
SI R
INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by
the National Science Foundation
Engineering Research Center Program,
the University of Maryland,
Harvard University,
and Industry

TECHNICAL RESEARCH REPORT

Probabilistic Language Framework for
Stochastic Discrete Event Systems

by V.K. Garg, R. Kumar, S.I. Marcus

T.R. 96-18

Probabilistic Language Formalism for Stochastic

Discrete Event Systems 1 2

Vijay K. Garg

Department of Electrical and Computer Engineering

University of Texas at Austin

Austin, Texas 78712-1084

Ratnesh Kumar

Department of Electrical Engineering

University of Kentucky

Lexington, KY 40506-0046

Steven I. Marcus

Department of Electrical Engineering and

Institute for Systems Research

University of Maryland at College Park

College Park, MD 20742

1Preliminary versions of this paper appeared as [7, 6].
2This research was supported in part by the Center for Robotics and Manufacturing, University

of Kentucky, in part by the National Science Foundation under Grants NSF-ECS-9409712, NSF-
ECS-9414780, NSFD-CDR-8803012, and NSF-EEC-9402384, in part by the Air Force O�ce of
Scienti�c Research (AFOSR) under Contract F49620-92-J-0045, and in part by a TRW faculty
assistantship award.

Abstract

The formalism of probabilistic languages has been introduced for modeling the qualitative
behavior of stochastic discrete event systems. A probabilistic language is a unit interval
valued map over the set of traces of the system satisfying certain consistency constraints.
Regular language operators such as choice, concatenation, and Kleene-closure have been
de�ned in the setting of probabilistic languages to allow modeling of complex systems in
terms of simpler ones. The set of probabilistic languages is closed under such operators thus
forming an algebra. It also is a complete partial order under a natural ordering in which
the operators are continuous. Hence recursive equations can be solved in this algebra. This
is alternatively derived by using contraction mapping theorem on the set of probabilistic
languages which is shown to be a complete metric space. The notion of regularity, i.e.,
�niteness of automata representation of probabilistic languages has been de�ned and shown
that regularity is preserved under choice, concatenation, and Kleene-closure. We show that
this formalism is also useful in describing system performances such as completion time,
reliability, etc. and present properties to aide their computation.

Keywords: Discrete Event Systems, Stochastic Systems, Automata, Languages, Regularity,
Completion time, Reliability

1 Introduction

Discrete event systems are systems which involve quantities that are discrete and which
change when events occur in the system. Most prior work on characterizing qualitative
behavior of such event driven systems has been restricted to non-stochastic systems where
the emphasis is on possibilities rather than on probabilities. The theory of time driven
stochastic systems on the other hand has been well developed and understood. In this paper
we introduce the formalism of probabilistic languages to describe the behavior of stochastic
discrete event systems. Such systems are also represented as nondeterministic automata
with probabilities associated with transitions.

Consider for example a machine which operates in one of the three possible states|
idle, working, and broken. In the idle state, the machine state changes to the working
state with probability one when the \commence" event occurs. In the working state, the
machine state changes to the broken state with probability, say, p when the \breakdown"
event occurs, whereas it changes to the idle state with the remainder probability 1� p when
the \completion" event is executed. Finally, in the broken state, the machine state changes
to the idle state with probability one when the \repair" event is executed.

Such a stochastic discrete event system can clearly be represented by an automaton with
probabilities associated with transitions such that the probabilities of all transitions from
any state add up to at most one. When the probabilities do not add up to exactly one, this
means the systems terminates with the remainder probability. Thus by modeling systems
by \substochastic automata" we model the possibility of termination, which also allows us
to model concatenation or sequential operation of two or more systems. The substochastic
automata model can be converted to an equivalent stochastic automata model by introducing
an auxiliary \termination" event and assigning appropriate probability to each \termination"
transition so that the transition probabilities from any state add up to exactly one. Thus
this model is similar to the well known Markov chain models [2]. The di�erence lies in the
fact that unlike the Markov chain models the transition event labels are emphasized so that
we can study the event traces and their occurrence probabilities. The work on stochastic
Petri nets [13] also follows the work of Markov chains and is thus di�erent from the work
presented here.

Our model also di�ers from Rabin's probabilistic automata model [17] where the proba-
bilities on transitions on each event (rather than all events) from any state add up to one.
Thus in Rabin's model system changes its state on each event with probability one. How-
ever in our model the cumulative probability of state change over all events is at most one.
Rabin's model is weaker in the sense that less information about state change on an event
occurrence is available. The motivation for Rabin's work was to introduce the notion of
\cut-languages". A cut-language is the set of accepted event traces whose occurrence proba-
bility exceeds a given cut value. Our motivation here is to study the probabilistic languages
associated with models bearing similarity to Markov chain models. Thus a twofold di�erence
lies between Rabin's probabilistic automata and the model presented here. Mortazavian [15]
considered the supervisory control problem for systems modeled as Rabin's probabilistic au-

1

tomata. Thus our work is also distinct from that of Mortzavian. There have been other
attempts to generalize deterministic automata to the probabilistic setting [16, 4] which also
follow the lines of Rabin's model.

As is de�ned below a probabilistic language associates a probability (a value in the unit
interval) to each �nite length trace of the system with the following two constraints on the
probabilities: (i) the probability of the zero length trace is one, and (ii) the probability of
any trace is at the least the cumulative probability of all its extensions. In [8] a probability
measure on the set of traces is de�ned to be a probability map satisfying the �rst constraint
above and a stronger second constraint that requires that the probability of each trace be
equal the cumulative probability of all its extensions. By relaxing this constraint we are
able to model the possibility of termination, which also allows us to de�ne concatenation or
sequential operation of two or more stochastic discrete event systems.

A probabilistic language can be viewed a formal power series [20]|a map over the set of
traces, but with the additional two constraints described above. There are many important
di�erences in our work from the classical work on formal series. Our de�nition of concatena-
tion (product) and therefore of concatenation-closure is quite di�erent from that of classical
de�nition of product. The classical de�nition of product, called Cauchy product, is the same
as the convolution operator used in this paper. Our de�nition of product is more useful in
modeling concatenation or sequential operation of two or more systems.

Another early attempt to associate probabilities with traces was done by researchers in
fuzzy set theory [12]. A fuzzy language is a fuzzy set of event traces, so that each trace has a
membership grade in the unit interval [0; 1]. Our de�nition of probabilistic languages allows
only those membership grades which satisfy certain consistency constraints. A consequence
of these constraints is that the membership grade of a trace can be viewed as the probability
that the system executes that trace. This results in a richer theory for stochastic discrete
event system modeled by probabilistic languages.

We de�ne regular language operators such as choice, concatenation, and Kleene-closure
over the domain of probabilistic languages to allow modeling of complex systems in terms of
simpler ones. We show that the set of probabilistic languages is closed under such operators,
thus forming an algebra. We show that this set is a well structured poset|a complete partial
order|under a natural partial order in which the operators are continuous. Hence recursive
equations can be solved in this algebra. We also establish this result alternatively by de�ning
a metric on the set of probabilistic languages in which the set is complete and the operators
are continuous and contracting. Consequently, the contraction mapping theorem applies
yielding existence of unique �xed points of the operators. We characterize the regularity of
probabilistic languages, i.e., �niteness of their automaton representation and show that the
operators preserve regularity. Thus, probabilistic languages forms a suitable formalism for
modeling and analysis of stochastic discrete event systems.

We show that probabilistic language formalism is also useful in describing system perfor-
mances such as average completion time and reliability. We present analytical techniques to
aide in computation of \bilinear" performance functions by showing that they enjoy several
compositional properties so that performances of complex systems can be easily obtained

2

in terms of those of their simpler constituent sub-systems. Computation of performance
functions by recursion over regular operations was �rst investigated in [14]. Our results
extend this technique to recursion over probabilistic regular operations. The formalism of
probabilistic languages can also be used for studying supervisory control problems [18, 11]
of stochastic discrete event systems. The concluding section discusses some ways in which
control problems can be studied in this formalism. More detailed examples and algorithms
are subject of work under progress.

