
MODULAR RESEARCH-BASED COMPOSABLY TRUSTWORTHY
MISSION-ORIENTED RESILIENT CLOUDS (MRC2)

SRI INTERNATIONAL

FEBRUARY 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-050

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Release Center and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2016-050 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S / / S /
JUANITA L. RILEY WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information

Exploitation & Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEBRUARY 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2011 – SEP 2015
4. TITLE AND SUBTITLE

MODULAR RESEARCH-BASED COMPOSABLY TRUSTWORTHY
MISSION-ORIENTED RESILIENT CLOUDS (MRC2)

5a. CONTRACT NUMBER
FA8750-11-C-0249

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Peter G. Neumann, Simon W. Moore, Robert N. M. Watson, Jonathan
Anderson, Nirav Dave, Brooks Davis, Jong Hun Han, Steven M. Hand,
Alex Horsman, Matt Huxtable, Alexandre Joannou, Anil Madhavapeddy,
Theo Markettos, Andrew W. Moore, Alan Mujumdar, Prashanth
Mundkur, Robert Norton, Phillip Porras, Colin Rothwell,
Charalampos Rotsos, Malte Schwarzkopf, Jonathan Woodruff, Vinod
Yegneswaran, Bjoern A. Zeeb

5d. PROJECT NUMBER
MRCS

5e. TASK NUMBER
RI

5f. WORK UNIT NUMBER
11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-050
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 25443
Date Cleared:
13. SUPPLEMENTARY NOTES
14. ABSTRACT
This is the final report for our (MRC) 2 project, culminating a four-year research and development effort that has
investigated clean-slate secure networking and security for cloud computing and cloud storage, with emphasis on
resilience and trustworthiness. The MRC2 project was a joint effort between SRI International and the University of
Cambridge. The project focused on switching, software-defined networking, and application dataflow in datacenters, with
a number of subtended efforts – including aligning algorithm and network topology, achieving greater energy efficiency,
understanding the concomitant security tradeoffs, exploring multi-scale computing techniques (including work on multi-
threaded and multi-core CHERI), and developing capability-based system-oriented application security models. We have
extended Cambridge’s CIEL distributed computing environment to address security, incorporating the lightweight Mirage
OS operating system, and also developed Dios – a distributed operating system. Dios provides robustness as well as
security and compartmentalization, and uses properties of CIEL computations to drive resource allocation, protection,
and monitoring at the datacenter scale.
15. SUBJECT TERMS
clean-slate secure networking, Software-Defined Networks, trustworthy switches/controllers, dynamic network analysis,
datacenter dataflow, multiscale computing, MirageOS, energy efficiency, tradeoffs, security, resilience
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
JUANITA RILEY

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(315) 330-4879

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

53

i

Table of Contents

1.0 EXECUTIVE SUMMARY ... 1

2.0 INTRODUCTION.. 2
2.1 CROSS-CUTTING THEMES IN (MRC)2 ... 2
2.2 SECURITY, RESILIENCE, PERFORMANCE, AND ENERGY USE... 3
2.3 CTSRD FOUNDATIONS ... 3

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 5
3.1 EXTENDING CIEL WITH MIRAGEOS AND DIOS .. 5
3.2 ARGUMENTS FOR (MRC)2 TRUSTWORTHINESS ... 6

4.0 RESULTS AND DISCUSSION .. 26
4.1 MIRAGE OS EVALUATION ... 26
4.2 DIOS EVALUATION .. 32
4.3 FABLE EVALUATION ... 32
4.4 RDSF EVALUATION ... 34
4.5 CHIMERA EVALUATION .. 34
4.6 TPSC EVALUATION .. 35
4.7 CAMD EVALUATION .. 35

5.0 CONCLUSIONS .. 40
5.1 MIRAGE OS CONCLUSION .. 40
5.2 DIOS CONCLUSION .. 40
5.3 FABLE CONCLUSION ... 41
5.4 RDSF CONCLUSION .. 41
5.5 CHIMERA CONCLUSION .. 41
5.6 TPSC CONCLUSION .. 41
5.7 CAMD CONCLUSION .. 42

6.0 REFERENCES ... 43

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS... 48

Approved for Public Release; Distribution Unlimited.
ii

List of Figures
FIGURE 1: MRC2 TRANSFORMS DATACENTER ARCHITECTURE .. 5
FIGURE 2: SECURE DYNAMIC DATA FLOW PROGRAMMING .. 6
FIGURE 3: STAGES OF A FABLE SESSION ... 10
FIGURE 4: FABLE BUFFERS SHARED MEMORY CONNECTION ... 13
FIGURE 5: HYBRID SWITCH AND CHERI USING NETFPGA10G AND DE4 HARDWARE .. 15
FIGURE 6: HARDWARE CONCEPT ... 16
FIGURE 7: CONNECTING A MULTI-CORE CHERI SYSTEM TO THE INTERNET ... 18
FIGURE 8: OPENFLOW SWITCH ARCHITECTURE ... 20
FIGURE 9: ILLUSTRATION OF FRESCO MODULE DESIGN .. 24
FIGURE 10: DOMAIN BOOT TIME COMPARISON ... 27
FIGURE 11: MIRAGE THREAD PERFORMANCE .. 28
FIGURE 12: TCP TRANSMIT (TX) AND RECEIVE (RX) THROUGHPUT OVER A PHYSICAL 1 GB/S ETHERNET LINK 29
FIGURE 13: RANDOM BLOCK READ THROUGHPUT, T/- 1 STD.DEV. ... 29
FIGURE 14: OPENFLOW PERFORMANCE COMPARISON .. 30
FIGURE 15: KEY CLOUD COMPONENTS VS. MIRAGE UNIKERNEL CODEBASE ... 31
FIGURE 16: FLOW COMPLETION: A COMPARISON OF DIFFERENT TRANSPORTS. (A) FLOW COMPLETION NORMALIZED TO

TCP RENO, (B) FLOW COMPLETION BREAKDOWN. ... 33
FIGURE 17: FRESCO COMPOSITION OF A SCAN DEFLECTOR ... 36
FIGURE 18: FRESCO SCRIPT FOR SCAN DETECTOR .. 36
FIGURE 19: FRESCO COMPOSITION OF THE BOTMINER SERVICE .. 37
FIGURE 20: FRESCO SCRIPTS ILLUSTRATING COMPOSITION OF THE BOTMINER SERVICE .. 37
FIGURE 21: FRESCO COMPOSITION OF THE P2P PLOTTER .. 38
FIGURE 22: FRESCO SCRIPTS ILLUSTRATING COMPOSITION OF THE P2P PLOTTER .. 39

Approved for Public Release; Distribution Unlimited.
1

1.0 EXECUTIVE SUMMARY

(MRC)2 project was a joint effort between SRI International and the University of Cambridge.
The project focused on switching, software-defined networking, and application dataflow in
datacenters, with a number of subtended efforts – including aligning algorithm and network
topology, achieving greater energy efficiency, understanding the concomitant security tradeoffs,
exploring multi-scale computing techniques (including work on multi-threaded and multi-core
Capability Hardware Enhanced RISC Instructions (CHERI), and developing capability-based
system-oriented application security models.

This report represents a compendium of our progress for the system and network architecture and
development plans that have evolved during the project. It also provides much of the reasoning
that has taken place. We have extended Cambridge’s CIEL distributed computing environment
to address security, incorporating the lightweight Mirage OS operating system, and also
developed DIOS – a distributed operating system.

DIOS provides robustness as well as security and compartmentalization, and uses properties of
CIEL computations to drive resource allocation, protection, and monitoring at the datacenter
scale. Under the general rubric of CIEL, Mirage OS, and DIOS, we have developed FABLE, a
flow-aware input-output system, which provides an efficient zero-copy data transmission
interface that automates the selection of the underlying transport, and the facility to dynamically
reconfigure transports as system conditions change. The implications of extending the OS with
explicitly I/O flow tracking are significant – eliminating resource contention, upgrading to
transparent transport-level security, and increasing robustness via multi-path TCP. FABLE
integrally hierarchicalizes the hardware, virtualization, the operating systems, the communication
channels, trust, buffer sizes, and higher-level data transformations.

The resilient distributed switch fabric (RDSF) replaces centralized switch infrastructure with a
high-dimensional communications fabric, offering potential improvements in security,
scalability, energy use, and resilience. CHIMERA is a capability-oriented, rack-scale memory
interconnect that will extend SRI and Cambridge’s CHERI capability hardware architecture
beyond a simple cache-coherent multicore. Trustworthy programmable switch controllers
(TPSCs) distribute switch management throughout datacenters and cloud computing. This will
offer improvements in security and robustness/resilience, as well as a distributed platform for
switch-control applications within the rubric of software-defined networking (SDN). Cloud
analysis and misuse detection (CAMD) will enable scaling of existing techniques from
assumptions of a single, centralized control points to supporting distributed detection and
enforcement within RDSF and TPSC/CAMD SDN environments. We have open-sourced most
of the SDN components and have developed numerous interactions within the SDN community.

This is the final report for (MRC)2 project, culminating a four-year research and development
effort that has investigated clean-slate secure networking and security for cloud computing and
cloud storage, with emphasis on resilience and trustworthiness.

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

(MRC)2 investigated key research problems in cloud-computing datacenters, servers, and their
networking. These problems include being able to take advantage of multidimensional trade-offs
among security, scalability, energy efficiency, and resilience. We built on the foundations of a
companion DARPA project, CRASH-worthy Trustworthy Systems Research and Development
(CTSRD), which is investigating new hardware, software, and formal methods techniques for
host security, under the DARPA Clean-slate Resilient Adaptive Secure Hosts (CRASH)
program. Whereas CTSRD limits itself primarily to the confines of single host systems, (MRC)2
extended our work into large datacenters, with particular focus on distributed programming
models, network interconnects, and software-defined networking – which enables dynamic
reconfiguration of networks to accommodate real-time resource needs and real-time responses to
attacks and accidental outages.

Our cloud-computing and networking model combines a number of concepts that have evolved
from earlier research in computer systems, distributed systems, networks, and trustworthiness.
These concepts include client-server computing and data storage, thin-client systems, high-
performance and energy-aware datacenters, and distributed programming frameworks within
datacenters as well as between clients and servers. A key aspect of this model is multi-tenancy,
datacenter connectivity, storage, switches, and computers are shared by mutually suspicious
parties (e.g., each of which is potentially untrusted and/or untrusting of others) as a utility,
requiring the application of security measures not only to the client-server interface, but also
among applications running in the same datacenter and among multiple switch controllers in
large installations. (MRC)2 sought to replace Internet-based datacenter switching and CPU
connect technologies with strong local communications primitives that accept multi-tenancy and
untrustworthy data as basic precepts, implement mission security policies, and detect and
respond to anomalies in network configurations through sound dynamic reconfigurations that
offer introspective systemic responses to attacks. (MRC)2 aligned security with the physical
topology of datacenter and local network communications, with the goal of improving security,
robustness, resilience, performance, and power use.

2.1 Cross-cutting Themes in (MRC)2

(MRC)2 pursued various cross-cutting themes, most importantly:

• Aligning algorithm and network topologies for security, scalability, and resilience
• Understanding and taking advantage of beneficial tradeoffs between security and energy

efficiency
• Advancing multi-scale computing techniques
• Exploiting capability-system security models to achieve the foregoing themes

We had originally conceived the (MRC)2 project as a collection of such research themes, with
the hopes that we could develop significant synergies among them. As the project progressed, we
increasingly found synergies among these themes, and also found that the systematic and
principled approach we have taken allowed us to integrate some of the pieces rather easily. This
final report for (MRC)2 presents the details of how our efforts have evolved, discusses the extent
to which we will have been successful in achieving our goals and in increasing the coherence and

Approved for Public Release; Distribution Unlimited.
3

consistency of our efforts, and outlines some further work that would be most valuable if pursued
along the lines suggested.

2.2 Security, Resilience, Performance, and Energy Use

Security, resilience, performance, and overall energy efficiency are total system-network
emergent properties that must be defined hierarchically, because they have potentially different
meanings at each layer of abstraction from hardware to low-layer system software to single-
domain subnetworks to the totality of connected networks. Furthermore, these properties may be
interrelated. For example, resilience ultimately depends on security, reliability, availability,
survivability, the dynamic ability to maintain or restore adequate performance in the face of a
very wide range of adversities from hardware failures, software bugs, malware, external attacks,
insider misuse, power outages, and animals chewing through cables, etc. It is just one more
characteristic that must be trustworthy, in the sense that the desired requirements for security,
resilience, and guaranteed performance in the face of adversities might be demonstrably
satisfiable.

Today’s global networking as well as internal datacenter communications are premised on multi-
layer, high-performance switches that today typically exhibit some undesirable properties:

• Centralized points of failure
• Inflexible mappings of Internet-inspired architectures to divergent objectives (a)

undermining resilience and (b) impacting cost/performance
• Inefficient/disproportionate energy use
• Insufficient attention to security considerations in the logically centralized network

control models found in Software Defined Networking approaches
• Ill-specified switch-control models, especially in how switch data paths are affected

by control instructions

Our (MRC)2 project addressed all of these and other concerns.

2.3 CTSRD Foundations

To a useful extent, (MRC)2 built itself on CTSRD, CTSRD is a joint SRI and University of
Cambridge project on clean-slate host security spanning CPU instruction-set architecture,
operating systems, virtual- machine monitors, programming-language compilers that understand
the hardware, and judicious use of formal methods – primarily in the analysis of the hardware
specifications. Primary elements of CTSRD include the following.

• BERI: Bluespec Experimental RISC Implementation. An open-source platform for
research into the hardware-software interface: a multi-threaded 64-bit MIPS
instruction-set architecture (ISA) soft core and complete software stack including
LLVM and FreeBSD.

