
SOFTWARE EPISTEMOLOGY

THE CHARLES STARK DRAPER LABORATORY, INC.

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-059

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2016-059 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S / / S /
STEVEN DRAGER JOSEPH CAROLI
Work Unit Manager Acting Technical Advisor, Computing

 and Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAR 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

DEC 2013 – SEP 2015
4. TITLE AND SUBTITLE

SOFTWARE EPISTEMOLOGY

5a. CONTRACT NUMBER
FA8750-14-C-0056

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Jeffrey M. Opper

5d. PROJECT NUMBER
T2ET

5e. TASK NUMBER
SW

5f. WORK UNIT NUMBER
EP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-059
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2016-0787
Date Cleared: 26 FEB 2016
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The effort developed a comprehensive approach for determining software epistemology which significantly advances the
state of the art in automated vulnerability discovery. The approach applies an analytic sieve concept and a novel
hashing scheme to a large corpus of open-source software to mine information that indicates the presence of pre- and
post-fix conditions in program control flow, fully exploiting the hierarchy of abstraction and richness of data produced by
the artifact extraction process, while taking advantage of the scalable computation capabilities present in TitanDB. The
developed prototype software system is able to quickly analyze and compare software packages, demonstrating an
ability to identify individual software components in a software system and track common vulnerabilities in software
packages across large code corpora.

15. SUBJECT TERMS
Software epistemology, automated vulnerability discovery, large code corpora, analytic sieve, artifact generation, mining
engine

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
NA

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

36

i

Table of Contents

List of Figures .. iii

1. Introduction ... 1

1.1 Background .. 1

1.2 Overview .. 3

1.3 System Architecture ... 4

1.3.1 Harvester ... 5

1.3.2 Artifact Extractor .. 7

1.3.3 Object Ingestor .. 11

1.3.4 Relationship Integrator.. 12

1.3.5 Mining Engine .. 12

1.3.6 Analytic Sieve ... 13

1.3.7 Opcode Hash (OpHash) .. 14

2 Methods, Assumptions and Procedures .. 15

2.1 Implementation and Deployment ... 15

2.2 Theory of Operation ... 16

2.3 Corpus Creation.. 16

2.4 CVE Download .. 17

2.5 Vulnerability Detection .. 17

3 Results and Discussion ... 18

3.1 Demonstration One—Isolating a Vulnerability ... 18

ii

3.1.1 Overview ... 18

3.1.2 Results ... 18

3.1.3 Summary ... 21

3.2 Demonstration Two—Full Package Vulnerability Assessment 22

3.2.1 Overview ... 22

3.2.2 Results ... 22

3.2.3 Summary ... 26

4 Conclusions ... 26

5 Recommendations ... 27

5.1 Open Questions .. 27

Bibliography ... 29

List of Symbols, Abbreviations and Acronyms .. 30

iii

Table of Figures

Figure 1. SWE System Architecture ... 5

Figure 2. An example command line invocation of the Harvester. .. 6

Figure 3. Artifact Extractor JSON Object... 8

Figure 4. Categories and types of artifacts. ... 9

Figure 5. Artifact hierarchy... 11

Figure 6. Ingestor command line invocation .. 11

Figure 7. The series of Gremlin [12] commands that invoke the Relationship Integrator. 12

Figure 8. Analytic Sieve ... 13

Figure 9. OpHash Map .. 14

Figure 10. Build inventory webpage ... 16

Figure 11. OpenSSL_1_0_1f (pre-fix) CFG ... 19

Figure 12. OpenSSL_1_0_1g (post-fix) CFG ... 19

Figure 13. Decompiled Dropcam binary (pre-fix) .. 20

Figure 14. Decompiled Dropcam binary (post-fix) .. 21

Figure 15. Lexumo OpenWebOS portal ... 23

Figure 16. Vulnerabilities and warnings in elfutils ... 24

Figure 17. Vulnerability details .. 25

Approved for Public Release; Distribution Unlimited.
1

1. Introduction

1.1 Background

The Charles Stark Draper Laboratory, a not-for-profit commercial laboratory, developed a

comprehensive approach for determining software epistemology 1 . To this end, The Draper

Laboratory developed a prototype software system to quickly analyze and compare software

packages for similarity in composition. In this report, we discuss how our software epistemology

system has demonstrated the ability to identify individual software components in a software

system and to track common vulnerabilities in software packages across large code corpora.

Draper’s software epistemology system provides risk reduction to Air Force mission systems

programs through detection and mitigation of vulnerabilities prior to deployment.

The Draper program’s goal was to produce several proof-of-concept demonstrations within the

planned 12 month term:

• Demo 1 - Demonstrate the ability to uniquely identify software based on a notion of

canonical representation(s).

• Demo 2 - Demonstrate the ability to reverse engineer or uniquely identify AFRL

prototype software from an in-house program.

Demo 1 objectives were demonstrated during our September 2014 review where we successfully

detected the presence of the HeartBleed [1] vulnerability in Dropcam [2] firmware. We also

demonstrated the efficacy of our software analytic sieve query pipeline for rapidly paring down

query search spaces in large software corpuses. See Section 4 for details.

