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1.0 EXECUTIVE SUMMARY 

(MRC)2 project was a joint effort between SRI International and the University of Cambridge. 
The project focused on switching, software-defined networking, and application dataflow in 
datacenters, with a number of subtended efforts – including aligning algorithm and network 
topology, achieving greater energy efficiency, understanding the concomitant security tradeoffs, 
exploring multi-scale computing techniques (including work on multi-threaded and multi-core 
Capability Hardware Enhanced RISC Instructions (CHERI), and developing capability-based 
system-oriented application security models. 

This report represents a compendium of our progress for the system and network architecture and 
development plans that have evolved during the project. It also provides much of the reasoning 
that has taken place.  We have extended Cambridge’s CIEL distributed computing environment 
to address security, incorporating the lightweight Mirage OS operating system, and also 
developed DIOS – a distributed operating system.  

DIOS provides robustness as well as security and compartmentalization, and uses properties of 
CIEL computations to drive resource allocation, protection, and monitoring at the datacenter 
scale. Under the general rubric of CIEL, Mirage OS, and DIOS, we have developed FABLE, a 
flow-aware input-output system, which provides an efficient zero-copy data transmission 
interface that automates the selection of the underlying transport, and the facility to dynamically 
reconfigure transports as system conditions change. The implications of extending the OS with 
explicitly I/O flow tracking are significant – eliminating resource contention, upgrading to 
transparent transport-level security, and increasing robustness via multi-path TCP. FABLE 
integrally hierarchicalizes the hardware, virtualization, the operating systems, the communication 
channels, trust, buffer sizes, and higher-level data transformations. 

The resilient distributed switch fabric (RDSF) replaces centralized switch infrastructure with a 
high-dimensional communications fabric, offering potential improvements in security, 
scalability, energy use, and resilience. CHIMERA is a capability-oriented, rack-scale memory 
interconnect that will extend SRI and Cambridge’s CHERI capability hardware architecture 
beyond a simple cache-coherent multicore. Trustworthy programmable switch controllers 
(TPSCs) distribute switch management throughout datacenters and cloud computing. This will 
offer improvements in security and robustness/resilience, as well as a distributed platform for 
switch-control applications within the rubric of software-defined networking (SDN). Cloud 
analysis and misuse detection (CAMD) will enable scaling of existing techniques from 
assumptions of a single, centralized control points to supporting distributed detection and 
enforcement within RDSF and TPSC/CAMD SDN environments. We have open-sourced most 
of the SDN components and have developed numerous interactions within the SDN community. 

This is the final report for (MRC)2 project, culminating a four-year research and development 
effort that has investigated clean-slate secure networking and security for cloud computing and 
cloud storage, with emphasis on resilience and trustworthiness. 
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2.0 INTRODUCTION 

(MRC)2 investigated key research problems in cloud-computing datacenters, servers, and their 
networking. These problems include being able to take advantage of multidimensional trade-offs 
among security, scalability, energy efficiency, and resilience. We built on the foundations of a 
companion DARPA project, CRASH-worthy Trustworthy Systems Research and Development 
(CTSRD), which is investigating new hardware, software, and formal methods techniques for 
host security, under the DARPA Clean-slate Resilient Adaptive Secure Hosts (CRASH) 
program. Whereas CTSRD limits itself primarily to the confines of single host systems, (MRC)2 
extended our work into large datacenters, with particular focus on distributed programming 
models, network interconnects, and software-defined networking – which enables dynamic 
reconfiguration of networks to accommodate real-time resource needs and real-time responses to 
attacks and accidental outages. 

Our cloud-computing and networking model combines a number of concepts that have evolved 
from earlier research in computer systems, distributed systems, networks, and trustworthiness. 
These concepts include client-server computing and data storage, thin-client systems, high-
performance and energy-aware datacenters, and distributed programming frameworks within 
datacenters as well as between clients and servers. A key aspect of this model is multi-tenancy, 
datacenter connectivity, storage, switches, and computers are shared by mutually suspicious 
parties (e.g., each of which is potentially untrusted and/or untrusting of others) as a utility, 
requiring the application of security measures not only to the client-server interface, but also 
among applications running in the same datacenter and among multiple switch controllers in 
large installations.  (MRC)2 sought to replace Internet-based datacenter switching and CPU 
connect technologies with strong local communications primitives that accept multi-tenancy and 
untrustworthy data as basic precepts, implement mission security policies, and detect and 
respond to anomalies in network configurations through sound dynamic reconfigurations that 
offer introspective systemic responses to attacks. (MRC)2 aligned security with the physical 
topology of datacenter and local network communications, with the goal of improving security, 
robustness, resilience, performance, and power use. 

2.1 Cross-cutting Themes in (MRC)2 

(MRC)2 pursued various cross-cutting themes, most importantly: 

• Aligning algorithm and network topologies for security, scalability, and resilience
• Understanding and taking advantage of beneficial tradeoffs between security and energy

efficiency
• Advancing multi-scale computing techniques
• Exploiting capability-system security models to achieve the foregoing themes

We had originally conceived the (MRC)2 project as a collection of such research themes, with 
the hopes that we could develop significant synergies among them. As the project progressed, we 
increasingly found synergies among these themes, and also found that the systematic and 
principled approach we have taken allowed us to integrate some of the pieces rather easily. This 
final report for (MRC)2 presents the details of how our efforts have evolved, discusses the extent 
to which we will have been successful in achieving our goals and in increasing the coherence and 
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consistency of our efforts, and outlines some further work that would be most valuable if pursued 
along the lines suggested. 
 
2.2 Security, Resilience, Performance, and Energy Use 
 
Security, resilience, performance, and overall energy efficiency are total system-network 
emergent properties that must be defined hierarchically, because they have potentially different 
meanings at each layer of abstraction from hardware to low-layer system software to single-
domain subnetworks to the totality of connected networks. Furthermore, these properties may be 
interrelated. For example, resilience ultimately depends on security, reliability, availability, 
survivability, the dynamic ability to maintain or restore adequate performance in the face of a 
very wide range of adversities from hardware failures, software bugs, malware, external attacks, 
insider misuse, power outages, and animals chewing through cables, etc. It is just one more 
characteristic that must be trustworthy, in the sense that the desired requirements for security, 
resilience, and guaranteed performance in the face of adversities might be demonstrably 
satisfiable. 
 
Today’s global networking as well as internal datacenter communications are premised on multi- 
layer, high-performance switches that today typically exhibit some undesirable properties: 
 

• Centralized points of failure 
• Inflexible mappings of Internet-inspired architectures to divergent objectives (a) 

undermining resilience and (b) impacting cost/performance 
• Inefficient/disproportionate energy use 
• Insufficient attention to security considerations in the logically centralized network 

control models found in Software Defined Networking approaches 
• Ill-specified switch-control models, especially in how switch data paths are affected 

by control instructions 
 
Our (MRC)2 project addressed all of these and other concerns. 
 
2.3 CTSRD Foundations 
 
To a useful extent, (MRC)2 built itself on CTSRD, CTSRD is a joint SRI and University of 
Cambridge project on clean-slate host security spanning CPU instruction-set architecture, 
operating systems, virtual- machine monitors, programming-language compilers that understand 
the hardware, and judicious use of formal methods – primarily in the analysis of the hardware 
specifications. Primary elements of CTSRD include the following. 
 

• BERI: Bluespec Experimental RISC Implementation. An open-source platform for 
research into the hardware-software interface: a multi-threaded 64-bit MIPS 
instruction-set architecture (ISA) soft core and complete software stack including 
LLVM and FreeBSD. 

• CHERI: Capability Hardware Enhanced RISC Instructions. The CHERI instruction-
set architecture provides CPU support for efficient, programmable, and formally 
grounded software compartmentalization [1]. The CHERI hardware-software system 
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uses the CHERI ISA to provide a hybrid capability-based system architecture in 
which capability-oriented programs can execute side by side with conventional 
software – dramatically reducing the security risks from malware, intentional misuse, 
and human errors, without interfering with overall system integrity, 

• TESLA: Temporally Enhanced System Logic Assertions. Dynamic checking of safety
assertions for C-language system software. TESLA could be very useful in dynamic
detection of violations of the (MRC)2 resilience requirements.

• SOAAP: Security-Oriented Analysis of Application Programs. SOAAP may have
some relevance to the partitioning of the (MRC)2 switch and switch controller
functionality.



Approved for Public Release; Distribution Unlimited.   
5 

 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

Resilience is a global property of a system, built on the careful composition of its parts. 
Resilience is also a property necessarily specific to the goals of a system in deployment, rather 
than a static property coming out of design. The (MRC)2 architecture addresses many levels in 
the software and hardware stack, linked by a programming model that directs local 
configurations in order to ensure global security, scalability, energy efficiency, and resilience 
properties. Mapping application structure into local enforcement is a key aspect to the (MRC)2 
approach, as awareness of application requirements in the context of a mission will drive the 
investment of a variety of resources into supporting or enforcing required properties. A key 
driving force is proportionality: greater investment of resources that will result in stronger 
properties, such as security, performance, or robustness. 
 
The technical components of (MRC)2 are rather diverse. The components are arbitrarily more or 
less according to our original proposal into the following categories listed below: 
 

 
The above list reflects the emerging elements/components, but not their structure and 
interrelationships – which are still evolving. Figure 1 illustrates how these key technologies 
relate to overall datacenter architecture. 

 
Figure 1: MRC2 Transforms Datacenter Architecture  

 
3.1 Extending CIEL with MirageOS and DIOS 
 
The goal is to develop a heterogeneous trustworthy distributed programming framework for 
datacenters. This framework is based on CIEL, Cambridge’s distributed heterogeneous 
programming framework, with transparent support for distributed scheduling, fault tolerance, 
and consensus gathering. CIEL employs cryptographic hashes in naming computation stages, 
relying on idempotence to allow computations to be restarted and replicated for robustness.   
 
The robustness properties and security properties of CIEL form the basis for (MRC)2 upgrading 
it by mapping CIEL computation topologies into CTSRD and MRC2 technologies for 
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containment and resilience. Two operating-system components contribute to robustness and 
security: MirageOS is a lightweight unikernel operating system based on OCaml.  DIOS 
implements a distributed trusted computing base (TCB) for data-flow computation, employing a 
blend of local and distributed enforcement unavailable in current switching fabrics. DIOS also 
extends beyond the OS kernel to take advantage of hardware virtualization primitives to provide 
a secure, type-safe coordination layer that sets up computation inside secure containers with 
controlled inputs and output channels.  The interrelationships among these three components are 
shown in Figure 2. 

