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FINAL REPORT
MULTILEVEL DECOMPOSITION METHODS

FOR FLUID PLASMA MODELS∗

S. MCCORMICK, K. BECKWITH, L. OLSON

1. Multilevel Decomposition. Multigrid methods are often well-suited for
large-scale scientific computing problems because they offer the possibility of solv-
ing equations at a cost that is optimal in the sense that is in small proportion to the
number of unknowns. However, the challenge for multigrid and other matrix equa-
tion solvers on large parallel machines is that performance can suffer from the high
cost of communication relative to that of computation. While Algebraic MultiGrid
(AMG [1, 2]) solvers scale nearly optimally, they too are increasingly affected by rel-
ative communication costs as the number of processors increase. Indeed, all known
parallel multigrid algorithms experience degrading communication costs for the main
computation in each V-Cycle. Previous geometric multilevel approaches developed by
[3, 4, 5, 6, 7, 8, 9, 10, 11] aimed to control this cost by trading communication for com-
putation using redundant processing on overlapping grids. Inspired by these efforts,
the Algebraic MultiGrid Domain (AMG-DD) and Range Decomposition (AMG-RD)
methods developed in this project achieve the same goal by tasking possibly other-
wise idle processors to perform redundant computations via a domain decomposition
approach. The basic idea is to use subdomains that fully overlap at coarse scales.
The departure from the previous geometric approaches is to exploit the benefits of
domain decomposition in a purely algebraic AMG setting.

AMG-DD and AMG-RD first assume that the setup for an effective AMG im-
plementation has been formed [1, 2]. The two methods then use the global AMG
hierarchical constructs (coarse grids, coarse-grid operators, and intergrid transfer op-
erators) to create a composite grid for each processor. Each composite grid consists of
the original grid in and about the subdomain owned by its associated processor and of
grids that are increasingly coarse as they extend away from the processor subdomain
to the boundary. These composite grids are formed algebraically and directly from
the hierarchical constructs determined in the traditional AMG setup phase. In this
way, AMG-DD and AMG-RD can be thought of as globally overlapping domain de-
composition methods that have reduced communication per cycle, since they do not
require communication on each grid level as standard AMG methods do. Moreover,
the new process provides an efficient communication phase between each cycle, in con-
trast to the expensive all-to-all communication processes of the previous geometric
approaches. The composite grids thus provide a means for maintaining effective com-
munication between processors that controls cost and maintains optimal convergence
rates.

The main focus of this effort was the development and study of AMG-DD and
AMG-RD as possible alternatives to existing AMG approaches for solving large-scale
matrix equations on advanced parallel machines, with fluid plasma models as an
ultimate target. To this end, some theoretical properties of these methods were es-
tablished and serial numerical tests of their convergence properties were analyzed over
a spectrum of parameters on a model problem. Also studied were some heuristics and
a parameter influences based on a performance model, both of which were designed
to anticipate the potential of AMG-DD and AMG-RD for use on emerging parallel
architectures.
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Since AMG-DD and AMG-RD are constructed on top of an existing AMG hi-
erarchy, the cost of the setup, as in all AMG algorithms, needs to be addressed. In
a purely serial setting, setup costs for AMG-DD and AMG-RD can be up to about
twice that of standard AMG due to the redundant calculation that we use. How-
ever, in parallel, owing to the construction of the algorithm from existing operators,
the increased setup cost can be reduced essentially to the cost of communicating the
components of the operators needed to each processor. This communication can be
done using the same pattern as the residual communication and, as such, is bounded
in cost by that of performing one extra V-Cycle.

The numerical test that were performed confirmed that, for current parallel ar-
chitectures, trading of communication for computation that AMG-DD achieves is
advantageous for current and anticipated architectures in a very large computational
environment. The results showed that these new methods can be especially effective
when used in a nested iteration process where the models are first resolved on crude
levels to provide good initial data for increasingly finer resolutions.

2. Adaptive AMG. A coupled system of elliptic partial differential equations
can be treated by iterating in a sequential or simultaneous way on the individual
scalar equations, provided the coupling is not too strong. This is the approach Chacón
[12, 13, 14] takes in the solver for his MHD simulations, and it provided the setting
for the project’s initial development and testing of the performance and scalability of
multilevel decomposition solvers. However, even with fairly weak coupling between
the individual equations, it would be more effective to apply the multigrid solvers to
the full system. The difficulty in treating a coupled system in this way is the need
to develop coarsening strategies that properly address the coupling, and this can be
especially challenging for the automatic coarsening strategies that form the basis for
algebraic multigrid and smoothed aggregation. To enable a full and potentially more
effective multigrid solver for the two-fluid system, the project therefore focused on
extending the adaptive version of SA (aSA). The central aim here was to develop an
efficient algebraic solver that could be applied to plasma fluid systems with algorith-
mically optimal performance in the sense that its cost is essentially proportional to
the size of the discrete system. Such an optimal adaptive solver could then be used
with the multilevel decomposition approaches to enable simulations at ultra-scales
that would otherwise be derailed by the growing solver costs.

The basic idea behind aSA is to aim for a coarsening strategy that guarantees the
so-called weak approximation property, which states that the coarse approximation to
a given fine-grid error in the Euclidean norm is smaller than some constant times the
energy norm of that error (with the constant assumed to be inversely proportional to
the norm of the matrix). This property guarantees certain convergence properties of
unsmoothed aggregation and, with subsequent smoothing of interpolation, it tends to
produce an optimally convergent SA. In any case, this aim is achieved by starting with
an error that is certain to be in need of a coarse-grid correction, which is accomplished
by simply applying the initial SA scheme to the homogeneous equation beginning
with a random initial guess. If slow convergence is observed, then the interpolation
operator is adjusted to improve its approximation to the resulting error. This process
is repeated until good convergence is achieved.

Initial tests with this new version of aSA have been very encouraging. With
just one or, in some cases, two adaptive cycles, convergence factors are achieved that
compare to model problem results. The tests suggest that aSA should provide a very
effective solver for systems, especially for coupled plasma models.

2
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3. Jacobian-Free Newton-Krylov Methods for Fluid Plasmas. Jacobian-
Free, Newton-Krylov (JFNK) methods are based on the Newton-Krylov methods,
which were first considered in the work of Brown and Saad [15, 16]. The early advances
involved the realization that inexact Newton methods were simpler and cheaper to
implement and exhibited similar convergence to exact Newton methods. Researchers
also explored preconditioning strategies, such as the Schwarz methods [17], within
the Newton-Krylov systems. A detailed history and thorough study of the Jacobian-
Free, Newton-Krylov methods is presented by Knoll and Keyes in [18]. The JFNK
methods have since been applied to a range of problems from power systems [19] to
MHD systems [12, 13, 14].

Here, the JFNK method is used to solve the nonlinear system of equations gen-
erated by a fully implicit temporal discretization of the constitutive equations, which
exhibit either a hyperbolic, parabolic or elliptic structure, depending of the plasma
regime. A nonlinear system F(x) = 0 must be solved for the new solution, x, at
each new time step. The solution of the nonlinear system follows Newton’s method
whereby the Jacobian system of the form

∂F

∂x

∣∣∣
k
δxk = −F(xk), (3.1)

where xk+1 = xk + δxk is the kth iteration.
The JFNK method employs an inner Krylov method as the linear solver for the

Jacobian system and an outer Newton’s method for the nonlinear problem. The key
to the approach is that the inner Krylov method requires only matrix-vector products
for the Jacobian (linear) system. This can be approximated with the approximate
Gateaux derivative as

∂F

∂x

∣∣∣
k
v ≈ F(xk + εv)− F(xk)

ε
. (3.2)

The error in this approximation is proportional to ε. The result of this approximation
is a matrix-free implementation of the matrix-vector multiply; however, the entire
method will not be matrix-free because a preconditioner is needed to have reasonable
convergence and, for wide applicability, the preconditioner will be built based in an
algebraic way on a matrix. In this project, we have utilized JFNK solvers developed
at Sandia National Laboratory as part of the Trilinos library [20], specifically the
Nonlinear Object-Orientated Solutions (NOX) framework [21, 22], which combines
the AztecOO iterative solvers package [23] with algebraic multigrid preconditioners
available within the MultiLevel package (ML, [24]). These solvers have been integrated
into the Tech-X USim tool for fluid-plasma-electromagnetic simulations, developed
with prior support from AFOSR under grants FA9550-12-C-0039 and FA9550-14-C-
0004 and the Department of Energy under grants DE-SC0000833, DE-SC0009585 and
DE-AR0000566. This approach has allowed us to rapidly prototype different physics-
based preconditioners to develop fully-implicit solvers for plasma physics problems.