The rest of the paper is organized as follows. Section 2 describes the notation in this
paper. Section 3 de�nes probabilistic languages and introduces a partial order on the class
of probabilistic languages making it a complete partial order. Section 4 describes various
operators de�ned for probabilistic languages and studies their properties. Section 5 de�nes
probabilistic automata and relates them to probabilistic languages that are regular. Section 6
de�nes system performances and describes compositional methods to compute them. Section
7 concludes the work presented here and discusses some control problems that can be studied
in this formalism. Appendix A gives a metric in which the set of probabilistic languages is
complete and the operators are continuous and contracting.

2 Notation and Preliminaries

We use � to denote the universe of events. �� denotes the set of all �nite length sequences
of events from �, including the zero length trace �. A member of �� is called a trace, and
a subset of it is called a language. Given traces s and t, we use s � t to denote that s is
a pre�x of t, in which case the notation s�1t is used to denote the su�x of t obtained by
removing the pre�x s, i.e., t = ss�1t. A language is called pre�x closed if it contains all
pre�xes of all of its traces. Thus a pre�x closed non-empty language always contains �.

A nondeterministic automaton G over the event set � is a triple G := (X; x0; �), where
X is the set of states, x0 2 X is the initial state, and � : X � � ! 2X is the partial
nondeterministic transition function which gives the set of possible resulting states when a
certain event in a given state occurs. For more details on languages and automata refer to
[9].

Given a set X, a partial order on X, denoted �, is a binary relation that is reexive,
anti-symmetric, and transitive. The pair (X;�) is called a partially ordered set or a poset.
Given a poset (X;�) and a pair of elements x; y 2 X, their in�mum and supremum whenever
de�ned are unique and are denoted by xuy and xty, respectively. The poset (X;�) is called
an inf semi-lattice (respectively, a sup semi-lattice) whenever the in�mum (respectively,
supremum) is de�ned for any pair of poset elements. It is called a lattice if it is both inf as
well as sup semi-lattice. x 2 X is called the bottom (respectively, the top) element if x � y

(respectively, y � x) for each y 2 X.
A chain in a poset is a monotonically increasing sequence of poset elements. I.e., fxigi�0,

where xi 2 X for each i, is called a chain if xi � xj whenever i � j. A poset (X;�) is called
a complete partial order (cpo) if it contains the bottom element of X, and the supremum
element of each chain.

3

Given a poset (X;�), a function f : X ! X is called monotone if the partial ordering is
preserved under its transformation, i.e., x � y implies f(x) � f(y). The function is called
continuous if it commutes with the supremum operation taken over a chain, i.e., given a
chain fxig, continuity of f requires that f(tixi) = tif(xi). Note that for continuity of f to
be de�ned, X must be a cpo (so that txi is de�ned for a chain fxig). It is easy to show that
every continuous function is also monotone.

x 2 X is called a �xed point of f : X ! X if f(x) = x. It is known that every
continuous function de�ned over a cpo (X;�) possesses a in�mum �xed point which is given
by ti�0f

i(?), where ? denotes the bottom element of X, f i denotes the i-fold application
of f , and f 0 is the identity function. Thus recursive equations of the type f(x) = x can
be solved whenever f is continuous and is de�ned on a cpo. We use this fact to de�ne
recursive equations in the domain of probabilistic languages. For further reading on posets
and functions de�ned on posets refer to [3].

Given a set
, a �-algebra on
 is a set of subsets of
 such that it is closed under
complementation and countable union, and contains
. The set of �-algebras on
 is closed
under arbitrary intersection. So given a collection of subsets of
, there exists the smallest
�-algebra containing the given subsets. This is called the �-algebra generated by the given
subsets. A measurable space is a pair (
;F), where
 is an arbitrary set, called a sample
space, and F is a �-algebra on
, each member of which is called a measurable set. Given
a measurable space (
;F), a probability measure P on it is map P : F ! [0; 1] that maps
(i)
 to one, and (ii) satis�es �-additivity, i.e., probability measure of countable union of
pairwise disjoint sets in F equals the sum of their individual probability measures. The
triple (
;F ; P) is called a probability space. For further detail on measurable spaces and
probability measures refer to [21].

3 Probabilistic Languages

A language can be viewed as a binary valued map over the set of traces in �� which
assigns a unit value to a trace if and only if the trace belongs to the language. If this
language represents the qualitative behavior of a certain discrete event system, then it must
be non-empty and pre�x closed, i.e., the zero length trace must be mapped to one, and
whenever a trace is mapped to one any of its pre�x must also be mapped to one.

We view the probabilistic language of a stochastic discrete event system in a similar
manner which assigns a probability measure (a value in the unit interval) to each trace in ��

with the interpretation that this value determines its probability of its occurrence. Since a
zero length trace is always possible in a system, its probability measure must be one. Also,
for a trace to occur, all its pre�xes must occur �rst. So the cumulative probability of all
traces sharing a common pre�x should not exceed the probability of the pre�x itself. This
captured by properties P1 and P2 below.

In order to represent the qualitative behavior of a stochastic discrete event system, we
�rst describe the underlying measurable space. For mathematical convenience we explicitly
represent the occurrence of termination by augmenting the event set with the \termination

4

event", denoted ��. Then the sample space for the behavior of a stochastic discrete event
system is given by the set of all �nite length traces possibly followed by the termination event,
i.e.,
 = ��(��+�) = ����[�

�. Since we are interested in the probability of \occurrence of
a trace s 2
"|which occurs whenever any trace containing s as its pre�x executes, we let
the set of all traces having s as a pre�x be a measurable set. We use < s >:= fst j st 2
g
(and simply s when there is no contextual confusion) to denote this measurable set. Then
the set of all measurable sets F is the �-algebra generated by f< s >j s 2
g.

De�nition 1 Consider the measurable space (
;F), where
 = ��(�� + �) and F is the
�-algebra generated by f< s >j s 2
g. Then a probabilistic language (p-language) L is a
probability measure on the measurable space (
;F), i.e., it is a map L : F ! [0; 1] that
maps
 to one and satis�es the property of �-additivity.

Remark 1 Since (i) the probability measure L on the �-algebra F is uniquely determined
by its value on the set f< s >j s 2
g � F which generates the �-algebra F , and (ii) the
set f< s >j s 2
g has the obvious one to one correspondence with the set
, we can view
L to be a unit interval valued map on
. With this correspondence in mind for each s 2
,
we use L(s) to represent the probability measure L(< s >), and refer to it as the probability
of occurrence of trace s.

Next, due to the property of �-additivity of L, we have

8s 2 �� : L(s��) = L(s)�
X
�2�

L(s�); (1)

where L(s��) represents the probability of termination following s, L(s) represents the
probability of occurrence of s, and

P
�2� L(s�) represents the probability of continuous

operation beyond s. Note that in Equation (1) s 2 ��, so s�� 2 ���� and s� 2 �� for each
� 2 �. Thus the value of L on ���� is uniquely determined by its vale on ��. Hence it
su�ces to view L as a unit interval valued map on �� (rather than on its superset
), which
we do from here on.

For future notational convenience we de�ne

8s 2 �� : �(L)(s) := L(s��); �(L)(s) :=
X
�2�

L(s�)

to be the probability of termination and probability of continuous operation, respectively,
following the execution of trace s. Then it is clear that for any L, �(L) and �(L) are both unit
interval valued maps on ��. The Equation (1) can be concisely written as: �(L) = L��(L).

Remark 2 Consider the measurable space (
;F) as given in De�nition 1, and a p-language
L : F ! [0; 1]. Then it is easy to see that the following two properties hold when L is viewed
as a unit interval valued map on ��:

P1: L(�) = 1
P2: L� �(L) � 0

5

P1 follows from the fact that L(�) = L(< � >) = L(
) = 1, whereas P2 follows from the
fact that for each s 2 ��, L(s)� �(L)(s) = L(s��) � 0.

