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Abstract

Push-based data delivery requires knowledge of user interests for making scheduling, bandwidth alloca-
tion, and routing decisions. Such information is maintained as user profiles. We propose a new incremental
algorithm for constructing user profiles based on monitoring and user feedback. In contrast to earlier ap-
proaches, which typically represent profiles as a single weighted interest vector, we represent user-profiles
using multiple interest clusters, whose number, size, and elements change adaptively based on user access
behavior. This flexible approach allows the profile to more accurately represent complex user interests. The
approach can be tuned to trade off profile complexity and effectiveness, making it suitable for use in large-scale
information filtering applications such as push-based WWW page dissemination. We evaluate the method by
experimentally investigating its ability to categorize WWW pages taken from Yahoo! categories. Our results
show that the method can provide high retrieval effectiveness with modest profile sizes and can effectively
adapt to changes in users’ interests.

1 Introduction

Publish/subscribe models and other forms of push-based data delivery have been gaining popularity as ways to

relieve Internet users of the burden of having to continuously hunt for new information. These techniques deliver

data items to users according to a pre-arranged plan, so that they don’t have to make specific requests for items

of interest.
In order to effectively target the right information to the right people, push-based systems rely upon user

profiles that indicate the general information types (but not necessarily the specific data items) that a user is

interested in receiving. From the user’s viewpoint, profiles provide a means of passively retrieving relevant

information. A user can submit a profile to a push-based system once, and then continuously receive items that

are relevant to him or her in a timely fashion. From a systems point of view, profiles fulfill a role similar to that of�Franklin and Çetintemel’s work has been partially supported by the NSF under grant IRI-9501353, and by Rome Labs agreement

number F30602-97-2-0241 under ARPA order number F078.
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queries in database or information retrieval systems; in fact, profiles are a form of continuously executing query.

The system depends on these profiles in order to achieve more efficient and targeted information dissemination.

1.1 Profile Quality

The quality of user profiles is a key to making a push-based system work. From the user’s point of view, there

are two potential problems. One is the precision problem. If a high proportion of the items that the system sends

to a user are irrelevant, then the system becomes more of an annoyance than a help. Conversely, if the system

fails to provide the user with enough relevant information, then the benefit of push-based delivery is largely

lost, because the user will still have to actively hunt for information. This latter problem is known as the recall

problem. Both problems can translate to unhappy users, which can ultimately render the system worthless.
One contributing factor to profile quality is the language used to describe the profiles. For unstructured or

semi-structured items such as web pages, it is notoriously difficult to formulate boolean (or relational) queries

that return result sets of manageable size. Such queries typically suffer from the problems of either returning too

many results, or returning no results at all. Furthermore, it has been shown that as the size of the data set grows,

formulating effective queries with such languages becomes even harder [Tur94].
For text-based data items, profiles based on natural language techniques from Information Retrieval (IR) have

been shown to be reasonably effective at representing user information needs. Even assuming a good profile

representation, however, with existing approaches it is still quite likely that a user’s profile will not provide

adequate precision or recall. There are three main reasons for this. The first is that existing approaches represent

user interests in terms of a single profile vector or multiple independent profile vectors (e.g, SIFT [YGM95],

MyExcite [Cha99]). Single vectors, as we will demonstrate, are insufficient for adequately modeling interests,

leading to low effectiveness values. Using multiple vectors, on the other hand, helps achieve better effectiveness.

In existing systems, however, these multiple vectors are typically treated independently by the system, resulting

in redundant storage and processing of overlapping subscriptions and overly broad specifications of information

needs. Second, existing systems typically require users to explicitly specify their profiles, often as a set of

(possibly weighted) keywords or categories. It is difficult for a user to exactly and correctly specify their

information needs to such a system. Third, state-of-the-art large-scale information filtering systems are typically

built on the assumption that users change their interests only infrequently (e.g,. [Poi99, YGM95, Cha99]). If the

profile does not keep up with the user’s information needs, then precision and recall problems will quickly arise.

1.2 Maintaining Profiles

Many existing publish/subscribe-based systems require users to manually reflect their interest changes to the

profile. This approach places the burden of identifying and making profile changes on the users. In contrast,

other systems use a more automatic approach based on a technique called relevance feedback [Roc71, SB90]. In

this latter approach, users provide feedback to the system about the data items that they have been sent (typically

a binary indication of whether or not the item was considered useful). The system then uses this feedback to

adjust the user’s profile.
In this paper, we present a novel feedback-based approach for learning, representing, and maintaining user

profiles. The algorithm is intended to support targeted dissemination of loosely structured documents such as

web pages to large numbers of users. As such, it works well in an incremental fashion, where web pages are

presented to users individually or in small batches.
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A key feature that distinguishes our algorithm from previous work is that it uses a multi-modal representation

of user profiles; i.e., a profile is represented as a collection of clusters of user interests rather than as a single entity.

The algorithm automatically and dynamically adjusts the content and the number of clusters used to represent a

profile based on feedback that it receives incrementally (i.e., one data item at-a-time). Even in this incremental

mode, our approach provides more accurate results than a batch version of a more traditional approach. This

flexibility also allows the algorithm to adapt profiles to cope with changes in user interests over time. Finally, as

we will demonstrate, our multi-modal representation of profiles combined with its incremental nature allows it

to be tuned to trade off effectiveness (i.e., accuracy) and efficiency, which makes it suitable for use in large-scale

information dissemination systems.
The main contributions of the paper can be summarized as follows: First, we propose a new adaptive

feedback-based algorithm that uses multiple inter-related profile vectors to represent user interests (as opposed

to using a single, or multiple but independent vectors, e.g., SIFT). Second, the algorithm we propose can

be parameterized to adjust the degree of its tendency to generate more or less complicated profiles. This

flexibility enables it to trade off effectiveness and efficiency which, in turn, enables it to be tuned based on the

requirements/characteristics of the target application and environment. Third, we evaluate our approach by using

a detailed experimental framework based on the WWW pages obtained from the Yahoo! topic hierarchy [Yah99],

analyzing the effectiveness, efficiency, and adaptability issues involved and comparing it to other algorithms that

are representatives of the existing related approaches.
The remainder of the paper is organized as follows: In Section 2 we give an overview of the main issues

related to user profile construction for push-based data delivery, focusing on the relevance feedback technique that

we utilize in our algorithm. In Section 3 we present MM, the incremental profile construction and maintenance

algorithm that we have developed. We discuss the experimental environment and workloads we used to test

the ability of the algorithm to recognize relevant web pages in Section 4. The results of experiments based on

Yahoo! categories are presented in Section 5. In Section 6 we discuss previous related work. Section 7 presents

our conclusions.