Figure 2: Secure Dynamic Data Flow Programming 

3.2 Arguments for (MRC)2 Trustworthiness 

(MRC)2 considers cloud resilience to be one of the primary attributes of overall trustworthiness, 
co-equal with other system, network, and cloud-resource attributes such as security, integrity, 
survivability, and reliability. Thus, we generalize our response to represent what (MRC)2 intends 
to do for trustworthiness, albeit including specific references to resilience. It is our fundamental 
belief that resilience cannot be achieved without adequate trustworthiness with respect to certain 
other attributes. In particular, considerable trustworthiness, with respect to resilience and related 
attributes, can be expected to result from our system/network/cloud architectures and their 
carefully structured implementations from the predictably composable modularity of the 
switchlets, switch controllers, energy-efficient datacenters, and from our assurance techniques 
applied to the hardware and software involved. 

Our approach to assurance makes judicious application of formal methods where most effective, 
as one way of dramatically increasing assurance — in addition to the more conventional methods 
of prototype development, testing, and red-teaming. In part, we are relying on our CTSRD 
CRASH project to provide some formal analyses of the underlying CHERI hardware 
specifications. We also hope to be able to model certain properties relating to resilience, 
reliability, security, integrity, etc. — in clouds, switches, servers, and other relevant components 
– as funding and time permit. We also seek to model some of the most critical behavioral aspects
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of administrators and users, to the extent that they are fundamental to achieving adequate 
trustworthiness. The resulting formal analyses would be very useful in detecting design flaws, 
implementation errors in hardware and software, and operational issues relating to security, 
efficiency, and usability in networking and cloud systems. 
 
The (MRC)2 design is intended to support the building of trustworthy datacenter networks as 
well as trustworthy software-defined networking (SDN). Each technical element/component 
(CIEL, MirageOS, DIOS, FABLE, RDSF, CHIMERA, TPSC, and CAMD) contributes to an 
overall argument for trustworthiness by supporting the mapping of datacenter-scale computation 
goals into underlying computation and communication primitives in such a way that mission 
properties are, to the greatest extent possible, maintained. Of course, it is the composition of all 
these components that is particularly important in assuring the trustworthiness of the emergent 
properties that arise from these compositions. Unlike previous efforts, (MRC)2 allows explicit 
reasoning about tradeoffs between security, scalability, sound dynamic reconfigurability, energy 
use, and resilience, with annotations at the programming and management layers to drive 
investment of conserved resources. 
 
3.2.1 Mirage OS  
 
The initial prototype of MirageOS is built on top of the Xen hypervisor [2] with Virtual 
Machines providing isolation between processes, but future versions will support the CHERI and 
Capsicum capability systems to provide isolation guarantees on different architectures. The 
DIOS coordination layer must be as minimal and safe as possible, and so minimize unnecessary 
components. Conventional virtual appliances (e.g., web servers) are similarly built to provide a 
small, fixed set of services. However, the VM image contains a number of components that are 
rather loosely coupled: a guest OS kernel and user space binaries that typically attach an external 
storage device with configuration files and data. Thus, even the simplest appliance VM contains 
several hundred thousand, if not millions, of lines of active code that must be executed every 
time it boots.  Much of this code is due to a need for backwards compatibility with existing 
applications, such as the POSIX API for processes to interact with their environment. There are 
no standards for many aspects of application configuration, and so Linux distributions typically 
resort to extensive shell scripting to glue packages together. 
 
Mirage: An OCaml Library OS A libOS is structured very differently from a conventional 
monolithic OS. All services, from the scheduler, to the device drivers, to the network stack, are 
implemented as standalone libraries that can be linked directly with the application. A 
consequence of this is that applications can configure services programmatically by directly 
invoking the library calls, instead of calling across a different protection domain - as with a 
conventional kernel/user space. We explore a new sort of libOS, one built directly in a type-safe 
language, with applications taking advantage of the extra semantic information exposed in 
higher-level interfaces than those exposed by C.  For our prototype unikernel implementation, 
we use the OCaml runtime running on the Xen [2] hypervisor. Notice that we deemphasize strict 
backwards compatibility with existing applications at the source code level, and instead support 
it at the network protocol level. Existing code can easily be run in separate VMs due to our use 
of virtualization. 
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OCaml is a modern functional language supporting a variety of programming styles, including 
functional, imperative, and object-oriented. It is a dialect of the ML family, with a well-designed, 
theoretically sound type system that has been developed since the 1970s. ML is a pragmatic 
system that strikes a balance between imperative languages, e.g., C, and pure functional 
languages, e.g., Haskell. It features type inference, algebraic data types, and higher-order 
functions, but also permits references and mutable data structures while guaranteeing that all 
such side effects will never cause memory corruption. Safety is achieved by a combination of 
compile-time type checking and dynamic bounds checking of array and buffers. The compiler 
supports a portable bytecode and several native code targets (x86, ARM, PPC) as well as more 
exotic runtime targets such as 8-bit PICs and JavaScript. OCaml was also a pragmatic choice in 
which to implement Mirage as it is the implementation language for the open-source Xen Cloud 
Platform [3] and critical system components [4, 5]. On the other hand, using OCaml necessitated 
a significant engineering effort to rebuild many standard system components, particularly the 
storage and networking (e.g., TCP/IP) stacks. Mirage links OCaml code into kernels that run 
directly on a Xen hypervisor. Our design minimizes runtime complexity, preferring 
implementation of all but the lowest-level features in a safe high-level language. We now discuss 
some of our core design decisions: 
 

• Parallel Protection Domains: Unikernels link an application and language runtime into a 
uniprocessor VM that has a single 64-bit address space. Parallelism is obtained by 
running multiple VMs and message passing between them, as with the Barrelfish 
multikernel [6]. These VMs need not run on the same physical host, although 
communication is more efficient if they do.  

• Protocol-level Compatibility: Cloud services mostly use Internet protocols to 
communicate between services – e.g., via HTTP as an RPC mechanism. Mirage 
unikernels communicate externally via these protocols, while internally eliminating 
binary interfaces where possible via static link time optimizations. 

• No Dynamic Loading: Mirage unikernels are partially evaluated during compilation, e.g., 
to incorporate static configuration files, and sealed [7] at runtime to prevent self-
modifying and dynamic loading of code. Appliances are reconfigured by compiling a 
new image, eliminating the complexity of dynamic code and permitting additional 
compile-time optimizations. 

• Statically Typed Libraries: All system services are type-safe, re-entrant libraries, and 
range from the protocol-level (HTTP, SSH) to networking and storage (TCP/IP, FAT32) 
to the core library (threading, binary stream manipulation). Data copying within the stack 
is minimal and buffers are fully bounds checked. 

• Cooperative Concurrency: Appliances are hardened against external network attacks via 
type- safe I/O, but code within the appliance is trusted. Lightweight threads cooperatively 
decide their yield points, similar to Nemesis’s [8] provision of application-level quality of 
service. 

 
The most specialized output of the Mirage compiler is a unikernel, a standalone kernel with a 
minimal OS runtime that uses the hypervisor interfaces directly. It consists of the PVBoot library 
for initializing a basic computation environment, a modified language runtime library for heap 
management and concurrency, and type-safe device drivers that interface with the external world 
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via the safe I/O stack. Finally, since unikernels are single-address space, they can be sealed to 
significantly improve their security against various threats. 
 
3.2.2 DIOS: Secure Distributed Operating System 
 
DIOS is built for scalable, transparent distribution of operations across many nodes in a 
datacenter. DIOS is a special purpose operating system for Warehouse-Scale Computers 
(WSCs).  In this endeavor, it is part of a substantial lineage of past research on distributed 
operating systems [9, 10, 11, and 12] – but yet, DIOS is different.  It approaches the distributed 
OS concept with the hindsight of modern distributed systems theory and applications.  DIOS 
reflects three key themes and exposes the necessary abstractions to offer this functionality to user 
applications. The three key themes are:   
 

1. Naming and locating system objects (I/O targets, devices and programs), 
2. Allocating and managing hardware resources, virtualizing them where necessary, and 
3. Effecting privileged operations on the behalf of user applications, while isolating them 

from each other. 
 

DIOS, since it is a distributed operating system, offers functionality across multiple nodes in 
WSC that coordinates nodes reliably and deals with the inevitable faults. Furthermore, it is able 
to do so at the scale of hundreds or thousands of nodes. Unlike traditional OSes, DIOS integrates 
inter-machine communication and state maintenance in the privileged OS kernel. This offers the 
operating system more information to work with than it would normally have available. Let us 
compare with a scenario where all information pertaining to distributed operation is stored in the 
user application, and all privileged information pertaining to the local application process is 
stored in the kernel. Yet, despite this expanded role of the OS, users should not find it overtly 
difficult to program the system – despite the inherent complexity of the distributed operating 
environment. It must be possible to write working programs against simple, transparent 
abstractions and have sufficient information that must also be exposed to the user to enable 
optimize applications. 
 
While the OS is aware of distribution, DIOS leaves higher-level policy decisions – such as where 
to locate data in the distributed system, or whether to maintain strongly consistent replicas – to 
user-space applications, rather than encoding them within its abstractions. 
Security and isolation are key concerns for operating systems and distributed systems 
environments alike. DIOS must not only be able to guarantee the same level of isolation and 
protection as a traditional operating system, but indeed needs to take it further and guarantee 
isolation of across multiple nodes too. Furthermore, it should mandatorily track information flow 
in the distributed system, as well as offering a practical way to restrict exposure of data. Again, 
this must work reliably across machines and at scale. 
 
Finally, it is unreasonable to expect the world to change overnight and for DIOS to offer 
sufficient benefit to motivate re-writing all WSC software. Hence, an incremental migration to 
running increasingly large portions of a WSCs workload within DIOS must be feasible. While 
not all of the benefits of DIOS might initially be attainable, each successive migration step ought 
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to offer further improvement over the previous state.  All of the concepts described above 
contributed to shaping the high-level DIOS design principles. 

In summary, they are as follows: 

• Expose scalable, transparent abstractions that support both local and distributed
operation.

• Enable application-level policy decisions by mandating minimal mechanism in the
operating system abstractions.

• Mediate WSC-wide information-flow through a distributed capability delegation model,
enabling selective exposure, information flow control and data provenance tracking.

• Offer an opportunity to incrementally migrate to the new abstractions and combine them
with legacy application code.

3.2.3 FABLE: Flow-aware Input-output System 

FABLE consists of a user-space application library, an extra system call to register with a new 
name service daemon, and some extensions to existing polling system calls to support the new 
I/O descriptors.  Figure 3 illustrates the following stages of FABLE session: 

Figure 3: Stages of a FABLE Session 

• Naming: All end points are explicitly named, and a system service (opaque to the library
user) tracks the location of processes and virtual machines and notifies them of
reconfiguration events. If virtualized or running in a cluster, this name service can
register with a higher-level service that has more accurate system-wide knowledge.

• Connection: Connection setup is similar to POSIX sockets, except that the end points are
named services. Every connection has a single transport mechanism, ranging from tightly
coupled shared memory, to a TCP connection, to a page-flipping memory pipe.  The
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client specifies if the remote end point is trusted to cooperate, or if private data copies are 
required. 