Conversely, given a map L : �� ! [0; 1] satisfying P1 and P2 it can be extended in
the following manner to obtain a probability measure on (
;F): First Equation (1) is
used to extend L from �� to
. Next for any s 2
, the probability measure of the set
< s >2 F is simply given by L(s). Finally, the probability measure for the collection of sets
f< s >j s 2
g to obtain the probability measure of any set in F by applying the property
of �-additivity.

The above observation motivates the following the simpli�ed de�nition of a p-language
describing the qualitative behavior of a stochastic discrete event system.

De�nition 2 A p-language L is a unit interval valued map on �� satisfying P1 and P2. We
use L to denote the set of all p-languages.

Since the qualitative behavior of a stochastic discrete event system is completely described
by its p-language, the terms \system" and \p-language" are used below synonymously.

Remark 3 A consequence of P2 is that L(s) � L(t) whenever s is a pre�x of t. Also note
that for any trace s, L(s) � 1 can also be derived from P1 and P2. However, we prefer to
keep it as part of the de�nition for simplicity.

Example 1 Consider a system that deadlocks initially. We use nil p-language I to represent
its behavior. Then I(�) = 1, and I(s) = 0 for s 6= �. It is easy to verify that P1 and P2 hold
for I; and �(I) = I.

Consider a Bernoulli process where each experiment has two outcomes a and b with
probabilities p and (1 � p), respectively. Here the event set � = fa; bg, and the associated
p-language L is given by:

8s 2 �� : L(s) = p#(a;s)(1� p)#(b;s);

where #(a; s) represents the number of occurrences of a in the trace s. It is clear that P1
and P2 hold for L; and �(L) = 0.

Note that the outcomes corresponding to terminations after distinct traces are mutually
exclusive. Hence the cumulative probability of termination of a system can be obtained by
adding the individual probabilities over all possible traces:

P
s�(L)(s). For the system with

nil language this cumulative probability equals one which implies that it is a terminating
system. On the other hand, for the Bernoulli process this cumulative probability is zero
implying that this system does not terminate. In the following theorem we establish that this
cumulative probability of termination is bounded above by one (a system is not necessarily
guaranteed to terminate), and it equals one if and only if the probability of traces of arbitrary
length converges to zero.

6

Theorem 1 Consider a p-language L. Then

1.
P

s�(L)(s) � 1

2. [
P

s�(L)(s) = 1() limk!1
P
jtj=k L(t) = 0

Proof: 1. De�ne S(n) :=
P
jsj�n�(L)(s) to be the probability of termination in at most n

steps of execution, so that
P

s�(L)(s) = limn!1 S(n). Then since S(n) is monotonically
increasing, it su�ces to show that it is bounded above by one. (This implies that its limiting
value is also bounded above by one.)

We �rst show using induction on n that S(n) = 1�
P
jsj=n+1L(s). Clearly this holds for

n = 0, since in that case S(n) = C(�) and 1 �
P
jsj=1 L(s) = L(�) �

P
� L(�) = C(�). This

establishes the base step. For the induction step we have

S(n+ 1) = S(n) +
X

jsj=n+1

�(L)(s)

ffrom induction hypothesis and de�nition of �g

= [1�
X

jsj=n+1

L(s)] +
X

jsj=n+1

[L(s)�
X
�

L(s�)]

= 1�
X

jsj=n+1

X
�

L(s�)

= 1�
X

jsj=n+2

L(s);

This establishes the induction step.
Now since S(n) = 1�

P
jsj=n+1 L(s), and by de�nition L(s) � 0, it follows that S(n) � 1

as desired.

2. We have shown above that
P
jsj�n�(L)(s) = S(n) = 1�

P
jsj=n+1 L(s). So in the limit

when n approaches ini�nity, this gives us
P

s�(L)(s) = 1� limk!1
P
jsj=k L(s), from which

the result follows.
We conclude this section by de�ning a natural partial order on the set of p-languages

under which it is a cpo. Continuity properties of various regular operators de�ned on the set
of p-languages is then investigated with respect to this order in the next section. These con-
tinuity properties are then used to establish that recursive equations involving the operators
are well de�ned.

De�nition 3 Given a pair of p-languages K;L 2 L, de�ne K � L if and only if

8s 2 �� : K(s) � L(s):

It is easy to see that the relation � as de�ned above is reexive, anti-symmetric and tran-
sitive, i.e., it is a partial order. The in�mum and supremum of K;L 2 L are de�ned as
follows:

K u L(s) = inf(K(s); L(s)); K t L(s) := sup(K(s); L(s)):

7

Example 2 Consider p-languages H;K;L de�ned over � = fa; bg:

H(�) = 1; H(a) = 0:4; H(ab) = 0:3; H(s) = 0; otherwise
K(�) = 1; K(a) = 0:4; K(b) = 0:5; K(ab) = 0:4; K(s) = 0; otherwise
L(�) = 1; L(a) = 0:6; L(b) = 0:4; L(ab) = 0:3; L(s) = 0; otherwise

Then H � K, and H � L, whileK and L are incomparable. Note thatKuL is a p-language.
However, K tL is not a p-language, since K tL(a) = 0:6 and K tL(b) = 0:5 which violates
P2.

It follows from the above example that the set of p-languages under partial order � is
not a lattice. The following theorem shows that this set is an inf semi-lattice, and also a
cpo.

Theorem 2 Consider the partial order � on L as de�ned above. Then

1. (L;�) is an inf semi-lattice.

2. (L;�) is a cpo.

Proof: 1. Consider K;L 2 L. We need to show that K u L 2 L, i.e., P1 and P2 hold for
K u L. Clearly, K u L(�) = inf(K(�); L(�)) = 1, which implies that P1 holds. In order to
see that P2 also holds consider the following:X

�

K u L(s�) =
X
�

inf(K(s�); L(s�))

ffrom property of addition and in�mumg

� inf(
X
�

K(s�);
X
�

L(s�))

ffrom P2g

� inf(K(s); L(s)) = K u L(s):

2. The bottom element for L is the nil language I 2 L. So next consider a chain of
p-languages fLigi�0, i.e., Li � Lj whenever i � j. Then for each s 2 ��, fLi(s)g is a
monotonically increasing sequence of reals bounded above by 1, and hence converges. We
use L1 to denote the resulting \trace-wise" limit of the chain of p-languages. We need to
show that L1 itself is a p-language.

Clearly, L1(�) = limi!1 Li(�) = 1, which implies that P1 holds. In order to see that P2
also holds consider the following:X

�

L1(s�) =
X
�

lim
i!1

Li(s�)

flimit commutes with sum over �nite termsg

= lim
i!1

X
�

Li(s�)

ffrom P2g

� lim
i!1

Li(s) = L1(s):

8

4 Operators for Probabilistic Languages

In this section we de�ne some operations on p-languages and study their properties.
These operators are useful in describing a complex system as a composition of many simple
systems.

4.1 Choice

This operator captures non-deterministic choice between two systems. The composite
system behaves as one of the two systems with certain given probabilities.

De�nition 4 Given a pair of p-languages L1; L2 2 L, and e 2 [0; 1], the choice operation,
denoted L1 +e L2, is de�ned as:

L1 +e L2 := eL1 + �eL2;

where �e := 1� e.

In other words, the combined system either behaves as L1 with probability e or as L2 with
probability 1 � e. As a part of the next theorem we prove that L1 +e L2 is a p-language.
Note that the choice operator can be easily generalized for multiple p-languages, in which
case it will be a convex combination of its argument p-languages.

In the following theorem we study a few properties of the choice operator.

Theorem 3 Consider L1; L2 2 L and e 2 [0; 1].

