.
22

implementing DFT is generated during off-line analysis as a C program, and includes a series of
compiler-inspired optimizations that accelerate DFT by ignoring dependencies that have no effect
or cancel out each other. Besides the tag propagation logic, this code also includes per-basic block
functionality to receive all data required (e.g., dynamic addresses and branch decisions).

Our evaluations showed that compared to an already optimized in-lined DFT framework,
ShadowReplica is extremely effective in accelerating both the application and DFT, but also using
less CPU cycles. In essence, we do not sacrifice the spare cores to accelerate DFT, but exploit
parallelization to improve the efficiency of DFT in all fronts. ShadowReplica is on average ∼2.3×
faster than in-lined DTA when running the SPEC2006 benchmark (∼2.75× slowdown over native
execution).

Finally as an application study we showed how DFT can be used to protect against integer
overflow vulnerabilities. Integer overflow and underflow, signed conversion, and other types of
arithmetic errors in C/C++ programs are among the most common software flaws that result in
exploitable vulnerabilities. Despite significant advances in automating the detection of arithmetic
errors, existing tools have not seen widespread adoption mainly due to their increased number of
false positives. Developers rely on wrap-around counters, bit shifts, and other language constructs
for performance optimizations and code compactness, but those same constructs, along with
incorrect assumptions and conditions of undefined behavior, are often the main cause of severe
vulnerabilities. Accurate differentiation between legitimate and erroneous uses of arithmetic
language intricacies thus remains an open problem.

As a step towards addressing this issue, we have developed IntFlow, an accurate arithmetic
error detection tool that combines static information flow tracking and dynamic program analysis.
By associating sources of untrusted input with the identified arithmetic errors, IntFlow differentiates
between non-critical, possibly developer-intended undefined arithmetic operations, and potentially
exploitable arithmetic bugs. IntFlow examines a broad set of integer errors, covering almost all
cases of C/C++ undefined behaviors, and achieves high error detection coverage. We have
evaluated IntFlow using the SPEC benchmarks and a series of real-world applications, and
measured its effectiveness in detecting arithmetic error vulnerabilities and reducing false positives.
IntFlow successfully detected all real-world vulnerabilities for the tested applications and achieved
a reduction of 89% in false positives over standalone static code instrumentation.

4.4.2 ROP mitigations

The wide adoption of protection mechanisms like address space layout randomization
(ASLR), has given rise to a new exploitation technique, widely known as return-oriented
programming (ROP). This technique, allows an attacker to circumvent non-executable page
protections without injecting any code. Using return-oriented programming, the attacker can link
together small fragments of code that already exist in the process image of the vulnerable
application and they are known as gadgets. Each gadget ends with an indirect control transfer
instruction, which transfers control to the next gadget according to a sequence of gadget addresses
injected on the stack or some other memory area. In essence, instead of injecting binary code, the
attacker injects just data, which include the addresses of the gadgets to be executed, along with any
required data arguments.

Approved for Public Release; Distribution Unlimited.
23

We have developed a novel code randomization method that can harden third-party

applications against return-oriented programming. Our approach is based on narrow-scope
modifications in the code segments of executables, using an array of code transformation
techniques, to which we collectively refer as in-place code randomization. These transformations
are applied statically, in a conservative manner, and modify only the code that can be safely
extracted from compiled binaries, without relying on symbolic debugging information. By
preserving the length of instructions and basic blocks, these modifications do not break the
semantics of the code, and enable the randomization of stripped binaries even without complete
disassembly coverage. The goal of this randomization process is to eliminate or probabilistically
modify as many of the gadgets that are available in the address space of a vulnerable process as
possible. Since ROP code relies on the correct execution of all chained gadgets, altering the
outcome of even a few of them will likely render the ROP code ineffective.

To evaluate our approach, we have implemented a prototype, which we call kBouncer. In
addition, our evaluation using real-world ROP exploits against widely used applications, such as
Adobe Reader, showed the effectiveness and practicality of our approach, as in all cases the
randomized versions of the applications rendered the exploits non-functional. Note that, although
quite effective, our approach is not meant to be a complete prevention solution, as it offers
probabilistic protection and thus cannot deliver any protection guarantees. However, it can be
applied in tandem with existing randomization techniques to increase process diversification. This is
facilitated by the practically zero overhead of the applied transformations, and the ease with which
they can be applied on existing third-party executables.

We further extended kBouncer, based on the detection of abnormal control transfers that
take place during ROP code execution. This was achieved by using hardware features of commodity
processors, which incur negligible runtime overhead and allow for completely transparent operation
without requiring any modifications to the protected applications.

The new version of kBouncer was based on monitoring the executed indirect branches at
critical points during the lifetime of a process, and identifying abnormal control flow transfers that
are inherently exhibited during the execution of ROP code. In particular, the technique was built
around Last Branch Recording (LBR), a recent feature of Intel processors. Relying mainly on
hardware for instruction-level monitoring allows for minimal runtime overhead and completely
transparent operation, without requiring any modifications to the protected applications.

Notably, this version of kBouncer can be selectively enabled for the protection of already
installed applications. Besides typical ROP code, kBouncer can also identify the execution of
“jump-oriented” code that uses gadgets ending with indirect or instructions. To minimize context-
switching overhead, branch analysis is performed only before critical system operations that could
cause any harm. To verify that kBouncer introduces minimal overhead, we stress-tested our
implementation with workloads that trigger excessively the protected system functions. In the worst
case, the average measured overhead was 1%, and it never exceeded 4%. As the protected
operations occur several orders of magnitude less frequently in regular applications, the
performance impact of kBouncer in practice is negligible. Finally, we evaluated the effectiveness
and practical applicability of our technique using publicly available ROP exploits against widely
used software, including Internet Explorer, Adobe Flash Player, and Adobe Reader. In all cases,

Approved for Public Release; Distribution Unlimited.
24

kBouncer blocked the exploit successfully, and notified the user through a standard error message
window.

