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Hybrid simulations that couple the solution of the Reynolds-Averaged Navier-

Stokes equations (RANS) to Large-Eddy Simulations (LES) have the ability to apply

the high accuracy of LES only in regions of the flow that demand it, while using

the less expensive RANS approach in regions of the flow where standard turbulence

models are expected to be accurate, while LES is used in non-equilibrium flow

regions. One issue that arises in these applications is the behavior of the flow in

the transition zone between the RANS and LES regions. In the RANS zone the

flow solution is either steady, or only contains information on the largest scales

of motion; most or all of the Reynolds shear stress is provided by the turbulence

model. In the LES region the resolved scales must supply most of the Reynolds

shear stress. Typically, a transition zone exists in which the resolved eddies are

gradually generated and grow.

In this work, methodologies for the improvement of hybrid LES/RANS are



studied, to shorten the transition from the smooth RANS field to the LES, which

requires energy- and momentum-supporting eddies. The method tested is based

on the generation of synthetic turbulence with a realistic spectrum, and statistics

obtained from the RANS. The eddies thus generated are then selectively forced

by a control method that amplifies the bursts, and maintains a desired Reynolds

shear stress downstream of the RANS/LES interface. This method allows to match

the two techniques smoothly, and to minimize the extent of the region required

to develop the realistic turbulent eddies. It was found to perform well in several

non-equilibrium boundary layers achieved by imposing either a variable freestream

velocity or a spanwise pressure gradient on a flat-plate boundary layer. A finely

resolved LES of the flow in a boundary layer subjected to strong acceleration was

also performed. The flow in this configuration reverts to a laminar state and then

retransitions to turbulence. Statistics and flow visualizations of this flow indicate

the presence of two of the mechanisms that have been conjectured to cause the

re-laminarization.
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Chapter 1

Introduction

1.1 Motivation

Recent years have seen the spread of inexpensive parallel computer clusters

that are able to reduce the computational time for the solution of numerical models;

at the same time smart computational strategies that allow for faster simulations

without compromising the accuracy of the results have been developed. These devel-

opments have allowed the extension of the numerical solution of the Navier-Stokes

equations to turbulent flows in more realistic configurations than possible until now.

The solution of turbulent flow problems is theoretically possible through the

direct numerical simulation (DNS) of the Navier Stokes equation (with appropriate

boundary conditions). This method constitutes the conceptually simplest approach

to the problem of turbulence. Practically, however, the cost of DNS confines this

approach to simple application in terms of Reynolds number and geometry complex-

ities. In fact, in DNS all the scales of motion must be resolved, from the integral

(L) to the Kolmogorov (η) scales. The grid size must be on the order of the smallest

scale, and the computational domain must be on the order of the largest scale. This

results in a number of grid points in each direction that is proportional to the ratio

1



between the largest and the smallest scale ( L

η
). Defining a Reynolds number based

on the integral scale L, ReL, the number of grid points will be proportional to Re
3

4

L in

each direction, so a total number of points proportional to Re
9

4

L is required by DNS.

Moreover, the equations must be integrated for a time on the order of the integral

time scale (T ). Supposing that the time step of the calculation ∆t is limited by the

CFL condition, that is ∆t < ∆x
V

where V is the local velocity determined by the

integral time and length scale, we have that the total number of points in time is

T
∆t

again proportional to (L

η
). In this way the total cost of a DNS calculation will

be on the order of Re3
L. This means that for high Re number, the DNS takes an

unrealistic time to be completed: assuming that a computer power will increase by

a factor of 5 every five years, Spalart [1] estimated that DNS will not be applicable

to the study of the flow over an airliner or a car until 2080.

In large-eddy simulations (LES) the target is to simulate only the eddies con-

taining the bulk of the energy of the flow. These scales are typically anisotropic

and are dependent on the boundary conditions of the problem, therefore they are

extremely difficult to be modeled analytically; the fact that the small, dissipative

eddies are modeled reduces the cost of LES considerably compared with DNS. How-

ever, when LES have to be applied to wall-bounded flows at high Reynolds numbers

it is still very demanding because of the inner layer resolution. In fact, as found

in Chapman [2], considering a flat-plate boundary layer, the outer part has energy-

carry structures on the order of the boundary layer thickness δ. Assuming that
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the grid spacing is fixed in the stream and spanwise direction and on the order of

0.1δ, Chapman estimated a total number of grid points proportional to Re0.4. In

the inner part of the boundary layer, on the other hand, the number of points must

be based on the inner units; in fact, the dimension of quasi-streamwise vortices are

constant in wall units (i.e., normalized by kinematic viscosity, wall stress and fluid

density). In this way, the total cost of the calculation in the inner layer is estimated

be proportional to CfRe2
L which, assuming Cf ∼ Re−0.2

L , makes again this technique

only suitable for moderate Reynolds number applications.

A powerful way to use LES is either to apply it in non-bounded flow simula-

tions, or to use LES calculations only on the outer part of the flow. Wall-modeled

LES (WMLES), in which the inner layer is modeled either by the Reynolds-Averaged

Navier-Stokes (RANS) equations or through approximate boundary conditions, can

be a smart solution to the expensive full LES (see the review in Ref. [3]). Spalart [1],

however, estimates that application of WMLES to external flow of aeronautical in-

terest is still several decades away from being practical. His estimate assumes the

presence, in these flows, of very thin boundary layers (near the wing leading-edge,

for instance), where a large number of points is required to cover a small physical

area. In environmental or oceanographic flows, in which the Reynolds numbers are

comparably high, but the boundary layers are thicker, WMLES is already applicable

to practical problems.

Traditionally, high-Reynolds number flows have been predicted using RANS

3



models. However, RANS is designed to be accurate for problems such as thin shear

layers. In many cases, especially in the presence of fluid-dynamical non-equilibrium,

RANS cannot give an accurate prediction. A possible avenue to solve fluid-flow

problems in practical engineering cases, then, is by using a combination of RANS

and LES, in which the RANS equations are solved in quasi-equilibrium regions

or where the models can be accurately tuned, while LES or WMLES are used in

non-equilibrium regions or where the RANS models are expected to fail. Hybrid

LES/RANS techniques have emerged as a tool that allows the simulation of complex

fluid flows within reasonable amounts of CPU time. In fact, in recent years the

hybrid methods have received increasing attention; different terminologies have been

used as LNS, DES, PANS, zonal approach, single grid approach, etc. The target of

this chapter is to introduce and discuss the different methods and try to underline

the drawbacks and key points of each. A review of previous work is, in some cases,

necessary in order to understand the motivation of the new hybrid strategies. In the

next section, an overview of hybrid strategies is presented. Detailed descriptions of

each method can be found in Sections 1.3 and 1.4. The chapter is concluded with

an analysis of the hybrid method used in the rest of the present dissertation.

1.2 Hybrid strategies: single grid and zonal approaches

It is conceptually possible to divide the hybrid RANS/LES methods into two

main categories: one in which a single grid is used and only the turbulence model

4



Figure 1.1: Sketch of a hybrid method application with the boundary of the two

domains parallel a) or orthogonal b) to the flow direction.

changes; another case occurs when the RANS/LES domains are separated, and two

separate grids as well as sets of equations are used (zonal approach). In both cases,

two different scenarios are possible, as shown in figure 1.1: the interface of the two

domains can be parallel or orthogonal to the flow direction. This interface can be

either a true discontinuous interface that separates the two domains as in the zonal

methods, or can be representative of a region in which the model gradually switches

from RANS to LES calculations as in the single grid methods.

One issue that arises when hybrid RANS/LES methods are used is the behavior
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of the flow in this transition zone between the RANS and LES regions, and how

that region could affect the downstream results. In the RANS zone the flow solution

is either steady, or only contains information on the largest scales of motion if

unsteadiness is present; most, or all, of the Reynolds shear stress is provided by

the turbulence model. In the LES region, on the other hand, the resolved scales

must supply most of the Reynolds shear stress and small scale structures must

be present to provide it. In both the zonal approach where the interface between

the two domains is explicit, and the single-grid method where the interface is an

overlapping zone between RANS/LES, a transition zone exists in which the resolved,

energy-containing eddies are gradually generated and grow. In this region the flow

may be unphysical. Different hybrid methods, that are illustrated in this paragraph,

have different ways to switch from RANS and LES to trigger instabilities and to

develop small eddies to support LES calculations. In the next section each method

will be addressed with emphasis on the literature available.

In the single grid approach, the switch from RANS to LES is typically smooth

and determined by the damping of the turbulent viscosity: in the LES region it

must be damped to the levels implied by the sub-grid model. The damping can be

a function of the grid spacing, as in DES where the level of the effective sub-grid

viscosity is a function of the local mesh spacing and/or distance from the wall; or

the damping is a function of turbulence quantities as in the LNS of Batten et al. [8]

where the turbulent viscosity is damped through a blending function that depends
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on length and velocity scales; the damping can also be a combination of the two

(Speziale’s latency parameter [7]). In the zonal approach, on the other hand, the

switch between RANS and LES is, by definition, explicit: two separate domains

are defined and two different sets of equations, RANS and LES, are solved. The

problem, in this case, is how to transfer information between the two domains:

appropriate boundary conditions are needed for each domain; these can give either

a two-way coupling (RANS solution influences the full LES and vice versa ) or a

one-way coupling.

As mentioned above, another issue is the generation of the energy-carry eddies

in the transition zone. If a natural instability is present in the RANS/LES transition

area the small eddies are generated by the natural amplification of noise or small

fluctuations. This instability is particularly effective if adverse pressure gradients,

separated shear layers or other very unstable flow features are present. In the

case where such features are not present, other techniques must be implemented to

generate turbulent fluctuations quickly. In the next sections we will describe some

of these methods: forcing methods that add energy in the LES domain through the

addition of forcing terms in the momentum equations, the method that recycles and

rescales fluctuations from the downstream part of the calculation, and techniques

that introduce coherent structures taken from a precursor calculation. Each of

these methods will be illustrated in the next sections either applied to a single grid

calculation or to zonal hybrid methods.
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1.3 Hybrid RANS/LES approach with single grid

1.3.1 Introduction

As pointed out in the first section, the bottleneck of LES is the calculation of

the flow dynamics close to the wall. To avoid this costly requirement, it is necessary

to model the inner part of the flow in a less expensive way, from a computational

perspective, than the full LES solution. Many hybrid methods try to achieve this

end, by using RANS in the boundary layer (or in the inner layer) and LES away from

solid walls. In the following, an overview of the literature of single grid approaches

is presented.

1.3.2 Previous work

One of the first theoretical approaches to hybrid RANS/LES was due to

Speziale [7] where the model Reynolds stress was damped by a latency factor that

was a function of the grid size and the Kolmogorov scale. In this way, Speziale was

able to merge RANS and LES depending on the grid size and/or Reynolds number.

However, some parameters in the latency factor were never completely specified by

Speziale. Moreover, the choice of the Kolmogorov length scale and the grid size

as parameters to damp the eddy viscosity appear to be too drastic: for high Re

numbers we can expect that no grid is fine enough to result in an LES calculation (

since the ratio between grid size and Kolmogorov scale remains large). The latency
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factor of Speziale [7], appears to be more of an on/off switch from RANS to full

DNS because of the Kolmogorov length scale used in the model.

The method proposed by Batten et al., the Limited Numerical Scales (LNS)

approach [8], is an attempt to improve Speziale’s approach: they defined a parameter-

free latency factor, based on some characteristic length and velocity scale of LES

and RANS models. In the LNS approach the unresolved stress is a fraction of that

predicted by a RANS model; the fraction was determined by a ratio of LES and

RANS length- and velocity-scales. In this model the blending of the eddy viscosity

is based entirely on RANS and LES quantities with no other empirical constants in-

volved. One of the issues of the LNS approach regards the generation of small eddies

in the LES region, when no natural instability, such as those present in massively

separated flow, was present in the domain. In order to accelerate the generation

of turbulent structures, Batten et al. [31] introduced a method to generate syn-

thetic turbulence, based on Kraichnan’s [46] proposal, that takes into account the

anisotropy of the flow. The method by Batten et al. [31] is based on the superpo-

sition of sinusoidal modes with random frequencies and wave-numbers, with given

moments and spectra. The wave-numbers are modulated to yield eddies that are

more elongated in the direction of larger Reynolds stresses, thus introducing more

realistic, anisotropic eddies into the flow. Batten et al. [31] performed calculations

of the spatially developing flow in a channel in which the inlet section had a very

coarse grid in the streamwise direction, capable of supporting a RANS solution but
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not an LES. The grid was then suddenly clustered, and forcing terms were used to

generate synthetic turbulence.

The synthetic turbulence generation method proposed by Batten et al. [43, 31]

was significantly more effective than older, simpler, methods. For instance, Le et

al. [44] performed calculations of a backward-facing step in which at the inflow they

assigned a mean velocity profile plus a superposition of random fluctuations with

given moments and spectra. The amplitude of the random fluctuations was such that

the bulk of the energy was contained in a range of well-resolved wave-lengths [45].

Since the fluctuations lacked phase information, however, the turbulence levels de-

cayed rapidly, and only some distance downstream the turbulent eddies regenerated.

The most popular of the hybrid RANS/LES techniques that fall in the “single-

grid category” is Detached Eddy Simulation [5]. In this model the switch between

RANS and LES is determined by the grid size: when the mesh becomes small

enough to resolve the energy-carrying eddies the eddy viscosity is reduced. DES

was designed for the simulation of massively separated flows, in which the integral

scales of motion in the separated flow region are determined by the geometry, and

their size is not significantly affected by the Reynolds number. Applying LES in

this region, therefore, results in a relatively small increase of the cost of the calcu-

lation compared, for instance, with an Unsteady RANS (URANS) model. Thus, in

standard applications of this method, the thin attached shear layers are modeled

by RANS, and only away from solid bodies the technique switches to LES, and the
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RANS/LES interface occurs generally in the separated shear layers. The strong

instability caused by the inflection points in the velocity profiles is extremely ben-

eficial from the point of view of the generation of energy-carrying eddies, since any

disturbance present in the flow is quickly amplified, resulting in a very short transi-

tion region. The application of DES to flows with weaker instability mechanisms or

with thick boundary layer, however, creates some problems: if the turbulent eddies

do not grow sufficiently fast, the simulations can become inaccurate as the mod-

eled shear stress decreases while the resolved one does not increase sufficiently fast.

Such quantities as the mean velocity profile, skin friction coefficient and separation

location can be significantly in error. This case is typical [9] when the grid cells

parallel to the wall are refined and become of the same order of the boundary layer

thickness within the boundary layer region, with the boundary layer attached to

the wall. In this case, within the boundary layer, the grid spacing is fine enough

to switch the calculation to LES solution by decreasing the amplitude of the eddy

viscosity, but the turbulent eddies are not yet generated. Another challenging case is

when the grid is refined enough to switch the model to LES, but not fine enough to

support resolved velocity fluctuations internal to the boundary layer: in that region

the solution is neither a pure RANS, nor a pure LES. In these kinds of scenarios,

the grid plays a key role: it must be fine enough to support eddies and damp in an

appropriate way the eddy viscosity; this double achievement is the cause of error of

the DES model (gray region).
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At this point it is important to stress that the problem mentioned in the DES

calculation is not solely specific to that kind of method. In fact, as mentioned in the

previous section, a transition zone exists in all of the hybrid RANS/LES methods,

in which energy-containing eddies are gradually generated and grow. This issue is

of outstanding importance for the prediction of the correct behavior of the solution,

especially in the case where separation of the flow is not determined by the geometry

of the problem. One first solution to the problem mentioned was already illustrated:

the Batten et al. [31] decomposition. In the following paragraphs, we will present

other solutions to overcome the limitations of the gray area.

