

 ARL-TR-7605 ● FEB 2016

 US Army Research Laboratory

Implementing network Common Data Form
(netCDF) for the 3DWF Model

by Giap Huynh and Yansen Wang

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7605 ● FEB 2016

 US Army Research Laboratory

Implementing network Common Data Form
(netCDF) for the 3DWF Model

by Giap Huynh and Yansen Wang
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

February 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

08/31/2015
4. TITLE AND SUBTITLE

Implementing network Common Data Form (netCDF) for the 3DWF Model
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Giap Huynh and Yansen Wang
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIE-M
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7605

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Until recently, the Three-dimensional Wind Field (3DWF) model developed by the US Army Research Laboratory (ARL) had
produced geographic coordinated wind data results only in standard Grib format on the Windows platform and was not easily
read by other platforms. Having recognized this limitation, recent efforts have been made to improve the model, including the
capability to format the results data file in network Common Data Form (netCDF) so that the distributed results can be easily
accessible to other machines and operating platforms. This improvement will also allow for easier creation of code and
sharing of scientific data. This technical report describes processes, software, and written programs needed in order to produce
the 3DWF model’s results in netCDF data format. In addition, data extraction from netCDF-formatted Weather Research and
Forecasting (WRF) model results necessary for the 3DWF model’s wind initialization will also be documented.

15. SUBJECT TERMS

3DWF, netCDF, GUI, WFR

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

36

19a. NAME OF RESPONSIBLE PERSON

Giap Huynh
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-1156
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

Acknowledgments v

1. Introduction 1

2. netCDF Requirement for the 3DWF Model 1

3. Implementing netCDF to the 3DWF Model 2

3.1 Weather Research and Forecasting (WRF) domain and results 3

3.2 Extracting Variables from netCDF Formatted WRF Data File 5

3.3 Converting the 3DWF’s Results into netCDF 11

4. Conclusion 14

5. References 15

Appendix. Procedures to Prepare C/C++ Programs in Visual Studio 2013
and to Produce MATLAB Executable Code 17

List of Symbols, Abbreviations, and Acronyms 27

Distribution List 28

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 netCDF processing flow chart in the 3DWF model and its GUI3

Fig. 2 WRF model terrain contours drawn every 100 m for the 1 km grid
spacing nest 4 ...4

Fig. 3 Drop box for “WRF result” from the top portion of the 3DWF GUI
menu page ..9

Fig. 4 WRF file list prompt (Left) and the MATLAB code to create it (Right)10

Fig. 5 Drop box to convert output results into netCDF from the 3DWF GUI
menu page ..12

Fig. 6 Illustration of grid’s AGL heights in a small portion of a cross section
along the x-z axis (shown only around x = 3 and at y = 5)13

Fig. A-1 MATLAB Compiler window ...22

Approved for public release; distribution is unlimited.
v

Acknowledgments

Dr Brian Reen (BED/ARL) for technical reviewing and great inputs.

Approved for public release; distribution is unlimited.
vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
1

1. Introduction

As a common practice, a computer model should be able to produce its results in a
format that allows for easy sharing, accessing, and creation of scientific data
regardless of the computing platform. For this purpose, recent improvements have
been made to the US Army Research Laboratory’s (ARL) Three-dimensional
Wind Field (3DWF) model and its Graphical User Interface (GUI) to allow the
model to use and to generate the results in a widely accessible format. In order to
successfully produce the aforementioned universal format, we used the network
Common Data Form (netCDF) software package for Windows distributed by the
Unidata Program Center at the University Corporation for Atmospheric Research
(UCAR) in Boulder, Colorado. Since the netCDF for the Windows software
package is still undergoing development and is currently available only with a C
libraries version, a C/C++ compiler also had to be installed. Additionally,
required netCDF-C libraries’ accessible paths needed to be specified correctly in
order for the code to be compiled successfully. This technical report documents
the detailed process to implement netCDF capability for the 3DWF model and
also includes step-by-step instructions on how to operate its updated GUI.

2. netCDF Requirement for the 3DWF Model

The 3DWF model was developed at ARL and has been constantly improved over
the past several years. The model is based on the mass conservation principle,
wherein the divergence in a flow field is eliminated. A detailed description of the
model has been provided in several papers by Wang et al. (2005, 2007, and 2010).
One of the capabilities of the 3DWF model is using the mesoscale Weather
Research and Forecasting (WRF) (Skamarock et al., 2008) model results for its
initial conditions. However, until recently, the 3DWF model was designed to
ingest standard ASCII or Grib format and only generated results in standard
ASCII format, while the provided WRF model results are often in netCDF format.
Therefore, the 3DWF model and its GUI needed to be modified so that they can
process netCDF data input and generate results in netCDF format, as well. The
netCDF format has become popular and adopted by many scientific research and
government sites dues to its many advantages. Some of these advantages include
that it is self-describing, which decreases the likelihood of misinterpretations of
the data; it automatically generates the code needed to interact with netCDF files
in most languages, such as Fortran and C/C++; and it can be directly read by data
analysis/plotting packages such as MATLAB. Due to the recognition of these

Approved for public release; distribution is unlimited.
2

advantages, netCDF capabilities have been added to 3DWF, one of several useful
improvements recently made to the 3DWF model and its user-friendly GUI.