4.4.3 Destructive Code Reads in HeisenByte

In this work we focused on a newer class of dynamic code reuse attacks that builds the
attack payload at runtime using memory disclosure vulnerabilities. To counter this threat of
disclosure attacks on executable memory, researchers had proposed the idea of execute-only
memory (XOM). While recent XOM-based techniques have proved effective on open-sourced
programs, significant challenges exist in the protection of closed-source COTS binaries. Another
complication in realizing the XOM concept arises from web browsers’ use of dynamically
generated Just-In-Time code.

To solve these two major limitations of prior solutions against memory disclosure
vulnerabilities, we develop the concept of destructive code reads. Unlike XOM and XOM-inspired
systems, which aim to completely prevent reads to executable memory, a task beset with many
practical difficulties, we allow executable memory to be read, but make them unusable as code after
being read. In essence, in our model, as soon as the code is read using a general-purpose memory
dereferencing instruction, the copy of code in memory is garbled. Manipulating executable memory
in this manner allows legitimate code to execute without false-positives and false-negatives, while
servicing legitimate memory read operations for data embedded in the code.

We implement Heisenbyte to realize this destructive code read operation in practice on
contemporary commodity systems. To efficiently detect read operations into executable memory
and mediate on these operations, we leverage existing hardware-assisted nested paging feature
widely available on commodity processors. Originally designed to improve performance of
virtualization software, this virtualization hardware support turns out to be instrumental in allowing
us to mark existing memory pages as execute-only. With a thin hypervisor shim driver, we can
protect the underlying programs transparently without requiring any program modifications.
Furthermore, we can support the protection of dynamically generated JIT code pages. Heisenbyte’s
novel use of destructive code reads sidesteps the problem of incomplete binary disassembly in
binaries, and extends protection to both the static code in close-sourced COTS binaries, and
dynamic JIT code. In addition to detecting attacks, Heisenbyte also offers the capability to
gracefully terminate, instead of crashing, the process that is being targeted by the attack, and
provide further alerting information regarding the attack to the user.

Our experiments demonstrate that Heisenbyte can tolerate some degree of imperfect static
analysis in disassembled binaries, while effectively thwarting dynamic code reuse exploits in both
static and JIT code, at a modest 1.8% average runtime overhead due to virtualization and 16.5%
average overhead due to the destructive code reads. Amongst defenses that work on breaking
determinism in systems, Heisenbyte represents a resolute and effective step towards stopping
advanced exploits.

Approved for Public Release; Distribution Unlimited.
25

4.5 Concurrent System Security

4.5.1 A Vulnerability Study

Just as errors in sequential programs can lead to security exploits, errors in concurrent
programs can lead to concurrency attacks. Questions such as whether these attacks are feasible and
what characteristics were largely unknown. To answer this question we studied concurrency attacks
and the security implications of real world concurrency errors. We catalogued concurrency attacks
in the wild and presented their characteristics. We studied 46 different types of exploits and
categorized them based on the duration of the vulnerabilities. Our study yields several interesting
findings. For instance, we observed that the exploitability of a concurrency error depends on the
duration of the timing window within which the error may occur. We further observed that attackers
can increase this window through carefully crafted inputs. We also find that four out of five
commonly used sequential defenses become unsafe when applied to concurrent programs.

4.5.2 Solutions

A key reason for concurrency bugs and their exploitability is that multithreaded programs
have too many possible thread interleaving, or schedules. Even given only a single input, a program
may run into excessive schedules, depending on factors such as hardware timing and OS
scheduling. Considering all inputs, the number of schedules is even much greater. Finding a buggy
schedule in this huge schedule set is like finding a needle in a haystack, which aggravates
understanding, testing, and analyzing of programs. For instance, testing is ineffective because the
schedules tested in the lab may not be the ones run in the field.

To reduce the number of schedules for all inputs, we have studied the relation between
inputs and schedules of real-world programs, and made a surprising discovery: many programs
require only a small set of schedules to efficiently process a wide range of inputs. Leveraging this
discovery, we have proposed the idea of stable multithreading (StableMT) that reuses each schedule
on a wide range of inputs. StableMT conceptually maps all inputs to a greatly reduced set of
schedules, drastically shrinking the “haystack”, making the “needles” much easier to find.
StableMT can greatly benefit understanding multithreaded programs and many reliability
techniques, including testing, debugging, replication, and verification. For instance, testing
schedules in such a much smaller schedule set becomes a lot more effective.

To realize StableMT, we have built three systems, TERN, PEREGRINE, and PARROT,
with each addressing a distinct challenge. Moreover, to justify the benefits of StableMT, we have
applied StableMT to address three reliability and security problems. We provide a summary of these
systems below.

The first challenge of implementing StableMT is how to find highly reusable schedules for
different inputs. The more reusable a schedule is, the fewer schedules are needed. However, finding
highly reusable schedules is hard with existing static or dynamic techniques, because statically
computed schedules are in general not guaranteed to work at runtime due to the halting problem,
and dynamically computing schedules may be slow.

Approved for Public Release; Distribution Unlimited.
26

TERN, our first StableMT system, addresses the schedule-finding challenge by proposing a
technique called schedule memorization: it first records a set of past, working schedules, it then
reuses these schedules on future inputs when possible. Specifically, TERN maintains a cache of past
schedules and the input constraints required to reuse these schedules. When an input arrives, TERN
checks the input against the memorized constraints for a compatible schedule. If it finds one, it
simply runs the program while enforcing this schedule. Otherwise, it runs the program to memorize
a schedule and the input constraints of this schedule for future reuse. By reusing schedules, TERN
avoids potential errors in unknown schedules.

Another advantage of schedule memorization is that it makes schedules explicit, providing
flexibility in deciding when to memorize certain schedules. For instance, TERN allows developers
to populate a schedule cache offline, to avoid the overhead of doing so online. Moreover, TERN can
check for errors (e.g., races) in schedules and memorize only the correct ones, thus avoiding the
buggy schedules and amortizing the cost of checking for errors.