2 User Profile Construction

Effective profile management requires techniques for representing data items and profiles, assessing the relevance

of the profiles to data items, and updating the profiles based on user feedback. In this section, we briefly discuss

these issues in the context of a push-based data dissemination environment.

2.1 Vector Space Model for Text and Profile Representation

Unlike databases, in which all correct systems must provide the same answer to a given query on a given database,

information filtering systems can differ widely in the quality of filtering they provide. As such, comparing filtering

approaches requires more than simply measuring the efficiency of the system. Rather, the effectiveness of the

filtering is a primary metric for comparing such systems. Effectiveness is typically measured using recall and

precision. Recall is the ratio of the number of relevant documents returned to the user vs. the total number of

relevant documents that exist in the collection. Precision is the percentage of the documents returned to the user

that are actually relevant. These two metrics are somewhat contradictory. For example, to achieve perfect recall,

a system could simply return all the documents in the collection. Such an approach, however, would have terrible

precision. In Section 4, we discuss these metrics further.

3



Our algorithm is based on the Vector Space Model (VSM) [Sal89]. In VSM, text-based documents are

represented as vectors in a high-dimensional vector space where the value of dimensions are based on the words

occurring in that document. Documents describing similar topics are likely to be close to each other, as they

possibly include common words. A profile can also be represented as a vector (or a collection of vectors), which

can be derived from the previously judged document vectors. In general, a profile vector should have a position

close (in vector space) to those of relevant document vectors. If a new document is close to the profile, then it

will also be close to other documents which are known to be relevant; thus, it will also be likely to be relevant.
In VSM, each document is represented as a vector of term and weight pairs. If there are n distinct terms in

a document d, then d will be represented by a vector V = ((t1; w1); (t2; w2); :::; (tn; wn)). In general, a term

is a word that exists in the document, and its weight is a measure of the relative importance of the term in

the document. The standard process for computing the vector representation of a document includes stop-list

removal and stemming [FBY92]. The weight of a term is commonly calculated by its tf�idf (term frequency-

inverse document frequency) value: wt;d = tft;d � log2(N=dft) where wt;d is the weight of term t in document d,tft;d is the frequency of term t in document d (i.e., term frequency), dft is the number of documents that contain

term t (i.e., document frequency), andN is the total number of documents in the collection. Length normalization

is used to cope with documents of differing lengths. This is accomplished by computing the length of the vector

and dividing the weights of its terms by this value. The angle between two vectors has been exploited as an

effective measure of content similarity, and many systems use the cosine similarity measure to compute the

similarity among document and profile representations. It is based on the inner (dot) product of two vectors, and

can be formulated as:cosine(v1; v2) = v1 � v2jv1jjv2j = Pt wt;v1 �wt;v2qPt w2t;v1
�qPtw2t;v2

2.2 Relevance Feedback

Relevance feedback is an effective information retrieval technique that can be used to form query (or profile)

vectors based on document contents [Sal89]. The main idea is to use the documents that have already been

evaluated by the user, emphasizing the terms that occur in relevant ones while deemphasizing those occurring in

non-relevant ones in future formulations of the same query. More formally,Qi+1 = �Qi + �Xd2R vd �  Xd2NR vd;
where Qi is the initial query vector, Qi+1 is the modified query vector, vd is a vector representation of documentd, �; �, and  are the feedback parameters to be set, and R and NR represent the sets of relevant and non-relevant

documents respectively. Several relevance feedback schemes have been proposed, which mainly differ in the

way they set the parameters �; �, and . Among those, Rocchio relevance feedback [Roc71] is a well-known,

effective scheme which instantiates the feedback parameters as � = 1, � = 2, and  = 0:5.
Traditional relevance feedback assumes that the document collection is fixed and that all the documents

relevant to the query are available at the time of query reformulation. This is referred to as a batch relevance

feedback approach. Batch approaches are not suitable for an information filtering environment, where there

is a continual stream of documents and a relatively fixed query (or profile). Thus, an incremental approach is

needed. Purely incremental feedback can update a query (or profile) for each individual document judgment that

is received by a system. It is also possible to combine such judgments into groups and incorporate each group
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Notation Descriptiond documentvd vector representation of dfd user feedback for d (2 f�1; 1g)P user profilepi profile vector

Notation Descriptiontemperaturepi temperature of pi (initially set to 0)strengthpi strength of pi (initially set to 1)� threshold value (2 [0; 1])� adaptability value (2 [0; 1])pactive active profile vector

Figure 1: Basic notation

using a single update. Allan [All96] studied the effect of group size on the effectiveness of incremental relevance

feedback (in a non-filtering environment). He showed that effectiveness increases with the group size, and that

the highest effectiveness was obtained using all the judgments at once (i.e., in batch mode).

3 Multi-Modal Incremental User Profile Construction

State-of-the-art information filtering systems typically use a single vector to represent the information needs of

a user. Some systems (e.g. SIFT), allow the use of multiple independent vectors (essentially multiple profiles

for a single person). As we will show in Section 5, using a single vector may limit the effectiveness of the

profile. Using multiple profiles can help solve this problem, but requires that the decision on how many profiles

to maintain be made in a fairly static fashion, thereby reducing the ability of the system to adapt to changes in

users’ interests.
To address these problems, we have developed MM, a new algorithm for automatically constructing and

maintaining user profiles based on user feedback. MM represents user profiles as a set of multiple vectors, size

and elements of which change adaptively. In this section we describe MM in detail.