The problems of the gray area have motivated the use of zonal-DES approach

[11], in which attached boundary layer regions are modeled by RANS independently

of the grid spacing. In this way, the user can refine the grid as much as desired in

the LES region, and use RANS in all of the regions where an attached boundary

layer is expected. This “manual” switching is, however, too elaborate to be applied

in a complex 3D geometry and could be a source of error.

Recently, to overcome the problem of the gray region, Spalart et al. [9] mod-

ified the DES approach and introduced the Delayed Detached Eddy Simulation

(DDES), which maintains the RANS solution in the boundary layers independently

of the grid spacing. They started from the idea of Menter et al. [75], who used

appropriate functions in the SST RANS model to identify the boundary layers and

prevent the switch to the LES model within that region; the DDES of Spalart et al.
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[9] is applicable to any RANS model that involves an eddy viscosity. Spalart et al.

[9] performed calculations on boundary layers, on a single and multi-element airfoil,

a cylinder, and a backward-facing step and proved that the RANS solution was

maintained in thick boundary layers, and switched in LES after massive separation.

Another method that used one grid is the Partially Averaged Navier Stokes

(PANS) solution by Girimaji et al. [10]. In this method the averaging of the Navier

Stokes equation is performed only over a portion of the fluctuating scales. The

scale-resolution (cutoff) of the PANS closure is controlled by two model parameters:

the fraction of unresolved kinetic energy and unresolved dissipation. The model

production-to-dissipation ratio must be consistent with the turbulence physics at

the cutoff to give accurate results. Girimaji et al. [10] applied this method in a flow

past a circular cylinder and a flow past a backward facing step with encouraging

results.

The trend in the most recent hybrid solutions to the one-grid hybrid RANS/LES

is to apply a technique that resembles the wall-modeled LES. As described in [9],

wall-modeled LES (WMLES) was introduced in the 1970s. An extensive review of

wall-layers models can be found in Cabot et al. [13] and Piomelli et al. [3]. Here

only a brief summary will be given.

An early application of WMLES can be found in Balaras [6]: the Two-layer

model (TLM); here a simplified (parabolized) version of the momentum equations

was solved in the inner layer together with a turbulence-model equation; the bound-
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ary conditions were taken from the external LES. The solution of the simple set of

equations provided the wall-shear stress imposed in the LES calculation. In this

case the coupling between the near-wall region and the outer region was supposed

to be weak from inner to outer layer and strong in the opposite direction (two way

coupling).

Nikitin et al. [12], used DES as a wall-layer model in high Re numbers of

turbulent channel flow, letting the model switch from RANS to LES behavior inside

the boundary layer. In the inner layer the Reynolds shear stress was provided

entirely by the turbulence model. In the outer part, the eddy viscosity was damped,

which allowed the formation of turbulent eddies. The results that they obtained

were promising: a clear logarithmic law was observed, and turbulence in the outer

layer was sustained with a grid not particularly fine. The skin friction coefficient,

however, was under-predicted.

Improved results in an attached flow were obtained when backscatter forc-

ing was used [15] to introduce small-scale fluctuations in the transition region. This

stochastic forcing generated small-scale fluctuations that acted as “seeds” for the de-

velopment of realistic, energy-carrying eddies in the LES region. Piomelli et al. [15]

found that with the correct amount of backscatter they could successfully remove

the shift in the log-law, and improve the prediction of the skin friction coefficient.

Although this work showed a promising approach to the solution of the RANS/LES

interface problem, the backscatter model proposed lacked physical justification, and
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tuning the forcing magnitude was required as the grid or the Reynolds number

were changed. To overcome this problem, Keating et al. [20] introduced a dynamic

method to calculate the magnitude of the stochastic forcing, based on the fact that

in the interface region, the resolved Reynolds shear stress should become larger than

the modeled one. They applied the method to a turbulent channel flow.

Davidson et al. [18] and Dahlstrom et al. [23], add turbulent fluctuations,

synthesized or from a DNS precursor simulation, to the momentum equation at

the interface region RANS/LES to generate rapidly turbulent structure in the LES

region. The source terms are scaled in order to match turbulent kinetic energy mod-

eled with the RANS. They found that the turbulent length scale of the synthesized

fluctuation has a large impact on the results. In these cases, the turbulent length

scale and the eddy viscosity are not the same in the LES and RANS domain.

Tessicini et al. [21] instead, used an URANS close to the wall and an LES

subgrid scale model in the outer part where they adjusted dynamically the constant

Cµ in the turbulent viscosity model of RANS to have a continuity between the two

regions. The smooth transition between the constant value of Cµ in the inner RANS

domain to the value calculated dynamically, is obtained by an empirical smoothing

exponential function.

As can be seen from the last authors cited, better results were in general

obtained by adding energy at the interface where the switch from RANS to LES

was supposed to be. This is a problem very similar to the other approach zonal
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RANS/LES, where an explicit interface between the two domains exist. This zonal

approach will be presented in the next section.

1.4 Zonal Hybrid RANS/LES

1.4.1 Introduction

We focus, in this work, on applications of hybrid RANS/LES methods of the

type shown in Figure 1.2, in which RANS is used in equilibrium regions of the flow,

while LES is performed in a small part of the domain, possibly including attached

boundary layers as well as separated flow. As shown in Figure 1.2, the separation

between RANS and LES calculations is pre-defined, so a smooth transition of the

eddy viscosity between the two domains does not have to be defined. The interface

RANS/LES defines the two regions in a discontinuous way: the turbulent kinetic

energy is zero in the RANS domain and not zero in the other. The main difficulty is

now that information must be exchanged between two solutions radically different

in their energy content: RANS or unsteady RANS (URANS) in one domain and

LES in the other.

The interface problem is critical for applications in which the upstream flow

is essential for predicting the correct behavior of the flow downstream; one case is

when the flow undergoes separation, and errors in the separation prediction can

affect the flow for long distances downstream. In this type of configuration the

generation of energy- and momentum-carrying eddies is expected to be much slower,
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RANS

LES

Figure 1.2: Sketch of a hybrid method application.

as the instability mechanism in the attached boundary layer is weaker than in the

separated shear layer. Using the RANS solution alone to feed the LES domain is

not sufficient, but further modeling must be included in order to have an accurate

LES simulation.

One way to couple RANS and LES is by adding an external source of energy

on the boundary of the two domains for the generation of small scales needed in the

LES domain. The external source of energy can be either a stochastic reconstruction

of the turbulent fluctuations, or a precursor simulation to feed the required unsteady

flow to the LES domain. These reconstructions, of course, must match the upstream

field given by the RANS model in a statistical sense.

The problem of generating turbulent fluctuations for the LES domain is anal-

ogous to the problem of inflow conditions for LES and DNS simulations. In the

following subsection we will describe the most common methods of inflow generation

for spatially developing problems that have been used in LES. We will particularly
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stress those methods that have a more immediate application to hybrid RANS/LES

calculations.

1.4.2 Inflow generation methods

The first applications of LES were to temporally developing flows, in which it

was possible to use periodic boundary conditions in the direction of homogeneity. To

extend LES to the more realistic spatially developing cases, initially modifications

of the periodic boundary conditions were developed that either added extra terms

to the governing equations to account for the boundary-layer growth [34, 35, 36]

or rescaled the fluctuations before applying periodicity [102, 38] (see Figure 1.3 a).

These methods have some shortcomings: first, they require a longer computational

domain, and can be applied only if some similarity law exists, at least in the initial

part of the domain. Furthermore, it is not easy to control precisely the inflow

parameters (boundary-layer thickness and wall stress, in particular)

Schlüter et al. [40] adopted a method that improved the recycling by Lund et

al. [102]: they introduced fluctuations that already have some level of correlation at

the inflow of the LES. To this end they specified the inflow by superposing to a mean

flow obtained from the RANS, the fluctuations obtained from a separate LES of a

wall-bounded flow. These fluctuations were rescaled to match the Reynolds stresses

predicted by the RANS. A similar method, that uses an auxiliary calculation in

which the mean profile is assigned to match the RANS result was recently proposed
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Figure 1.3: Sketch of the rescaling method (a) and recycling method (b).
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by Medic et al. [41].

Another method to generate inflow conditions, (see Figure 1.3 b) consists of

running a separate, precursor, calculation of an equilibrium flow in which either

periodic boundary conditions or recycling arguments can be used. Then, a plane

of velocity data orthogonal to the flow direction is stored at each time step. The

sequence of planes is then read-in as inflow data for a separate calculation of the

flow of interest, with a necessary space and time interpolation. This method has the

advantage, over recycling methods, that the control of integral parameters can be

achieved precisely but may require considerable additional computational resources.

Recycling and precursor techniques are very efficient for simple geometries;

however, the application to complex three-dimensional geometries, non-equilibrium

flow and arbitrary meshes presents some challenges [43]. Because of the limitations of

these approaches, several researchers have attempted to develop methods to generate

realistic inflow conditions from synthetic turbulence.

Le et al. [44] performed calculations of a backward-facing step in which at

the inflow they assigned a mean velocity profile plus a superposition of random

fluctuations with given moments and spectra. The amplitude of the random fluctu-

ations was such that the bulk of the energy was contained in a range of well-resolved

wave-lengths [45]. Since the fluctuations lacked phase information, however, the tur-

bulence levels decayed rapidly, and only some distance downstream the turbulent

eddies regenerated.
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Synthetic turbulence generation methods like that one by Batten et al. [31]

described in the previous section, have also been proposed by Smirnov et al. [47]

and Klein et al. [48]. These methods achieve improved results (compared with

the simple superposition of random fluctuations) by a judicious assignment of the

turbulence spectrum and by trying to match the flow anisotropy. An important

feature of turbulence in wall-bounded flows is its structure, however; since none

of these method contains realistic phase information between the modes, a fairly

long adjustment region downstream of the inflow is unavoidable. In this region

the initially random fluctuations are selectively amplified by the flow, and realistic

turbulent eddies are generated.

A procedure to obtain flow field with temporal correlation was applied by

Davidson [32]; he generates new fluctuating velocity with a prescribed time expo-

nential correlation with a time scale proportional to the turbulent time scale. He

applied the methods to an hybrid LES/RANS channel flow and found that the time

scale was more important than the length scale and that both should not be based

on physical values but related to the grid.

Another method to generate synthetic turbulence was adopted by Sandham

et. al [33]. It is based on the fact that outer and inner part of a boundary layer

are dominated by large scale coherent structures and low speed streaks respectively;

they, therefore, introduced streamwise and spanwise disturbances with deterministic

phase information, and frequencies and wave numbers chosen to match typical size of
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the coherent structures in the inner and outer part of the boundary layer. Moreover,

the spanwise component was computed using the divergence-free condition. To

break any remaining symmetries in the inflow condition, random noise was added.

They tested his method for a flat plate turbulent boundary layer.

Recently, Mathey et. al [28] apply a vortex method to generate random fluctu-

ations representing a turbulent field at the inlet of an LES domain. The generated

velocity field has temporal and spatial correlation. A perturbation is added on

a specified mean velocity profile via a fluctuating two dimensional vorticity field.

Mathey et. al [28] validate the vortex method on fully developed turbulent chan-

nel flow, pipe flow and separated hill obtaining results that compare well with the

reference data. However, they only used methods based on simple random noise for

comparision.

These methods achieve improved results (compared with the simple superpo-

sition of random fluctuations) by a judicious assignment of the turbulence spectrum

and by trying to match the flow anisotropy. As a result, their downstream develop-

ment is more realistic than when random noise was used. In all cases, however, we

continue to observe an initial decay of the turbulence levels (albeit shorter than with

simpler specifications) followed by an eventual establishment of realistic turbulence.

This was shown by Keating et al. [50], who compared various types of inflow

conditions for LES, among them the use of random noise, the adapted database

method by Schlüter [40], the synthetic turbulence generation method proposed by
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Batten et al. [31], and a method based on controlled forcing proposed by Spille-

Kohoff and Kaltenbach [49]. This method is based on the selective amplification

of strong bursts downstream of an inflow supplied by some synthetic turbulence

generation method. A controller is used at several location downstream of the in-

flow to determine the amplitude of a forcing term in the wall-normal momentum

equation. This forcing term acts to reinforce the more realistic eddies, by requiring

that a desired Reynolds shear-stress profile (obtained from the RANS, or from ex-

periments) be achieved. They found that the adapted database and the controlled

forcing methods resulted in significantly shorter development lengths than any of

the other techniques.

1.4.3 Previous work

Applications of the type sketched in Figure 1.2 have been studied by zonal

hybrid RANS/LES methods by several researchers. Labourasse and Sagaut [24],

for instance, developed a coupling method to perform LES overlaid on a mean flow

generated by RANS. The RANS parametrization yields the mean flow field over the

entire region, while the LES equations, which are formulated in perturbation form

(Non-Linear Disturbance Equations — NLDE) are solved only in a small region

of the flow. They applied this method to stationary and pulsed channel, as well

as to the flow over a turbine blade (a configuration conceptually similar to that

shown in Figure 1.2). The turbulent fluctuations in their calculation were generated
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by the natural amplification of acoustic perturbations and numerical errors in the

adverse-pressure-gradient region on the suction side of the blade. The authors did

not quantify how effective this amplification was (i.e., what distance was required

to develop a realistic turbulent flow.

Terracol [25] performed calculations of the flow over a flat-plate trailing edge

with thickness comparable to the boundary layer thickness and a NACA0012 airfoil

also using the NLDE method [24]. In the first configuration he compared various

treatments of the RANS/LES interface: allowing the amplification of existing in-

stabilities to develop (the method used in [24]), a recycling method [26, 102], and a

synthetic reconstruction of the fluctuation field [27]. He found that, in this flow, the

amplification of existing disturbances was not sufficient to establish a well-developed

turbulent flow prior to the trailing edge, while the recycling resulted in correct turbu-

lent statistics, but produced spurious peaks in the pressure spectrum; the synthetic

reconstruction offered the best result, and gave reasonable pressure spectra in the

NACA0012 case.

Schlüter et al. [39] presented results of the hybrid simulation of the flow in a gas

turbine engine in which both the turbine and compressor were simulated by RANS

while the combustor was computed using LES. The calculation was performed in

separate stages: the outflow from the RANS solution of the compressor supplied

inflow conditions for the LES, while the outflow of the LES was used to supply inlet

conditions to the RANS calculation of the turbine. In order to generate turbulence
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at the RANS/LES interface the authors used the results of a related investigation

of inflow conditions for LES by Schlüter et al. [40].

Recently, Keating et al. [30] applied the controlled forcing method by Spille-

Kohoff and Kaltenbach [49] coupled with the synthetic turbulent by Batten et al. [31]

in a hybrid RANS/LES framework for the simulation of boundary layers in favor-

able and adverse pressure gradients, and found that it produced physically realistic

turbulence in short distances. They also observe that the quality of the RANS

data used affects the results significantly; this is true in particular in favorable and

adverse-pressure-gradient boundary layers.

1.5 Plan of the present dissertation

The controlled forcing methods has shown very good performance to generate

realistic eddies in a short distance. This method, moreover, can be used both in a

zonal calculation, as an inflow condition and in a sigle-grid method, through forcing

terms added to the momentum equations.

The purpose of this dissertation is to improve the controlled forcing method[49,

50, 30] by optimizing the controller parameters (which previously were assigned by

trial-and-error) to shorten the transition region and the simulation transient, and

also to explain their physical significance. The test cases used to evaluate the model

will be a flat-plate boundary layer subjected to zero, adverse and favorable pressure

gradients, and a three-dimensional boundary layer. An additional contribution of
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this work was the study of the favorable pressure gradient boundary layer. This flow

was initially computed as a test case for the hybrid calculations. The richness of the

physics we encountered prompted us to look at this problem in additional depth.