• CHERI: Capability Hardware Enhanced RISC Instructions. The CHERI instruction-
set architecture provides CPU support for efficient, programmable, and formally
grounded software compartmentalization [1]. The CHERI hardware-software system

Approved for Public Release; Distribution Unlimited.
4

uses the CHERI ISA to provide a hybrid capability-based system architecture in
which capability-oriented programs can execute side by side with conventional
software – dramatically reducing the security risks from malware, intentional misuse,
and human errors, without interfering with overall system integrity,

• TESLA: Temporally Enhanced System Logic Assertions. Dynamic checking of safety
assertions for C-language system software. TESLA could be very useful in dynamic
detection of violations of the (MRC)2 resilience requirements.

• SOAAP: Security-Oriented Analysis of Application Programs. SOAAP may have
some relevance to the partitioning of the (MRC)2 switch and switch controller
functionality.

Approved for Public Release; Distribution Unlimited.
5

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

Resilience is a global property of a system, built on the careful composition of its parts.
Resilience is also a property necessarily specific to the goals of a system in deployment, rather
than a static property coming out of design. The (MRC)2 architecture addresses many levels in
the software and hardware stack, linked by a programming model that directs local
configurations in order to ensure global security, scalability, energy efficiency, and resilience
properties. Mapping application structure into local enforcement is a key aspect to the (MRC)2
approach, as awareness of application requirements in the context of a mission will drive the
investment of a variety of resources into supporting or enforcing required properties. A key
driving force is proportionality: greater investment of resources that will result in stronger
properties, such as security, performance, or robustness.

The technical components of (MRC)2 are rather diverse. The components are arbitrarily more or
less according to our original proposal into the following categories listed below:

The above list reflects the emerging elements/components, but not their structure and
interrelationships – which are still evolving. Figure 1 illustrates how these key technologies
relate to overall datacenter architecture.

Figure 1: MRC2 Transforms Datacenter Architecture

3.1 Extending CIEL with MirageOS and DIOS

The goal is to develop a heterogeneous trustworthy distributed programming framework for
datacenters. This framework is based on CIEL, Cambridge’s distributed heterogeneous
programming framework, with transparent support for distributed scheduling, fault tolerance,
and consensus gathering. CIEL employs cryptographic hashes in naming computation stages,
relying on idempotence to allow computations to be restarted and replicated for robustness.

The robustness properties and security properties of CIEL form the basis for (MRC)2 upgrading
it by mapping CIEL computation topologies into CTSRD and MRC2 technologies for

Approved for Public Release; Distribution Unlimited.
6

containment and resilience. Two operating-system components contribute to robustness and
security: MirageOS is a lightweight unikernel operating system based on OCaml. DIOS
implements a distributed trusted computing base (TCB) for data-flow computation, employing a
blend of local and distributed enforcement unavailable in current switching fabrics. DIOS also
extends beyond the OS kernel to take advantage of hardware virtualization primitives to provide
a secure, type-safe coordination layer that sets up computation inside secure containers with
controlled inputs and output channels. The interrelationships among these three components are
shown in Figure 2.

Figure 2: Secure Dynamic Data Flow Programming

3.2 Arguments for (MRC)2 Trustworthiness

(MRC)2 considers cloud resilience to be one of the primary attributes of overall trustworthiness,
co-equal with other system, network, and cloud-resource attributes such as security, integrity,
survivability, and reliability. Thus, we generalize our response to represent what (MRC)2 intends
to do for trustworthiness, albeit including specific references to resilience. It is our fundamental
belief that resilience cannot be achieved without adequate trustworthiness with respect to certain
other attributes. In particular, considerable trustworthiness, with respect to resilience and related
attributes, can be expected to result from our system/network/cloud architectures and their
carefully structured implementations from the predictably composable modularity of the
switchlets, switch controllers, energy-efficient datacenters, and from our assurance techniques
applied to the hardware and software involved.

Our approach to assurance makes judicious application of formal methods where most effective,
as one way of dramatically increasing assurance — in addition to the more conventional methods
of prototype development, testing, and red-teaming. In part, we are relying on our CTSRD
CRASH project to provide some formal analyses of the underlying CHERI hardware
specifications. We also hope to be able to model certain properties relating to resilience,
reliability, security, integrity, etc. — in clouds, switches, servers, and other relevant components
– as funding and time permit. We also seek to model some of the most critical behavioral aspects

Approved for Public Release; Distribution Unlimited.
7

of administrators and users, to the extent that they are fundamental to achieving adequate
trustworthiness. The resulting formal analyses would be very useful in detecting design flaws,
implementation errors in hardware and software, and operational issues relating to security,
efficiency, and usability in networking and cloud systems.

The (MRC)2 design is intended to support the building of trustworthy datacenter networks as
well as trustworthy software-defined networking (SDN). Each technical element/component
(CIEL, MirageOS, DIOS, FABLE, RDSF, CHIMERA, TPSC, and CAMD) contributes to an
overall argument for trustworthiness by supporting the mapping of datacenter-scale computation
goals into underlying computation and communication primitives in such a way that mission
properties are, to the greatest extent possible, maintained. Of course, it is the composition of all
these components that is particularly important in assuring the trustworthiness of the emergent
properties that arise from these compositions. Unlike previous efforts, (MRC)2 allows explicit
reasoning about tradeoffs between security, scalability, sound dynamic reconfigurability, energy
use, and resilience, with annotations at the programming and management layers to drive
investment of conserved resources.

3.2.1 Mirage OS

The initial prototype of MirageOS is built on top of the Xen hypervisor [2] with Virtual
Machines providing isolation between processes, but future versions will support the CHERI and
Capsicum capability systems to provide isolation guarantees on different architectures. The
DIOS coordination layer must be as minimal and safe as possible, and so minimize unnecessary
components. Conventional virtual appliances (e.g., web servers) are similarly built to provide a
small, fixed set of services. However, the VM image contains a number of components that are
rather loosely coupled: a guest OS kernel and user space binaries that typically attach an external
storage device with configuration files and data. Thus, even the simplest appliance VM contains
several hundred thousand, if not millions, of lines of active code that must be executed every
time it boots. Much of this code is due to a need for backwards compatibility with existing
applications, such as the POSIX API for processes to interact with their environment. There are
no standards for many aspects of application configuration, and so Linux distributions typically
resort to extensive shell scripting to glue packages together.

Mirage: An OCaml Library OS A libOS is structured very differently from a conventional
monolithic OS. All services, from the scheduler, to the device drivers, to the network stack, are
implemented as standalone libraries that can be linked directly with the application. A
consequence of this is that applications can configure services programmatically by directly
invoking the library calls, instead of calling across a different protection domain - as with a
conventional kernel/user space. We explore a new sort of libOS, one built directly in a type-safe
language, with applications taking advantage of the extra semantic information exposed in
higher-level interfaces than those exposed by C. For our prototype unikernel implementation,
we use the OCaml runtime running on the Xen [2] hypervisor. Notice that we deemphasize strict
backwards compatibility with existing applications at the source code level, and instead support
it at the network protocol level. Existing code can easily be run in separate VMs due to our use
of virtualization.

Approved for Public Release; Distribution Unlimited.
8

OCaml is a modern functional language supporting a variety of programming styles, including
functional, imperative, and object-oriented. It is a dialect of the ML family, with a well-designed,
theoretically sound type system that has been developed since the 1970s. ML is a pragmatic
system that strikes a balance between imperative languages, e.g., C, and pure functional
languages, e.g., Haskell. It features type inference, algebraic data types, and higher-order
functions, but also permits references and mutable data structures while guaranteeing that all
such side effects will never cause memory corruption. Safety is achieved by a combination of
compile-time type checking and dynamic bounds checking of array and buffers. The compiler
supports a portable bytecode and several native code targets (x86, ARM, PPC) as well as more
exotic runtime targets such as 8-bit PICs and JavaScript. OCaml was also a pragmatic choice in
which to implement Mirage as it is the implementation language for the open-source Xen Cloud
Platform [3] and critical system components [4, 5]. On the other hand, using OCaml necessitated
a significant engineering effort to rebuild many standard system components, particularly the
storage and networking (e.g., TCP/IP) stacks. Mirage links OCaml code into kernels that run
directly on a Xen hypervisor. Our design minimizes runtime complexity, preferring
implementation of all but the lowest-level features in a safe high-level language. We now discuss
some of our core design decisions:

• Parallel Protection Domains: Unikernels link an application and language runtime into a
uniprocessor VM that has a single 64-bit address space. Parallelism is obtained by
running multiple VMs and message passing between them, as with the Barrelfish
multikernel [6]. These VMs need not run on the same physical host, although
communication is more efficient if they do.

• Protocol-level Compatibility: Cloud services mostly use Internet protocols to
communicate between services – e.g., via HTTP as an RPC mechanism. Mirage
unikernels communicate externally via these protocols, while internally eliminating
binary interfaces where possible via static link time optimizations.

• No Dynamic Loading: Mirage unikernels are partially evaluated during compilation, e.g.,
to incorporate static configuration files, and sealed [7] at runtime to prevent self-
modifying and dynamic loading of code. Appliances are reconfigured by compiling a
new image, eliminating the complexity of dynamic code and permitting additional
compile-time optimizations.

• Statically Typed Libraries: All system services are type-safe, re-entrant libraries, and
range from the protocol-level (HTTP, SSH) to networking and storage (TCP/IP, FAT32)
to the core library (threading, binary stream manipulation). Data copying within the stack
is minimal and buffers are fully bounds checked.

• Cooperative Concurrency: Appliances are hardened against external network attacks via
type- safe I/O, but code within the appliance is trusted. Lightweight threads cooperatively
decide their yield points, similar to Nemesis’s [8] provision of application-level quality of
service.

The most specialized output of the Mirage compiler is a unikernel, a standalone kernel with a
minimal OS runtime that uses the hypervisor interfaces directly. It consists of the PVBoot library
for initializing a basic computation environment, a modified language runtime library for heap
management and concurrency, and type-safe device drivers that interface with the external world

Approved for Public Release; Distribution Unlimited.
9

via the safe I/O stack. Finally, since unikernels are single-address space, they can be sealed to
significantly improve their security against various threats.

3.2.2 DIOS: Secure Distributed Operating System

DIOS is built for scalable, transparent distribution of operations across many nodes in a
datacenter. DIOS is a special purpose operating system for Warehouse-Scale Computers
(WSCs). In this endeavor, it is part of a substantial lineage of past research on distributed
operating systems [9, 10, 11, and 12] – but yet, DIOS is different. It approaches the distributed
OS concept with the hindsight of modern distributed systems theory and applications. DIOS
reflects three key themes and exposes the necessary abstractions to offer this functionality to user
applications. The three key themes are:

1. Naming and locating system objects (I/O targets, devices and programs),
2. Allocating and managing hardware resources, virtualizing them where necessary, and
3. Effecting privileged operations on the behalf of user applications, while isolating them

from each other.

DIOS, since it is a distributed operating system, offers functionality across multiple nodes in
WSC that coordinates nodes reliably and deals with the inevitable faults. Furthermore, it is able
to do so at the scale of hundreds or thousands of nodes. Unlike traditional OSes, DIOS integrates
inter-machine communication and state maintenance in the privileged OS kernel. This offers the
operating system more information to work with than it would normally have available. Let us
compare with a scenario where all information pertaining to distributed operation is stored in the
user application, and all privileged information pertaining to the local application process is
stored in the kernel. Yet, despite this expanded role of the OS, users should not find it overtly
difficult to program the system – despite the inherent complexity of the distributed operating
environment. It must be possible to write working programs against simple, transparent
abstractions and have sufficient information that must also be exposed to the user to enable
optimize applications.

While the OS is aware of distribution, DIOS leaves higher-level policy decisions – such as where
to locate data in the distributed system, or whether to maintain strongly consistent replicas – to
user-space applications, rather than encoding them within its abstractions.
Security and isolation are key concerns for operating systems and distributed systems
environments alike. DIOS must not only be able to guarantee the same level of isolation and
protection as a traditional operating system, but indeed needs to take it further and guarantee
isolation of across multiple nodes too. Furthermore, it should mandatorily track information flow
in the distributed system, as well as offering a practical way to restrict exposure of data. Again,
this must work reliably across machines and at scale.

Finally, it is unreasonable to expect the world to change overnight and for DIOS to offer
sufficient benefit to motivate re-writing all WSC software. Hence, an incremental migration to
running increasingly large portions of a WSCs workload within DIOS must be feasible. While
not all of the benefits of DIOS might initially be attainable, each successive migration step ought

Approved for Public Release; Distribution Unlimited.
10

to offer further improvement over the previous state. All of the concepts described above
contributed to shaping the high-level DIOS design principles.

In summary, they are as follows:

• Expose scalable, transparent abstractions that support both local and distributed
operation.

• Enable application-level policy decisions by mandating minimal mechanism in the
operating system abstractions.

• Mediate WSC-wide information-flow through a distributed capability delegation model,
enabling selective exposure, information flow control and data provenance tracking.

• Offer an opportunity to incrementally migrate to the new abstractions and combine them
with legacy application code.

3.2.3 FABLE: Flow-aware Input-output System

FABLE consists of a user-space application library, an extra system call to register with a new
name service daemon, and some extensions to existing polling system calls to support the new
I/O descriptors. Figure 3 illustrates the following stages of FABLE session:

Figure 3: Stages of a FABLE Session

• Naming: All end points are explicitly named, and a system service (opaque to the library
user) tracks the location of processes and virtual machines and notifies them of
reconfiguration events. If virtualized or running in a cluster, this name service can
register with a higher-level service that has more accurate system-wide knowledge.

• Connection: Connection setup is similar to POSIX sockets, except that the end points are
named services. Every connection has a single transport mechanism, ranging from tightly
coupled shared memory, to a TCP connection, to a page-flipping memory pipe. The

Approved for Public Release; Distribution Unlimited.
11

client specifies if the remote end point is trusted to cooperate, or if private data copies are
required.

• Flow: buffered structures for reading and writing are always allocated by the FABLE

library, and are tailored for the connection in which they are associated with (e.g., an
entry in a shared memory ring). Buffers are single-use only, and buffer creation calls are
where back pressure is applied, rather than at the point of reading or writing. If buffers
are unavailable, the application polls to be notified when more are available.