The netCDF software package we adopted is offered by the Unidata Program
Center at UCAR. On its website, there are several different versions for different
platforms, such as for Linux and Windows, and they are downloadable for free.
Since the 3DWF GUI was developed on the Windows 64-bit platform, we
selectively downloaded and installed the latest release version, netCDF4.3.3.1-
NC4-64.exe, from the netCDF-C Libraries for Windows’s Visual Studio link:
http://www.unidata.ucar.edu/software/netcdf/docs/winbin.html

As mentioned previously, since UCAR’s netCDF for Windows package is
currently available only for C/C++ programs, a C compiler must be available on a
Windows computer so that a compiled C program can interface with the netCDF-
C libraries during the compiling process. We used Microsoft’s Visual Studio 2013
software because it offers both C and C++ compilers that can help to generate
executable code for the 3DWF GUI. For our application, the generated executable
code from C/C++ will be used for writing 3DWF results in netCDF format.
Alternatively, a MATLAB version, such as MATLAB 2014a, can also be used
since it already includes a built-in netCDF library. For convenience, we used this
MATLAB software only for producing executable code to extract and to prepare
selected input variables from a WRF model result data file.

In order to successfully compile a C or C++ program created by Visual Studio
2013, required paths need to be specified correctly (explained in step 3 of
Appendix A-1) so that the program can access netCDF-C libraries files. A
detailed procedure to create such a C or C++ program is documented in Appendix
A-1. Once the program is successfully complied, its executable code is ready to
be used by the 3DWF GUI.

3. Implementing netCDF to the 3DWF Model

In order to improve the 3DWF model with netCDF capability, its updated GUI
version not only must be able to produce results in a netCDF format, but also
must be able to extract variables necessary for the initialization of the wind field
from the WRF model results in netCDF format. For practicality, we used
MATLAB’s netCDF library and functions to create executable code for extracting
needed variables from a WRF data file, and used UCAR’s netCDF package for
Windows to produce executable code for translating 3DWF’s output results from
binary into netCDF format. The implementation of the netCDF data capability in
3DWF model is described using the flow chart in Fig. 1.

http://www.unidata.ucar.edu/software/netcdf/docs/winbin.html

Approved for public release; distribution is unlimited.
3

 MATLAB

 UCAR’s netCDF

WRF
results
(netCDF)

Extracted
needed
variables
(binary)

 3DWF & GUI

Result in
binary data file

Result in
netCDF data file

Fig. 1 netCDF processing flow chart in the 3DWF model and its GUI

3.1 Weather Research and Forecasting (WRF) domain and
results

The 3DWF and its GUI ingest result data files in netCDF format from the Applied
Research version of the Weather Research and Forecasting (WRF-ARW;
http://www2.mmm.ucar.edu/wrf/users/) model (here version 3.6.1) for the
initialization of wind field in the 3DWF model (Wang et al., 2011). The WRF-
ARW was run for this study with 4 nests applied using a polar stereographic map
projection option. The nests used have 27, 9, 3 and 1 km horizontal grid spacing.
The horizontal dimensions of the nests are, respectively: 111 × 111, 169 × 169,
199 × 199, and 199 × 199. Therefore, the 1 km innermost nest (the output of
which is being provided) covers a domain of 198 km × 198 km (Fig. 2). The
center of the model domain is at 61.262 deg N and 149.385 deg W, and the model
top is at 50 mb (there are 90 terrain-following vertical levels used). The Global
Forecast System (GFS) half-degree resolution forecasts are used for providing
initial conditions for all 4 domains and lateral boundary conditions for the outer
27 km nest.

http://www2.mmm.ucar.edu/wrf/users/

Approved for public release; distribution is unlimited.
4

Fig. 2 WRF model terrain contours drawn every 100 m for the 1 km grid spacing nest 4

The WRF model results were packed in netCDF format and were delivered as
individual hourly files in this case. The hourly output files produced by the model
are discussed at the WRF Users’ website, and their filenames take the form of
wrfout_d<domain>_<date>:
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap5.ht
m#fields . For example, the name of the hourly result file for domain number 04
and at 18:00:00 hour on Oct, 10, 2014 is:

wrfout_d04_2014-10-04_18:00:00.nc

The WRF netCDF data file can be read and processed using various netCDF
tools, a process aided by following the instructions at the WRF site link provided
above. For convenience, we employed MATLAB 2014a software, which includes
useful and simple netCDF libraries and functions to manipulate data quickly and
easily. Despite the fact that the wrfout* netCDF file contains 148 different
variables, it does not contain all of the typically desired raw weather parameters.
For example, temperature, geopotential height, and pressure must be computed
(via post processing calculations) from their base state and perturbation values
(which are provided in the wrfout*). In addition, in order to use the momentum

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap5.htm#fields
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap5.htm#fields

Approved for public release; distribution is unlimited.
5

parameters (u and v) in 3DWF, they must be de-staggered from the Arakawa-C
grid, which they are provided on in the wrfout*, and also converted from grid-
relative to earth-relative values.