In the following chapters we will first describe the methodology used, then

discuss the controller function, and the optimization of its parameters. The result

of four applications will be presented next, followed by conclusions and recommen-

dations for future work. The following chapter will describe some results relating to

the relaminarization and retransition of boundary layers subjected to strong accel-

eration. Finally, conclusions and recommendations for future work will be made.
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Chapter 2

Problem formulation

2.1 Governing equations

The numerical methods used in this work is the same as [51] The reference

system is cartesian with x or x1 being the streamwise direction, y or x2 the wall-

normal direction, and z or x3 the spanwise direction, and with velocity components

u, v and w or u1, u2 and u3 respectively. The equations are in non-dimensional

form, with the following definition:

x∗

i =
xi

L
u∗

i =
ui

Uo
t∗ =

tUo

L
p∗ =

p

ρ

L

U2
o

Re =
LUo

ν

where L and Uo are the reference length and velocity.

The non-dimensional equations can, therefore, be written as

∂ui

∂xi

= 0 (2.1)

∂ui

∂t
+

∂ujui

∂xj

=
1

Re

∂2ui

∂xj∂xj

− ∂p

∂xi

(2.2)

where the ∗ is omitted. The large-eddy simulation equations are derived from the

previuous equation by appling a filtering operation, defined as

f (x) =

∫
f (x′) G

(
x, x′; ∆

)
dx′ (2.3)
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where G is a filter function with a characteristic length, ∆. The filtering operation

separates the turbulent motion into large and small scales. The filter functions used

include the sharp Fourier cutoff filter, the Gaussian filter and the top-hat (or box)

filter. Both the Fourier cutoff and Gaussian filter are defined in spectral space, while

the top-hat filter is defined in physical space. As finite difference methods are used

in the present work, it is computationally more efficient to use the top-hat filter,

which is defined in physical space as

G(x) =





1/∆ if |x| ≤ ∆/2

0 otherwise

(2.4)

Appling the filter operator to the Navier-Stokes equation gives:

∂ui

∂xi
= 0 (2.5)

∂ui

∂t
+

∂ujui

∂xj
=

1

Re

∂2ui

∂xj∂xj
− ∂p

∂xi
− ∂τij

∂xj
(2.6)

where the subgrid-scale stress term, τij is defined as

τij = uiuj − uiuj (2.7)

This term is unclosed and must be modelled. The closure of the subgrid-scale

stress terms is known as subgrid-scale modelling. In this work we use an eddy-

viscosity closure with dynamic determination of the coefficient. After describing the

numerical technique used to solve the governing equations (2.6) and the SGS model

employed, the final subsection details the averaging procedures required to remove

the numerical instability arising from sharp fluctuations in the coefficients.
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2.2 Numerical method and boundary conditions

The Navier-Stokes equations are integrated in time using a fractional step tech-

nique [62]. The wall-normal viscous and subgrid-scale diffusion terms are advanced

implicitly using the Crank-Nicolson method. The other terms in the equations are

advanced using a low-storage third-order Runge-Kutta scheme [61]. The three-step

(k = 1, 2, 3) fractional steps, time advancement scheme is, therefore,

ûi − βk∆tM (ûi) = rk−1
i (2.8)

∂2 (δp)

∂xi∂xi
=

1

2βk∆t

∂ûi

∂xi
(2.9)

uk
i = ûi − 2βk∆t

∂ (δp)

∂xi
(2.10)

pk = pk−1 + δp (2.11)

where the explicit terms, rk−1
i , are

rk−1
i = uk−1

i + ∆t

(
βkM

(
uk−1

i

)
+ γkA

(
uk−1

i

)
+ ζkA

(
uk−2

i

)
− 2βk

∂pk−1

∂xi

)
(2.12)

At the first substep, when k = 1, uk−1 = un, and at the end of the third substep,

the solution is un+1 = uk. The coefficients of the time advancement scheme are

β1 = 4/15 β2 = 1/15 β3 = 1/6 (2.13)

γ1 = 8/15 γ2 = 5/12 γ3 = 3/4 (2.14)

ζ1 = 0 ζ2 = −17/60 ζ3 = −5/12 (2.15)

This time advancement scheme is stable under the following conditions:

α = ∆t

(
ui

∆xi

)
<

√
3 (2.16)
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where i = 1, 2, 3 and

β =

(
4

Re

∆t

∆x2
i

)
<

√
3 (2.17)

where i = 1, 3.

A second-order finite difference scheme is used for spatial discretisation of

all terms [63]. While spectral methods are more accurate and less diffusive than

finite difference schemes, they are more difficult to use in complex geometries. Moin

and Mahesh [64] found that equivalent results to a spectral method can be obtained

using a second-order finite difference method if the mesh is doubled in each direction.

Higher-order, conservative finite difference schemes have been proposed [63]; however

these have additional complications in the use of nonperiodic boundary conditions.

A staggered grid [65] is used for its good conservation properties [63] , its accuracy

and to prevent the “odd-even” decoupling of pressure.

The following discrete differencing and averaging operators [63] are defined on

the staggered grid:

δ1φ

δ1x

∣∣∣∣
i

≡ φi+1/2 − φi−1/2

xi+1/2 − xi−1/2
(2.18)

φ
1x

∣∣∣
i
≡ φi+1/2 + φi−1/2

2
(2.19)

These operators are then used to discretise the Navier-Stokes equations yielding

δ1ui

δ1xi

= 0 (2.20)

δ1ui

δ1t
+

δ1uj
1xiui

1xj

δ1xj
=

1

Re

δ1

δ1xj

(
δ1uj

δ1xj

)
− δ1p

δ1xi
− δ1τij

δ1xj
(2.21)
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The subgrid-scale coefficient is evaluated using the dynamic procedure at each

timestep. The subgrid-scale eddy-viscosity, and the scale-similar contribution to the

subgrid-scale stress is evaluated at every Runge-Kutta substep.

All the results are averaged in time for a long time period (at least 15 Large

eddy turn over times) in order to have statistically steady quantities. The samples

of turbulent quantities for each cases are recorded after the transient time is over.

Periodic boundary conditions are used in the spanwise direction, with no-slip

boundaries at the solid wall, and convective conditions [82] used at the outflow.

The freestream condition for the zero pressure gradient boundary layer and the 3D

boundary layer [102],

∂u

∂y
= 0; v = U∞

dδ∗

dx
;

∂w

∂y
= 0; (2.22)

was used at the upper boundary, where δ∗ is the boundary layer displacement thick-

ness and U∞ is the freestream velocity. We calculated dδ∗/dx using a linear re-

gression on the calculated δ∗(x) distribution. In the case of favorable or adverse

pressure-gradient boundary layer the U∞ was assigned and the following expression

were used:

∂u

∂y
= −∂v

∂x
; v = U∞

dδ∗

dx
+ (δ∗ − h)

d U∞

dx
;

∂w

∂y
= 0; (2.23)

with h the higher of the domain. In the adverse pressure gradirnt boundary layer

case, V∞ was assigned. Other boundary condition are described with the specific

cases in Chapter 4. When a derivative of a flow variable is required at a wall (i.e.,

31



for the wall-normal diffusion term), a three-point one-sided approximation is used

[66]

The Poisson equation (2.9) resulting from the fractional step technique is

solved using Fourier transforms in the spanwise directions followed by cyclic reduc-

tion, and a direct tridiagonal matrix inversion in the wall-normal direction. Neu-

mann boundary conditions are used for no-slip walls.

The code is parallelized using Message Passing Interface (MPI). The compu-

tation is distribuited between n processors (n was varied between 1 and 4 for all the

simulations described in this dissertation).

2.3 Subgrid-scale modeling

The term τij denotes the subgrid-scale (SGS) stress, which represent the cou-

pling of small scales on the resolved turbulence. The closure of the subgrid-scale

stress is known as subgrid-scale modeling. In the following subsection the eddy-

viscosity closure is presented, and in the next subsection the dynamic modeling

is described. Dynamic modeling removes the need for a priori specification of the

model coefficient. In the last subsection the averaging procedure required to damp

sharp fluctuations in the model parameters is presented.
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2.3.1 Eddy-viscosity assumption

Eddy-viscosity subgrid-scale models relate the subgrid-scale stresses, τij, to

the large-scale (i.e., resolved) strain rate tensor, S ij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, through a

subgrid-scale eddy-viscosity, νsgs
t :

τij −
δij

3
τkk = −2νsgs

t Sij (2.24)

The simplest eddy-viscosity subgrid-scale model is Smagorinsky’s (1963), where the

eddy viscosity is modeled as the product of a length scale (proportional to the

filter width, ∆) and a velocity difference at that scale (proportional to ∆|S|, where

|S| =
(
2SijSij

)1/2
). A constant, Cs, is included, giving the following model for the

subgrid-scale eddy viscosity:

νsgs
t = C2

s ∆
2|S| (2.25)

The Smagorinsky constant must be evaluated in order to apply the model. In

isotropic turbulence, if the filter width is in the inertial subrange, the constant takes

values between Cs = 0.179 and Cs = 0.23 [52]. However in the presence of shear,

near solid boundaries or near transition this value needs to be decreased. Methods

such as van Driest near-wall damping [53] and intermittency factors [54] have also

been used.

Eddy-viscosity models can represent the dissipative effects of the small scales

accurately. However, they fail to reproduce the local stresses with adequate accuracy.

A priori studies comparing the actual subgrid-scale stresses calculated using DNS

33



and those calculated using an eddy-viscosity subgrid-scale model show a correlation

coefficient of between 0 and 0.25 [55, 56].

2.3.2 The dynamic procedure

Dynamic models evaluate the subgrid-scale model coefficient from information

contained in the resolved-flow field of a large eddy simulation. In this way the

dynamic of the smallest resolved scales are implicitly assumed similar to the dynamic

of the subgrid scale. The advantages of the dynamic model are that is not necessary

to tune any constant for different flow field problem, that the subgrid scale stress

vanish in a laminar flow and at a solid boundary, and that they have the correct

asymptotic behavior in the near wall region of a turbulent boundary layer. Thus

the introduction of the dynamic procedure by Germano et al. [100] resolved one

of the major difficulties in using subgrid-scale models – the need for a priori input

of model coefficients. Using the dynamic procedure, the coefficients in the model

are determined during the calculation and are based on the energy content of the

smallest resolved scales.

A test filter is defined with a width, ∆̂, larger than the grid filter width, ∆.

The calculation of the coefficients in the model is based on the Germano identity

[100] :

Lij = Tij − τ̂ij (2.26)
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which relates the resolved turbulent stresses, Lij,

Lij = ûiuj − ûiûj (2.27)

to the subgrid-scale stresses, τij, (equation (2.5)) and the subtest stresses, Tij,

Tij = ûiuj − ûiûj (2.28)

If an eddy-viscosity model is used to parameterize the subgrid-scale and subtest

stresses,

τij = −2Cev∆
2|S|Sij (2.29)

Tij = −2Cev∆̂
2|Ŝ|Ŝij (2.30)

then Germano’s identity ( 2.26) yields the following equation for Cev:

CevMij = Lij (2.31)

where

Mij = −a2∆
2|Ŝ|Ŝij + ∆

2 ̂|S|Sij (2.32)

and a = ∆̂/∆ is the ratio of the test filter width to the grid filter width.

As equation( 2.31) has a single coefficient and five independent equations, the

system is overdetermined. Lilly [60] proposed a least-squares minimization of the

error, giving the following equation for determining the coefficient:

Cev = −1

2

〈LijMij〉
〈MijMij〉

(2.33)

where 〈·〉 is an appropriate average.
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2.3.3 Averaging of the eddy-viscosity coefficient

The averaging in the dynamic procedure is required to remove the very sharp

fluctuations in the coefficient which can lead to significant errors, not to mention

numerical instability. These sharp fluctuations are caused by a mathematical incon-

sistency in the expression for Cs in the dynamic procedure. Meneveau et al. [80]

proposed averaging along pathlines in order to reduce the noise. To have Galilean

invariance, the time average have to be performed by following fluid particles of the

flow. This average method is known as the Lagrangian dynamic model, allowing

for averaging in inhomogeneous flows in complex geometries. Here, the average is

defined as

〈f〉 = If =

∫ t

−∞

f(t′)W (t − t′) dt′ (2.34)

where the integral is carried out following a flow pathline, and W (t) is a weighting

function. These are then used to replace the averages in the calculation for the

coefficient. For example, in the dynamic eddy-viscosity model,

Cs = −1

2

〈LijMij〉
〈MijMij〉

= −1

2

ILM

IMM
(2.35)

where

ILM =

∫ t

−∞

Lij(t
′)Mij(t

′)W (t − t′)dt′ (2.36)

IMM =

∫ t

−∞

Mij(t
′)Mij(t

′)W (t − t′)dt′ (2.37)

An exponential weighting function is usually chosen [80]:

W (t) = T−1 exp(−t/T ) (2.38)
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where the time scale, T , controls the memory length of the Lagrangian averaging

and here is set to

T = 1.5∆̄ × (−8ILMIMM)−1/8 (2.39)

As an exponential weighting function is used, ILM and IMM are actually solutions

to relaxation-transport equations. Meneveau et al. [80] suggests that the computa-

tional cost of the solution of the two additional transport equations can be reduced

by approximating them as

In+1
LM (x) = H{εLn+1

ij Mn+1
ij + (1 − ε)In

LM (x − ūn∆t)} (2.40)

In+1
MM(x) = H{εMn+1

ij Mn+1
ij + (1 − ε)In

MM(x − ūn∆t)} (2.41)

where H{·} is the ramp function (H{x} = x if x ≥ 0, and zero otherwise) and

ε =
∆t/T

1 + ∆t/T
(2.42)

Linear interpolation is used to evaluate the integrals at the position x − ūn∆t. A

thorough analysis of the Lagrangian averaging procedure is given in Meneveau et

al. [80].

2.3.4 Filtering operations

In the present study, filtering of the large-scale governing equations is implicitly

defined by the second-order finite differences on the numerical grid. Explicit filtering

is performed at test filter level (for the dynamic method). Second-order top-hat
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filters were used and were calculated using

f i = fi +
h2

f

24

δ2f

δx2
= fi +

h2
f

24

(
fi−1 − 2fi + fi+1

h2

)
(2.43)

where h is the grid width and hf is the filter width. This yields the well known

Simpson’s rule and trapezoidal rule filters with filter widths of hf/h = 2 and
√

6

respectively. Trapezoidal rule filters were used in this work, comprising a test filter,

f̂ , of width
√

6∆, where ∆ is defined as geometric mean in each direction’s filter

width:

f̂i =
1

4
(fi−1 + 2fi + fi+1) (2.44)

and a grid filter, f , of width
√

3∆:

f i =
1

8
(fi−1 + 6fi + fi+1) (2.45)

Trapezoidal rule filters were selected over Simpson’s rule based filters due to slightly

improved results in LES of turbulent channel flow using the dynamic mixed model.

2.4 RANS equations and Reynolds stress modeling

The equation for the RANS model are formally identical to the (2.6) where

the term τij

τij = uiuj − uiuj (2.46)

are defined as the Reynolds stresses and must be modeled. In this dissertation an

eddy-viscosity model is used to close the equations (2.6):

τij −
δij

3
τkk = −2νtSij (2.47)
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with νt evaluated through the one equation Spalart-Allmaras model [70], or through

a two equations k − ε model. In this section, the two basic models will be shown:

the Spalart-Allmaras [70] model and the two-layer k − ε model [71, 72].

