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Progress Report for OC110197; Sept. 2015 

INTRODUCTION 
The objective of this translational leverage award is to study the etiologic heterogeneity of ovarian cancer in 
multiple cohorts and to build the infrastructure of the Ovarian Cancer Cohort Consortium (OC3). The OC3 is an 
international consortium of cohort studies designed to address scientific aims important for understanding 
ovarian cancer risk, early detection, and tumor heterogeneity. The OC3 is part of the NCI Cohort Consortium, 
which is an extramural-intramural partnership to address the need for large-scale collaborations and provides 
the super-structure (but not funding) for managing the OC3. The OC3 currently has 24 participating, on-going 
cohort studies and we expect there to be over 6,100 invasive ovarian cancer cases among more than 1.4 
million women. The goals of the OC3 are to bring together cohorts with ovarian cancer endpoints for pooled 
projects, build a focused group of ovarian cancer researchers, and develop a comprehensive approach that 
integrates questionnaire and pathology data with biomarkers, genetics, and tissue. In addition to building the 
OC3 infrastructure, we propose to evaluate associations of ovarian cancer risk factors by different metrics of 
tumor heterogeneity. The first specific aim of this application is to examine whether associations of known and 
putative ovarian cancer risk factors, including (but not limited to) age, oral contraceptive use, tubal ligation, 
parity, postmenopausal hormone use, family history of ovarian cancer, body mass index, height, analgesic use, 
and lifetime ovulatory cycles, differ by (a) histologic subtype, (b) tumor dominance (as a surrogate for cell of 
origin), and (c) tumor aggressiveness (tumors fatal within three years vs. all others). We will use this data to 
develop ovarian cancer risk prediction models accounting for differential associations by cancer phenotype.  

KEYWORDS 
Ovarian Cancer, tumor heterogeneity, histology, cell of origin, tumor aggressiveness, risk prediction 

OVERALL PROJECT SUMMARY 
This grant began on September 30, 2012. Currently, 24 cohorts have agreed to participate in projects 
addressing the risk factor associations by tumor heterogeneity and to develop an improved risk prediction 
model for ovarian cancer.  The tasks completed in the third year included: (1) invitation of 3 additional cohorts, 
(2) finalizing data harmonization at the Brigham and Women’s Hospital (BWH) data coordinating center (DCC), 
(4) completing pathologic abstraction for grade and tumor dominance, (5) conducting statistical analyses for 
our aims, and (6) drafting manuscripts related to the analyses.   

A data dictionary and a short questionnaire about the data collection and attributes were sent to all interested 
cohorts. Only a subset of 10 cohorts have collected pathology reports. Of these, 10 have completed 
abstraction where possible. One study, has completed coding of tumors that are clearly dominant or non-
dominant, but must retrieve records that are in long-term storage from ~120 cases to abstract dimensions for 
the cases that are uncertain. Below we summarize the cases available for the tumor dominance analysis. For 
cases with unknown dominance, we have the tumor dimensions for 40% of the cases. We are currently 
cleaning these data and plan to begin analyses in the no-cost extension. 

Table 1. Information on the 10 studies that were able to extract dominance data from pathology reports 
Study N, dom. right N, dom. left N, non-dom. N, Unknown dom. N, tumor measures 
SS 8 11 7 32 20 
NYU 33 29 0 67 30 
MCCS 32 28 1 113 33 
VITAL 28 29 0 106 0 
SMC 20 23 0 67 0 
WLHS 50 55 2 30 0 
NHS 61 68 92 272 128 
NHSII 36 57 18 64 46 
WHS 25 28 38 113 53 
NLCS 120 127 33 204 120 
Totals 413 455 191 1068 430 
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In total, 24 cohorts from the US, Australia, Europe, and Asia have now agreed to participate. Last year, we 
invited three additional cohorts to participate in the OC3, including the Million Women’s Study (PI: Beral), who 
declined to participate; the Women’s Health Initiative (PI: Anderson), who agreed to a trial participation in one 
analysis on NSAIDs which may lead to full participation; and the Northern Sweden Health and Disease Study 
(PI: Lundin and Idahl), who agreed to participate. Also, one study that opted not to participate previously (the 
Shanghai Women’s Health Study) may potentially be willing to participate in a case-cohort design. We are 
currently negotiating a data use agreement (DUA) with the Swedish group. All other studies have a DUA with 
the BWH, have provided a letter stating that the IRB does not require a DUA (if sending completely de-
identified data), or are BWH-primed cohorts. We received and harmonized data from the Adventist Health 
Study II, Melbourne Collaborative Cohort Study, and the Swedish Mammography Cohort in the last year and 
now have data from 23 studies.  Details of the participating cohorts including sample sizes are presented in 
Table 2. Our policies are at our website: https://sites.google.com/a/channing.harvard.edu/oc3/. We are 
beginning to consider additional questionnaire data types that may be available (Table 2) 

Table 2. Details on the OC3 cohorts 
Cohort (Acronym) N1 Invasive 

Cases2
Median 

baseline 
age 

Data 
available3

Adventist Health Study II (AHS2) 46,226 86 54 B 
Breast Cancer Detect. Demonstration Proj. (BCDDP) 36,055 145 61 B, FU, D 
Breakthrough Generations Study (BGS) 101,881 330 48 B 
California Teacher’s Study (CTS) 43,782 185 50 B, FU, D 
Canadian Study of Diet, Lifestyle, & Health (CSDLH)4 39,618 90 58 B, D 
Cancer Prevention Study II (CPS2) 65,975 549 62 B, FU, D 
Campaign Against Cancer & Heart Disease (CLUEII) 12,393 82 46 B, FU 
European Pros. Invest. into Cancer & Nutrition (EPIC)  264,217 704 51 B, D 
Iowa Women’s Health Study (IWHS) 30,595 268 61 B, FU, D 
Melbourne Collab. Cohort Study (MCCS)  23,249 136 55 B, D 
Multi-ethnic Cohort Study (MEC)  6,474 75 57 B, FU, D 
Netherlands Cohort Study (NCS)4  62,573 448 62 B, D 
NIH-AARP Diet and Health Study (AARP) 153,084 703 62 B, FU, D 
Nurses’ Health Study (NHS)  103,298 770 46 B, FU, D 
Nurses’ Health Study II (NHS2) 111,801 215 35 B, FU, D 
NYU Women’s Health Study (NYUWHS) 12,431 129 49 B, D 
Northern Sweden Health & Disease Study (NSHDS) 43,000 155 NA B, D 
Prostate, Lung, Colorectal, and Ovarian Cancer 
Screening Trial (PLCO) 

