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PURPOSE: The purpose of this document is to demonstrate the application of Bayesian 
Markov Chain Monte Carlo (MCMC) simulation as a formal probabilistic-based means by which 
to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall 
time series data collected for a given surface network station, including the treatment of a 
nonstationary climate condition. This objective will be accomplished by independently revisiting 
parts of an example originally profiled by Cheng and AghaKouchak (2014). This Technical Note 
will conclude with a brief discussion of some potential opportunities for future U.S. Army Corps 
of Engineers (USACE) research and development directed at extreme rainfall frequency analysis. 

INTRODUCTION: The rainfall IDF curve is a mathematical relationship between rainfall 
intensity, duration, and return period (Koutsoyiannis et al. 1998). IDF curves describe rainfall 
intensity as a function of duration for a given return period and are important for infrastructure 
design (Overeem et al. 2008). The construction of IDF curves involves fitting a theoretical 
distribution to the historical extreme rainfall amounts for a number of fixed durations (Overeem 
et al. 2008). Current IDF curves are developed based on the concept of temporal stationarity, 
which assumes that the occurrence probability of extreme precipitation events is not expected to 
change significantly over time.  

The Fifth Assessment Report (AR) of the Intergovernmental Panel on Climate Change (IPCC 
2013) reported global surface temperatures to increase 0.3 to 4.8 degrees Celsius (oC) by the year 
2100 relative to the reference period 1986–2005 (Srivastav et al. 2014). The Fourth AR of the 
IPCC (IPCC 2007) reported that the global surface temperature had increased approximately 0.75 
oC over the last 100 years (the increase could not be explained by natural variability alone) and 
moreover, that increased greenhouse gas emissions due to human activities are the main reason for 
current global warming (Yilmaz et al. 2014). With every 1 oC warming of the global surface 
temperature, the atmosphere’s water holding capacity is increased by approximately 7%. Hence, 
global warming directly affects a changing precipitation climatology (Trenberth 2011), including 
its extremes (Kunkel et al. 2013), and this change is termed nonstationarity. Kunkel et al. (2013) 
concluded, based on climate model simulations and conceptual considerations of other related 
meteorological systems, that probable maximum precipitation values will increase in the future due 
to increased atmospheric moisture content and higher levels of moisture transport into storms. 

Cheng and AghaKouchak (2014) outlined a general methodology for developing IDF curves 
under nonstationary conditions. Their framework involved application of the Generalized 
Extreme Value (GEV) distribution, annual rainfall maxima data associated with a recent NOAA 
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(National Oceanic and Atmospheric Administration) Atlas 14 update (see Perica et al. 2013 and 
references cited therein), and a Bayesian MCMC sampler for simultaneous optimization and 
inference (ter Braak 2006). Nonstationarity was treated by defining the location parameter of the 
GEV distribution to vary linearly with time. To illustrate the potential negative impacts of 
ignoring nonstationarity at a site that has been assessed otherwise, by way of identification of a 
statistically significant increasing trend in precipitation extremes, Cheng and AghaKouchak 
(2014) applied their framework to develop IDF curves at five distinct rainfall station locations 
with and without treatment of a nonstationary climate condition. In this USACE Engineer 
Research and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL) Technical 
Note (TN), the previously mentioned Bayesian supervised IDF curve development analysis for 
the White Sands National Monument rainfall station is independently revisited, albeit by 
applying a different MCMC sampler (ter Braak and Vrugt 2008), not only to demonstrate related 
internal USACE-ERDC-CHL capacity but also to further focus on a comparison of these 
Bayesian-inferred IDF curves under stationary and nonstationary conditions.  

BACKGROUND: Probability concepts and related relevant terms in hydrology are summarized 
in Stedinger et al. (1992). For a random variable X (e.g., herein, representing the annual rainfall 
maxima), its cumulative distribution function (cdf), denoted by  XF x , is the probability that the 
random variable X is less than or equal to x: 

    XF x P X x   (1) 

The probability density function (pdf) defines the relative likelihood that X takes on different 
values. It is denoted by  Xf x , and it is the first derivate of the cumulative distribution function. 
In hydrology, the pth quantile, denoted by px , is the value with cumulative probability p: 

  X pF x p  (2) 

In addition, the return period associated with the pth quantile px , denoted and defined by 

 /T p 1 1 , represents the average frequency of occurrence for an event of magnitude px . 