3.1 Multi-Modal Profile Structure

MM represents a user profile P as a set of profile vectors fp1; p2; :::; png wherepi = ((ti1 ; wi1); (ti2; wi2); :::; (tim; wim)); i = 1; 2; :::; n
In fact, the number of profile vectors is not constant; it changes in time based on the feedback pattern obtained

from user. Individually, each profile vector represents only a portion of a user’s information needs; e.g., a relevant

concept. Collectively, however, the profile vectors model the user comprehensively.
MM also maintains two auxiliary integer variables strengthpi and temperaturepi , 8pi 2 P . The former is

an indication of the confidence that we have for the corresponding vector as a representative of a portion of the

user’s information needs. In other words, the vectors which represent more stable information needs have more

strength. If the strength of a profile vector drops below a certain value (1 in our case), we lose our confidence

in the ability of that vector to represent a relevant concept, so we remove the vector as it is likely to degrade the

modeling effectiveness of the overall profile. The strength of a vector is adjusted using its temperature value.

The temperature keeps track of the pattern of the feedbacks received. Initially, it is set to 0, indicating a stable

condition. Any non-zero temperature value indicates an unstable condition with negative values causing strength

decrease and positive values causing strength increase.
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Figure 2: Incorporating a document vector into a profile vector

3.2 The MM Algorithm

The general structure of MM is based on the traditional incremental clustering algorithm applied to document

clustering [FBY92]. To simplify the presentation, we first describe the fundamentals of MM by describing the

procedure for incrementally clustering document vectors. The basic idea is to maintain clusters of document

vectors. Each cluster is represented by using a single representative vector. The first document is assigned as the

representative for the first cluster. When a new document is processed, its similarity with the representatives of

all the existing clusters is calculated. If the similarity of the closest cluster is greater than a threshold (specified

by �), then the document vector is added into that cluster and the cluster representative is recomputed by moving

it towards the new document (the impact of the new document is controlled by a parameter �). Otherwise, if the

similarity is smaller than �, the document vector is used to initiate a new cluster. The size of the space covered

by each cluster is the same and is defined by �. Therefore, the larger the number of clusters used, the bigger the

portion of the covered vector space is (assuming that the clusters are not completely overlapping).

3.3 Updating Vector Strengths

MM builds upon this basic incremental clustering algorithm with structures and procedures specifically designed

for multi-modal profile construction in a filtering environment. Each profile vector basically corresponds to a

cluster representative. Each relevant document vector can either create its own profile vector or be incorporated

into an existing profile vector. Non-relevant document vectors, on the other hand, cannot create their own clusters

as a profile represents relevant concepts only. They can, however, be incorporated into other profile vectors. Two

similar profile vectors may be merged into a single one, in order to avoid redundancy and decrease profile size.

A profile vector may also be deleted (i.e., removed from the profile) if MM deems it to be no longer representing

a concept relevant to the user.

3.4 The Main Loop

The pseudocode for MM is shown in Appendix A (refer to Figure 1 for notation). The algorithm works as

follows: When a new relevance judgment is received, MM first checks if the user profile P is empty and the

user feedback for the document (i.e., fd) is positive. If so, it inserts the document vector, vd, into P , setting

the strength to 1 and the temperature to 0. The feedback is simply ignored when the profile is empty and the

feedback is negative. This is because the user profile represents the concepts that are relevant to the user, and

not the irrelevant ones.
If P is non-empty, then the profile vector which is most similar to vd is identified, and becomes the
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Figure 3: Creating a new profile vector

active profile vector, pactive, for the profile. The document vector will have all its further interactions withpactive. The relevance of the profile to the document is computed as the similarity between pactive and vd (i.e.,

cosine(pactive; vd)). If this relevance value is higher than a certain threshold (specified by �), then the effect of

the feedback is reflected to the profile by incorporating vd into pactive. This incorporation of the document vector

into the active profile vector is done by by moving pactive linearly towards vd according to parameter �.
An example of incorporating a new document vector into a profile vector is shown in Figure 2.1 In the

example, P is initially fp1; p2; p3g. If a document vector falls within the shaded similarity circle for a profile

vector, then it is deemed similar enough (i.e., eligible for incorporation in that profile vector). In this example,

the document vector vd falls inside the circle of p1, which becomes the active profile vector pactive for p1. It

is possible that the document vector falls inside two or more such circles, however there can only be a single

active vector at any time; namely the one most similar to the document vector.2 The document vector vd is then

incorporated into p1 by pushing p1 closer to vd. Note that the size of the profile does not change as a result of an

incorporation operation.
On the other hand, if the relevance value of vd is lower than � (i.e., it falls outside of all similarity circles),

then vd is inserted into P as a new element and the size of the profile increases. This case is illustrated in Figure

3. The strength and the temperature of the new profile vector are set to 1 and 0, respectively.
When a document vector is incorporated into pactive, then the strength of pactive is updated.3 In order to

understand the operation of this procedure, it is necessary to understand what the temperature of a profile vector

represents. The temperature is an integer value that keeps track of the feedback pattern as observed by that

vector. The temperature of a profile vector is initialized to 0 at the time of creation. As long as a profile vector

does not receive a negative feedback, its temperature remains unchanged; i.e., 0.
The first time a vector receives a negative feedback4, it enters an uncertainty period which continues as long

as its temperature remains non-zero. A vector may exit its uncertainty period either when it is deleted from the

profile (its strength becomes less than 1), or when its temperature again becomes 0. The latter case occurs when

the vector receives more positive feedbacks than negative feedbacks during its uncertainty period. Informally,

the uncertainty period implies that we are uncertain about keeping this vector as part of the profile, therefore we

continue to observe the feedback pattern on that vector.

1For ease of illustration we show the vectors in a hypothetical 2-D vector-space. Note that this illustration shows relevance as the

Euclidean distance among vectors, which is not the way relevance is defined in MM. Regardless of the relevance measure, however, the

underlying principles remain the same.
2In case of two or more vectors having the same similarity, one of them must be selected; e.g., randomly or based on strength.
3The pseudocode for the procedure to update the strength of the active profile vector is shown in Appendix A.
4When we talk about "a profile vector receiving feedback", we implicitly state that the mentioned vector is the active profile vector

and that a document vector is incorporated in it.