60,219 363 62 B, FU, D 

Singapore Chinese Health Study (SCHS)  31,945 96 56 B, FU, D 
Sister Study (SS)  39,196 39 55 B, FU, D 
Swedish Mammography Cohort (SMC) 33,418 39 60 B, FU, D 
Vitamins and Lifestyle Study (VITAL)  28,331 130 60 B, D 
Women’s Health Study (WHS)  33,548 204 53 B, FU, D 
Women’s Lifestyle & Health Study (WLHS) 49,087 201 40 B, FU 
Total  1,432,396 6,142 
1Eligible for inclusion in our analyses, including having a least one ovary and no baseline cancer; 2There are 
491 borderline cases in addition to invasive disease; 3B=baseline data; FU=Follow-up questionnaires; 
D=Diet/food frequency questionnaire; 4Case-cohort design, numbers show full cohort size. 

Data harmonization for the key variables is complete for 23 cohorts from which we have received data. 
Specifically we have cleaned and harmonized the following variables: ovarian cancer diagnosis characteristics 
(date/age of diagnosis, date of death, type of tumor, morphology, histology, grade), study enrolment and 
follow-up data (date/age of enrolment, date/age of death, date/age of last follow-up), race, prior cancer 
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diagnoses, family history of ovarian or breast cancers, menopausal status, postmenopausal hormone use 
(ever/never, duration, and type), use of oral contraceptives (ever/never, duration), tubal ligation, parity, 
hysterectomy status, oophorectomy status, age at menarche, age at menopause, smoking, height, body mass 
index (BMI), BMI at age 18, alcohol intake, endometriosis, other cancer diagnoses, diagnosis of cardiovascular 
disease, diagnosis of auto-immune disease, diagnosis of diabetes, and NSAIDs. We also have cleaned grade 
as abstracted from tumor registries or pathology reports; in our initial submission of the histology paper, we 
were criticized for not examining high and low grade serous tumors separately. To increase power, we 
abstracted grade from the NHS and NHSII pathology reports (which had not been previously done); in total 17 
studies provided grade information. In these studies, among serous tumors, 135 are Grade I, 522 are Grade II, 
and 1683 are Grade III; 793 have unknown grade. Results of analyses by grade are discussed below. 

We have developed SAS macros for conducting analyses in a standardized manner, including a macro to 
meta-analyze results for a particular exposure across studies, one to conduct a pooled analysis, and macros to 
assess risk factor association heterogeneity by tumor subtype. We have completed the analysis for 
examination of ovarian cancer risk factors by histology and a manuscript was submitted to Lancet Oncology. 
The manuscript was rejected because we did not incorporate grade when examining serous tumors and we did 
not include endometriosis. Therefore, we added these analyses to the manuscript to preemptively address 
these criticisms and have submitted to the Journal of Clinical Oncology. The submitted manuscript is in 
Appendix 1 and the details of the analytic approach are outlined there. Briefly, among over 1.3 million women 
from 21 studies, 5,510 invasive epithelial ovarian cancers were identified (3331 serous, 592 endometrioid, 334 
mucinous, 269 clear cell, 984 other/unknown). Using competing risks Cox proportional hazards regression 
stratified on study and birth year and adjusted for age, parity, and oral contraceptive use, we assessed 
associations of 14 ovarian cancer risk factors for all invasive cancers and by histology. Heterogeneity was 
evaluated by likelihood ratio test.  All hormonal/reproductive factors, except breastfeeding and age at 
menarche, exhibited significant heterogeneity by histology. Higher parity was most strongly associated with 
endometrioid (RR, per birth=0.79; 95% CI=0.74-0.84) and clear cell (RR=0.67; 95%CI=0.59-0.77) carcinomas 
(p-het<0.0001). Similarly, age at menopause (positive), endometriosis (positive), and tubal ligation (inverse) 
were associated with endometrioid and clear cell tumors (p-het<0.004). Family history of breast cancer (p-
het=0.008) and body mass index (p-het=0.04) had modest heterogeneity. Smoking was associated with 
increased risk of mucinous (RR, per 20 pack-years=1.26; 95% CI=1.08-1.46) but a decreased risk of clear cell 
tumors (RR=0.72; 95% CI=0.55-0.94) (p-het=0.004); height did not have evidence of heterogeneity across 
types. Among serous tumors, most factors were not differentially associated by grade, although power was 
limited by the low number of low grade tumors. Endometriosis was significantly associated with low-grade 
serous tumors (RR: 3.77; 95% CI: 1.24-11.5), but not high-grade serous tumors (RR: 1.11; 95% CI: 0.70-1.74; 
p-het=0.12). Similarly, more than 5 years of HT use versus never was associated with a 3-fold higher risk of 
low-grade serous tumors but only a 79% higher risk of high-grade disease, although the p-heterogeneity was 
not significant (p-het.=0.45). Conversely, family history of ovarian cancer was only significantly associated with 
high-grade (RR: 1.61, 95% CI: 1.23-2.10) but not low-grade (RR=0.90; 95% CI: 0.22-3.71) serous tumors (p-
het.=0.80). Across all exposures, each subtype had unique patterns of risk factor associations. Generally, most 
risk factors had their strongest association with non-serous cancers. Unsupervised clustering divided the 
histologic subtypes into two groups based on the similarity of risk factor associations, with serous and 
mucinous carcinomas in one group and endometrioid and clear cell carcinomas in the other group.  