Near the bottom of the webpage referenced in the URL above, there is
information to assist with some of these steps. There are “surface” or screen-level
diagnostic parameters computed and stored in the wrfout* file valid at 2 m above
ground level (AGL) (temperature and humidity) and 10-m AGL (u and v winds)
height levels, and these parameters do not have to be post-processed or de-
staggered (although the 10-m AGL u and v wind components still need to be
transformed to earth relative from grid relative). In addition, the temperatures
WRF outputs into wrfout* (other than 2-m temperature (T2M)) are base state and
perturbation potential temperatures; therefore, the user must be sure to convert
from potential temperature to temperature.

For the improved 3DWF model’s wind field initialization, the following required
variables are extracted from the WRF netCDF data file, saved in a standard binary
data file, and named as “Lat_Long_uvw_T_P_Pb_Hgt.dat” before it can be read
by the 3DWF GUI:

Latitude and longitude

Wind components: u, v, and w (in m/s)

Perturbation potential temperature T (in K)

Perturbation pressure P (in Pa)

Base state pressure PB (in Pa)

WRF Terrain heights (in m)

3.2 Extracting Variables from netCDF Formatted WRF Data File

A typical netCDF file contains a header section followed by a data section. For
example, the WRF output netCDF file “wrfout_d04_2014-11-23_18_00_00”
contains data collected for domain number 04 at 18:00:00 on 23 November 2014.
Since the file is very large and stores 148 different variables, as mentioned earlier,
we only list here the first 2 variables—latitude and longitude—as an example.
After being converted to text (via the program ncdump), the beginning of the
header section looks like this:

netcdf wrfout_d04_2014-11-23_18_00_00 {

dimensions:

Approved for public release; distribution is unlimited.
6

 Time = UNLIMITED ; // (1 currently)

 DateStrLen = 19 ;

 west_east = 198 ;

 south_north = 198 ;

 bottom_top = 89 ;

 bottom_top_stag = 90 ;

 soil_layers_stag = 4 ;

 west_east_stag = 199 ;

 south_north_stag = 199 ;

variables:

 char Times(Time, DateStrLen) ;

 float XLAT(Time, south_north, west_east) ;

 XLAT:FieldType = 104 ;

 XLAT:MemoryOrder = "XY " ;

 XLAT:description = "LATITUDE, SOUTH IS NEGATIVE" ;

 XLAT:units = "degree_north" ;

 XLAT:stagger = "" ;

 float XLONG(Time, south_north, west_east) ;

 XLONG:FieldType = 104 ;

 XLONG:MemoryOrder = "XY " ;

 XLONG:description = "LONGITUDE, WEST IS NEGATIVE" ;

 XLONG:units = "degree_east" ;

 XLONG:stagger = "" ;

…………………

The text presentation of the netCDF file begins with the name of the netCDF file,
and is followed by the domain’s dimensions and a list of variables, along with
their data type and units. From the example file above, latitude and longitude will
have the same dimension of (south_north, west_east), which is 198 × 198 here. In

Approved for public release; distribution is unlimited.
7

WRF case, the header also declares all global attributes of the data file. For the
example file above, the beginning of this section looks like this:

// global attributes:

 :TITLE = " OUTPUT FROM WRF V3.6.1 MODEL" ;

 :START_DATE = "2014-11-23_12:00:00" ;

 :SIMULATION_START_DATE = "2014-11-23_12:00:00" ;

 :WEST-EAST_GRID_DIMENSION = 199 ;

 :SOUTH-NORTH_GRID_DIMENSION = 199 ;

 :BOTTOM-TOP_GRID_DIMENSION = 90 ;

 :DX = 1000.f ;

 :DY = 1000.f ;

 :STOCH_FORCE_OPT = 0 ;

 :GRIDTYPE = "C" ;

 :DIFF_OPT = 2 ;

 :KM_OPT = 4 ;

 :DAMP_OPT = 3 ;

 :DAMPCOEF = 0.2f ;

 :KHDIF = 0.f ;

 :KVDIF = 0.f ;

 :MP_PHYSICS = 8 ;

 :RA_LW_PHYSICS = 1 ;

 :RA_SW_PHYSICS = 1 ;

 :SF_SFCLAY_PHYSICS = 2 ;

 .

 …………………………………

After the header, all collected data are stored in the data section and in the order
as indicated in the header. The data section begins with a time stamp as defined in
the header and followed by the data. For the sake of brevity, the following

Approved for public release; distribution is unlimited.
8

example displays only a few lines of latitude and longitude data as they appeared
in the beginning of each data section.

 data:

 Times =

 "2014-11-23_18:00:00" ;

 XLAT =

 60.36405, 60.36432, 60.36459, 60.36487, 60.36514, 60.3654, 60.36567,

 60.36592, 60.36618, 60.36644, 60.3667, 60.36695, 60.3672, 60.36744,

 60.36768, 60.36791, 60.36814, 60.36837, 60.36861, 60.36884, 60.36905,

 60.36929, 60.3695, 60.36972, 60.36993, 60.37014, 60.37035, 60.37055,

………………….