In this study, the GEV distribution is assumed: 
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where /μ σ ξ x    for ξ 0 , x   for ξ 0 , /x μ σ ξ    for ξ 0 , 
and ,  , μ σ  and ξ  are the location, scale, and shape parameters of the distribution. For the GEV 
distribution, the pth quantile defined in Equation 5 is obtained by inverting Equations 2 and 4. 

The MCMC simulation is a formal Bayesian approach for estimating the posterior probability 
distribution of the specified adjustable model parameters, in this case, the GEV distribution 
parameters. It treats the specified adjustable model parameters as random variables and relies upon 
Bayes’ Theorem to compute their joint posterior probability distribution. Bayes’ Theorem 
effectively communicates that the posterior distribution is proportional to the product of the prior 
distribution and the likelihood function (i.e., the conditional distribution), which encapsulates the 
conditioning process with the observed dataset. The prior distribution is prescribed based on the 
modeler’s best judgment, expert opinion, or literature estimates, among possible others. In this 
case, the observed dataset is a systematic record of annual rainfall maxima at the White Sands 
National Monument rainfall station. The idea behind MCMC simulation is that while one wants to 
compute a probability density, p(p|D), where p and D represent the vector of adjustable model 
parameters and the data/information imparted to the analysis, respectively, there is the under-
standing that such an endeavor may be impracticable. Additionally, simply being able to generate a 
large random sample from the probability density would be equally sufficient as knowing its exact 
form. Hence, the problem then becomes one of effectively and efficiently generating a large 
number of random draws from p(p|D). It was discovered that an efficient means to this end is to 
construct a Markov chain, a stochastic process of values that unfold in time, with the following 
properties: (1) the state space (set of possible values) for the Markov chain is the same as that for 
p; (2) the Markov chain is easy to simulate from; and (3) the Markov chain’s equilibrium 
distribution is the desired probability density p(p|D). The Gelman and Rubin (1992) quantitative 
measure is commonly employed to assist with diagnosis of chain convergence. A Markov chain 
with the aforementioned properties can be constructed by choosing a symmetric proposal 
distribution and employing the Metropolis acceptance probability (Metropolis et al. 1953) to accept 
or reject candidate points. By constructing such a Markov chain, one can then simply run it to 
equilibrium (and this period is often referred to as the sampler burn-in period) and subsequently 
sample from its stationary distribution. Within the context of its application to simultaneously 
optimize and infer the GEV distribution parameters using a record of annual rainfall maxima for a 
given duration, the post burn-in random draws from p can be used to construct predictive 
distributions and credible intervals for particular quantiles by using Equation 5. 

A key element for MCMC samplers that employ the Metropolis or Metropolis-Hastings acceptance 
probability rule (Metropolis et al. 1953; Hastings 1970) is the proposal distribution, which 
generates the candidate jumps for consideration as part of the Markov Chain directed random walk 
of the posterior. For a given problem, there are many possible acceptable proposal distributions. 
However, its specific choice can dramatically impact the overall efficiency of the sampler, to the 
target equilibrium distribution. Proposal distributions that generate either small or large jumps 
yield low acceptance rates and slow convergence. The primary goal is to choose a proposal 
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distribution that is easy to sample from, generates unbiased moves, and results in optimal mixing 
of the chains. The interested reader is directed to Gelman et al. (2004) for more information 
regarding technical details related to Bayesian MCMC. 

As with Cheng and AghaKouchak (2014), nonstationarity is treated by defining the GEV 
location parameter to vary linearly in time, t: 

  μ μ t μ t μ  1 0  (6) 

This specific temporal treatment of the GEV location parameter is but one of many possible time 
variable approaches one could apply for IDF curve development using Bayesian MCMC. The 
linear in-time treatment of the GEV location parameter is employed primarily for the purposes of 
demonstration. In so doing, an additional random variable is introduced such that there are now 
four random variables, viz., ,  , μ μ σ1 0 , and ξ  to simultaneously optimize and infer using MCMC. 
The quantiles are computed from the post burn-in random draws as described in Cheng and 
AghaKouchak (2014). In particular, for each given post burn-in random draw, the 95th percentile 
value for the location parameter, obtained by applying equation 6 (i.e., 95th percentile of 
 μ t 1 ,…,  μ t 100 ), is used to compute its related quantile value for a specified value of p. 