7



At each update step, based on the current temperature value of the vector, the strength is updated using a

simple exponential decay function. The parameter c (see Appendix A) is a positive constant that controls the

decay rate. It is set to 0.5 in all our experiments. If the temperature is non-zero (i.e., during an uncertainty

period), the strength of the vector decreases or increases exponentially if its temperature is negative or positive,

respectively. If the temperature is zero, then the strength is incremented to reflect the incorporation of the new

feedback into the vector. We illustrate this update process with two examples:

Example 3.1 Let the strength of the vector be S, its temperature be 0, and let us assume that the vector received

a feedback sequence of [-1, -1, 1, 1, 1]. After receiving the initial negative feedback, the vector enters an

uncertainty period and its temperature takes the sequence of values [-1, -2, 2, 1, 0] after each respective feedback.

Meanwhile the corresponding strength values after each feedback are [Se�c, Se�3c, Se�c, S, S]. Initially the

strength decreases after each negative feedback, but then (assuming that it is still above 1) it regains its original

value after receiving two positive feedbacks. The final positive feedback ends the uncertainty period and, once

again the vector is able to gain further strength when it receives positive feedback. Note that the vector cannot

gain more strength than it lost during this period. 2
Example 3.2 Consider a case where the user had a shift in interest and began to provide negative feedback for

a concept he or she used to be interested in. The vector (partially) representing that concept will then receive

consecutive negative feedbacks and its strength will decrease exponentially with decreasing temperature. Unless

it receives positive feedback, its strength will eventually drop below 1 and it will be removed from the profile.

Note that during the uncertainty period, the temperature value does not lose the count of the difference between

the number of negative and positive feedbacks received. Either because of noise in input data (e.g., due to the

well-known limitations of the keyword-based vector space approach) or an inconsistent behavior on part of the

user, it is always possible for a vector to get a positive/negative feedback which it should not ideally receive. Let

us assume that the sequence of feedbacks received by a vector with relevant parameters set as in the previous

example be [-1, -1, -1, 1, -1, -1]. The corresponding temperature and strength values after each feedback will

respectively be [-1, -2, -3, 3, -3, -4] and [Se�c, Se�3c, Se�6c, Se�3c, Se�6c, Se�10c]. The fourth feedback is

inconsistent with the general pattern, but the algorithm is able to restore its effect quickly. In fact, this procedure

is designed to provide fast response to interest shifts with tolerance for noise and/or inconsistent feedback. 2
3.5 Adjusting the Profile Size

If the strength of the active profile vector drops below 1 (remember that the strength of a vector is initialized to 1

when created), then it is assumed that the vector does not represent a concept relevant to the user anymore. Thus,

it is immediately removed from the profile. Recall that the active profile vector was moved towards the document

vector, meaning that its position in the vector space was changed. If two profile vectors come close (enough) to

each other, intuitively it means that they represent similar (if not the same) concept(s) in vector space. Therefore,

a single vector may possibly be sufficient to represent the concept(s) that are represented by the two vectors.

This deletion ability allows MM to avoid multiple profile vectors redundantly representing similar concepts, thus

allowing a more compact representation.
The merge procedure (presented in Appendix A) checks whether a merge is possible between pactive and

the other profile vectors. The profile vector closest to pactive is identified and if the similarity between them is

greater than �, they are merged. The merge is done in a way very similar to that in incorporating a document

vector to pactive (see Figure 2). The two vectors being merged are pushed towards each other linearly, however,
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using their relative strengths rather than a constant value this time. The vector having more strength stays closer

to its original position, and the other vector moves more. This is the effect we would like to achieve, because

the strength of a vector is an indication of its stability. Notice that we only consider the vector pairs containingpactive for merging. This is because the only profile vector which moved to a new position is pactive and the

inter-vector distances for the other vectors are the same as before. After the merge, however, the similarity

between the combined vector and another profile vector may be larger than �, requiring another merge. We do

not consider this situation and choose to allow only a single merge operation in a single iteration for efficiency

reasons. The other potential merge operations, if any, are accomplished lazily in future iterations if necessary.

3.6 Discussion

There are several parameters that control the way MM behaves and thus have to be set properly. One of them is

the threshold parameter, � 2 [0; 1], which is mainly used to decide whether a new document vector should be

incorporated into an existing profile vector or create a new profile vector. This parameter can be used to control

the number of profile vectors. If � is set to 1, then all (distinct) relevant documents will form their own profile

vectors, achieving a very fine granularity user model, but exploding the profile size. At the other extreme, if

it is set to 0, all vectors will be incorporated into a single profile vector and the number of profile vectors will

always be 1. In this case, the overhead of profile management is extremely low, however the effectiveness of the

profile is limited. In this paper, we are actually interested in intermediate values which will provide an optimal

effectiveness/efficiency tradeoff for a given application.
The other important parameter is the adaptability parameter, � 2 [0; 1]. As mentioned before, it controls the

rate with which the active profile vector is pushed towards the document vector. In other words, it decides how

fast the user profile should adapt itself based on feedback. If it is set to 1, active profile vectors will be replaced

by document vectors at each feedback, resulting in maximum adaptation (i.e., memoryless mode). If set to 0, on

the other hand, active vectors will not change with feedback, and virtually no adaptation will take place.
MM also includes new operations and structures designed specifically for filtering environments. The new

operators we propose, as we will show, control the number of vectors that form the profile and allow for fast

adaptation when there is a shift in user interests.

4 Experimental Environment

Filtering systems developers typically rely upon the technique of user simulation in order to understand and

quantify the effectiveness of their solutions (e.g., [All96, LMMP96]). Due to the absence of WWW-oriented

filtering workloads in standard suites such as TREC, we devised a benchmark using categories of web pages

obtained from Yahoo! [Yah99]. In this section, we describe our approach for evaluating the MM algorithm.

4.1 Document Collection

The first problem that needs to be addressed when designing a filtering study is the identification of a suitable

document collection. In our study, we used web pages referenced from the top two levels of the Yahoo! category

hierarchy (which is formed by human editors). We chose ten top-level Yahoo! categories and ten sub-categories

(i.e., second-level categories) for each of the selected top-level categories. In the remainder of this paper,

we denote a top-level category i by Ci, and a second-level category j categorized under Ci by Cij , wherei; j 2 [0; 1; :::; 9].
9



To obtain the actual text of the web pages, we followed the hyperlinks at the second-level of the Yahoo!

hierarchy and gathered the corresponding pages. We ignored cross-links, other pages belonging to Yahoo!, and

the pages that resided on non-USA domains. We then converted these documents to their vector representations

by removing the HTML tags and other non-words, followed by stop-list removal and stemming.5 This process

is illustrated in Figure 4.