• Data: every buffer is owned by exactly one FABLE connection, and ownership is

transferred either via a release back to the system (e.g., after a read), or via a commit to
write it onward to the next end point. Once ownership has been transferred, it can never
be regained and new buffers must be requested.

When designing FABLE, we assumed that nested scheduling layers will dominate architectures
for some years, due to the popularity of virtualization and multi-core hardware. The addition of a
system-wide name service for end points is key to keeping track of I/O flows in such complex
environments. The FABLE name service is hierarchical and can keep higher-level software
layers informed about activity within a particular domain, up to and including a distributed
cluster of physical hosts. The ultimate goal is to form an accurate view of dataflow requirements
for all applications across a cluster, and provide more structured information for schedulers to
maximize I/O throughput across a cluster.

The FABLE name service is used only to coordinate the establishment of data channels and track
their lifetime. Once established, the data transfer between two end points is designed to be highly
efficient and not require a system call for a read/write operation, although some transports may
choose to do so (e.g., remote TCP when using kernel sockets). This is particularly important for
throughput in virtualized environments, where system calls can be disproportionately expensive
due to privilege checks by the hypervisor.

Although FABLE provides a new API, it can also be integrated directly into existing applications
via a socket compatibility layer. As we noted earlier, the sockets layer forces at least a single
data copy and so is often less efficient, but the facility to track all I/O operations across the
system remains extremely useful.

Every FABLE connection is associated with two named end points. The application calls the
xio register name to register a new end point, and obtains an opaque xio context structure
in return. The library does not keep much state—instead, it accesses a system-wide name daemon via a
kernel file-descriptor interface and uses this to register with the name service. This descriptor is used
by the name service to track the xio context for its lifetime, including the details of where it is
scheduled, and the connections emerging from it.

Most of the policy behind connection handling is implemented in a user-space daemon that
listens for FABLE registrations and scheduling changes from the kernel. This daemon is
responsible for implementing all the policy for connection rendezvous between end points, and
acts as a system-wide database of I/O flows. When running on a native kernel on a physical host,

Approved for Public Release; Distribution Unlimited.
12

it is primarily concerned with ensuring that communicating processes are scheduled close to each
other (from a NUMA and core layout perspective). However, once virtualized, it registers with
the VM management stack and keeps it informed of the event stream. Similarly, if a host joins a
cluster of physical machines and wishes to cooperate with them, the name service can integrate
with Zookeeper [13] to handle distributing its local metadata to the other hosts.

Once xio context has been obtained, it can be used to establish multiple connections to other
end points via xio connect, and also to listen for incoming connections via xio listen.
FABLE names are URIs and so the connection API converts a name into a concrete connection, with
the application unaware of the precise transport unless it has been explicitly specified in the name.
The xio schema is reserved for FABLE-aware end points, and some other schema such as tcp or
udp are supported to facilitate external communication via standard protocols and are needed for
the socket emulation library.

Connection
Connection establishment requires both end points to agree that they wish to communicate (i.e., that
one is in a listen mode and the other is connecting), and the selection of a transport mechanism
that is agreeable to both ends. Since the FABLE name service has both of the services registered,
it acts as the intermediary and calculates the best transport protocol for the two end points. A
successful xio connect library call will return an opaque xio handle that is used to reference
the connection by the application.

The details of transport selection are necessarily quite complex, since they depend on some static
factors (hardware memory and core layout) and dynamic factors (e.g., virtualization introducing
external load). The system name service is thus better placed to make this decision, instead of the
application itself.

Data Transmission
Applications never allocate their own I/O buffers, and instead obtain buffers using the xio
getreadbuf and xio getwritebuf calls. This allows FABLE to allocate optimal buffers
for the transport associated with the connection—e.g., low memory if the network card requires
it for DMA, or from a shared memory segment on the closest NUMA node, or with space
reserved for TCP/IP packet headers. These are optimizations reminiscent of exokernels [14] and
explicit path selection [15] that have so far not found their way into mainstream UNIX-like
systems. Buffers are very similar to iovec structures, and include a pointer to the I/O memory
and its size. They also include a reference to the xio handle that created them, and an epoch
number to help with reconfiguration. An important property of buffers is that they are single use,
and cannot be reused once they are freed or written to another end-point.

An xio getreadbuf call is non-blocking, and returns an array of buffers that are filled with
data, or an empty set to indicate that the application should poll for more data. When an application
is finished with a buffer, it must call xio release to hand it back to the system. Since there is a
limited set of buffers associated with each connection, the xio getreadbuf call can return an
ENOSPACE to indicate that the application is holding onto too many read buffers and should release
some before requesting more. To prevent deadlock, the application may handle this by copying read
buffers into private memory and releasing them early.

Approved for Public Release; Distribution Unlimited.
13

The write data path calls xio getwritebuf with an optional parameter to specify the maximum
size of the available data. This returns an array of buffers that should be filled in any order by the
application. The size of each individual buffer is very transport-specific, and ranges from a 4K page
size for shared memory, to slightly smaller than an interface’s MTU for TCP to reserve space for
packet headers. When a buffer is filled for writing, the xio commit call will transfer ownership of
the buffer back to the library, which queues it for writing. The application may no longer modify or
access this data once it has been committed—this is advisory if the connection is trusted, and otherwise
enforced via a private copy being taken by the receiver or the page reference being unmapped from the
transmitting end.

The notion of single ownership of buffers is key for constructing efficient stream processing engines,
where processes perform a combination of data processing and proxying. For example, consider
a web server that reads pages from disk via one FABLE channel, and transmits the disk pages to a
memcached process, which then serves it to a network interface. The connection from the disk layer
will be a set of page-aligned buffers, whereas the connection to the memory cache is a large shared
memory ring. In this situation, the application may commit a read buffer from the disk channel
directly into the memcached channel, despite the disk buffer not being obtained from the
memory cache channel. Every buffer tracks its home connection, and so the FABLE library performs
the appropriate translation to convert between transport mechanisms (usually via a slow copy).
Once the foreign buffer has been committed then the upstream writer is responsible for releasing
it.

Reconfiguration
Every xio handle also has a file descriptor that can be obtained to poll for reconfiguration events.
A reconfiguration indicates that the underlying transport mechanism is being changed, and that the
application should drain any older buffers as quickly as it can. This is accomplished either by
releasing them, or committing them for a write. The epoch number in each buffer is used to distinguish
between the different transport mechanisms see Figure 4.

Figure 4: FABLE Buffers Shared Memory Connection

While the reconfiguration notice to the application is synchronous, the actual change is very
asynchronous and similar to Xen live migration [16]. The new transport data path is established first,
without altering the existing one. A notification is then sent to the FABLE library instance via the event

Approved for Public Release; Distribution Unlimited.
14

file descriptor associated with the end-point. All new buffers requested by the application are now
associated with the new transport, and the application is given a timeout period to use the old buffers. If
the application fails to drain them in time, FABLE can slowly proxy the old buffers to the new
transport if it can, or simply terminate the connection.

A good example of the need for reconfiguration is when using a virtual machine cluster. When two
VMs are on the same physical host, they establish an inter-domain shared memory communication
(e.g., via libvchan in recent versions of Xen). If one of the VMs then live migrates to a different
physical host, this connection would normally be terminated. With FABLE, however, the live relocation
is observed by the cluster name service and triggers a recalculation of the transport protocol, and
configures TCP instead. The example flow of buffers can be seen in Figure 4.

Aside from this, many of the performance anomalies we observed earlier can be adjusted for via a
reconfiguration process. For instance, if two cores are idle and not virtualized, then a low-latency
spinning transport may be the most efficient. If another end-point is subsequently scheduled onto the
same cores, they will begin contending, and the transport should be reconfigured to a futex-based
version. Similarly, if a process is rescheduled to a different NUMA node, this can trigger the reallocation
of memory buffers to ones from the new NUMA node.

There is some resource cost associated with reconfiguring a channel, and it is not intended to be
done extremely regularly. Instead, the FABLE name service observes all I/O flows on the system
and can be configured to either automatically balance them (e.g., using Kalman filters to smooth out
changes [17]) or allow a system administrator to optimize it manually if desired. Either policy is
easy to implement due to the existence of the system name service to aggregate and coordinate any
reconfigurations.

3.2.4 RDSF: Resilient Distributed Switching Fabric

RDSF could be considered a robust datacenter network infrastructure. However, alongside
quantifiable provision of robustness and resilience along with traditional metrics of throughput
and latency, an infrared image of heat dissipation within a datacenter. In traditional datacenter
design, per-rack switching is rarely an energy-scalable commodity: operating fully, or not at all
— every 10GbE port illuminated, the entire switch fabric operating continuously: poised to move
data at full capacity even if the utilization is only housekeeping, even if the host systems are
powered off.

Our architectural approach, Figure 1, distributes the switching fabric across the datacenter; the
fabric is distributed at the granularity of host: one switch per host. We acknowledge that this
might not be the ideal granularity for every task. However, a one-to-one mapping provides the
most-ideal setup for work focused upon resilience and robustness as well as providing high
levels of path-programmability between elements. Alongside this, the energy dividend of this
structure is that we have a highly granular scalable switch and host structure able to be
dynamically powered on and off to suite demand.

The distributed switch fabric permits us to focus on providing a workload-proportional energy-
consumption model. The issue of proportional energy use, elegantly espoused previously [18],

Approved for Public Release; Distribution Unlimited.
15

has largely focused upon efficient host use. High-radix connectivity channels provide some of
the advantages of past architectural proposals – e.g., [19] – but through implementation in
hardware we achieve more flexible, arguable more robust and notably considerably more capable
implementations.

Our approach is a high-radix, multiple-dimension switch fabric interconnecting each host within
the datacenter. This is achieved using the programmable switch fabric provided by the NetFPGA
10G platform. Work on the NetFPGA infrastructure has led to a high-speed switch system that is
able to provision a multiport 10GbE interface OpenFlow, SDN switch. The NetFPGA has a
natural connectivity for four 10GbE ports and two further high-speed presentations, each capable
of 65Gbps, along with a local PCIe capable of operation at 32Gbps. Through the use of cut-
through packet passage it is plausible to assemble a low-latency switch fabric that via a six-port-
per-card installation permits our high-radix, hypercube-like, structure, all while leaving sufficient
local resources to provide the required level of programmability in end-host switches and the
necessary intermediate switching stages. This programmability has included the co-
implementation of an OpenFlow switch and CHERI processor. There has been effort to port the
CHERI processor to the NetFPGA platform – opening up the opportunity for the hardware-based
capability enhancements offered to operating systems, with applications (e.g., CAMD) also
being made available in the network- control context. SDN components such as the
implementations of the OpenFlow switch interface software and OpenFlow controllers, core to
the current Software Defined Networking efforts as well as being core to our solution, would
greatly benefit from the offerings of a capability-enabled approach. Finally, we have a ready-
made solution if the combination of CHERI and the performant OpenFlow switch is too much
for the NetFPGA hardware – namely, to use the NetFPGA as a switch-enabled host adapter
interfaced with a current CHERI instance on the current DE4-based systems. Such a
configuration, shown in Figure 5, hybridizes the two systems by connecting along a well-defined
interface (PCI-Express).

Figure 5: Hybrid switch and CHERI using NetFPGA10G and DE4 hardware

3.2.5 Chimera: Capability-oriented, Rack-scale Memory Interconnect

Datacenters should be constructed from units each capable of computation, communication, and
storage. This obviates the need for dedicated network switches and unifies the trust model for
heterogeneous systems. We believe that system-on-chip and die stacking techniques, already
prevalent in the embedded systems space, can be used to provide power-efficient computers at
many different scales, from portable in-the-field units to warehouse-scale systems, see Figure 6.

Approved for Public Release; Distribution Unlimited.
16

We also observe that silicon photonics and photonic printed circuit boards (PCBs) are advancing,
and will offer power savings and facilitate more complex topologies [20].

Figure 6: Hardware Concept

Current datacenters based around PC class components commonly employ a hierarchy of
network switch and routing equipment with computing nodes at the leafs. These networks
employ high-cost, special-purpose devices often recreating variations of classical Ethernet and
IP-based topologies overlaid onto the physical structure of the datacenter environment. Common
structures incorporate an aggregation rack per switch (the top-of-rack switch), and one or more
room-wide aggregation switches that provide rack interconnectivity as a star of star networks;
variations on this principle abound but the fundamental basis — the use of common switching
and routing equipment — leads to the use of power-hungry devices ill-suited to the low-latency
communications between nodes in close physical proximity (e.g., adjacent racks). Selecting to
enforce a strict star hierarchy upon the network infrastructure has other disadvantages. It brings
with it only weak mapping between the optimal data structures and the best communications
structures within the datacenter in latency and in colocation of task with data, but it provides a
weak fault tolerance model.

On the other hand, at a low level our heterogeneous computer systems already use PC-area high-
speed serial communication mechanisms to talk to GPUs, NICs, and disk controllers. Currently,
these low-level communication mechanisms mimic old bus-based protocols: violating trust
models (or even simple virtual memory protection) and exhibiting little redundancy. From an
electronics perspective, there is no barrier to making these links form a communications fabric
capable of both low-latency and resilient communication.

We are using commodity field programmable gate arrays (FPGAs) to prototype these systems
since they have the required high-speed communication links and can support substantial
computer systems. Such infrastructure can be used to not only implement systems but also to
emulate behavior and monitor performance (e.g., predict power consumed). A highly distributed
communications structure has previously been limited due to management complexity. Yet, an
advantage of a software-defined network such as the approach of OpenFlow permits the
orchestration of the entire switch fabric. Thus, the FRESCO framework described earlier can
present and manage the datacenter as a contiguous unit, subdivided into virtual subsystems as
required – thereby permitting unification in policy balanced with the architectural distribution

Approved for Public Release; Distribution Unlimited.
17

that provides features such as resilience and performance. Further, the FRESCO framework
logically provides the perspective needed for optimal cloud analysis and misuse detection.