3.1. Preconditioners for Moving Least Squares Problems. The algorithms
for solving fluid plasma equations in the USim code rely on moving least squares opera-
tors for interpolation of fluid quantities on the computational mesh [25]. As a first step
in developing preconditioners for fluid-plasma problems, we investigated constructing
preconditioners for a prototype Laplace problem based on this class of operators in
order to both verify that these operators are amenable to multigrid preconditioning
and to demonstrate the overall scalability of the NOX framework integrated into the

3
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Fig. 3.1: Scalability of ML preconditioned JFNK solver for a moving least squares
discretization of a Laplace operator. The left panel shows the number of inner Krylov
solves for the first and second outer Newton iteration; the right panel shows the
preconditioner setup time, the time taken for the first Newton iteration, the time
taken for the second Newton iteration and the total time to solution. Overall, the
approach shows good weak scalability.

USim tool. To introduce the preconditioned moving least squares algorithm, consider
two-dimensional data Qi on N points (xi, yi) with weights wi where i = 0, ..., N . The
Vandermonde matrix for this problem takes the form:

w01 w0x0 w0x0y0 w0x
2
0 w0y

2
0

w11 w1x1 w1x1y1 w1x
2
1 w1y

2
1

...
...

...
...

...
...

wN1 wNxN wNxNyN wNx
2
N wNy

2
N




a0
a1
...
aN

 =


q0
q1
...
qN

 (3.3)

This equation is of the form PA = Q, with solution A =
[
PTP

]−1
PTQ. Let B =[

PTP
]−1

PT , then at a point (x, y) we can write (using tensor notation):

q(x, y) = Bαβp
αQβ (3.4)

∂iq (x, y)

∂xi
= Bαβ

∂ipα

∂xi
Qβ (3.5)

p =
(
1, x, y, xy, x2, y2

)T
(3.6)

In two-dimensions, we can then construct a finite volume discretization of the Laplace
operator through:

∇2Q =
1

dxdy

∫
∂q (x, y)

∂x
· n̂d` =

1

dxdy

∫
Bαβ

∂ipα

∂xi
Qβ · n̂d` (3.7)

where n̂ is the outwards facing normal at each cell edge and d` is the length of the
edge. In three-dimensions, this operator becomes:

∇2Q =
1

dV

∫
∂q (x, y, z)

∂x
· n̂dA =

1

dV

∫
Bαβ

∂ipα

∂xi
Qβ · n̂dA (3.8)

The matrix used to precondition this operator is then constructed from:

Pk =
1

dV

∫
Bαβ

∂ipα

∂xi
· n̂dA (3.9)

4
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This is then applied within the Jacobian-Free Newton Krylov solver as a right pre-
conditioner:

∂F

∂x

∣∣∣
k
P−1k Pkδxk = −F(xk), (3.10)

We construct P−1k using Trilinos ML Uncoupled Smoothed Aggregation with 5
levels; Jacobi smoothing is utilized on the coarsest level and Gauss Seidel smoothing
on all others. The scalability of this approach for a simple three-dimensional lin-
ear Poisson-type problem (e.g. ∇2φ = ρ with ρ held constant) is shown in Figure
3.1. The data of these figures demonstrate that the implementation of the Trilinos
infrastructure within the USim tool exhibits good scalability for three-dimensional
problems.

3.2. Physics-Based Preconditioners for Adiabatic Magnetohydrodynam-
ics. For density, momentum, and temperature, the resistive MHD equations are given
by

∂ρ

∂t
+∇ · (ρv) = 0 (3.11)

∂(ρv)

∂t
+∇ · (ρvv + Ip+ Π) = J×B (3.12)

∂T

∂t
+ v · ∇T + (γ − 1)T∇ · v = 0. (3.13)

The evolution of the magnetic field is described by:

∂B

∂t
= −∇× v ×B; ∇×B = µ0J; ∇ ·B = 0 (3.14)

These equations can be cast in conservative form as ∂tU +∇ · F (U) = S(U), with:

U =


ρ
ρv
E
B

 ; F (U) =


ρv

ρvv +
(
p+ 1

2B ·B
)
I−BB(

E + p+ 1
2B ·B

)
v −B (B · v)

vB−Bv

 ; S(U) =


0
0
0
0


(3.15)

where E = P
γ−1 + ρv·v

2 + B·B
2 is the total energy of the fluid. The constraint, ∇·B = 0

requires special mention; physically accurate solution of eqn. 3.11 through 3.14 re-
quires that this constraint is enforced during the evolution. Approaches such as con-
strained transport [26] have been developed to enforce this constraint to machine pre-
cision; however, these methods typically do not extend to implicit time discretization
or high order schemes. Instead, we adopt Generalized Lagrange Multiplier schemes
due to [27], where the MHD system is augmented to include a scalar potential, ψ that
acts to advect divergence errors out of the grid at a speed ch (corresponding to the
fastest hyperbolic wave speed in the simulation domain) while simultaneously damp-
ing these errors to zero at a rate c2h/c

2
p (where c2p is a problem dependent constant)

[28]. With this augmentation, the MHD system becomes:

U =


ρ
ρv
E
B
ψ

 ; F (U) =


ρv

ρvvT +
(
p+ 1

2B ·B
)
I−BBT(

E + p+ 1
2B ·B

)
v −B (B · v)

vBT −BvT + ψ
c2hB

 S(U) =


0
0
0

− c
2
h

c2p
ψ


(3.16)

5
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Fig. 3.2: Convergence of a multidimensional circularly polarized Alven wave test due
to [29]. The left panel shows the current normal to the plane after one complete
traversal of the grid. The left panel shows the norm of the L2-error as a function
of grid resolution, including divergence errors for an explicit second order Runge-
Kutta discretization compared to the fully implicit scheme described here. Both
discretizations demonstrate second order convergence with comparable errors.

The addition of these terms leads to an augmented system that contains two addi-
tional modes, carrying jumps in the normal component of B and ψ. These waves are
decoupled into a linear hyperbolic system that can be solved analytically [28]:

∂tBx = −∂xψ; ∂tψ = −c2h∂xBx (3.17)

To solve ∂tU + ∇ · F (U) = S(U) using JFNK methods, we cast the system
equations as a non-linear functional, F(U) = ∂tU +∇ · F (U) − S(U). Adopting a θ
temporal discretization [12, 13, 14], we have:

F(Un+1) = Un+1 − Un + θ∆t
[
∇ · F

(
Un+1

)
− S

(
Un+1

)]
+ (1− θ) ∆t [∇ · F (Un)− S (Un)]

(3.18)

where θ = 0, 1 corresponds to forward/backward Euler respectively, whereas θ = 0.5
corresponds to Crank-Nicholson. To precondition this non-linear system, we linearize
the apprxomate Gateaux derivative (Eqn. 3.2) acting on the above equation, yielding:

∂F

∂x

∣∣∣
k
δUk ≈

{
1− θ∆t

[
∂F (U)

∂U
− ∂S (U)

∂U

]}
δUk (3.19)

We again apply this approximate Jacobian through right preconditioning (Eqn. 3.10),
requiring the computation of the inverse of Eqn. 3.19. In order to compute the inverse,

we note that ∂S(U)
∂U has a trivial answer for the system of equations (3.16). Determing

the form of ∂F (U)
∂U is more complex. USim makes use of finite volume discretizations

and discontinuous Galerkin discretizations as described in [25]. As implemented in
USim, both of these discretization methods make use of Riemann solvers to compute
self-similar solutions to the breakdown of a discontinuity. The finite volume scheme
(for example) then integrates this solution over a control volume to construct a second
(or higher) order accurate approximation to ∇ · F (U) though (e.g.):

∇ · F (U) =
1

dV

∫
F (UL, UR) · n̂dA (3.20)

F (UL, UR) =
1

2

[
F (UL) + F (UR) +

∣∣∣Ã∣∣∣ (UL − UR)
]

(3.21)
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Fig. 3.3: Evolution of a weakly magnetized field loop due to [32, 33]. This test verifies
that the divergence of the magnetic field remains zero on the computational stencil;
non-zero magnetic field divergence causes rapid growth of magnetic energy and the
destruction of the loop. The left panel shows the structure of the magnetic energy on
the computational domain after one crossing; the right panel shows the evolution of
the magnetic energy integrated over the simulation domain over one crossing period.
The data of these two panels demonstrate that the magnetic field loop remains well
defined and that the magnetic energy decays due to numerical diffusion, i.e. the
divergence of the magnetic field is zero on the computational stencil.