With respect to the rapidly fatal analyses, we had to collect additional mortality data on ovarian cancer cases in 
4 studies, who had not provided this data in the initial data transfer. All mortality data have been cleaned and 
our case definition is as follows: (1) rapidly fatal, death within 3 years of diagnosis, and (2) less aggressive, 
survived at least three years after diagnosis. In our initial analyses, we required that there be the potential for 
at least three years of follow-up for all cases to be included, thus excluding some rapidly fatal cases who died 
<3 before the end of follow-up within a study. However, this reduced power, particularly for analyses in which 
we further stratified cases by histology (serous vs. endometrioid/clear cell). After discussion with Dr. Peter Kraft, 
a statistician involved in numerous consortia, we assessed the potential bias of including these cases, and 
determined that the additional power outweighed any modest bias of a slightly later average diagnosis year for 
rapidly fatal versus less aggressive cases. Thus we are currently rerunning all analyses to include these cases. 
Preliminarily, among 4,680 cases with known vital status and the potential for at least 3 years of post-diagnosis 
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follow-up, 2,257 (49.8%; median survival=1yr) were rapidly fatal and 2,423 (50.2%; median survival=18yr) 
were less aggressive. Stronger inverse associations were observed for less aggressive than for rapidly fatal 
disease for tubal ligation (RR, yes vs. no=0.67 vs. 1.07, respectively; p-het=0.001), parity (RR, per child=0.89 
vs. 0.93; p-het=0.01), pack years of smoking (RR, per 20 pack-years=0.92 vs. 1.44; p-het=0.01), hormone 
therapy use (RR, >5 yr vs. never=1.81 vs. 1.48; p-het=0.05), and suggestively for family history of ovarian 
cancer (RR, yes vs. no=1.73 vs. .29, p-het=0.15). Conversely, women with a BMI>30 vs. >22-25 kg/m2 were at 
higher risk of rapidly fatal disease (RR=1.50), but not less aggressive disease (RR=0.99; p-het=0.03). 
Associations for other risk factors did not differ by aggressiveness. Interestingly, some of the associations for 
rapidly fatal vs. less aggressive disease differed by histologic subtype. For example, among serous tumors, 
family history of ovarian cancer was associated with an increased risk of less aggressive disease, but among 
endometrioid/clear cell tumors, it was associated with an increased risk of rapidly fatal disease. This may be 
because some of the high-grade endometrioid tumors are truly serous, which have a worse outcome compared 
to endometrioid tumors. Further, smoking was associated with an increased risk of rapidly fatal serous tumors, 
but a decreased risk of both rapidly fatal and less aggressive endometrioid/clear cells tumors, consistent with 
the inverse association of smoking with clear cell disease. Overall our initial analyses support differential 
associations by tumor aggressiveness for some risk factors. The potentially stronger association of a family 
history of ovarian cancer with less aggressive disease is supported by reports of better survival in BRCA 
mutation carriers. The differential association of smoking by tumor aggressiveness, but not that of parity or 
tubal ligation, may reflect influences of histology. The BMI association with rapidly fatal disease suggests that 
metabolic dysfunction may play a role in tumor aggressiveness. As noted above, analyses by tumor 
dominance are on-going. 

In addition, progress is being made on the risk prediction model in the OC3 in collaboration with Dr. Ed Iversen 
at Duke University. Notably, the risk prediction paper using data from the case-control studies in the Ovarian 
Cancer Association Consortium (OCAC) is under revision at the American Journal of Epidemiology (Appendix 
2). The overall AUC in that population including only epidemiologic factors was 0.65 and when adding 17 
established low-penetrance genetic alleles was 0.66, suggesting that current genetic risk factors do not 
substantially increase predictive capability. Interestingly, the AUC was higher for women <50 years (0.71) than 
women 50 and over (0.62) likely because many risk factors are more strongly associated with endometrioid 
and clear cell tumors, which are more common in younger women. In the OC3, we are including 8 U.S.-based 
studies with a minimum set of covariates (e.g., parity, oral contraceptive use) and information on date of 
diagnosis of ovarian cancer as well as other cancers post-baseline. We excluded the Sister Study because all 
women have a family history of breast cancer, potentially altering the predictive ability of the model in this 
higher risk population. Two complete studies have been held out for independent evaluation of the model and 
the remaining 6 studies were split 80/20 to provide an initial validation set. At this point, the model includes 
prediction of bilateral salpingo-oophorectomy rates over follow-up (based on data in the Nurses’ Health Study 
and the NHANES dataset), overall mortality, diagnosis of another cancer besides ovarian cancer, and 
diagnosis of ovarian cancer. Imputation and prediction of risk estimates will use data from both the OCAC and 
OC3 to increase precision. The following variables have been incorporated into the model: oral contraceptive 
ever use and duration, family history of breast cancer, family history of ovarian cancer, education (used for 
imputation), alcohol intake (used for imputation), smoking, endometriosis, age at menarche, tubal ligation, and 
menopausal status. Other variables (e.g., body mass index, parity, and NSAID use) are being added. Details of 
the analysis to date are in Appendix 3; this has been run on a 10% sample for error checking purposes. The 
full dataset will be released by the end of October and we expect the analysis to take about a week to run. This 
unique collaboration will provide a resource for all future work on ovarian cancer risk prediction, including the 
incorporation of differential associations by histology. 