To make TERN practical, it must handle server programs which frequently use threads for
performance. These programs present two technical issues for TERN: (1) they often process client
inputs (requests) as they arrive, thus suffering from input timing nondeterminism, which existing
deterministic multithreaded systems do not handle and (2) they may run continuously, making their
schedules effectively infinite and too specific to reuse. TERN addresses these two technical issues
using a simple idea called windowing. Our insight is that server programs tend to return to the same
quiescent states. Thus, TERN splits the continuous request stream of a server into windows and lets
the server quiesce in between, so that TERN can memorize and reuse schedules across windows.
Within a window, it admits requests only at fixed schedule points, reducing timing nondeterminism.

Evaluation on a diverse set of popular programs showed that TERN can reuse a small set of
schedules to process a wide range of inputs. For instance, just 100 schedules for the Apache web
server can process 90.3% of a 4-day trace (122K requests) from the Columbia CS department
website.

The second challenge of implementing StableMT is how to efficiently make executions
follow schedules without deviating. This challenge has existed in the area of deterministic execution
and replay for decades. Previous work typically enforces two types of schedules: a total order of
shared memory accesses (mem-schedule), and a total order of synchronization operations (sync-
schedule). The mem-schedules are fully deterministic even with data races, but they are several
times slower than traditional multithreading. The sync-schedules incur only modest overhead
because most code is not synchronization and thus can still run in parallel, but these schedules may
deviate if there are data races. Overall, despite much research effort, people can only choose either
full determinism or efficiency, but not both.

To tackle this challenge, our second StableMT system, PEREGRINE, leverages the
following insight: although data races exist in some programs, the races tend to occur only within
minor portions of an execution, and the majority of the execution is still race-free.

We have implemented this insight in PEREGRINE. When a program first runs on an input,
PEREGRINE records a detailed execution trace including memory accesses in case the execution
runs into races. PEREGRINE then relaxes this detailed trace into a hybrid schedule, including (1) a

Approved for Public Release; Distribution Unlimited.
27

total order of synchronization operations and (2) a set of execution order constraints to
deterministically resolve each occurred race. When the same input is provided again, PEREGRINE
can reuse this schedule deterministically and efficiently.

Reusing a schedule only when the program input matches exactly is too limiting.
Fortunately, the schedules PEREGRINE computes are often “coarse-grained” and reusable on a
broad range of inputs. Indeed, TERN, our previous work, has shown that a small number of sync-
schedules can often cover over 90% of the workloads for real programs such as the Apache web
server. The higher the reuse rates, the more efficient and stable PEREGRINE is.

Before reusing a schedule on an input, PEREGRINE must check that the input satisfies the
preconditions of the schedule, so that (1) the schedule is feasible, i.e., the execution on the input
will reach all events in the same deterministic order as in the schedule, and (2) the execution will
not introduce new races (New races may occur if they are input-dependent). A naive approach is to
collect preconditions from all input-dependent branches in an execution trace. However, many of
these branches concern thread-local computations and do not affect the program’s ability to follow
the schedule. Including them in the preconditions thus unnecessarily decreases schedule-reuse rates.

Given an execution trace and a hybrid schedule, PEREGRINE computes sufficient
preconditions using a new technique called determinism-preserving slicing. Precondition slicing
takes an execution trace and a target instruction in the trace, and computes a trace slice that captures
the instructions required for the execution to reach the target with equivalent operand values.
Intuitively, these instructions include “branches whose outcome matters” to reach the target and
“mutations that affect the outcome of those branches”. This trace slice typically has much fewer
branches than the original execution trace, so that we can compute more relaxed preconditions.
Evaluation on a diverse set of programs showed that PEREGRINE provides both determinism and
efficiency, and can frequently reuse schedules for half of the evaluated programs.

The final system we built addresses deployment complexity: PARROT is a simple,
deployable runtime that enforces a well-defined round-robin schedule for synchronization
operations, vastly reducing the number of schedules. By default, it schedules synchronizations in
each thread using round-robin, vastly reducing schedules and providing broad repeatability.

To mitigate the serialization problem that causes big slow-down, PARROT uses an insight
based on the 80-20 rule: most threads spend most execution time in only a few core computations,
and PARROT only needs to make these core computations parallel. Accordingly, PARROT
provides a new abstraction called performance hints for developers to annotate core computations.
These hints, which are intended to improve parallelism of core computations, are not real
synchronization, and can be safely ignored without affecting correctness of a program. Specifically,
PARROT provides two performance hint abstractions. First, a soft barrier encourages the scheduler
to co-schedule a group of threads at given program points. It is for performance only, and operates
as a barrier with deterministic timeouts in PARROT. Developers use it to switch to faster schedules
without compromising determinism when the default schedules serialize parallel computations.

Second, a performance critical section informs the scheduler that a code region is a potential
bottleneck, encouraging the scheduler to get through the region fast. When a thread enters a
performance critical section, PARROT delegates scheduling to the nondeterministic OS scheduler

Approved for Public Release; Distribution Unlimited.
28

for speed. Performance critical sections may trade some determinism for performance, so they
should be applied only when the schedules they add are thoroughly checked by tools or advanced
developers. These simple abstractions let PARROT run fast on all programs evaluated, and may
benefit other DMT or StableMT systems and classic nondeterministic schedulers.
Evaluation on a wide range of 108 popular programs (e.g., Berkeley DB and MPlayer), which is
roughly 10X more programs than any previous StableMT or DMT evaluation, showed that, these
hints were easy to add and made PARROT fast (12.7% mean overhead on 24-core machines).
Moreover, by greatly reducing the number of possible schedules, PARROT increases the coverage
of checked schedules in an advanced model checking tool by many orders of magnitude. Due to
PARROT’s simplicity and high practicality, we have made it open source for deployment at:
https://github.com/columbia/smt-mc.