Document Vectors
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Figure 4: Formation of document vectors

The resulting document collection we used consists of 900 documents which are uniformly distributed over

all categories. As in any study of a learning algorithm, the input must be divided into a training set, which is

presented to the system for learning purposes, and a testing set, which is then used to evaluate the trained system.

In our studies we used 2=3 of the documents for training. At that point, the profiles were frozen and their quality

was measured using the remaining 1=3 of the documents as a testing set.
For each document vector we only keep the 100 highest-weighted terms as: (1) our early experiments revealed

that it is safe to use the highest-weighted 80-120 terms for representing documents without any degradation in

effectiveness6, and (2) it is important to keep the vector size as small as possible due to storage and computational

requirements, particularly in a large-scale information filtering environment.

4.2 User Simulation

We simulate the behavior of a typical user by assuming that the user is interested in a subset of our Yahoo!

categories and gives feedback correspondingly. In other words, a simulated user is assigned a synthetic profile

(SP) consisting of a subset of the categories, and gives positive feedback to a document only if that document

is classified under a category that appears in the synthetic profile (i.e., fd = +1 if categoryd 2 SP). All the

other documents are given negative feedback (i.e., fd = �1). In our experiments, either SP � fC0; C1; :::; C9g,

or SP � fC00; C01; :::; C99g; i.e., the synthetic profile is defined completely either by top-level categories or by

second-level categories.

4.3 Methodology and Performance Metrics

We chose to base our evaluation methodology on the one used in the routing track of the TREC [VH96]

benchmark. The idea is to have the system score and then rank-order a collection of documents based on their

likelihood of relevance to a particular profile (or query). We chose this approach over an alternative based

on the TREC filtering track, which uses a binary filtering function that simply accepts or rejects each new

document as it arrives. The reason for this decision is that evaluations of this latter approach indicate that results

obtained using it are heavily dependent on the specific filtering function (such as the setting of relevance cutoffs,

etc.) used [Hul97]. This function must be optimized separately for each technique being evaluated. Thus, an

evenhanded comparison of learning techniques using this latter benchmark is problematic, calling into question

the quality of the filtering function used for each of the competitors. By using the rank-based measure provided

5We used a stop-list of 429 stop-words and a Porter stemmer (see [FBY92]).
6In fact, effectiveness is sometimes slightly higher with smaller vectors, due to the well-known problem of overfitting [Mit97] that

arises in machine learning.
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by the routing benchmark, however, this problem is avoided. Any approach that can accurately rank documents

according to their relevance, can also be used as the basis for an accurate filtering function, by defining a ranking

cutoff7 for relevance, below which, any documents will be considered irrelevant.
The experiments are executed as follows. Each run is begun by randomly selecting categories to form a

synthetic user profile of desired complexity. The user profile is initialized to be empty.8 We then present the

documents in our training set one by one to the system along with the corresponding feedback values obtained

from the synthetic profile as defined in Section 4.2. After training is completed, the profile algorithm is disabled

(i.e., the profiles generated are ’frozen’) and the system is evaluated by having the profile it generated score and

rank-order a set of test documents that it has not yet seen, based on their likelihood of relevance.
The main effectiveness metric used in the experiments is a variant of non-interpolated average precision

(niap), which is a rank-based metric used in TREC. This metric integrates precision and recall values into a

single effectiveness measure. Given a ranking of documents in their predicted likelihood of relevance, niap is

defined as follows: Starting from the highest ranked document, the actual relevant documents are counted. If

the ith relevant document has rank ri, then niap = P iriT , where T is total number of relevant documents in the

test collection. For example, assume that there are 3 relevant documents in the test collection and the filtering

system assigns the ranks 2, 4, and 6 to these documents, then niap = 1=2+2=4+3=6
3 = 0:5: In other words, niap

computes the mean of the precision values at each relevant document’s position in the ranked list. With the

example system, which operates at an niap of 0.5, (on average) half of the documents it deems relevant are in

fact relevant to the user, while the other half are not. Higher niap values imply better use of system resources

(e.g., bandwidth) and higher user satisfaction. In the remainder of the paper, we use the term “precision” to meanniap, unless otherwise specified.
In addition to precision figures, we also measure the size of a user profile in terms of the number of

vectors constituting the profile. This metric is important because it dictates the storage requirements for profile

management. Such requirements can become a serious concern in a large-scale filtering environment. As with

document vectors, we represent each profile vector with 100 (term, weight) pairs due to the reasons discussed

previously. The storage benefits for profile vectors, however, are far more important than for document vectors

as the latter are typically only retained for a short duration, while profile vectors are stored and maintained for

long periods of time. Profile size also has implications on filtering efficiency. Larger number of profile vectors

typically indicate higher filtering times. The filtering cost, however, is not linearly proportional to the number of

vectors in the profile since well-known indexing techniques are applicable.

5 Performance Experiments
5.1 Algorithms Studied

In this section, we present the results of our experiments using MM for profiling WWW page interests. We also

present results for two other algorithms, namely (purely) Incremental Rocchio (RI) and Group Rocchio (RG). RG

is the incremental relevance feedback algorithm studied by Allan [All96] (see Section 2.2) that uses a group of

judged documents for updating the profile using relevance feedback. RI is a special case of RG where the group

7The ranking cutoff parameter should not be confused with the threshold parameter � that controls the size of the profile. Typically,

these two parameters will be set differently. See [Cal98] for a recent study on learning ranking cutoffs.
8It is also possible to initiate the experiments with initialized profiles. Such an approach is more realistic in a real-world implementation

as it could reduce the training time significantly. It, however, introduces an additional variable into the study, namely, the quality of the

initial profile.
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size is set to 1. We adopted the Rocchio based formula used by Allan and calculated the weights of the terms

forming the profile vector for RI and RG as w(t)i+1 = w(t)i + 2wt;R� 1
2wt;NR, where w(t)i and t, w(t)i+1 are

the current and the updated (after feedback) weights of t in the profile, and wt;R and wt;NR are the weights of t
in relevant and non-relevant documents, respectively, as defined using the formulas given by Allan:wt;R = 1jRjXd2R belt;d; and wt;NR = 1jNRj Xd2NRbelt;d
where belt;d is given by: belt;d = 0:4 + 0:6 � tfbelt;d � idft withtfbelt;d = tft;dtft;d + 0:5 + 1:5 � lend=avglen; idft = log(N + 0:5docft )=log(N + 1)
where lend is the length of document d, and avglen is the average length of documents in the collection.9 We

use this weight calculation method for all of the learning algorithms studied here.
In order to determine appropriate training times, we investigated the learning rate of MM and observed that

its effectiveness increases rapidly, and levels off somewhat after seeing about 200 documents, but continues to

increase. After training with 400-500 documents, however, we observed no significant increase in effectiveness.