………………….

………………….

 62.14079, 62.14056, 62.14032, 62.14008, 62.13984, 62.13959, 62.13934,

 62.13908, 62.13883, 62.13857, 62.1383, 62.13805, 62.13778, 62.1375,

 62.13723, 62.13696, 62.13667, 62.13639, 62.13611, 62.13582, 62.13552,

 62.13523, 62.13493 ;

 XLONG =

 -151.1697, -151.1516, -151.1335, -151.1154, -151.0973, -151.0791, -151.061,

 -151.0429, -151.0248, -151.0067, -150.9886, -150.9705, -150.9524,

 -150.9343, -150.9162, -150.898, -150.8799, -150.8618, -150.8437,

 -150.8256, -150.8075, -150.7894, -150.7712, -150.7531, -150.735,

……………………

……………………

……………………

One can always compose from scratch a C program, which must have access to
the netCDF libraries, to extract certain useful variables from a netCDF file.
However, it would be very time-consuming if one is not familiar with the use of

Approved for public release; distribution is unlimited.
9

netCDF’s functions and syntax. Of course, one can also try to extract variables
from the dumped text format version of the file shown above (created using the
netCDF program ncdump). The problem is if the text file is too large and contains
many different types of data, such as the one from WRF, it is also very time-
consuming to track down the record number for skipping due to the unpredictable
number of data values on each record after being converted into text, and this is
likely to be error-prone. As mentioned previously, there are various commercial
netCDF tools available to extract data quickly, and we found that the MATLAB
2014a version provides conveniently quick and easy-to-operate tools in dealing
with netCDF. Not only does MATLAB 2014a contain already built-in netCDF
libraries and functions, but it also includes “deploytool”, a feature that enables the
GUI designer to generate executable code for use in any application. In order to
produce the executable code file, a free MATLAB Runtime package for Windows
must be downloaded and installed from the MATLAB website’s link,
http://www.mathworks.com/products/compiler/mcr/. This package contains a
standalone set of libraries that is needed to enable the execution of the compiled
code. Once the executable code is generated, it can run on any desktop without
the need for a MATLAB license or a netCDF software package. The procedure to
produce an executable code file in MATLAB is listed in Appendix A-2.

From the menu page of the 3DWF GUI currently being redesigned, as shown in
Fig. 3, the process to extract WRF data starts by selecting the “WRF result”
option from the GUI’s drop box “Initial Wind” as shown below:

Fig. 3 Drop box for “WRF result” from the top portion of the 3DWF GUI menu page

The “WRF result” option will activate and run the MATLAB executable file
named WRF_Extract.exe. During the execution of this file, a prompt window
(Fig. 4, left) will list all the files in the subdirectory (C:\3DWF\WRF in this
example) where the WRF’s netCDF files reside in order for the user to select a
file. This file list window was created by the MATLAB code shown in Fig. 4
(right).

http://www.mathworks.com/products/compiler/mcr/

Approved for public release; distribution is unlimited.
10

Fig. 4 WRF file list prompt (Left) and the MATLAB code to create it (Right)

From the MATLAB code, after a WRF data file is selected and its name is saved
in the array str(s) where s is the index to a character within the file name, the file
then can be opened by MATLAB’s “netcdf.open” command for reading as shown
below. Selected variables such as XLAT, XLON, u, v, w, T, P, PB, and HGT then
can be read and extracted subsequently:
filein=fullfile('C:/3DWF/WRF',str{s});
ncid=netcdf.open(filein,'NC_NOWRITE');

XLAT = ncread(filein,'XLAT');
XLON = ncread(filein,'XLONG');
U = ncread(filein,'U');
V = ncread(filein,'V');
W = ncread(filein,'W');
T = ncread(filein,'T');
P = ncread(filein,'P');
PB = ncread(filein,'PB');
HGT = ncread(filein,'HGT');

The MATLAB built-in function “ncread” searches for specified variables, as
previously defined in the netCDF file’s header, and automatically reads their
arrays of data located in the data section of the netCDF file. For the needed
variables above, their array’s dimensions are as follows for this case:

d = dir('C:/3DWF/WRF');
str = {d.name};
[s,v] = listdlg('PromptString','Select a
file:',...
 'SelectionMode','single',...
 'ListString',str);
if isempty(str(s))
 str(s) = '';
end

Approved for public release; distribution is unlimited.
11

 Variables Dimension (x,y,z)
 ________________ _______________
 XLAT, XLON, HGT 198x198
 u 199x198x89
 v 198x199x89
 w 198x198x90
 T 198x198x89
 P 198x198x89
 PB 198x198x89