In Demo 2, unforeseen technical issues necessitated a change from the planned evaluation and

testing with the AFRL-provided Real-Time Executive for Multi-processor Systems (RTEMS) [3]

1 Epistemology is the study or a theory of the nature and grounds of knowledge especially with reference to its limits
and validity

Approved for Public Release; Distribution Unlimited.
2

codebase. Instead, we demonstrated a successful analysis of the Open WebOS [4] operating

system. Our analysis identified 24 known vulnerabilities (i.e., vulnerabilities published in the

MITRE Common Vulnerabilities and Exposures database [5]) in the latest release. See Section 5

for details.

During the execution of this effort, Dr. Suresh Jagannathan (a DARPA I2O Program Manager)

was invited to attend a series of our monthly teleconferences; Dr. Jagannathan’s research

interests dovetailed with aspects of this program. Dr. Jagannathan successfully bootstrapped a

DARPA program with intersecting goals, specifically, DARPA’s Mining and Understanding

Software Enclaves (MUSE). DARPA’s MUSE [6] program builds upon the concept of software

epistemology to investigate how large software corpuses can be analyzed to enable software

repair and synthesis. Draper successfully proposed an epistemological and machine learning

approach to the open MUSE BAA. Draper’s proposed system, called DeepCode, extends the

work performed here with advanced machine learning technologies. As proposed, DeepCode

will apply machine learning over software corpuses at scale using deep neural networks, i.e.,

Deep Machine Learning, on high quality features computed from canonical representations of

software, which would enable automated vulnerability detection, evolution and program repair.

Another indicator of the merit of this research is Draper’s in-vitro decision to incubate a startup,

Lexumo [7], which is developing a commercial Software as a Service (SaaS) vulnerability

assessment platform based upon Draper’s Software Epistemology (SWE) effort. Lexumo will, in

turn, provide Draper with exclusive rights to use the Lexumo platform within the DoD and

Intelligence Community (IC). Depending upon the specific customer requirements, Draper will

either use the Lexumo platform as it exists (e.g., unclassified vulnerability assessment of projects

containing open-source software), or Draper will perform the necessary value-added engineering

to extend the platform to accommodate custom features for DoD and IC customers.

In summary, the Software Epistemology project successfully demonstrated its core premise of

identifying vulnerable code in modern complex software systems drawn from the wild by using

Approved for Public Release; Distribution Unlimited.
3

large code corpuses. During program execution, Draper invested significant in-kind internal

research to perform risk reduction and technology exploration as well as incubated a commercial

offering with Draper white-label support to DoD and IC customers—dramatically increasing the

investment made by the Air Force. Finally, innovation continues on the DARPA MUSE

program, where Draper’s DeepCode effort is evaluating the application of Deep Learning on

software features to support automated vulnerability identification and repair.

1.2 Overview

Draper’s Software Epistemology approach originates from compiler intermediate representations

(IR) of software. Because modern compilers all produce some form of IR during the compilation

process, IR can be retrieved for any software package, and hence Draper’s software

epistemology system can utilize any and all open source code repositories to build a large, useful

software corpus. Because many source packages reuse popular libraries, there is a high degree of

commonality between the IR of different large software packages. For example, there is a small

set of open source software libraries that are integrated into nearly all large software packages.

As a result, given a new software package, Draper’s software epistemology approach is highly

likely to match a library or code fragment from that package to one already present in the

epistemological database.

Previous efforts in software epistemology have focused on two contrary goals: first, small

signatures that are able to identify malware that may have polymorphic presentation and multiple

potential infection vectors, and second, large behavioral summaries for delta or regression

analysis to ensure that software written against one version of a library can interoperate with

another version of the same library. In the case of small signatures for malware, signatures must

be highly compressible to allow for the distribution of a large number of signatures to a large

number of vulnerable desktops. In the case of large behavioral signatures for libraries, the size of

the behavioral signature may exceed that of the library itself, if the data is used to validate the

correctness of a software system in development numbering in the millions of lines of code.

Approved for Public Release; Distribution Unlimited.
4

Draper’s SWE effort has been to develop a scalable system that lies in a sweet spot between

these two bodies of work. First, Draper’s SWE effort looks at many large software projects.

This allows for a high degree of parallelism in the search for similarities and differences between

software packages. Consequently, we reduce the problem of determining software similarity to

standard big data processing techniques such as map-reduce workflows and noSQL database

queries. Second, Draper’s SWE effort compresses large software projects into small sets of

signatures, primarily representing their code reuse patterns, such that the signatures can be easily

interpreted.

The ability to quickly and accurately identify software components—either from source code or

machine binaries—enables the rapid identification of known software vulnerabilities, unsafe use

cases, and hidden malware in complex embedded systems. In 2002, a NIST study [3] estimated

the cost of faulty software to be between $22B and $60B in the US alone; with approximately

half of the costs incurred from the labor and resources to mitigate the faults. SWE represents a

revolutionary new approach to cyber security—in theory, by analyzing target software with the

SWE platform, cyber security teams may be able to obtain a map of the software, with

provenance to known examples of equivalent and similar software samples; associated metadata;

and a list of all known vulnerabilities associated with the various software components without

intensive human analysis.