where we have adopted a Roe-type solver [30] to compute a self-similar upwind flux
from initial states at the left- (UL) and right- (UR) hand sides of the discontinuity.
The reconstruction of the initial data, U , located at control volume centers to form
UL and UR is performed by the moving least squares algorithm described in §3.1 and
coefficients for this data are included in the matrix for forming UL and UR. Finally,

the dissipation matrix,
∣∣∣Ã∣∣∣ is formed through

∣∣∣Ã∣∣∣ = L̃ |f(λ)| R̃, where L̃, R̃ are the

left and right eigenvectors of the system and we have applied an entropy fix to the

eigenvalues, λ to render the flux differentiable. To construct ∂F (UL,UR)
∂U , we follow the

approach described by [31]:

∂F (UL, UR)

∂UL
=

1

2

[
∂F (UL)

∂UL
+
∣∣∣Ã∣∣∣] ;

∂F (UL, UR)

∂UR
=

1

2

[
∂F (UR)

∂UR
−
∣∣∣Ã∣∣∣] (3.22)

The flux jacobians, ∂F (UL,UR)
∂UL

and ∂F (UL,UR)
∂UR

are constructed from the same eigensys-

tem (with the entropy fix applied) as the dissipation matrix,
∣∣∣Ã∣∣∣. The eigensystem

for the augmented MHD system (3.16) is well known (e.g. [29, 28]) and can be used
directly to construct the matrix associated with Eqn. 3.22.

To precondition the MHD system, we construct P−1k using Trilinos ML Uncoupled
Smoothed Aggregation with 5 levels; on each level, we use block ILU smoothing with
zero overlap and symmetric Gauss-Seidel relaxation on each level and choose the block
size to be equal to the number of partial differential equations in the system (here, this
is 9). In Fig. 3.2 we demonstrate that this our approach exhibits second order accuracy
for propagation of a non-linear circular polarized Alfven wave in multidimensions due
to [29]. To our knowledge, this is the first demonstration of a fully implicit algorithm
for magnetohydrodynamics with second-order accuracy. In Fig. 3.3 we utilize the field
loop advection test due to [32, 33] to demonstrate that that our algorithm preserves
the divergence of the magnetic field in multi-dimensions. In Figure 3.4 we demonstrate

7
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Fig. 3.4: Scalability of a range of different preconditioning strategies for JFNK based
solution of the compressible MHD equations used to compute the linear growth stage
of the magnetized Kelvin-Helmholtz instability as a function of problem size. The
simulation timestep chosen so that highest resolution requires 2 outer Newton iter-
ations. The left and right panel shows the scaling of the number of inner Krylov
iterations with problem size for the first and second outer Newton iterations respec-
tively. When combined with adaptive linear convergence criteria, the JFNK system
with second order preconditioning exhibits scalability approaching optimal.

the scalability of the approach for a range of different reconstruction algorithms and
non-linear convergence criteria for the MHD eigensystem given by [29]: by setting
the non-linear convergence criteria to ||F(xk)||2 < εa + εr||F(x0)||2 while at each

outer Newton iteration setting the Krylov solver convergence criteria to ||∂F∂x
∣∣∣
k

+

F(xk)||2 < ζk||F(x0)||2, we are able to obtain an algorithm that approaches optimal
for compressible MHD.

3.3. Physics-Based Preconditioners for the Adiabatic Two-Fluid Plasma
Equations. Having demonstrated the feasibility of our approach for preconditioning
the compressible MHD equations, we now extend this approach to electron-ion fluid
plasmas with full-wave electromagnetics. The evolution of the two species are de-
scribed by:

∂ρs
∂t

+∇ · (ρsvs) = 0 (3.23)

∂(ρsvs)

∂t
+∇ · (ρsvsvs + Ips + Πs)

= nsqsE + Js ×B−
∑
i6=s

ρsρiλs,i(vs − vi)
(3.24)

∂es
∂t

+∇ · ((es + ps)vs + vs · τs + qs)

= E · Js −
∑
i6=s

ρsρiλs,i(vs − vi)
(msvs −mivi)

(ms −mi)

(3.25)

where s = i, e denotes the ‘species’ (e.g. ions, electrons), ρs is the species density,
vs is the species velocity and es is the total energy for the species. These equations
are coupled through collision operators (e.g.

∑
i6=s ρsρiλs,i(vs−vi) in eqn. 3.24) and

8
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through the electromagnetic fields, described by Maxwell’s equations:

∂B

∂t
= −∇×E (3.26)

∂E

∂t
− c2∇×B = µ0J (3.27)

In order to make use of the physics-based preconditioner developed in §3.2, we
reformulate the two fluid plasma model in terms of the center-of-mass total density,
total momentum density, total charge density and total current density, defined as:

ρ =
∑
s

ρs; ρv =
∑
s

ρsvs

ρc =
∑
s

qsm
−1
s ρs; J =

∑
s

qsm
−1
s ρsvs

(3.28)

With these definitions, we are able to write the two fluid plasma equations in MHD-
like form:

U =


ρ
ρv
E
ρc
J

 ; F (U) =


ρv

ρvvT + pI
(E + p)v

J∑
s
qs
ms
∇ · (ρsvsvs + Ips)



S(U) =


0

ρcE + J×B
E · J

0∑
s
qs
ms

(
nsqsE + Js ×B−

∑
i6=s ρsρiλs,i(vs − vi)

)


(3.29)

where the evolution of the electromagnetic fields are described by Maxwell’s equations
(3.26,3.27).

The next step in reformulation of the two fluid equations to make the amenable
to preconditioning using the MHD eigensytem is to reformulate the source terms for
the total momentum and energy equations:

S(ρv) = ρcE + J×B; S(E) = E · J (3.30)

These can be rewritten in terms of conservation of electromagnetic momentum and
energy, using the standard identities (see, e.g., Jackson, 1975, [34]):

ρcE + J×B = − 1

c2
∂SEM
∂t

+∇ · T̃EM (3.31)

E · J = −∂EEM
∂t

−∇ · SEM (3.32)

where:

SEM =
E×B

µ0
(3.33)

EEM =
1

2µ0

(
E ·E
c2

+ B ·B
)

(3.34)

T̃EM =
1

µ0

(
EET

c2
+ BBT + EEM I

)
(3.35)
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where EEM is the energy density in the electromagnetic field, SEM is the Poynting
flux and T̃EM is the electromagnetic stress tensor. The remaining source term is
associated with the evolution of the total current:

S(J) =
∑
s

qs
ms

nsqsE + Js ×B−
∑
i6=s

ρsρiλs,i(vs − vi)

 (3.36)

This source term can be made amenable to preconditioning by writing in terms of ρ,
v and J:

S(J) =

(
qe
mi

)2

[(kρρ+ kρcρc) (E + ηJ) + (kρρv + kρcJ)×B]

kρ =

[(
me

mi

)2
qe
me
−
(
qe
qi

)2
qi
mi

] [
qe
me
− qi
mi

]−1
kρc =

[(
qe
qi

)2

−
(
me

mi

)2
] [

qe
me
− qi
mi

]−1
(3.37)

The MHD-like two fluid equations written in conservation law form are then:

U =


ρ

ρv + c−2SEM
E + EEM

ρc
J

 ; F (U) =


ρv

ρvvT + pI− T̃EM
(E + p)v + SEM

J∑
s
qs
ms
∇ · (ρsvsvs + Ips)



S(U) =


0
0
0
0(

qe
mi

)2
[(kρρ+ kρcρc) (E + ηJ) + (kρρv + kρcJ)×B]


(3.38)

Note that the conserved quantities now include contributions from the electromagnetic
field in both the energy and the momentum. We also remark that the contribution of
the electromagnetic field to the definition of the total momentum is suppressed by a
factor c2, while the coupling of the net charge to the electric field has been replaced by
contributions O(E2/c2). As such, the, the equations describing the evolution of total
mass, momentum and energy can therefore be preconditioned neglecting contributions
from the electric field as these can only be important when E ∼ O(c); in such a case
of a relativistically strong electric field, it is inappropriate to use the above set of
equations and instead, the equations of relativistic fluid dynamics should be considered
(e.g. [35]).