From the GUI designer point of view, another advantage of using MATLAB
software is that the data record and array can be verified immediately and easily
in its “Workspace” area. After being read, these variables then can be written into
a standard binary data file ready for the 3DWF model’s wind initialization
process. For example, the extracted data file is named as
“Lat_Long_uvw_T_P_Pb_Hgt.dat” and was created by the following MATLAB
commands:
fileout=fullfile('C:/3DWF/WRF/Lat_Long_uvw_T_P_Pb_Hgt.dat');
fid=fopen(fileout,'w','ieee-le');
fwrite(fid, XLAT, 'float');
fwrite(fid, XLON, 'float');
fwrite(fid, HGT, 'float');
fwrite(fid, U, 'float');
fwrite(fid, V, 'float');
fwrite(fid, W, 'float');
fwrite(fid, T, 'float');
fwrite(fid, P, 'float');
fwrite(fid, PB, 'float');
fclose(fid);

3.3 Converting the 3DWF’s Results into netCDF

For converting the 3DWF model’s results into netCDF format, UCAR’s netCDF
for Windows package and Microsoft’s Visual Studio’s C compiler were used to
generate executable code. Currently, UCAR only offers a C version of the
package for the Windows platform. Therefore, a C compiler for Windows, such as
the one included in Visual Studio 2013, must be installed. From Visual Studio
2013, the user can compose and compile a C or C++ program that will translate
the 3DWF model’s results into netCDF format. An example program is listed in
Appendix A-3. Besides the usual ‘#include’ statements required for a C program,
the user must also add the following ‘#include’ statement in order for the program
to link with the netCDF-C libraries. For example, if netCDF is installed at
“C:\Program Files (x86)\netCDF 4.3.2”, then the following include line would be
needed:

#include "C:\Program Files (x86)\netCDF 4.3.2\include\netcdf.h"

Approved for public release; distribution is unlimited.
12

The program begins with ‘#define’ section to define each variable’s dimension
and unit. For example, the 3 dimensional u wind component will be defined as:

 #define RANK_u 3

After the usual declaration of all data types in the main section, the program
essentially consists of 2 parts: reading the 3DWF model’s results and preparing a
netCDF data file. First, it reads all necessary parameters about the domain stored
in the file “3DWF_parameters.txt”. It then creates 1, 2, and 3 dimensional arrays
necessary for storing of the data from the 3DWF model’s results (in file
‘result_3dwf_uvwelevlatlon.gdat’). For the second part, after using netCDF’s
nc_create function to create a new empty netCDF file,
‘NetCDF_3DWF_uvwelevlatlon.nc’, the program uses nc_def_dim and
nc_def_var functions to define all data dimensions and units. Next, it uses
nc_put_att_text and nc_put_var_float functions to write data to the new empty
netCDF file. Although the order of variables in the netCDF file is not important to
code written to interact with the file, for the 3DWF’s results, we arranged data in
the following order: latitude, longitude, terrain elevation, u wind, v wind, and w
wind component.

From the 3DWF GUI’s menu page in Fig. 5, there is a drop box labeled
“NetCDF” designed to activate the conversion of the model’s results into netCDF
format so that the data file can be ready for distribution.

Fig. 5 Drop box to convert output results into netCDF from the 3DWF GUI menu page

Under this NetCDF drop box, there are 2 options—“No gridAGL” and “With
gridAGL”. The term “gridAGL” means the above ground level (AGL) height of a
grid point inside a 3-dimensional (3-D) domain. If the user selects option “No
gridAGL”, then the GUI will only produce a netCDF output file without such
data. On the other hand, if the user selects “With gridAGL”, the GUI will add an
additional 3-D array of AGL heights including every grid point to the netCDF
output file. The grid’s AGL height at grid point (x,y,gridznum) is the AGL height

Approved for public release; distribution is unlimited.
13

of the bottom of the grid cell and is calculated by the following formula and
illustrated in Fig. 6.

 Grid’s AGL at (x,y,gridznum) = (z_min + dz * (gridznum-1)) – ter_elev(x,y)

 z_min is the height ASL of the model’s first (lowest) vertical level.

 dz is the increment between each vertical level (i.e., the depth of the layers).

 gridznum is the index of the vertical model level.

 ter_elev(x,y) is the terrain elevation (ASL) at location (x,y) in a 2D terrain
array pulled from an external source. All vertical grid cells at (x,y) location will
use the same ter_elev(x,y) reference for their height AGL’s calculation.

For example, from Fig. 6, the height AGL at grid point 3 (gridznum=3), where the
terrain elevation (at x = 3 and y = 5 in a 2D terrain domain of (201,201) for
example) ter_elev(3,5) = 224m (ASL) with z_min = 200m and dz = 20m is:

 (200 + 20 * (3-1)) – 224 = 16m

For grid point 2 (gridznum=2), its height AGL is:

 (200 + 20 * (2-1)) – 224 = - 4m

A negative height AGL indicates that the bottom of the grid cell lies below the
ground.

Similarly, the height AGL of grid point 1 (gridznum=1) is:

 (200 + 20 * (1-1)) – 224 = - 24m

gridznum
= 3

260

200

220

240

-24m
AGL

16m
AGL

x=1 2 x=3 4 y=5

 z

 terrain

 dz = 20m 224m(ASL)

 z_min=200m (ASL) x

 ASL(m) y

gridznum
=2

gridznum
=1

-4m
AGL

Fig. 6 Illustration of grid’s AGL heights in a small portion of a cross section along the x-z
axis (shown only around x = 3 and at y = 5)

Approved for public release; distribution is unlimited.
14

In addition to converting into netCDF format, the 3DWF GUI’s NetCDF drop box
is also designed to generate a text version of the netCDF file so that the user can
examine its content.