One of the key goals of the OC3 is to foster collaborations and use of the data nationally and internationally. A 
list of approved and proposed projects is in Table 3. Importantly, the OC3 is a highly sought after resource. 
Sixteen projects have been proposed to date from 12 different investigators from 8 institutions; 13 of which 
have been approved. Three newer proposals (including one from a non-OC3 investigator) will be reviewed at 
our in-person meeting in Nov. 2015. Through a collaboration with the German Cancer Research Center 
(DKFZ), we have collected information on blood collection variables as well as existing assay data on several 
biomarkers from existing nested case-control studies in 7 cohorts. We have cleaned the following additional 
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variables: case-control status; match set; date and age of blood collection, fasting status, ovarian cancer risk 
factors at the time of blood draw (not all blood samples were collected at study baseline), time between blood 
draw and diagnosis, and seven biomarkers (androstenedione, DHEA, DHEAS, testosterone, SHBG, IGF-1, 
CRP) and the associated assay batch. Preliminary results are shown in Appendix 4. Across the androgens, 
only testosterone was significantly associated with risk of invasive ovarian cancer overall (RR, doubling=1.12, 
95% CI: 1.01-1.23). However, there was significant heterogeneity in the association by histology (p-het.=0.02), 
with a significant association only for endometrioid (RR, doubling=1.39; 95%CI: 1.02-1.89) and mucinous 
tumors (RR, doubling=1.29; 95% CI: 1.01-1.66). Interestingly, free testosterone and androstenedione were 
also significantly positively associated with risk of mucinous carcinoma. Conversely, IGF-1 was significantly 
inversely associated with risk of invasive ovarian cancer (RR, doubling=0.82; 95%CI: 0.73-0.93), contrary to 
our initial hypothesis. This association did not differ by histology. Further, in collaboration with Maastricht 
University, we collected data from 10 studies on peritoneal and fallopian tube cancer cases (some studies do 
not confirm these tumors and others had already provided this data) to examine risk factor associations by 
anatomic site. Further, in collaboration with colleagues at the National Cancer Institute, we are evaluating the 
role of NSAID use with risk of ovarian cancer. This has been a complex data cleaning process using data from 
18 studies (included the Women’s Health Initiative), with the following variables created for aspirin, non-aspirin 
NSAIDs (e.g., ibuprofen), and Tylenol: current use at baseline, duration of use, daily dose, and monthly 
frequency. Also, Dr. Tworoger submitted an R01 to the June 5, 2015 deadline to continue funding for the OC3, 
focusing on the area of inflammation. The grant was scored in the 27th percentile on its first submission and will 
be resubmitted March 5, 2016. The aims are in Appendix 5. 

Project Proposed by Institution Status 

Androgens and risk Fortner German Cancer 
Research Center (DKFZ) 

Approved; manuscript being 
drafted 

IGFs and risk Fortner DKFZ Approved; analysis on-going 

NSAIDs and risk Trabert National Cancer Institute 
(NCI) Approved; analysis on-going 

Endometriosis and risk Wentzensen, 
Trabert NCI Approved; incorporated into 

primary histology paper 
CRP/inflammatory factors and 
risk 

Poole, 
Tworoger BWH Approved; submitted R01, Jun 

2015 (27th percentile) 

Diabetes and risk Patel, Gapster American Cancer Society Approved; incorporated into
above R01 

OncoArray (GWAS) Wentzensen, 
Tworoger NCI/BWH Approved; genotyping 

complete, QC on-going 

Risk factors by anatomic sites Schouten Univ. of Maastricht Approved; data cleaning on-
going, final DUA negotiations 

Proportion of subtype 
associations explained 
(methods paper) 

Poole, 
Wentzensen BWH/NCI Approved; developing 

statistical approaches 

Hypertension and risk Huang BWH Approved; awaiting new data 
collection 

Exposure-wide association 
study of high-grade serous 
tumors 

Poole BWH Approved; submitting R21, 
March 2016 

Lifecourse adiposity and risk Fortner, 
Tworoger DKFZ/BWH Approved; awaiting new data 

collection 
Factors associated with long-
term survival Sood MD Anderson Approved; DOD grant 

submitted, Oct. 2015 
Telomeres in tumor tissue and 
survival Visvanathan Johns Hopkins Under review; NIH grant 

submission, early 2016 
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Alcohol and risk Phelan Moffitt Cancer Center Under review; submitting R01, 
March 2016 

Lifetime ovulatory cycles and 
risk Trabert NCI Under review 

With respect to the OC3 structure, we continue to have monthly conference calls run by the PI with the 
Steering Committee. The calls focus on discussing on-going and future collaborations or projects, and vetting 
preliminary results. Further, given the number of on-going projects, we have a bi-weekly analysis conference 
call to discuss data cleaning, next steps, and results. This meeting includes Dr. Elizabeth Poole (a junior 
faculty member working on the project) and the OC3 programmer. The OC3 has had four in-person meetings 
since the grant started, including at the 2014 Annual NCI Cohort Consortium Meeting. Our next in-person 
meeting is in November 2015 at the upcoming Cohort Consortium annual meeting.  We chose these meeting 
times because many investigators attend these associated meetings so we have very good attendance.  We 
also have developed a website for the OC3 to communicate our goals, guidelines for participation, and in the 
future, interesting findings from the study (see https://sites.google.com/a/channing.harvard.edu/oc3/?pli=1). 

KEY RESEARCH ACCOMPLISHMENTS 
Below is a list of key research accomplishments in the third year of this award. 

• Of the 14 established or putative risk factors we examined for ovarian cancer by histologic subtype, 10
risk factors had significant heterogeneity across subtypes.

• Despite having the smallest number of cases, every reproductive/hormonal factor was significantly
associated with clear cell tumors, except breastfeeding.

• While endometrioid and clear cell carcinomas had qualitatively similar associations for most risk factors
(parity, OC use, age at menopause, tubal ligation, endometriosis, height, family history of ovarian
cancer, breastfeeding),  they differed in associations related to HT use (which went in opposite
directions), family history of breast cancer and BMI (associated with endometrioid only), as well as age
at menarche, hysterectomy, and smoking (associated with clear cell only).

• Serous and poorly differentiated carcinomas, the most common and aggressive subtype, had only
modest associations for parity, OC use, menopausal HT use, and family history of breast cancer, and
stronger associations with family history of ovarian cancer. Further HT use was most strongly
associated with low-grade serous tumors. Overall, very few strong risk factors are known for high-grade
serous tumors.

• Further, supporting the need to examine associations by histology, androgen levels were only positively
associated with endometrioid and mucinous tumors, but not serous or clear cell tumors.

• In unexpected findings, IGF-1 was inversely associated with ovarian cancer risk across all subtypes.
• Most reproductive risk factors were associated preferentially with reducing risk of less aggressive

disease, but not rapidly fatal tumors. However, lifestyle factors, such as BMI and smoking, were
associated with an increased risk of rapidly fatal tumors, although this association varied by histologic
type. This suggests that examining multiple tumor characteristics simultaneously may provide additional
etiologic insight.