1.3 System Architecture

The Software Epistemology prototype system adopts a workflow-based architecture where

components of a toolchain are executed sequentially to build object code from downloaded

software repositories; extract artifacts representing semantic relationships within the modules,

functions, and basic blocks; store these artifacts in a distributed graph database; and rapidly pare

down the search space to pinpoint vulnerabilities in systems of interest (Figure 1).

At a high level, there are three major subsystems that comprise the SWE prototype:

• Artifact Generation

Approved for Public Release; Distribution Unlimited.
5

• Mining Engine

• Analytic Sieve

Figure 1. SWE System Architecture

Within the Artifact Generation subsystem reside the Harvester and Artifact Extractor tools. The

Object Ingestor and Relationship Integrator tools reside at the boundary between the Artifact

Generation and Mining Engine subsystems. The following subsections describe each component

of the toolchain.

1.3.1 Harvester

The core requirement within SWE is that large open source packages are transformed into

relatively smaller sets of artifacts that represent the call structure, control flow, and

Approved for Public Release; Distribution Unlimited.
6

opportunistically discovered semantic relationships between the modules, functions, and basic

blocks within each project.

The Harvester’s function is to build software revisions of software projects whose sources are

stored within git repositories. For example, given a software project contained in repository foo

with revisions {hash1,…,hashk}, the harvester will produce k builds. The manifold build process

is performed as a master/slave distributed process across nodes in a cluster.

The Harvester is a collection of python packages that build on the Yocto Autobuilder project,

which in turn builds on the BuildBot project. Both of these projects develop Continuous

Integration frameworks that automate software build processes.

The Harvester contributed to these frameworks by adding heuristics to attempt to identify the

type of build required (e.g., make, autoconf/automake, ant) and associate the appropriate builder

module with the target. Further, in some cases, builds may generate transient products that are

needed for the SWE ingest and artifact generation processes to succeed. To support this

requirement, the linux’s strace generalized debugger functionality is used in the builder modules

such that an strace script identifies LLVM clang [8] system calls made during compilation. This

information is used during a second build pass to allow the Harvester to capture files that would

otherwise have been lost as temporaries in the build process.

A command line argument, see Figure 2, to the Harvester instructs it to either invoke the Artifact

Extractor directly as the project is built or wait until the harvesting process is complete. In the

second case, a separate command would be issued to start the artifact generation process.

Figure 2. An example command line invocation of the Harvester.

python -mdcharvest.corpusTools.submitProject --config
/etc/puppet/modules/dcharvest/files/MasterConfig.cfg --builder
genericConfigure --submit --scrape <--limit X> --runDCAE --id <id tag> --
project http://plisl01.draper.com:8800/git/cntlm.git

https://www.yoctoproject.org/tools-resources/projects/autobuilder
http://buildbot.net/index.html

Approved for Public Release; Distribution Unlimited.
7

1.3.2 Artifact Extractor

The SWE Artifact Extractor takes LLVM IR compilation units (h.t.f., programs) as input and

outputs JavaScript Object Notation (JSON) markup that encapsulates the artifacts associated

with the program. In particular, the output of the Artifact Extractor consists of named objects,

which are key value dictionaries that represent some item of interest related to the program being

extracted, and typed edges that denote directional linkages between objects. All extracted objects

and edges corresponding to a compilation unit (a LLVM module) live in a single nameless JSON

[9] object. Each Artifact Extractor object is a named JSON object (see Figure 3) with a set of

Attribute and they are typed by their "Type" attribute. When an object represents a piece of data

or a variable, the type of the data or variable is represented by a "VarType" attribute.

Approved for Public Release; Distribution Unlimited.
8

Figure 3. Artifact Extractor JSON Object

All edges corresponding to a module live in a single JSON object named “edges”. Each class of

edges is a nested object named by the edge class composed of attributes of the form "in_name:

out_name". This structure enables the representation of artifacts within a project as a connected

graph that preserves the relationships between the objects.

{
 "8b69cd632024b6d8a4470331fa758b763a86b9775496561e5d2ee633d6f58": {
 "DCAE": "1427481407",
 "Globals": [
 {
 "DefaultValue": "[12 x i8] c\"fib(%u)=%u\\0A\\00\"",
 "Name": ".str",
 "VarType": "[12 x i8]*"
 }
],
 "Name": "fib.ll",
 "Path": "tests\/fib.ll",
 "Type": "Module"
 },
 "8b69cd632024b6d8a4470331fa758b763a86b9775496561e5d2ee633d6f58-fastfib": {
 "IsExternal": "false",
 "IsIntrinsic": "false",
 "Name": "fastfib",

 "Parameters": "i32",
 "Type": "Function"
 },
 "Edges": {
 "calls": [
 {
 "8b69cd632024b6d8a4470331fa758b763a86b9775496561e5d2ee633d6f58-main":
"8b69cd632024b6d8a4470331fa758b763a86b9775496561e5d2ee633d6f58-fib"
 },
],
 "dominates": [
 {
 "8b69cd632024b6d8a4470331fa758b763a86b9775496561e5d2ee633d6f58-mainentry":
"8b69cd632024b6d8a4470331fa758b763a86b9775496561e5d2ee633d6f58-mainfor.cond"
 }
]
}

Approved for Public Release; Distribution Unlimited.
9

Artifacts fall within one of the following categories Static, Dynamic, Derived, and Indirect as

depicted in Figure 4. Static are those extracted from the LLVM IR without execution of the

program under inspection. They describe program structure, inter and intra-module interfaces.