The RI and RG approaches stabilize slightly faster. Unless otherwise stated, all the results presented here are

taken after training with 500 documents.
In all the experiments we present, we fix � at 0.2. We conducted numerous preliminary experiments utilizing

all levels of our experimental parameters and different profile schemes. We observed that�, if set in range [0.1,0.3]

in general had good performance for almost all cases, and found little difference in terms of the precision values

obtained for different settings of � in this range. We decided, therefore to fix � for the experiments described in

this paper.
The test runs for all of the algorithms begin with an initially empty profile. The training set is then presented

to the system, followed by the test set, during which the experimental results are obtained. The results presented

in the following graphs are the average of at least four runs with (different) user interest categories randomly

chosen according to the specification of the workload under study.
We begin by investigating the retrieval effectiveness of the three profile learning techniques using interest

categories drawn from the top-level Yahoo! categories. Figure 5 shows the precision results for three different

interest ranges, covering of 10%, 20%, and 30% of the documents (i.e., 1, 2, and 3 top-level categories out of the

10 in the database). For each interest range, the precision results are shown for (from left to right) incremental

Rocchio (RI), group Rocchio (RG), and MM. As can be seen from the figure, the results are consistent across all

three interest sizes: MM provides the highest precision, followed by RG, followed by RI.

5.2 Top-Level Retrieval Effectiveness

Comparing the two Rocchio implementations, the results show that as described in Section 2.2, the effectiveness

of relevance feedback increases with the group size. In fact, we also ran these experiments using a batch version

of Rocchio, in which all 500 training documents were presented to the algorithm at once. This approach, which

represents a (non-incremental) best case for Rocchio, had precision values of roughly 3-4% more (in absolute

terms) than RG in the three cases studied here. Thus, our fully incremental algorithm, which is presented with

only a single document at a time, significantly outperforms even the batch Rocchio approach.

9We computed the values for the collection-based parameters (e.g., avglen, docft) by statistical analysis of the document collection.

In a real filtering setting, however, this information must be collected incrementally over time.
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Comparing the results for the three interest ranges in Figure 5, it can be seen that the benefit of MM over

the others grows as the number of categories in the profile is increased. These results are shown in Table 6.

This behavior demonstrates a fundamental benefit of the multi-modal approach. As more categories are added,

the number of profile vectors maintained by MM can be increased, allowing the profile to automatically adjust

in order to model the increasingly disparate interests of the (simulated) user. In contrast, since the Rocchio

algorithms maintain only a single profile vector, the documents from the different categories must be lumped

together, resulting in a less accurate model of the user’s interests. 10
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5.3 Threshold Effects

The importance of maintaining multiple vectors for this workload is demonstrated in Figure 7, which shows the

precision obtained by MM, as the threshold parameter � is increased. Recall that � determines the tendency for

MM to create new vectors. When � = 0, a single vector is maintained, and MM performs similarly to RI. As �
is increased, MM becomes more likely to create additional vectors. At an extreme value of � = 1 (not shown),

10In fact, there is a slight improvement in precision for RI and RG as categories are added. This improvement can be attributed to the
increase in the percentage of relevant documents in the testing set, which raises the probability of a “lucky” guess.
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MM maintains a separate vector for each relevant document presented to it. This case is similar to the “nearest

relevant neighbor” (NRN) method, which was studied in [FD92].
Keeping vectors for all relevant documents, however, is not practical for an information filtering environment

as the number of documents presented to such a system grows monotonically over the life of the system.

Fortunately, as is indicated in Figure 7, such a high setting for � is not necessary. Beyond a value of approximately

0.15 (the default value used in these experiments), the precision obtained by the algorithm begins to level out.

In fact, with high thresholds, MM will be susceptible to over-fitting, which can negatively impact effectiveness.

Over-fitting is particularly a problem in noisy environments (e.g., such as the WWW). A final argument for not

retaining vectors for all documents is adaptability. As is discussed in Section 5.5, a key benefit of MM is its

ability to adjust to changes in user’s interests. An approach that maintains vectors for all (or most) relevant

documents ever seen would adapt much more slowly.
Figure 8 shows the number of vectors maintained by MM for each of the three workloads as � is increased.

The important fact to notice here is that for a given threshold, MM keeps more vectors as the number of relevant

categories is increased. That is, as the percentage of relevant documents increases, more vectors are needed to

represent the concepts exemplified by those documents. Taken together, Figures 7 and 8 demonstrate how the �
parameter allows the MM algorithm to be tuned to trade off precision for profile size. MM is capable of spanning

the range of algorithms from single-vectored Rocchio, to a vector-per-document approach such as NRN. Unlike

either of those extreme algorithms, however, it allows for middle-ground solutions that provide good precision

while maintaining moderate storage requirements and good adaptability.
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5.4 Profile Complexity

We also compared the algorithms using categories from the second-level. This workload is likely to generate

more complex profiles as the relevant documents are chosen from a wider, more disparate group of topics. The

results are shown in Figure 9. Qualitatively, the results are similar to what was seen in the previous experiment

with top-level categories. MM is the best, followed by RG, followed by RI. All of the approaches have slightly

lower precision here, however. The decrease in precision compared to the top-level case for each of the algorithms

is shown in Figure 10. As can be seen in the table, MM suffers the least of the three algorithms, while RG has

the highest relative drop. Again, the flexibility of the MM approach allows it to adapt to the more complex
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workload. In this case, MM maintains a small number of additional vectors (3 or 4) for each of the workload

sizes compared to the corresponding workload size in the top-level case discussed previously.