 
• Flow: buffered structures for reading and writing are always allocated by the FABLE 

library, and are tailored for the connection in which they are associated with (e.g., an 
entry in a shared memory ring). Buffers are single-use only, and buffer creation calls are 
where back pressure is applied, rather than at the point of reading or writing. If buffers 
are unavailable, the application polls to be notified when more are available. 

 
• Data: every buffer is owned by exactly one FABLE connection, and ownership is 

transferred either via a release back to the system (e.g., after a read), or via a commit to 
write it onward to the next end point. Once ownership has been transferred, it can never 
be regained and new buffers must be requested. 
 

When designing FABLE, we assumed that nested scheduling layers will dominate architectures 
for some years, due to the popularity of virtualization and multi-core hardware. The addition of a 
system-wide name service for end points is key to keeping track of I/O flows in such complex 
environments. The FABLE name service is hierarchical and can keep higher-level software 
layers informed about activity within a particular domain, up to and including a distributed 
cluster of physical hosts. The ultimate goal is to form an accurate view of dataflow requirements 
for all applications across a cluster, and provide more structured information for schedulers to 
maximize I/O throughput across a cluster.  
 
The FABLE name service is used only to coordinate the establishment of data channels and track 
their lifetime. Once established, the data transfer between two end points is designed to be highly 
efficient and not require a system call for a read/write operation, although some transports may 
choose to do so (e.g., remote TCP when using kernel sockets). This is particularly important for 
throughput in virtualized environments, where system calls can be disproportionately expensive 
due to privilege checks by the hypervisor. 
 
Although FABLE provides a new API, it can also be integrated directly into existing applications 
via a socket compatibility layer. As we noted earlier, the sockets layer forces at least a single 
data copy and so is often less efficient, but the facility to track all I/O operations across the 
system remains extremely useful. 
 
Every FABLE connection is associated with two named end points. The application calls the 
xio register name to register a new end point, and obtains an opaque xio context structure 
in return. The library does not keep much state—instead, it accesses a system-wide name daemon via a 
kernel file-descriptor interface and uses this to register with the name service. This descriptor is used 
by the name service to track the xio context for its lifetime, including the details of where it is 
scheduled, and the connections emerging from it. 
 
Most of the policy behind connection handling is implemented in a user-space daemon that 
listens for FABLE registrations and scheduling changes from the kernel. This daemon is 
responsible for implementing all the policy for connection rendezvous between end points, and 
acts as a system-wide database of I/O flows. When running on a native kernel on a physical host, 
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it is primarily concerned with ensuring that communicating processes are scheduled close to each 
other (from a NUMA and core layout perspective). However, once virtualized, it registers with 
the VM management stack and keeps it informed of the event stream. Similarly, if a host joins a 
cluster of physical machines and wishes to cooperate with them, the name service can integrate 
with Zookeeper [13] to handle distributing its local metadata to the other hosts. 

Once xio context has been obtained, it can be used to establish multiple connections to other
end points via xio connect, and also to listen for incoming connections via xio listen.
FABLE names are URIs and so the connection API converts a name into a concrete connection, with 
the application unaware of the precise transport unless it has been explicitly specified in the name. 
The xio schema is reserved for FABLE-aware end points, and some other schema such as tcp or
udp are supported to facilitate external communication via standard protocols and are needed for
the socket emulation library. 

Connection 
Connection establishment requires both end points to agree that they wish to communicate (i.e., that 
one is in a listen mode and the other is connecting), and the selection of a transport mechanism
that is agreeable to both ends. Since the FABLE name service has both of the services registered, 
it acts as the intermediary and calculates the best transport protocol for the two end points. A 
successful xio connect library call will return an opaque xio handle that is used to reference
the connection by the application. 

The details of transport selection are necessarily quite complex, since they depend on some static 
factors (hardware memory and core layout) and dynamic factors (e.g., virtualization introducing 
external load). The system name service is thus better placed to make this decision, instead of the 
application itself. 

Data Transmission 
Applications never allocate their own I/O buffers, and instead obtain buffers using the xio 
getreadbuf and xio getwritebuf calls. This allows FABLE to allocate optimal buffers
for the transport associated with the connection—e.g., low memory if the network card requires 
it for DMA, or from a shared memory segment on the closest NUMA node, or with space 
reserved for TCP/IP packet headers. These are optimizations reminiscent of exokernels [14] and 
explicit path selection [15] that have so far not found their way into mainstream UNIX-like 
systems. Buffers are very similar to iovec structures, and include a pointer to the I/O memory 
and its size. They also include a reference to the xio handle that created them, and an epoch 
number to help with reconfiguration. An important property of buffers is that they are single use, 
and cannot be reused once they are freed or written to another end-point.

An xio getreadbuf call is non-blocking, and returns an array of buffers that are filled with
data, or an empty set to indicate that the application should poll for more data. When an application 
is finished with a buffer, it must call xio release to hand it back to the system. Since there is a
limited set of buffers associated with each connection, the xio getreadbuf call can return an
ENOSPACE to indicate that the application is holding onto too many read buffers and should release
some before requesting more. To prevent deadlock, the application may handle this by copying read 
buffers into private memory and releasing them early. 
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The write data path calls xio getwritebuf with an optional parameter to specify the maximum 
size of the available data. This returns an array of buffers that should be filled in any order by the 
application. The size of each individual buffer is very transport-specific, and ranges from a 4K page 
size for shared memory, to slightly smaller than an interface’s MTU for TCP to reserve space for 
packet headers. When a buffer is filled for writing, the xio commit call will transfer ownership of 
the buffer back to the library, which queues it for writing. The application may no longer modify or 
access this data once it has been committed—this is advisory if the connection is trusted, and otherwise 
enforced via a private copy being taken by the receiver or the page reference being unmapped from the 
transmitting end. 
 
The notion of single ownership of buffers is key for constructing efficient stream processing engines, 
where processes perform a combination of data processing and proxying. For example, consider 
a web server that reads pages from disk via one FABLE channel, and transmits the disk pages to a 
memcached process, which then serves it to a network interface. The connection from the disk layer 
will be a set of page-aligned buffers, whereas the connection to the memory cache is a large shared 
memory ring. In this situation, the application may commit a read buffer from the disk channel 
directly into the memcached channel, despite the disk buffer not being obtained from the 
memory cache channel. Every buffer tracks its home connection, and so the FABLE library performs 
the appropriate translation to convert between transport mechanisms (usually via a slow copy). 
Once the foreign buffer has been committed then the upstream writer is responsible for releasing 
it. 
 
Reconfiguration 
Every xio handle also has a file descriptor that can be obtained to poll for reconfiguration events. 
A reconfiguration indicates that the underlying transport mechanism is being changed, and that the 
application should drain any older buffers as quickly as it can. This is accomplished either by 
releasing them, or committing them for a write. The epoch number in each buffer is used to distinguish 
between the different transport mechanisms see Figure 4. 
 

 
Figure 4: FABLE Buffers Shared Memory Connection 

 
While the reconfiguration notice to the application is synchronous, the actual change is very 
asynchronous and similar to Xen live migration [16]. The new transport data path is established first, 
without altering the existing one. A notification is then sent to the FABLE library instance via the event 
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file descriptor associated with the end-point. All new buffers requested by the application are now 
associated with the new transport, and the application is given a timeout period to use the old buffers. If 
the application fails to drain them in time, FABLE can slowly proxy the old buffers to the new 
transport if it can, or simply terminate the connection. 

A good example of the need for reconfiguration is when using a virtual machine cluster. When two 
VMs are on the same physical host, they establish an inter-domain shared memory communication 
(e.g., via libvchan in recent versions of Xen). If one of the VMs then live migrates to a different 
physical host, this connection would normally be terminated. With FABLE, however, the live relocation 
is observed by the cluster name service and triggers a recalculation of the transport protocol, and 
configures TCP instead. The example flow of buffers can be seen in Figure 4. 

Aside from this, many of the performance anomalies we observed earlier can be adjusted for via a 
reconfiguration process. For instance, if two cores are idle and not virtualized, then a low-latency 
spinning transport may be the most efficient. If another end-point is subsequently scheduled onto the 
same cores, they will begin contending, and the transport should be reconfigured to a futex-based 
version. Similarly, if a process is rescheduled to a different NUMA node, this can trigger the reallocation 
of memory buffers to ones from the new NUMA node. 

There is some resource cost associated with reconfiguring a channel, and it is not intended to be 
done extremely regularly. Instead, the FABLE name service observes all I/O flows on the system 
and can be configured to either automatically balance them (e.g., using Kalman filters to smooth out 
changes [17]) or allow a system administrator to optimize it manually if desired. Either policy is 
easy to implement due to the existence of the system name service to aggregate and coordinate any 
reconfigurations. 

3.2.4 RDSF: Resilient Distributed Switching Fabric 

RDSF could be considered a robust datacenter network infrastructure. However, alongside 
quantifiable provision of robustness and resilience along with traditional metrics of throughput 
and latency, an infrared image of heat dissipation within a datacenter. In traditional datacenter 
design, per-rack switching is rarely an energy-scalable commodity: operating fully, or not at all 
— every 10GbE port illuminated, the entire switch fabric operating continuously: poised to move 
data at full capacity even if the utilization is only housekeeping, even if the host systems are 
powered off. 

Our architectural approach, Figure 1, distributes the switching fabric across the datacenter; the 
fabric is distributed at the granularity of host: one switch per host. We acknowledge that this 
might not be the ideal granularity for every task.  However, a one-to-one mapping provides the 
most-ideal setup for work focused upon resilience and robustness as well as providing high 
levels of path-programmability between elements. Alongside this, the energy dividend of this 
structure is that we have a highly granular scalable switch and host structure able to be 
dynamically powered on and off to suite demand. 

The distributed switch fabric permits us to focus on providing a workload-proportional energy- 
consumption model.  The issue of proportional energy use, elegantly espoused previously [18], 
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has largely focused upon efficient host use. High-radix connectivity channels provide some of 
the advantages of past architectural proposals – e.g., [19] – but through implementation in 
hardware we achieve more flexible, arguable more robust and notably considerably more capable 
implementations. 
 
Our approach is a high-radix, multiple-dimension switch fabric interconnecting each host within 
the datacenter. This is achieved using the programmable switch fabric provided by the NetFPGA 
10G platform. Work on the NetFPGA infrastructure has led to a high-speed switch system that is 
able to provision a multiport 10GbE interface OpenFlow, SDN switch. The NetFPGA has a 
natural connectivity for four 10GbE ports and two further high-speed presentations, each capable 
of 65Gbps, along with a local PCIe capable of operation at 32Gbps. Through the use of cut-
through packet passage it is plausible to assemble a low-latency switch fabric that via a six-port-
per-card installation permits our high-radix, hypercube-like, structure, all while leaving sufficient 
local resources to provide the required level of programmability in end-host switches and the 
necessary intermediate switching stages. This programmability has included the co-
implementation of an OpenFlow switch and CHERI processor.  There has been effort to port the 
CHERI processor to the NetFPGA platform – opening up the opportunity for the hardware-based 
capability enhancements offered to operating systems, with applications (e.g., CAMD) also 
being made available in the network- control context. SDN components such as the 
implementations of the OpenFlow switch interface software and OpenFlow controllers, core to 
the current Software Defined Networking efforts as well as being core to our solution, would 
greatly benefit from the offerings of a capability-enabled approach. Finally, we have a ready-
made solution if the combination of CHERI and the performant OpenFlow switch is too much 
for the NetFPGA hardware – namely, to use the NetFPGA as a switch-enabled host adapter 
interfaced with a current CHERI instance on the current DE4-based systems. Such a 
configuration, shown in Figure 5, hybridizes the two systems by connecting along a well-defined 
interface (PCI-Express). 
 