For a given program, the SWE prototype extracts sets of functions, Call Graphs between those

functions, traditional Control Flow Graphs (CFG) for each function, and dataflow graphs for

each basic block within a Control Flow Graph (h.t.f. Use-Def). To simplify work on the analytics

processor, pre-computation over graphs such as the Dominator Trees corresponding to CFGs are

generated via standard LLVM library modules. Additionally, the SWE prototype mines program

compilation artifacts for libraries, system calls, globally and externally available variables,

constants, and known functions by walking the internal LLVM representations for a Program.

Figure 4. Categories and types of artifacts.

Approved for Public Release; Distribution Unlimited.
10

Table 1 describes the static artifacts that are generated by the Artifact Extractor at the time of this

report.

Table 1. SWE static artifacts

Static Artifacts
Name Description Reason

Call Graph (CG) Directed graph of the functions called by a
function.

Represents high-level program structure. Shows
functions that are added, removed, or replaced.

Control Flow
Graph (CFG)

Directed graph of the control flow between
basic blocks inside of a function.

Represents function-level program structure.
Shows basic blocks that are added, removed, or
replaced.

Use-Def (UD)
and Def-Use
Chains (DU)

Directed acyclic graphs of the inputs (uses),
outputs (definitions), and operations
performed in a basic block of code.

Enables semantic analysis of basic blocks of
code with regard to the input types accepted, the
output types generated, and the operations
performed inside a basic block of code.

Dominator Trees
(DTs)

Matrix representing which nodes in a CFG
dominate (are in the path of) other nodes.
Comes in Pre (from entry forward) and Post
(from exit backward) forms.

Highlights when the path changes to a particular
node in a CFG. In compilers, DTs enable
automatic parallelization analysis and other
compiler optimizations.

Basic Blocks The instructions and operands for inside
each node of a control flow graph.

We can directly compare, and also produce
similarity metrics between two basic blocks.

Variables The types for any function parameters, local
variables, or global variables. Includes a
default value if one is available.

Provides initial state and basic constraints on the
program. Shows changes in the type or initial
value, which can affect program behavior.

Constants The type and value of any constant. See Variables.
Branch
Semantics

The Boolean evaluations inside of if
statements and loops.

Branches control the conditions under which
their basic blocks are executed.

As described above, the static artifacts are graph-based and hierarchical in nature. This hierarchy

is maintained in the ontological data representation of the Mining Engine. The artifact hierarchy

is shown in Figure 5. The top of the artifact hierarchy is the Label Transition System (LTS).

Each LTS node maps to a set or subset of functions and particular variable states. Under the

LTS is the Call Graph (CG); each CG node maps to a particular function with a CFG. Each CFG

node contains basic blocks, DTs, Use-Def (UD) / Def-Use (DU) chains, variables, constants, and

other artifacts. Edges on the CFGs may contain loop invariants and branch semantics. Dynamic

artifacts are mapped to multiple levels of the hierarchy, from an LTS node describing ranges of

dynamic information down to individual IR instructions.

Approved for Public Release; Distribution Unlimited.
11

Figure 5. Artifact hierarchy

1.3.3 Object Ingestor

The SWE Object Ingestor imports, from a collection of JSON objects created by the Artifact

Extractor, graphs representing the calls, control flow, and basic block instructions of an LLVM

module into the graph database component of the Mining Engine. The ingest requires that a

TitanDB keyspace has been created prior to invocation.

The ingest process is relatively straightforward. As the JSON objects are parsed, a connection is

made to the database and queries are constructed to create vertices, edges, and their attributes in

the named keyspace. Figure 6 illustrates the command line invocation of the Object Ingestor.

Figure 6. Ingestor command line invocation

Label Transition System

Call Graphs

Control Flow Graphs, Branch
Semantics, Loop Invariants

Basic Blocks, Dominator
Trees, Use-Def Chains

IR Instructions, Use-Def
Chains, Variables, Constants

/usr/local/pyenv/versions/2.7.8/lib/python2.7/site-
packages/dcharvest/hdfs/ingestJSONCassandra.sh
"/user/corpus/<BuildID>/*/json/*.seq" /user/corpus/output/<BuildID>
<keyspace> <vertexTag>

Approved for Public Release; Distribution Unlimited.
12

1.3.4 Relationship Integrator

The Relationship Integrator, invoked as shown in Figure 7, is a post-processing script that

establishes relationships between each package and the modules, functions, and basic blocks that

were present in each ingested tag for that package over its entire build history. These

relationships are established through the creation of edges in the graph that represent the

ownership hierarchy. This is extremely important as popular packages, such as OpenSSL [11],

may have hundreds of tags representing the evolution of that software over a number of years. In

each tag, files may be modified, introduced, and deprecated. The Relationship Integrator

maintains this living history.

Figure 7. The series of Gremlin [12] commands that invoke the Relationship Integrator.