1. L1 +e L2 is a p-language.

2. �(L1 +e L2) = e�(L1) + �e(�(L2).

3. Choice is a continuous operator in both of its arguments.

Proof: 1. That L1 +e L2 is a p-language is clear since it is the convex combination of two
p-languages.

2. This follows from the following series of equalities:

�(L1 +e L2) = L1 +e L2 � �(L1 +e L2)

= (eL1 + �eL2)� �(eL1 + �eL2)

ffrom linearity of �g

= (eL1 + �eL2)� [e�(L1) + �e�(L2)]

= [eL1 � e�(L1)] + [�eL2 � �e�(L2)]

= e�(L1) + �e�(L2):

9

3. By symmetry of the de�nition of the choice operator in its arguments, it su�ces to
show that for any chain fLig of p-languages and e 2 [0; 1]:

K +e (tiLi) = ti(K +e Li):

Note that tiLi is well de�ned from Theorem 2. Then the desired equality follows from the
observation that for any s 2 ��:

eK(s) + �e(lim
i!1

Li)(s) = lim
i!1

[eK(s) + �eLi(s)];

where we have used the fact that the limit operation commutes with summation over a �nite
number of terms.

Since choice is continuous in both its arguments, it is possible to de�ne a \choice function"
mapping L to itself and obtain its in�mum �xed point. Given L 2 L and e 2 [0; 1], we de�ne
the function +eL : L ! L as follows:

8H 2 L : +L(H) := L+e H:

Next we study the �xed point equation involving the choice function.

Theorem 4 Given L 2 L and e 2 [0; 1], the in�mum �xed point of the equation +eL(H) =
H, i.e., H = L+eH, where H 2 L is the variable of the equation, is given by L when e 6= 0,
and I when e = 0.

Proof: Since (L;�) is a cpo, and the choice function +eL is continuous in this cpo, its
in�mum �xed point exists. Note that when e = 0, then for any H 2 L, +eL(H) = eL+�eH =
H, i.e., each p-language is a �xed point. So the in�mum �xed point equals I. For the case
when e 6= 0, we proceed as follows.

Note L+e L = eL+ �eL = L, implying that L is a �xed point. We need to show that it is
the in�mum �xed point. From a well know result on �xed points [3, 10], we know that the
in�mum �xed point can be computed as ti�0(+eL)

i(I), where the nil p-language I is the
bottom element of L. De�ne Hn := ti�n(+eL)

i(I). Then it is easy to show using induction
on n that

Hn =
n�1X
i=0

�eieL + �enI:

Since e 6= 0; �e 6= 1, which implies �en approaches zero as n approaches in�nity. Hence the
limiting value of Hn is given by

X
i�0

�eieL =
1

1� �e
eL =

1

e
eL = L;

as desired.

10

4.2 Concatenation

This operator captures the sequential operation of two systems. The composite system
behaves as one system, and upon termination continues to behave as the other system with
a certain given probability.

Example 3 Suppose the p-languages L1 and L2 describe the processes of tossing a coin
until a head and a tail, respectively, appear. Suppose the probability of getting a head in
the �rst (resp., second) process is p1 (resp., p2). Then the event set for both the systems is
given by � = ftossg, and

L1(toss
n) = (1� p1)

n; �(L1)(toss
n) = (1� p1)

np1

L2(toss
n) = pn2 ; �(L2)(toss

n) = pn2 (1� p2):

Next suppose the �rst coin is tossed until a head appears, and then with probability e the
second coin is selected and tossed until the tail appears. Then the behavior of the composite
process is described by the concatenation of the two processes, which we denote by L1:eL2.
It is clear that a sequence of n tosses will take place in the composite process if either (i) the
�rst coin is tossed n times, always getting a tail, or (ii) the �rst coin is tossed m < n times,
always getting a tail, at which point the �rst process terminates (a head occurs next), and
then with probability e the second coin is selected and tossed n�m times, always getting a
head. This motivates the following de�nition of concatenation.

De�nition 5 Given a pair of p-languages L1; L2 2 L, and e 2 [0; 1], the concatenation
operation, denoted L1:eL2, is de�ned as:

8s 2 �� : L1:eL2(s) := L1(s) + e
X
t<s

�(L1)(t)L2(t
�1s)

= L1(s)� e�(L1)(s) + e
X
t

�(L1)(t)L2(t
�1s):

In other words, the composite system executes a trace s by �rst behaving as the system with
p-language L1, and either executes the entire trace s that way, or terminates after executing
a pre�x t of s and then with probability e executes the remainder of the trace t�1s as the
system with p-language L2.

We show below that L1:eL2 is indeed a p-language, i.e., it satis�es P1 and P2. We
�rst prove a few properties of the \convolution" operation that appears in form of the
term

P
t�(L1)(t)L2(t

�1s) in the de�nition of concatenation. The following de�nition of
convolution is introduced to simplify future notation.

De�nition 6 Given a pair of real valued f; g : �� !R, their convolution, denoted f � g, is
de�ned as:

f � g(s) :=
X
t

f(t)g(t�1s):

11

Then the concatenation operation can be simply de�ned as:

L1:eL2 = L1 � e�(L1) + e�(L1) � L2:

The convolution operator de�ned above is termed as product (or Cauchy product) in the the-
ory of formal power series [20]. We use convolution to avoid any confusion with concatenation
product.

The following lemma describes certain properties of the convolution operator.

Lemma 1 Let f; g; h : �� !R be real valued functions, and e; e0 2 R.

1. [1] I is the identity for convolution, i.e., f � I = I � f = f .

2. [1] Convolution is associative, i.e., f � (g � h) = (f � g) � h.

3. Convolution is continuous in both arguments, i.e., f�(tigi) = ti(f�gi), and (tifi)�g =
ti(fi � g).

4. [1] Convolution is a linear operator, i.e., f � (eg + e0h) = ef � g + e0f � h.

5. If g(�) = 1, then �(f � g) = f � �(g) + �(f).

Proof: The proofs for parts 1, 2, and 4 can be found in [1]. So we only prove parts 3 and 5.

3. The following holds for each s 2 ��:

f � (tigi(s)) =
X
t

f(t)(lim
i!1

gi(t
�1s))

flimit commutes with sum over �nite terms (all pre�xes of s)g

= lim
i!1

X
t

f(t)gi(t
�1s)

= ti(f � gi(s));

The continuity in the other argument can be similarly proved.

5. The following holds for any s 2 ��:

�(f � g)(s) =
X
�

f � g(s�)

=
X
�

X
t�s�

f(t)g(t�1s�)

=
X
�

2
4X
t�s

f(t)g(t�1s�) + f(s�)g(�)

3
5

fsince g((s�)�1s�) = g(�) = 1g

=
X
t�s

f(t)
X
�

g(t�1s�) +
X
�

f(s�)

=
X
t�s

f(t)�(g)(t�1s) + �(f)(s)

= f � �(g)(s) + �(f)(s):

12

In the following theorem we study a few properties of the concatenation operator.

Theorem 5 Consider L1; L2 2 L and e 2 [0; 1].

1. L1:eL2 is a p-language.

2. �(L1:eL2) = �e�(L1) + e�(L1) ��(L2).

3. Concatenation is continuous in its second argument; it is not even monotone in its �rst
argument.

Proof: 1. P1 follows from the following:

L1:eL2(�) = L1(�)� e�(L1)(�) + e�(L1) � L2(�) = L1(�)� e�(L1)(�) + e�(L1)(�)L2(�) = 1:

In order to prove P2 it su�ces to show that �(L1:eL2) � 0. This follows from the second
part below.