The equations of total charge and current conservation require a separate precon-
ditioning strategy. Here, we utilize the eigensystem for compressible hydrodynamics
(e.g. [29]) and write the preconditioner for this system as:

∂F

∂x

∣∣∣
k
δUk ≈

[
1− θ∆t

∑
s

qs
ms

∂F (Us)

∂Us

∂Us
∂U

+ θ∆t
∂S (U)

∂U

]
δUk (3.39)

U =

[
ρc
J

]
; Us =

[
ρs
ρsvs

]
; F (Us) =

[
ρsvs

ρsvsv
T
s + psI

]
(3.40)
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Fig. 3.5: Classic Brio-Wu shock tube in the MHD (left panel) and two-fluid (right
panel) regimes, both computed using the fully implicit two-fluid model in MHD-like
form. The data of these figures demonstrate the ability of the code to handle shocks
across a wide range of parameter regimes.

Fig. 3.6: Density, velocity and magnetic field distributions for the evolution of a ion-
electron shear instability using the fully implicit two-fluid model in MHD-like form.
In this calculation, the ions and electrons are unstable on different timescales, which
leads to generation of magnetic islands, demonstrating the ability of the scheme to
handle separate ion and electron dynamics.

where ∂Us/∂U can be determined through inspection of eqn. 3.28. In addition, since
this system of equations requires knowledge of both the ion and electron pressure
separately, we evolve an entropy conservation equation for the electron fluid to en-
able separation of the ion and electron pressure in the total energy equation. We
precondition Maxwell’s equations through the eigensystem due to [27], using a Gen-
eralized Lagrange Multiplier method described therein, with the addition of a a linear
hyperbolic system that can be solved directly for the electric field. As for the MHD
equations, we precondition the two-fluid system by constructing P−1k using Trilinos
ML Uncoupled Smoothed Aggregation with 5 levels; on each level, we use block ILU
smoothing with zero overlap and symmetric Gauss-Seidel relaxation on each level and
choose the block size to be equal to the number of partial differential equations in the
system (here, this is 18).
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This approach allows us to attack two-fluid plasma problems across a range of
regimes within a common solver framework. The data of Fig. 3.5 demonstrates classic
one-dimensional shock tubes in both the MHD and two-fluid regimes, where in each
case the shock is evolved on the MHD timescale, while the lightwave is many orders
of magnitude faster. Next, the data of Fig 3.6 demonstrate the application of this
approach to two-fluid shear instabilities where the ions and electrons are unstable on
different timescales, which leads to generation of magnetic islands. In both cases,
the system was evolved on the MHD timescale, e.g. signficantly above the timescales
associated with the propagation of electromagnetic waves in the fluid. Taken together,
these example problems demonstrate that the MHD-like formulation of the two fluid
plasma equations reduces spurious divergence errors in the electric field and can handle
separate ion and electron dynamics. Verification and validation work on the two-fluid
plasma model is ongoing under AFOSR Grant FA9550-14-C-0004 and will be reported
elsewhere [36].
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3.4. Physics-based Preconditioners for the Isothermal Two-Fluid Plasma
Equations. The evolution of a ion-electron isothermal plasma is described by con-
servation of mass and momentum (e.g. eliminating the energy equation from the
compressible system described above):

∂tnα +∇ · pα = 0 ,
mα∂tpα +mα∇ · Sα − qαnαE− qαpα ×B = 0 ,

(3.41)

where mα is the mass, qα is the charge, pα is the momentum density, nα is the number
density and Sα is the stress tensor, for species α = i, e. A simple isothermal closure

is supplied: (mα∇ · Sα)→ (Tα∇nα) +mα∇·
(

pαp
T
α

nα

)
, with Tα the temperature. The

fluid equations couple directly to Maxwell’s field equations,

∇ ·E = ρ
ε0
, (Gauss’ Law)

∇×E + ∂tB = 0, (Faraday’s Law)
∇ ·B = 0, (Solenoidal Constraint)

−µ0ε0∂tE +∇×B = µ0j, (Ampere’s Law)

(3.42)

where E is the electric field, B is the magnetic field, ε0 is the permitivity, µ0 is the
permeability, ρ is the charge density, and j is the current density. The charge density
and current density are related directly to the number density and momentum density
by ρ = qene+ qini and j = qepe+ qipi. The time derivatives are implicitly discretized
(∂t → 1

δt ), and all known explicit pieces are collected on the right-hand side. Coupling
(3.41) with (3.42) produces the first-order system

mi
δt Ti∇ 0 0 −qini −qipi×
∇· 1

δt 0 0 0 0
0 0 me

δt Te∇ −qene −qepe×
0 0 ∇· 1

δt 0 0
0 0 0 0 ∇× 1

δt
0 − qi

ε0
0 − qeε0 ∇· 0

−µ0qi 0 −µ0qe 0 −µ0ε0
δt ∇×

0 0 0 0 0 ∇·




pi
ni
pe
ne
E
B

 =



fpi
gni
fpe
gne
fE
0
fB
0


. (3.43)

3.4.1. Darwin Approximation. In non-relativistic kinetic simulations the speed
of light is spurious and leads to numerical instabilities. Overcoming these instabilities
can be accomplished by the injection of artificial dissipation, but only at the expense
of energy conservation [37]. These issues can be circumvented by taking the asymp-
totic limit, c → ∞, or, alternatively, ε0 → 0. Unfortunately, this rigorously holds
true only in the quasineutral approximation. When coupling to a non-relativistic ki-
netic simulation, this is insufficient; charge separation effects are required. For these
reasons, a Darwin model is used. The model is an approximation which decomposes
fields into their solenoidal and irrotational components in order to analytically project
out light waves while maintaining charge separation in Gauss’ law [38], [39]. Without
derivation, the Darwin model is (see [40], [39] for a detailed discussion):

∇×Er = 0, (Definition)
∇ ·Er = ρ

ε0
, (Gauss’ Law)

−µ0ε0∂tEr +∇×B = µ0j, Ampere’s law)
∇ ·B = 0, (Solenoidal Constraint)

∂tB +∇×Es = 0, (Faraday’s Law)
∇ ·Es = 0, (Definition)

(3.44)
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where Er is the irrotational electric field and Es is the solenoidal electric field defined
such that E = Er +Es. Note that, by definition, B is solenoidal. The main difference
from Maxwell’s equations (3.42) is that ∂tEs has been removed from Ampere’s law.

Coupling (3.44) with (3.41) yields the TFP-Darwin model:

mi
δt Ti∇ 0 0 −qini −qipi× −qini
∇· 1

δt 0 0 0 0 0
0 0 me

δt Te∇ −qene −qepe× −qene
0 0 ∇· 1

δt 0 0 0
0 0 0 0 ∇× 0 0
0 − qi

ε0
0 − qeε0 ∇· 0 0

−µ0qi 0 −µ0qe 0 − ε0µ0

δt ∇× 0
0 0 0 0 0 ∇· 0
0 0 0 0 0 1

δt ∇×
0 0 0 0 0 0 ∇·





pi
ni
pe
ne
Er
B
Es


=



fpi
gni
fpe
gne
0
gEr
gB
0
fEs
0


, (3.45)

subject to pure conductive boundary conditions,

~n · ∇nα = 0 ,
pα = 0 ,

~n× (Er + Es) = 0 ,
~n ·B = 0 ,

(3.46)

where ~n denotes the outward boundary normal. To make the system (3.45) well
posed, the following, stronger boundary conditions are imposed. The additive con-
straint is decomposed into separate constraints for both the irrotational and solenoidal
components of the electric field,

~n×Er = 0 ,
~n×Es = 0 .

(3.47)

3.4.2. FOSLS-TFP-Darwin. In this section, each block of the TFP-Darwin
system is addressed. The block is scaled to ensure optimal algebraic multigrid (AMG)
performance on that block. In the case of the fluid blocks, the system is modified to
allow H1 ellipticity of that block. Then, the nonlinearities on the full TFP-Darwin
model are addressed.

As presented in (3.45), the TFP system does not naturally admit fullH1-ellipticity.
It can be shown that the system (3.45) is V0-elliptic with pα ∈ H (div), nα ∈ H1, and

Er,B,Es ∈
(
H1
)3

. That is,

V0 = H (Div)⊗H1 ⊗H (Div)⊗H1 ⊗
(
H1
)3 ⊗ (H1

)3 ⊗ (H1
)3
.