5.5 Interest Changes

As stated in the introduction, an important requirement for an incremental profile generation algorithm is that

it must be able to recognize and adapt to changes in users’ interests. In this section we evaluate the alternative

learning techniques in this light. We examine four types of changes: complete and partial changes in the

categories of interest, addition of a new category to an existing profile, and deletion of a category from an

existing profile. As before, we compare the MM, RI, and RG algorithms. In addition, we also measure a version

of MM, called MM-No Decay (MMND), in which the decay function (i.e., the removal of vectors) is disabled.

Recall that the Rocchio techniques have an implicit type of decay in which the old vector is augmented with

information about new documents (see Section 2.2).
While we studied many different scenarios, due to space considerations, we only show results from a single,

representative case here. For all experiments shown, MM was run using the default values of � = 0:15 and� = 0:2, and RG was run with a group size of 100 documents.11 All of the results shown in this section were

obtained using the 20% top-level category workload (i.e., relevant documents are chosen from two top-level

categories). To see how quickly the learning techniques adapt, we initially trained them using 200 documents. At

that point, the synthetic profile is changed instantaneously, and we measure how quickly (if at all) the precision

values obtained by the various techniques recover. In each of the graphs that follow, we plot the precision as

documents are presented to the system.

5.5.1 Shifting Interests

In these experiments, we study the adaptability of the techniques when the number of categories in which the

user is interested remains constant, but the particular categories are changed. We show two cases. Figure 11

shows the effectiveness of the learning techniques in the case where one of the categories of interest is changed

(after the 200th document has been seen) while the other remains fixed. That is, before the shift: SP = fCi; Cjg;

while after the shift SP = fCi; Ckg. In this case, as before, MM (as well as MMND) initially achieves higher
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11A group size of 100 requires somewhat more space than MM in this case, which requires at most 66 vectors here. At a group size of

66 the precision of RG is within 2% of the values shown in these experiments.
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precision than the Rocchio techniques. After the shift, however, MM, and RG recover (i.e., regain the precision

that they had at the shift point) fastest, followed by MMND and RI. In fact, MM recovers slightly earlier than

RG here, but only because RG waits to collect an entire group before changing the profile. Recall that larger

groups improve the effectiveness for Rocchio in the static case. In the dynamic case, however, larger groups

result in longer periods of lower effectiveness, which could have an impact on user satisfaction in an information

filtering environment. RI adjusts reasonably well here, but its effectiveness remains well below that of the MM

approaches throughout the entire document sequence.
Comparing MM and MMND, it can be seen that MM recovers much faster than MMND (they have similar

precision at the shift point). With decay, negative feedback accelerates the removal of the vectors representing the

concepts of the dropped category. Without decay, these vectors remain in place longer, impacting the precision

results. Thus, decay significantly improves the effectiveness of MM when users interests change dynamically

(which we would expect to be the normal situation for many applications). Fortunately, the fact that both MM

and MMND have similar precision up to the shift point shows that using decay does not harm the precision of

MM in periods of static interests.
Figure 12 shows the effectiveness of the algorithms for a more complete shift. In this case, the user’s interests

are completely changed at the shift point. More formally, before the shift: SP = fCi; Cjg; and after the shift SP= fCk; Clg. While this case is less likely to happen than the partial shift, we use it to investigate the behavior

of the algorithms in an extreme case. Here, all the past relevance judgments are invalid; each algorithm has to

realize this and forget all those judgments in order to recover.
Comparing Figure 12 to the partial change case shown in Figure 11, it can be seen that the MM approaches

take longer to recover in the more extreme case than they did in the partial case. MM with decay recovers its

original precision somewhat more slowly than RG does here, but it is important to note that even before it is

fully recovered (i.e., after the 400th document), its precision is superior to that of RG. Without decay, however,

MMND recovers much more slowly than in the previous case, and in fact, has lower precision than RG throughout

the entire test range shown here. In this case, the vectors existing prior to the shift point provide no valuable

information, and thus need to be destroyed as quickly as possible. Without a decay function, these old vectors

can impact effectiveness for a long time. RI adjusts reasonably quickly in this case, but its effectiveness remains

below that of MM throughout the entire document sequence.
The previous cases represented fairly dramatic shifts in user interests while keeping the number of categories

in the interest range constant. Such user behavior is not expected to be likely in practice, but is useful for

demonstrating the tradeoffs of the different algorithms in the absence of effects caused by changes in the size of

the relevant document set. In this section, we briefly look the case of more gradually changing interests.

5.5.2 Adding and Deleting Interests

Figure 13 shows the case where a new top-level category is added to an existing set of interests (originally

containing a single category), for example, if a user becomes interested in a new hobby. That is, before the

shift: SP = fCig; and after the shift SP = fCi; Cjg. In this case, since there is only an extension of the user

interests, the previous (positive) relevance judgments remain valid. For this reason, there is no difference in the

effectiveness and recovery time of MM and MMND. This result extends our earlier result, by validating that the

decay function has no negative impact on the effectiveness of MM even for changing interests, as long as existing

interests are not dropped. RI and RG again show reasonable recovery behavior but overall lower effectiveness.

RG dominates RI except for one small region (between the 200th and 300th documents), during which RG is
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collecting a group of relevance judgments before applying them to its vector.
Figure 14 shows the complementary case to the previous one, in which a user is initially interested in two

top-level categories and then one of them is made irrelevant. For example, a student’s interest in a category for

a school project can drop suddenly after that project is finished, people can lose interest in a hot news story after

it has become tiresome. More formally, before the shift: SP = fCi; Cjg; and after the shift SP = fCig. In this

case, the results confirm what we have seen before. In the presence of dropped interests, the decay function of

MM speeds its recovery. The precision of RG recovers quickly, but remains below (or in one case, equal to) that

of MM with decay. Thus, across all the scenarios shown, MM provides the highest effectiveness; it has higher

precision for static situations, but also recovers fast enough to preserve its advantage when the user’s interests

change.

6 Related Work

There has been a huge volume of research on text-based profile construction in information retrieval community,

especially in the framework of TREC routing and filtering tasks [VH96]. In the routing task, the system is

given a set of documents relevant to a topic and is asked to rank-order an unseen set of documents according to

their estimated relevance based on the constructed profile. In the filtering task, the system is required to make a

binary decision as to which document is relevant or non-relevant. The main emphasis of TREC tasks, however,

has always been on the effectiveness of the participating systems, rather than on their efficiency. Most of the

techniques used for these tasks require batch processing of previously judged documents, imposing relatively

high storage and computation costs, and thus, making them inappropriate for large-scale filtering environments.