2. We have the following series of equalities:

�(L1:eL2) = L1:eL2 � �(L1:eL2)

= [L1 � e�(L1) + e�(L1) � L2]� �[L1 � e�(L1) + e�(L1) � L2]

fusing linearity of � and rearrangingg

= [L1 � �(L1)] + e[�(L1) � L2 ��(L1) + �(�(L1))� �(�(L1) � L2)]

ffrom Lemma 1 �(�(L1) � L2) = �(L1) � �(L2) + �(�(L1))g

= �(L1) + e[�(L1) � L2 ��(L1) + �(�(L1))��(L1) � �(L2)� �(�(L1))]

= �(L1) + e[�(L1) � L2 ��(L1)��(L1) � �(L2)]

ffrom linearity of convolutiong

= [�(L1)� e�(L1)] + e�(L1) � [L2 � �(L2)]

= �e�(L1) + e�(L1) ��(L2):

3. Consider K 2 L and a chain of p-languages fLig. Then we have the following series
of equalities:

K:e t Li = K � e�(K) + e�(K) � tiLi

ffrom continuity of convolution, Lemma 1, part 3g

= K � e�(K) + e ti �(K) � Li

flimit commutes with sum over �nite termsg

= tiK � e�(K) + e�(K) � Li

= tiK:eLi;

In order to see that concatenation is not even monotone in its �rst argument, consider
p-languages K;L over the event set � = fa; bg with

13

K(�) = 1; K(a) = 0:2; K(s) = 0; otherwise
L(�) = 1; L(b) = 1:0; L(s) = 0; otherwise.

Then I � K, but I:1L and K:1L are incomparable since I:1L = L and K:1L is given by:

K:1L(�) = 1; K:1L(a) = :2; K:1L(b) = :8; K:1L(ab) = :2; K:1L(s) = 0; otherwise.

This completes the proof.

Remark 4 In order to understand why concatenation is not continuous in its �rst argument
consider a chain of p-languages fLig, a p-language K 2 L, and e 2 [0; 1]. Then

tiLi:eK = tiLi � e�(tiLi) + e�(tiLi) �K:

Thus for the concatenation to be continuous in its �rst argument, we need �(tiLi) =
ti�(Li), i.e., we need the limiting completion probability function to be the limit of the
individual completion probability functions. However, although the given p-language form a
chain, their completion probability functions may not, and so their limit may not even exist.
This causes the loss of continuity of concatenation in its �rst argument.

Since concatenation is continuous in its second argument, it is possible to de�ne a \con-
catenation function" mapping L to itself and obtain its in�mum �xed point. Given L 2 L
and e 2 [0; 1], we de�ne the function :eL : L ! L as follows:

8H 2 L : :eL(H) := L:eH:

Next we study the �xed point equation involving the concatenation function.

Theorem 6 Given L 2 L and e 2 [0; 1], the in�mum �xed point of the equation :eL(H) =
H, i.e., H = L:eH, is given by

P
i�0 e

i�(L)(i) � L�
P

i�1 e
i�(L)(i), where �(L)(i) represents

the i-fold convolution of �(L) with itself, and �(L)(0) := I.

Proof: Since (L;�) is a cpo, and the concatenation function :eL is continuous on this cpo,
its in�mum �xed point exists. From a well know �xed point result [3, 10], the in�mum
�xed point is given by ti�0(:eL)

i(I), where I is the nil p-language which is also the bottom
element of L.

De�ne Hn := ti�n(:eL)
i(I). We show using induction on n that

Hn =
n�1X
i=0

ei�(L)(i) � L�
n�1X
i=1

ei�(L)(i); (2)

from which the result follows by taking the limit as n approaches in�nity. For the base step
consider n = 1. Then by de�nition

H1 = L:eI = L� e�(L) + e�(L) � I = L� e�(L) + e�(L) = L;

14

where the last equality follows from the fact that I is the identity of convolution (Lemma 1).
Also, when n = 1, (2) reduces to:

H1 = e0�(L)(0) � L = I � L = L;

which establishes the base step. In order to see the induction step we have:

Hn+1 = L:eHn

= L� e�(L) + e�(L) �Hn

ffrom induction hypothesisg

= L� e�(L) + e�(L) � [
n�1X
i=0

ei�(L)(i) � L�
n�1X
i=1

ei�(L)(i)]

= L� e�(L) +
nX
i=1

ei�(L)(i) � L�
nX
i=2

ei�(L)(i)

= [L +
nX
i=1

ei�(L)(i) � L]� [e�(L) +
nX
i=2

ei�(L)(i)]

=
nX
i=0

ei�(L)(i) � L�
nX
i=1

ei�(L)(i):

This establishes the induction step and completes the proof.

Remark 5 Since the choice and concatenation functions as de�ned above are both continu-
ous, any function formed using them is also continuous and thus possesses the in�mum �xed
point. As an example consider the function f : L ! L de�ned as f(H) = L +1 (K:1H) for
each H 2 L, where K;L 2 L are �xed p-languages. Then its in�mum �xed point can be
computed using the technique illustrated above.

4.3 Concatenation Closure

The in�mum �xed point of the concatenation function allows us to de�ne the concate-
nation closure operator. This describes a system which upon termination continues with a
certain probability e to behave as itself any �nite number of times. This operation resembles
the Kleene closure operation from the theory of formal languages and captures the notion of
repeated sequential behavior.

De�nition 7 Given a p-language L 2 L and e 2 [0; 1], the concatenation closure operation,
denoted L�e , is de�ned as:

L�e :=
X
i�0

ei�(L)(i) � L�
X
i�1

ei�(L)(i) = L +
X
i�1

ei�(L)(i) � [L� I];

i.e., it is the in�mum �xed point of the concatenation function :eL

15

Since L�e as de�ned above is the in�mum �xed point of the concatenation function
(Theorem 6), it follows that it is a p-language, i.e., satis�es P1 and P2. The (n+ 1)th term
of the summation in the de�nition of concatenation closure is en�(L)(n) � [L � I], which
represents that the system repeatedly behaves as itself n di�erent times|terminating each
time (represented by the n-fold convolution term en�(L)(n))|and then continues as itself
for the n + 1th time without terminating and executing a \non-epsilon trace" (represented
by the �nal convolution term L� I).

In the following theorem we obtain a property of the concatenation closure operator.

Theorem 7 Consider a p-language L 2 L and e 2 [0; 1]. Then �(L�e) = �e
e

P
i�1 e

i�(L)(i).

Proof: For notational simplicity de�ne (e�(L))(+) :=
P

i�1 e
i�(L)(i). Then L�e = L +

(e�(L))(+) � (L� I). So

�(L�e)

= L+ (e�(L))(+) � (L� I)� �(L + (e�(L))(+) � (L� I))

ffrom linearity of �g

= L+ (e�(L))(+) � (L� I)� �(L)� �((e�(L))(+) � L) + �((e�(L))(+))

ffrom Lemma 1, parts 1 and 5g

= L+ [(e�(L))(+) � L� (e�(L))(+)]� �(L)� [(e�(L))(+) � �(L) + �((e�(L))(+))]

+�((e�(L))(+))

= [L� �(L)] + [(e�(L))(+) � (L� �(L))]� (e�(L))(+)

= �(L) + (e�(L))(+) ��(L)� (e�(L))(+)

=
1

e
[e�(L) + e

X
i�1

ei�(L)(i) ��(L)]� (e�(L))(+)

=
1

e
[e�(L) +

X
i�2

ei�(L)(i)]� (e�(L))(+)

=
1

e
[
X
i�1

ei�(L)(i)]� (e�(L))(+)

= [
1

e
� 1](e�(L))(+)

=
�e

e
(e�(L))(+);

as desired.

Example 4 Consider a process of tossing a coin which is repeated till a head occurs. Sup-
pose that the probability of getting a tail is e. Then in this example, the \toss once" process
is repeated each time a tail occurs, i.e., with probability e. So the \repeated toss" process
can be represented as the concatenation-closure of the \toss once" process. For the \toss
once" process � = ftossg, and

16

L(�) = L(toss) = 1; L(s) = 0; otherwise.