1.3.5 Mining Engine

The SWE artifacts are stored in an ontological graph layer using OrientDB [13] (initially) to

preserve the semantic relationships between elements. Matrix representations of the graph-

artifacts were also planned to be stored in a matrix-based math layer using SciDB [14] for

efficient, distributed computation. The Mining Engine represents the conceptual unified query

interface for the two database components in conjunction with an envisioned Synchronization

Plane that kept relationships between data shared between the two instances intact (see Figure 1).

shell> /hdfs1/optnfs/titandb/bin/gremlin.sh
\,,,/
(o o)

-----oOOo-(_)-oOOo-----

// connect to DB
ks = <keyspace>
Conf = new BaseConfiguration();
Conf.setProperty("storage.backend", "cassandra");
Conf.setProperty("storage.hostname", "plisl01.draper.com");
Conf.setProperty("storage.cassandra.thrift.frame-size", "128");
Conf.setProperty("storage.cassandra.keyspace", ks);
g = TitanFactory.open(Conf);
// Load the dcri_titan_function.groovy script
load <local_dir>/deepcode-relationship-
integrator/dcri_titan_function.groovy

Approved for Public Release; Distribution Unlimited.
13

Initially, OrientDB performed nominally for small- to medium-sized data sets. However, as the

size of the experiment datasets got sufficiently large, performance issues severely impacted

ingest processing. By early 2015, it became clear that a different solution was required. After a

brief evaluation of alternatives, the team replaced the OrientDB installation with a TitanDB

[15]/Apache Cassandra [16] database and ported the toolchain to the new instance.

As of the writing of this report, all experimentation and demonstrations were performed using

the Graph database component of the Mining Engine (i.e., OrientDB or TitanDB).

1.3.6 Analytic Sieve

The Analytic Sieve is a more conceptual approach than a specific toolchain component, but there

are framework components that support the approach. Early in our research, it became evident

that a strategy needed to be adopted that maximized our ability to scale up to terabyte scale data

sets.

The sieve concept takes the approach of beginning with fast, but effective, database queries that

dramatically decrease the size of the search space. Building upon these initial queries, one then

can apply increasingly more complex (and computationally expensive) queries to obtain the

desired result (see Figure 8).

Figure 8. Analytic Sieve

Vulnerability Report … … … …
Fix Revision … … …
Revision Modules … …

Module Functions …
Basic Block Count …

In/Out Calls …
Basic Block CFG …

Isomorphism …
Opcode Hash …
... …

…

Approved for Public Release; Distribution Unlimited.
14

In this depiction, one could start with the vulnerability report contained in the Common

Vulnerabilities and Exposures (CVE) database to identify the versions of the software that

displayed a particular vulnerability and the specific version that implemented the fix. Using the

version number as a guide, one can immediately obtain the fix revision in the SWE artifact space

to include the control flow graph that represents the region (pre- and post-fix). Using that data,

the analyst can then examine any software system under test using hashing techniques and graph

isomorphism to confirm or deny the presence of the vulnerability without relying on the version

information alone. This is essential in cases where patches may have been introduced out-of-

band and the version information in the source code does not match ground truth.

Figure 9. OpHash Map

1.3.7 Opcode Hash (OpHash)

A custom hashing scheme was developed in our SWE research to enable fast, but fuzzy,

matching of basic blocks in a module or function. This scheme used a saturating histogram of

LLVM IR opcode types encountered in a basic block. As an opcode is encountered in a basic

block its type counter is incremented. Once the count reaches nine, it saturates even if other

opcodes in the basic block map to that bin.

The LLVM Language Reference Guide groups opcodes into nine types:

• Other (O)

OpClassMap = {
 ('ret', 'br', 'switch', 'indirectbr', 'invoke','resume', 'unreachable') : 'Term',
 ('add', 'fadd', 'sub', 'fsub', 'mul', 'fmul', 'udiv', 'sdiv', 'fdiv',
 'urem', 'srem', 'frem') : 'Bin',
 ('shl', 'lshr', 'ashr', 'and', 'or', 'xor') : 'BitBin',
 ('extractelement', 'insertelement', 'shufflevector') : 'VectorOps',
 ('extractvalue', 'insertvalue') : 'Aggregate',
 ('alloca', 'load', 'store', 'fence', 'cmpxchg', 'atomicrmw',
 'getelementptr') : 'MemAddr',
 ('trunc', 'zext', 'sext', 'fptrunc', 'fpext', 'fptoui', 'fptosi', 'uitofp',
'sitofp', 'ptrtoint', 'inttoptr', 'bitcast', 'addrspacecast') : 'Conversion',
 ('icmp', 'fcmp', 'phi', 'select', 'call', 'va_arg', 'landingpad') : 'Other'}
OpClasses = ['Term', 'Bin', 'BitBin', 'Vector', 'Aggregate', 'MemAddr',

'Conversion', 'Other']
Vals = [10 ** N for N in range(len(OpClasses))]

Approved for Public Release; Distribution Unlimited.
15

• Conversion (C)

• Memory Access and Addressing (M)

• Aggregate (A)

• Vector (V)

• Bitwise Binary

• Binary

• Terminator (T)

Figure 9 provides the mapping of opcodes to type as used in our OpHash scheme. The order of

digits, as specified in the list, is OCMAVBBT. The resulting eight digit number is calculated for

each basic block ingested into the system and maintained as an attribute of that object. Section 5

will specifically describe how the OpHash is used for the Demonstration One scenario.