Current Framework

Both the CHERI and CHERI-2 processors have already been synthesized on FPGAs. Listed
below are some of the specifics of the CHERI/FreeBSD layout on the DE4 FPGA:

• Each DE4 board is equipped with two DRAM slots. The single-core version of the
CHERI processor uses one of the DRAM channels. In the dual processor system, each
CHERI could have access to its own DRAM channel. The L2 cache can also be allowed a
dual-port access to the DRAMs.

• A significant part of the LUTs on the FPGA are used for dealing with the caches. The

caches themselves are located on dedicated BRAMs within the FPGA fabric. Enough
space is available on the BRAMs to accommodate the caches. In modern processors, the
caches often occupy 30% or more die area. In some processors, the numbers are as high
as 50%.

• Overall, CHERI occupies around 40% of all the FPGA resources. An accurate figure

cannot be given at this point, as the processor is still under development. Assuming a
stable allocation of resources, the full chip could accommodate at least 2 CHERIs.

• The SD card on the DE4 stores the boot image for the processor. FreeBSD can be loaded

onto the SD-card and booted. The card could be loaded with a special multi-core boot
procedure that will allow a dual-core CHERI initialization.

Communication between multiple FPGAs is currently done through the Reliable Link layer
developed by Simon Moore. This layer guarantees low-latency bidirectional communication
between the FPGAs. We plan to add another layer on top of the Reliable Link layer, which will
deal with cache coherence between the FPGAs. This abstraction layer needs to be intelligent in
order to cope with potential failures in the inter-FPGA links. In CMPs, the processor cores and
NOC are implemented on chip; thus, failures in the NOC are highly unlikely. The Bluehive
cannot guarantee such reliability as the links are external to the FPGA and prone to interferences.
The system will require some redundancy in order to cope with failures. Techniques such as
adaptive incremental check pointing can be used to deal with failures [21]. This technique
allows periodic snapshots of the current state. If an error occurs, the system can be rolled back to
the last known state.

As the design will be implemented in hardware in the Bluehive, we intend to use the existing link
topology. The current topology is a 3D torus. It allows fast bidirectional communication between
six neighboring FPGAs, four over SATA3 links and the other two over eSATA. As the system
has very low latency the penalties for seeking farther FPGAs is not high when compared to
typical DRAM access times. The overall design of the system will appear as a large tiled CMP.
The operating system running on the proposed architecture will perceive the system as a single,
albeit very large, multi-core processor. The link mechanism should give an illusion of shared

Approved for Public Release; Distribution Unlimited.
18

memory through the abstraction layer. DE4s are equipped with four 1G Ethernet ports.
Following the system shown in Figure 7, one of the FPGA could be declared as the master and
given access to the Internet via a TCP/IP layer.

Figure 7: Connecting a multi-core CHERI system to the Internet

When coupled with capability functions, the CHERI processor adds a capability cache that adds
more circuit logic to the design.

Work done by Robert Norton in his PhD thesis proposal suggests an alternate mechanism for
inter-processor communication, known as remote-store. This mechanism could be further
extended with capabilities in order to provide secure communication.

The proposed design has several challenges:

• The modular nature of the system will make it flexible to adapt to varying topologies and
core numbers. The system should be capable of identifying any changes to the structure
and adapt accordingly. We propose a special boot procedure that will be used to identify
the topology, core numbers, and link failures within the system. Checkpoint schemes are
often used in supercomputers to deal with failures. As the number of cores, caches,
DRAMs, and so on in a supercomputer is large, the mean time between failures is high.
Some techniques used in supercomputers – such as the Blue Gene/Q [22] – could be
employed in our system. At boot, the cores will check their individual processor IDs
(supported by MIPS). They will then communicate with their neighboring processors
through the abstraction layer and build a table of all the cores in the system. The list of
cores will be used by the abstraction layer to maintain cache coherence.

Approved for Public Release; Distribution Unlimited.
19

• Datacenters often suffer from inefficient load balancing, in some cases the load on the
edges might be 50% lower than optimal. One such example is the modular shipping
container-based datacenter [23]. Performance issues will arise when a single task is
spread between several distant processors. Even though the Reliable link layer provides
low latency and high bandwidth, the overall effects of heavy inter-FPGA communication
could be a potential bottleneck. To deal with this issue, the abstraction layer will serve a
dual function. It will have a mechanism for packaging cache lines into a viable format for
transportation through the Reliable link. In addition, each pair of links on the FPGA will
act as a network router (6 pairs in total when using the PCIe SATA3 expansion card).
The router will maintain a routing table that will be populated at boot time. As the
network will not change after boot (unless there is a link failure), static addressing can be
used. We intend to use the processor ID as the routing address. A distance-vector routing
protocol will be necessary for efficient load balancing. Best links will be chosen for the
inter-core communication. Several good examples have been shown in [24]. Applications
running on this system will be forced to utilize the spatial locality of the cores. The
addressing schemes described in [25, 26, 27, 28] could be applicable to this system. As
the cache lines used by CHERI and CHERI-2 are 256 bits long (the line sizes could be
increased if necessary), a 32-bit address will not be a major overhead for the
communication. Other schemes derived from transactional memory can also be used to
reduce the addressing overheads.

• The operating system needs to be able to cope with such a dynamic design. The design

will be dynamic in the sense that there will be no specific architectural constraints such as
a total number of cores, links, and routers. This will all be determined at boot time. Hence
the OS will need to be tweaked in the way that it could dynamically adapt to the
architecture.

3.2.6 TPSC: Trustworthy Programmable Switch Controllers

Within each logical layer in a network or subnetwork, we anticipate the opportunity to express a
variety of security relationships, including asymmetric and mutual distrust, as well as relating to
restricted and permitted information flows. The network architectures need to be tailored to the
specific uses, which may differ widely between datacenters and general interdomain networking.
Thus, a variety of single-switch and multi-switch controllers, as well as multi-controller switches
is likely to be desirable. However, note that multiple switches and multiple controllers present
some very challenging control problems with respect to consistency, security, and resilience.

The high-level operation of an OpenFlow switch is quite straightforward. As packets stream in, the
switch aggregates header information and compares it against the flow table entries. The switch then
updates the packet according to the actions prescribed in the matching entry, and sends the updated
packet to the appropriate egresses via a crossbar.

Our switch architecture depicted in Figure 8, based upon the reference design provided by the
NetFPGA-10G project, is heavily inspired by Yabe’s [29] 10G 4-port OpenFlow switch. Our
switch parameterized by N , the number of MAC ports in the switch, and W , the width of the internal
data plane. These values can be freely changed to meet resource and performance requirements.

Approved for Public Release; Distribution Unlimited.
20

Figure 8: OpenFlow Switch Architecture

In an N -port instance of the switch, there are N + 1 ports with the (N + 1)th port reserved for
communication with a host processor. The switch also has a controller interface to allow the host
processor access to the flow tables and the various registers that maintain statistics.

As a switch is always permitted to drop packets due to over-subscription, it is common practice in
RTL switch designs for the data path to be a synchronous pipeline with no back pressure. This
reduces some design complexity and eliminates some logic statically. However, this minor
efficiency comes at the cost of less-understandable compositional semantics for components and a
reduced ability to debug the design. For these reasons, we implemented all the switch component
interfaces to provide back pressure via the BSV’s ready-enable micro-interface protocol to stall
operations when sufficient buffering is not available. This change has a negligible area cost, but
it dramatically reduces the design effort. Additionally, all internal switch interfaces follow the
standard split-transaction protocol, facilitating latency-insensitive modular design.

The design endorses the “fail-early” principle, dropping any packet for which it cannot guarantee
end-to-end buffering. When the header flit of a packet arrives at the switch and sufficient buffering is
not available, the header flit and all the subsequent flits belonging to the packet are discarded, and a
failure is recorded.

 The design of the switch pipeline has been divided into the following modules.

Flow Table Entry Composer: Each input port of the switch receives packets as a sequence of
fixed-size flits. For each input port, there is an associated flow table entry composer that aggregates
the packet header and decodes it into an internal flow table entry tag representation. This entry is
forwarded to the flow table controller as a query. The composer also forwards the entire packet to the
corresponding action processor.

Approved for Public Release; Distribution Unlimited.
21

Flow Table Controller: The Flow Table Controller is responsible for maintaining the flow tables
entries and the per-flow statistics, and arbitrating the requests to access the flow tables.
It is implemented as a 10-stage pipeline, and can receive as many as N + 2 queries in each cycle:
one from the switch controller interface, and N + 1 from the flow table entry composers. For every
cycle, the controller (via a configurable priority scheme) selects a request and pushes it into the
pipeline. It handles requests serially due to resource constraints. As each packet needs only one
request, this is not a performance bottleneck, and has the additional benefit of providing intra-switch
table consistency trivially. The flow table controller maintains two tables – an exact match table
implemented on Block RAMs, and a wildcard match table implemented as a CAM. Each flow table
entry consists of three components: a compressed representation of packet header information that
serves as a tag for matching against requests, a list of actions determining the output ports and any
modifications that need to be made to the matching packet, and flow-specific statistics, e.g., the
number of packets in the flow, the number of bytes sent, and the time when the last matching packet
was received. The data layout has a one-to-one correspondence with the C-struct in the OpenFlow
controller software. The flow table controller pipeline issues a request to both the exact match and
the wildcard match tables in parallel, prioritizing the response from the exact match table. If a match
is found, it forwards the action list obtained from the matching flow table entry to the action
processor module of the corresponding port. If, however, a match is not found, it instructs the action
processor to either drop the packet or send the packet to the OpenFlow controller.

Action Processor: The action processor buffers the unmodified packet until it has received the
action list from the flow table controller. It updates the destination ports and the packet header,
as required by the action list. It can modify the fields of the data link, the network and the
transport layers. It also updates the checksum for the network and the transport layers.
Arbiter: The arbiter is an (N + 1) × (N + 1) crossbar. For every cycle, it selects one flow based on
a configurable scheduling policy, and forwards the selected flow to the output queues of all the
associated destination ports. This selection is maintained until the entire packet is transmitted.

Switch Controller Interface: The switch controller interface module provides an address-
mapped interface for the OpenFlow controller to the flow tables and the statistics. In addition to
the necessary logic for marshaling the accesses over the controller-switch communication link, it
has interlock logic to guarantee that flow table updates are applied atomically. This allows us to
reason about the functionality of the switch at the granularity of packet transfers.

3.2.7 CAMD: Cloud Analysis and Misuse Detection

OpenFlow is an open standard that has gained tremendous interest in the last few years within the
network community. It is an embodiment of the software-defined networking paradigm, in which
higher-level flow routing decisions are derived from a control layer that, unlike classic network switch
implementations, is separated from the data-handling layer. The central attraction to this paradigm is
that by decoupling the control logic from the closed and proprietary implementations of traditional
network switch infrastructure, researchers can more easily design and distribute innovative flow
handling and network control algorithms. Indeed, we also believe that OpenFlow can, in time, prove
to be one of the more impactful technologies to drive a variety of innovations in network security.
OpenFlow could offer a dramatic simplification to the way we design and integrate complex network

Approved for Public Release; Distribution Unlimited.
22

security applications into large networks. However, to date there remains a stark paucity of compelling
OpenFlow security applications. Here, we introduce FRESCO, an OpenFlow security application
development framework designed to facilitate the rapid design, and modular composition of OF-enabled
detection and mitigation modules. FRESCO, which is itself an OpenFlow application, offers a
Click-inspired [30] programming framework that enables security researchers to implement, share,
and compose together, many different security detection and mitigation modules. We demonstrate the
utility of FRESCO through the implementation of several well-known security defenses as OpenFlow
security services, and use them to examine various performance and efficiency aspects of our proposed
framework.

OpenFlow (OF) networks distinguish themselves from legacy network infrastructures by dramatically
rethinking the relationship between the data and control planes of the network device. OpenFlow
embraces the paradigm of highly programmable switch infrastructures [31], enabling software to
compute an optimal flow routing decision on demand. For modern networks, which must increasingly
deal with host virtualization and dynamic application migration, OpenFlow may offer the agility needed
to handle dynamic network orchestration beyond that which traditional networks can achieve. For
an OpenFlow switch, the data plane is made programmable, where flows are dynamically specified
within a flow table. The flow table contains a set of flow rules, which specify how the data plane
should process all active network flows. In short, OpenFlow’s flow rules provide the basic
instructions that govern how to forward, modify, or drop each packet that traverses the OF-enabled
switch. The switch’s control plane is simplified to support the OpenFlow protocol, which allows
the switch to communicate statistics and new flow requests to an external OpenFlow network
controller. In return, it receives flow rules that extend its flow table ruleset. An OF controller is
situated above a set of OF-enabled switches, often on lower-cost commodity hardware. It is the
coordination point for the network’s flow rule production logic, providing necessary flow rule
updates to the switch, either in response to new flow requests or to reprogram the switch when
conditions change. As a controller may communicate with multiple OF switches simultaneously, it
can distribute a set of coordinated flow rules across the switches to direct routing or optimize
tunneling in a way that may dramatically improve the efficiency of traffic flows. The controller
also provides an API to enable one to develop OpenFlow applications, which implement the logic
needed to formulate new flow rules. It is this application layer that is our central focus. An OF
controller is situated above a set of OF-enabled switches, often on lower-cost commodity hardware.
It is the coordination point for the network’s flow rule production logic, providing necessary flow rule
updates to the switch, either in response to new flow requests or to reprogram the switch when
conditions change. As a controller may communicate with multiple OF switches simultaneously, it can
distribute a set of coordinated flow rules across the switches to direct routing or optimize tunneling in a
way that may dramatically improve the efficiency of traffic flows. The controller also provides an API
to enable one to develop OpenFlow applications, which implement the logic needed to formulate new
flow rules. It is this application layer that is our central focus.

From a network security perspective, OpenFlow offers researchers with an unprecedented singular
point of control over the network flow routing decisions across the data planes of all OF-enabled
network components. Using OpenFlow, an OF security app can implement much more complex logic
than simplifying halting or forwarding a flow. Such applications can incorporate stateful flow rule
production logic to implement complex quarantine procedures, or malicious connection migration
functions that can redirect malicious network flows in ways not easily perceived by the flow participants.