• Current ovarian cancer risk factors do not have strong predictive capability for identifying specific
women at high risk of ovarian cancer, although the AUC is higher for younger women. Given that
serous is the most common subtype, but has the least risk factors, it will be critical to identify new risk
factors for this type to increase predictive capacity.

CONCLUSION 

We are actively developing the OC3 infrastructure by pooling existing cohort data to better elucidate the 
biology of ovarian cancer. Scientifically, we have or will evaluate whether associations for putative ovarian 
cancer risk factors differ by tumor subtypes (histology, cell of origin, aggressiveness), as well as develop risk 
prediction models based on differing risks across subtypes. Further, we are working to develop a “base” risk 
prediction model that can be used as a comparison for assessing improvement in future work.  This will be 
beneficial to the entire ovarian cancer research community. Importantly in our initial work we observed that 
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most established or putative ovarian cancer risk factors showed heterogeneity across histologic subtypes and 
all subtypes had unique patterns of risk factor associations. Endometrioid and clear cell tumors had the 
strongest associations for many risk factors, and relatively few associations were observed for serous tumors, 
which are the most common tumor type. This suggests that risk prediction models of ovarian cancer overall will 
perform worse for serous tumors than for other types. Further, our initial results comparing risk factors for 
rapidly fatal versus less aggressive disease suggests that this construct adds biologic information beyond that 
of histology.  

Our results support that pre-diagnostic factors may influence ovarian cancer development and aggressiveness 
and that considering multiple tumor characteristics simultaneously may provide a clearer picture of disease 
etiology. Ultimately, understanding a woman’s risk profile with respect to risk of rapidly fatal versus less 
aggressive disease at diagnosis may aid in determining the most optimal treatment strategy for long term 
survival. This has several important implications for etiology and prevention of ovarian cancers. The substantial 
heterogeneity of individual risk factor associations across ovarian cancer subtypes supports the notion that the 
subtypes are indeed different diseases and that we may need to consider multiple tumor characterizations to 
adequately stratify tumors. This underscores the importance of evaluating risk factor and biomarkers 
associations in consortium settings where there is adequate sample size to provide power to assess 
associations for the more rare tumor types. The research also suggests that we need to identify new 
epidemiologic risk factors for serous tumors as the traditional factors are generally most strongly related to 
endemetrioid and clear cell tumors. Given the higher incidence of serous cancer and its poor survival rates, 
this is a critical area of future research. 

This systematic approach to address ovarian cancer heterogeneity in a large consortial effort will set new 
standards for evaluating ovarian cancer risk factors and biomarkers and thereby impact understanding of 
ovarian cancer etiology beyond the work conducted in OC3. Importantly our goal is to continue to expand the 
data repository of the OC3 by obtaining funding to include dietary factors, updated exposure data from follow-
up questionnaires, and biomarker information (both plasma/serum markers and genetics). We also are 
exploring the possibility of conducting survival analyses. With over 15 projects proposed in the OC3, the 
development of OC3 infrastructure will have substantial impact on prevention research in the years to com.  

PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS 
No publications at this time. One manuscript submitted to the Journal of Clinical Oncology and one manuscript 
under revision at the American Journal of Epidemiology.  

Two abstracts were accepted as presentations (presenter is bolded): 
1. Elizabeth M. Poole, Alan A. Arslan, Lesley M. Butler, James V. Lacey, Jr., I-Min Lee, Alpa V. Patel,

Kim Robien, Dale P. Sandler, Leo J. Schouten, V. Wendy Setiawan, Kala Visvanathan, Elisabete
Weiderpass, Emily White, Nicolas Wentzensen, Shelley S. Tworoger. Ovarian cancer risk factors by
histologic type in the Ovarian Cancer Cohort Consortium (OC3). Presented at the 2014 Annual Meeting
of the Society for Epidemiologic Research, June 2014, Seattle, WA.

2. Shelley S. Tworoger, Elizabeth M. Poole, Alan A. Arslan, Lesley M. Butler, Victoria Kirsh, James V.
Lacey, Jr., I-Min Lee, Alpa V. Patel, Kim Robien, Thomas Rohan, Dale P. Sandler, Leo J. Schouten, V.
Wendy Setiawan, Kala Visvanathan, Elisabete Weiderpass, Emily White, Nicolas Wentzensen. Ovarian
cancer risk factor associations by tumor aggressiveness in the Ovarian Cancer Cohort Consortium
(OC3). Presented at the 10th Biennial Ovarian Cancer Research Symposium sponsored by AACR and
the Marsha Rivkin Center for Ovarian Cancer Research, September 2014, Seattle, WA.

Two invited presentations to conference sessions: 
1. Elizabeth M. Poole. Ovarian cancer risk factors by histologic type in the Ovarian Cancer Cohort

Consortium (OC3). Presented at the Society for Epidemiologic Research Annual Meeting (June 2015).
Session: Reproductive Factors and Cancer Risk.
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2. Shelley S. Tworoger. Thinking outside the box: New areas in prevention research. Presented at the
AACR Advances in Ovarian Cancer Research: Exploiting Vulnerabilities (October 2015). Session:
Prevention, Screening, Early Diagnostics, and Epidemiology.

One poster presentation: 
1. Nicolas Wentzensen, Elizabeth M. Poole, Alan Arslan, Alpa Patel, V. Wendy Setiawan, Kala

Visvanathan, Elisabete Weiderpass, Emily White, Hans-Olov Adami, Louise A. Brinton, Julie Buring, 
Lesley M. Butler, Tess V. Clendenen, Renee Fortner, Susan M. Gapstur, Mia Gaudet, Patricia Hartge, 
Judith Hoffman-Bolton, Michael Jones, Vicki Kirsh, Woon-Puay Koh, James V. Lacey, Jr., I-Min Lee, 
Ulrike Peters, Jenny Poynter, Kim Robien, Thomas Rohan, Dale P. Sandler, Leo J. Schouten, Louise 
Sjohölm, Anthony Swerdlow, Britton Trabert, Lynne Wilkens, Alicja Wolk, Hannah P. Yang, Anne 
Zeleniuch-Jacquotte, Shelley S. Tworoger. Ovarian cancer risk factors by histologic subtypes: Evidence 
for etiologic heterogeneity. AACR Annual Meeting 2015 (Philadelphia, PA). 