Posed in this space, momentum densities are not in H1. Special care is required to
ensure multigrid algorithms yield optimal results. One approach is to use H (Div)-
conforming finite elements, for example Raviar-Thomas elements, for the momentum
densities and use a special multigrid algorithm that employs distributed relaxation
based on the support of the divergence-free basis elements [41, 42]. Instead, (3.45)
is directly modified by introducing an additional constraint that yields an H1-elliptic
system. The assumption that pα ∈ H1 is reasonable for most plasma systems of
interest.
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To accomplish this, denote the differential matrix system in (3.45) by L(u) = f
and define the block differential matrix systems as

L(u) =

 Ai 0 0
0 Ae 0
Li Le D

 ui
ue
u
D

+

 UiUe
0

 , (3.48)

where the first term is linear and Ui and Ue contain the quadratic terms that appear
in the upper right-hand blocks in (3.45).

Below, each block is examined. First, the Darwin block, D, is scaled and shown
to be H1 elliptic. Then, the fluid blocks, Ai and Ae, are modified, scaled and shown
to H1 elliptic. Finally, the Fréchet derivative of the entire system is addressed. In
Section 3.4.6 the linearized system is shown to be uniformly H1 elliptic.

3.4.3. Darwin Block. The Darwin block, D, is naturally H1-elliptic, but con-
tains scalings that are dependent upon physical constants. The isolated (uncoupled)
Darwin system is 

∇× 0 0
∇· 0 0
− ε0µ0

δt ∇× 0
0 ∇· 0
0 1

δt ∇×
0 0 ∇·


 Er

B
Es

 =


0
gEr
gB
0
fEs
0

 . (3.49)

The formal normal of D is,

D∗D =

 ε20µ
2
0

δt −∆ − ε0µ0

δt ∇× 0
− ε0µ0

δt ∇×
1
δt2 −∆ 1

δt∇×
0 1

δt∇× −∆

 (3.50)

Introducing a left block scaling of diag
[
I, I, δt

ε0µ0
I, δt

ε0µ0
I, δt

2

ε0µ0
I, δt

2

ε0µ0
I
]

and a right

scaling of diag
[
I, ε0µ0

δt I,
ε0µ0

δt2 I
]

fully eliminates all physical constants from D. These
modifications generate the new system

∇× 0 0
∇· 0 0
−1 ∇× 0
0 ∇· 0
0 1 ∇×
0 0 ∇·


 Er

B̂

Ês

 =



0
gEr
f̂B
0

f̂Es
0

 , (3.51)

where the transformed unknowns are defined as: B̂ = δt
ε0µ0

B, and Ês = δt2

ε0µ0
Es.

The right-hand side terms are transformed in a similar way. Identify the transformed
Darwin block as D̂. With standard boundary conditions, it is straightforward to prove
that this system is H1 elliptic.

To see this, consider the formal normal of D̂,

D̂∗D̂ =

 I −∆ −∇× 0
−∇× I −∆ ∇×

0 ∇× −∆

 . (3.52)
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Lev. ρ(D) ρ(D̂)

1 0.56 0.048
2 0.60 0.044
3 0.54 0.052
4 0.50 0.049
5 0.53 0.050
6 0.53 0.077

Table 3.1: AMG convergence factors for both the original Darwin system (3.49) with
a time step of δt = 2π

ωp,e
and the scaled Darwin system (3.51) using quadratic finite

elements. Level 1 is a 4× 4 quadrilateral mesh and is refined uniformly 6 times using
NI.

This system is differentially diagonally dominant, plus the diagonal blocks dominate
the off diagonal blocks.

To demonstrate how algebraic multigrid (AMG) applied to this subsystem will
behave, let ρ(Q) denote the asymptotic convergence factor of AMG applied to a
discrete form of the operator Q. The value of ρ(Q) is computed by allowing AMG
V-cycles, on each level of refinement to continue until a stable factor is reached. The
asymptotic AMG convergence factors for both D and D̂, discretized using FOSLS, are
seen in Table 3.1, where a time step of δt = 2π

ωp,e
was used in the unscaled block. The

scaled Darwin block performs significantly better than the unscaled Darwin block.

3.4.4. Fluid Blocks. The fluid blocks, Aα, are not naturally H1-elliptic. The
root cause of this is due to the fact that there is no curl term associated with the
momentum densities, pα. The isolated fluid block is[

mα
δt Tα∇
∇· 1

δt

] [
pα
nα

]
=

[
fpα
gnα

]
. (3.53)

This system is modified by introducing the Curl of conservation of momentum as an
additional equation, mα

δt Tα∇
mα
δt ∇× 0
∇· 1

δt

[ pα
nα

]
=

 fpα
∇× fpα
gnα

 . (3.54)

Denote the differential matrix above by Cα. The modified system, Cα, can easily be
shown to be fully H1-elliptic with appropriate boundary conditions. The additional
Curl constraint forces the momentum density to be in the smoother space, H1. This
is a reasonable requirement to enforce on momentum density. The formal normal of
Cα is

C∗C =

[
m2
α

δt2 (I −∆) +
(
m2
α

δt2 − 1
)
∇∇·

(
mαTα
δt − 1

δt

)
∇

−
(
mαTα
δt − 1

δt

)
∇· 1

δt2 − T
2
α∆

]
. (3.55)

Notice that the upper left block may become dominated by the −∇∇· term, de-
pending on the size of the physical parameters. Introducing a left block scaling of

diag
[
I, δt

√
Tα
mα

I,
√
mαTαI

]
and a right block scaling of diag

[
1√

mαTα
I, 1

Tα
I
]

yields
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Lev. ρ(Ci) ρ(Ĉi) ρ(Ce) ρ(Ĉe)
1 0.47 0.054 0.87 0.11
2 0.73 0.084 0.97 0.13
3 0.76 0.12 0.99 0.14
4 0.81 0.13 0.99 0.16
5 0.87 0.15 - 0.16
6 0.90 0.14 - 0.17

Table 3.2: AMG convergence factors for both the original fluid system (3.54) and
the scaled fluid system (3.56) using quadratic finite elements. Level 1 is a 4 × 4
quadrilateral mesh refined uniformly 6 times using NI.

the system 
√
mα

δt
√
Tα

∇
∇× 0

∇·
√
mα

δt
√
Tα

[ p̂α
n̂α

]
=

 f̂pα
∇× f̂pα
gnα

 , (3.56)

where p̂α =
√
mαTαpα and n̂α = Tαnα. The right-hand side terms are transformed

in a similar way. Define the differential matrix in (3.56) as Ĉα. The formal normal is

Ĉ∗αĈα =

[ mi
Tiδt2

−∆ 0

0 mi
Tiδt2

−∆

]
. (3.57)

The off diagonal blocks in the formal normal have been completely eliminated, pro-
ducing an H1-elliptic block diagonal system. That is, multigrid cycles will be optimal
for (3.56) when discretized using FOSLS.

The asymptotic AMG convergence factors for Ci, Ĉi, Ce, and Ĉe are displayed in
Table 3.2. A time step of δt = 2π

ωp,e
was used. Both the scaled ion and electron fluid

blocks show significant improvement over their unscaled counterparts. The unscaled
electron fluid block benefits the most from scaling due to the stiffness of the electron
mass. The original fluid blocks, Aα, are not H1 elliptic and standard AMG performs
poorly on their discrete systems.

3.4.5. Full TFP System. Following the scalings and modifications outlined in
Section 3.4.3 and Section 3.4.4 through the entire system, (3.45) yields

L̃(û) =

 Ĉi 0 0

0 Ĉe 0

L̂i L̂e D̂

 ûi
ûe
û
D

+

 ÛiÛe
0

 , (3.58)

where Ĉα and D̂ are defined previously. The scaled off diagonal blocks are

L̂α =



0 0
0 − qα

ε0Tα

− qαδt
ε0
√
mαTα

0

0 0
0 0
0 0

 (3.59)
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and

Ûα =

 −qαn̂αÊr − qαε0µ0

δt p̂α × B̂− qαε0µ0

δt2 n̂αÊs

− δtqα
√
Tα√

mα
(∇n̂α)× Êr − qαε0µ0

√
Tα√

mα
∇× (p̂α × B̂)− qαε0µ0

√
Tα

δt
√
mα

∇× (n̂αÊs)

 ,
(3.60)

for α = i, e. The unknowns and right-hand-side functions are also scaled appropriately
as outlined in previous sections.