The entire set of px  computed from the post burn-in draws characterize its posterior predictive 
distribution.  

EXAMPLE: Annual rainfall maxima series associated with the NOAA Atlas 14 update for the 
White Sands National Monument rainfall station located in the state of New Mexico (latitude: 
32.7817; longitude: 106.1747; elevation: 1217.7 m) for the 52-year period 1949–2000 were 
collected using the National Oceanic Atmospheric Administration National Weather Service 
Hydrometeorological Design Studies Center Precipitation Frequency Data Server for eight 
specific durations (1 hr, 2 hr, 3 hr, 6 hr, 12 hr, 24 hr, 48 hr, and 96 hr) to support Bayesian 
supervised IDF curve development analysis under stationary and nonstationary conditions. In 
particular, 16 distinct MCMC simulations were performed to develop IDF curves under 
stationary and nonstationary conditions using the annual rainfall maxima for the noted eight 
durations for the White Sands National Monument rainfall station. As previously mentioned, an 
adaptive population-based MCMC sampler (ter Braak and Vrugt 2008) was employed to infer 
the joint posterior for the GEV distribution parameters. All 16 MCMC simulations specified a 
population size to evolve equal in value to five times the dimensionality of the estimation 
problem. Latin hypercube sampling was used to initialize the population. The size of the initial 
history of past simulated states to draw upon to generate jump proposals was specified to be 
equal in value to one hundred times the dimensionality of the estimation problem. For each 
simulation, an uninformed uniform prior distribution was employed as well as a likelihood 
function of the form 

    D|p |p
s

X i
i

l f y



1

 (7) 

where D is the sample set of recorded annual rainfall maxima for a given duration, iy , s is the 
record size, and f  is the GEV distribution. For each MCMC simulation, the Gelman and Rubin 
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(1992) quantitative convergence diagnostic was used together with visual inspection of trace 
plots of the chains and an efficiency plot of the evolving population mean root mean squared 
error to in aggregate assess the completion of sampler burn-in. In each case, subsequent to the 
weight of evidence-based assessment that sampling is occurring with stable frequency from the 
target distribution implied by the modeling analysis, a thinned history, viz., every tenth evolution 
of the approximately 1 million specified total post burn-in monitoring period model runs was 
saved and used to support IDF curve development.  

Results from the 16 MCMC simulations are summarized in Tables 1–2 and Figures 1–8. Tables 1 
and 2 list the posterior mode (PM) (i.e., the GEV with p which maximizes p(p|D)) estimates 
computed for each of the eight previously mentioned duration-based simulations under stationary 
and nonstationary conditions, respectively, and in each case, the related quantile estimates 
calculated for five distinct return periods, viz., 2, 10, 25, 50, and 100 years. It is underscored to the 
reader that the nonstationary results, as mentioned above, are computed and processed for a 
discrete point in time. Tables 1 and 2 also list by duration the computed 2.5, 50, and 
97.5 percentiles of the posterior predictive distribution for each of the five quantiles. These noted 
percentile values are the basis for Figures 1–8, which are plots of the IDF curves computed under 
stationary and nonstationary conditions for the White Sands National Monument station, by 
duration. On each IDF curve shown in Figures 1–8, the 95% credible interval, based on the 
respective 2.5 and 97.5 percentile values listed in Tables 1 and 2, is shown for each quantile. Each 
Figure also includes plots of the predictive distributions derived from the post burn-in random 
draws for the 2-year and 100-year return period quantiles. Table 3 summarizes the computed 
percent increase obtained when the nonstationary, PM-based quantile estimates presented in 
Table 2 are compared with their counterparts listed in Table 1, which were obtained assuming a 
stationary climate. Figure 9 is a plot of the data presented in Table 3. 
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Table 3. Computed percent increase obtained when the nonstationary PM-
based quantile estimates are compared with their counterparts that were 
computed assuming a stationary climate. 