2.4.1 Spalart-Allmaras model

The Spalart-Allmaras model relies directly on a transport equation for the

turbulent viscosity. The form of this model leads to the following equations:

∂ν∗

∂t
+~u · ∇ (ν∗) = cb1 (1 − ft2)S∗ν∗ +

1

σ
(∇ · (ν + ν∗)∇ν∗)

+cb2 (∇ν∗)2 −
(

cw1fw − cb

κ

2

ft2

)(
ν∗

d

)2

+ ft1Du2 (2.48)

The turbulent viscosity µt is computed from

µt = ρν∗fv1 (2.49)

fv1 =
χ3

χ3 + C3
v1

(2.50)

χ =
ν∗

ν
(2.51)

where the modified viscosity ν∗ equals νt away from the wall. The damping function

fv1 is based on the well know logarithmic law of the wall and lets νt go smoothly to

zero near the wall.

S∗ is related to the modified magnitude of the vorticity:

S∗ = |S| + ν∗

κ2d2
fv2 (2.52)

fv2 = 1 − χ

1 + χfv1

(2.53)
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where |S| is the magnitude ofm the vorticity and d the distance to the closest wall.

The function fv2 is built as fv1 on the hypothesis of a classical logarithmic-layer

behaviour. κ is the von Karman constant 0.41.

The function fw recovers the decay of the destruction term in the outer layer

and produces a realistic skin-friction coefficient:

fw = g

(
1 + c6

w3

g6 + c6
w3

) 1

6

(2.54)

g = r + cw2

(
r6 − r

)
(2.55)

r =
ν∗

S∗κ2d2
(2.56)

The function ft1 and ft2 makes it possible to prescribe transition to turbulence:

ft1 = ct1gte
−ct2

ω2
t

Du2 (d2+g2
t d2

t) (2.57)

ft2 = ct3e
−ct4χ2

(2.58)

where dt is the distance between the current point and the transition to turbulence

point, ωt is the wall vorticity at the transition point, Du is the difference between

the velocity at the current point and that at the transition point, and gt is

gt = min

(
0.1,

Du

ωt∆xt

)
(2.59)

where ∆xt is the grid spacing along the wall at the transition point. The model

constants have the following default values: cb1 = 0.1355, cb2 = 0.622, σ = 0.6667,

cv1 = 7.1, cw1 = cb1

κ
+ 1+cb2

σ
, cw2 = 0.3, cw3 = 2.0.
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2.4.2 k − ε model

We tested the two-layer k − ε model [71, 72] where in the outer layer, the

standard k − ε model is used; the equations for k and ε in this case are:

∂k

∂t
+ ∇ · (~uk) = ∇ ·

(
ν +

νt

σk

)
∇k + Pk − ε (2.60)

and for its dissipation rate ε is

∂ε

∂t
+ ∇ · (~uε) = ∇ ·

(
ν +

νt

σε

)
∇ε + Cε1fε1

ε

k
Pk − Cε2fε2

ε2

k
, (2.61)

with the term Pk, the production of turbulent energy, defined as

Pk = 〈uiuj〉
∂ui

∂xj
. (2.62)

and the turbulent viscosity:

νt = Cµfµ
k2

ε
, (2.63)

with

fµ = e−2.5/(1+Rt/50) (2.64)

fε1 = 1.0 (2.65)

fε2 = 1 − 0.3e−R2
t (2.66)

as given function of the turbulent Reynolds number

Ret =
k2

νε
(2.67)

and Cµ = 0.09, Cε1 = 1.55, Cε2 = 2, σk = 1, σε = 1.3
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In the inner-layer, the eddy viscosity is computed using

νt,inner = Cµ`µ

√
k (2.68)

where the length scale, `µ is given by

`µ = yc`

(
1 − e−Rey/Aµ

)
, Rey =

y
√

k

ν
(2.69)

where y is the distance to the nearest wall and Aµ = 70, c` = κC
−3/4
µ .

The eddy viscosity is obtained by combining the inner- and outer-layer eddy

viscosities through a blending function, λε, which uses a hyperbolic tangent to vary

smoothly from 0 to 1:

νt = λενt,outer + (1 − λε)νt,inner; (2.70)

λe =
1

2

[
1 + tanh

(
Rey − 200

0.1Rey/ tanh(0.98)

)]
. (2.71)

2.5 Synthetic turbulence generation

The synthetic turbulence generation method of Batten et al. [31] is used to

create a three-dimensional, unsteady velocity field at the inflow plane of the LES

region. The Batten method is easy to implement numerically and takes into account

the anisotropy of the flow with a very simple solution that will be explained in the

following. An intermediate velocity, vi is first constructed, using a sum of sines and

cosines with random phases and amplitudes:

vi (xj, t) =

√
2

N

N∑

n=1

[
pn

i cos
(
d̂n

j x̂
n
j + ωnt̂

)
+ qn

i sin
(
d̂n

j x̂
n
j + ωnt̂

)]
, (2.72)
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where

x̂j = 2πxj/Lb, t̂ = 2πt/τb, (2.73)

are spatial coordinates normalized by the length- and time-scale of the turbulence.

In the above, τb = k/ε and Lb = τbVb are the turbulence time- and length-scales,

and Vb = k1/2 is the velocity scale.The random frequencies ωn = N(1, 1) are taken

from a normal distribution N(µ, σ2) with mean µ = 1 and variance σ2 = 1. The

amplitudes are given by

pn
i = εijkζ

n
j dn

k , qn
i = εijkξ

n
j dn

k (2.74)

where ζn
i , ξn

i = N(0, 1), and

d̂n
j = dn

j

V

cn
. (2.75)

are modified wavenumbers obtained by multiplying the wavenumbers, dn
i , by the

ratio of the velocity scale Vb = Lb/τb to cn, given by

cn =

√
3

2
〈u′

lu
′

m〉
dn

l d
n
m

dn
kd

n
k

. (2.76)

The wave-numbers dn
i = N(0, 1/2) are chosen from a normal distribution with vari-

ance 1/2, resulting in a three-dimensional spectrum that behaves like d4 exp(−d2).

Although the wave-numbers dn
i are distributed isotropically in a sphere, dividing

them by cn tends to elongate those wave-numbers that are most closely aligned with

the largest component of the Reynolds-stress tensor, and contract those aligned with

the smaller ones. This results in a more physically realistic spectrum of turbulence,
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with eddies that (near the walls) are more elongated in x, and tend to be more

spherical in the channel center.

The synthetic turbulent fluctuation field is finally reconstructed by a tensor

scaling:

u′

i = aikvk (2.77)

where aik is the Cholesky decomposition of the Reynolds-stress tensor.

To better understand the effects of the decomposition (2.2) in the generation

of synthetic turbulence, it can be written as:

vi(xj, t) =

(
2

N

) 1

2
N∑

n=1

<
[
(pn

i − jqn
i )

(
cos

(
d̂n

j x̂
n
j + ωnt̂

)
+ jsin

(
d̂n

j x̂
n
j + ωnt̂

))]

(2.78)

where < is the real part and j is the imaginary unit. From (2.78) we obtain

vi(xj, t) =

(
2

N

) 1

2
N∑

n=1

<
[
(pn

i − jqn
i ) ej(cdn

j
cxn

j +ωnbt)
]
; (2.79)

expanding the exponential in Taylor series gives

vi(xj, t) =

(
2

N

) 1

2
N∑

n=1

<


(pn

i − jqn
i )


1 +

∞∑

m=1

jm

(
d̂n

j x̂n
j + ωnt̂

)m

m





 (2.80)

where

(
d̂n

j x̂
n
j + ωnt̂

)
=

(
d̂n

j

2πxj

Lb
+ ω̂n

2πt

τb

)
=

(
d̂n

j

2πxj

τb

√
k

+ ω̂n
2πt

τb

)
(2.81)

with τb = k/ε. The wavenumber and frequency modulation depends on the time

scale τb that is large near the wall and small far from it. As we can see from

(2.80), the in-phase and in-quadrature decomposition (2.2) has all the powers of
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(
d̂n

j x̂
n
j + ωnt̂

)
. This results in an energetic non linear modulation (in wave-number

and frequency) that spreads the energy of the signal on to a broad spectrum. Far

from the wall, however, τb = k/ε is large with respect to its value near the wall,

so that in (2.80) we can neglect the non linear term, resulting in a smooth linear

modulation (uniform distribution of the wave number) of the signal energy. In this

way, the spectra module of the turbulence is mimicked by the decomposition (2.2).

Figure 2.1 shows the distribution of the wavenumbers dn
i and modified wavenum-

ber
dn

i

cn for different distances from the wall. It is clear that far from the wall the

distribution of the modified wavenumber becomes more isotropic in space.

The result of the synthetic fluctuation produced by the Batten’s decomposition

(2.2) for different distance from the wall is shown in Figure 2.2. It is evident that

close to the wall the structure are strongly anisotropy, stretched in the direction of

the larger Reynolds stress. Far from the wall, on the other hand, the distribution

becomes more isotropic.

In the present work either the Spalart-Allmaras (S-A) or k−ε model [71, 72] is

used in the RANS section of the domain. From one of the two models the time scale

and Reynolds stresses for the synthetic turbulence generation are computed. The

Spalart-Allmaras model gives the averaged flow field, and the turbulent viscosity νt,

while the k − ε model gives the turbulent kinetic energy k, and the dissipation rate

ε other than the averaged field, of course. From the k − ε model we have:

νt = ρCµk2/ε (2.82)
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where Cµ = 0.09; therefore, the Reynolds shear stress 〈u′v′〉 are:

−〈u′v′〉 = νt
∂u

∂y
(2.83)

and the normal Reynold stresses are assumed to be equal:

〈u′u′〉 = 〈v′v′〉 = 〈w′w′〉 =
2

3
k. (2.84)

Therefore, the wavenumbers used in the present hybrid RANS/LES formulation are

also isotropic. The time-scale for the generation of synthetic turbulence is the ratio

of k over ε:

τb =
k

ε
(2.85)

If the Spalart-Allmaras model is used, to relate the TKE, k, to the Reynolds shear

stress, 〈u′v′〉, we use the experimental result [73, 74]

| − 〈u′v′〉| = νt

∣∣∣∣
∂u

∂y

∣∣∣∣ = a1k (2.86)

where a1 =
√

Cµ and Cµ is typically 0.09 as in the previous case. The normal

Reynolds stresses are evaluated as in the S-A model, and for the time-scale, we use

the definition of eddy-viscosity from the k−ε turbulence model to express ε in terms

of k and νt [75]:

ε = cµk
2/νt . (2.87)

so the time scale

τb =
k

ε
=

1
√

cµ

∣∣∣∂U
∂y

∣∣∣
(2.88)
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In the simulations presented here, the number of modes, N , used to generate

the synthetic field was 200. This number was required to ensure that the resulting

statistics were independent of the number of modes used. Further details of the

method can be found in [31].
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Figure 2.1: Distribution of the wavenumbers dn
i (top right) and modified wavenum-

bers
dn

i

cn for different distances from the wall: top right figure is for y+ = 12, bottom

left is y+ = 100, and bottom right is y
δ∗

= 5
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Figure 2.2: Synthetic fluctuation produced by the Batten’s decomposition for dif-

ferent distance from the wall: bottom figure is for y+ = 12, central is y+ = 100, and

top is y
δ∗

= 5 The distance are based on a LES calculation from which the Batten

decomposition is evaluated.
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Chapter 3

The controlled forcing method and its tuning

3.1 Introduction

The controlled forcing method for the turbulence generation consists of two

parts: a method to generate synthtic turbulence at hte inflow (the method by Batten

et al. [31] is used here) and the addition of a forcing term to the wall-normal

momentum equation that amplifies the velocity fluctuations in that direction, thus

enhancing the production term in the shear-stress budget. The forcing amplitude

is determined by a PI controller, which has two components acting in concert: a

proportional part and an integral one; the two outputs are added together to form

the actuating signal of the system to control, the Navier-Stokes equation system.

PI controllers give a robust performance over a wide range of operating con-

ditions and are widely used due to their easy implementation. They are frequently

used when the mathematical model of the system to control is complex or unavail-

able. Typically, the PI tuning for complex systems is based on semiempirical rules

which have been proven in practice (for example the Cohen Coon tuning method

[76] when a first-order approximation of the system to control is available). In other

cases, for unknow non-linear system for instance, the primary target in the PI tun-
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Figure 3.1: Block diagram of the PI controller.

ing is the stabilization of the controlled system and, marginally, the steady state

performances (e.g., minimize the steady state error).

In the controlled-forcing method, the system to control is the filtered NS equa-

tion system with a dynamic subgrid model. The desired output is the time-averaged

Reynolds shear stress, generally obtained from the RANS solution. The output of

the system is the instantaneous u′v′ correlation; an exponentially weighted moving-

average filter is added to obtain smooth Reynolds stresses. The block diagram of

the resulting system is shown in Figure 3.1.

First of all, we describe how the PI controller works in the closed-loop system

using the schematic in Figure 3.1. The variable e(t), the difference between the

desired output 〈u′v′〉des and the actual output 〈u′v′〉t, is sent to the PI that computes

the integral of the error. The output of the PI (the control signal) is equal to KP

times the magnitude of the error, plus KI times the integral of the error. The

control signal is sent to the system to control, and a new output u′v′ is obtained.

The new output is sent back (through the moving average filter) to obtain the new
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error signal e(t). This process goes on and on. The error is defined as

e(y, z, t) = 〈u′v′〉des(xo, y) − 〈u′v′〉t(xo, y, z, t) (3.1)

where 〈u′v′〉des(xo, y) is the target Reynolds shear stress at the control plane x = xo,

which is obtained from the RANS solution, and 〈u′v′〉t(xo, y, t) is the Reynolds shear

stress or production, averaged over some time interval. The magnitude of the forcing

is set to

f(xo, y, z, t) = r(y, z, t)
[
u(xo, y, z, t) − 〈u〉t(xo, y, z, t)

]
(3.2)

where

r(t) = KP e(t) + KI

∫
e(t′)dt′ (3.3)

is the output of the PI controller. The significance and optimal values of the two

constants, KP and KI , will be discussed later. The forcing so defined is added to

the y-momentum equation. Enhancing the v′ fluctuations through events with large

u′ [the term in square brackets in (3.2)] has the effect of accelerating the production

of either Reynolds shear stress or the production of turbulent kinetic energy (TKE).

The error is evaluated and forcing is performed at several planes within a few integral

scales of the inflow (see below).

In the next section we will analyze and the time-averaging window filter to

relate it to local time scales of the flow. Then, the PI controller will be tuned in

order to have stable results and minimize the error in a short distance downstream

the controlled region.
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3.2 Analysis of the controller parameters

The controller described above has three parameters: the constants KP and KI

and the width Tave of the averaging window used to obtain 〈u′v′〉t. In past applica-

tions [49, 50, 30] no investigation was carried out in which they were systematically

varied. In this section we examine the transient and steady-state responses of the

flow to these parameters, and relate them to physical properties of the flow. The

target is to choose them to obtain statistically steady-state Reynolds stresses that

match the desired ones in a short distance without destabilizing the Navier-Stokes

equation system. While we cannot claim that to have found true optimal values of

these parameters, we will call as “optimal” the value that gives realistic turbulence

in the shortest distance, and with the shortest transient. In the next subsection it

is presented the test case where the controller will be tuned.