Approved for Public Release; Distribution Unlimited.
23

Flow-based security detection algorithms can also be redesigned as OF security apps, but
implemented much more concisely and deployed more efficiently, as we illustrate in examples.

We introduce a new security application development framework called FRESCO. FRESCO is
intended to address several key issues that can accelerate the composition of new OF-enabled
security services. FRESCO exports a scripting API that enables security practitioners to code security
monitoring and threat detection logic as modular libraries. These modular libraries represent the
elementary processing units in FRESCO, and may be shared and linked together to provide complex
network defense applications. FRESCO currently includes a library of 16 commonly reusable
modules, which we intend to expand over time. Ideally, more sophisticated security modules
can be built by connecting basic FRESCO modules. Each FRESCO module includes five
interfaces: (i) input, (ii) output, (iii) event, (iv) parameter, and (v) action. By simply assigning
values to each interface and connecting necessary modules, a FRESCO developer can replicate a
range of essential security functions, such as firewalls, scan detectors, attack deflectors, or IDS
detection logic.

FRESCO modules can also produce flow rules, and thus provide an efficient means to implement
security directives to counter threats that may be reported by other FRESCO detection modules. Our
FRESCO modules incorporate several security functions ranging from simple address blocking to
complex flow redirection procedures (dynamic quarantine, or reflecting remote scanners into a honeynet,
etc.). FRESCO also incorporates an API that allows existing DPI-based legacy security tools (e.g.,
BotHunter [32]) to invoke FRESCO’s countermeasure modules. Through this API, we can construct
an efficient countermeasure application, which monitors security alerts from a range of legacy IDS and
anti-malware applications and triggers the appropriate FRESCO response module to reprogram the data
planes of all switches in the OpenFlow network.
The FRESCO framework consists of an application layer (which provides an interpreter and APIs to
support composable application development) and a security enforcement kernel (SEK, which enforces
the policy actions from developed security applications. Both components are integrated into NOX,
an open source openflow controller.

FRESCO’s application layer is implemented using NOX python modules, which are extended
through FRESCO’s APIs to provide two key developer functions: (i) a FRESCO Development
Environment [DE], and (ii) a Resource Controller [RC], which provides FRESCO application
developers with OF switch- and controller-agnostic access to network flow events and statistics.
Developers use the FRESCO script language to instantiate and define the interactions between the
NOX python security modules. These scripts invoke FRESCO-internal modules, which are
instantiated to form a security application that is driven by the input specified via the FRESCO scripts
(e.g., TCP session and network state information) and accessed via FRESCO’s DE database API.

These instantiated modules are executed by FRESCO DE as the triggering input events are received.
FRESCO modules may also produce new flow rules, such as in response to a perceived security
threat, which are then processed by the controller’s security enforcement kernel [SEK]. The basic
operating unit in the FRESCO framework is called a module. A module is the most important element
of FRESCO. All security functions running on FRESCO are realized through an assemblage of
modules.

Approved for Public Release; Distribution Unlimited.
24

A module is implemented as an event-driven processing function. A security function can be
realized by a single module or may be composed into a directed graph of processing to implement more
complex security services. For example, if a user desires to build a naive port comparator application
whose function is to drop all HTTP packets, this function can be realized by combining two
modules. The first module has input, output, parameter, and event. The input of the first module is the
destination port value of a packet, its parameter is the integer value 80, an event is triggered
whenever a new flow arrives, and output is the result of comparing the input destination port value
and parameter value 80. We pass the output results of the first module as input of the second
module and we assign drop and forward actions to the second module. In addition, the second
module performs its function whenever it is pushed as an input. Hence, the event of this module is
set to be push. A module diagram and modules representing this example scenario are shown in
Figure 9.

Figure 9: Illustration of FRESCO module design

An action is an operation to handle network packets (or flows). The actions provided by FRESCO
derive from the actions supported by the NOX OpenFlow controller. The OpenFlow standard specifies
three required actions, which should be supported by all OpenFlow network switches, and four optional
actions, which might be supported by OpenFlow network switches [33]. OpenFlow requires support
for three basic actions: (i) drop, which drops a packet, (ii) output, which forwards a packet to a defined
port, and (iii) group, which processes a packet through the specified group. As these actions
must be supported by all OpenFlow network switches, FRESCO also exports them to higher-level
applications.

One optional action of interest is the set action, which enables the switch to rewrite a matching
packet’s header fields (e.g., the source IP, destination port) to enable such features as flow path
redirection. Because one of the primary goals of FRESCO is to simplify development of security
functions, FRESCO handles possible issues related to the set action by breaking the set action into
three more specific actions: redirect, mirror, and quarantine. Through the redirect action, an
application can redirect network packets to a host without explicitly maintaining state and dealing
with address translation. FRESCO offloads session management tasks from applications and
automatically changes the source and destination IP address to handle redirects. The mirror
action copies an incoming packet and forwards it to a mirror port for further analysis. The
functionality may be used to send a packet to a feature or other packet analysis systems. The
quarantine action isolates a flow from the network. Quarantine does not mean dropping a
particular flow, but rather, FRESCO attaches a tag to each packet to denote a suspicious (or

Approved for Public Release; Distribution Unlimited.
25

malicious) packet. If a packet has the tag, then this packet can traverse only to allowed hosts (viz., a
FRESCO script can fishbowl an infected host into an isolated network using packet tags).

The FRESCO development environment (DE) provides security researchers with useful
information and tools to synthesize security controls. To realize this goal, we design the FRESCO
DE with two considerations. First, this environment must export an API that allows the developer to
detect threats and assert flow constraints while abstracting the NOX implementation and OF
protocol complexities. Second, the component must relieve applications from the need to perform
redundant data collection and management tasks that are common across network security
applications. The FRESCO development environment provides four main functions: (i) script-to-
module translation,(ii) database management, (iii) event management, and (iv) instance execution.

• Script-to-module translation: This function automatically translates FRESCO scripts
to modules, and creates instances from modules, thus abstracting the implementation
complexities of producing OF controller extensions. In addition, it is also responsible for
validating the registration of modules. Registration is performed via a registration API, which
enables an authorized administrator to generate a FRESCO application ID and an
encryption key pair. The developer embeds the registered application ID into the FRESCO
script, and then encrypts the script with the supplied private key. The naming convention
of FRESCO applications incorporates the application ID, which is then used by FRESCO to
associate the appropriate public key with the application. In addition to registering
modules, the module manager also coordinates how modules are connected to each other and
delivers input and event values to each module.

• Database management: The DB manager collects various kinds of network and switch
state information, and provides an interface for an instance to use the information. It provides
its own storage mechanism that we call the FRESCO-DataBase (F-DB), which enables one to
share state information across modules. For example, if an instance wants to monitor the
number of transferred packets by an OpenFlow enabled switch, it can simply request the
F-DB for this information. In addition, this database can be used to temporarily store an
instance.

• Event management: The event manager notifies an instance about the occurrence of
predefined events. It checks whether the registered events are triggered, and if so delivers
these events to an instance. FRESCO supports many different kinds of events, including flow
arrivals, denied connections, and session resets. In addition, the event manager exposes an
API that enables event reporting from legacy DPI-based security applications, such as
Snort [34] or BotHunter [32]. The security community has developed a rich set of
network-based threat monitoring services, and the event manager’s API enables one to
trigger instances that incorporate flow rule response logic.

• Instance execution: This function loads the created instances into memory to be run over
the FRESCO framework. During load time, FRESCO decrypts the application using the
associated public key, and confirms that the ID embedded in the script corresponds to the
appropriate public key. The application then operates with the authority granted to this
application ID at registration time.

Approved for Public Release; Distribution Unlimited.
26

4.0 RESULTS AND DISCUSSION

4.1 Mirage OS Evaluation

Mirage is a clean-slate implementation of many OS components, and so we evaluate it in stages
against more conventional deployments. First, we examine micro-benchmarks to establish
baseline performance of key components; and then more realistic appliances: a DNS server,
showing performance of our safe network stack; an OpenFlow controller appliance and an
integrated web server and database, combining storage and networking. Finally, we examine the
differences in active lines of code and binaries in these appliances, and the impact of dead-code
elimination.

Microbenchmarks
The purpose of these microbenchmarks is to demonstrate the potential benefits of libOS
specialization by examining performance in simple, controlled scenarios; more realistic
application benchmarks are provided in subsequent sections. Thus, microbenchmark evaluations
are composed of identical OCaml code executing in different hosting environments, labeled as
follows: Linux-native, a Linux kernel running directly on the bare metal with an ELF binary
version of the application; linux-pv, a Linux kernel running as a paravirtualized Xen domU with
an ELF binary version of the application; xen-direct, the application built as a sealed appliance to
run directly over Xen, using the Mirage network stack.

Boot Time
Among the benefits of MirageOS is the comparative compactness of the resulting VMs, which
significantly reduces domain boot time. Figure 10 compares boot times for a linux-pv Debian
Linux VM running only the Apache 2 service, a minimal Linux kernel, and a Mirage unikernel
VM. The Debian VM is built using debootstrap and includes only the required runtime packages.
The Linux kernel measures the “time to userspace” via a custom-written initrd that calls the
ifconfig ioctls directly to bring up a network interface before explicitly constructing and
transmitting the single UDP packet required. Time is measured from startup to the point where
boot is complete, signaled by the VM sending a special UDP packet to the control domain. For
the unikernel and minimal Linux VMs, this is sent as soon as the network interface is ready. For
the full Debian VM, it is sent as soon as the Apache process has started. As the memory size
increases, the proportion of Mirage boot time due to building the domain also increases, to
approximately 60% for memory size 3072 MiB. Mirage matches the minimal Linux kernel,
booting in slightly under half the time of the Debian Linux.

Approved for Public Release; Distribution Unlimited.
27

Figure 10: Domain Boot Time Comparison

This test is bounded by two factors: the Xen control stack imposes a fixed cost (which affects
both Mirage and Linux), and in practice the standard Linux distribution boot time increases if
more packages are added and shell scripts become serialized. In contrast, Mirage is jumping
directly into a fully functioning high-level language runtime in slightly less time than just the
Linux kernel takes to boot, with device drivers synchronously attached.

CPU
We compared performance of an n-body simulation and a page-table stress test via buffer
allocation. Detailed results are elided for space but, as expected, performance for the CPU-bound
code is unaffected either by type-safety or by lack of a userspace/kernel boundary, as everything
runs natively with no emulation. The buffer allocation test stresses page-table manipulation and
the Mirage xen-direct implementation slightly outperforms linux-pv due to our lack of a
kernel/userspace divide.

Threading
Figure 11a benchmarks thread construction time, showing the time to construct millions of
threads in parallel where each thread sleeps for between 0.5 and 1.5 seconds and then terminates.
The linux-pv target, which most closely mirrors a conventional cloud application, is slowest with
the same binary running on native Linux coming in next. The two xen- targets perform notably
better due to the test being limited by the GC speed- thread construction occurs on the heap so
creation of millions of threads triggers regular compaction and scanning. The xen- runtime is
faster due to the specialized address space layout described earlier. There is little extra benefit to
using superpages (xen-extent cf. xen-malloc), as the heap grows once to its maximum size and
never subsequently shrinks.We also evaluated the precision of thread timers. A thread records
the domain wall clock time, sleeps for 1 to 4 seconds and records the difference between the wall
clock time and its expected wakeup time. Figure 11b plots the CDF of the jitter, and shows that
the unikernel target provides both lower and more predictable latency when waking up millions
of parallel threads. This is due simply to the syscall overhead in Linux, elided by Mirage as there
is no userspace/kernel boundary.

Approved for Public Release; Distribution Unlimited.
28

Figure 11: Mirage Thread Performance

Networking
As a simple latency test against the Linux stack, we flooded 106 pings from the standard Linux
ping client running in its own VM to two targets: a standard Linux VM, and a Mirage application
with the Ethernet, ARP, IPv4 and ICMP libraries compiled in. As expected, Mirage performed
slightly worse (from 4–10% increase in latency) than Linux, since it implements ICMP in-kernel
so there is no userspace/kernel transition to be avoided, while the Mirage stack has the slight
overhead of type-safety. Both stacks survived a 72-hour flood ping regression test with no
memory leaks. See Table 1.

Table 1: Ping Latency

Approved for Public Release; Distribution Unlimited.
29

Figure 12 compares the performance of Mirage’s TCP stack against the Linux VM stack. Mirage
slightly outperforms Linux when receiving, but does notably worse when transmitting bulk data.

Figure 12: TCP transmit (tx) and receive (rx) throughput over a physical 1 Gb/s Ethernet link

Storage
Figure 13 shows a simple random read throughput test using fio of a fast PCI-express SSD
storage device, comparing a Mirage xen-direct appliance against Linux using buffered and direct
I/O. Again, as expected, the Linux direct I/O and Mirage lines are effectively the same: both use
direct I/O and so impose very little overhead on the raw hardware performance. However, it is
notable how big an impact use of the Linux buffer cache has- it causes performance to max out at
around 300 MB/sec in contrast to the 1.6 GB/sec achievable if the buffer cache is avoided.

Figure 13: Random block read throughput, t/- 1 std.dev.

To benchmark our OpenFlow implementation we use the OFlops platform [35]. For the
controller benchmark we use cbench to emulate 16 switches concurrently connected to the
controller, each serving 100 distinct MAC addresses. Experiments run on a 16-core AMD server

Approved for Public Release; Distribution Unlimited.
30

with 40 GB RAM, with each controller configured to use a single thread. The benchmark
measures the throughput in requests processed per second of the controller in response to a
stream of packet-in messages produced by each emulated switch under two scenarios, batch and
single. Batch is where each switch maintains a full 64 kB buffer of outgoing packet-in messages
and single is where only one packet-in message is in flight from each switch. The first measures
the absolute throughput when servicing requests, and the second measures throughput of the
controller when serving connected switches fairly. Figure 14 compares the xen-direct Mirage
controller against two existing OpenFlow controllers: Maestro [36], an optimized Java-based
controller; and the optimized destiny-fast branch of NOX [37], one of the earliest and most
mature publicly available OpenFlow controllers. Unsurprisingly, the highly optimized NOX fast
branch has the highest performance in both experiments, although it does exhibit extreme short-
term unfairness in the batch test. Maestro is fairer but suffers significantly reduced performance,
particularly on the “single” test, presumably due to JVM overheads. Performance the Mirage
appliance falls between NOX fast and Maestro, showing that Mirage manages to achieve most of
the performance benefit of optimized C while retaining the high-level language features such as
type-safety.