4.5.3 Applications

Applying StableMT to Improve Precision of Static Analysis To demonstrate the potential of
StableMT, we have applied PEREGRINE to improve static analysis, a popular technique that
analyzes a program and gets high coverage (e.g., covers all possible schedules) without executing
code. One shortcoming of static analysis is that it suffers from poor precision: to get high coverage
without executing code, static analysis has to over-approximate the huge schedule set and includes
many schedules that will never occur. Therefore, static analysis often raises excessive false reports
from the impossible schedules, which buries real bugs in noise.

Fortunately, StableMT can drastically shrink the schedule set for static analysis. We have created a
static analysis framework [6] that leverages PEREGRINE to greatly reduce the number of possible
schedules. The major contribution in this framework is a new approach called schedule
specialization that combines the soundness of static analysis and the precision of dynamic analysis.
Our insight is that not all of the exponentially many schedules are necessary for good performance.
A small set often suffices, as illustrated by recent work on efficient deterministic multithreading.
Based on this insight, our approach statically analyzes a parallel program over a small set of
schedules, then dynamically enforces these schedules. By focusing on only a small set of schedules,
we vastly improve the precision of static analysis; by enforcing the analyzed schedules dynamically,
we guarantee soundness of the analysis results. Our approach is loosely analogous to previous
approaches that combine static analysis and dynamic checking for memory safety, but ours aims at
parallel programs.

Schedule specialization may be implemented in many ways for many parallel programming models
such as message passing and multithreading; this paper presents one such implementation for
C/C++ programs using the common Pthreads library. We represent a schedule as a total order of
synchronizations such as lock operations, which can be efficiently enforced. To ensure that
schedules are feasible, we collect them from real executions. To enforce schedules, we leverage
PEREGRINE, our StableMT system which can enforce a small set of schedules on a wide range of
inputs. For instance, it can use about a hundred schedules to cover over 90% of requests in a real
HTTP trace for Apache. By reusing schedules, we not only make program behaviors repeatable
across inputs, but also amortize the static analysis cost in schedule specialization.
Our framework has broad applications. For instance, we can build precise static verifiers (e.g., to
verify error-freedom) because our verifiers need only verify a program w.r.t. the schedules

https://github.com/columbia/smt-mc

Approved for Public Release; Distribution Unlimited.
29

enforced. Stock compiler optimizations automatically become more effective on a specialized
program because it has simpler control and data flow. Our framework can also benefit “read-only”
analyses which do not require enforcing schedules at runtime. For instance, we can build precise
error detectors that check a program against a set of common schedules to detect errors more likely
to occur, while drastically reducing false positive rates. We can perform precise, automated post-
mortem analysis of a failure by analyzing only the schedule recorded in a system log to trim down
possible causes. We have built three highly precise analyses in this framework: an alias analyzer, a
data-race detector, and a path slicer.

Evaluation on 17 programs, including 2 real-world programs and 15 popular benchmarks, shows
that analyses using our framework reduced may-aliases by 61.9%, false race reports by 69%, and
path slices by 48.7%; and detected 7 unknown bugs in well-checked programs.

Applying StableMT Techniques to Detect Programming Rule Violations

Real-world programs must obey many rules, such as assertions must succeed, allocated
memory must be freed, and file updating and disk syncing must be done consistently. It is crucial to
verify programs with these rules, because violating them can easily lead to critical failures such as
program crashes, resource leaks, data losses, and security holes. Unfortunately, existing techniques
can not precisely verify a program with high program path coverage. For example, although
symbolic execution, a popular program analysis technique, can systematically explore program
paths to find errors, this technique suffers from path explosion: it can rarely explore however a tiny
portion of program paths, because a typical program is complicated and contains exponentially
many paths. This poor path coverage makes rule violations extremely hard to check in real-world
programs.

To address this problem, we have applied our program analysis techniques developed in
PEREGRINE to build WOODPECKER, a rule-directed symbolic execution system. The insight
behind WOODPECKER is: only a small portion of paths are relevant to rules, and the rest
(majority) of paths are irrelevant and do not need to be verified. Leveraging this insight,
WOODPECKER performs rule directed symbolic execution: instead of blindly exploring all paths,
it first statically “peeks” into the paths and then symbolically executes only the paths relevant to the
rule, greatly speeding up symbolic execution for both verification and bug detection.
To direct symbolic execution toward a rule, WOODPECKER faces three key algorithmic issues.
First, given a rule, how can WOODPECKER determine what paths are redundant? Second, how can
WOODPECKER work with different rules? It would be impractical if each rule requires a different
symbolic execution algorithm. Third, how can WOODPECKER integrate with the clever search
heuristics in existing symbolic execution systems? These heuristics absorb much dedicated research
efforts and can steer checking toward interesting paths (e.g., those more likely to have bugs) when
verifying all is not feasible. They have been shown to effectively increase statement coverage and
detect errors. WOODPECKER solves these issues using two ideas: a simple but expressive checker
interface and a sound, checker- and heuristic-agnostic search algorithm. A checker implementing
the interface provides methods to inform WOODPECKER (1) which executed instructions are
events and (2) which static instructions may be events regarding a rule. These methods abstract
away the checker details, enabling WOODPECKER’s search algorithm to be checker-agnostic.

Approved for Public Release; Distribution Unlimited.
30

Once WOODPECKER finishes exploring a path, it uses the checker-provided methods to
determine which branches off the path should be pruned. Specifically, if an off-the-path branch
cannot (1) affect any event executed in the path or (2) reach any new event not in the path, then it
cannot lead to a different event sequence, so WOODPECKER prunes this branch without missing
errors. This pruning is heuristic-agnostic because it is done only at the end of a path and does not
interfere with the search heuristics otherwise. By pruning irrelevant branches, WOODPECKER can
speed up symbolic execution exponentially because each pruned branch in principle halves the
number of paths to explore.