2 Methods, Assumptions and Procedures

2.1 Implementation and Deployment

The SWE prototype consists of a number of open-source products and libraries combined with

custom code. Table 2 provides a functional breakdown of the implemented system.

Table 2. Functional breakdown of SWE components

SWE Components
Functional Area Item Description

Front-end

Buildbot Meta-build framework for corpus ingest
Modified strace Preserves temporal build artifacts
LLVM clang and plug-ins Framework for Harvester, Artifact Extractor, and

Relationship Integrator

Databases
PostgreSQL Administrative database
TitanDB/Cassandra Primary graph store
ElasticSearch Supports Analytic Sieve

Analytics
Groovy, Gremlin, python Scripting for analytic query processing
SWE Analytic Sieve Meta-query framework

Cluster
Configuration
and Maintenance

Puppet Declarative language for system configuration and
a cluster deployment tool

Approved for Public Release; Distribution Unlimited.
16

The SWE prototype was deployed on a Draper-owned 40-node compute cluster connected to the

Cyber Enclave workstation area. Team members deployed software to the cluster using the

Puppet tool referenced in Table 2. Several web-based tools were maintained to show cluster

processing status. Figure 10 shows a snapshot of the build inventory on a specific day.

Figure 10. Build inventory webpage

2.2 Theory of Operation

2.3 Corpus Creation

The theory of operation of the SWE prototype is straightforward. First, internet-based

repositories of open source software (e.g., FreeBSD ports, GitHub, SourceForge, etc.) are mined

Approved for Public Release; Distribution Unlimited.
17

for projects (for the duration of this project we restricted our search to C and C++ projects for

simplicity). These projects are mirrored locally (or staged) and the SWE toolchain is invoked

(specifically the Harvester and the Artifact Generator) to build object code from which artifacts

can be extracted and added to the TitanDB graph database. In addition to code artifacts, other

metadata is extracted and used by the Relationship Integrator to build semantic links between

graph nodes and includes build and revision histories, tags, and commit logs. As the ingest

progresses, OpHashes are generated for each basic block consumed.

2.4 CVE Download

Separately, Common Vulnerabilities and Exposures data is downloaded from the web daily and

loaded into PostgreSQL [17] and ElasticSearch [18]. Linkages of vulnerabilities to project,

module, function, and basic block graph objects in TitanDB are maintained through scripts that

are triggered during CVE processing.

2.5 Vulnerability Detection

Once a corpus has been established and the CVE data has been populated and linked, software of

interest can be analyzed for known vulnerabilities. This analysis begins with a transformation of

the source code to artifacts in a process that is identical to that performed when building a

corpus. Then, provenance determination is performed to identify the known components (i.e.,

open-source software libraries that are present in the corpus). Once components have been

identified, initial vulnerability matches can be made using the links established during the CVE

download process. These links are verified using OpHash matching of the basic blocks

constituting the vulnerability segment in the corpus sample with the basic blocks contained in the

same function in the software of interest.

Deriving the patch simply requires rolling forward to the fixed version (as specified by the CVE

entry, if it exists) in the corpus and performing a diff between the vulnerable version of the

impacted source file and the fixed version.

Approved for Public Release; Distribution Unlimited.
18

3 Results and Discussion

3.1 Demonstration One—Isolating a Vulnerability

3.1.1 Overview

By August 2014, the SWE toolchain was sufficiently mature for Draper to conduct the first real

demonstration of program capabilities. For this demonstration, we focused on an analysis of the

Heartbleed vulnerability in the OpenSSL open-source distribution. To isolate the vulnerability, in

terms of its pre- and post-fix control flow graph changes, we ingested over 700 tagged builds of

OpenSSL that spanned its full lifecycle to date. After isolating the fix delta, we attempted to

perform the same process to determine if the firmware release present in an Internet-of-Things

(IoT) streaming camera (Dropcam) was impacted by the vulnerability.

3.1.2 Results

Using the SWE analytic sieve approach, we first isolated the control flow graph artifacts from

the pre- and post-fix versions. Figure 11 shows the CFG for the function dtls1_process_heartbeat

in OpenSSL version 1.0.1f where the Heartbleed vulnerability was present. Figure 12 shows the

CFG for the post-fix version 1.0.1g with the additional control flow for the bounds check

present.

Approved for Public Release; Distribution Unlimited.
19

Figure 11. OpenSSL_1_0_1f (pre-fix) CFG

Figure 12. OpenSSL_1_0_1g (post-fix) CFG

Approved for Public Release; Distribution Unlimited.
20

In each CFG depicted, each node in the graph is annotated with the OpHash of the basic block

contained in the node (the bottommost number). The green nodes in both graphs have matching

hashes. The nodes highlighted in red introduce new OpHash values not seen in the pre-fix

version.

We then decompiled different releases of the Dropcam firmware and perform the same solation

process. In Figure 11 and 12, we see two CFGs with markedly different control flows (again

detected by the OpHash). In Figure 12, we see evidence of control flow changes indicative of the

Heartbleed fix (i.e., #128, #131, and #143).