INVENTIONS, PATENTS, AND LICENCES 
None. 

REPORTABLE OUTCOMES 
The primary reportable outcome is the development of the OC3 database, which contains data on ovarian 
cancer risk factors and outcomes from 23 cohort studies and by the end of 2015 will contain data from 1 more 
study.  This resource can be used for the analyses proposed in this grant as well as other analyses.   
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Abstract  
Introduction: Increasing evidence supports that epithelial ovarian cancer is a constellation of diseases with 
different developmental pathways. We evaluated associations of hormonal, reproductive, and lifestyle factors 
by histologic subtype in the Ovarian Cancer Cohort Consortium (OC3).   
Methods: Among over 1.3 million women from 21 studies, 5,510 invasive epithelial ovarian cancers were 
identified (3331 serous, 592 endometrioid, 334 mucinous, 269 clear cell, 984 other/unknown). Using competing 
risks Cox proportional hazards regression stratified on study and birth year and adjusted for age, parity, and 
oral contraceptive use, we assessed associations for all invasive cancers and by histology. Heterogeneity was 
evaluated by likelihood ratio test.  
Results: All hormonal/reproductive factors, except breastfeeding and age at menarche, exhibited significant 
heterogeneity by histology. Higher parity was most strongly associated with endometrioid (RR, per birth=0.79; 
95% CI=0.74-0.84) and clear cell (RR=0.67; 95%CI=0.59-0.77) carcinomas (p-het<0.0001). Similarly, age at 
menopause (positive), endometriosis (positive), and tubal ligation (inverse) were associated with endometrioid 
and clear cell tumors (p-het<0.004). Family history of breast cancer (p-het=0.008) and body mass index (p-
het=0.04) had modest heterogeneity. Smoking was associated with increased risk of mucinous (RR, per 20 
pack-years=1.26; 95% CI=1.08-1.46) but a decreased risk of clear cell tumors (RR=0.72; 95% CI=0.55-0.94) 
(p-het=0.004); height did not have evidence of heterogeneity across types.  
Discussion: Our results demonstrate heterogeneous associations of risk factors with ovarian cancer subtypes, 
emphasizing the importance of conducting etiologic studies by ovarian cancer subtypes. Most established risk 
factors were more strongly associated with non-serous carcinomas, demonstrating challenges for risk 
prediction of serous cancers, the most fatal subtype. 

Introduction 
Ovarian cancer is the most lethal gynecologic cancer, with over 152,000 deaths world-wide each year (1). Most 
ovarian cancers are detected at late stage and have a poor prognosis. Screening for ovarian cancer did not 
reduce mortality in a large US-based screening trial (2). Understanding the etiologic heterogeneity of ovarian 
cancer is critical for development of new prevention strategies. 

Although multiple carcinogenic mechanisms for ovarian tumorigenesis have been hypothesized, including 
incessant ovulation, hormonal stimulation, and chronic inflammation (3-6), the etiology of ovarian cancer is not 
well understood in part due to its heterogeneous nature. Disease subtypes have been categorized by putative 
precursor lesions, mutations, and histology (7;8). Low-grade serous, mucinous, clear cell, and endometrioid 
tumors are thought to arise from inclusion cysts or implants in the ovarian surface epithelium and have K-RAS, 
B-RAF, or P-TEN mutations. High-grade serous tumors, characterized by TP53 mutations, are thought to arise 
in the fallopian tube or ovarian epithelium, are more aggressive and have poorer outcomes than other types (7-
9). Due to limited power, individual epidemiologic studies usually have considered risk factor associations for 
all ovarian tumors together. Recently, both individual cohort studies and individual-level meta-analyses of 
primarily case-control studies have reported differential associations in some ovarian cancer subtypes for 
menopausal hormone therapy (HT) use, oral contraceptive (OC) use, parity, smoking and body mass index 
(BMI) (10-16). To establish etiologic models accounting for ovarian cancer heterogeneity, there is a need for a 
unified prospective evaluation of multiple ovarian cancer risk factors accounting for etiologic heterogeneity. We 
established the Ovarian Cancer Cohort Consortium (OC3) and evaluated associations of 14 key risk factors 
with invasive epithelial ovarian cancer risk overall and by histologic subtype based on pooled individual-level 
data from 5,510 invasive ovarian cancer cases from a combined cohort of over 1.3 million women enrolled in 
21 studies. 

Methods 
Study population 
The analysis included women participating in 21 prospective cohort studies from North America, Asia, and 
Europe (Table 1). Studies were eligible if they had prospective follow-up of ovarian cancer endpoints through 
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questionnaires, medical records or cancer registries, as well as follow-up for death. Minimal required 
information included age at study entry, OC use, and parity. All studies obtained institutional approval for 
cohort maintenance and participation in the OC3. The OC3 Data Coordinating Center and analytic approaches 
were approved by the institutional review board of the Brigham and Women’s Hospital (BWH). 

Exposure definitions 
Full baseline cohort data (19 studies) or a case-cohort dataset with weights for subcohort members (2 studies) 
were sent to BWH and were harmonized centrally. Exposures included: parity (ever vs. never, number of 
births: continuous per 1 birth, and categorical, 1, 2, 3, 4+ births), OC use (ever vs. never, duration of use: 
continuous, per 5 years of use, and categorical, never, ≤1, >1-≤5, >5-≤10, >10 years), duration of 
breastfeeding (continuous, per 1 year among parous women), age at menarche (continuous, per 1 year, and 
categorical, ≤11, 12, 13, 14, ≥15 years), age at natural menopause (postmenopausal women only: continuous, 
per 5 years, and categorical, ≤40, >40-≤45, >45-≤50, >50-≤55, >55 years), menopausal HT use (ever vs. never, 
duration of use: continuous, per 1 year, and categorical, never, ≤5, >5 years), tubal ligation (ever vs. never), 
hysterectomy (ever vs. never), endometriosis (ever vs. never), first degree family history of breast cancer (ever 
vs. never), first degree family history of ovarian cancer (ever vs. never), BMI (continuous, per 5 kg/m2, and 
categorical, <20, 20-<25, 25-<30, 30-<35, ≥35 kg/m2), height (continuous, per 0.05, and categorical, <1.60, 
1.60-<1.65, 1.65-1.70, ≥1.70 m), and smoking (ever vs. never, pack-years: continuous, per 20 pack-years, and 
categorical, never smoker, ≤10, >10-20, >20-35, >35 pack-years). Studies that did not collect information on a 
specific risk factor were excluded from the analysis of that factor (Supplemental Table 1), leading to different 
samples sizes for each variable (Supplemental Table 2). 