4. Conclusion

Since netCDF has become a standard format for archiving and accessing data at
many educational, research, and government agencies due to its many
advantages—such as being self-describing and being accessible by other
computer platforms and computer languages for direct manipulation, plotting, and
analysis of data—it is advantageous to implement netCDF capability in the
3DWF model. The popular and freely available netCDF for Windows software
package offered by UCAR, along with netCDF libraries and tools offered by
MATLAB, proved to be an excellent choice for implementing netCDF capability
into the 3DWF model. In further support of this effort, a user-friendly GUI for the
3DWF model is currently being redesigned that adopts a state-of-the-art Google
Maps display and incorporates netCDF capabilities. The newly improved 3DWF
GUI will not only be able to extract variables from WRF’s netCDF data file that
are necessary for the wind initialization, but also will be able to produce results in
netCDF format that are, thus, ready for quick distribution.

Approved for public release; distribution is unlimited.
15

5. References

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-
Y, Wang W, Powers JG. A description of the advanced research WRF
version 3. NCAR/TN-475+STR. 113pp, 2008.

Wang Y, Williamson C, Huynh G. Three Dimensional Wind Field (3DWF)
Model for AFWA’s Applications: A Customer project Report. Pages 6–8,
2011.

WRF Descriptions, user’s guide, and data processing tools: see the web site
http://www2.mmm.ucar.edu/wrf/users/

Wang Y, Williamson C, Garvey D, Chang S, Cogan J. Application of a multigrid
method to a mass consistent diagnostic wind model. J. Appl. Meteorology.
2005;44:1078–1089.

Wang Y, Williamson C, Huynh G, Emmitt D, Greco S. Diagnostic wind model
initialization over a complex terrain using the airborne doppler wind lidar
data. The Open Remote Sensing Journal. 2010;3:17–27.

Wang Y, Huynh G, Williamson C. Integration of google maps/earth with
microscale meteorology models and data visualization. Computer and
Geosciences. 2013;61:23–31.

http://www2.mmm.ucar.edu/wrf/users/

Approved for public release; distribution is unlimited.
16

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
17

Appendix. Procedures to Prepare C/C++ Programs in Visual
Studio 2013 and to Produce MATLAB Executable Code

Approved for public release; distribution is unlimited.
18

A-1 Procedure to Prepare a C/C++ Program in Visual Studio 2013
for Compilation

1) For a C program:

 Activate Microsoft’s Visual Studio 2013 and click in sequence File –> New
–> Project

 A “New Project” window will pop up:

 - Select “Win32 Console Application”

 - Type in a name for the project in the “Name” slot at the bottom and
click OK.

 A “Win32 Application Wizard” window will pop up:

 - Click “Next”

 - Select “Console application” under “Application type” if not selected by
default.

 - Check mark to select “Empty project” under “Additional options”.

 - Click “Finish” button when done.

 Empty program area will appear in dark blue from the main page of Visual
Studio 2013

 and is ready for creating the project.

 - Click on “PROJECT” option and then select “Add new item” from the
list.

 An “Add New Item” window will pop up.

 - Select “C++ File (.cpp)” and then enter a program name in the “Name:”
slot with file

 type “.c” instead of the default type “.cpp”.

 - Click “Add” when done.

 Start writing C code in the reserved area (which has now turned white).

 When done, click “BUILD” option and select “Compile” at the bottom of
the list.

Approved for public release; distribution is unlimited.
19

 After successfully compiled, click “BUILD” again and select “Build
Solution” at the top of the list. This step will create the executable file (“.exe”)
for the program.

 If the program was created under x64 bit, then the executable file will be
located under:

 \Visual Studio 2013\Projects\Projectname\x64\Debug\

 If the program was created under Win32, then the executable file will be
located under:

 \Visual Studio 2013\Projects\Projectname\Debug\

2) For a C++ program:

 C++ is the default language in Visual Studio 2013.

 Activate Microsoft’s Visual Studio 2013 and click in sequence File –> New
–> Project

 A “New Project” window will pop up:

 - Select “Win32 Console Application”

 - Type in a name for the project in the “Name” slot at the bottom and
click OK.

 A “Win32 Application Wizard” window will pop up:

 - Click “Finish” (instead of “Next” in the case of C).

 - Click on “PROJECT” option and then select “Add new item” from the
list.

 An “Add New Item” window will pop up.

 - Select “C++ File (.cpp)” and then enter a program name in the “Name:”
slot with the

 default type “.cpp”.

 - Click “Add” when done.

 Start writing C code in the reserved area (which has now turned white).

 When done, click “BUILD” option and select “Compile” at the bottom of
the list.

Approved for public release; distribution is unlimited.
20

 After successfully compiled, click “BUILD” again and select “Build
Solution” at the top of the list. This step will create the executable file “.exe”
for the program.