 
Figure 5: Hybrid switch and CHERI using NetFPGA10G and DE4 hardware 

3.2.5 Chimera: Capability-oriented, Rack-scale Memory Interconnect 
 
Datacenters should be constructed from units each capable of computation, communication, and 
storage. This obviates the need for dedicated network switches and unifies the trust model for 
heterogeneous systems. We believe that system-on-chip and die stacking techniques, already 
prevalent in the embedded systems space, can be used to provide power-efficient computers at 
many different scales, from portable in-the-field units to warehouse-scale systems, see Figure 6.  
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We also observe that silicon photonics and photonic printed circuit boards (PCBs) are advancing, 
and will offer power savings and facilitate more complex topologies [20]. 

Figure 6: Hardware Concept 

Current datacenters based around PC class components commonly employ a hierarchy of 
network switch and routing equipment with computing nodes at the leafs. These networks 
employ high-cost, special-purpose devices often recreating variations of classical Ethernet and 
IP-based topologies overlaid onto the physical structure of the datacenter environment. Common 
structures incorporate an aggregation rack per switch (the top-of-rack switch), and one or more 
room-wide aggregation switches that provide rack interconnectivity as a star of star networks; 
variations on this principle abound but the fundamental basis — the use of common switching 
and routing equipment — leads to the use of power-hungry devices ill-suited to the low-latency 
communications between nodes in close physical proximity (e.g., adjacent racks). Selecting to 
enforce a strict star hierarchy upon the network infrastructure has other disadvantages. It brings 
with it only weak mapping between the optimal data structures and the best communications 
structures within the datacenter in latency and in colocation of task with data, but it provides a 
weak fault tolerance model. 

On the other hand, at a low level our heterogeneous computer systems already use PC-area high-
speed serial communication mechanisms to talk to GPUs, NICs, and disk controllers. Currently, 
these low-level communication mechanisms mimic old bus-based protocols: violating trust 
models (or even simple virtual memory protection) and exhibiting little redundancy. From an 
electronics perspective, there is no barrier to making these links form a communications fabric 
capable of both low-latency and resilient communication. 

We are using commodity field programmable gate arrays (FPGAs) to prototype these systems 
since they have the required high-speed communication links and can support substantial 
computer systems. Such infrastructure can be used to not only implement systems but also to 
emulate behavior and monitor performance (e.g., predict power consumed). A highly distributed 
communications structure has previously been limited due to management complexity. Yet, an 
advantage of a software-defined network such as the approach of OpenFlow permits the 
orchestration of the entire switch fabric. Thus, the FRESCO framework described earlier can 
present and manage the datacenter as a contiguous unit, subdivided into virtual subsystems as 
required – thereby permitting unification in policy balanced with the architectural distribution 
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that provides features such as resilience and performance. Further, the FRESCO framework 
logically provides the perspective needed for optimal cloud analysis and misuse detection. 
 
Current Framework 
 
Both the CHERI and CHERI-2 processors have already been synthesized on FPGAs. Listed 
below are some of the specifics of the CHERI/FreeBSD layout on the DE4 FPGA: 
 

• Each DE4 board is equipped with two DRAM slots. The single-core version of the 
CHERI processor uses one of the DRAM channels. In the dual processor system, each 
CHERI could have access to its own DRAM channel. The L2 cache can also be allowed a 
dual-port access to the DRAMs. 

 
• A significant part of the LUTs on the FPGA are used for dealing with the caches. The 

caches themselves are located on dedicated BRAMs within the FPGA fabric. Enough 
space is available on the BRAMs to accommodate the caches. In modern processors, the 
caches often occupy 30% or more die area. In some processors, the numbers are as high 
as 50%. 

 
• Overall, CHERI occupies around 40% of all the FPGA resources. An accurate figure 

cannot be given at this point, as the processor is still under development. Assuming a 
stable allocation of resources, the full chip could accommodate at least 2 CHERIs. 

 
• The SD card on the DE4 stores the boot image for the processor. FreeBSD can be loaded 

onto the SD-card and booted. The card could be loaded with a special multi-core boot 
procedure that will allow a dual-core CHERI initialization. 

 
Communication between multiple FPGAs is currently done through the Reliable Link layer 
developed by Simon Moore. This layer guarantees low-latency bidirectional communication 
between the FPGAs. We plan to add another layer on top of the Reliable Link layer, which will 
deal with cache coherence between the FPGAs. This abstraction layer needs to be intelligent in 
order to cope with potential failures in the inter-FPGA links. In CMPs, the processor cores and 
NOC are implemented on chip; thus, failures in the NOC are highly unlikely. The Bluehive 
cannot guarantee such reliability as the links are external to the FPGA and prone to interferences. 
The system will require some redundancy in order to cope with failures. Techniques such as 
adaptive incremental check pointing can be used to deal with failures [21].  This technique 
allows periodic snapshots of the current state. If an error occurs, the system can be rolled back to 
the last known state. 
 
As the design will be implemented in hardware in the Bluehive, we intend to use the existing link 
topology. The current topology is a 3D torus. It allows fast bidirectional communication between 
six neighboring FPGAs, four over SATA3 links and the other two over eSATA. As the system 
has very low latency the penalties for seeking farther FPGAs is not high when compared to 
typical DRAM access times. The overall design of the system will appear as a large tiled CMP. 
The operating system running on the proposed architecture will perceive the system as a single, 
albeit very large, multi-core processor. The link mechanism should give an illusion of shared 
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memory through the abstraction layer.  DE4s are equipped with four 1G Ethernet ports. 
Following the system shown in Figure 7, one of the FPGA could be declared as the master and 
given access to the Internet via a TCP/IP layer. 

Figure 7: Connecting a multi-core CHERI system to the Internet 

When coupled with capability functions, the CHERI processor adds a capability cache that adds 
more circuit logic to the design. 

Work done by Robert Norton in his PhD thesis proposal suggests an alternate mechanism for 
inter-processor communication, known as remote-store. This mechanism could be further 
extended with capabilities in order to provide secure communication. 

The proposed design has several challenges: 

• The modular nature of the system will make it flexible to adapt to varying topologies and
core numbers. The system should be capable of identifying any changes to the structure
and adapt accordingly. We propose a special boot procedure that will be used to identify
the topology, core numbers, and link failures within the system. Checkpoint schemes are
often used in supercomputers to deal with failures. As the number of cores, caches,
DRAMs, and so on in a supercomputer is large, the mean time between failures is high.
Some techniques used in supercomputers – such as the Blue Gene/Q [22] – could be
employed in our system. At boot, the cores will check their individual processor IDs
(supported by MIPS). They will then communicate with their neighboring processors
through the abstraction layer and build a table of all the cores in the system. The list of
cores will be used by the abstraction layer to maintain cache coherence.
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• Datacenters often suffer from inefficient load balancing, in some cases the load on the 
edges might be 50% lower than optimal. One such example is the modular shipping 
container-based datacenter [23]. Performance issues will arise when a single task is 
spread between several distant processors. Even though the Reliable link layer provides 
low latency and high bandwidth, the overall effects of heavy inter-FPGA communication 
could be a potential bottleneck. To deal with this issue, the abstraction layer will serve a 
dual function. It will have a mechanism for packaging cache lines into a viable format for 
transportation through the Reliable link. In addition, each pair of links on the FPGA will 
act as a network router (6 pairs in total when using the PCIe SATA3 expansion card). 
The router will maintain a routing table that will be populated at boot time. As the 
network will not change after boot (unless there is a link failure), static addressing can be 
used. We intend to use the processor ID as the routing address. A distance-vector routing 
protocol will be necessary for efficient load balancing. Best links will be chosen for the 
inter-core communication. Several good examples have been shown in [24]. Applications 
running on this system will be forced to utilize the spatial locality of the cores. The 
addressing schemes described in [25, 26, 27, 28] could be applicable to this system. As 
the cache lines used by CHERI and CHERI-2 are 256 bits long (the line sizes could be 
increased if necessary), a 32-bit address will not be a major overhead for the 
communication. Other schemes derived from transactional memory can also be used to 
reduce the addressing overheads. 

 
• The operating system needs to be able to cope with such a dynamic design. The design 

will be dynamic in the sense that there will be no specific architectural constraints such as 
a total number of cores, links, and routers. This will all be determined at boot time. Hence 
the OS will need to be tweaked in the way that it could dynamically adapt to the 
architecture. 

 
3.2.6 TPSC: Trustworthy Programmable Switch Controllers  
 
Within each logical layer in a network or subnetwork, we anticipate the opportunity to express a 
variety of security relationships, including asymmetric and mutual distrust, as well as relating to 
restricted and permitted information flows. The network architectures need to be tailored to the 
specific uses, which may differ widely between datacenters and general interdomain networking. 
Thus, a variety of single-switch and multi-switch controllers, as well as multi-controller switches 
is likely to be desirable. However, note that multiple switches and multiple controllers present 
some very challenging control problems with respect to consistency, security, and resilience. 
 
The high-level operation of an OpenFlow switch is quite straightforward. As packets stream in, the 
switch aggregates header information and compares it against the flow table entries. The switch then 
updates the packet according to the actions prescribed in the matching entry, and sends the updated 
packet to the appropriate egresses via a crossbar. 
 
Our switch architecture depicted in Figure 8, based upon the reference design provided by the 
NetFPGA-10G project, is heavily inspired by Yabe’s [29] 10G 4-port OpenFlow switch. Our 
switch parameterized by N , the number of MAC ports in the switch, and W , the width of the internal 
data plane. These values can be freely changed to meet resource and performance requirements.   
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Figure 8: OpenFlow Switch Architecture 

In an N -port instance of the switch, there are N + 1 ports with the (N + 1)th port reserved for
communication with a host processor. The switch also has a controller interface to allow the host 
processor access to the flow tables and the various registers that maintain statistics. 