The \repeated toss" process can be described by the p-language L�e .
Since �(L)(s) = 1 if and only if s = toss, and zero otherwise, it follows easily from

induction that �(L)(n)(s) = 1 if and only if s = tossn. Suppose we are interested in �nding
the probability of n tosses. Then this is given by:

L�e(tossn) =

2
4X
i�0

ei�(L)(i) � L

3
5 (tossn)�

2
4X
i�1

ei�(L)(i)

3
5 (tossn)

= [en�1�(L)(n�1)(tossn�1)L(toss) + en�(L)(n)(tossn)L(�)]� [en�(L)(n)(tossn)]

= en�1 + en � en

= en�1;

which is precisely the probability of getting n� 1 consecutive tails.
Similarly, if we are interested in determining the probability of termination after n tosses,

then this is given by:

�(L�e)(tossn) =
�e

e

X
i�1

ei�(L)(i)(tossn)

=
�e

e
en�(L)n(tossn)

=
�e

e
en

= en�1�e;

which is precisely the probability of getting n� 1 consecutive tails followed by a head.

5 Automata for Probabilistic Languages

In this section we de�ne \probabilistic automata"|nondeterministic automata with
probabilities associated with its transitions, which can be used to represent p-languages in
a concise manner. It is easier represent a stochastic discrete event system as a probabilistic
automaton.

De�nition 8 A probabilistic automaton (p-automaton) G over the event set � is a triple
G := (X; x0; P), where X is the set of states, x0 2 X is the initial state, and P : X���X !
[0; 1] is the transition probability function satisfying

C1: 8x 2 X :
P

y2X

P
�2� P (x; �; y) � 1.

G is said to be deterministic if for each x 2 X and � 2 �, there exists at most one y 2 X

such that P (x; �; y) > 0.

17

Such a p-automata starts from its initial state x0, and when at state x it moves to state
y on event � with probability P (x; �; y). For each x 2 X, we de�ne �(G)(x) := 1 �P

�2�

P
y2X P (x; �; y) to be the probability of termination at state x.

Next we de�ne the p-language \generated by" such a p-automaton G. The transition
probability function can be extended to paths in G, where a path in G is de�ned to be a
member of X(�X)�. In other words, a path is obtained by concatenating transitions where
the end and start states of the consecutive transitions are the same. Given a path � =
x0�1x1 : : : �nxn, we use j�j = n to denote its length; for each k � j�j, �k := x0�1x1 : : : �kxk
to be the initial sub-path of length k; and tr(�) := �1 : : : �n to be the event trace associated
with path �. The probability measure for paths is inductively de�ned as:

8x 2 X : P (x) = 1;
8� 2 X(�X)�; � 2 �; y 2 X : P (��y) := P (�)P (xj�j; �; y)

In other words, the probability measure of a path is the product of probability measures of
the individual transitions constituting the path.

With these preliminaries we next de�ne the p-language generated by a p-automaton.

De�nition 9 Given a p-automatonG := (X; x0; P), the p-language generated by G, denoted
LG, is de�ned as:

LG(s) :=
X

�:tr(�)=s;�0=x0

P (�):

The following proposition states that L is indeed a p-language.

Theorem 8 Let G := (X; x0; P) be a p-automaton over �. Then LG is a p-language.

Proof: From de�nition, we have LG(�) = P (x0) = 1, which demonstrates P1. In order to
see P2, consider a trace s 2 �� of length, say, n. Then

X
�

LG(s�) =
X
�

X
�:tr(�)=s�;�0=x0

P (�)

=
X
�

X
��:tr(��)=s;��0=x0

X
y2X

P (��)P (xn(��); �; y)

=
X

��:tr(��)=s;��0=x0

P (��)
X
y2X

X
�

P (xn(��); �; y)

ffrom C1g

�
X

��:tr(��)=s;��0=x0

P (��)

= LG(S):

18

Remark 6 It follows that every p-automaton de�nes a p-language. Conversely, every p-
language can be represented by a p-automaton: Given a p-language L, de�ne a p-automaton
G := (��; �; P), where

8s; t 2 ��; � 2 � : P (s; �; t) :=

(
L(t)
L(s)

if t = s�

0 otherwise

Since L(s) � L(t) whenever s � t (Remark 3), in the de�nition of transition probability
P (s; �; t) � 1. Then it is easy to verify that LG = L and that C1 holds for G. Also note
that G is a deterministic p-automaton.

A special class of p-languages which is of interest is the class that can be represented by
a p-automaton with �nitely many states, which we call the class of regular p-languages.

De�nition 10 A p-language L 2 L is said to be regular if there exists a p-automaton G

with �nitely many states such that LG = L.

The next theorem shows that the operators choice, concatenation, and concatenation-
closure preserve regularity.

Theorem 9 Consider regular p-languages L1; L2 and e 2 [0; 1]. Then L1+e L2, L1:eL2, and
L�e1 are also regular p-languages.

Proof: For i = 1; 2, let Gi := (Xi; x0;i; Pi) be �nite p-automata with LGi
= Li.

In order to show the regularity of L1 +e L2, de�ne a �nite p-automaton G := (X; x0; P),
where the state set is X := X1 [X2 [fx0g, x0 is a new state which is the initial state of G,
and the state transition probabilities are given by:

8x; y 2 X; � 2 � : P (x; �; y) :=

8>>>>>><
>>>>>>:

P1(x; �; y) if x; y 2 X1

P2(x; �; y) if x; y 2 X2

eP1(x0;1; �; y) if x = x0; y 2 X1

�eP2(x0;2; �; y) if x = x0; y 2 X2

0 otherwise

Then it is easy to see that G is a p-automaton, and LG = L1 +e L2.
Next to show the regularity of L1:eL2, de�ne a �nite p-automaton G := (X; x0;1; P),

where the state set X := X1 [X2, and the state transition probabilities are given by:

8x; y 2 X; � 2 � : P (x; �; y) :=

8>>><
>>>:

P1(x; �; y) if x; y 2 X1

P2(x; �; y) if x; y 2 X2

e[�(G1)(x)]P2(x0;2; �; y) if x 2 X1; y 2 X2

0otherwise

Then it is easy to see that G is a p-automaton, and LG = L1:eL2.
Finally to show the regularity of L�e1 de�ne a �nite p-automaton G := (X1; x0;1; P), where

the state transition probabilities are given by:

8x; y 2 X1; � 2 � : P (x; �; y) := P1(x; �; y) + e[�(G1)(x)]P1(x0;1; �; y):

Then it is easy to see that G is a p-automaton, and LG = L�e1 .

19

6 Performance Functions

In order to study the performance of a stochastic discrete event system, we use real
valued functions de�ned over the set of event traces to associate a cost with each trace of
the system, and we compute the average value of the cost with respect to the completion
probability function. Recall that the completion probability function associates a proba-
bility of termination with each trace of the system. Since the outcomes corresponding to
terminations following distinct traces are all mutually exclusive, the cumulative probability
of termination is obtained by simply adding the completion probabilities of the individual
traces. This cumulative probability equals one if and only if the system is terminating (Theo-
rem 1), in which case the completion probability function de�nes a probability mass function
[5] on the set of traces. So we assume in this section that the systems under investigation
are terminating, and use it to give the de�nition of the average performance of a system.

De�nition 11 Given a terminating system with p-language L 2 L, i.e.,
P

s�(L)(s) = 1,
and a performance function F : �� ! R representing cost associated with each trace,
the average value of F with respect to the completion probability mass function, denoted
E[F;�(L)] 2 R, is given by E[F;�(L)] :=

P
s�(L)(s)F (s).

In the following subsections we consider two special types of performance functions and
study how their values for complex systems can be e�ciently obtained from those of com-
ponent subsystems.

6.1 Additive Performance Function

Let F : �� !R be an \additive performance function" satisfying the property:

F1: F (st) = F (s) + F (t)

An example of an additive performance function is the completion time (or the �rst moment
of completion time if it is a random variable [14]) which gives the time consumed in execution
of a trace.