3.2.1 Testing strategy: ZPG boundary layer

We test the PI controller in a flat-plate, zero-pressure-gradient (ZPG) bound-

ary layer. In general the strategy to implement a RANS/LES calculation is the

following (see Figure 5.1): first we perform a reference LES of the entire domain of

interest; then we perform a RANS calculation of the equilibrium region, and use the

RANS statistics to assign the inflow of the LES. Comparisons between the hybrid

RANS/LES and the reference calculation allow us to evaluate the effectiveness of

the method. However, to test the PI control we will perform an LES calculation
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Figure 3.2: Sketch of the geometric configuration.

instead of a RANS calculation: first, we carried out the reference LES on a domain

240δ∗o × 25δ∗o × 25δ∗o in the streamwise, wall-normal and spanwise directions, respec-

tively; here δ∗o is the displacement thickness at the inflow. From this calculation, the

time average Reynolds stress and the turbulence scales were extracted at x/δ∗

o = 80.

At this section a LES of dimension 120δ∗o ×25δ∗o ×25δ∗o with the synthetic turbulence

generation and the controlled forcing at the inflow began; in this way it was possi-

ble to analyze the effect of the KI , KP and Tave parameters without the influence

introduced by a RANS model. The control planes were distributed over a length of

27.5δ∗o downstream of the inflow of the LES domain, with a spacing between planes

of one boundary-layer thickness to allow the flow to re-adjust after the forcing (test

calculations in which the forcing was distributed continuously were also carried out,

with no significant differences). The inflow Reynolds number (based on freestream

velocity Uo and displacement thickness) was Re∗δ = 1000. The grid spacings in the
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streamwise and spanwise directions were ∆x/δ∗o = 1.25 and ∆z/δ∗o = 0.385, while

64 points were used in the wall-normal direction (with y+
min ≈ 1.0). The recycling

and rescaling method of Lund [102] was used as inflow boundary condition for the

reference LES.

3.2.2 The moving-average exponential window

We begin by discussing the moving-average (MA) filter. In the classical termi-

nology used in the feedback control theory, this block is called “Measuring Device”;

the output of the NS equations are the three instantaneous velocity fluctuations u′

i,

which are the inputs to the MA block. Its output is an appropriate time-averaged

Reynolds stress that can be compared to the result of the RANS. We use an expo-

nentially weighted moving-average filter, which places more emphasis on the most

recent data available. At time-step k we use the following expression:

〈xk〉 =

(
1 − ∆t

Tave

)
〈xk−1〉 +

∆t

Tave
xk (3.4)

∆t is the time-step, and x is the data to average.

As new data is accumulated, the contribution of the oldest data decreases.

The value of ∆t/Tave determines the memory of the filter. We define an attenuation

time Td as the time after which the contribution of the signal at some time to the

averaged data is negligible (say, 5% of the original contribution). It is easy to show
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Figure 3.3: (a) Domain-averaged turbulent kinetic energy for Tave = 1, KI =

5, KP = 30; Tave = 10, KI = 5, KP = 30; Tave = 100, KI = 1, KP = 1;

Tave = 100, KI = 5, KP = 30. (b) Cf for the reference LES (◦ ) and the cases

shown in (a).
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that, in this case,

Td

Tave
=

∆t

Tave

log 0.05

log
(
1 − ∆t

Tave

) (3.5)

since 1 >> ∆t/Tave, (3.5) gives Tave ' Td/3. We expect that Td should be of the

order of a large-eddy turnover time (LETOT) δ∗/uτ , which results in Tave ' 10 in

the present calculation. Values much larger than this result in long transients, as

the error affects the input to the forcing for a long time, and the forcing does not

adjust rapidly enough to the present flow conditions, but is strongly affected by

past events. This is shown in Figure 3.3(a) where the domain-averaged turbulent

kinetic energy (TKE) is plotted as a function of time; in all the calculations we used

the optimal values of KP and KI, except for one case in which we employed the

values used in [50, 30], that is KP = KI = 1. A longer transient can be observed

in the case Tave = 100 compared with Tave = 10. With the lower values of KP

and KI used in early applications of this method the transient is still quite long,

the magnitude of the oscillations is significant, and reasonable flow statistics require

very long averaging times. An optimal choice of KP and KI , on the other hand,

reduces the amplitude of the fluctuations, so that even an incorrect value of Tave is

less damaging. A low value of Tave results in incorrect prediction of the flow: since

the short averaging gives values of 〈u′v′〉t that are too far from a stationary sample,

and thus may result in excessive forcing even if the flow has reached a realistic state.

In Figure 3.3(b) the skin-friction coefficient Cf = 2τw/ρU2
∞

(where τw is the

wall stress) is shown for the same two cases, and it appears that the steady state
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Figure 3.4: Skin friction coefficient Cf with KI = 5 and KP = 30; first control

plane after one grid cell; first control plane after one boundary layer thickness

results are also strongly influenced by the time window of the MA filter. Excessively

small values of Tave result in incorrect steady state results, while the other values of

Tave are in reasonable agreement with each other. The case with Tave = 10 (i.e., Td

of the order of one LETOT) seems, altogether optimal, since it results in somewhat

more accurate statistics and a much shorter transient (and reduced CPU costs).

Unless explicitly specified, Tave = 10 for all following cases.

On a related note, it should be mentioned that previous applications of the

controlled forcing method [49, 50, 30] used spanwise averaging (in addition to the

time-averaging in the MA block) to supply a smoother signal to the forcing; also

the first control plane was located one boundary-layer thickness downstream of the

inflow plane. We now try to better address these choices. Regarding the control

plane, the result in term of Cf coefficient in Figure 3.4 shows that the best choice

is to have the first control plane immediately after the inflow plane. This was not

evident in [50, 30] because the parameters were not in the optimal range, expecially
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Figure 3.5: Skin friction coefficient Cf with KI = 5 and KP = 30; 〈u′v′〉t is

spanwise-averaged; 〈u′v′〉t is not spanwise-averaged.

the time window Tave. If this is not tuned well, the control has a weak sensitivity

on the position of the control planes.

Regarding the spanwise average, Figure 3.5 shows calculations in which no

spanwise averaging was performed, compared to a simulation in which the u′v′ cor-

relation is averaged in the spanwise direction as well as in time. Better result are

obtained when the error reflects more closely the local and instantaneous conditions

of the flow. We observe more rapid adjustment of the flow towards the reference

LES, as the forcing is more responsive to the local state of the flow.

In the next subsection we will turn the attention to the PI controller. This

will allow us to evaluate the influence of its parameters on the transient time and

steady-state results.
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3.2.3 The PI control

In general a proportional controller affects the rise-time and the transient time

of the dynamic system: it modifies the bandwidth of the frequency response of the

closed loop system and the gain of the zero frequency. If KP is large, the output of

the integral block is more sensitive to the high-frequency variation of the error, and

the stability of the system can be affected. The integral control, on the other hand,

gives a large gain at low frequency and reduces the break frequency (the point where

the amplitude spectrum of the transfer function is zero); its effect is to eliminate

the steady-state error and attenuate the high-frequency disturbances. In fact, the

output of the integral control will change over time as long as an error exists, but

the phase lag between the input and output of the integral block increases for all

of the frequencies (the phase of the integrator block starts at −90o). If KI is large,

the phase lag is extended to higher frequency, so the system can became oscillatory

and potentially unstable.

To better understand these considerations, we evaluate the transfer function of

the PI control, i.e., the Laplace transform of (3.3) divided by the Laplace trasform

of the error e(t):

G(s) = KP +
KI

s
(3.6)

where s is the complex variable s = α+jω. It is simple to see the frequency response

of the PI control: setting s = jω (Fourier domain) we have that the magnitude and
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the phase of G(ω) are

|G(ω)| =

√
K2

P +
K2

I

ω2
(3.7)

Φ = tan−1

(
− KI

ωKP

)
. (3.8)

To see the behaviour of these function in the frequency domain, the Bode plot

is used in figures 3.6 and 3.7 (i.e. |G(ω)|dB = 20 log10(|G(ω)|) vs log10(ω) and Φ vs

Log10(ω) ). From these figures is evident that the integral control introduce a phase

lag that increases with KI

Figure 3.8 shows how the transient is affected by KP and KI . If KP = 0 (only

the integral control is activated) the calculation diverges: in the initial transient the

forcing is proportional to e(t′)dt′ and the initial time-step is small because of the

initial unphysical flow in the computational domain. Because of the small time-step

the integral action is weakened, so the integral control needs a longer time before it

can give a correct control signal. As the simulation advances, however, the time-step

is further decreased because no fast correction is present in the domain, so the correct

integral action is even more delayed until the simulation goes unstable. The case of

high KP is the opposite: as soon as the simulation starts there is the fast correction

due to the proportional control. Apart from the length of the transient, however, the

steady-state results did not differ much in all the converged calculations, showing

little sensitivity of the flow to the proportional controller (at least for KP > 1).

Similarly, we found instability for KI ≥ 30, as can be expected by the theory

of the PI feedback control. If KI was close to zero, only the proportional control
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Figure 3.6: Bode plot of the frequency response of the PI system for different value

of KI and fixed KP = 30. KI = 5; KI = 20; KI = 30; It is evident

that when KI increase, the gain at low frequency increase and the phase lag value

starting at −90 is kept to higher frequency, i.e., the response of the PI system lags

behind the input wave by 90 deg in the worst case
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15; 30; 500; (b) Kp = 30 and KI = 1, 5, 20, 30.

64



0 200 400 600 800 1000
−5

0

5

10
x 10−3

e(
t)

t Uo/δ*
o

0 200 400 600 800 1000
−0.2

−0.1

0 .0

0.1 

0.2 

t Uo/δ*
o

In
te

gr
al

 e
(t’

)d
t’

(a)

(b)

Figure 3.9: (a) Instantaneous and (b) integrated error for KP = 30 and KI = 5

(lines) and KI = 20 (lines with symbols). y+ = 13; y/δ∗o = 4.5. The

curves for KI = 20 are shifted upwards by 0.005 in (a) and 0.1 in (b).

65



was activated and the steady state error (the difference between the desired Reynold

stress and the one obtained from the calculation) was large. Figure 3.9 shows the

error and its integral at two locations, one in the wall layer, the other in the outer

region of the boundary layer, for KP = 30 and two values of KI . Increasing KI

reduces the amplitude of the dominant frequency of the error, as well as its ampli-

tude, at least in the outer layer. Note, however, that the forcing signal (which has

the integral error multiplied by KI) does not change its magnitude.

3.2.4 Conclusions

As a result of the tests described in this section, we conclude that some local-

ization of the error, both in time and space, is desirable. Compared with the work

of Keating et al. [30], we obtained improved results using a shorter time-averaging

window, and removing the spanwise averaging. Averaging over a time interval of

the order of the local integral time-scale resulted in shorter transient and more rapid

development of physically realistic turbulent eddies. Removal of the spanwise aver-

aging used in previous investigations also gave improved results, as the error (and

hence the forcing) reflected more accurately the local state of the flow. The con-

troller parameters, the constants KP and KI , play a less significant role. Giving

excessive weight to the integral error, or insufficient one to the proportional part,

resulted in instabilities of the flow. For a wide range of values of KP and KI , on

the other hand, the flow statistics were found to be insensitive to the constants. We
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observed that the controller coefficients mostly affect the length of the transient;

for a wide range of both KI and KP , however, the flow statistics are fairly insen-

sitive to the parameter values. In the next section we will apply the method with

the improved coefficients to four flows, to determine its performance (with the new

coefficients) in actual cases.

In the next Chapter, we will report results obtained applying the PI control

to different boundary layer cases, including boundary layers undergoing adverse and

favorable pressure gradients, and a three-dimensional boundary layer.
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Chapter 4

Application of the controlled forcing

4.1 Introduction

In this Chapter the application of the controlled forcing is presented for differ-

ent boundary layer configurations: zero pressure gradient (ZPG), adverse pressure

gradient (APG), favorable pressure gradient (FPG), and three dimensional bound-

ary layer (3D). It is important to test the controlled forcing for these different flow,

to prove that the tuning discussed setup in the previous Chapter, especially the

optimal range found for the PI control, is not a “single-case” optimal tuning, but

can be extended to different configuration. The only parameter that need to be

matched with the local characteristic of the flow is Tave, the width of the moving

average filter that must match with the intrinsic scales of the turbulent structures.

4.1.1 Zero-pressure-gradient boundary layer

In this Section we report results obtained from calculations of the zero-pressure-

gradient (ZPG) boundary layer. In the previous Chapter the reference LES provided

the inflow statistics; here, they are calculated from the RANS; the modeling errors

that would affect real hybrid RANS/LES calculations are going to play an important
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role.

Figure 4.1 compares a case in which the k − ε model is used for the RANS

with one that employs the SA model. One can observe the effect of modeling errors:

First, the k − ε model gives a prediction of the wall stress in better agreement with

the reference LES than the SA model; the k− ε model also gives k and ε (which are

required by the synthetic turbulence generation method) directly, while with the SA

model they must be estimated using (2.86). The skin-friction coefficient matches the

reference LES value after only 20δ∗o from the end of the control region (approximately

2 boundary layer thicknesses) with the k−ε model, while it requires a longer distance

with the SA model. Both the mean velocity profiles and the Reynolds stresses are

in good agreement with the reference calculation, except perhaps in the outer layer

where the growth of realistic structures is somewhat slower (as was discussed in [50]).

Figure 4.3 shows the Cf obtained with the coefficients Tave = 100, KI = KP = 1

as in [50], and the case when only sysnthetic turbulence is applied at the inflow

without any control.

One limitation of the current approach lies in the fact that the error is based

on the Reynolds shear stress, which is not a coordinate-invariant quantity; in com-

plex geometries, the error might be ill-defined. The proposed RANS/LES merging

approach, however, is predicated on the RANS calculation being accurate in the

interface region, which in practice restricts the interface to lie in a thin, attached

shear layer, where the definition of directions along and normal to the shear layer is
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Figure 4.1: Zero-pressure-gradient boundary layer. (a) Skin friction coefficient Cf

(b) mean velocity profiles and (c) profiles of the Reynolds shear stress at the loca-

tions indicated by a vertical line in part (a). ◦ Reference LES; k − ε RANS;

Hybrid k − ε/LES; SA RANS; Hybrid SA/LES.
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Figure 4.2: Zero-pressure-gradient boundary layer. (a) Skin friction coefficient Cf

(b) mean velocity profiles and (c) profiles of the Reynolds shear stress at the loca-

tions indicated by a vertical line in part (a). ◦ Reference LES; SA RANS;

error based on 〈u′v′〉; production-based error.
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Figure 4.3: Skin friction coefficient Cf in the case of hybrid k − ε/LES simulation.

◦ Reference LES; RANS k − ε; Hybrid k − ε /LES with Tave = 10,

KI = 5, KP = 30; Hybrid k − ε /LES with Tave = 100, KI = 1, KP = 1 as in

[30]; Hybrid k− ε /LES with only Batten synthetic turbulence at the interface
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unique. Despite this practical observation, it would be desirable to develop a more

universal error definition, and in particular one that is invariant to the choice of

the frame of reference. One possible choice to satisfy this requirement is to base

the error on the production of turbulent kinetic energy, which satisfies the desired

invariance properties. Thus, we define a production-based error

eP (y, z, t) = −〈u′

iu
′

j〉des〈Sij〉des + 〈u′

iu
′

j〉t〈Sij〉t (4.1)

(where the dependence on xo, y, z and t has been omitted, and Sij is the strain-

rate tensor). For the ZPG boundary layer examined here this definition of the error

should give the same result as (3.1), since the shear stress is the leading term in the

definition of the production. We found results comparable to those obtained using

the shear stress in the definition of the error, with two notable differences: first, eP

decays more rapidly than e away from the wall (since the velocity gradient goes to

zero); this results in less forcing in the outer layer, so that the correct Reynolds-

stress profile away from the wall is established further downstream, compared with

the case in which the error is defined by (3.1). Secondly, we observed a much longer

transient before the error stabilized; may be due to the decreased forcing in the

outer layer again, which slows the production of 〈u′v′〉, and hence the decrease of

the error there.
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4.1.2 Adverse-pressure-gradient boundary layer

Hybrid simulations were next carried out in an adverse-pressure-gradient (APG)

boundary-layer that undergoes separation. The configuration of these simulations

is similar to that of [30], with an inflow Reynolds number, Reδ∗ = 1260, and a

profile of V∞ imposed at the top boundary that results in a significant deceleration

of the flow (see Figure 4.4). Due to the strong adverse pressure-gradient, the flow

separates; a favorable pressure gradient then closes the recirculation bubble.