Duration 
(hours) 

Percent Increase in Quantiles (mm/h) for Return Periods, T in 
years 

2 10 25 50 100 
1 57.6 29.7 22.5 18.5 15.2 
2 62.3 31.6 23.0 17.9 13.7 
3 72.1 36.2 25.5 19.1 13.7 
6 88.7 49.9 40.3 35.0 30.9 
12 89.5 51.5 42.2 37.1 33.1 
24 80.4 49.5 43.5 40.7 38.9 
48 72.3 42.1 37.5 36.2 36.2 
96 56.0 34.2 30.0 28.1 27.0 
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Figure 1. Bayesian MCMC simulation-derived, 1 hr IDF curves for the White Sands National Monument 

rainfall station computed under stationary and nonstationary conditions. The 2.5, 50, and 97.5 
percentile values from each respective predictive posterior distribution are shown at each quantile 
level. These three values are clearly identified for the stationary 10-year return period results. Their 
relative locations equally apply for the remaining return periods for both the stationary and 
nonstationary analyses not only in this figure but also Figures 2–8. Plots of the posterior predictive 
distributions for the 2-year and 100-year return period level quantiles are also shown. 

  Duration (1 hr) 
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Figure 2. Bayesian MCMC simulation-derived, 2 hr IDF curves for the White Sands National Monument 

rainfall station computed under stationary and nonstationary conditions. The 2.5, 50, and 97.5 
percentile values from each respective predictive posterior distribution are shown at each 
quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year return 
period level quantiles are also shown. 

  Duration (2 hr) 
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Figure 3. Bayesian MCMC simulation-derived, 3 hr IDF curves for the White Sands National Monument 

rainfall station computed under stationary and nonstationary conditions. The 2.5, 50, and 97.5 
percentile values from each respective predictive posterior distribution are shown at each 
quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year return 
period level quantiles are also shown. 

  Duration (3 hr) 



ERDC/CHL CHETN-X-2 
March 2016 

10 

 
Figure 4. Bayesian MCMC simulation-derived, 6 hr IDF curves for the White Sands National Monument 

rainfall station computed under stationary and nonstationary conditions. The 2.5, 50, and 97.5 
percentile values from each respective predictive posterior distribution are shown at each 
quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year return 
period level quantiles are also shown. 

  Duration (6 hr) 
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Figure 5. Bayesian MCMC simulation-derived, 12 hr IDF curves for the White Sands National 

Monument rainfall station computed under stationary and nonstationary conditions. The 2.5, 
50, and 97.5 percentile values from each respective predictive posterior distribution are shown 
at each quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year 
return period level quantiles are also shown. 

  Duration (12 hr) 
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Figure 6. Bayesian MCMC simulation derived, 24 hr IDF curves for the White Sands National 

Monument rainfall station computed under stationary and nonstationary conditions. The 2.5, 
50, and 97.5 percentile values from each respective predictive posterior distribution are shown 
at each quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year 
return period level quantiles are also shown. 

  Duration (24 hr) 
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Figure 7. Bayesian MCMC simulation-derived, 48 hr IDF curves for the White Sands National 

Monument rainfall station computed under stationary and nonstationary conditions. The 2.5, 
50, and 97.5 percentile values from each respective predictive posterior distribution are shown 
at each quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year 
return period level quantiles are also shown. 

  Duration (48 hr) 
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Figure 8. Bayesian MCMC simulation-derived, 96 hr IDF curves for the White Sands National 

Monument rainfall station computed under stationary and nonstationary conditions. The 2.5, 
50, and 97.5 percentile values from each respective predictive posterior distribution are shown 
at each quantile level. Plots of the posterior predictive distributions for the 2-year and 100-year 
return period level quantiles are also shown. 

  Duration (96 hr) 
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Figure 9. Computed percent increase for five distinct return periods, T, obtained when the nonstationary 

PM-based quantile estimates are compared with their counterparts that were computed 
assuming a stationary climate.  