Outcome definitions 
Epithelial ovarian or peritoneal cancer cases were identified either through cancer registries or medical record 
review (ICD9 codes 183 and 158; ICD10 codes C56). We evaluated associations of risk factors with all 
invasive epithelial cancers combined (n=5,510). Next, we evaluated associations with the four most common 
histologic types of invasive epithelial ovarian cancers (n=4,526): serous (including tumors coded as poorly 
differentiated), endometrioid, mucinous, and clear cell. 984 cases had another histology or were missing 
histology information and were censored at diagnosis date.  

Statistical methods 
Women with a history of cancer (other than non-melanoma skin cancer), with bilateral oophorectomy prior to 
study entry, or with missing age at baseline were excluded from primary analyses. Sensitivity analyses 
included women with a prior history of cancer. We calculated hazard  ratios (HR) and 95% confidence intervals 
(95% CI) using competing risks Cox proportional hazards regression to evaluate associations between 
exposures and ovarian cancer endpoints (17). Follow-up time was time between study entry and 1) date of 
ovarian cancer diagnosis, 2) date of death, or 3) end of follow-up reported by the study, whichever occurred 
first. In primary analyses, we pooled data from all cohorts, and stratified on year of birth and cohort to account 
for potential differences in baseline hazards by these factors. Statistical heterogeneity of associations across 
subtypes was assessed via a likelihood ratio test comparing a model allowing the association for the risk factor 
of interest to vary by histology versus one not allowing the association to vary (15). We used random effects 
meta-analysis to combine cohort-specific estimates and to assess between-study heterogeneity. All models 
were adjusted for age at study entry, number of children, and duration of OC use, unless the exposure of 
interest was collinear with these factors (e.g., models of ever vs. never parous were not adjusted for number of 
children). Analysis of hysterectomy was additionally adjusted for HT use. For missing data in covariates (e.g., 
OC use, parity, and HT use), we filled in missing data with study-specific medians and included a missing 
indicator in the analysis. Women missing data on a specific exposure of interest were removed from the 
analysis of that exposure. The Sister Study was excluded from analyses of family history as all participants had 
a family history of breast or ovarian cancer. To evaluate whether minimally adjusted models (adjusted for age, 
number of births, and duration of OC use) sufficiently accounted for confounding, we performed a model 
adjusting for all exposures together. For comparison, we fit our minimally adjusted models in the subset of 
women with complete information. In 17 studies, grade was available for at least a subset of serous cases. We 
conducted similar analyses among serous tumors comparing risk factors for low (well-differentiated), moderate 
(moderately-differentiated), high (poorly-differentiated), and unknown grade. We performed unsupervised 
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hierarchical clustering of the four subtypes using beta estimates for all exposures analyzed in this study except 
for duration of breastfeeding (as this factor was not significantly associated with any of the 4 subtypes) using 
complete linkage and uncentered correlation (Pearson’s coefficient). Categories in the cluster analysis were 
ever vs. never parous, ever vs. never OC use, ever vs. never tubal ligation, ever vs. never endometriosis, age 
at menarche >15 years vs. <=11 years, age at menopause <40 years vs. 50-55 years, ever vs. never 
menopausal HT use, ever vs. never hysterectomy, family history of breast cancer (yes vs. no), family history of 
ovarian cancer (yes vs. no), BMI >35 vs. 20-25, height (per 5cm increase) and ever vs. never smoking. SAS 
9.1 was used to conduct the analyses and a p-value of <0.05 was considered statistically significant. 

Results 
Study population 
Among 1,284,090 participants (1,380,779 when considering full cohort size for case-cohort studies), 5,510 
invasive epithelial ovarian cancers were identified during follow-up. Cases included in analyses ranged from 
1,302 for breastfeeding to 5,510 for OC use (Supplemental Table 2). In total, there were 3,331 (73.6%) serous, 
592 (13.1%) endometrioid, 334 (7.4%) mucinous, and 269 (5.9%) clear cell carcinomas. Fifteen of 21 cohorts 
were based in North America, five in Europe, and one in Asia (Table 1); about half of the cohorts started 
enrollment in the 1990s. The median age at diagnosis was 66.6 years for serous, 62.0 years for endometrioid, 
63.6 years for mucinous, and 60.5 years for clear cell carcinomas.  

Associations of hormonal and reproductive factors with ovarian cancer 
Most reproductive and hormonal risk factors, except for breastfeeding and hysterectomy, were associated with 
ovarian cancer risk overall (Table 2). In subtype-specific analyses, a five year increase in duration of OC use 
was associated with significant 12-16% lower risk of serous, endometrioid, and clear cell carcinomas, but not 
with mucinous tumors (p-het=0.05). Similarly, OC use longer than 10 years was associated with a 32-50% 
reduction in risk for serous, endometrioid, and clear cell tumors.  Compared to nulliparous women, parous 
women had a reduced risk of all ovarian cancer subtypes, with significant heterogeneity by subtype (p-
het=3.71x10-9). The strongest risk reduction was observed for clear cell (RR: 0.33; 95% CI: 0.25-0.47) 
carcinomas, while serous cancers had the least risk reduction (RR: 0.79; 95% CI: 0.71-0.88). Similar patterns 
were observed among parous women for number of children (p-het=3.38x10-13).  