The Fréchet derivative used in the Newton step becomes

L̃′(û)[δ] =

 Ĉi 0 0

0 Ĉe 0

L̂i L̂e D̂

 δi
δe
δ
D

+

 Û ′ii 0 Û ′iD
0 Û ′ee Û ′eD
0 0 0

 δi
δe
δ
D

 , (3.61)

where

Û ′αα =


qαε0µ0

δt B̂× −qαÊr − qαε0µ0

δt2 Ês

qαε0µ0

√
Tα√

mα
∇× (B̂× δtqα

√
Tα√

mα
Êr × (∇ − qαε0µ0

√
Tα

δt
√
mα

∇× (Ês

0 0

 ,

Û ′αD =

 −qαn̂α − qαε0µ0

δt (p̂α × − qαε0µ0

δt2 n̂α

− δtqα
√
Tα√

mα
(∇n̂α × − qαε0µ0

√
Tα√

mα
∇× (p̂α × − qαε0µ0

√
Tα

δt
√
mα

∇× (n̂α

 ,
for α = i, e, and open parentheses indicate an operation to be taken first.

A final scaling is performed on this system in order to balance the magnitude of
the upper and lower off-diagonal blocks without altering the modifications made to
the block diagonals 1. This reduces the size of the off-diagonal terms in the formal
normal. Let

α = max

(
1,
ε0µ0

δt
,
ε0µ0

δt2
, δt

√
Ti
mi

, ε0µ0

√
Ti
mi

,
ε0µ0

δt

√
Ti
mi

, δt

√
Te
me

, ε0µ0

√
Te
me

,
ε0µ0

δt

√
Te
me

)
and

β = max

(
δt

ε0
√
mi, Ti

,
1

ε0Ti
,

δt

ε0
√
me, Te

,
1

ε0Te

)
.

The final system involves the block scaling

L̂′(û)[δ̂] =


1√
α
I 0 0

0 1√
α
I 0

0 0 1√
β
I


 Ĉi + Û ′ii 0 Û ′iD

0 Ĉe + Û ′ee Û ′eD
L̂i L̂e D̂

 √αI 0 0
0

√
αI 0

0 0
√
βI

 δ̂i
δ̂e
δ̂
D



=

 Ĉi + Û ′ii 0 Ũ ′iD
0 Ĉe + Û ′ee Ũ ′eD
L̃i L̃e D̂

 δ̂i
δ̂e
δ̂
D

 .
1It is assumed that the system was previously nondimensionalized and that all constants represent

unitless quantities.

18

DISTRIBUTION A: Distribution approved for public release



3.4.6. Uniform H1 Ellipticity. An important property of the operator L̂′(û)
is that it be uniformly coercive and continuous in a convenient norm for all û in
some neighborhood of the exact solution, û∗. This guarantees the existence of each
Newton step once the approximation is sufficiently accurate. Below it is shown that,
under mild hypotheses, L̂′(u) is uniformly H1-elliptic in a neighborhood of the exact
solution. Toward that end, define the open ball,

Br(û∗) = {û ∈ V : ‖û− û∗‖H1 < r}. (3.62)

It was shown in Section 3.4.4 that Ĉi and Ĉe are coercive and continuous in H1. Here,
a further assumption is made on the H1 ellipticity of the block diagonals, Ĉi+ Û ′ii and

Ĉe + Û ′ee.
Theorem 3.1. Let Ω be a convex domain with piecewise C1,1 boundary. Assume

that there exist r > 0 and positive constants, cα(r) and Cα(r), such that, for every

û ∈ Br(û∗) and for every δ̂α ∈ (H1)4,

cα(r)‖δ̂α‖H1 ≤ ‖(Ĉα + Û ′αα(û))δ̂α‖ ≤ Cα(r)‖δ̂α‖H1 , (3.63)

for α = i, e. Further, assume that L̂′(û) is injective for every û ∈ Br(û∗). Then,
there exist positive constants, c(r) and C(r), such that, for every û ∈ Br(û∗) and for

every δ̂ ∈ (H1)17,

c(r)‖δ̂‖H1 ≤ ‖L̂′(û)[δ̂]‖ ≤ C(r)‖δ̂‖H1 . (3.64)

Proof. The upper bound in (3.64) is easily obtained and, for the sake of brevity,

the proof of the lower bound is only outlined. The ellipticity of D̂ was established
in 3.4.3, with some constants, say c

D
, C

D
> 0. Let û ∈ Br(u∗). By assumption

(3.63), the operator with only the block diagonals is H1 elliptic with constants c
B

=
min[cα(r), c

D
], C

B
= max[Cα, CD ].

It is clear that the upper blocks satisfy

‖ŨαD δ̂D‖ ≤ CαD‖δ̂D‖H1 ≤ CαD/cD‖D̂δ̂D‖, (3.65)

for some constants CαD (û) > 0, for α = i, e. Now, consider the system with the
strictly lower-triangular blocks removed. It is straight forward to establish∥∥∥∥∥∥
 Ĉi + Û ′ii 0 0

0 Ĉe + Û ′ee 0

0 0 D̂

 δ̂i
δ̂e
δ̂
D

∥∥∥∥∥∥ ≤ η
∥∥∥∥∥∥
 Ĉi + Û ′ii 0 Ũ ′iD

0 Ĉe + Û ′ee Ũ ′eD
0 0 D̂

 δ̂i
δ̂e
δ̂
D

∥∥∥∥∥∥ ,
with η = (1 + max[CαD ]/c

D
). This establishes the lower bound for the upper block

triangular part of the system. The proof is completed by noting that L̃α contain only
zeroth order terms and by applying a standard compactness argument.

Remark 3.1. It should be clearly asserted that the assumption on the H1-
ellipticity of (Ĉα + Û ′αα(û)) has not yet been rigorously validated. The numerical tests
in Section 3.4.7 provide a strong indication that the above assumption is plausible. A
more thorough examination of ellipticity is currently being explored by the authors.

Full H1-ellipticity implies that standard, H1-conforming, finite element spaces
can be used and standard convergence bounds apply. In the linear case, enhanced L2

convergence is also ensured [43]. That is, the L2-norm of the error will converge one
order faster than the functional norm of the error. This is observed in the numerical
tests below.
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3.4.7. Numerical Tests. In this section the performance results of the FOSLS-
TFP model, solved with NI, are presented. No time stepping algorithm is imple-
mented. Instead, focus is given to the system generated for a fixed time step by
manufacturing solutions and analyzing the AMG solver performance and FOSLS con-
vergence properties. Two different problems are analyzed. In the first, a simple
smooth solution is constructed from sines and cosines. In the second, a solution is
manufactured with a sharp gradient in the z-component of momentum density and a
large circulation in the x and y components of the magnetic field. Large features in
the fluid variables produce substantial nonlinearities in off diagonal components, as
appear in (3.60). It is noted that neither of these manufactured solutions are physical,
but instead, are used to demonstrate how the nonlinear solver, nested-iteration, and
AMG perform.

The problems are solved on the computational domain Ω = [0, 1] × [0, 1]. The
system is nondimensionalized against ion mass, mi, fundamental charge, e, Debye
length multiples, `λD, ion number density, n0,i, and the electron thermal velocity, vth,e
(Note: ` specifies the number of Debye lengths the computational domain represents).
For each simulation, the ratios me

mi
,
vth,i
vth,e

,
vth,e
c , and ` must be specified. Unless

otherwise denoted, take me
mi

= 5.44 × 10−4,
vth,i
vth,e

= 10−2,
vth,e
c = 10−2, and ` = 100.

In all tests a time step of δt = 10 2π
ωp,e

is used.

The coarsest problem, Level 0, is a 4 × 4 mesh discretized with bilinear finite
elements. A random initial guess is made and Newton-FOSLS is performed until a
desired tolerance is reached. As will be demonstrated, the work performed on Level 0
is negligible. Using p-refinement, the initial guess for Level 1 is constructed from the
approximate solution on Level 0, and standard NI-Newton-FOSLS is continued until
the finest level is reached.