DISCUSSION: With the intent to illustrate the potential negative impacts of ignoring 
nonstationarity at a site that has been assessed otherwise, 16 distinct MCMC simulations were 
performed to develop IDF curves under stationary and also nonstationary conditions for the 
White Sands National Monument rainfall station for eight distinct durations. A strength of the 
MCMC methodology for IDF curve development is the flexibility and ease with which one can 
incorporate a treatment of a nonstationary climate condition into the analysis. Nonstationarity 
was treated by specifying the GEV distribution location parameter to vary linearly in time, and as 
previously mentioned, the results presented in Tables 1–3 and Figures 1–9 are for a projection 
forward in time. Cheng and AghaKouchak (2014) underscored a primary strength of the MCMC 
methodology for IDF curve development, viz., its capacity to formally quantify uncertainty for 
the computed quantiles. This capacity is clearly emphasized graphically in Figures 1–8 wherein 
the posterior predictive distributions (pdfs and cdfs) for the 2-year and 100-year quantiles, under 
stationary and also nonstationary conditions, characterized using the post burn-in random draws, 
are shown for each duration. It is also emphasized in the same set of figures, with the IDF curves 
themselves including a display of the 95% credible interval together with the 50th percentile 
value at each quantile level.  
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Several observations can be made upon examination of the results encapsulated in Tables 1–3 
and Figures 1–9 for the White Sands National Monument rainfall station: 

1. The stationary assumption delivers IDF curves that underestimate extreme events across all 
durations and return periods when the comparisons are based on the computed and reported 
50th percentile values for each quantile (viz., the red lines are always above the black lines in 
Figures 1–8). 

2. In particular, for example, for a 2-year 2 hr storm, the difference between the nonstationary 
(14.66 mm/hr) and stationary (9.03 mm/hr) PM extreme precipitation estimates is 
approximately 5.63 mm/hr (+62.3%) while for a 10-year 1 hr event, the difference between 
the nonstationary (35.03 mm/hr) and stationary (27.01 mm/hr) PM extreme precipitation 
estimates is 8.02 mm/hr (+29.7%). These values are both in close agreement with previously 
reported comparisons (Cheng and AghaKouchak 2014). 

3. The most substantial underestimation of extremes that result from ignoring the nonstationary 
condition occur at the 12 hr duration for the 2-year and 10-year return periods while for the 
remaining return periods it occurs at the 24 hr duration.  

4. The percent increase between the PM nonstationary and stationary extreme precipitation 
estimates decreases as the return period increases, viz., in Figure 9, the curve for 
T=2/T=10/T=25/T=50 is always above the curve for T=10/T=25/T=50/T=100, across all 
durations. 

5. The largest percent increase between the PM nonstationary and stationary extreme 
precipitation estimates occurs at the 2-year return period level, which is significantly higher 
than for the remaining return periods.  

6. While the differences between the PM nonstationary and stationary estimates decrease as the 
duration increases, as Cheng and AghaKouchak (2014) observed, the computed percent 
increases nevertheless indicate notable change occurring across all durations and return 
periods. In fact, the percent increases are greater for the longer duration events than for the 
shorter events for all but the 2-year return period.  

7. The 95% credible intervals shown at each quantile level suggest that for a given duration, the 
uncertainty in the computed quantiles for the nonstationary and stationary estimates grow 
with increasing return period and that this occurrence is more dramatic for the stationary 
estimates than for the nonstationary estimates. Moreover, for the nonstationary estimates, this 
phenomenon is less active at the 6 hr, 12 hr, and 24 hr durations wherein the 95% credible 
intervals are observed to be more uniform across the five return periods relative to the 
remaining durations. 

8. At the 2 hr duration, the 95% credible interval of the stationary 100-year quantile covers its 
nonstationary counterpart. For the 3 hr duration, the stationary 50-year and 100-year quantile 
95% credible intervals cover their nonstationary counterparts. 

9. For many durations and return periods, the 50th percentile of stationary simulations are 
below the lower bounds of the credible intervals of their nonstationary counterparts.  

10. Across all durations, the nonstationary 95% credible intervals for the 2-year and 10-year 
quantile levels are greater than their stationary counterparts. 

11. In general, for any given duration, the nonstationary and stationary 95% credible intervals 
intersect more as the return period increases. 

12. For the 2-year return period quantile level, across all durations, the nonstationary and 
stationary 95% credible intervals intersect minimally, if at all. 
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13. For a given duration, across all return periods, the degree of intersection of the nonstationary 
and stationary 95% credible intervals is the least at the 24 hr duration.  