Evaluation on 136 widely used programs showed that WOODPECKER verified 28.7% of
program and rule combinations, whereas a top-of-the-line symbolic execution system verified only
8.5%. WOODPECKER detected seven new severe security violations.

Applying StableMT to Build Transparent State Machine Replication Service

State machine replication (SMR) leverages distributed consensus protocols such as PAXOS
to keep multiple replicas of a program consistent in face of replica failures or network partitions.
This fault tolerance is enticing on implementing a principled SMR system that replicates general
programs, especially server programs that demand high availability. Unfortunately, SMR assumes
deterministic execution, but most server programs are multithreaded and thus nondeterministic.
Moreover, existing SMR systems provide narrow state machine interfaces to suit specific programs,
and it can be quite strenuous and error-prone to orchestrate a general program into these interfaces.

We have built CRANE, an SMR system that transparently replicates server programs for
high availability. With CRANE, a developer focuses on implementing her program’s intended
functionality, not replication. When she is ready to replicate her program for availability, she simply
runs CRANE with her program on multiple replicas. Within each replica, CRANE interposes on the
socket and the thread synchronization interfaces to keep replicas in sync. Specifically, it considers
each incoming socket call (e.g., accept() a client’s connection or recv() a client’s data) an input
request, and runs a PAXOS consensus protocol to ensure that a quorum of the replicas sees the
same exact sequence of the incoming socket calls. CRANE uses a new technique we call time
bubbling to efficiently tackle a difficult issue of nondeterministic network input timing.

CRANE schedules synchronizations using deterministic multithreading (DMT). This
technique typically maintains a logical time that advances deterministically on each thread’s
synchronization. By serializing thread synchronizations, DMT practically makes an entire
multithreaded execution deterministic. The overhead of DMT is typically moderate because most
code is not synchronization and can still run in parallel. Specifically, CRANE leverages our prior
DMT (and also StableMT) system PARROT, which incurs on average 12.7% overhead on a wide
range of 108 popular multithreaded programs on 24-core machines.

We implemented CRANE by interposing on the POSIX socket and the Pthreads
synchronization interfaces. It intercepts operations along these interfaces by hijacking dynamically
linked library calls for transparency. It implements the PAXOS protocol atop the Libevent socket
programming library for distributed consensus, and leverages our PARROT system for
deterministic multithreading. Unlike prior SMR systems with narrow interfaces, CRANE’s
checkpoint and recovery must work with general programs. To this end, it leverages the CRIU tool
to checkpoint and restore process states, and the LXC tool for file system states. An additional

Approved for Public Release; Distribution Unlimited.
31

benefit of using the LXC container is that CRANE isolates the replicated server program from the
environment, avoiding nondeterministic systems resource contentions.
Evaluation on five widely used server programs (e.g., Apache, ClamAV, and MySQL) shows that
CRANE is easy to use, has moderate overhead, and is robust. CRANE’s source code is at:
https://github.com/columbia/crane.

4.6 Compiler Optimizations for Security

4.6.1 Information Flow Tracking

Information flow tracking is useful for detecting information leakages in programs. It can
also help protect against other security vulnerabilities such as buffer overflows. We implemented an
LLVM compiler-based DIFT framework that makes use of compiler optimization such as dead code
elimination, constant propagation, etc. to minimize performance overheads.

We applied our compiler-based information flow tracking framework to improve the
precision of value profiling. Value profiling is a technique used to identify possible invariants in
values computed by each instruction in programs, so that the compiler can optimize the program
with respect to these invariants. Existing value profilers naively collect frequently observed values
during profile execution with training inputs. However, results from naive value profiling often fail
to reflect the value distribution of real execution owing to differences between training and real
inputs.

By combining value profiling with information flow tracking, we can get more precise
profiling results. Information flow tracking associates metadata with every dynamic value during
program execution, and the metadata indicates if the value is computed from program invariants
(e.g. constants or fixed inputs) or not. Therefore, we can precisely profile values that are actually
valid across multiple program executions only and filter out false positives. We are also working on
an automatic program specialization framework based on value profiles. Automatic program
specialization based on value profiles is feasible only with high-precision profiling results, because
otherwise specialization will harm the program performance due to the excessive number of
incorrect predictions.

4.6.2 Region Based Memory Safety

 The main issue with DIFT solutions is the high performance overhead in the absence of specialized
hardware. Instead, we adopted a different approach for detecting information leakage in programs.
The key insight is that information leakage is often a result of the violation of memory safety.
Furthermore, attacks that violate memory safety to corrupt program state or gain control over the
execution of vulnerable programs form a large class of security threats. In a type-unsafe language
such as C, different vulnerabilities such as buffer overflows, format string attacks, etc. arise from
the manifestation of information flows that are undefined by the C standard. For instance, pointer
arithmetic more than one byte beyond allocation unit bounds is undefined by the C standard.
Despite being undefined in the C standard, such behaviors are usually allowed during program
execution, and often result in real-world security threats. Our technique, called region-based type

https://github.com/columbia/crane

Approved for Public Release; Distribution Unlimited.
32

enforcement for C, relies on detecting these undefined information flows at runtime to prevent
memory safety errors.

The crucial insight behind this approach is that static analysis often assumes that the
program being analyzed conforms to the specifications of the C standard. Thus, we can use static
analysis to build a model of information flows in a program, where undefined behavior with respect
to the C standard may never occur. A runtime system can then enforce these statically defined
information flows and detect violations that result from flows not defined by the static model.

Our system uses an approach similar to Write Integrity Testing (WIT), where all memory
instructions in a program are classified statically into different sets, based on whether the pointers
used in those instructions alias with each other. Instructions where pointers may alias are all put into
the same set, whereas instructions whose pointers never alias are categorized into different sets. In
other words, the memory used by a program is classified into different regions, with each region
corresponding to memory that can be accessed by one of the aforementioned sets. Checks inserted
at runtime enforce that instructions from a set can only access the corresponding memory region.
Going back to our observation, the sets or regions in our system capture the notion of valid
information flows in a program, whereas information flow between different sets would correspond
to the manifestation of undefined behavior.