The computational domain used in the full-domain LES was 380δ∗o × 64δ∗o ×

20δ∗o . This LES, which used the rescaling/recycling method at the inflow, had a

grid of 384 × 192 × 64. The RANS calculations for the hybrid cases were extended

to cover the entire flow domain to remove difficulties of placing outflow boundary
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conditions close to reversed-flow regions; both SA and k − ε models were used for

the RANS solution. The LES region started at x/δ∗o ≈ 80, and used the RANS

data at that location for the synthetic turbulence generation, as well as target for

the controlled forcing algorithm. The δ∗/uτ obtained from the k − ε model at the

interface location was approximately 110, which agrees well with the value from the

full LES. To match this value, Tave was fixed to 38, so that the memory Td was

approximately 113. KI was fixed at 5 and KP to 30.

Figure 4.5 shows the Cf , mean velocity profiles and Reynolds shear stresses

at three locations. As the boundary layer is subjected to the adverse pressure-

gradient, Cf decreases until the flow separates at x/δ∗o ≈ 170. A weak separation

bubble, which has a length of approximately 80δ∗o , can be observed in the full-domain

LES. The results from the RANS simulation in terms of Cf are close to those of

the full LES. Switching to the LES is, however, beneficial (the prediction of Cf

and the dimensions of the separation bubble are both more accurate). Shortly after

separation (the second profile in Figure 4.5) some differences between the hybrid

cases can be observed, whereas inside the separation bubble the LES give similar

results. In this flow, the amplification of turbulence in the separated shear layer acts

as a powerful mechanism to accelerate the generation of realistic eddies. However,

the mean streamline shown in Figure 4.6 show that the separation bubble in the

hybrid calculation is still larger then the full LES, especially when the SA model

is applied in the RANS region. As the zero pressure gradient boundary layer, the
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Figure 4.5: Adverse-pressure-gradient boundary layer. (a) Skin friction coefficient

Cf (b) mean velocity profiles and (c) profiles of the Reynolds shear stress at the

locations indicated by a vertical line in part (a). ◦ Reference LES; k−ε RANS,

SA RANS; hybrid k − ε/LES; Hybrid SA/LES.
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k − ε model gives better performances in the hybrid simulation

Keating et al. [30] observed a much stronger dependence of the hybrid results

on the accuracy of the RANS model (see Figure 11 in [30]), as is shown in figure 4.7.

This effect is due to the use of suboptimal PI controller parameters and averaging

window. With the more localized averaging used here, the initial decay of the wall

stress that was observed by Keating et al. [30] does not occur.

Figure 4.8 shows contours of streamwise velocity fluctuations in a plane near

the wall for the reference LES and a hybrid case. We observe a very rapid devel-

opment of a physical streaky structure. The onset of separation (which is strongly

affected by the flow state immediately before the separation occurs) is predicted

well, and the length-scales of the flow in the separated-flow region are remarkably

similar, confirming again the robustness and effectiveness of the method.

4.1.3 Favorable-pressure-gradient boundary layer

Simulations of a boundary layer subjected to a favorable pressure-gradient

(FPG) were performed. In this flow, if the acceleration is rapid enough, re-laminarization

and re-transition of the flow may occur. The case studied here matches the ex-

periments of [97]. The freestream acceleration (from U∞ = 1 to U∞ ≈ 3) be-

gins at approximately 100δ∗o and is completed by 450δ∗o . The flow acceleration is

achieved by imposing a streamwise velocity profile U∞(x) at the top boundary of

the domain [102]. Its magnitude was calculated from the acceleration parameter,

77



Figure 4.6: Mean streamlines for the APG boundary layer. (a) Reference LES; (b)

k − ε RANS; (c) SA-RANS; (d) hybrid k − ε/LES; (e) hybrid SA/LES.
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Figure 4.7: Skin friction coefficient Cf in the case of LES/LES simulation (a) and

hybrid RANS SA/LES (b). In (a) Tave = 38, KI = 5, KP = 30;

Tave = 100, KI = 1, KP = 1 as in [30]. In (b) RANS SA model, hybrid
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[30]; Hybrid SA/LES with only Batten synthetic turbulence at the interface
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Figure 4.8: Streamwise velocity fluctuations in the APG boundary layer, in the

y/δ∗o = 0.09 plane. (a) Reference LES; (b) hybrid k − ε/LES; the red rectangle

indicates the region where the control is active.

K = (ν/U2
∞

)(dU/dx), experimentally obtained from [97]. The acceleration parame-

ter, K, and the free-stream velocity distribution U∞(x) are the same as [30]. Since

K exceeds the critical value for re-laminarization (Kcrit = 3.5 × 10−6) for an ex-

tended region of the flow, turbulence is expected to be damped in the region of high

acceleration. The flow then re-transitions once the acceleration is removed.

A full-domain LES was first performed using the rescaling/recycling method

at an inflow Reynolds number, Reδ∗ = 1260. For this simulation the domain length

was 476δ∗o , the width was 20δ∗o and the height was 20δ∗o . A somewhat coarse grid

(512×64×64) was used, since the comparisons were primarily being made between

this full LES and a hybrid RANS/LES simulations. One hybrid calculations was

performed that included a RANS domain 350δ∗o long, and an LES region that started

at x/δ∗o = 225 and extended to 476δ∗o (i.e., had a length 251δ∗o). Synthetic turbulence

with controlled forcing was introduced at the RANS/LES interface.
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Figure 4.9: Favorable-pressure-gradient boundary layer. (a) Skin friction coefficient

Cf (b) mean velocity profiles and (c) profiles of the Reynolds shear stress at the

locations indicated by a vertical line in part (a). ◦ Reference LES; SA RANS;
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Figure 4.10: Skin friction parameter Cf for the favorable pressure gradient boundary

layer: ◦ reference LES, RANS, hybrid RANS/LES with Tave = 2.4 and

Tave = 1; Hybrid SA/LES with only Batten synthetic turbulence at the

interface

All the different RANS model tested give significant modeling error; in par-

ticular, no model was able to predict the relaminarization and the re-transition of

the accelerating boundary layer correctly. Furthermore, with the SA model, the

timescale δ∗/uτ at the interface location was found to be approximately 2, while the

value obtained from the full LES calculation is twice as large in the region where the

control was applied. Two hybrid calculation were performed, one that used a value

of Td close to the time-scale predicted by the RANS (giving Tave = 1), and another

that matched the LES timescale (Tave ' 2.4). Figure 4.9 compares the results of

the various simulations. The mean data at the interface, which is supplied by the

RANS, is not accurate; the controller tries to drive the LES towards the RANS
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region, but when Tave is small a smooth 〈u′v′〉 cannot be obtained, and excessive

forcing is applied, resulting in an initial overshoot of the skin-friction coefficient.

Once the control is released, the flow adjusts fairly rapidly towards the full-domain

LES. When a longer average is used, the controller is more successful in driving the

LES shear stress towards the desired distribution (Figure 4.9(c)) and the LES ad-

justs more rapidly and with no overshoot. Note finally that this is a very challenging

test case: RANS models cannot be expected to predict relaminarization accurately;

furthermore, since the energy of the fluctuations is decreasing because of the ac-

celeration, adding energy through the forcing term is moving the flow away from

its equilibrium. This is evident in Figure 4.10 where are shown the two cases with

control presented before, and the case when only synthetic turbulence is used at the

inflow: in this last case the flow is drown through the full LES configuration soon

after the first grid cell; however, the retransition to turbulent flow is leaded. De-

spite the fact that this can be considered an off-design application for the controlled

forcing, the results are altogether acceptable.

4.1.4 3-D Boundary layer

Simulations were then performed on a 3D boundary layer obtained by applying

a spanwise pressure gradient to a flat-plate boundary layer. The pressure gradient

increased from zero, at x/δ∗o=100, up to 1.5 × 10−3 at x/δ∗o=150, and remained

constant thereafter. The magnitude of the pressure gradient was set in such a way
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SA-RANS; error based on 〈u′v′〉; production-based error.

as to turn the flow by 45o near the wall and 24o at the free stream by the end of the

domain. Figure 4.11 shows the turning angle near the wall and in the freestream.

Once again, two simulations were carried out: a full-domain LES, and one

hybrid RANS/LES calculations. The computational domain of the reference LES

was 291δ∗o × 20δ∗o × 20δ∗o with a grid of 720 × 100 × 292. An inflow plane from a

precursor simulation was used with an inflow Reynolds number of Reδ∗ = 1260.

Because of the turning of the flow, the grid had to be refined in the streamwise

direction in the downstream area. We define a local coordinate frame with ξ in the

flow direction and ζ in the lateral direction in the wall plane:

∆ξ+ = ∆x+ cos α + ∆z+ sin α; ∆ζ+ = ∆x+ sin α + ∆z+ cos α. (4.2)

We maintained streamwise and spanwise grid resolutions of ∆ξ+ < 50 and ∆ζ+ < 13

as is shown in figure 4.12. Here, α is the flow angle at the wall and wall units are
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Figure 4.12: Grid resolution obtained in the 3D boundary layers ∆ζ+;

∆ξ+

defined using the resultant wall stress

ρuτ = (τ 2
xy,w + τ 2

xz,w)1/4; τxy,w = µ
∂U

∂y

∣∣∣∣
y=0

; τxz,w = µ
∂W

∂y

∣∣∣∣
y=0

. (4.3)

In the hybrid cases, the RANS equations was solved using the Spalart-Allmaras

model. The LES region started at x/δ∗o ≈ 200 where the flow angle was 32o near the

wall and 12o in the free-stream. The SA model predicts a value of δ∗/uτ = 40 at the

RANS/LES interface; consequently, we set Tave = 14 (corresponding to Td ' 42).

We also performed simulations with the production-based error, in addition to those

with the standard definition of e.

Figure 4.13 shows the skin friction coefficient and mean velocity profiles in the

streamwise and spanwise directions. The development of Cf,x is similar to that of

the ZPG case (with an initial decrease followed by a quick recover). For the lateral

flow we observe remarkably good agreement with the reference simulation beginning

from the end of the controlled region, approximately two boundary layer thicknesses
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(b)

(a)

Figure 4.15: Contours of streamwise velocity fuctuations in a xz−plane at y/δ∗

o =

0.18. (a) Reference LES (only part of the domain is shown); (b) hybrid RANS/LES.

downstream of the inflow. The principal shear stress, 〈u′v′〉 and the secondary ones

〈v′w′〉 develop quite rapidly as is shown in 4.14. Notice that by adding the forcing

into the v equation we amplify the production of the secondary stress, 〈v ′v′〉∂W/∂y,

as well as that of 〈u′v′〉.

Figure 4.15 shows streamwise velocity fluctuations in a plane parallel to the

wall. We observe again a very rapid build-up of the streaky structure starting from

the synthetic turbulence.

4.2 Conclusions

In this Chapter we show further validation of the controlled-forcing method for

turbulence generation at RANS/LES interfaces. The method has shown itself to be

robust and efficient. By studying the zero-pressure-gradient boundary layer (which,

despite its simplicity is one of the most challenging cases examined) we developed
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guidelines for the determination of the parameters of this method. Perhaps the most

important parameter is the length of the averaging used to determine the computed

Reynolds stresses in the definition of the error (3.1) or (4.1).

Of the flows examined, we found the zero-pressure-gradient and favorable-

pressure-gradient boundary layers to be the most challenging: in the zero-pressure-

gradient case no external mechanism amplify the instability of the flow, so that the

generation of turbulence is entirely due to the synthetic turbulence and controlled

forcing; since the latter is less effective in the outer layer (where the turbulence

production mechanisms are weaker), we observe the slow development of the outer

layer. The favorable-pressure-gradient boundary layer presents a different set of

problems: The acceleration results in relaminarization of the flow. Therefore, the

injection of energy due to the forcing drives the flow in the wrong direction. In

addition, RANS models are not very accurate in the strong acceleration region,

which results in three sources of error: first, the mean velocity at the interface is

far from the result obtained with the full-domain LES. Second, the target stresses

are not close to the “correct” ones; thus, the controller drives the solution towards

an incorrect one. Finally, the time-scale obtained from the RANS is substantially

different from that obtained from the reference calculation, so that the moving

average is suboptimal.

The method worked well in the adverse-pressure-gradient case, in which the

deceleration (and, to an even greater extent, the separation) amplifies the distur-
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bances, thus aiding the generation of turbulent eddies. This result is consistent with

the findings of Terracol [25], who had some success using synthetic turbulence gener-

ation in the adverse-pressure-gradient region on the suction side of a turbine blade.

In the 3D boundary layer the turning of the streamline imposed by the spanwise

pressure gradient drives the lateral flow, with secondary stresses that develop from

nearly zero at the RANS/LES interface. The controller proves to be able to seed the

turbulence enough that the growth of the secondary stresses, and hence the lateral

mean velocity profile, can be predicted accurately.

In summary, we have shown that the controlled forcing method is robust and

efficient. The least favorable results are obtained in mildly unstable flows like the

ZPG pressure gradient, or in re-laminarizing ones. Even in these situations, within

5 boundary layer thicknesses of the end of the control region a realistic flow was

established. In realistic applications, especially in curved flows and in adverse pres-

sure gradients (an important class of applications) the controlled forcing gives very

rapid development of realistic eddies.
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Chapter 5

Favorable pressure gradient boundary layer

5.1 Introduction

Turbulent boundary layers subjected to a favorable pressure gradient (FPG)

(i.e., one that results in freestream acceleration) are common in many engineering

applications, such as airfoils and curved ducts. While the canonical zero-pressure-

gradient (ZPG) boundary layer is relatively well understood, FPG boundary-layers

are less well known. The simplest case of an accelerating boundary layer is the

“sink flow”, in which the acceleration parameter K = (ν/U 2
∞

)dU∞/dx is constant

with the streamwise distance x. This flow has been studied experimentally and

numerically; it is known that, for strong acceleration (K > 3 × 10−6) turbulence

cannot be maintained, and the flow re-laminarizes. The sink flow is, of course,

an idealization: in real cases, a large acceleration parameter cannot be sustained

for long distances, and, in practical applications, a region of FPG and streamwise

acceleration is followed by one with constant or adverse pressure gradient (such is

the case for the flow on an airfoil downstream of maximum thickness). In these

conditions, full re-laminarization may not occur, and the pressure gradient may

leave the flow in a “laminarescent” [83] state. As the pressure gradient is removed,
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the flow may then return to a turbulent state; the re-transitioning process may be

strongly affected by the state of the turbulence at the end of the acceleration region.

For these reasons it is important to understand the mechanisms of relaminar-

ization. Reviews of current knowledge can be found in several articles by Narasimha

and Sreenivasan [84, 85] and by Sreenivasan [83]; here, only the main findings are

summarized. Re-laminarization can be caused by three mechanisms: (1) a decrease

in the Reynolds number accompanied by an increase in the viscous dissipation; (2)

stratification or flow curvature, or (3) flow acceleration. Experimental investigations

of re-laminarization due to flow acceleration started in the early 1960s. Wilson [86]

found the first evidence that the flow did not follow the semi-empirical theories for a

fully turbulent boundary layer: the measured heat-flux rates on a convex surface of

a blade were considerably lower than the predicted values. Wilson [86] conjectured

the possibility of a “reverse transition” of the flow due to the low local value of

the Reynolds number. However, Patel and Head[87] later observed that there is no

explicit correlation between a low Re and the relaminarization process, as long as

the initial Re is high enough to allow the turbulence to be self-sustained.