As a switch is always permitted to drop packets due to over-subscription, it is common practice in 
RTL switch designs for the data path to be a synchronous pipeline with no back pressure. This 
reduces some design complexity and eliminates some logic statically. However, this minor 
efficiency comes at the cost of less-understandable compositional semantics for components and a 
reduced ability to debug the design. For these reasons, we implemented all the switch component 
interfaces to provide back pressure via the BSV’s ready-enable micro-interface protocol to stall 
operations when sufficient buffering is not available. This change has a negligible area cost, but 
it dramatically reduces the design effort. Additionally, all internal switch interfaces follow the 
standard split-transaction protocol, facilitating latency-insensitive modular design. 

The design endorses the “fail-early” principle, dropping any packet for which it cannot guarantee 
end-to-end buffering. When the header flit of a packet arrives at the switch and sufficient buffering is 
not available, the header flit and all the subsequent flits belonging to the packet are discarded, and a 
failure is recorded. 

  The design of the switch pipeline has been divided into the following modules. 

Flow Table Entry Composer: Each input port of the switch receives packets as a sequence of 
fixed-size flits. For each input port, there is an associated flow table entry composer that aggregates 
the packet header and decodes it into an internal flow table entry tag representation. This entry is 
forwarded to the flow table controller as a query. The composer also forwards the entire packet to the 
corresponding action processor. 
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Flow Table Controller: The Flow Table Controller is responsible for maintaining the flow tables 
entries and the per-flow statistics, and arbitrating the requests to access the flow tables. 
It is implemented as a 10-stage pipeline, and can receive as many as N + 2 queries in each cycle: 
one from the switch controller interface, and N + 1 from the flow table entry composers. For every 
cycle, the controller (via a configurable priority scheme) selects a request and pushes it into the 
pipeline. It handles requests serially due to resource constraints. As each packet needs only one 
request, this is not a performance bottleneck, and has the additional benefit of providing intra-switch 
table consistency trivially.  The flow table controller maintains two tables – an exact match table 
implemented on Block RAMs, and a wildcard match table implemented as a CAM. Each flow table 
entry consists of three components: a compressed representation of packet header information that 
serves as a tag for matching against requests, a list of actions determining the output ports and any 
modifications that need to be made to the matching packet, and flow-specific statistics, e.g., the 
number of packets in the flow, the number of bytes sent, and the time when the last matching packet 
was received. The data layout has a one-to-one correspondence with the C-struct in the OpenFlow 
controller software. The flow table controller pipeline issues a request to both the exact match and 
the wildcard match tables in parallel, prioritizing the response from the exact match table. If a match 
is found, it forwards the action list obtained from the matching flow table entry to the action 
processor module of the corresponding port. If, however, a match is not found, it instructs the action 
processor to either drop the packet or send the packet to the OpenFlow controller. 
 
Action Processor: The action processor buffers the unmodified packet until it has received the 
action list from the flow table controller. It updates the destination ports and the packet header, 
as required by the action list. It can modify the fields of the data link, the network and the 
transport layers. It also updates the checksum for the network and the transport layers. 
Arbiter: The arbiter is an (N + 1) × (N + 1) crossbar. For every cycle, it selects one flow based on 
a configurable scheduling policy, and forwards the selected flow to the output queues of all the 
associated destination ports. This selection is maintained until the entire packet is transmitted. 
 
Switch Controller Interface: The switch controller interface module provides an address-
mapped interface for the OpenFlow controller to the flow tables and the statistics. In addition to 
the necessary logic for marshaling the accesses over the controller-switch communication link, it 
has interlock logic to guarantee that flow table updates are applied atomically. This allows us to 
reason about the functionality of the switch at the granularity of packet transfers. 
 
3.2.7 CAMD: Cloud Analysis and Misuse Detection  
 
OpenFlow is an open standard that has gained tremendous interest in the last few years within the 
network community. It is an embodiment of the software-defined networking paradigm, in which 
higher-level flow routing decisions are derived from a control layer that, unlike classic network switch 
implementations, is separated from the data-handling layer. The central attraction to this paradigm is 
that by decoupling the control logic from the closed and proprietary implementations of traditional 
network switch infrastructure, researchers can more easily design and distribute innovative flow 
handling and network control algorithms. Indeed, we also believe that OpenFlow can, in time, prove 
to be one of the more impactful technologies to drive a variety of innovations in network security. 
OpenFlow could offer a dramatic simplification to the way we design and integrate complex network 
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security applications into large networks. However, to date there remains a stark paucity of compelling 
OpenFlow security applications. Here, we introduce FRESCO, an OpenFlow security application 
development framework designed to facilitate the rapid design, and modular composition of OF-enabled 
detection and mitigation modules. FRESCO, which is itself an OpenFlow application, offers a 
Click-inspired [30] programming framework that enables security researchers to implement, share, 
and compose together, many different security detection and mitigation modules. We demonstrate the 
utility of FRESCO through the implementation of several well-known security defenses as OpenFlow 
security services, and use them to examine various performance and efficiency aspects of our proposed 
framework. 

OpenFlow (OF) networks distinguish themselves from legacy network infrastructures by dramatically 
rethinking the relationship between the data and control planes of the network device. OpenFlow 
embraces the paradigm of highly programmable switch infrastructures [31], enabling software to 
compute an optimal flow routing decision on demand. For modern networks, which must increasingly 
deal with host virtualization and dynamic application migration, OpenFlow may offer the agility needed 
to handle dynamic network orchestration beyond that which traditional networks can achieve. For 
an OpenFlow switch, the data plane is made programmable, where flows are dynamically specified 
within a flow table. The flow table contains a set of flow rules, which specify how the data plane 
should process all active network flows. In short, OpenFlow’s flow rules provide the basic 
instructions that govern how to forward, modify, or drop each packet that traverses the OF-enabled 
switch. The switch’s control plane is simplified to support the OpenFlow protocol, which allows 
the switch to communicate statistics and new flow requests to an external OpenFlow network 
controller. In return, it receives flow rules that extend its flow table ruleset.  An OF controller is 
situated above a set of OF-enabled switches, often on lower-cost commodity hardware. It is the 
coordination point for the network’s flow rule production logic, providing necessary flow rule 
updates to the switch, either in response to new flow requests or to reprogram the switch when 
conditions change. As a controller may communicate with multiple OF switches simultaneously, it 
can distribute a set of coordinated flow rules across the switches to direct routing or optimize 
tunneling in a way that may dramatically improve the efficiency of traffic flows. The controller 
also provides an API to enable one to develop OpenFlow applications, which implement the logic 
needed to formulate new flow rules. It is this application layer that is our central focus. An OF 
controller is situated above a set of OF-enabled switches, often on lower-cost commodity hardware. 
It is the coordination point for the network’s flow rule production logic, providing necessary flow rule 
updates to the switch, either in response to new flow requests or to reprogram the switch when 
conditions change. As a controller may communicate with multiple OF switches simultaneously, it can 
distribute a set of coordinated flow rules across the switches to direct routing or optimize tunneling in a 
way that may dramatically improve the efficiency of traffic flows. The controller also provides an API 
to enable one to develop OpenFlow applications, which implement the logic needed to formulate new 
flow rules. It is this application layer that is our central focus. 

From a network security perspective, OpenFlow offers researchers with an unprecedented singular 
point of control over the network flow routing decisions across the data planes of all OF-enabled 
network components. Using OpenFlow, an OF security app can implement much more complex logic 
than simplifying halting or forwarding a flow. Such applications can incorporate stateful flow rule 
production logic to implement complex quarantine procedures, or malicious connection migration 
functions that can redirect malicious network flows in ways not easily perceived by the flow participants. 
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Flow-based security detection algorithms can also be redesigned as OF security apps, but 
implemented much more concisely and deployed more efficiently, as we illustrate in examples. 
 
We introduce a new security application development framework called FRESCO. FRESCO is 
intended to address several key issues that can accelerate the composition of new OF-enabled 
security services. FRESCO exports a scripting API that enables security practitioners to code security 
monitoring and threat detection logic as modular libraries. These modular libraries represent the 
elementary processing units in FRESCO, and may be shared and linked together to provide complex 
network defense applications.  FRESCO currently includes a library of 16 commonly reusable 
modules, which we intend to expand over time. Ideally, more sophisticated security modules 
can be built by connecting basic FRESCO modules. Each FRESCO module includes five 
interfaces: (i) input, (ii) output, (iii) event, (iv) parameter, and (v) action.  By simply assigning 
values to each interface and connecting necessary modules, a FRESCO developer can replicate a 
range of essential security functions, such as firewalls, scan detectors, attack deflectors, or IDS 
detection logic. 
 
FRESCO modules can also produce flow rules, and thus provide an efficient means to implement 
security directives to counter threats that may be reported by other FRESCO detection modules. Our 
FRESCO modules incorporate several security functions ranging from simple address blocking to 
complex flow redirection procedures (dynamic quarantine, or reflecting remote scanners into a honeynet, 
etc.). FRESCO also incorporates an API that allows existing DPI-based legacy security tools (e.g., 
BotHunter [32]) to invoke FRESCO’s countermeasure modules. Through this API, we can construct 
an efficient countermeasure application, which monitors security alerts from a range of legacy IDS and 
anti-malware applications and triggers the appropriate FRESCO response module to reprogram the data 
planes of all switches in the OpenFlow network. 
The FRESCO framework consists of an application layer (which provides an interpreter and APIs to 
support composable application development) and a security enforcement kernel (SEK, which enforces 
the policy actions from developed security applications.  Both components are integrated into NOX, 
an open source openflow controller. 
 
FRESCO’s application layer is implemented using NOX python modules, which are extended 
through FRESCO’s APIs to provide two key developer functions: (i) a FRESCO Development 
Environment [DE], and (ii) a Resource Controller [RC], which provides FRESCO application 
developers with OF switch- and controller-agnostic access to network flow events and statistics. 
Developers use the FRESCO script language to instantiate and define the interactions between the 
NOX python security modules.  These scripts invoke FRESCO-internal modules, which are 
instantiated to form a security application that is driven by the input specified via the FRESCO scripts 
(e.g., TCP session and network state information) and accessed via FRESCO’s DE database API.  
 
These instantiated modules are executed by FRESCO DE as the triggering input events are received. 
FRESCO modules may also produce new flow rules, such as in response to a perceived security 
threat, which are then processed by the controller’s security enforcement kernel [SEK].  The basic 
operating unit in the FRESCO framework is called a module. A module is the most important element 
of FRESCO. All security functions running on FRESCO are realized through an assemblage of 
modules.  
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A module is implemented as an event-driven processing function. A security function can be 
realized by a single module or may be composed into a directed graph of processing to implement more 
complex security services. For example, if a user desires to build a naive port comparator application 
whose function is to drop all HTTP packets, this function can be realized by combining two 
modules. The first module has input, output, parameter, and event. The input of the first module is the 
destination port value of a packet, its parameter is the integer value 80, an event is triggered 
whenever a new flow arrives, and output is the result of comparing the input destination port value 
and parameter value 80. We pass the output results of the first module as input of the second 
module and we assign drop and forward actions to the second module. In addition, the second 
module performs its function whenever it is pushed as an input. Hence, the event of this module is 
set to be push. A module diagram and modules representing this example scenario are shown in 
Figure 9. 