 If the program was created under x64 bit, then the executable file will be
located under:

 .. \Visual Studio 2013\Projects\Projectname\x64\Debug\

 If the program was created under Win32, then the executable file will be
located under:

 .. \Visual Studio 2013\Projects\Projectname\Debug\

3) Configuration for a netCDF program:

1) Since the downloaded netCDF version was the 64-bit version, the
composed C or C++ program must be compiled in Visual Studio 2013
x64 platform.

Click on “Debug” drop box on the 2nd row (not the “DEBUG” button)
and select “Configuration manager”.

 “Configuration manager” window will pop up.

Click the down arrow under drop box “Active solution platform” and
select “New”.

 A small “New Solution Platform” window will appear.

Click the down arrow under drop box “Type or select the new platform
(default is Win32) and select “x64”.

 Click OK when done and click “Close” to exit “Configuration
Manager”.

2) Either set paths so that the program can access the following 4 netCDF
files or manually copy them from the installed netCDF 4.3.2 package to
the C program’s debug sub-directory:

‘C:\Users\...\Visual Studio 2013\Projects\Program_name\x64\Debug’:

These following 3 files reside in C:\Program Files (x86)\netCDF
4.3.2\deps\x64\bin:

 hdf5.dll

 hdf5_hl.dll

Approved for public release; distribution is unlimited.
21

 zlib.dll

 The following file resides in C:\Program Files (x86)\netCDF 4.3.2\bin:

 netcdf.dll

3) Click Project->Properties->C/C++->Preprocessor and add the error
message _CRT_SECURE_NO_WARNINGS after WIN32 in
“Preprocessor Definition”

4) Click Project->Properties->Linker->Input and add this path/file to the
“Additional Dependencies”

 C:\Program Files (x86)\netCDF 4.3.2\lib\netcdf.lib

5) Once successfully compiled, the C/C++ executable code can be

executed through a batch file.

A-2 Procedure to Produce a Standalone Executable Code in
MATLAB

To activate MATLAB’s “deploytool” command, a MATLAB runtime package
must be downloaded free from MATLAB’s link:

http://www.mathworks.com/products/compiler/mcr/
Select the appropriate package based on the machine on which it will be installed.

For helpful hints in MATLAB, click Help and search for tutorial on “Create and
install a standalone application”. After the MATLAB program is successfully
written, compiled, and run inside MATLAB, issue the following command to start
the process of generating standalone executable code:

>>deploytool

A MATLAB Compiler window will appear as shown in Fig. A-1:

http://www.mathworks.com/products/compiler/mcr/

Approved for public release; distribution is unlimited.
22

Fig. A-1 MATLAB Compiler window

Click + button next to “Add main file”. A prompted directory window will appear
showing the created .m file. Select this .m file.

Make sure the check mark is checked at “Runtime downloaded from web”.

Click the big check mark above “Package” button at the top right and a small
“Package” prompt will appear like this:

Check mark at “Open output folder when process completes” and click “Close”.

A local directory window will appear showing a list of 3 generated subdirectories
and files as followed (assuming the program is ExtractNetCDF.m):

Subdir: for_redistribution
- MyAppInstaller_web.exe

Subdir: for_testing
- ExtractNetCDF.exe

Approved for public release; distribution is unlimited.
23

- mccExcludedFiles.log
- readme.txt
- splash.png

 Subdir: for_redistribution_files_only
- ExtractNetCDF.exe
- readme.txt
- splash.png

The executable code file, ExtractNetCDF.exe, was produced and resided in 2
different subdirectories as shown above. Manually copy this file to whichever
location is to be used as a standalone executable file.

A-3 A Sample C Program to Translate 3DWF’s Results into
netCDF

The following program is a shorter version in which it only reads one variable, the
u wind component result, and prepares a netCDF format file for this variable:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
#include "C:\Program Files (x86)\netCDF 4.3.2\include\netcdf.h"
#define RANK_u 3
#define UNITS "units"
void check_err(const int stat, const int line, const char *file) {
 if (stat != NC_NOERR) {
 (void)fprintf(stderr, "line %d of %s: %s\n", line, file,
nc_strerror(stat));
 fflush(stderr);
 exit(1);
 }
}
main(void) {

 int x, y, z, xy_len, z_len, icount, n, code;
 struct rec
 {
 float val;
 };
 double paraarray[7];
 double value, centerlat, centerlon, dx, dy, dz;
 icount = 0;
 char line[25];
 int stat;
 int ncid;

Approved for public release; distribution is unlimited.
24

 /* dimension ids */
 int x_dim;
 int y_dim;
 int z_dim;
 /* variable ids */
 int u_id;
 /* variable shapes */
 int udata_dims[RANK_u];
 static const char filename[] = "3DWF_parameter.txt";
 FILE *filer;
 filer = fopen(filename, "r");

 if (filer != NULL)
 {
 while (fgets(line, sizeof line, filer) != NULL) /* read a line */
 {
 sscanf(line, "%21lf", &value);
 paraarray[icount] = value;
 icount++;
 }
 for (n = 0; n < 7; n++)
 {
 if (n == 0){
 centerlat = paraarray[n];
 }
 else if (n == 1){
 centerlon = paraarray[n];
 }
 else if (n == 2){
 dx = paraarray[n];
 dy = dx;
 }
 else if (n == 3){
 dz = paraarray[n];
 }
 else if (n == 4){
 xy_len = (int)paraarray[n];
 }
 else if (n == 5){
 z_len = (int)paraarray[n];
 }
 else{
 code = (int)paraarray[n];
 }
 }
 }