14. The posterior predictive distributions presented for the 2-year and 100-year quantiles for each 
duration, and which are also available for other quantile levels using the available draws 
from each respective duration-based MCMC simulation, are a means by which to make 
probabilistic statements regarding extreme precipitation at the White Sands National 
Monument rainfall station. For example, the approximate cumulative probability that the 3 hr 
2-year rainfall intensity, assuming stationarity, is less than or equal to 8 mm/hr is effectively 
1 (0.9986); whereas, the approximate complement cumulative probability for the same 
intensity, duration, and frequency computed under a nonstationary climate condition is 0.983. 
The approximate cumulative probability that the 24 hr 100-year rainfall intensity, assuming 
stationarity, is less than or equal to 2.75 mm/hr is 0.873; whereas, the approximate 
complement cumulative probability for the same intensity, duration, and frequency computed 
under a nonstationary climate condition is 0.968. 

Cheng and AghaKouchak (2014) mentioned that potential nonuniform and climate-induced 
changes on heavy rainfall events call into question the accuracy and adequacy of current 
infrastructure design concepts, which rely on an assumption of climate stationarity. Those 
comments are reinforced herein with a comprehensive revisit of a Bayesian-based comparative 
evaluation, under stationary and nonstationary conditions, of the NOAA Atlas 14 update extreme 
rainfall dataset associated with the White Sands National Monument rainfall station. This 
extreme rainfall dataset was assessed, via the application of statistical trends tests, to exhibit 
nonstationary behavior. The IDF curves developed under stationary and nonstationary climate 
conditions using Bayesian MCMC clearly indicate that a stationary assumption underestimates 
extreme rainfall at the White Sands National Monument rainfall station, across all durations and 
return periods, and particularly for the 2-year return period and the 6 hr and 12 hr durations. The 
results were presented in a manner to communicate to the reader that the Bayesian methodology 
for IDF curve development profiled herein provides one with formal estimates of uncertainty, to 
support risk-informed hydrologic analysis.  

CONCLUSIONS AND FUTURE WORK: The content of this document has demonstrated a 
new USACE capacity to develop IDF curves under stationary and nonstationary climate conditions 
using Bayesian MCMC simulation by independently revisiting parts of the example originally 
profiled by Cheng and AghaKouchak (2014) for the White Sands National Monument rainfall 
station located in the state of New Mexico. A Bayesian analysis is attractive in that it permits one 
to flexibly and coherently treat a nonstationary analysis. Moreover, its application provides a basis 
to make formal probabilistic-based inferences regarding the rainfall quantiles. A Bayesian analysis 
satisfies the requirements of existing USACE policy guidance regarding flood damage reductions 
studies, viz., a probabilistic analysis of “all key variables, parameters, and components of flood 
damage reduction studies.” For example, with a given formal Bayesian-supervised IDF curve 
development analysis, each post MCMC sampler burn-in random draw would define a unique IDF 
curve. A design storm hyetograph can be developed from each IDF curve and subsequently used to 
force a calibrated and validated precipitation-runoff model. Probability-based, risk-informed 
hydrologic analysis and design, including the possible consideration and treatment of a 
nonstationary climate condition, could be supported by performing such a hydrologic modeling 
analysis across all of the generated post burn-in draws. The process would yield an empirical 
predictive distribution for a hydrologic state (e.g., discharge at a given location. 
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In this Technical Note, multiple MCMC duration-based simulations were performed using the 
NOAA Atlas 14 update dataset associated with the White Sands National Monument rainfall 
station to simultaneously optimize and infer the posterior distribution of the generalized extreme 
value distribution parameters implied by each Bayesian modeling analysis, performed under 
stationary and also nonstationary climate conditions. It is underscored to the reader for clarity 
that distributions other than the GEV could easily be considered within the Bayesian analysis 
framework. The results obtained, processed, and presented in tabular form and also graphically 
clearly emphasize that ignoring the nonstationary assumption could lead to substantial 
underestimation of rainfall extremes. 