We have built a working prototype in our compiler, which automatically transforms a
program to enforce region-based type safety. Our initial results show that the framework is
successful in preventing different buffer overflow attacks with various attack targets. In addition,
we have also explored extensions to our basic type enforcement framework to prevent more
complex, real-world attacks such as the Mempodipper attack for local root privilege escalation.

One of the big issues with the WIT approach is that the sets detected by static analysis are
unbalanced. Experiments show that on a set of 5 SPEC CPU benchmarks, 52.59% of the memory
instructions are all classified into the same set. This means that any memory safety violations in
these large sets are not detected by the region enforcement mechanism of WIT. WIT works around
this issue by inserting guards around objects that are considered unsafe via conservative analysis;
however, such an approach changes the memory layout of the program, and prevents programs with
explicit pointer arithmetic from being used with this system.

4.7 Miscellaneous Works

Building on the experience from region-based memory safety, we designed a new security-
aware architecture, which enforces security properties by leveraging static program information.
The main features of the architecture are: (1) Using static memory dependence information to
enforce integrity of memory operations in hardware, and (2) Enforcing conformity to the statically
determined control flow graph at runtime.

Our current work involves optimizing performance in this security-aware architecture
through two main approaches. In the first approach, we are trying to optimize single-threaded
performance by enabling the architecture to perform various online optimizations such as induction
variable elimination, copy propagation, etc. The second approach relies on supporting various

Approved for Public Release; Distribution Unlimited.
33

dynamic speculative parallelization schemes with low overhead through multi-threaded transactions
(MTX).

In addition to implementing an assembler and instruction set simulation for the architecture,
we have also implemented various dynamic optimizations and support for multi-threaded
transactions in the gem5 simulator. The modifications to the simulator include modifications to the
pipeline to enable the dynamic optimizations. In addition, to enable MTX, new coherent states were
added for cache lines, and the ISA was modified to add new MTX instructions for beginning,
committing and aborting transactions. Applications that benefit from these optimizations and
hardware-based MTX are currently under investigation.

4.8 Transition Efforts

4.8.1 AFRL FANCI/CRADA Transition

The FANCI technique was transitioned to Chip Scan LLC for the purpose of prototyping
and accelerating the FANCI technique for detecting hardware backdoors. A prototype of FANCI
tool was supplied to AFRL Research Labs at Rome for further testing.

4.8.2 WHCA Symbiote Transition

The White House Communication Agency expressed interest in increasing the security of
its telephony infrastructure by incorporating host defenses to ensure each critical phone device
was protected from tampering, especially when the devices were being used in remote and
potentially hostile locations. After several weeks of briefings and technical discussions, specific
models of VoIP phones were selected by the WHCA and prototyping and demonstration of
Symbiote protecting these devices was successfully demonstrated to the WHCA. The original
scope of the project has been met.

4.8.3 Navy PLC Transition

The Symbiote technology transitioned to Red Balloon Security included a task to prototype
and demonstrate Symbiote protected PLC's commonly used in onboard SCADA systems for the
US Navy. This effort successfully demonstrated the feasibility of maintaining PLC performance
characteristics while providing unique host based defense against unauthorized modifications of
device firmware. The successful transition led to continuing work and subsequent project support
from the US Navy in collaboration with other partners and a Navy R&D installation in
Philadelphia.

4.9 System Development

As part of the project we built several hardware and software prototypes and demonstrations.
The MIT LL red team selected some of the techniques for its full-system demonstration. Here we
provide a list of systems developed as part of the project:

Approved for Public Release; Distribution Unlimited.
34

• FANCI: Techniques for detecting backdoors
• Instruction Set Randomization: Hardware FPGA prototype that boots and runs Linux.

Everything from bootup to applications can be ISRized.
• Malware detectors: We demonstrated signature and anomaly based detection on ARM and

X86 platforms at the DARPA PI meetings.
• Symbiotes: Symbiotes have been built for printers, routers, phones and SCADA devices.
• LibDFT: Instruction Flow Tracking tool was developed for commodity Systems
• PARROT was developed to protect against concurrency attacks.

5.0 Conclusions

The work on SPARCHS encompassed many branches of research in multiple areas and the
effectiveness of each aspect of the system was demonstrated. These results have led to several
papers published in top conferences. Our prototyping and transition efforts have opened up further
lines of research inquiry.

6.0 REFERNCES

Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. 2013. FANCI: identification of
stealthy malicious logic using boolean functional analysis. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (CCS '13). ACM, New York, NY,
USA, 697-708. DOI=http://dx.doi.org/10.1145/2508859.2516654

Adam Waksman, Jeyavijayan Rajendran, Matthew Suozzo, and Simha Sethumadhavan. 2014. A
Red Team/Blue Team Assessment of Functional Analysis Methods for Malicious Circuit
Identification. In Proceedings of the 51st Annual Design Automation Conference (DAC '14). ACM,
New York, NY, USA, , Article 175 , 4 pages. DOI=http://dx.doi.org/10.1145/2593069.2596666

Simha Sethumadhavan, Adam Waksman, Matthew Suozzo, Yipeng Huang, and Julianna Eum.
2015. Trustworthy hardware from untrusted components. Commun. ACM 58, 9 (August 2015), 60-
71. DOI=http://dx.doi.org/10.1145/2699412

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis. 2015. The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS '15). ACM,
New York, NY, USA, 1406-1418. DOI=http://dx.doi.org/10.1145/2810103.2813708

Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. InProceedings of the
39th Annual International Symposium on Computer Architecture (ISCA '12). IEEE Computer
Society, Washington, DC, USA, 118-129.