Approved for public release; distribution is unlimited.
25

 else
 {
 perror(filename); /* The file is empty */
 printf("Unable to open file");
 return 1;
 }
 float *allElements2 = malloc(xy_len * xy_len * z_len *
sizeof(int));
 float ***u = malloc(xy_len * sizeof(int **));
 for (i = 0; i < xy_len; i++)
 {
 u[i] = malloc(xy_len * sizeof(int *));
 for (j = 0; j < xy_len; j++)
 {
 u[i][j] = allElements2 + (i * xy_len * z_len) + (j * z_len);
 }
 }
 for (i = 0; i < xy_len; i++)
 {
 for (j = 0; j < xy_len; j++)
 {
 for (k = 0; k < z_len; k++)
 {
 u[i][j][k];
 }
 }
 }
 FILE *filerb = fopen("result_3dwf_uvwelevlatlon.gdat", "rb");
 if (!filerb)
 {
 printf("Unable to open file!");
 return 1;
 }
 struct rec r;
 for (x = 0; x<xy_len; x++) {
 for (y = 0; y<xy_len; y++) {
 for (z = 0; z<z_len; z++) {
 fread(&r, sizeof(struct rec), 1, filerb);
 u[x][y][z] = r.val;
 }
 }
 }
 char ms_units[] = "m/s";
 stat = nc_create("NetCDF_3DWF_uvwelevlatlon.nc", NC_CLOBBER,
&ncid);
 check_err(stat, __LINE__, __FILE__);

Approved for public release; distribution is unlimited.
26

 udata_dims[0] = z_dim;
 udata_dims[1] = y_dim;
 udata_dims[2] = x_dim;
 stat = nc_def_var(ncid, "u", NC_FLOAT, RANK_u, udata_dims, &u_id);
 check_err(stat, __LINE__, __FILE__);
stat = nc_put_att_text(ncid, u_id, UNITS, strlen(ms_units), ms_units);
 check_err(stat, __LINE__, __FILE__);
 stat = nc_enddef(ncid);
 check_err(stat, __LINE__, __FILE__);
 stat = nc_put_var_float(ncid, u_id, &u[0][0][0]);
 check_err(stat, __LINE__, __FILE__);
 stat = nc_close(ncid);
 check_err(stat, __LINE__, __FILE__);
 fclose(filer);
 fclose(filerb);
 printf("*** SUCCESSFULLY CONVERTED TO NETCDF .nc
FORMAT!\n");
 printf("*** PREPARING IN TEXT FORMAT...................!\n");
 //**** Deallocate 3D array
 free(allElements2);
 for(int i = 0; i < xy_len; i++)
 {
 free(u[i]);
 }
 free(u);
 return 0;
}

Approved for public release; distribution is unlimited.
27

List of Symbols, Abbreviations, and Acronyms

2-D two-dimensional

3-D three-dimensional

3DWF Three-Dimensional Wind Field

AGL Above Ground Level

API Application Programming Interface

ARL US Army Research Laboratory

ARW Advanced Research WRF

ASL Above Sea Level

GUI Graphical User Interface

Html HyperText Markup Language

ID Identification

Lat Latitude

Lon Longitude

netCDF network Common Data Form

UCAR University Corporation for Atmospheric Research

USGS US Geological Survey

WRF Weather Research and Forecast

Approved for public release; distribution is unlimited.
28

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 US ARMY RSRCH LAB
 (PDF) RDRL WML B
 J CIEZAK-JENKINS

 3 US ARMY RESEARCH LAB
 (PDF) RDRL CIE D
 G HUYNH
 Y WANG
 RDRL CIE
 P CLARK

 2 US ARMY RESEARCH LAB
 (PDF) RDRL CIE D
 D KNAPP
 G VAUCHER

	List of Figures
	Acknowledgments
	1. Introduction
	2. netCDF Requirement for the 3DWF Model
	3. Implementing netCDF to the 3DWF Model
	3.1 Weather Research and Forecasting (WRF) domain and results
	3.2 Extracting Variables from netCDF Formatted WRF Data File
	3.3 Converting the 3DWF’s Results into netCDF

	4. Conclusion
	5. References
	Appendix. Procedures to Prepare C/C++ Programs in Visual Studio 2013 and to Produce MATLAB Executable Code
	A-1 Procedure to Prepare a C/C++ Program in Visual Studio 2013 for Compilation
	A-2 Procedure to Produce a Standalone Executable Code in MATLAB
	A-3 A Sample C Program to Translate 3DWF’s Results into netCDF

	List of Symbols, Abbreviations, and Acronyms