Figure 14: OpenFlow performance comparison

Code and Binary Size
Direct comparison of lines-of-code (LoC) is rarely meaningful due to widespread use of
conditional compilation, and complex build systems. We attempt to remove such effects by
configuring according to reasonable defaults, and then pre-processing to remove unused macros,
comments and whitespace. In addition, to attempt a fair comparison against the 7 million LoC
left in the Linux tree after preprocessing, we ignore kernel code associated with components for
which we have no analogue, e.g., the many supported architectures, network protocols, and file
systems. We are concerned with network-facing guest VMs that share the underlying hypervisor,
and so do not include LoC for Xen and its management Table 2: Binary sizes of Xen unikernels,
before and after dead-code elimination with configuration and data compiled directly into the

Approved for Public Release; Distribution Unlimited.
31

kernel domains, which can be separately disaggregated [4, 38]. Figure 15 shows LoC for several
popular server components, taken using the cloc utility. Even after removing irrelevant code, a
Linux appliance involves at least 4–5 times more LoC than a Mirage distribution. Note that while
the Mirage libraries are not as feature-rich as the industry-standard C applications, their library
structure ensures that unused dependencies can be shed at compile time even as features continue
to be added (e.g., if no file system is used, then the entire set of block drivers is automatically
skipped, in contrast to a Linux distribution where the dependency analysis across the kernel and
userspace is non-trivial).

Figure 15: Key cloud components vs. Mirage unikernel codebase

The compiled binary size illustrates this more effectively, and Table 2 lists the earlier appliances.
The first column shows the default OCaml dead-code elimination that drops unused modules,
and the second is a more extensive custom tool that performs dataflow analysis to drop unused
functions within a module if not otherwise referenced (this is safe due to the lack of dynamic
linking). Either way, all Mirage kernels are significantly more compact than even a cut-down
embedded Linux distribution, and require no special work on the part of the programmer beyond
using the Mirage APIs to build their application.

Table 2: Binary sizes of Xen unikernels

Approved for Public Release; Distribution Unlimited.
32

4.2 DIOS Evaluation

In order to maintain portability to different host kernels, the DIOS module never invokes any
host kernel functionality directly. Instead, the DIOS Adaptation Layer (DAL) indirects OS-
independent requests for kernel functionality (e.g., starting a new process, installing new
mappings in the page tables) to the kernel-specific invocations. DAL provides access to data
structures and functionality added via the patch. By writing a new DAL for a different host
operating system, DIOS can be ported to new platforms. In fact, it should even be possible to run
the core of DIOS as a user-space server outside the host OS kernel by implementing a DAL that
supports the necessary in-kernel operations.
The DAL currently includes the following functionality that must be supported by host OS
kernels:

• Process management: creation and execution of user-space processes, access to and
management of DIOS-specific per-process information (usually held in the PCB),
retrieval of process information.

• Memory management: allocation of paged and unpaged kernel memory, mapping of
kernel memory into user-space virtual address spaces.

• Network access: integration with the kernel network stack, sending and receiving of UDP
datagrams (unicast and broadcast).

• Block and character I/O: writing characters to the console.

• Data structures: linked list, hash table, FIFO queue.

• Locking and concurrency: spin locks, reader-writer semaphores.

Since the DAL is largely an adaptation layer, it is fairly compact. The implementation for the
Linux kernel consists of about 2,500 lines of C code. Not all OS kernels support loadable
modules, however, and different operating system kernels have somewhat different policies as to
which symbols kernel modules may access. If loadable kernel modules are not supported, both
the DAL and the DIOS core module must be deployed as part of the compile-time kernel patch.
If loadable modules are supported, but necessary symbols are not exported to modules, the kernel
patch may need to export them. In practice, however, we have not found this to be a problem in
the Linux prototype – all symbols required by the DAL come in already exported variants.

As DIOS is ongoing research. We expect to have a comprehensive evaluation of DIOS in the
next six months, including a performance evaluation and an evaluation of the security guarantees
offered by the DIOS capability model.

4.3 FABLE Evaluation

To compare the performance of different transport protocols in a datacenter environment, we
deploy 41 Linux containers on a 48-core Opteron 6168. Connectivity between the containers is

Approved for Public Release; Distribution Unlimited.
33

enabled through a 1 Gbps virtual switch. We benchmark the performance of scatter-gather
applications, which implement tree-based, divide-and-conquer algorithms widely deployed in
datacenters [43]. These applications implement a many-to-one communication pattern, which
can lead to problems such as incast-induced congestion collapse [44]. We compare TCP Reno,
TCP Cubic [45], tcpcrypt [46], DCTCP [47] and MPTCP [48]. These protocols represent a
diverse set with fundamentally different congestion control and path usage. For the same
application, 3 different flow sizes are used: Large (1 GB), medium (20 MB) and small (10 KB).
We use a mix of large flows and bursts of medium and small ones to represent reported
datacenter traffic [49]. For all experiments, one container acts as a data sink to receive flows
from the rest of the 40 containers.

Figure 16 (a) shows the flow completion time as a function of the flow size, normalized to TCP
Reno. The performance of Reno and Cubic is comparable with the latter more amenable to long
flows. DCTCP outperforms delay-based congestion control for independent flows irrespective of
size. But in case of mixed traffic, it enables bursty short transfers to experience low delay at the
expense of longer flows. As a result, the overall flow transfer time undergoes degradation.
Multipath TCP on the other hand, improves performance for medium and long flows, but
performs poorly for short and bursty traffic. We attribute this to MPTCP’s goal of maximizing
resource utilization. As a result, short and bursty flows receive a tiny portion of the available
network.

We next benchmark the performance of typical datacenter query traffic in the presence of
background traffic [47]. To enable this, each container starts a long flow to the sink node,
followed by a burst of short flows. The results are presented in 16 (b) DCTCP improves
performance for both the short and long flows. In contrast, MPTCP enables the long flows to
complete faster than single path Reno and Cubic but short flows experience degraded
performance.

Figure 16: Flow Completion: a comparison of different transports. (a) Flow completion normalized to TCP Reno, (b) flow

completion breakdown.

Approved for Public Release; Distribution Unlimited.
34

Overall, the results reinforce our position that even in a controlled datacenter environment; the
performance of transport protocols is non-uniform.

4.4 RDSF Evaluation

There are close links between RDSF and CHIMERA in that CHIMERA provides the computing
infrastructure for RDSF, and RDSF provides the interconnect for CHIMERA. We also plan for a
more memory-interconnect style communication for chip-to-chip and board-to-board links. It
remains an open challenge for future work to merge Internet-style packet communication with
the needs of a cache coherent memory interconnect as this is an ongoing research area of interest.
Time did not allow for in-depth evaluations for RDSF.

4.5 CHIMERA Evaluation

Scalability involves some of the test results we would like to acquire. It will determine to what
extent we can span the system before the penalties due to link bandwidth, link latency, routing
algorithm, boot procedure, and have a negative effect. The other question is, how sophisticated
will the abstraction layer need to be and how much FPGA space will this logic consume? At
what point will routing become a major problem? When these questions are answered we will be
able to say whether this system could be used in a datacenter. If it is possible to scale the system
up to the capacity of a typical server rack, we could remove the rack switch completely. If the
system can scale beyond a rack we could eliminate other networking elements as well.

Let us assume that the system could scale up to a datacenter rack. A typical rack is 44U in size.
Hence, 44 1U servers could be placed in this rack. State-of-the-art server processors consist of
10-12 processor cores, often with two of these processors per server blade. Usually, such
processors cannot be fitted into a 1U server blade due to cooling concerns. However, let us
assume that we can. This server rack could contain about 1000 processor cores. The rack switch
does occupy some space in the rack, but we will ignore that for the purposes of this discussion.
To support 44 server blades, at least a 100-port switch is necessary with dual connections to each
blade. The latency to the switch will be at best a few hundred clock cycles.

Based on the current implementations of the CHERI and CHERI-2 processors on the DE4
FPGA, a CHERI processor utilizes around 40% of all the LUTs available on the chip. The
CHERI-2 utilizes slightly less. Given these conditions, we could potentially have 32 cores per
single Bluehive module - a module consists of 16 FPGAs. The complete Bluehive system, four
modules, would then run 128 cores. This does not quite match up to the 1000-core rack described
earlier. The estimated CHERI/CHERI-2 multi-core system running on the Bluehive would have
several factors higher inter-board communication than most commercial systems.

Correctness of distributed cache-coherent memory subsystems presented a particular challenge
for this part of the project. Innovation prevailed with exploitation of our BlueCheck test
framework married with a memory traffic validation tool, Axe. Axe tests whether coherent
memory system meets the criteria for a particular memory consistency model. Such models are
challenging to specify a check, so Axe models are written in high-level Haskell and exploit SRI’s

Approved for Public Release; Distribution Unlimited.
35

Yices constraint solver to efficiently check the results of test-sequences consisting of load, store,
load-linked, store-conditional, and memory barrier operations issued by multiple cores. At the
time of writing, it supports checking against four consistency models: sequential consistency,
total store order, partial store order, and relaxed memory order. This work has been presented in
MEMOCODE 2015 [50].

4.6 TPSC Evaluation

The implemented switch operates at 160 MHz and has a 64-bit data path, meeting the 10 Gbps
per lane performance requirement. The switch architecture has a pipeline latency of 19 cycles for
a packet to travel from ingress to egress. It takes approximately 20% of FPGA LUT/Flip Flop
resources and about half of the BRAM resources.

4.7 CAMD Evaluation

For the evaluation, we begin with the basic problem of identifying entities performing flow
patterns indicative of malicious network scanning, and compare schemes of implementing
network scanning attacks with and without the use of FRESCO.
While network scanning is a well-studied problem in the network security realm, it offers an
opportunity to examine the efficiency of entity tracking using FRESCO. Many well-established
algorithms for scan detection exist [51, 52, 53]. However, under OpenFlow, the potential for
FRESCO to dynamically manipulate the switch’s data path in reaction to malicious scans is a
natural objective. This scenario also lets us examine how simple modules can be composed to
perform data collection, evaluation, and response:

FRESCO Scan Deflector Service. Figure 17 illustrates how FRESCO modules and their
connections can be linked together to implement a malicious scan deflector for OpenFlow
environments. This scan detection function consists of the three modules described above. First,
we have a module for looking up a blacklist. This module checks a blacklist table to learn
whether or not an input source IP is listed. If the table contains the source IP, the module notifies
its presence to the second module. Based on the input value, the second module performs
threshold-based scan detection or it drops a packet. If it does not drop the packet, it notifies the
detection result to the third module. In addition, this second module receives a parameter value
that will be used to determine the threshold. Finally, the third module performs two actions based
on input. If the input is 1, the module redirects a packet. If the input is 0, it forwards a packet.
Implementing the three modules required 205 lines of Python code and 24 lines of FRESCO
script, as shown in Figure 18.

Approved for Public Release; Distribution Unlimited.
36

Figure 17: FRESCO composition of a Scan Deflector

Figure 18: FRESCO script for Scan Detector

FRESCO BotMiner Service. To illustrate a more complex flow analysis module using FRESCO,
we have implemented a FRESCO version of the BotMiner [54] application. Note that our goal
here is not faithful, “bug-compatible” adherence to the full BotMiner protocol [54], but rather to
demonstrate feasibility and to capture the essence of its implementation through FRESCO, in a
manner that is slightly simplified for readability.
BotMiner detects bots through network-level flow analysis. We have implemented the essentials
of its detection functionality using five modules as shown in Figure 19. BotMiner assumes that
hosts infected with the same botnet exhibit similar patterns at the network level, and these
patterns are different from benign hosts. To find similar patterns between bots, BotMiner clusters
botnet activity in two dimensions (C-plane and A-plane). The C-plane clustering approach is
used to detect hosts that resemble each other in terms of (packets per second) and bps (bytes per
second). The A-plane clustering identifies hosts that produce similar network anomalies. In this
implementation, we use the scan detector module to find network anomalies. Finally, if we find
two clusters, we perform co-clustering to find common hosts that exist in both dimensions and
label them as bots. BotMiner was implemented in 312 lines of python code and 40 lines of
FRESCO script, as shown in Figure 20.

Approved for Public Release; Distribution Unlimited.
37

Figure 19: FRESCO composition of the BotMiner service

 Figure 20: FRESCO scripts illustrating composition of the BotMiner service

FRESCO P2P Plotter Service. We have implemented a FRESCO-based P2P malware detection
service, similarly implemented to capture the concept of the algorithm, but simplified for the
purpose of readability. Motivated by Yen’s work [55], we have implemented the P2P malware

Approved for Public Release; Distribution Unlimited.
38

detection algorithm, referred to as P2P Plotter, using FRESCO. The P2P Plotter asserts that P2P
malware has two interesting characteristics, which are quite different from normal P2P client
programs. First, P2P malware usually operates at lower volumes of network flow interactions
than what is typically observed in benign P2P protocols. Second, P2P malware typically interacts
with a peer population that has a lower churn rate (i.e., the connection duration time of P2P
plotters is longer than that of normal P2P clients). The algorithm operates by performing co-
clustering, to find common hosts that exhibit both characteristics (i.e., low volume and low churn
rate). We have implemented this essential functionality of the P2P Plotter algorithm as a 4-
module FRESCO script, which is shown in Figure 21. This involved 227 lines of Python code
and 32 lines of FRESCO script. The script for the P2P Plotter is illustrated in Figure 22. The
reuse of modules (i.e., CrossCluster and ActionHandler, from the BotMiner service
implementation is noteworthy, highlighting the reuse potential of FRESCO modules.