The Bayesian-based analysis methodology profiled herein is attractive because it dovetails with the 
stated goal of existing related USACE policy guidance. In particular, the USACE is required to 
perform risk and uncertainty analyses in the process of planning, design, and operation of all civil 
works flood risk management projects as described in Engineer Regulation (ER) 1105-2-100 
(2006), and its cited references (e.g., Engineer Manual 1110-2-1619 [1996]). The risk-informed 
analysis framework presented in ER 1105-2-100 (2006) jointly promulgated by the USACE 
Planning and Engineering communities of practice, requires acknowledgement of and accounting 
for error and uncertainty in the “key variables, factors, parameters, and data components” relevant 
to the planning and design of flood damage reduction projects. By capturing and quantifying “the 
extent of the risk and uncertainty in the various planning and design components of an investment 
project,” it permits for an evaluation of the tradeoff between risks and costs. The ultimate goal of 
the policy guidance is probabilistic analysis of “all key variables, parameters, and components of 
flood damage reduction studies.” Bayesian MCMC simulation for IDF curve development is also 
attractive because it flexibly permits for the evaluation of a nonstationary climate condition. For 
the analysis considered herein, the nonstationary climate condition was treated by allowing the 
GEV distribution location parameter to vary linearly in time. Future related USACE research and 
development will consider and compare additional temporal treatments of the distribution 
parameters. For example, of interest, is to further explore and understand the basis for the 
previously mentioned observed differences, at the White Sands National Monument rainfall 
station, at and across each quantile level, for the nonstationary uncertainty estimates at a given 
duration in comparison with their stationary counterparts. Other approaches such as the so-called 
“effective return levels” can also be explored for treating nonstationarity.  

The station-specific Bayesian MCMC approach profiled herein can be applied on a point-by-point 
basis to generate, by way of interpolation, spatial maps of hydrometerological extremes; however, 
such an approach is not explicitly spatial. An additional alternative approach for updating 
precipitation frequency estimates under stationary and/or nonstationary climate conditions involves 
using spatially explicit Bayesian modeling analysis. Spatial Bayesian modeling is flexible in that it 
can accommodate different covariate relationships, it combines information from different 
durations, and the sources of uncertainty are easily tracked and quantified from the estimated 
posterior distributions. Spatial Bayesian modeling analysis, in particular, Bayesian Hierarchical 
Modeling (BHM), is a flexible and coherent statistical framework for quantifying the uncertainty 
of IDF estimates, which vary with location and duration. Recent applications of BHM include, 
among others, Soltyk et al. (2014), Lehman et al. (2013), and Cooley et al. (2007). BHM is another 
direction for future related USACE research and development, including its interface with model-
simulated data from a regional climate model for an alternative Bayesian supervised treatment of a 
nonstationary climate condition. Moreover, BHM is attractive in that it could be the basis for the 
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generation of spatial information expansion data to be used in a Bayesian analysis of the flood 
frequency hydrology concept (Skahill et al., in preparation). 

ADDITIONAL INFORMATION: This CHETN was prepared as part of the Extreme Hydrologic 
Events work unit in the Infrastructure R&D Program and was written by Drs. Brian E. Skahill 
(Brian.E.Skahill@usace.army.mil) and Aaron Byrd (Aaron.R.Byrd@usace.army.mil) of the U.S. 
Army Engineer Research and Development Center (ERDC) Coastal and Hydraulics Laboratory 
(CHL); Dr. Amir AghaKouchak (amir.a@uci.edu) of the University of California at Irvine 
Hydroclimate Research Laboratory; Dr. Linyin Cheng (linyin.cheng@noaa.gov) of the NOAA 
Earth Systems Research Laboratory Physical Sciences Division; and Dr. Joseph Kanney 
(Joseph.Kanney@nrc.gov) of the Nuclear Regulatory Commission Office of Research. The 
Program Manager is Dr. Cary Talbot, and the Technical Director is William Curtis. This CHETN 
should be cited as follows:  

Skahill, B. E., A. AghaKouchak, L. Cheng, A. R. Byrd, and J. Kanney. 2016. 
Bayesian inference of nonstationary precipitation intensity-duration-frequency 
curves for infrastructure design. ERDC/CHL CHETN-X-2. Vicksburg, MS: U.S. 
Army Engineer Research and Development Center. http://chl.erdc.usace.army. 
mil/chetn 
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