Senoo [88] studied the boundary layer on the end-wall of a turbine nozzle cas-

cade; he found that it was laminar in the region of the throat, while the upstream

layer was turbulent. His findings did not explain the phenomenon of relaminariza-

tion. Moreover, the effects of secondary flow were not clear in his study.

Studying a similar configuration, Launder [89, 90] observed that relaminariza-
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tion of the flow, at least in terms of macro-scale properties and integral parameters,

starts near the end of the acceleration region. In the upstream region, the boundary

layer was found be turbulent but with a departure from the universal law of the

wall. Only further downstream the boundary layer became close to the laminar

state. Moreover, he documented an increase of the energy at low wave-numbers

in the near-wall region and an even more pronounced one in the outer part of the

boundary layer. He found an explanation of that energy shift in the time-lag be-

tween inner and outer regions: the latter is relatively distant from the turbulence

production peak, so the eddies in that region are not fast enough to adjust their

frequency as the free stream is accelerated. He, therefore, proposes a picture in

which the flow dynamics are completely dominated by the near wall region. Laun-

der [89, 90] also observed that the turbulence does not vanish, but an increasing

fraction of it plays a passive role in the boundary-layer development. Because of

this inability of turbulent structures to adjust to the flow acceleration and the rapid

increase of momentum, the viscous stresses grow larger than the turbulent ones; con-

sequently, the dissipation exceeds production, leading to a decay of turbulence and

to laminarization. However, Badri-Narayan et al. [91] found that dissipation never

exceeds production in an accelerated boundary layer, and that both production and

dissipation decrease.

Kline et al. [92] found a correlation between the drastic drop of eruptions in

the buffer layer and the acceleration parameter K: for K that approach the value of
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Kmax ≈ 3.5×10−6 the burst rate tended to zero. Narasimha and Sreenivasan[85] sug-

gested that the bursting frequency decreases exponentially in an accelerated bound-

ary layer before the flow relaminarizes, but never goes to zero completely.

Patel and Head [87] showed a strong correlation between the distribution of the

shear-stress gradient near the wall and the relaminarization. They defined a non-

dimensional shear-stress-gradient parameter, and they inferred the onset of relami-

narization from the position where this parameter has a minimum value of −0.009.

However, Narasimha and Sreenivasan [85] observed that this non-dimensional pa-

rameter reaches that value before the turbulent boundary-layer actually reverts to a

laminar-like state; in this sense, the Patel and Head [87] parameter predicts deviation

from the universal law for ZPG boundary layers, but not necessarily relaminariza-

tion.

Blackwelder and Kovasznay [93] noted an increase of the Reynolds stress and

turbulent kinetic energy (TKE) along streamlines in the outer part of the boundary

layer as the flow was accelerated. In the inner layer, on the other hand, they

found a decrease of those quantities along streamlines. Moreover, they studied the

space-time correlations of the large structure in the outer layer. They found no

change compared to the ZPG case for the uu correlations; this suggested that the

acceleration had no strong effect on the large streamwise structure (those close to

the boundary-layer edge). On the other hand, they noted a drastic change of the

normal velocity component of the outer-layer structures, as the vv correlations lost
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the anti -symmetrical part found in the ZPG case.

Narasimha and Sreenivasan [84] point out that relaminarization is the result

of the domination of pressure forces over the slowly responding Reynolds stresses in

the outer layer, and the generation of a new laminar sub-layer that is maintained

stable by the acceleration. In their model the turbulent structures in the outer layer

are only distorted and not destroyed by the rapid acceleration. The new sub-layer

and the distorted outer layer do not interact, but they only provide the appropriate

boundary conditions to each other. Rapid distortion theory could be applied in

the outer part to predict the turbulence intensities there, but the interior part of

the layer was not well understood and the wall-normal components were not well

predicted. In the same period, Falco [94] performed a smoke-visualization study,

and suggested that in the relaminarization process large scale structures existed

upstream of the contraction that accelerates the flow: the boundary layer in the

later stages of the acceleration is dominated by an array of large scale streamwise

vortices; thus, an inner-outer layer interaction could exist and the relaminarization

seems to begin from the outer region with a strong coupling between inner and

outer parts. This visual observation was reconfirmed by Ichimiya et al. [95], who

conjecture that non-turbulent fluid on the outside of the boundary layer penetrates

near the wall, so that the beginning of relaminarization is due to the outer region

together with the change in ejection-sweep phenomena.

Recent experimental studies of FPG boundary layers have been performed by
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Fernholz and Warnack [96] and by Warnack and Fernholz [97]. Their measurements

showed that the Reynolds number had little effect on the relaminarization, and

the pressure-gradient effects were dominant. They found a strong increase in the

anisotropy of the normal Reynolds stresses (which decreased) in the outer region

of the boundary layer, but observed the opposite effect in the inner layer. By

calculating the integral length-scales, they found that the near-wall vortices are

stretched in the streamwise direction, but are only slightly smaller in the wall-normal

direction. They measured high levels of flatness of the instantaneous skin friction

coefficient, which indicated the presence of intermittent high-frequency bursts in the

re-laminarizing flow.

Other recent experiments by Escudier et al.[98] found that the streamwise

RMS velocity in the inner layer scales with the local freestream velocity, while in

the outer layer it is “frozen” (i.e., remains relatively constant) in the accelerated

region. They inferred that the frequency content of the turbulence was only changed

at the highest frequencies, and that the bulk of the turbulence generated in the thick

upstream boundary layer prior to acceleration was at frequencies too low to cause

significant Reynolds stresses within the accelerated boundary-layer.

Numerical calculations of a boundary layer with variable acceleration param-

eters (as opposed to the sink flow studied by Spalart [34]) were carried out by

Piomelli et al. [99], who examined the effect of the acceleration on the near-wall

vortical structures. They observed that the near-wall streaks became more elon-
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gated and showed fewer undulations. Since they found that the vorticity levels in

the acceleration region were similar to those in the zero-pressure gradient (ZPG)

boundary-layer, and that the vortex scales in the cross-plane were unchanged, they

suggested that the additional vortex-stretching due to the streamwise velocity gra-

dient must be counterbalanced by other mechanisms. However, from the results

presented, it was unclear which physical phenomena provide this balance.

The mechanisms involved in the relaminarization of the turbulent boundary

layer in an FPG are still poorly understood. What is clear, however, is that the

turbulence in the outer layer remains frozen through the acceleration, and is, there-

fore, strongly dependent on the conditions of the upstream boundary layer (i.e.,

neither on the local near-wall behavior nor on the local freestream velocity). Closer

to the wall, the flow undergoes a process of laminarization, in which the skin fric-

tion coefficient drops sharply. Finally, after the acceleration is completed, the flow

quickly re-transitions to an equilibrium boundary layer. Several questions are still

open; among them are: (1) Does the outer layer turbulence play a part in the re-

laminarization phenomenon? (2) How do the inner and outer layers interact during

and after the acceleration? (3) How does the re-transition to turbulence takes place

(and why does it take place so abruptly)?

In an attempt to clarify at least the first of these points, large-eddy simula-

tions (LES) of boundary layers in FPG are performed with different acceleration

parameters. The first simulation, which matches the high-acceleration experiment
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of Warnack and Fernholz [97] (Kmax ≈ 4 × 10−6) (where K = (ν/U 2
∞

)(dU∞/dx)

is the acceleration parameter), shows a substantial reduction in turbulent kinetic

energy production, and the flow becomes laminar-like in the acceleration region. A

second simulation is performed at a lower acceleration (Kmax ≈ 3× 10−6) (obtained

by scaling down the high-K case) resulting in less of a “laminar-like” behavior in the

acceleration (for comparison, on a 0.3m-long NACA0012 airfoil at Re = 1.5 × 106,

K has values of the order 3 × 10−6 in the region between 2% of the chord and the

point of maximum thickness).

In the following we will present the numerical approach employed. Then will

show results of the simulations, including statistics and flow visualizations; we will

describe the results of some numerical experiments in which the flow was artificially

altered, to isolate the structures responsible for the re-transition. Finally, we shall

draw some conclusions.

5.2 Problem formulation

In this study we perform large-eddy simulations (LES) of a flat-plate boundary

layer in the presence of an accelerating freestream. Most experimental measurements

in FPG boundary layer are performed on a flat surface in which the pressure gra-

dient is imposed through contouring of the opposite wall of the wind-tunnel, or by

including a contoured body above the flat wall to produce the desired acceleration
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Figure 5.1: Sketch of the configuration. The computational domain is shown as a

hatched area.

(Figure 5.1). In our case we imposed directly a variable freestream velocity1 U∞(x)

on the top boundary of the domain [102]. The other two velocity components were

obtained by requiring that the vorticity in the freestream is zero. An unsteady

inflow boundary condition was obtained from a separate simulation that used the

recycling/rescaling method [102], while a convective outflow boundary condition was

used at the downstream boundary.[82] Periodic conditions were used in the spanwise

direction.

The simulations were performed on a domain of size 476δ∗o×20δ∗o ×20δ∗o (in the

streamwise, wall-normal and spanwise directions, respectively), using 1136 × 104 ×

192 grid points for the high-acceleration case, and 1024 × 64 × 128 grid points for

the low-acceleration one. The results obtained using this resolution compare well

with coarser calculations. The Reynolds number, based on freestream velocity at

the inflow, Uo, and on the displacement thickness at the inflow, δ∗o , is 1,260.

1In the following, U∞ denotes the (variable) freestream velocity, whereas Uo = U∞(0) = 1 is

the reference velocity for the flat-plate region upstream of the FPG region.
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The equations of motion were integrated for 3171δ∗o/Uo time units. Statistical

data were obtained by averaging over the last 2415 time units, and over the spanwise

direction. In the following, time-averaged quantities are denoted by angle brackets,

and fluctuating ones by a prime.

5.3 Results

In the present investigation we studied two cases: one with high-acceleration,

another with lower acceleration. Figure 5.2(a) shows the freestream velocity, U∞/Uo,

and the resulting friction velocity uτ/uτ,o for the two cases of high and low acceler-

ation. Figure 5.2(b) shows the acceleration parameter, K. In the case of high K,

the freestream velocity at the outflow is almost three times that at the inflow.

The momentum-thickness Reynolds number Reθ = U∞θ/ν, with

θ =

∫
∞

0

U

U∞

(
1 − U

U∞

)
dy (5.1)

(where U = 〈u〉) is shown in Figure 5.2(c); Reθ decreases as the flow begins to ac-

celerate (x/δ∗o > 140). This reflects profound changes in the velocity profile, which

result in significant decrease of θ and will be discussed further later. The skin-friction

coefficient is shown in Figure 5.2(d). Again, it can be observed that, although the

mean freestream velocity increases in both cases, Cf begins to decrease near the loca-

tion of maximum K (this decrease begins to occur downstream of the corresponding

decrease in Reθ). After the pressure gradient is relaxed, rapid re-transition towards

an equilibrium turbulent value occurs (x/δ∗o ' 310). The chain-dotted line shows the
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equilibrium ZPG value of Cf obtained from the correlation [104] Cf = 0.0576Re−0.2
x .

At the inflow, while the computations show good agreement with the experimen-

tal correlation, the experiments have lower skin friction, suggesting that pressure

gradient effects are already significant on the upstream boundary layer. The region

of relaminarization is predicted well by the LES. The re-transitioning occurs more

abruptly than in the experiment, and the downstream Cf is higher in the LES, even

taking into account the initial shift. Several factors can account for this difference.

First, the different geometry: in the experiment the measurements are made on the

inside wall of a cylinder, whereas the calculation uses a flat plate [94]; the ratio

between cylinder radius and boundary-layer thickness varies between 12 and 9, so

curvature effects may play a role. Furthermore, despite the fact that the grid in the

streamwise direction was refined in the re-transition region, the three-fold increase

in the friction velocity results in marginal resolution of the boundary layer in the

fully turbulent region downstream of the acceleration: in the upstream region we

have ∆x+ ' 28, ∆z+ ' 6.2, while in the recovery region ∆x+ ' 56 and ∆z+ ' 19.

The lower acceleration case shows similar behavior to the high-acceleration

one; however the re-laminarization is less severe. Reθ and Cf are reduced by a much

smaller amount in the acceleration region, and recovery takes place earlier than for

the high-K case.

Figure 5.3 shows the mean velocity profiles in outer coordinates at several loca-

tions in the flow. If the velocity profiles are plotted in wall coordinates (Figure 5.4),
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Figure 5.2: Streamwise development of statistical quantities. (a) Freestream ve-

locity, U∞/Uo and friction velocity uτ/uτ,o; (b) Acceleration parameter K; (c)

Momentum-thickness Reynolds number Reθ; (d) Skin friction coefficient Cf . • Ex-

periments [97]; high-K case; low-K case; ZPG boundary-layer

correlation.

one can observe the existence of a logarithmic layer (following the standard law,

U+ = 2.5 log y+ + 5) at the inflow and in the mild acceleration region (x/δ∗o < 150).

As the FPG becomes significant, the slope of the logarithmic region decreases (a

well-known effect of acceleration [34]). The two cases are in good agreement up to

the point of maximum K. Thereafter, the high-K case departs significantly from

the equilibrium boundary layer profile, becoming more laminar-like. The recovery
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Figure 5.3: Wall-normal profiles of the mean streamwise velocity at the locations

shown in the top figure. • Experiments [97]; high-K case; low-K case.

Each profile is shifted by 0.5 units for clarity
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Figure 5.4: Wall-normal profiles of the mean streamwise velocity in inner coordinates

at the locations shown in the top figure. • Experiments [97]; high-K case;

low-K case; U+ = 2.5 log y+ + 5.Each profile is shifted by 18.0 units for

clarity
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of the inner layer to an equilibrium logarithmic law occurs quite rapidly, between

x/δ∗o ' 330 and 370. The agreement with the experimental data is very good. One

should observe that in the region of high acceleration there is a significant region of

well-mixed fluid, in which the normal velocity gradient is nearly zero (from y/θ > 5

at x/δ∗o = 320, for instance).

Very good agreement is also observed in the prediction of the normal Reynolds

stresses (Figure 5.5). The decrease of the magnitude of the stresses following the

maximum of the acceleration is evident, and is due to the increase of u2
τ , which is used

to normalize the stresses, rather than to a decrease of the stresses themselves, which

remain approximately equal to their upstream value (see the discussion below).

Figure 5.6 shows the Reynolds stresses in inner units; again, there is very

good agreement with the experimental results. The Reynolds stresses decrease sig-

nificantly in the region where K has the maximum value. In many cases flow re-

laminarization is due to decorrelation between the wall-normal and the streamwise

fluctuation, which remain significant but do not contribute to the Reynolds shear

stress. In this flow, the cause of the decrease of 〈u′v′〉 appears to be different. Figure

5.7 shows contours of the normal Reynolds stresses 〈u′u′〉 and 〈v′v′〉, of the shear

stresses 〈u′v′〉, and of the correlation coefficient

Cuv =
〈u′v′〉

(〈u′u′〉〈v′v′〉)1/2
=

〈u′v′〉
urmsvrms

. (5.2)

From this figure it appear that, while the correlation coefficient decreases signifi-

cantly around x/δ∗o ' 300, the decrease of the v′ fluctuations is much more dramatic.
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Figure 5.5: Wall-normal profiles of the streamwise Reynolds stresses at the locations

shown in the top figure. • Experiments [97]; high-K case; low-K case.