Figure 9: Illustration of FRESCO module design 

An action is an operation to handle network packets (or flows). The actions provided by FRESCO 
derive from the actions supported by the NOX OpenFlow controller. The OpenFlow standard specifies 
three required actions, which should be supported by all OpenFlow network switches, and four optional 
actions, which might be supported by OpenFlow network switches [33]. OpenFlow requires support 
for three basic actions: (i) drop, which drops a packet, (ii) output, which forwards a packet to a defined 
port, and (iii) group, which processes a packet through the specified group. As these actions 
must be supported by all OpenFlow network switches, FRESCO also exports them to higher-level 
applications. 

One optional action of interest is the set action, which enables the switch to rewrite a matching 
packet’s header fields (e.g., the source IP, destination port) to enable such features as flow path 
redirection. Because one of the primary goals of FRESCO is to simplify development of security 
functions, FRESCO handles possible issues related to the set action by breaking the set action into 
three more specific actions: redirect, mirror, and quarantine. Through the redirect action, an 
application can redirect network packets to a host without explicitly maintaining state and dealing 
with address translation. FRESCO offloads session management tasks from applications and 
automatically changes the source and destination IP address to handle redirects. The mirror 
action copies an incoming packet and forwards it to a mirror port for further analysis. The 
functionality may be used to send a packet to a feature or other packet analysis systems. The 
quarantine action isolates a flow from the network. Quarantine does not mean dropping a 
particular flow, but rather, FRESCO attaches a tag to each packet to denote a suspicious (or 
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malicious) packet. If a packet has the tag, then this packet can traverse only to allowed hosts (viz., a 
FRESCO script can fishbowl an infected host into an isolated network using packet tags). 
 
The FRESCO development environment (DE) provides security researchers with useful 
information and tools to synthesize security controls. To realize this goal, we design the FRESCO 
DE with two considerations. First, this environment must export an API that allows the developer to 
detect threats and assert flow constraints while abstracting the NOX implementation and OF 
protocol complexities. Second, the component must relieve applications from the need to perform 
redundant data collection and management tasks that are common across network security 
applications. The FRESCO development environment provides four main functions: (i) script-to-
module translation,(ii) database management, (iii) event management, and (iv) instance execution. 
 

• Script-to-module translation: This function automatically translates FRESCO scripts 
to modules, and creates instances from modules, thus abstracting the implementation 
complexities of producing OF controller extensions. In addition, it is also responsible for 
validating the registration of modules. Registration is performed via a registration API, which 
enables an authorized administrator to generate a FRESCO application ID and an 
encryption key pair. The developer embeds the registered application ID into the FRESCO 
script, and then encrypts the script with the supplied private key. The naming convention 
of FRESCO applications incorporates the application ID, which is then used by FRESCO to 
associate the appropriate public key with the application. In addition to registering 
modules, the module manager also coordinates how modules are connected to each other and 
delivers input and event values to each module. 
 

• Database management: The DB manager collects various kinds of network and switch 
state information, and provides an interface for an instance to use the information. It provides 
its own storage mechanism that we call the FRESCO-DataBase (F-DB), which enables one to 
share state information across modules. For example, if an instance wants to monitor the 
number of transferred packets by an OpenFlow enabled switch, it can simply request the 
F-DB for this information. In addition, this database can be used to temporarily store an 
instance. 

• Event management: The event manager notifies an instance about the occurrence of 
predefined events. It checks whether the registered events are triggered, and if so delivers 
these events to an instance. FRESCO supports many different kinds of events, including flow 
arrivals, denied connections, and session resets. In addition, the event manager exposes an 
API that enables event reporting from legacy DPI-based security applications, such as 
Snort [34] or BotHunter [32]. The security community has developed a rich set of 
network-based threat monitoring services, and the event manager’s API enables one to 
trigger instances that incorporate flow rule response logic.  
 

• Instance execution: This function loads the created instances into memory to be run over 
the FRESCO framework. During load time, FRESCO decrypts the application using the 
associated public key, and confirms that the ID embedded in the script corresponds to the 
appropriate public key. The application then operates with the authority granted to this 
application ID at registration time. 
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4.0 RESULTS AND DISCUSSION 

4.1 Mirage OS Evaluation  

Mirage is a clean-slate implementation of many OS components, and so we evaluate it in stages 
against more conventional deployments. First, we examine micro-benchmarks to establish 
baseline performance of key components; and then more realistic appliances: a DNS server, 
showing performance of our safe network stack; an OpenFlow controller appliance and an 
integrated web server and database, combining storage and networking. Finally, we examine the 
differences in active lines of code and binaries in these appliances, and the impact of dead-code 
elimination. 

Microbenchmarks 
The purpose of these microbenchmarks is to demonstrate the potential benefits of libOS 
specialization by examining performance in simple, controlled scenarios; more realistic 
application benchmarks are provided in subsequent sections. Thus, microbenchmark evaluations 
are composed of identical OCaml code executing in different hosting environments, labeled as 
follows: Linux-native, a Linux kernel running directly on the bare metal with an ELF binary 
version of the application; linux-pv, a Linux kernel running as a paravirtualized Xen domU with 
an ELF binary version of the application; xen-direct, the application built as a sealed appliance to 
run directly over Xen, using the Mirage network stack. 

Boot Time  
Among the benefits of MirageOS is the comparative compactness of the resulting VMs, which 
significantly reduces domain boot time. Figure 10 compares boot times for a linux-pv Debian 
Linux VM running only the Apache 2 service, a minimal Linux kernel, and a Mirage unikernel 
VM. The Debian VM is built using debootstrap and includes only the required runtime packages. 
The Linux kernel measures the “time to userspace” via a custom-written initrd that calls the 
ifconfig ioctls directly to bring up a network interface before explicitly constructing and 
transmitting the single UDP packet required. Time is measured from startup to the point where 
boot is complete, signaled by the VM sending a special UDP packet to the control domain. For 
the unikernel and minimal Linux VMs, this is sent as soon as the network interface is ready. For 
the full Debian VM, it is sent as soon as the Apache process has started. As the memory size 
increases, the proportion of Mirage boot time due to building the domain also increases, to 
approximately 60% for memory size 3072 MiB. Mirage matches the minimal Linux kernel, 
booting in slightly under half the time of the Debian Linux. 
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Figure 10: Domain Boot Time Comparison 

 
This test is bounded by two factors: the Xen control stack imposes a fixed cost (which affects 
both Mirage and Linux), and in practice the standard Linux distribution boot time increases if 
more packages are added and shell scripts become serialized. In contrast, Mirage is jumping 
directly into a fully functioning high-level language runtime in slightly less time than just the 
Linux kernel takes to boot, with device drivers synchronously attached. 
 
CPU  
We compared performance of an n-body simulation and a page-table stress test via buffer 
allocation. Detailed results are elided for space but, as expected, performance for the CPU-bound 
code is unaffected either by type-safety or by lack of a userspace/kernel boundary, as everything 
runs natively with no emulation. The buffer allocation test stresses page-table manipulation and 
the Mirage xen-direct implementation slightly outperforms linux-pv due to our lack of a 
kernel/userspace divide. 
 
Threading  
Figure 11a benchmarks thread construction time, showing the time to construct millions of 
threads in parallel where each thread sleeps for between 0.5 and 1.5 seconds and then terminates. 
The linux-pv target, which most closely mirrors a conventional cloud application, is slowest with 
the same binary running on native Linux coming in next. The two xen- targets perform notably 
better due to the test being limited by the GC speed- thread construction occurs on the heap so 
creation of millions of threads triggers regular compaction and scanning. The xen- runtime is 
faster due to the specialized address space layout described earlier. There is little extra benefit to 
using superpages (xen-extent cf. xen-malloc), as the heap grows once to its maximum size and 
never subsequently shrinks.We also evaluated the precision of thread timers. A thread records 
the domain wall clock time, sleeps for 1 to 4 seconds and records the difference between the wall 
clock time and its expected wakeup time. Figure 11b plots the CDF of the jitter, and shows that 
the unikernel target provides both lower and more predictable latency when waking up millions 
of parallel threads. This is due simply to the syscall overhead in Linux, elided by Mirage as there 
is no userspace/kernel boundary. 
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Figure 11: Mirage Thread Performance 

Networking  
As a simple latency test against the Linux stack, we flooded 106 pings from the standard Linux 
ping client running in its own VM to two targets: a standard Linux VM, and a Mirage application 
with the Ethernet, ARP, IPv4 and ICMP libraries compiled in. As expected, Mirage performed 
slightly worse (from 4–10% increase in latency) than Linux, since it implements ICMP in-kernel 
so there is no userspace/kernel transition to be avoided, while the Mirage stack has the slight 
overhead of type-safety. Both stacks survived a 72-hour flood ping regression test with no 
memory leaks. See Table 1. 

Table 1: Ping Latency 
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Figure 12 compares the performance of Mirage’s TCP stack against the Linux VM stack. Mirage 
slightly outperforms Linux when receiving, but does notably worse when transmitting bulk data. 
 

 
Figure 12: TCP transmit (tx) and receive (rx) throughput over a physical 1 Gb/s Ethernet link 

 
Storage  
Figure 13 shows a simple random read throughput test using fio of a fast PCI-express SSD 
storage device, comparing a Mirage xen-direct appliance against Linux using buffered and direct 
I/O. Again, as expected, the Linux direct I/O and Mirage lines are effectively the same: both use 
direct I/O and so impose very little overhead on the raw hardware performance. However, it is 
notable how big an impact use of the Linux buffer cache has- it causes performance to max out at 
around 300 MB/sec in contrast to the 1.6 GB/sec achievable if the buffer cache is avoided. 
 

 
Figure 13: Random block read throughput, t/- 1 std.dev. 

 
To benchmark our OpenFlow implementation we use the OFlops platform [35]. For the 
controller benchmark we use cbench to emulate 16 switches concurrently connected to the 
controller, each serving 100 distinct MAC addresses. Experiments run on a 16-core AMD server 
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with 40 GB RAM, with each controller configured to use a single thread. The benchmark 
measures the throughput in requests processed per second of the controller in response to a 
stream of packet-in messages produced by each emulated switch under two scenarios, batch and 
single. Batch is where each switch maintains a full 64 kB buffer of outgoing packet-in messages 
and single is where only one packet-in message is in flight from each switch. The first measures 
the absolute throughput when servicing requests, and the second measures throughput of the 
controller when serving connected switches fairly.  Figure 14 compares the xen-direct Mirage 
controller against two existing OpenFlow controllers: Maestro [36], an optimized Java-based 
controller; and the optimized destiny-fast branch of NOX [37], one of the earliest and most 
mature publicly available OpenFlow controllers. Unsurprisingly, the highly optimized NOX fast 
branch has the highest performance in both experiments, although it does exhibit extreme short-
term unfairness in the batch test. Maestro is fairer but suffers significantly reduced performance, 
particularly on the “single” test, presumably due to JVM overheads. Performance the Mirage 
appliance falls between NOX fast and Maestro, showing that Mirage manages to achieve most of 
the performance benefit of optimized C while retaining the high-level language features such as 
type-safety. 