Furthermore, the documents used in these benchmarks differ from the wide variability of typical web pages,

making it difficult to extrapolate results from these benchmarks to performance on the WWW.
Publish/subscribe protocols have been a subject of increasing interest in the database and data management

communities. Recent projects such as the C3 project at Stanford [CAW98], the CQ (continuous queries) project

at OGI [LP98], and the Grand Central project at IBM Almaden [IBM97] all contain a user profile management

component. To date, however, these projects have not emphasized learning-based acquisition and maintenance

of profiles.
The machine learning community, of course, has also shown great interest in different aspects of profile

generation, especially in the framework of personalized information filtering (e.g., [SM93, Ste92]). For reasons
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of brevity, we only discuss previous research which is directly relevant to our work and the database community.
The work most closely related to ours is that of Allan, who studied the utility of relevance feedback for

information filtering environments [All96]. He investigated the case where only a few judged documents

are available each time, and showed that highly effective results can be achieved using relatively few judged

documents. He also addressed the significant issues of reducing storage requirements and coping with shifts

in user interests that arise in an information filtering environment. The main difference of our work is the

introduction of a parametric approach that adaptively changes the number of vectors used to represent profiles.
Previously, Aalbersberg evaluated the effectiveness of incremental relevance feedback [Aal92], however,

from the standpoint of an information retrieval environment. Lam et al. addressed the issue of shifts in user

interests [LMMP96], using a two-level approach which combines reinforcement and Bayesian learning. Unlike

our work, which adopts a quite general definition of user profiles, their work uses a fixed number of categories

to define user interests.
More recently, Balabanovic conducted a similar study where he evaluated a gradient descent approach for

text recommendation systems [Bal98]. Unlike the way our algorithm represents profiles as a collection of

vectors, Balabanovic used category preferences (i.e., favoring a topic over another) to represent user interests.

He evaluated his technique against the classical Rocchio (which we have also used in this study) and obtained

comparable results to Rocchio.
Foltz and Dumais used Latent Semantic Indexing (LSI) to derive a reduced dimensional vector space [FD92]

and constructed a profile vector from each document judged as relevant by the user. The relevance of a document

to the profile is then computed based on its cosine similarity to the closest profile vector. Notice that their

approach of having a separate profile vector for each document of interest is a special case of MM , namely,

when threshold � is set to 1. Note that it is straightforward to generalize the approaches we describe here to use

an LSI space rather than the regular (keyword) vector space.
The approach taken by SIFT, which uses the publish/subscribe model for wide-area information dissem-

ination [YGM95], requires users to explicitly submit their profiles and update those profiles using relevance

feedback. Our approach differs from that of SIFT in its use of a set of inter-related profile vectors whose contents

and cardinality change based on user feedback, and its ability to construct profiles completely automatically12.

7 Conclusions

Push-based data dissemination depends upon knowledge of user interests for making scheduling, bandwidth

allocation, and routing decisions. Such information is maintained as user profiles. We have proposed a novel,

incremental algorithm for constructing user profiles based on monitoring and user feedback. In our approach, a

user-profile is represented as multiple vectors whose size and elements change adaptively based on user access

behavior. We developed a set of workloads based on the Yahoo! WWW categories and used them to analyze the

multi-modal approach and compared it to approaches that have been shown to have good effectiveness in other

recent, related work.
Our experimental results showed that the "multi-modal" approach has several advantages: 1) It is capable

of providing significantly higher accuracy than a single-modal approach; 2) It automatically and dynamically

adjusts the number of vectors used to represent a profile based on feedback that is provided to it incrementally

(i.e., one document at-a-time). This flexibility allows the algorithm to adapt profiles to cope with changes in

12The advantagesof automatic profile construction have been shown experimentally using human subjects in [FD92]. These advantages

are further validated by extensive experimentation with INQUERY [BCC94].
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user interests over time; 3) Even in this incremental mode, the approach provides more accurate results than a

batch version of the more traditional approach, which is in current use today; 4) The multi-modal representation

of profiles combined with its incremental nature allows it to be tuned to trade off effectiveness and efficiency,

which makes it suitable for use in large-scale information dissemination systems.
In terms of future work, there is much to be done. Push technology in general, and publish/subscribe

systems in particular are becoming increasingly popular. As these systems scale to larger and more diverse user

populations, efficient techniques for managing and updating large numbers of user profiles will become more

important. Also, profiling techniques must be extended to cope with multi-media data types beyond textual ones.

These and other issues provide a host of interesting research opportunities.
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A Pseudocode for MM and Auxiliary Procedures

MM (P; vd; fd)
if (P == fg and fd > 0)strengthvd = 1; temperaturevd = 0; P = fvdg;

else
let pactive = pi s.t. cosine(pi; vd) � cosine(pj; vd) 8pi 2 P; i 6= j;relevanced;P = cosine(pactive; vd);
if (relevanced;P � �) thenpactive = (1� �)� pactive + �� fd � vd;

update strength(pactive; fd);
if (strengthpactive < 1) delete(pactive; P );
else merge(pactive; P );

else if (fd > 0)strengthvd = 1; temperaturevd = 0; P = P [ fvdg;

update strength(p; fd)
if (fd == 1)

if (temperaturep == 0) strengthp = strengthp + 1;

else
if (temperaturep < 0) temperaturep = �1 � temperaturep;

elsetemperaturep = temperaturep � 1;strengthp = strengthp� exp(c� temperaturep);
else

if (temperaturep > 0) temperaturep = �1 � temperaturep;

else temperaturep = temperaturep � 1;strengthp = strengthp� exp(c� temperaturep);
merge(pactive; P )

let pclosest = pi s.t. cosine(pi; pactive) � cosine(pj; p) 8pi 2 P; i 6= j; and pi 6= p;

if (cosine(p; pclosest) � �)� = strengthpclosest=(strengthp + strengthpclosest);p = (1� �)� p+ �� pclosest;strengthp = strengthp + strengthpclosest;temperaturep = 0;