Each profile is shifted by 12.0 units for clarity
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shown in the top figure. • Experiments [97]; high-K case; low-K case.
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The same phenomenon is better illustrated in Figure 5.8. Here, we identified

four streamlines (one in the outer layer, two in the logarithmic region and one in the

buffer layer), and plot the streamwise development of the Reynolds stresses along

each streamline. This method allows one to account for the significant thinning of

the boundary layer in the high-acceleration region, and for its subsequent thickening

in the re-transition region.

Focusing our attention first on the streamwise stresses, 〈u′u′〉/U2
o (Figure 5.8(b)),

we observe that in the outer layer their level is essentially frozen (i.e., they remain

constant and equal to their upstream value) until a location well after the maxi-

mum acceleration point (x/δ∗o ' 300). They then begin to increase, an increase

that occurs later for the streamline located farther away from the wall. Along the
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Figure 5.8: Development of the Reynolds stresses along selected streamlines. (a)

Streamline coordinates; (b) 〈u′u′〉/U2
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streamline in the buffer layer the increase in 〈u′u′〉/U2
o begins earlier, as soon as the

freestream velocity begins to increase (x/δ∗o ' 120). A different behavior can be ob-

served for the wall-normal stresses 〈v′v′〉/U2
o (Figure 5.8(c)): along the outer-layer

streamlines the stresses also appear to be frozen to their upstream value. They begin

to increase well after the peak acceleration, and also after the rise of the streamwise

ones. Near the wall, on the other hand, we observe a significant decrease (by over

one order of magnitude) of the wall-normal Reynolds stresses (consistent with the

observations of Blackwelder and Kovasznay [93]) which is reflected in a similar de-

crease of the Reynolds shear stress 〈u′v′〉/U2
o (Figure 5.8(d)) in the buffer layer and

in the viscous sublayer. In the logarithmic region, on the other hand, the increase

in the streamwise fluctuation level balances the decrease of the wall-normal ones,

resulting in constant shear stress until the recovery region (we will show later that

the correlation coefficient does not vary very much in this region). Note that the

data showed in this figure were normalized using the inflow freestream velocity, Uo,

to emphasize advection effects. If one used either the local freestream velocity, U∞,

or the friction velocity uτ , which increase through the acceleration region, all these

quantities would be observed to decrease through the region in which the pressure

gradient is applied.

Figure 5.9 shows the structure parameter a1 = |〈u′v′〉|/〈u′

iu
′

i〉 and the corre-

lation coefficient Cuv. The structure parameter is a measure of the efficiency of

turbulence in extracting Reynolds shear stress from the available turbulent kinetic

110



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

 C
uv

 x/δ*
0

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

  a
1

0 100 200 300 400 500
0

2

4

6

8

 y
/δ

* 0

(b)

(a)

(c)

Figure 5.9: Development of a1 parameter and correlation coefficient along selected

streamlines. (a) Streamline coordinates; (b) a1; (c) Cuv. The thick black line

corresponds to the boundary-layer edge. Streamline originating in: outer-

layer; middle of the boundary layer; logarithmic region; viscous

sublayer.

111



energy and, in equilibrium flows, it has a value close to 0.15. The acceleration causes

a significant departure from its equilibrium value: we observe a significant decrease

of a1 over the lower half of the boundary layer. The decrease is particularly strong in

the logarithmic layer (the value of a1 is lower in this region even in equilibrium ZPG

boundary layers). The correlation coefficient Cuv, on the other hand, remains close

to the canonical value for flat-plate boundary layers (Cuv ' 0.4 − 0.5) everywhere,

with variations of less than 10%. Thus, the relaminarization does not seem to be

due to so much to a decorrelation between the frozen fluctuations, but rather to a

re-organization of the flow that results in much lower wall-normal fluctuations that,

although reasonably well-correlated with the streamwise ones, can only produce a

much reduced shear stress. The decreased mixing due to the turbulent transport,

in turn, causes the decrease of the skin-friction coefficient that is considered one of

the symptoms of relaminarization.

The significant changes to the turbulent statistics observed above must be

accompanied by similar alterations of the turbulent structure, which we will now

describe. The contours of streamwise velocity fluctuations in an xz−plane near the

wall are shown in Figure 5.10. We can observe the regular streaky structure of the

boundary layer near the inflow. In the region of high K we observe fluctuations of

magnitude comparable to those in the equilibrium region; they form, however, very

long streamwise streaks, without the kinks characteristic of the burst event. This

indicates the change towards a very stable and more orderly inner layer, as pointed
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Figure 5.10: Instantaneous contours of u′ velocity fluctuations in a plane parallel to

the wall.

out by Narasimha and Sreenivasan [84]. Figure 5.10 also shows a fast re-transition

to turbulence when the pressure gradient is turned off (x/δ∗o ' 310).

In Figure 5.11 the coherent structures in the outer layer are visualized though

isosurfaces of the second invariant of the velocity gradient tensor

Q = −1

2

(
∂u′

i

∂xj

∂u′

j

∂xi

)
(5.3)

(see Dubief and Delcayre[105]). We note that the outer layer vortices become aligned

in the streamwise direction in the acceleration region. This is most likely a kinematic

effect, as the dominant component of the velocity gradient in this region, ∂U/∂x,

has the effect of stretching and re-orienting the coherent eddies into the streamwise

direction. We note, however, that the more orderly structure of the flow observed

in the inner layer (Figure 5.10) is reflected in a more orderly outer layer structure.

113



x/δ
*

o

180

200

220

240

260

280

300

320

340

360

y/
δ* o

0

10

20

z/δ *
o

0
10

20
30

40

0.01

0.005

0

-0.005

-0.01

Outer layer
Q=0.0002

Figure 5.11: Instantaneous isosurfaces of Q = −0.002 in the outer layer colored by

the streamwise vorticity.

114



An obvious question that needs to be addressed is whether the inner layer, with its

reduced burst frequency, is unable to “scramble” the outer layer structures, or if the

outer layer forces a more orderly inner-layer structure. The outer layer structures

certainly affect the inner layer: Figure 5.12 shows contours of the instantaneous u′v′

correlation in planes normal to the mean flow, and secondary (v−w) velocity vectors.

One can observe that these vortices occur mostly in the well-mixed region mentioned

above (the two thick lines that denote contours of u = 0.95U∞ and 0.99U∞ show

the extent of this well-mixed region); they may, in fact, be responsible for it, as they

induce vigorous motions of high-speed fluid towards the wall, and low-speed fluid

outwards. Moreover, some of the motions induced by these large vortices result

in significant values of the u′v′ correlation (at x/δ∗o = 321 and z/δ∗o = 11, or at

x/δ∗o = 260 and z/δ∗o = 4, for instance).

5.4 Conclusions

We performed LES of the flow in an accelerating boundary layer, using two dif-

ferent levels of acceleration. The low-acceleration case remains in quasi-equilibrium,

with a logarithmic law observed through most of the flow (albeit with decreased

slope). The high-acceleration case results in relaminarization and re-transition of

the flow. The computed statistics are in good agreement with the experimental data

[96], which gives us confidence that the LES can be used to study the physics of this

complex flow.
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Figure 5.12: Contours of instantaneous u′v′ correlation in planes normal to the mean

flow, and secondary (v −w) velocity vectors. The two solid lines represent contours

of U/U∞ = 0.95 and 0.99.

Examining the flow development along streamlines we observe that in the

outer layer the turbulent fluctuations appear to be largely frozen to their initial

state, and the flow is dominated by advection. A notable feature of the flow is that

the correlation coefficient Cuv does not decrease very significantly. The decrease of

the Reynolds shear stresses that is observed is mostly due to the damping of the

wall-normal fluctuations.

We observed changes in the turbulent structures both in the inner and in

the outer layers. The acceleration affects the outer-layer eddies by changing their

structure and shape; in particular, large coherent structures are formed that are

oriented in the streamwise direction. This results in the formation of a well-mixed

outer layer, in which the turbulence production is decreased, and the turbulence
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advected from upstream remains frozen. The inner layer is also affected: because

of the strong acceleration, the flow becomes more orderly, with longer, more two-

dimensional streaky structures and decreased frequency of bursts. However, a fast

re-transition to turbulence is observed as soon as the applied pressure gradient is

negligible. This may be due to the coherent structures in the outer part of the flow

that trigger the re-transition to turbulence.

Two possible scenarios can explain the flow behavior: one, which matches

the results of Blackwelder [93], Launder [89, 90], Narasimha and Sreenivasan [84],

and Sreenivasan[83], is that the inner layer is made stable by the pressure gradient,

and the turbulence in the outer layer remains relatively high and “frozen”: once

the stabilizing influence of the pressure gradient is removed, transition occurs very

rapidly, following a process that resembles bypass transition due to high freestream

turbulence. A different picture was conjectured by Falco [94] and later by Ichimiya

et al. [95]: the relaminarization seems to begin from the outer region with a strong

coupling between inner and outer parts. The outer layer structures could induce

strong incursions of more quiescent, outer-layer fluid into the wall region, and strong

ejections of inner-layer fluid into the outer flow. Our data show that both of these

mechanisms are present. Additional work is required to determine which of them is

dominating.
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Chapter 6

Conclusion and future work

6.1 Hybrid RANS/LES

This work shows that a PI feedback control applied to the Navier-Stokes equa-

tions accelerates the adjustment of synthetic turbulence generated at the inflow

plane towards well-resolved LES turbulence. It has been proved that the PI con-

trol is stable and robust with different non-equilibrium flows. In this Chapter we

summarize the major findings.

6.1.1 Control parameters

The averaging window used to determine the error, Tave, has a strong effect

on the control, and it seems be the most critical parameter: if the averaging time

is too large, the control acts on quantities that carry information not related with

the actual state of the flow. On the other hand, if the averaging time is too short

the input of the PI control does not have smooth stationary information, so it can

input excessive energy into the system. If this parameter is not well tuned, two

main effects can be expected: the transient time of the calculation increases and the

simulation requires large amounts of CPU time; also, the steady state error can be
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large and affect the results in the region downstream the last control plane.

Another issue that has an influence on the steady state results is the spanwise

average that was used to define the error by previous researchers. The error, if no

spanwise average is performed, reflects more accurately the local state of the flow, so

that the PI control can locally adjust the control signal. Both the tuning of the time

averaging window and the absence of spanwise average reflect the fact that in the

feedback control is important to feed the PI control with the correct instantaneous

information that allow for a correct response. Any delay can be dangerous.

To summarize the effect of KI and KP in the control it is conceptually useful

to divide the computational domain in two regions: the controlled one, where the PI

control is activated and the region downstream the control. The controlled region

does not have a fluid-dynamical interest because it is not a region where realistic

turbulence exists, but it is seen as a transition from RANS to LES, in which a

mismatch from the desired quantities is tolerated. However, from the point of view

of the control, in this region the PI control tries to match the target: the two

constants KI and KP determinate the steady-state match of the desired quantities.

If these two constants are not well-tuned, we can have a large steady state error

within that region. A residual error, however, has a weak effect on the result in

the region downstream the controlled one, as can be seen in the work of Keating

et al. [30]. In fact, downstream of the last control plane the flow is biased to the

exact solution of the NS equation. This is true especially when an external forcing is
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applied to the flow (3D Boundary layer, Adverse Pressure gradient boundary layer):

the bias in these cases is even stronger than in a boundary layer where no external

force is applied (as the zero pressure gradient case). However, if the external forcing

has the opposite trend of the control, the natural bias could not work. This is the

case of the favorable pressure gradient: the acceleration damps the turbulent kinetic

energy in the inner layer, instead the control tries to add energy towards a RANS

solution with strong modeling errors. As was shown in the results, this kind of flow

was extremely tedious to control. The same is true for the ZPG boundary layer:

there is no external force and the solution in the region downstream the control is

more sensible to the choice of the parameters.

The coefficient KI and KP have a strong influence in the stability of the

system. Destabilization can be obtained if the PI system (or any other systems

close in a feedback loop) introduce a lag in the loop. If KI is too large or KP too

small the output of the PI control can be affected by a time lag that can destabilize

the Naveir-Stokes equations. However, for stable values of KP and KI , the results

outside the control region are insensitive to these parameters.

6.1.2 Applications

In the hybrid RANS/LES results, we found that an important part is played

by the modeling error in the RANS solution. In the zero pressure gradient and

adverse pressure gradient boundary layer, we found that a rapid adjustment to the
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LES results is obtained when the k − ε model is used in the RANS region. The

fact that this model gives independent values of k and ε, while with the SA model

must be estimated empirically, is a particularity desirable feature. In the favorable

pressure gradient, on the other hand, any of the RANS model was unable to predict

correctly the behavior of the flow. In the 3D boundary layer, we have seen that

a recovery of the main shear stress 〈u′v′〉 and the secondary shear stress 〈v′w′〉 is

obtained, with the forcing applied only to the 〈u′v′〉 stress. However, if the wrong

time-averaging is used, the secondary stress is not matched.

In the case of the zero pressure gradient and 3D boundary layer, we tried

to force the turbulent kinetic energy production in order to have a control that

was coordinate-invariant. We tested a production-based error in these two flows

obtaining the same result as in the Reynolds stress-based error; the only difference

was in the controlled region: here the steady state error was large in the outer part

of the boundary layer.

6.2 Resolved LES of the favorable pressure gradient boundary layer

Large-eddy simulation of flat-plate boundary layers in favorable pressure gra-

dients (FPG) are performed for two different acceleration parameters. The high-

acceleration case is in good agreement with the experimental data by Fernholz and

Warnack [96, 97]. Substantial reduction in turbulent kinetic energy and shear stress

production, and a reduction of the bursting frequency indicate that the inner part of
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the accelerated boundary layer is in a laminar-like state when the pressure-gradient

parameter K exceeds a threshold value. Downstream of this region, the boundary

layer has a fast re-transition to turbulence. In the low K case, the boundary layer

does not depart significantly from equilibrium. In the outer part of the boundary

layer, the turbulent kinetic energy and the shear stress correlation maintained the

same level as before the acceleration began. Two main hypotheses have been made:

the inner and outer layers do not interact; or, the relaminarization is the conse-

quence of inner-outer layer coupling. The results of our well-resolved calculations of

the FPG boundary layer highlighted some significant differences in the inner-outer

layer interactions compared to a canonical ZPG case. They did not, however, allow

us to determine whether the relaminarization process begins in the inner layer and

propagates outwards, or if the reorganization of the outer layer forces the inner layer

to become more stable.

6.3 Future work

An important extension of the hybrid RANS/LES calculation is to compress-

ible flow. The use of controlled forcing in this case can be challenging, because the

control that we examined adds energy into the domain. One possible consequence

is that not all the energy goes in turbulent fluctuations but a fraction of that can

be found as internal energy; this would make the method less effective and could

require different control strategies. One first step to allow the extension to com-
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pressible flow, could be the finding of more accurate control coefficients. This can

be possible if a simplified model of the Navier-Stokes equation is found, so that

well-known tested models can be applied to the feedback control.

Regarding the favorable pressure gradient boundary layer, in order to give

an answer to the issue of inner-outer layer coupling, a possible strategy is perform

falsifying experiments [106]. In a first set of simulations the flow can be manipulated

to suppress the outer layer eddies and observes the behavior of the inner layer. In

a second set of calculations the turbulence in the inner layer can be removed, and

study the development of the outer layer in isolation. Another possibility is to study

a single horseshoe vortex subjected to acceleration to determine whether the outer-

layer re-organization is due to the freestream acceleration only, or if it is affected by

the decreased frequency of the bursts also.
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