Figure 14: OpenFlow performance comparison 

Code and Binary Size 
Direct comparison of lines-of-code (LoC) is rarely meaningful due to widespread use of 
conditional compilation, and complex build systems. We attempt to remove such effects by 
configuring according to reasonable defaults, and then pre-processing to remove unused macros, 
comments and whitespace. In addition, to attempt a fair comparison against the 7 million LoC 
left in the Linux tree after preprocessing, we ignore kernel code associated with components for 
which we have no analogue, e.g., the many supported architectures, network protocols, and file 
systems. We are concerned with network-facing guest VMs that share the underlying hypervisor, 
and so do not include LoC for Xen and its management Table 2: Binary sizes of Xen unikernels, 
before and after dead-code elimination with configuration and data compiled directly into the 
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kernel domains, which can be separately disaggregated [4, 38]. Figure 15 shows LoC for several 
popular server components, taken using the cloc utility. Even after removing irrelevant code, a 
Linux appliance involves at least 4–5 times more LoC than a Mirage distribution. Note that while 
the Mirage libraries are not as feature-rich as the industry-standard C applications, their library 
structure ensures that unused dependencies can be shed at compile time even as features continue 
to be added (e.g., if no file system is used, then the entire set of block drivers is automatically 
skipped, in contrast to a Linux distribution where the dependency analysis across the kernel and 
userspace is non-trivial). 
 

 
Figure 15: Key cloud components vs. Mirage unikernel codebase 

The compiled binary size illustrates this more effectively, and Table 2 lists the earlier appliances. 
The first column shows the default OCaml dead-code elimination that drops unused modules, 
and the second is a more extensive custom tool that performs dataflow analysis to drop unused 
functions within a module if not otherwise referenced (this is safe due to the lack of dynamic 
linking). Either way, all Mirage kernels are significantly more compact than even a cut-down 
embedded Linux distribution, and require no special work on the part of the programmer beyond 
using the Mirage APIs to build their application. 

Table 2: Binary sizes of Xen unikernels 
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4.2 DIOS Evaluation 

In order to maintain portability to different host kernels, the DIOS module never invokes any 
host kernel functionality directly. Instead, the DIOS Adaptation Layer (DAL) indirects OS-
independent requests for kernel functionality (e.g., starting a new process, installing new 
mappings in the page tables) to the kernel-specific invocations. DAL provides access to data 
structures and functionality added via the patch.  By writing a new DAL for a different host 
operating system, DIOS can be ported to new platforms. In fact, it should even be possible to run 
the core of DIOS as a user-space server outside the host OS kernel by implementing a DAL that 
supports the necessary in-kernel operations. 
The DAL currently includes the following functionality that must be supported by host OS 
kernels: 

• Process management: creation and execution of user-space processes, access to and
management of DIOS-specific per-process information (usually held in the PCB),
retrieval of process information.

• Memory management: allocation of paged and unpaged kernel memory, mapping of
kernel memory into user-space virtual address spaces.

• Network access: integration with the kernel network stack, sending and receiving of UDP
datagrams (unicast and broadcast).

• Block and character I/O: writing characters to the console.

• Data structures: linked list, hash table, FIFO queue.

• Locking and concurrency: spin locks, reader-writer semaphores.

Since the DAL is largely an adaptation layer, it is fairly compact.  The implementation for the 
Linux kernel consists of about 2,500 lines of C code.  Not all OS kernels support loadable 
modules, however, and different operating system kernels have somewhat different policies as to 
which symbols kernel modules may access. If loadable kernel modules are not supported, both 
the DAL and the DIOS core module must be deployed as part of the compile-time kernel patch. 
If loadable modules are supported, but necessary symbols are not exported to modules, the kernel 
patch may need to export them. In practice, however, we have not found this to be a problem in 
the Linux prototype – all symbols required by the DAL come in already exported variants. 

As DIOS is ongoing research. We expect to have a comprehensive evaluation of DIOS in the 
next six months, including a performance evaluation and an evaluation of the security guarantees 
offered by the DIOS capability model. 

4.3 FABLE Evaluation 

To compare the performance of different transport protocols in a datacenter environment, we 
deploy 41 Linux containers on a 48-core Opteron 6168. Connectivity between the containers is 
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enabled through a 1 Gbps virtual switch. We benchmark the performance of scatter-gather 
applications, which implement tree-based, divide-and-conquer algorithms widely deployed in 
datacenters [43].  These applications implement a many-to-one communication pattern, which 
can lead to problems such as incast-induced congestion collapse [44]. We compare TCP Reno, 
TCP Cubic [45], tcpcrypt [46], DCTCP [47] and MPTCP [48]. These protocols represent a 
diverse set with fundamentally different congestion control and path usage. For the same 
application, 3 different flow sizes are used: Large (1 GB), medium (20 MB) and small (10 KB). 
We use a mix of large flows and bursts of medium and small ones to represent reported 
datacenter traffic [49]. For all experiments, one container acts as a data sink to receive flows 
from the rest of the 40 containers. 
 
Figure 16 (a) shows the flow completion time as a function of the flow size, normalized to TCP 
Reno. The performance of Reno and Cubic is comparable with the latter more amenable to long 
flows. DCTCP outperforms delay-based congestion control for independent flows irrespective of 
size. But in case of mixed traffic, it enables bursty short transfers to experience low delay at the 
expense of longer flows. As a result, the overall flow transfer time undergoes degradation. 
Multipath TCP on the other hand, improves performance for medium and long flows, but 
performs poorly for short and bursty traffic. We attribute this to MPTCP’s goal of maximizing 
resource utilization. As a result, short and bursty flows receive a tiny portion of the available 
network. 
 
We next benchmark the performance of typical datacenter query traffic in the presence of 
background traffic [47]. To enable this, each container starts a long flow to the sink node, 
followed by a burst of short flows. The results are presented in 16 (b) DCTCP improves 
performance for both the short and long flows. In contrast, MPTCP enables the long flows to 
complete faster than single path Reno and Cubic but short flows experience degraded 
performance. 
 

 
Figure 16: Flow Completion: a comparison of different transports. (a) Flow completion normalized to TCP Reno, (b) flow 

completion breakdown.  
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Overall, the results reinforce our position that even in a controlled datacenter environment; the 
performance of transport protocols is non-uniform. 

4.4 RDSF Evaluation 

There are close links between RDSF and CHIMERA in that CHIMERA provides the computing 
infrastructure for RDSF, and RDSF provides the interconnect for CHIMERA. We also plan for a 
more memory-interconnect style communication for chip-to-chip and board-to-board links. It 
remains an open challenge for future work to merge Internet-style packet communication with 
the needs of a cache coherent memory interconnect as this is an ongoing research area of interest. 
Time did not allow for in-depth evaluations for RDSF.   

4.5 CHIMERA Evaluation 

Scalability involves some of the test results we would like to acquire. It will determine to what 
extent we can span the system before the penalties due to link bandwidth, link latency, routing 
algorithm, boot procedure, and have a negative effect. The other question is, how sophisticated 
will the abstraction layer need to be and how much FPGA space will this logic consume? At 
what point will routing become a major problem? When these questions are answered we will be 
able to say whether this system could be used in a datacenter. If it is possible to scale the system 
up to the capacity of a typical server rack, we could remove the rack switch completely. If the 
system can scale beyond a rack we could eliminate other networking elements as well. 

Let us assume that the system could scale up to a datacenter rack. A typical rack is 44U in size. 
Hence, 44 1U servers could be placed in this rack. State-of-the-art server processors consist of 
10-12 processor cores, often with two of these processors per server blade. Usually, such 
processors cannot be fitted into a 1U server blade due to cooling concerns.  However, let us 
assume that we can. This server rack could contain about 1000 processor cores. The rack switch 
does occupy some space in the rack, but we will ignore that for the purposes of this discussion. 
To support 44 server blades, at least a 100-port switch is necessary with dual connections to each 
blade. The latency to the switch will be at best a few hundred clock cycles. 

Based on the current implementations of the CHERI and CHERI-2 processors on the DE4 
FPGA, a CHERI processor utilizes around 40% of all the LUTs available on the chip. The 
CHERI-2 utilizes slightly less. Given these conditions, we could potentially have 32 cores per 
single Bluehive module - a module consists of 16 FPGAs. The complete Bluehive system, four 
modules, would then run 128 cores. This does not quite match up to the 1000-core rack described 
earlier. The estimated CHERI/CHERI-2 multi-core system running on the Bluehive would have 
several factors higher inter-board communication than most commercial systems.  

Correctness of distributed cache-coherent memory subsystems presented a particular challenge 
for this part of the project. Innovation prevailed with exploitation of our BlueCheck test 
framework married with a memory traffic validation tool, Axe. Axe tests whether coherent 
memory system meets the criteria for a particular memory consistency model. Such models are 
challenging to specify a check, so Axe models are written in high-level Haskell and exploit SRI’s 
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Yices constraint solver to efficiently check the results of test-sequences consisting of load, store, 
load-linked, store-conditional, and memory barrier operations issued by multiple cores. At the 
time of writing, it supports checking against four consistency models: sequential consistency, 
total store order, partial store order, and relaxed memory order. This work has been presented in 
MEMOCODE 2015 [50]. 
 
4.6 TPSC Evaluation  
 
The implemented switch operates at 160 MHz and has a 64-bit data path, meeting the 10 Gbps 
per lane performance requirement. The switch architecture has a pipeline latency of 19 cycles for 
a packet to travel from ingress to egress. It takes approximately 20% of FPGA LUT/Flip Flop 
resources and about half of the BRAM resources. 
 