The following lemma lists a few properties of the average of an additive performance
function.

Lemma 2 Consider an additive performance function F : �� ! R, and terminating p-
languages L1; L2; L 2 L having completion probability functions C1; C2; C, respectively.
Then

1. E[F;�(L1) ��(L2)] = E[F;�(L1)] + E[F;�(L2)]

2. E[F;�(L)(n)] = nE[F;�(L)]

20

Proof: We only prove the �rst part since the second follows from the �rst. We have the
following series of equality:

E[F;�(L1) ��(L2)] =
X
s

�(L1) ��(L2)(s)F (s)

fs = t:t�1s when t � sg

=
X
s

[
X
t

�(L1)(t)�(L2)(t
�1s)]F (t:t�1s)

fchanging order of summation and using additivity of Fg

=
X
t

X
s

�(L1)(t)�(L2)(t
�1s)[F (t) + F (t�1s)]

fapplying change of variables u := t�1sg

=
X
t

X
u

�(L1)(t)�(L2)(u)[F (t) + F (u)]

=
X
t

X
u

�(L1)(t)�(L2)(u)F (t) +
X
t

X
u

�(L1)(t)�(L2)(u)F (u)

=
X
u

�(L2)(u)[
X
t

�(L1)(t)F (t)] +
X
t

�(L1)(t)[
X
u

�(L2)(u)F (u)]

f
X
u

�(L2)(u) =
X
t

�(L1)(t) = 1g

= E[F;�(L1)] + E[F;�(L2)]:

The result of the above lemma is used in the next theorem to obtain average performance
of a complex system in terms of those of the constituent subsystems.

Theorem 10 Consider an additive performance function F : �� ! R, and terminating
p-languages L1; L2; L 2 L.

1. E[F;�(L1 +e L2)] = eE[F;�(L1)] + �eE[F;�(L2)]

2. E[F;�(L1:eL2)] = E[F;�(L1)] + eE[F;�(L2)]

3. E[F;�(L�e)] = 1
�e
E[F;�(L)], whenever e < 1

Proof: 1. By Theorem 3, �(L1 +e L2) = e�(L1) + �e�(L2). So

E[F;�(L1 +e L2)] =
X
s

[e�(L1)(s)F (s) + �e�(L2)(s)F (s)]

= e
X
s

�(L1)(s)F (s) + �e
X
s

�(L2)(s)F (s)

= eE[F;�(L1)] + �eE[F;�(L2)]:

2. By Theorem 5, �(L1:eL2) = �e�(L1) + e�(L1) ��(L2). So from the �rst part above,
E[F;�(L1:eL2)] = �eE[F;�(L1)]+eE[F;�(L1)��(L2)]. Since F is additive, from Lemma 2,

21

E[F;�(L1) ��(L2)] = E[F;�(L1)] + E[F;�(L2)], from which the result follows.

3. By Theorem 7, �(L�e) = �e
e

P
i�1 e

i�(L)(i). So from the �rst part of Lemma 2,

E[F;�(L�e)] =
�e

e

X
i�1

eiE[F;�(L)(i)]

ffrom Lemma 2, part 2g

=
�e

e

X
i�1

eiiE[F;�(L)]

=
�e

e
E[F;�(L)]

X
i�1

eii

f
X
i�1

eii =
e

�e2
whenever e < 1g

=
1

�e
E[F;�(L)]:

One can use the results derived above to study the average completion time of timed
discrete event systems, where transition probabilities as well as transition occurrence times
are known.

6.2 Multiplicative Performance Function

Let F : �� !R be a multiplicative performance function satisfying the property:

F2: F (st) = F (s)F (t)

An example of a multiplicative performance function is the reliability function (or the �rst
moment of the reliability function if it is a random variable) which gives the probability that
a system does not fail, i.e., operates reliably, after executing a trace.

The following lemma lists a few properties of the average of a multiplicative performance
function.

Lemma 3 Consider a multiplicative performance function F : �� ! R, and terminating
p-languages L1; L2; L 2 L.

1. E[F;�(L1) ��(L2)] = E[F;�(L1)]E[F;�(L2)]

2. E[F;�(L)(n)] = (E[F;�(L)])n

Proof: Since the second part follows from the �rst part, we only prove the �rst part. We
have the following series of equality:

E[F;�(L1) ��(L2)] =
X
s

�(L1) ��(L1)(s)F (s)

22

fs = t:t�1s when t � sg

=
X
s

[
X
t

�(L1)(t)�(L2)(t
�1s)]F (t:t�1s)

fchanging order of summation and using multiplicativity of Fg

=
X
t

X
s

�(L1)(t)�(L2)(t
�1s)[F (t)F (t�1s)]

fapplying change of variables u := t�1sg

=
X
t

X
u

�(L1)(t)�(L2)(u)[F (t)F (u)]

= [
X
t

�(L1)(t)F (t)][
X
u

�(L2)(u)F (u)]

= E[F;�(L1)]E[F;�(L2)]:

The result of the above lemma is used in the next theorem to obtain average performance
of a complex system in terms of those of the constituent subsystems.

Theorem 11 Consider a multiplicative performance function F : �� !R, and terminating
p-languages L1; L2; L 2 L. Then

1. E[F;�(L1 +e L2)] = eE[F;�(L1)] + �eE[F;�(L2)]

2. E[F;�(L1:eL2)] = �eE[F;�(L1)] + eE[F;�(L1)]E[F;�(L2)]

3. E[F;�(L�e)] = �eE[F;�(L)]
1�eE[F;�(L)]

, whenever eE[F;�(L)] < 1.

Proof: 1. The proof of this part is the same as that for the �rst part of Theorem 10.

2. By Theorem 5, �(L1:eL2) = �e�(L1) + e�(L1) ��(L2). So from the �rst part above,
E[F;�(L1:eL2)] = �eE[F;�(L1)] + eE[F;�(L1) � �(L2)]. Since F is multiplicative, from
Lemma 3, E[F;�(L1) ��(L2)] = E[F;�(L1)]E[F;�(L2)], from which the result follows.

3. By Theorem 7, �(L�e) = �e
e

P
i�1 e

i�(L)(i). So from the �rst part of Lemma 3,

E[F;�(L�e)] =
�e

e

X
i�1

eiE[F;�(L)(i)]

ffrom Lemma 3, part 2g

=
�e

e

X
i�1

ei(E[F;�(L)])i

f
X
i�1

ei(E[F;�(L)])i =
eE[F;�(L)]

1� eE[F;�(L)]
whenever eE[F;�(L)] < 1g

=
�e

e

"
eE[F;�(L)]

1� eE[F;�(L)]

#

=
�eE[F;�(L)]

1� eE[F;�(L)]
:

23

Remark 7 The results of Theorems 10 and 11 can be combined to obtain compositional
results for more general performance functions that are \bilinear". Suppose for example
F (st) = F (s) + F (t) + 2F (s)F (t), which is satis�ed by the second moment of a random
completion time [14]. Then using the techniques of Theorems 10 and 11 it can be shown
that

1. E[F;�(L1) ��(L2)] = E[F;�(L1)] + E[F;�(L2)] + 2E[F;�(L1)]E[F;�(L2)]

2. E[F;�(L1 +e L2)] = eE[F;�(L1)] + �eE[F;�(L2)]

3. E[F;�(L1:eL2)] = E[F;�(L1)] + eE[F;�(L2)]f1 + 2E[F;�(L1)]g

7 Conclusion and Discussion

In this paper we have introduced a formalism for the speci�cation and analysis of qual-
itative behavior of stochastic discrete event systems which are typically modeled as nonde-
terministic automata with probabilities associated with transitions. We have shown that
systems de�ned in our formalism form a complete partial order under a suitable ordering
relation. The regular operators choice, concatenation, and concatenation closure have been
de�ned in this formalism which allow representation of complex systems as combination of
simpler ones. These operators are continuous in the complete partial order of systems. Con-
sequently it is easy to de�ne systems using recursions involving these operators. It is also
shown that the space of these systems is a complete metric space in which the operators
are continuous and contracting. So the uniqueness of the �xed points of recursive equations
follows from the contraction mapping theorem. Various average performance measures of
stochastic discrete event systems can be de�ned in this formalism, and we provide analytical
techniques to aide their computations.