Figure 13. Decompiled Dropcam binary (pre-fix)

Approved for Public Release; Distribution Unlimited.
21

Figure 14. Decompiled Dropcam binary (post-fix)

One observation made in the comparison of the OpenSSL CFGs between Figures 13 and 14 is

that the decompiled graphs have a larger number of nodes overall in each case. This is probably

indicative of the IR being generated from code compiled originally at different optimization

levels.

3.1.3 Summary

Demonstration One was successful on two levels. First, this was the first attempt to use the entire

SWE toolchain on a single problem. Previously, portions of the toolchain were exercised in more

of a unit testing mode. Finally, this demonstration validated the most basic SWE tenet—that a

“big data” approach to software assurance can be bootstrapped from the ability to rapidly

identify the essence of the delta between vulnerable code and patched code in a large corpus and

then match the control flow in software under test.

Approved for Public Release; Distribution Unlimited.
22

3.2 Demonstration Two—Full Package Vulnerability Assessment

3.2.1 Overview

As mentioned in the Executive Summary, the SWE program resulted in two different transition

stories. The first path, the DARPA MUSE program, extended the basic SWE approach from one

of vulnerability identification to one of vulnerability identification augmented with repair and

synthesis.

The second path was the decision to incubate a new company that would commercialize SWE

technology for commercial interests with Draper retaining white-label rights for DoD and IC

customers.

The second demonstration’s goal was full package vulnerability assessment. Unforeseen

technical issues necessitated a change from the planned evaluation and testing with the AFRL-

provided Real-Time Executive for Multi-processor Systems codebase. The primary issue here

was a custom build environment that would have required substantial changes to our front-end

Buildbot infrastructure. Additionally, much of the code was self-referential and included no

open-source components—rendering the known vulnerability search moot. For fiscal and

practical reasons, we shifted strategies and attempted an analysis of the Open WebOS operating

system for any known vulnerabilities. Open WebOS is an interesting target in its own right as it

powers a number of IoT devices including HP TouchPads, LG Smart TVs, watches, and phones.

3.2.2 Results

While the analytics used in this demonstration are all SWE artifacts, we used the Lexumo

customer portal for the Open WebOS analysis to take advantage of their rich user interface.

Figure 15 shows the initial splash page for the customer Open WebOS project.

Approved for Public Release; Distribution Unlimited.
23

Figure 15. Lexumo OpenWebOS portal

This page provides all of the provenance details for the OpenWebOS package—detailing all

included open-source libraries that were bundled in the package (including the version number).

A vulnerability assessment of the current Open WebOS package using SWE analytics revealed

that 24 known CVE vulnerabilities were present in the codebase. The affected libraries are

shown in red in Figure 15 and are listed in Table 3.

Table 3. OpenWebOS vulnerabilities

Static Artifacts
Library Version CVE
elfutils 0.156 CVE-2014-0172
readline 6.3 CVE-2014-2524
file 5.13 CVE2014-3478, CVE-2014-3480, CVE-2014-3587, CVE-2014-0207, CVE-2104-3479,

CVE-2014-3487
curl 7.32.0 CVE-2015-3145
openssl 1.0.1i CVE-2014-3571, CVE-2015-0286, CVE-2015-1792, CVE-2014-3567, CVE-2015-0209,

CVE-2015-0205, CVE-2015-0204, CVE-2015-0206, CVE-2014-3572, CVE-2015-1789,
CVE-2015-0287, CVE-2015-0288, CVE-2015-1791, CVE-1788

dropbear 0.52 CVE-2013-4421

Approved for Public Release; Distribution Unlimited.
24

Figure 16 shows the warnings and vulnerabilities present in the elfutils library. As Table 3,

indicated, the CVE-2014-0172 vulnerability is present in addition to evidence that vulnerability

CVE-2014-9447 existed in a prior versions of this library.

Figure 16. Vulnerabilities and warnings in elfutils

Figure 17 shows details regarding the vulnerability, evidence obtained during the analysis, and

supporting information.

Approved for Public Release; Distribution Unlimited.
25

Figure 17. Vulnerability details

Finally, Figure 18 shows the flawed code segment and the scope of the available patch that fixes

the flaw.

Approved for Public Release; Distribution Unlimited.
26

Figure 18. Vulnerability with patch

3.2.3 Summary

This demonstration, using the Lexumo portal for display purposes, successfully demonstrated the

objective capability for this research—and analytic framework capable of full package

vulnerability assessment.

4 Conclusions

Software Epistemology significantly advances the state of the art in automated vulnerability

discovery—applying the analytic sieve concept and a novel hashing scheme to a large corpus of

open-source software to mine information that indicates the presence of pre- and post-fix

conditions in program control flow. The Draper Team’s approach fully exploits the hierarchy of

abstraction and richness of data produced by the artifact extraction process while taking

advantage of the scalable computation capabilities present in TitanDB.