3.4.8. Baseline Test. In this test a simple smooth solution is constructed from
sines and cosines. The number densities are taken to be small perturbations away from
1 and most of the momentum and field quantities are taken to be small perturbations
away from 0. The exception is the quantities pi,z, pe,z, Bx, and By, which are O(1).
Prescribe the exact solution to be:

pi,x,y = 1
10 sin (πx) sin (πy) ,

pi,z = sin (πx) sin (πy) ,
ni = 1 + 1

10 cos (2πx) cos (2πy) ,
pe,x,y = − 1

10 sin (πx) sin (πy) ,
pe,z = − sin (πx) sin (πy) ,
ne = 1 + 1

10 cos (2πx) cos (2πy) ,
Er,x = 1

10 cos (2πx) sin (πy) ,
Er,y = 1

10 sin (πx) cos (2πy) ,
Er,z = 1

10 sin (πx) sin (πy) ,
Bx = sin (πx) cos (2πy) ,
By = cos (2πx) sin (πy) ,
Bz = 1

10 cos (2πx) cos (2πy) ,
Es,x = 1

10 cos (2πx) sin (πy) ,
Es,y = 1

10 sin (πx) cos (2πy) ,
Es,z = 1

10 sin (πx) sin (πy) .

(3.66)

The asymptotic AMG convergence factors, ρ, for each level are seen in Table 3.3. The
factors are computed by setting the AMG solver tolerance to 10−6, effectively allowing
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Lev. ρ1(L) ρ2(L)

1 0.51 0.57
2 0.57 0.62
3 0.49 0.48
4 0.49 0.52
5 0.53 0.59
6 0.59 —

Table 3.3: Problem (3.66): Asymptotic AMG convergence factors for the final scaled
nonlinear TFP-Darwin system. A relative AMG Solver tolerance of 10−6 was used.
Level 1 is a 4×4 quadrilateral meshed discretized with quadratic elements. ρi denotes
the factor produced for Newton iteration i.

AMG V-cycles to continue until a stable convergence factor is reached. This is done
independently from the NI-Newton-FOSLS computations. Several Newton iterations
are performed on each level, each with it’s own asymptotic factor. Denote ρi as the
asymptotic convergence for each Newton iteration i. The factors hold between 0.50 -
0.60. A substantial quantity of Newton iterations are performed on Level 0, and thus,
not included in the table. Averaging over all V-cycles for every Newton iteration on
Level 0 gives an average asymptotic convergence factor of 0.35.

The normalized nonlinear FOSLS functional values, ||L(u)− f ||0, are seen in Fig.
3.7, where u0 represents the value before Newton-FOSLS has been performed and uf
represents the value after convergence is achieved. The values are normalized such
that the initial FOSLS functional on Level 1 has a value of 1. Initially, the functional is
decreasing at a rate of nearly O(h3), but as refinement continues it begins to approach
O(h2). The L2-error of the solution after each Newton-FOSLS process is plotted in
Fig. 3.8. The values are normalized such that the the initial L2-error on Level 1 has
a value of 1. The error is decreasing at a rate of O(h3). The rate of L2-convergence is
one order higher than that of the FOSLS functional, as expected, using the well-known
Aubin-Nitsche duality argument [43].

The benefit of NI is well demonstrated in Table. 3.4. Define a Work Unit (WU)
to be the cost of one matrix-vector multiplication on the finest level. It takes a total
of 20.64 WU in order to bring the solution through the coarse grids and solve the
nonlinear problem on Level 6. The 8 Newton iterations performed on Level 0 amounts
to only 0.05% of the total work. Notice that the number of Newton iterations required
on each successive level decreases such that by the time the finest grid is reached only
1 Newton iteration, using 3 AMG V-cycles, is required. In this test, the components of
the solution are smooth and, in turn, keep the off diagonal couplings small. Another
test problem is used to demonstrate how the Newton-FOSLS-NI approach performs
on problems with sharper features (ie. steep gradients).

3.4.9. Sharp Current Density Test. In this test all components of the solu-
tion remain the same as in problem (3.66) except for pi,z, pe,z, Bx, and By. For these
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Fig. 3.7: Problem (3.66): The initial and final nonlinear FOSLS functionals through
6 levels of NI with uniform refinement. The tolerance of the AMG Solver is 10−1

and the tolerance of the Newton iteration is 10−2. The value of h is defined as 1√
Ne

,

where Ne is the number of elements. The values are normalized such that the initial,
nonlinear FOSLS functional on Level 1 has a value of 1.

Lev. Newton Iters. Tot. V-Cycles NNZ WU

0 8 39 4.3× 104 0.01
1 3 11 2.8× 105 0.02
2 3 13 1.1× 106 0.13
3 3 12 4.3× 106 0.61
4 3 13 1.7× 107 2.72
5 2 9 6.8× 107 7.83
6 1 3 2.7× 108 9.31

total — — — 20.64

Table 3.4: Problem (3.66): The number of Newton Iterations (Newton Iters.), Total
number of AMG V-cycles (Tot. V-Cycles), number of nonzeros in the linear operator
(NNZ), and Work Units (WU), on each level of the NI process. A WU is defined as
the cost of one matrix-vector multiplication on the finest level. The tolerance of the
a AMG Solver is 10−1 and the tolerance of the Newton iteration is 10−2.

unknowns define:

pi,z = sin(πx) sin(πy) exp
(
− (x−0.5)2

2σ2

)
exp

(
− (y−0.5)2

2σ2

)
,

pe,z = − sin(πx) sin(πy) exp
(
− (x−0.5)2

2σ2

)
exp

(
− (y−0.5)2

2σ2

)
,

Bx = −(y − 0.5) sin(πx) exp
(
− (x−0.5)2

2σ2

)
exp

(
− (y−0.5)2

2σ2

)
,

By = (x− 0.5) sin(πy) exp
(
− (x−0.5)2

2σ2

)
exp

(
− (y−0.5)2

2σ2

)
,

(3.67)
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Fig. 3.8: Problem (3.66): The final L2-error on each level, through 6 levels of NI with
uniform refinement. The tolerance of the AMG Solver is 10−1 and the tolerance of
the Newton iteration is 10−2. The solutions are normalized such that the error on the
Level 1 is 1. Here û represents the interpolant of the exact solution. The value of h
is defined as 1√

Ne
, where Ne is the number of elements.

Lev. ρ1(L) ρ2(L)

1 0.54 0.55
2 0.59 .60
3 0.45 —
4 0.47 —
5 0.55 —
6 0.54 —

Table 3.5: Problem (3.67): Asymptotic AMG convergence factors for the final scaled
nonlinear TFP-Darwin system. A relative AMG Solver tolerance of 10−6 was used.
Level 1 is a 4×4 quadrilateral meshed discretized with quadratic elements. ρi denotes
the factor produced for Newton iteration i.

with a value of σ = 0.02. The solution contains a current density (jz = qipi,z +qepe,z)
in the z-direction with a steep gradient and a corresponding strong circulation in the
(x, y)-components of magnetic field. A sketch of these components are visualized in
Fig. 3.9.

The asymptotic convergence factors are found in Table 3.5. The factors remain
mostly unchanged from problem (3.67), living in the range of 0.5 - 0.6. Level 0 is not
included in Table 3.5 because a large number of Newton iterations were performed.
The average AMG convergence factor over all V-cycles on Level 0 is 0.45. A slightly
tighter relative tolerance of 10−2 was required for the AMG solver in order to keep
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Fig. 3.9: Problem (3.67): A sketch of the z-component of current density and (x, y)-
components of magnetic field.

the number of Newton iterations low on the finest mesh. The normalized nonlinear
FOSLS functional values, ||L(u)− f ||0, are seen in Fig. 3.10, with u0 and uf defined
previously. For the coarser grids, the FOSLS functional convergence is poor. This is
likely due to the fact that the features present in the current density and magnetic
fields are smaller than the resolution of the grid. After 3 levels of h-refinement (1024
elements) the functional approaches the desired O(h2) behavior. The L2-error is seen
in Fig. 3.11. In a similar way to the nonlinear FOSLS functional, the L2-error does
not begin to achieve the desired O(h3) convergence until 4 levels of h-refinement are
performed. Further refinement would reveal a more conclusive O(h3) convergence
trend. A summary of the required WUs can be found in Table 3.6. Again, more
nonlinear iterations are performed on the coarse grids where V-cycles and Newton
linearization are cheap. By the time that the finest level is reached, only 2 Newton
iterations and a total of 9 AMG V-cycles were required.
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Fig. 3.10: Problem (3.67): The initial and final nonlinear FOSLS functionals through
6 levels of NI with uniform refinement. The tolerance of the a AMG Solver is 10−2

and the tolerance of the Newton iteration is 10−2. The value of h is defined as 1√
Ne

,

where Ne is the number of elements. The values are normalized such that the initial
nonlinear FOSLS functional on Level 1 has a value of 1.