Our formalism is also suitable for studying supervisory control problems of stochastic
discrete event systems. We discuss a few ways in which control problems can be formulated
in this setting. A detailed examination of these problems is subject of work in progress.
Following the framework of supervisory control proposed by Ramadge and Wonham [18],
the event set is partitioned into the set of controllable and uncontrollable events. The
supervisor is not allowed to disable the uncontrollable events, but can disable any of the
controllable events. One possibility is that the probability of the disabled events is added to
the termination event probability. In other words, the supervisor terminates the system if
any of the disabled event is chosen. Another possibility is that the probabilities of the enabled
events (including that of the termination event) is renormalized using the probabilities of
the disabled events. In other words, the probability of an enabled event is the conditional
probability of its occurrence subject to the condition that certain events are disabled.

One possible control objective may be speci�ed as a pair of p-languages K1 � K2. The
\upper" p-language K2 may be deterministic specifying a legality speci�cation (anything in
its complement is considered illegal), whereas the \lower" p-language K1 imposes restriction
on the occurrence probability of the legal traces, which must occur with certain minimum

24

probabilities. The goal is to selectively disable controllable events so that the p-language
of the supervised system lies within the range of the prescribed p-languages. It is easy to
see that this framework generalizes that of Ramadge-Wonham and reduces to the Ramadge-
Wonham framework when all p-languages are deterministic languages.

A Metric for Probabilistic Languages

In this appendix we show that a suitable metric can be de�ned on the space of p-languages
under which it is complete, and the choice and concatenation functions are both continuous
and contracting.

De�nition 12 A metric d : L � L ! R+ on the set of p-languages is de�ned as follows:

8K;L 2 L : d(K;L) := sup
s
jK(s)� L(s)j:

It is well known that d as de�ned above is a metric, i.e., it is non-negative, symmetric,
satis�es triangle inequality, and its value for a p-language pair is zero if and only if the two
languages are the same. The following result states that L is complete under this metric.

Theorem 12 (L; d) is a complete metric space.

To show the completeness of (L; d), we show that every Cauchy sequence converges.
Consider a Cauchy sequence of p-languages fLigi�0. Since L is a subspace of real valued
functions, which is a complete metric space, the limit of the Cauchy sequence, say L1, exists
in the space of real valued functions. We need to show that L1 2 L.

P1 follows from the fact that:

L1(�) = lim
i!1

Li(�) = lim
i!1

1 = 1:

Next to see P2 we have:

X
�

L1(s�) =
X
�

lim
i!1

Li(s�)

= lim
i!1

X
�

Li(s�)

fapplying P2 to Lig

� lim
i!1

Li(s)

= L1(s):

In the the following theorem we show that the choice and concatenation functions are
both contracting.

25

Theorem 13 Consider a p-language L 2 L and e 2 [0; 1]. Then the functions +eL; :eL :
L ! L are both contracting (and hence continuous) whenever e 6= 0 and e 6= 1, respectively.

Proof: Consider K1; K2 2 L. Then we have

d(+eL(K1);+eL(K2)) = sup
s
j(eK1(s) + �eL(s))� (eK2(s) + �eL(s))j

= e sup
s
jK1(s)�K2(s)j

= edjK1; K2j;

which shows that +eL is a contraction whenever e 6= 0 (so that �e 6= 1). Similarly,

d(:eL(K1); :eL(K2))

= sup
s
j(L(s)� e�(L)(s) + e�(L) �K1(s))� (L(s)� e�(L)(s) + e�(L) �K2(s))j

ffrom linearity of convolutiong

= e sup
s
j�(L) � (K1(s)�K2(s))j

= e sup
s

�����
X
t

�(L)(t)[K1(t
�1s)�K2(t

�1s)]

�����
fsince K1(t

�1s)�K2(t
�1s) � sup

t
jK1(t

�1s)�K2(t
�1s)jg

� e sup
s

�
sup
t
jK1(t

�1s)�K2(t
�1s)j

�X
t

�(L)(t)

fsince
X
t

�(L)(t) � 1; Theorem 1, part 1g

� e sup
s
sup
t
jK1(t

�1s)�K2(t
�1s)j

fapplying change of variables u := t�1sg

= e sup
u
jK1(u)�K2(u)j

= ed(K1; K2);

which shows that :eL is contraction whenever e 6= 1.

Remark 8 Since choice and concatenation functions are both contractions de�ned over the
complete metric space (L; d), it follows from the contraction mapping theorem [19] that they
possess unique �xed points. (The uniqueness of �xed points is not guaranteed by lattice
theoretic approach of Theorems 4 and 6.) The same holds for any function f composed of
the choice and the concatenation function. The unique �xed point of f can be obtained by
taking the limit of the sequence of p-languages fLig de�ned recursively by Li+1 = f(Li),
and L0 2 L is arbitrary.

26

References

[1] J. Berstel and C. Reutenauer. Rational Series and their Languages. Springer-Verlag,
New York, 1988.

[2] C. G. Cassandras. Discrete Event Systems: Modeling and Performance Analysis. Aksen
Associates, Boston, MA, 1993.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK, 1990.

[4] E. Doberkat. Stochastic Automata: Stability, Nondeterminism and Prediction, volume
113 of Lecture Notes in Computer Science. Springer-Verlag, New York, 1981.

[5] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley,
New York, NY, 2nd edition, 1966.

[6] V. K. Garg. An algebraic approach to modeling probabilistic discrete event systems.
In Proceedings of 1992 IEEE Conference on Decision and Control, pages 2348{2353,
Tucson, AZ, December 1992.

[7] V. K. Garg. Probabilistic languages for modeling of deds. In Proceedings of Conference
on Information Sciences and Systems, pages 198{203, Princeton, NJ, March 1992.

[8] G. Hansel and D. Perrin. Mesures de probabilites rationnelles. Mots, Hermes, 1990.

[9] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

[10] R. Kumar and V. K. Garg. Extremal solutions of inequations over lattices with ap-
plications to supervisory control. Theoretical Computer Science, 148:67{92, November
1995.

[11] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event Systems.
Kluwer Academic Publishers, Boston, MA, 1995.

[12] E. T. Lee and L. A. Zadeh. Note on fuzzy languages. Information Sciences, pages
421{434, 1969.

[13] M. K. Molloy. Performance analysis using stochastic Petri nets. IEEE Transactions on
Computers, C-31(9):913{917, September 1982.

[14] H. Moon and W. Kwon. Performance evaluation of a discrete event system via the
regular expression of trajectories. In Proceedings of 1996 International Workshop on
Discrete Event Systems, pages 226{231, Edinburgh, UK, August 1996.

27

[15] H. Mortazavian. Controlled stochastic languages. In Proceedings of 1993 Allerton Con-
ference, pages 938{947, Urbana, IL, 1993.

[16] A. Paz. Introduction to Probabilistic Automata. Academic Press, New York, 1971.

[17] M. O. Rabin. Probabilistic automata. Information and Control, 6:230{245, 1963.

[18] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206{230, 1987.

[19] W. Rudin. Priciples of Mathematical Analysis. McGraw-Hill, 1976.

[20] A. Salomaa. Formal languages and power series. In J. v. Leeuwen, editor, Handbook of
theoretical computer science. MIT Press, Cambridge, MA, 1994.

[21] E. Wong and B. Hajek. Stochastic processes in engineering systems. Springer-Verlag,
New York, 1985.

28