John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012. Side-channel
vulnerability factor: a metric for measuring information leakage. In Proceedings of the 39th Annual
International Symposium on Computer Architecture (ISCA '12). IEEE Computer Society,
Washington, DC, USA, 106-117.

Approved for Public Release; Distribution Unlimited.
35

John Demme and Simha Sethumadhavan. 2014. Side-Channel Vulnerability Metrics: SVF vs. CSV.
In Proceedings of the 11th Annual Workshop on Duplicating, Deconstructing and Debunking
(WDDD '14).

Firefox Vulnerability Disclosure: https://bugzilla.mozilla.org/show_bug.cgi?id=1167489

Chrome Vulnerability Disclosure: https://code.google.com/p/chromium/issues/detail?id=506723

Safari/Webkit Vulnerability Disclosure: https://bugs.webkit.org/show_bug.cgi?id=146531

Tor Browser Vulnerability Disclosure: https://trac.torproject.org/projects/tor/ticket/1517

Adrian Tang, Simha Sethumadhavan, Sal Stolfo. 2014. Unsupervised Anomaly-Based Malware
Detection Using Hardware Features. In Research in Attacks, Intrusions and Defenses. Springer
International Publishing, Lecture Notes in Comptuer Science, 109-129.

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha
Sethumadhavan, and Salvatore Stolfo. 2013. On the feasibility of online malware detection with
performance counters. In Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA '13). ACM, New York, NY, USA, 559-570.
DOI=http://dx.doi.org/10.1145/2485922.2485970

Joël Porquet and Simha Sethumadhavan. 2013. WHISK: an uncore architecture for dynamic
information flow tracking in heterogeneous embedded SoCs. In Proceedings of the Ninth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis(CODES+ISSS '13). IEEE Press, Piscataway, NJ, USA, , Article 4 , 9 pages.

Kanad Sinha, Vasileios Kemerlis, Vasileios Pappas, Simha Sethumadhavan, Angelos D. Keromytis,
2014, Enhancing Security by Diversifying Instruction Sets, Columbia University Academic
Commons, http://dx.doi.org/10.7916/D8V69GQG.

Ang Cui, Jatin Kataria, Salvatore J. Stolfo; "From Prey To Hunter: Transforming Legacy Embedded
Devices Into Exploitation Sensor Grids;" The 27th Annual Computer Security Applications
Conference (ACSAC); 2011/12/05.

Ang Cui, Salvatore J. Stolfo; "Defending Legacy Embedded Systems with Software Symbiotes;"
The 14th International Symposium on Recent Advances in Intrusion Detection (RAID); 2011/09/20

Ang Cui, Salvatore J. Stolfo, Jatin Kataria; "Killing the Myth of Cisco IOS Diversity: Towards
Reliable, Large-Scale Exploitation of Cisco IOS;" 5th USENIX Workshop on Offensive
Technologies (WOOT); 2011/08/08

When Firmware Modifications Attack: A Case Study of Embedded Exploitation (NDSS 2013)

IP Phone Vulnerability:

https://bugzilla.mozilla.org/show_bug.cgi?id=1167489
https://code.google.com/p/chromium/issues/detail?id=506723
https://bugs.webkit.org/show_bug.cgi?id=146531
https://trac.torproject.org/projects/tor/ticket/1517

Approved for Public Release; Distribution Unlimited.
36

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5445
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-6685
https://downloads.avaya.com/css/P8/documents/100178648

Printer Vulnerability Disclosure:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4161

Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. kGuard: lightweight
kernel protection against return-to-user attacks. In Proceedings of the 21st USENIX conference on
Security symposium (Security'12). USENIX Association, Berkeley, CA, USA, 39-39, 2012.

Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. ret2dir: rethinking
kernel isolation. In Proceedings of the 23rd USENIX conference on Security Symposium (SEC'14).
USENIX Association, Berkeley, CA, USA, 957-972, 2014.
ROP Prevention

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the Gadgets:
Hindering Return-Oriented Programming Using In-place Code Randomization. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy (SP '12). IEEE Computer Society, Washington,
DC, USA, 601-615, 2012. DOI=10.1109/SP.2012.41

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Transparent ROP exploit
mitigation using indirect branch tracing. In Proceedings of the 22nd USENIX conference on
Security (SEC'13). USENIX Association, Berkeley, CA, USA, 447-462, 2013.

Vasilis Pappas, Michalis Polychronakis and Angelos D. Keromytis. Dynamic Reconstruction of
Relocation Information for Stripped Binaries. In Proceedings of the 17th International Symposium,
RAID 2014. Springer International Publishing, Switzerland, 68-87, 2014. DOI: 10.1007/978-3-319-
11379-1_4

Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis. libdft:
practical dynamic data flow tracking for commodity systems. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments (VEE '12). ACM, New York,
NY, USA, 121-132, 2012. DOI=http://dx.doi.org/10.1145/2151024.2151042

Kangkook Jee, Georgios Portokalidis, Vasileios P. Kemerlis, Soumyadeep Ghosh, David I. August,
and Angelos D. Keromytis. General Approach for Efficiently Accelerating Software-based
Dynamic Data Flow Tracking on Commodity Hardware. In Proceedings of the 19th Internet Society
(ISOC) Symposium on Network and Distributed System Security (NDSS). February 2012, San
Diego, CA.

Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Portokalidis.
ShadowReplica: efficient parallelization of dynamic data flow tracking. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (CCS '13). ACM, New York,
NY, USA, 235-246, 2013. DOI=http://dx.doi.org/10.1145/2508859.2516704

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5445
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-6685
https://downloads.avaya.com/css/P8/documents/100178648

Approved for Public Release; Distribution Unlimited.
37

Marios Pomonis, Theofilos Petsios, Kangkook Jee, Michalis Polychronakis, and Angelos D.
Keromytis. IntFlow: improving the accuracy of arithmetic error detection using information flow
tracking. In Proceedings of the 30th Annual Computer Security Applications Conference (ACSAC
'14). ACM, New York, NY, USA, 416-425, 2014. DOI=http://dx.doi.org/10.1145/2664243.2664282

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte: Thwarting Memory
Disclosure Attacks using Destructive Code Reads. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS '15). ACM, New York, NY, USA,
256-267. DOI=http://dx.doi.org/10.1145/2810103.2813685

Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, and David I. August. CGPA: Coarse-Grained
Pipelined Accelerators. The Design Automation Conference (DAC), June 2014.
Link:http://liberty.princeton.edu/Publications/dac14_cgpa.pdf

Speculative Separation for Privatization and Reductions, Nick P. Johnson, Hanjun Kim, Prakash
Prabhu, Ayal Zaks, and David I. August. Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2012.

Speculative Separation for Privatization and Reductions, Nick P. Johnson, Hanjun Kim, Prakash
Prabhu, Ayal Zaks, and David I. August. Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2012.

Runtime Asynchronous Fault olerance via Speculation Yun Zhang, Soumyadeep Ghosh, Jialu
Huang, Jae W. Lee, Scott A. Mahlke, and David I. August. Proceedings of the 2012 International
Symposium on Code Generation and Optimization (CGO), April 2012.

John Demme and Simha Sethumadhavan, Rapid Identification of Architectural Bottlenecks via
Precise Event Counting, Proceedings of the 38th ACM/IEEE International Symposium on
Computer Architecture.

Junfeng Yang, Ang Cui, Salvatore J. Stolfo, Simha Sethumadhavan; "Concurrency Attacks;" the
Fourth USENIX Workshop on Hot Topics in Parallelism; 2012/06/07.

Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang, Garth Gibson,
and Randy Bryant. “Parrot: a Practical Runtime for Deterministic, Stable, and Reliable Threads”.
Proceedings of SOSP 2013.

Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang. “Efficient
Deterministic Multithreading through Schedule Relaxation”. Proceedings of SOSP 2011.

Heming Cui, Jingyue Wu, Chia-che Tsai, and Junfeng Yang. “Stable Deterministic Multithreading
through Schedule Memoization”. Proceedings of OSDI 2010.

Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. “Verifying Systems Rules Using Rule-
Directed Symbolic Execution”. Proceedings of ASPLOS 2013.

Approved for Public Release; Distribution Unlimited.
38

Junfeng Yang, Heming Cui, Jingyue Wu, Yang Tang, and Gang Hu. “Determinism Is Not Enough:
Making Parallel Programs Reliable with Stable Multithreading”. In Communications of ACM 2014.

JingyueWu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang. “Sound and Precise Analysis of
Parallel Programs through Schedule Specialization”. Proceedings of PLDI 2012.

Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. “Paxos Made Transparent”.
Proceedings of SOSP 2015.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Acronym Nomenclature

ACM Association for Computing Machinery

ARM Advanced RISC Machine

ASLR Address Space Layout Randomization

BAA Broad Agency Announcement

CCS Computer and Communications Security

CPU Central Processing Unit

CWE Common Weakness Enumeration

DBI Dynamic Binary Instrumentation

DBT Dynamic Binary Translator

DEP Data Execution Prevention

DFT Dynamic Flow Tracking

DTA Dynamic Taint Analysis

FCG Function Call Graph

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

IDT Interrupt Descriptor Table

ISR Instruction Set Randomization

I/O Input/Output

LOC Lines Of Code

MD5 Message-Digest 5

MIPS Millions of Instructions Per Second

Approved for Public Release; Distribution Unlimited.
39

MMU Memory Management Unit

MP Memory Protection

OS Operating System

PC Program Counter

PDF Portable Document Format

QEMU Quick Emulator

RISC Reduced Instruction Set Computer

ROP Return-Oriented Programming

SAX Symbolic Aggregate Approximation

SEP Symbiotic Embedded Machines

SQL Structured Query Language

SSH Secure Shell Host

SPEC Standard Performance Evaluation Corporation

SVF Side-Channel Vulnerability Factor

T&E Test and Evaluation

VMI Virtual Machine Introspection

VMM Virtual Machine Monitor

VOIP Voice Over Internet Protocol

XOR Exclusive Or

	List of Figures
	1.0 SUMMARY
	2.0 INTRODUCTION
	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	4.0 RESULTS AND DISCUSSION
	4.1 Hardware Security
	4.1.1 Securing Hardware Design
	4.1.2 Measuring and Mitigating Micro-architectural Side Channels
	4.1.2.1 Spy in the Sandbox: A vulnerability study
	4.1.2.2 Time Warp
	4.1.2.3 Side-Channel Vulnerability Factor

	4.1.3 Architectural Support
	4.1.3.1 A Hardware Anti-Virus
	4.1.3.2 Instruction Set Randomization
	4.1.3.3 Information Flow Tracking

	4.2 Firmware Security
	4.2.1 Router Vulnerability Study
	4.2.2 Printer Vulnerability Study
	4.2.3 Symbiotic Embedded Machines

	4.3 Operating System Security
	4.3.1 KGuard
	4.3.2 Ret2dir: Re-thinking Kernel Isolation

	4.4 Application Security
	4.4.1 Information Flow Tracking using Binary Rewriting
	4.4.2 ROP mitigations
	4.4.3 Destructive Code Reads in HeisenByte

	4.5 Concurrent System Security
	4.5.1 A Vulnerability Study
	4.5.2 Solutions
	4.5.3 Applications

	4.6 Compiler Optimizations for Security
	4.6.1 Information Flow Tracking
	4.6.2 Region Based Memory Safety

	4.7 Miscellaneous Works
	4.8 Transition Efforts
	4.8.1 AFRL FANCI/CRADA Transition
	4.8.2 WHCA Symbiote Transition
	4.8.3 Navy PLC Transition

	4.9 System Development
	5.0 Conclusions
	6.0 REFERNCES