Lev. Newton Iters. Tot. V-Cycles NNZ WU

0 7 34 4.3× 104 0.01
1 3 11 2.8× 105 0.02
2 4 17 1.1× 106 0.17
3 1 3 4.3× 106 0.13
4 2 7 1.7× 107 1.38
5 1 3 6.8× 107 2.21
6 2 9 2.7× 108 31.33

total — — — 35.27

Table 3.6: Problem (3.67): The number of Newton Iterations (Newton Iters.), Total
number of AMG V-cycles (Tot. V-Cycles), number of nonzeros in the linear operator
(NNZ), and Work Units (WU), on each level of the NI process. A WU is defined as
the cost of a matrix-vector multiplication on the finest level. The tolerance of the a
AMG Solver is 10−2 and the tolerance of the Newton iteration is 10−2.
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Fig. 3.11: Problem (3.67): The final L2-error on each level through 6 levels of NI with
uniform refinement. The tolerance of the a AMG Solver is 10−2 and the tolerance of
the Newton iteration is 10−2. The solutions are normalized such that the error on
the Level 0 is 1. Here û represents the interpolant of the exact solution. The value of
h is defined as 1√

Ne
, where Ne is the number of elements.
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4. Space-Time Parallelization. The need for parallelism in time is being
driven by changes in computer architectures, where future speed-ups will be avail-
able through greater concurrency, not faster clock speeds. This leads to a bottleneck
for sequential time marching schemes because they lack parallelism in the time di-
mension. Multigrid Reduction in Time (MGRIT [44, 45]) is an iterative procedure
that allows for temporal parallelism by utilizing multigrid reduction techniques and a
multilevel hierarchy of coarse time grids. The goal of this work is the efficient solution
of nonlinear problems with MGRIT, where efficiency is defined as achieving similar
performance when compared to an equivalent linear problem. When solving a linear
problem using implicit methods and optimal spatial solvers (e.g. classical multigrid),
the spatial multigrid convergence rate is fixed across temporal levels, despite a large
variation in time step sizes. This is not the case for nonlinear problems, where the
work required increases dramatically on coarser time grids. By using a variety of
strategies, most importantly, spatial coarsening and an alternate initial guess for the
nonlinear solver, it is possible to reduce the work per time step evaluation over all
temporal levels to a range similar to those of a corresponding linear problem. This al-
lows for overall speedups comparable with those achieved, in previous work, for linear
systems.

Previously, ever increasing clock speeds allowed for the speedup of sequential time
integration simulations of a fixed size, and for stable wall clock times for simulations
that were refined in space (and usually time). However, clock speeds are now almost
stagnant, leading to the sequential time integration bottleneck. By allowing for par-
allelism in time, much greater computational resources can be brought to bear, and
overall speedups can be achieved. Because of this, interest in parallel-in-time methods
has grown over the last decade.

Work on parallel-in-time methods actually goes back at least 50 years (c.f. [46]
and the review in [47]), but most of the historical efforts were limited to single- or two-
level approaches. This project’s focus was on MGRIT, a true multilevel algorithm with
optimal scaling in terms of both parallel communication and number of operations.
Note that Parareal [48], perhaps the most well known parallel-in-time method, is
equivalent [49] to a two-level multigrid scheme.

Sequential time marching schemes are optimal in that they move from the initial
time to the final time with minimal computational cost. By applying time stepping on
various levels as MGRIT does, some computational cost is traded for efficient temporal
concurrency. This efficiency was demonstrated in a strong scaling study of MGRIT
for linear diffusion on a (257)2 × 16385 space-time grid. The space-time parallel runs
used an 8 × 8 processor grid in space, with all additional processors being added in
time. MGRIT showed substantially better performance that sequential time stepping
when there were more than just a thousand total cores. These strong scaling also
showed significantly increased benefits of MGRIT of up to a factor of ten speedup over
sequential time stepping in important practical parameter regimes. Moreover, weak
scaling results proved MGRIT to be scalable for nonlinear problems, with iteration
counts bounded independently of problem size.

5. Fault Resilience. As the complexity of high performance computing (HPC)
systems continues to progress, constraints on system design force the handling of errors
to higher levels in the software stack. Checkpoint restart is the predominate way to
recover from fail-stop errors (errors that cause unexpected application termination
such as power outage, node reboot, and software crash). Current approaches exploit
the complex memory hierarchies of HPC systems and are application tailored for
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optimal performance. HPC faces a potentially more harmful class of errors through so-
called bit-flips that are caused by a number of external affects such as energetic particle
strikes. These are regarded as particularly harmful as they are unexpected by the
application and may have silent, unknown impact on the simulation results. This silent
data corruption (SDC) can be masked, requiring extra time for a correct simulation,
yielding invalid results, or causing application failure. Due to the costly side effects,
applications are employing lightweight SDC detectors to verify the correctness of a
simulation. For example, Figure 5.1 shows different bits corrupted in the residual
calculation of a multigrid cycle, leading to a range of results, from very little impact,
to a significant increase in the time-to-solution. ‘
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Fig. 5.1: Residual history for different, corrupted bits.

Emerging and next generation architectures are expected to introduce unprece-
dented levels of faults, requiring new approaches to fault resilience and algorithm
development. One difficult aspect in preparing algorithms and application codes for
environments with increased levels of SDC is testing. To facilitate better analysis of
high-performance scientific libraries, a fault injection and analysis tool called FlipIt

was created [50]. FlipIt uses LLVM to expose intermediate IR code. This IR code
is used to create faults in the program logic, thus allowing for general fault models.
An example is shown in Figure 5.2 where arithmetic is corrupted through through
the transformed code. Indeed, in contrast to previous research that focused on faults
arising in heavily protected system memory, this package simulates corruption from
processor flow, including pointer, arithmetic, and control logic.

The FlipIt fault injection framework led to the analysis of several computing
kernels, including the sparse matrix-vector product [51]. In addition, a full fault
analysis and recovery algorithm was introduced in a multigrid setting [52], where it was
shown that the multigrid algorithm may recover from SDC by incorporating several
detection strategies. For example, an energy estimate is used within the algorithm
to identify errors that may not lead to a segmentation fault, potentially resulting in
incorrect or lengthy computations. In addition, simple loop checks were explored as a
mechanism for pointer logic that avoids expensive triplication in the code. Finally, the
approach introduced a strategy to recover from segmentation faults, thus avoiding an
expensive restart if computation could proceed normally. The cost of incorporating
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define i32 @add(i32 %a, i32 %b) #0 {
entry:

%add = add nsw i32 %a, %b
ret i32 %add

}

(a) Original LLVM IR.

define i32 @add(i32 %a, i32 %b) #0 {
entry:

%add = add nsw i32 %a, %b
%data = sext i32 %add i64
%tmp = call i32 @crptInt(i32 0, i32 0,

double 0.01, i32 2, i64 %data)
%crptAdd = trunc i64 %tmp to i32
ret i32 %crptAdd }

(b) Transformed LLVM IR.

Fig. 5.2: Intermediate code for fault intjection.

these strategies is shown in Figure 5.3 for the case of multigrid. Even in parallel the
overhead is modest, while adding a significant amount of protection to the algorithm,
leading to nearly 99% successful detection. A clear benefit of the approach is that it
is applicable to a wide range of computations. ‘
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Fig. 5.3: Cost of fault detection versus processor count.

Understanding how (silent) errors propagate through scientific codes is critical,
particularly in a high-performance setting. The fault analysis revealed fault patterns
across codes that suggest common mitigation strategies [53]. For example, over a
large sample of simulations, faults emerge in pointer logic around 40% of the time,
arithmetic around 40%, and control logic around 20%. The impact of data corruption
on other parts of the application is also important. More recently, the injection
approach is being used to to study a broader range of methods and applications
such as multigrid, FFT, particle methods, plasma computations, and turbulent fluid
flow [54]. The approach is leading to visualization tools to help aid developers in
identifying sensitive portions of their code.

The fault injection framework and application analysis has also led to a new pro-
cess for checkpointing use application-level decisions. Checkpointing is critical for
recovery from hard faults such as node failure. However, lightweight checkpointing is
emerging as a critical tool for recovery when silent errors are detected in the simula-
tion. The fault analysis is leading to the construction of a lossy checkpoint strategy
wherein simulation states are checkpointed in-memory. This introduces a small error
in comparison to the large decrease in memory (and computational) footprint.
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