Approved for Public Release; Distribution Unlimited.
27

5 Recommendations

A measure of the success of this program is the two concrete transitions that have occurred over

the period of performance. The first was the successful bootstrap of a related DARPA activity in

the MUSE program. The second is the commercial entity that Draper is incubating that will

enhance and extend SWE technology for commercial use. Both are significant wins for the Air

Force. Lexumo will continue to develop and enhance the core SWE technology through venture

funding. As the Lexumo platform matures, Draper has white-label rights to the platform to

support DoD and IC customers. Draper’s DeepCode effort on the DARPA MUSE program seeks

to discover the fundamental nature of flaw patterns—applying Deep Learning algorithms to

massive amounts of open-source software. This would remove the need for known vulnerability

databases to guide the search and fundamentally change the way we approach software

assurance.

5.1 Open Questions

There is a number of open research areas left to explore beyond the current effort. These include:

• Hash engineering

• Incorporation of other artifact types

• Additional static binary analysis

• Additional vulnerability database support

While the opcode hash is reasonably accurate and fast, it will saturate when exposed to large

basic blocks. Other hashing schemes will need to be considered in these cases to maintain

discriminatory capabilities.

SWE focused almost exclusively on the control flow graph as this artifact gave the best indicator

of pre-and post-fix code structure. The LLVM compiler infrastructure provide a large number of

other artifacts and Draper’s DeepCode effort is starting to look at structures beyond the CFG for

utility in software vulnerability assessment.

Approved for Public Release; Distribution Unlimited.
28

Draper has limited experience in the automated lifting of binary programs to a more structured

language such as IR. However, static binary analysis is an open problem, and work of a more

fundamental nature needs to be performed to generate Single Static Assignment (SSA) CFGs

from binary. Our initial approach of inverting the LLVM code generator violates fundamental

correctness invariants and was found to be a research dead end. Although Draper has explored

more structured algorithms for static binary analysis, including approaches that show promise,

we are not currently working on this problem.

Finally, additional vulnerability database coverage would provide more evidence of flaws that

could be used in the assessment process.

Approved for Public Release; Distribution Unlimited.
29

Bibliography

[1] https://www.us-cert.gov/ncas/alerts/TA14-098A

[2] https://store.nest.com/product/camera/

[3] https://www.rtems.org/

[4] http://www.openwebosproject.org/

[5] http://cve.mitre.org/

[6] http://www.darpa.mil/program/mining-and-understanding-software-enclaves

[7] https://lexumo.com/

[8] http://clang.llvm.org/

[9] http://json.org/

[10] https://github.com/draperlaboratory/fracture

[11] https://www.openssl.org/

[12] https://github.com/tinkerpop/gremlin/wiki

[13] http://orientdb.com/orientdb/

[14] http://www.paradigm4.com/

[15] http://thinkaurelius.github.io/titan/

[16] http://cassandra.apache.org/

[17] http://www.postgresql.org/

[18] https://www.elastic.co/products/elasticsearch

[19] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In Proc. POPL, pages 25—35,
ACM, January 1989.

https://www.us-cert.gov/ncas/alerts/TA14-098A
https://store.nest.com/product/camera/
https://www.rtems.org/
http://www.openwebosproject.org/
http://cve.mitre.org/
http://www.darpa.mil/program/mining-and-understanding-software-enclaves
https://lexumo.com/
http://clang.llvm.org/
http://json.org/
https://github.com/draperlaboratory/fracture
https://www.openssl.org/
https://github.com/tinkerpop/gremlin/wiki
http://orientdb.com/orientdb/
http://www.paradigm4.com/
http://thinkaurelius.github.io/titan/
http://cassandra.apache.org/
http://www.postgresql.org/
https://www.elastic.co/products/elasticsearch

Approved for Public Release; Distribution Unlimited.
30

List of Symbols, Abbreviations and Acronyms

CFG Control Flow Graph

CG Call Graph

CVE Common Vulnerabilities and Exposure

DT Dominator Tree

IC Intelligence Community

IoT Internet of Things

IR Intermediate Representation

JSON Javascript Object Notation

LTS Label Transition System

MUSE Mining and Understanding Software Enclaves

RTEMS Real-Time Executive for Multi-processor Systems

SaaS Software as a Service

SSA Static Single Assignment

SWE Software Epistemology

UD/DU Def-Use/Use-Def Chains (Dataflow Graph)

	1. Introduction
	1.1 Background
	1.2 Overview
	1.3 System Architecture
	1.3.1 Harvester
	1.3.2 Artifact Extractor
	1.3.3 Object Ingestor
	1.3.4 Relationship Integrator
	1.3.5 Mining Engine
	1.3.6 Analytic Sieve
	1.3.7 Opcode Hash (OpHash)

	2 Methods, Assumptions and Procedures
	2.1 Implementation and Deployment
	2.2 Theory of Operation
	2.3 Corpus Creation
	2.4 CVE Download
	2.5 Vulnerability Detection

	3 Results and Discussion
	3.1 Demonstration One—Isolating a Vulnerability
	3.1.1 Overview
	3.1.2 Results
	3.1.3 Summary

	3.2 Demonstration Two—Full Package Vulnerability Assessment
	3.2.1 Overview
	3.2.2 Results
	3.2.3 Summary

	4 Conclusions
	5 Recommendations
	5.1 Open Questions

	Bibliography
	List of Symbols, Abbreviations and Acronyms