4.7 CAMD Evaluation 
 
For the evaluation, we begin with the basic problem of identifying entities performing flow 
patterns indicative of malicious network scanning, and compare schemes of implementing 
network scanning attacks with and without the use of FRESCO. 
While network scanning is a well-studied problem in the network security realm, it offers an 
opportunity to examine the efficiency of entity tracking using FRESCO. Many well-established 
algorithms for scan detection exist [51, 52, 53]. However, under OpenFlow, the potential for 
FRESCO to dynamically manipulate the switch’s data path in reaction to malicious scans is a 
natural objective. This scenario also lets us examine how simple modules can be composed to 
perform data collection, evaluation, and response: 
 
FRESCO Scan Deflector Service. Figure 17 illustrates how FRESCO modules and their 
connections can be linked together to implement a malicious scan deflector for OpenFlow 
environments. This scan detection function consists of the three modules described above. First, 
we have a module for looking up a blacklist. This module checks a blacklist table to learn 
whether or not an input source IP is listed. If the table contains the source IP, the module notifies 
its presence to the second module. Based on the input value, the second module performs 
threshold-based scan detection or it drops a packet. If it does not drop the packet, it notifies the 
detection result to the third module. In addition, this second module receives a parameter value 
that will be used to determine the threshold. Finally, the third module performs two actions based 
on input. If the input is 1, the module redirects a packet. If the input is 0, it forwards a packet. 
Implementing the three modules required 205 lines of Python code and 24 lines of FRESCO 
script, as shown in Figure 18. 
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Figure 17: FRESCO composition of a Scan Deflector 

Figure 18: FRESCO script for Scan Detector 

FRESCO BotMiner Service. To illustrate a more complex flow analysis module using FRESCO, 
we have implemented a FRESCO version of the BotMiner [54] application. Note that our goal 
here is not faithful, “bug-compatible” adherence to the full BotMiner protocol [54], but rather to 
demonstrate feasibility and to capture the essence of its implementation through FRESCO, in a 
manner that is slightly simplified for readability. 
BotMiner detects bots through network-level flow analysis. We have implemented the essentials 
of its detection functionality using five modules as shown in Figure 19. BotMiner assumes that 
hosts infected with the same botnet exhibit similar patterns at the network level, and these 
patterns are different from benign hosts. To find similar patterns between bots, BotMiner clusters 
botnet activity in two dimensions (C-plane and A-plane). The C-plane clustering approach is 
used to detect hosts that resemble each other in terms of (packets per second) and bps (bytes per 
second). The A-plane clustering identifies hosts that produce similar network anomalies. In this 
implementation, we use the scan detector module to find network anomalies. Finally, if we find 
two clusters, we perform co-clustering to find common hosts that exist in both dimensions and 
label them as bots. BotMiner was implemented in 312 lines of python code and 40 lines of 
FRESCO script, as shown in Figure 20. 
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Figure 19: FRESCO composition of the BotMiner service 

 

 
 

 
 

 

 
 Figure 20: FRESCO scripts illustrating composition of the BotMiner service 

 
FRESCO P2P Plotter Service. We have implemented a FRESCO-based P2P malware detection 
service, similarly implemented to capture the concept of the algorithm, but simplified for the 
purpose of readability. Motivated by Yen’s work [55], we have implemented the P2P malware 
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detection algorithm, referred to as P2P Plotter, using FRESCO. The P2P Plotter asserts that P2P 
malware has two interesting characteristics, which are quite different from normal P2P client 
programs. First, P2P malware usually operates at lower volumes of network flow interactions 
than what is typically observed in benign P2P protocols. Second, P2P malware typically interacts 
with a peer population that has a lower churn rate (i.e., the connection duration time of P2P 
plotters is longer than that of normal P2P clients). The algorithm operates by performing co-
clustering, to find common hosts that exhibit both characteristics (i.e., low volume and low churn 
rate). We have implemented this essential functionality of the P2P Plotter algorithm as a 4-
module FRESCO script, which is shown in Figure 21. This involved 227 lines of Python code 
and 32 lines of FRESCO script. The script for the P2P Plotter is illustrated in Figure 22. The 
reuse of modules (i.e., CrossCluster and ActionHandler, from the BotMiner service 
implementation is noteworthy, highlighting the reuse potential of FRESCO modules. 

Figure 21: FRESCO composition of the P2P Plotter 



Approved for Public Release; Distribution Unlimited.   
39 

 

 
Figure 22: FRESCO scripts illustrating composition of the P2P Plotter  
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5.0 CONCLUSIONS 

This final technical report provides a comprehensive presentation of the totality of our work over 
the four years of the (MRC)2 project. We have created a book to document in more detail the 
entire work effort and application in a 386 pages (MRC)2 Final Project Technical Report Book. 
There other ideas, projects, and progresses we would have like to have made with (MRC)2, but 
overall we had a diverse work efforts and with additional time to make various other components 
well engineered for tech transfer would also be desirable. 

5.1 Mirage OS Conclusion 

Implementation of the unikernel in Mirage brought to light potential problems with both the 
underlying approach and the specifics of our implementation path. Perhaps the most obvious is 
the question of how best to support legacy systems.  Our extreme position in this space 
potentially requires a great deal of re-implementation. Consider for example the SSL protocol 
and its standard implementation in the OpenSSL [56] library or storage formats such as ext2 that 
are only completely documented in the code of their standard implementation. A complete re-
write of such key components cannot be undertaken lightly! Alternate approaches such as using 
tools like CIL or CCured [57, 58] to retrofit type safety to existing codebases have been explored 
by others, but have their own problems. Notably, it is considerable work for them to implement 
specialization techniques for the particular underlying platform, and it would be hard to integrate 
the results into a unikernel. At the other end of the spectrum, recent tools such as HipHop [59] 
take steps toward the unikernel approach, taking PHP code, translating to C++ and then 
compiling a single binary containing the entire PHP application. One can easily envisage 
attempting to further specialize that binary into a unikernel, although the benefits of static type 
safety would not apply with PHP. 

Another alternate approach explored in the Flux OSKit [60] is to encapsulate existing code to 
port it into the new system. In the case of Flux, this was done by targeting the multi-boot 
bootloader standard and then wrapping device drivers from systems such as Linux to fit within it. 
Although the greatest benefits of progressive specialization are difficult to obtain in this way, 
encapsulation is a very promising technique to apply to larger cloud components. For example, 
‘big data’ processing systems, such as Map-Reduce, Hadoop, and Dryad [61, 62, 63] are 
typically structured as a set of intercommunicating processes, and farmed out within a 
datacenter. Each of these processes could be encapsulated as a single VM and message-passing 
between VMs implemented via Vchan. This approach is similar to UNIX privilege separation 
[64], and provides an incremental deployment path, ensuring that existing reliably engineered 
components can continue to be used and that multiple, new, untested components need not be 
introduced all at once. 

5.2 DIOS Conclusion 

In the future, we intend to look into porting DIOS to the CHERI architecture to leverage its 
native capability support. 
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5.3 FABLE Conclusion  
 
I/O contention, in both the network and disk interfaces, is a serious problem in many modern 
environments, especially those making heavy use of virtualization, and significant research effort 
has gone into handling these issues [65, 66]. The FABLE name service, with its global 
knowledge of communication patterns, is well-placed to manage these issues. At the most basic 
level, this could be as simple as selecting a communication channel that is appropriate to the 
communication environment. For instance, this might mean enabling multi-path TCP on some 
channels, and deciding which paths to use. These decisions would be constantly re-evaluated by 
FABLE as the communication environment changes, and, where appropriate, channels would be 
reconfigured - the APIs presented here allow this to be performed transparently to the overlying 
application. More interestingly, FABLE can integrate with computation schedulers, at both host 
and cluster level, to schedule communicating tasks in a way that minimizes contention. Rather 
than simply reacting to or tolerating contention, FABLE could in many cases prevent it from 
even occurring. This should allow more efficient use of existing computation resources. 
 
5.4 RDSF Conclusion  
 
As RDSF is ongoing research. We expect to have a comprehensive evaluation of RDSF to 
include more integration with a technology named SELENA, an experimental Network 
Simulation Platform, and CHIMERA.   
 
5.5 CHIMERA Conclusion  
 
With the advances in datacenter networks, high-bandwidth physical interconnect standards are 
emerging that will soon be comparable to the proposed test setup. We intend to produce a 
performance chart that will demonstrate a scaling ability from 2 to 128 cores. The produced 
curve should determine the scalability of the system. We can also use multiple threads for every 
physical core to demonstrate a larger system. 
 
5.6 TPSC Conclusion  
 
Our work in this area thus far has been focused on the TPSC hardware switch and making it a 
reasonable unit upon which we can do proper analysis of networking. Current switches may drop 
partially handled packets, and process packets out of order or in a non-serializable fashion. This 
may be practically acceptable in current network models, but we seek much stronger guarantees 
in our switch. The eventual TPSC design is intended to provide a hardware switch guaranteeing 
that each operation is executed such that they are atomic and serializable. 
 
Nirav Dave has written a paper (MEMOCODE 2011) that describes this approach. Essentially, 
we establish a bi-simulation between this model and the one in which we are interested by 
leveraging symmetries in the higher-level hardware-description semantic model to make this 
check relatively straightforward. 
 
This approach is somewhat complicated by the fact that the switch has to interact relatively 
heavily with the software controller that deals with table updates and other various switch 
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operations that cannot be readily implemented in hardware. Some work has been done on 
expanding the semantic model to software, effectively letting us unify the reasoning, but this is 
still work in progress. It seems that we would have a relatively hefty verification problem to get 
beyond the “hardware is absolutely correct” point to reach the “HW/SW base system is 
absolutely correct” – at least with respect to its stated requirements. There is certainly much 
potentially interesting work here, focusing what user abstractions we expose to the switch 
controller operator, what guarantees and performance possibilities these offer, and how would be 
use them to implement higher-level protocols and network infrastructure. 

5.7 CAMD Conclusion 

Despite the success of OpenFlow, developing and deploying complex OF security services 
remains a significant challenge. We present FRESCO, a new application development 
framework specifically designed to address this problem. We introduce the FRESCO architecture 
and its integration with the NOX OpenFlow controller, and present several illustrative security 
applications written in the FRESCO scripting language. To empower FRESCO applications with 
the ability to produce enforceable flow constraints that can defend the network as threats are 
detected, we present the FRESCO security enforcement kernel. Our evaluations demonstrate that 
FRESCO introduces minimal overhead and that it enables rapid creation of popular security 
functions with significantly (over 90%) fewer lines of code. We believe that FRESCO offers a 
powerful new framework for prototyping and delivering innovative security applications into the 
rapidly evolving world of software-defined networks. We plan to release all developed code as 
open source software to the SDN community. 
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7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

BSV – Bluespec SystemVerilog, developed by Bluespec Inc. to enable the use of the BSV 
compiler to transform hardware specifications written in the BSV specification language into a 
form that can be executed on FPGAs or simulated. 

CHERI -- Capability Hardware Enhanced RISC Instructions; this acronym is used with respect 
to the CHERI hardware Instruction-Set Architecture (ISA) and the CHERI system architecture, 
among other entities. 

CRASH – Clean-slate Resilient Adaptable and Secure Hosts; this is the DARPA program under 
which the CTSRD project operated. 

CTSRD – CRASH-worthy Trustworthy Systems Research and Development 

FPGA – Field-Programmable Gate Arrays, which provide the ability to execute an instruction-
set architecture as if it were real hardware 

ISA – Instruction-Set Architecture 

MRC – Mission-oriented Resilient Clouds, a companion DARPA program to CRASH 

(MRC)2 (pronounced MRC-squared) – Modular Research-based Composably trustworthy 
Mission-oriented Resilient Clouds; this SRI-Cambridge MRC project encompassed some clean-
slate approaches to secure software-defined networking (SDN) and trustworthy cloud servers, 
among many other innovations and developed prototypes. 
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