Figure 21: FRESCO composition of the P2P Plotter

Approved for Public Release; Distribution Unlimited.
39

Figure 22: FRESCO scripts illustrating composition of the P2P Plotter

Approved for Public Release; Distribution Unlimited.
40

5.0 CONCLUSIONS

This final technical report provides a comprehensive presentation of the totality of our work over
the four years of the (MRC)2 project. We have created a book to document in more detail the
entire work effort and application in a 386 pages (MRC)2 Final Project Technical Report Book.
There other ideas, projects, and progresses we would have like to have made with (MRC)2, but
overall we had a diverse work efforts and with additional time to make various other components
well engineered for tech transfer would also be desirable.

5.1 Mirage OS Conclusion

Implementation of the unikernel in Mirage brought to light potential problems with both the
underlying approach and the specifics of our implementation path. Perhaps the most obvious is
the question of how best to support legacy systems. Our extreme position in this space
potentially requires a great deal of re-implementation. Consider for example the SSL protocol
and its standard implementation in the OpenSSL [56] library or storage formats such as ext2 that
are only completely documented in the code of their standard implementation. A complete re-
write of such key components cannot be undertaken lightly! Alternate approaches such as using
tools like CIL or CCured [57, 58] to retrofit type safety to existing codebases have been explored
by others, but have their own problems. Notably, it is considerable work for them to implement
specialization techniques for the particular underlying platform, and it would be hard to integrate
the results into a unikernel. At the other end of the spectrum, recent tools such as HipHop [59]
take steps toward the unikernel approach, taking PHP code, translating to C++ and then
compiling a single binary containing the entire PHP application. One can easily envisage
attempting to further specialize that binary into a unikernel, although the benefits of static type
safety would not apply with PHP.

Another alternate approach explored in the Flux OSKit [60] is to encapsulate existing code to
port it into the new system. In the case of Flux, this was done by targeting the multi-boot
bootloader standard and then wrapping device drivers from systems such as Linux to fit within it.
Although the greatest benefits of progressive specialization are difficult to obtain in this way,
encapsulation is a very promising technique to apply to larger cloud components. For example,
‘big data’ processing systems, such as Map-Reduce, Hadoop, and Dryad [61, 62, 63] are
typically structured as a set of intercommunicating processes, and farmed out within a
datacenter. Each of these processes could be encapsulated as a single VM and message-passing
between VMs implemented via Vchan. This approach is similar to UNIX privilege separation
[64], and provides an incremental deployment path, ensuring that existing reliably engineered
components can continue to be used and that multiple, new, untested components need not be
introduced all at once.

5.2 DIOS Conclusion

In the future, we intend to look into porting DIOS to the CHERI architecture to leverage its
native capability support.

Approved for Public Release; Distribution Unlimited.
41

5.3 FABLE Conclusion

I/O contention, in both the network and disk interfaces, is a serious problem in many modern
environments, especially those making heavy use of virtualization, and significant research effort
has gone into handling these issues [65, 66]. The FABLE name service, with its global
knowledge of communication patterns, is well-placed to manage these issues. At the most basic
level, this could be as simple as selecting a communication channel that is appropriate to the
communication environment. For instance, this might mean enabling multi-path TCP on some
channels, and deciding which paths to use. These decisions would be constantly re-evaluated by
FABLE as the communication environment changes, and, where appropriate, channels would be
reconfigured - the APIs presented here allow this to be performed transparently to the overlying
application. More interestingly, FABLE can integrate with computation schedulers, at both host
and cluster level, to schedule communicating tasks in a way that minimizes contention. Rather
than simply reacting to or tolerating contention, FABLE could in many cases prevent it from
even occurring. This should allow more efficient use of existing computation resources.

5.4 RDSF Conclusion

As RDSF is ongoing research. We expect to have a comprehensive evaluation of RDSF to
include more integration with a technology named SELENA, an experimental Network
Simulation Platform, and CHIMERA.

5.5 CHIMERA Conclusion

With the advances in datacenter networks, high-bandwidth physical interconnect standards are
emerging that will soon be comparable to the proposed test setup. We intend to produce a
performance chart that will demonstrate a scaling ability from 2 to 128 cores. The produced
curve should determine the scalability of the system. We can also use multiple threads for every
physical core to demonstrate a larger system.

5.6 TPSC Conclusion

Our work in this area thus far has been focused on the TPSC hardware switch and making it a
reasonable unit upon which we can do proper analysis of networking. Current switches may drop
partially handled packets, and process packets out of order or in a non-serializable fashion. This
may be practically acceptable in current network models, but we seek much stronger guarantees
in our switch. The eventual TPSC design is intended to provide a hardware switch guaranteeing
that each operation is executed such that they are atomic and serializable.

Nirav Dave has written a paper (MEMOCODE 2011) that describes this approach. Essentially,
we establish a bi-simulation between this model and the one in which we are interested by
leveraging symmetries in the higher-level hardware-description semantic model to make this
check relatively straightforward.

This approach is somewhat complicated by the fact that the switch has to interact relatively
heavily with the software controller that deals with table updates and other various switch

Approved for Public Release; Distribution Unlimited.
42

operations that cannot be readily implemented in hardware. Some work has been done on
expanding the semantic model to software, effectively letting us unify the reasoning, but this is
still work in progress. It seems that we would have a relatively hefty verification problem to get
beyond the “hardware is absolutely correct” point to reach the “HW/SW base system is
absolutely correct” – at least with respect to its stated requirements. There is certainly much
potentially interesting work here, focusing what user abstractions we expose to the switch
controller operator, what guarantees and performance possibilities these offer, and how would be
use them to implement higher-level protocols and network infrastructure.

5.7 CAMD Conclusion

Despite the success of OpenFlow, developing and deploying complex OF security services
remains a significant challenge. We present FRESCO, a new application development
framework specifically designed to address this problem. We introduce the FRESCO architecture
and its integration with the NOX OpenFlow controller, and present several illustrative security
applications written in the FRESCO scripting language. To empower FRESCO applications with
the ability to produce enforceable flow constraints that can defend the network as threats are
detected, we present the FRESCO security enforcement kernel. Our evaluations demonstrate that
FRESCO introduces minimal overhead and that it enables rapid creation of popular security
functions with significantly (over 90%) fewer lines of code. We believe that FRESCO offers a
powerful new framework for prototyping and delivering innovative security applications into the
rapidly evolving world of software-defined networks. We plan to release all developed code as
open source software to the SDN community.

Approved for Public Release; Distribution Unlimited.
43

6.0 REFERENCES

1. Woodruff, Jonathan et al., “Revisiting RISC in an age of risk”, International Symposium
on Computer Architecture, Minneapolis, MN, 2014, pp. 457-468.

2. Barham, Paul, et al., “Xen and the Art of Virtualization”, In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP). Bolton Landing, NY, 2003,
pp. 164–177.

3. Scott, David et al., “Using functional programming within an industrial product group:
perspectives and perceptions”, Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, Baltimore, Maryland, 2010, pp. 87–92.

4. Colp, Patrick et al., “Breaking up is hard to do: security and functionality in a commodity
hypervisor”, Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, Cascais, Portugal, 2011, pp. 189–202.

5. Gazagnaire, Thomas and Hanquez, Vincent, “OXenstored: An efficient hierarchical and
transactional database using functional programming with reference cell comparisons”,
SIGPLAN Notices 44.9, 2009, pp. 203–214.

6. Baumann, A. et al., “The multikernel: A new OS architecture for scalable multicore
systems”, Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, Big Sky, Montana, 2009, pp. 29–44.

7. Hunt, Galen et al., “Sealing OS processes to improve dependability and safety”, SIGOPS
Operating Systems Review 41.3, 2007, pp. 341–354.

8. Ian M. Leslie, Ian M et al., “The design and implementation of an operating system to
support distributed multimedia applications”, IEEE Journal on Selected Areas in
Communications 14.7, 1996, pp. 1280–1297.

9. David Cheriton, David, “The V distributed system”, Communications of the ACM 31.3,
1988, pp. 314–333.

10. Mullender, Sape J. et al., “Amoeba: a distributed operating system for the 1990s”.
Computer 23.5, 1990, pp. 44–53.

11. Ousterhout, John K et al., “The Sprite network operating system”, Computer 21.2, 1988,
pp. 23 –36.

12. Pike, Rob, et al., Plan 9 from Bell Labs, AT&T Bell Laboratories, Murray Hill, NJ, 1995,
p. 9.

13. Hunt, Patrick et al., “ZooKeeper: wait-free coordination for Internet-scale systems”,
Proceedings of USENIX ATC, Boston, MA, 2010, pp. 1-13.

14. Ganger, Gregory R et al., “Fast and flexible application-level networking on Exokernel
systems”, ACM Trans. Computer System 20, 2002, pp. 49–83.

15. Mosberger, David and Peterson, Larry L., “Making paths explicit in the Scout operating
system”, Proceedings of OSDI, Seattle, Washington, 1996, pp. 153-167.

16. Clark Christopher, et al., “Live Migration of Virtual Machines”, Proceedings of NSDI,
Boston, MA, 2005, pp. 273-285.

Approved for Public Release; Distribution Unlimited.
44

17. Kalyvianaki, Evangelia, et al., “Resource Provisioning for Multi-Tier Virtualized Server
Applications”, Computer Measurement Group Journal 126, 2010, pp. 6–17.

18. Barroso, L.A, and U. H¨olzle, U, The Datacenter as a Computer: An Introduction to
the Design of Warehouse Scale Machines, 2nd ed, San Rafael, California: Morgan &
Claypool, 2009.

19. H. Abu-Libdeh, H et al., “Symbiotic Routing in Future Datacenters”, Proceedings ACM
SIGCOMM, New Delhi, India, 2010, pp. 51-62.

20. Watts, P.M. et al., “Requirements of low power photonic networks for distributed shared
memory computers”, Optical Fiber Communication Conference and Exposition
(OFC/NFOEC) 2011 and the National Fiber Optic Engineers Conference, Los Angeles,
CA, 2011, pp. 1 –3.

21. Agarwal, Saurabh, et al., “Adaptive Incremental Checkpointing for massively parallel
systems”, ICS: Proceedings of the 18th Annual International conference on
Supercomputing, Saint Malo, France, 2004, pp. 277–286.

22. Chen, Dong et al., “The IBM Blue Gene/Q interconnection network and message unit”,
High Performance Computing, Networking, Storage and Analysis (SC), Seattle, WA,
2011, article 26.

23. Farrington, Nathan et al., “Helios: A hybrid electrical/optical switch architecture for
modular data centers”, ACM SIGCOMM, New Delhi, India, 2010, pp. 339–350.

24. Perkins, C.E and Royer, E.M, “Ad-hoc on-demand distance vector routing”, In: Mobile
Computing Systems and Applications Proceedings WMCSA, New Orleans, LA, 1999,
pp. 1-9.

25. M.A. Kinsy, M.A. et al., “Heracles: Fully synthesizable parameterized MIPS-based
multicore system”, Field Programmable Logic and Applications (FPL), Crete, Greece,
2011, pp. 356-361.

26. Mattson, Timothy G. et al., “The 48-core SCC processor: The programmer’s view”,
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), New Orleans, LA, 2010, pp. 1-11.

27. Passas, Stavros, et al., “Towards 100 gbit/s ethernet: Multicore-based parallel
communication protocol design”, ICS: Proceedings of the 23rd International Conference
on Supercomputing, Yorktown Heights, NY, 2009, pp. 214–224.

28. Zhangi, Ying Ping, et al., “A study of the on-chip interconnection network for the PIBM
Cyclops64 Multi-Core Architecture”, 20th International Parallel and Distributed
Processing Symposium, IPDPS 2006, Rhodes Island, Greece, 2006, pp. 64.

29. Yabe, Tatsuye, “OpenFlow Implementation on NetFPGA-10G- Design Doc.”
https://docs.google.com/document/cKwQls6Ted8VZO8h9MjBtu9WxV2fAY44eOgE/edi
t, Accessed December 24, 2015.

30. Kohler, E et al., “The Click Modular Router”, ACM Transactions on Computer Systems,
Vol. 18 Issue 3, 2000, pp.263-297.

31. McKeown, Nick, et al., “OpenFlow: Enabling Innovation in Campus Networks”,
Proceedings of ACM Computer Communications Review, Vol. 38, 2008, pp. 69-74.

http://snort.org/
http://snort.org/

Approved for Public Release; Distribution Unlimited.
45

32. Gu, G et al., “BotHunter: Detecting Malware Infection through IDS-driven Dialog
Correlation” Proceedings of the 16th USENIX Security Symposium, Boston, MA, 2007,
article 12.

33. OpenFlow, “OpenFlow 1.1.0 Specification”,
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf, Accessed December 24,
2015.

34. Snort, http://snort.org/, Accessed December 24, 2015.
35. Rotsos, C et al., “OFLOPS: An Open Framework for OpenFlow Switch Evaluation”,

PAM'12 Proceedings of the 13th international conference on Passive and Active
Measurement, Vol. 7192, 2012, pp. 85-95.

36. Cai, Zheng et al., “Maestro: A System for Scalable OpenFlow Control”, Rice University
Technical Report. TR10-11, Rice University, Houston, TX, 2010.

37. Gude, N et al., “NOX: Towards an operating system for networks,” SIGCOMM
Computer Communications Review, 38, 2008, pp. 105–110.

38. Murray, Derek Gordon et al., “Improving Xen security through disaggregation”
Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments VEE ’08, Seattle, WA, 2008, pp. 151–160.

39. Barham, P et al., “Xen and the art of virtualization”, ACM SIGOPS Operation System
Rev. 37.5, 2003, pp. 164-177.

40. Baumann, A et al., “The multikernel: A new OS architecture for scalable multicore
systems”, Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, Big Sky, Montana, 2009, pp. 29–44.

41. Bell, Robert M. et al., The BellKor solution to the Netflix prize, AT&T Bell Labs,
Florham Park, NJ, 2008.

42. Ben-Yehuda, M et al., “The Turtles Project: Design and Implementation of Nested
Virtualization”, Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Vol. 10, 2010, pp. 423–436.

43. Vamanan, B et al., “Deadline-Aware Datacenter TCP (D2TCP)”, Proceedings of
SIGCOMM 2012, Helsinki, Finland, 2012, pp. 115-126.

44. Vasudevan, V et al., “Safe and effective fine-grained TCP retransmissions for datacenter
communication”, ACM SIGCOMM CCR, Vol. 39-4, 2009, pp. 303-314.

45. Sangtae Ha et al., “CUBIC: A new TCP-friendly high-speed TCP variant” SIGOPS
Operational, Rev.42.5, 2008, pp. 64-74.

46. A. Bittau et al., “The case for ubiquitous transport-level encryption”, Proceedings of the
19th USENIX conference on Security USENIX Security’10, Washington, DC, 2010,
pp.26.

47. M. Alizadeh et al., “Data center TCP (DCTCP)”, ACM SIGCOMM CCR, Vol. 40, ACM,
2010, pp. 63-74.

48. Raiciu, C et al., “How hard can it be? Designing and implementing a deployable
multipath TCP”, Proceedings of NSDI’12, San Jose, CA, 2012, pp. 1-14.

https://github.com/facebook/hiphop-php/wiki/

Approved for Public Release; Distribution Unlimited.
46

49. T. Benson et al., “Network traffic characteristics of data centers in the wild”, ACM
SIGCOMM IMC’10, Melbourne, Australia, 2010, pp. 267-280.

50. M. Naylor and S.W. Moore, “A Generic Synthesisable Test Bench”, Formal Methods
and Models for Codesign (MEMOCODE) 2015 Thirteenth ACM/IEEE International
Conference, Austin, TX, 2015, pp. 128-137.

51. J. Jung et al., “On the Adaptive Real-time Detection of Fast Propagating Network
Worms” Proceedings of the Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), Lucerne, Switzerland, 2007, pp. 175-192.

52. Jaeyeon Jung, et al., “Fast Portscan Detection Using Sequential Hypothesis Testing”,
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, 2004, pp.
211-225.

53. Vyas Sekar et al., “A Multi-Resolution Approach for Worm Detection and Containment”,
Proceedings of the International Conference on Dependable Systems and Networks
(DSN), Philadelphia, PA, 2006, pp. 189-198.

54. Guofei Gu, et al., “BotMiner: Clustering Analysis of Network Traffic for Protocol- and
Structure-Independent Botnet Detection”, Proceedings of the USENIX Security
Symposium (Security’08), San, Jose, 2008, pp. 139-154.

55. T.-F. Yen and M. K. Reiter, “Are Your Hosts Trading or Plotting? Telling P2P File-
sharing and Bots Apart”, Proceedings of the 30th International Conference on
Distributed Computing Systems (ICDCS), Genoa, Italy, 2010, pp. 241-252.

56. The OpenSSL Project, OpenSSL, http://openssl.org/, Accessed April 2012.
57. Necula, George C et al., “CIL: Intermediate language and tools for analysis and

transformation of C programs”, Proceedings of the 11th International Conference on
Compiler Construction CC ’02, Grenoble, France,2002, pp. 213–228.

58. Necula, George C et al., “CCured: Type-safe retrofitting of legacy code”, Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL ’02, Portland, Oregon, 2002, pp. 128–139.

59. Facebook, “HipHop for PHP”, https://github.com/facebook/hiphop-php/wiki/, Accessed
Feb 2010.

60. Ford, Bryan et al., “The Flux OSKit: A substrate for kernel and language research”,
Proceedings of the 16th ACM Symposium on Operating Systems Principles SOSP ’97,
Saint Malo, France, 1997, pp. 38–51.

61. Apache, “Hadoop”, http://hadoop.apache.org, Accessed April 2012.
62. Dean, Jeffrey and Ghemawat, Sanjay, “MapReduce: Simplified Data Processing on Large

Clusters”, Communications of the ACM, 51.1, 2008, pp. 107–113.
63. Isard, Michael et al., “Dryad: distributed data parallel programs from sequential building

blocks”, Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007 EuroSys ’07, Lisbon, Portugal, 2007, pp. 59–72.

http://hadoop.apache.org/
https://docs.google.com/document/cKwQls6Ted8VZO8h9MjBtu9WxV2fAY44eOgE/edit

Approved for Public Release; Distribution Unlimited.
47

64. Provos, Niels et al., “Preventing privilege escalation”, Proceedings of the 12th
Conference on USENIX Security Symposium SSYM’03, Washington, DC, 2003, pp. 231–
242.

65. Mohammad Alizadeh, et al. “Data Center TCP (DCTCP)”, Proceedings of SIGCOMM,
New Delhi, India, 2010,pp. 63–74.

66. Raiciu,Costin et al., “Improving datacenter performance and robustness with multipath
TCP”, Proceedings of SIGCOMM, Toronto, Ontario, Canada, 2011, pp. 266–277.

Approved for Public Release; Distribution Unlimited.
48

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

BSV – Bluespec SystemVerilog, developed by Bluespec Inc. to enable the use of the BSV
compiler to transform hardware specifications written in the BSV specification language into a
form that can be executed on FPGAs or simulated.

CHERI -- Capability Hardware Enhanced RISC Instructions; this acronym is used with respect
to the CHERI hardware Instruction-Set Architecture (ISA) and the CHERI system architecture,
among other entities.

CRASH – Clean-slate Resilient Adaptable and Secure Hosts; this is the DARPA program under
which the CTSRD project operated.

CTSRD – CRASH-worthy Trustworthy Systems Research and Development

FPGA – Field-Programmable Gate Arrays, which provide the ability to execute an instruction-
set architecture as if it were real hardware

ISA – Instruction-Set Architecture

MRC – Mission-oriented Resilient Clouds, a companion DARPA program to CRASH

(MRC)2 (pronounced MRC-squared) – Modular Research-based Composably trustworthy
Mission-oriented Resilient Clouds; this SRI-Cambridge MRC project encompassed some clean-
slate approaches to secure software-defined networking (SDN) and trustworthy cloud servers,
among many other innovations and developed prototypes.

	Table of Contents
	1.0 EXECUTIVE SUMMARY 1
	2.0 INTRODUCTION 2
	2.1 Cross-cutting Themes in (MRC)2 2
	2.2 Security, Resilience, Performance, and Energy Use 3
	2.3 CTSRD Foundations 3
	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 5
	3.1 Extending CIEL with MirageOS and DIOS 5
	3.2 Arguments for (MRC)2 Trustworthiness 6
	4.0 RESULTS AND DISCUSSION 26
	4.1 Mirage OS Evaluation 26
	4.2 DIOS Evaluation 32
	4.3 FABLE Evaluation 32
	4.4 RDSF Evaluation 34
	4.5 CHIMERA Evaluation 34
	4.6 TPSC Evaluation 35
	4.7 CAMD Evaluation 35
	5.0 CONCLUSIONS 40
	5.1 Mirage OS Conclusion 40
	5.2 DIOS Conclusion 40
	5.3 FABLE Conclusion 41
	5.4 RDSF Conclusion 41
	5.5 CHIMERA Conclusion 41
	5.6 TPSC Conclusion 41
	5.7 CAMD Conclusion 42
	6.0 REFERENCES 43
	7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 48
	Figure 1: MRC2 Transforms Datacenter Architecture 5
	Figure 2: Secure Dynamic Data Flow Programming 6
	Figure 3: Stages of a FABLE Session 10
	Figure 4: FABLE Buffers Shared Memory Connection 13
	Figure 5: Hybrid switch and CHERI using NetFPGA10G and DE4 hardware 15
	Figure 6: Hardware Concept 16
	Figure 7: Connecting a multi-core CHERI system to the Internet 18
	Figure 8: OpenFlow Switch Architecture 20
	Figure 9: Illustration of FRESCO module design 24
	Figure 10: Domain Boot Time Comparison 27
	Figure 11: Mirage Thread Performance 28
	Figure 12: TCP transmit (tx) and receive (rx) throughput over a physical 1 Gb/s Ethernet link 29
	Figure 13: Random block read throughput, t/- 1 std.dev. 29
	Figure 14: OpenFlow performance comparison 30
	Figure 15: Key cloud components vs. Mirage unikernel codebase 31
	Figure 16: Flow Completion: a comparison of different transports. (a) Flow completion normalized to TCP Reno, (b) flow completion breakdown. 33
	Figure 17: FRESCO composition of a Scan Deflector 36
	Figure 18: FRESCO script for Scan Detector 36
	Figure 19: FRESCO composition of the BotMiner service 37
	Figure 20: FRESCO scripts illustrating composition of the BotMiner service 37
	Figure 21: FRESCO composition of the P2P Plotter 38
	Figure 22: FRESCO scripts illustrating composition of the P2P Plotter 39
	1.0 EXECUTIVE SUMMARY
	2.0 INTRODUCTION
	2.1 Cross-cutting Themes in (MRC)2
	2.2 Security, Resilience, Performance, and Energy Use
	2.3 CTSRD Foundations

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	Figure 1: MRC2 Transforms Datacenter Architecture
	3.1 Extending CIEL with MirageOS and DIOS
	Figure 2: Secure Dynamic Data Flow Programming

	3.2 Arguments for (MRC)2 Trustworthiness
	3.2.1 Mirage OS
	3.2.2 DIOS: Secure Distributed Operating System
	3.2.3 FABLE: Flow-aware Input-output System
	FABLE consists of a user-space application library, an extra system call to register with a new name service daemon, and some extensions to existing polling system calls to support the new I/O descriptors. Figure 3 illustrates the following stages of...
	Figure 3: Stages of a FABLE Session
	Every FABLE connection is associated with two named end points. The application calls the xio register name to register a new end point, and obtains an opaque xio context structure in return. The library does not keep much state—instead, it accesses a...
	Reconfiguration
	Every xio handle also has a file descriptor that can be obtained to poll for reconfiguration events. A reconfiguration indicates that the underlying transport mechanism is being changed, and that the application should drain any older buffers as quick...
	Figure 4: FABLE Buffers Shared Memory Connection
	3.2.4 RDSF: Resilient Distributed Switching Fabric
	Figure 5: Hybrid switch and CHERI using NetFPGA10G and DE4 hardware
	3.2.5 Chimera: Capability-oriented, Rack-scale Memory Interconnect
	Figure 6: Hardware Concept
	On the other hand, at a low level our heterogeneous computer systems already use PC-area high-speed serial communication mechanisms to talk to GPUs, NICs, and disk controllers. Currently, these low-level communication mechanisms mimic old bus-based pr...
	Current Framework
	Figure 7: Connecting a multi-core CHERI system to the Internet
	3.2.6 TPSC: Trustworthy Programmable Switch Controllers
	Figure 8: OpenFlow Switch Architecture
	3.2.7 CAMD: Cloud Analysis and Misuse Detection
	Figure 9: Illustration of FRESCO module design

	4.0 RESULTS AND DISCUSSION
	4.1 Mirage OS Evaluation
	Boot Time
	Figure 10: Domain Boot Time Comparison
	CPU
	Threading
	Figure 11: Mirage Thread Performance
	Networking
	Table 1: Ping Latency
	Figure 12: TCP transmit (tx) and receive (rx) throughput over a physical 1 Gb/s Ethernet link
	Storage
	Figure 13: Random block read throughput, t/- 1 std.dev.
	Figure 14: OpenFlow performance comparison
	Figure 15: Key cloud components vs. Mirage unikernel codebase
	Table 2: Binary sizes of Xen unikernels

	4.2 DIOS Evaluation
	4.3 FABLE Evaluation
	Figure 16: Flow Completion: a comparison of different transports. (a) Flow completion normalized to TCP Reno, (b) flow completion breakdown.

	4.4 RDSF Evaluation
	4.5 CHIMERA Evaluation
	4.6 TPSC Evaluation
	The implemented switch operates at 160 MHz and has a 64-bit data path, meeting the 10 Gbps per lane performance requirement. The switch architecture has a pipeline latency of 19 cycles for a packet to travel from ingress to egress. It takes approximat...

	4.7 CAMD Evaluation
	Figure 17: FRESCO composition of a Scan Deflector
	Figure 18: FRESCO script for Scan Detector
	Figure 19: FRESCO composition of the BotMiner service
	Figure 20: FRESCO scripts illustrating composition of the BotMiner service
	Figure 21: FRESCO composition of the P2P Plotter
	Figure 22: FRESCO scripts illustrating composition of the P2P Plotter

	5.0 CONCLUSIONS
	5.1 Mirage OS Conclusion
	5.2 DIOS Conclusion
	In the future, we intend to look into porting DIOS to the CHERI architecture to leverage its native capability support.

	5.3 FABLE Conclusion
	5.4 RDSF Conclusion
	5.5 CHIMERA Conclusion
	5.6 TPSC Conclusion
	5.7 CAMD Conclusion

	6.0 REFERENCES
	30. Kohler, E et al., “The Click Modular Router”, ACM Transactions on Computer Systems, Vol. 18 Issue 3, 2000, pp.263-297.

	7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
	BSV – Bluespec SystemVerilog, developed by Bluespec Inc. to enable the use of the BSV compiler to transform hardware specifications written in the BSV specification language into a form that can be executed on FPGAs or simulated.
	CHERI -- Capability Hardware Enhanced RISC Instructions; this acronym is used with respect to the CHERI hardware Instruction-Set Architecture (ISA) and the CHERI system architecture, among other entities.
	CRASH – Clean-slate Resilient Adaptable and Secure Hosts; this is the DARPA program under which the CTSRD project operated.
	CTSRD – CRASH-worthy Trustworthy Systems Research and Development
	FPGA – Field-Programmable Gate Arrays, which provide the ability to execute an instruction-set architecture as if it were real hardware
	ISA – Instruction-Set Architecture
	MRC – Mission-oriented Resilient Clouds, a companion DARPA program to CRASH
	(MRC)2 (pronounced MRC-squared) – Modular Research-based Composably trustworthy Mission-oriented Resilient Clouds; this SRI-Cambridge MRC project encompassed some clean-slate approaches to secure software-defined networking (SDN) and trustworthy cloud...