A 5-year later menopause was associated with endometrioid and clear cell carcinomas (RR: 1.20; 95% CI: 
1.05-1.37 and 1.36; 95% CI: 1.13-1.63, respectively), with a null association for serous (RR: 1.03; 95% CI: 
0.98-1.08) and mucinous (RR: 0.90; 95% CI: 0.76-1.06) carcinomas (p-het=0.003). Tubal ligation was only 
associated with reduced risk of endometrioid (RR: 0.63; 95% CI: 0.43-0.92) and clear cell (RR: 0.36; 95% CI: 
0.18-0.70; p-het=0.004) carcinomas, while hysterectomy was inversely associated only with clear cell 
carcinomas (RR: 0.59; 95% CI: 0.38-0.93; p-het=0.02). Similarly, self-reported endometriosis was strongly 
associated with endometrioid (RR: 2.47; 95% CI: 1.44-4.23) and clear cell carcinomas (RR: 2.63; 95% CI: 
1.37-5.03; p-het=0.03), but was not significantly associated with serous or mucinous tumors. Conversely, a 
five-year increase in use of menopausal HT was associated with an increased risk of serous (RR: 1.23; 95% 
CI: 1.19-1.27) and endometrioid (RR: 1.22; 95% CI: 1.12-1.34), but a reduced risk with clear cell (RR: 0.65; 
95% CI: 0.47-0.91; p-het=0.00005) carcinomas. There was no significant heterogeneity in associations by 
histology for duration of breastfeeding or age at menarche, although the latter was significantly inversely 
associated with clear cell carcinomas.  

Among serous tumors, most factors were not differentially associated by grade (Supplemental Table 4). 
Endometriosis was significantly associated with low-grade serous tumors (RR: 3.77; 95% CI: 1.24-11.5), but 
not high-grade serous tumors (RR: 1.11; 95% CI: 0.70-1.74; p-het=0.12). Similarly, more than 5 years of HT 
use versus never was associated with a 3-fold higher risk of low-grade serous tumors but only a 79% higher 
risk of high-grade disease, although the p-heterogeneity was not significant (p-het.=0.45). 

Associations of family history, anthropometric and lifestyle factors with ovarian cancer  
Family history of both breast and ovarian cancer and height, but not smoking or BMI were significantly 
associated with ovarian cancer risk overall (Table 3). A first degree family history of breast or ovarian cancer 
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was associated with an increased risk of serous tumors (RR, breast: 1.15; 95% CI: 1.03-1.29; RR, ovarian: RR: 
1.57; 95% CI: 1.28-1.93), with significant heterogeneity only observed for family history of breast cancer (p-
het=0.008). Family history of breast cancer was also associated with endometrioid carcinomas (RR: 1.44; 95% 
CI: 1.11-1.86). BMI was significantly positively associated with endometrioid carcinomas (RR per 5 kg/m2: 
1.09; 95% CI: 1.00-1.19); but suggestively inversely associated with serous tumors (RR: 0.96; 95% CI: 0.93-
1.00; p-het=0.04). Further, each 20 pack-years of smoking was associated with an increased risk of mucinous 
and a decreased risk of clear cell carcinomas (p-het=0.003). None of these factors were significantly 
differentially associated by grade among serous tumors (Supplemental Table 4), although family history of 
ovarian cancer was only significantly associated with high-grade (RR: 1.61, 95% CI: 1.23-2.10) but not low-
grade (RR=0.90; 95% CI: 0.22-3.71) serous tumors (p-het.=0.80). 

Results for meta-analyses were similar to the pooled analyses (Supplemental Table 3). For example, the RR 
comparing ever vs. never parous women in the meta-analysis was 0.79 for serous, 0.44 for endometrioid, 0.44 
for mucinous and 0.31 for clear cell tumors. We observed little heterogeneity in associations across studies 
(p<0.01 for only 20 of 188 comparisons). Sixteen of associations with between-study heterogeneity were for 
continuous variables, but the categorical associations did not show heterogeneity. Family history of ovarian 
cancer showed heterogeneity for all 4 subtypes across studies, but this was likely due to the small number of 
exposed cases in many of the studies. In sensitivity analyses, inclusion of women with a history of cancer at 
baseline did not change the results (data not shown). Results were similar when all exposures were included in 
the model (data not shown). 

Patterns of risk factors in histologic subtypes 
Each subtype had unique patterns of risk factor associations (Figure 1). The strongest associations for most 
risk factors were observed for endometrioid and clear cell tumors. Unsupervised clustering divided histologic 
subtypes into two major groups. Endometrioid and clear cell carcinomas had the most similar risk factor 
associations (Pearson correlation 0.72). Serous and mucinous cancers were grouped together, but showed 
more heterogeneity compared to the other two subtypes (Pearson correlation 0.30).  

Discussion 
In a large pooled analysis of over 1.3 million women, we investigated 14 established or putative risk factors for 
ovarian cancer by histologic subtype. Ten risk factors had significant heterogeneity across subtypes. Most 
reproductive and hormonal risk factors had stronger associations with endometrioid and clear cell carcinomas 
compared to the other types. Serous and poorly differentiated carcinomas, the most common and aggressive 
subtype, had modest associations for parity, OC use, menopausal HT use, and family history of breast cancer, 
and stronger associations with family history of ovarian cancer.  

Our results are consistent with reports from individual prospective studies within the OC3 (i.e., NHS/NHSII, 
AARP, and EPIC) (14-16). However, individually these were underpowered to assess subtype-specific 
associations. Previously, consortia have reported similar subtype-specific associations for individual risk 
factors, but were largely based on case-control studies (10-13;18;19).  

Models of ovarian carcinogenesis have separated epithelial ovarian cancers into major pathways with distinct 
cells of origin, different carcinogenic pathways and histology with different clinical behavior (7;9). An integrated 
evaluation of ovarian cancer risk factors by subtypes is important to understand these etiologic pathways on 
the population level. Each subtype had a qualitatively unique pattern of associations, and serous and mucinous 
carcinomas were clearly separated from endometrioid and clear cell carcinomas. While endometrioid and clear 
cell carcinomas had qualitatively similar associations for most risk factors (parity, OC use, age at menopause, 
tubal ligation, endometriosis, height, family history of ovarian cancer, breastfeeding),  they differed in 
associations related to HT use (which went in opposite directions), family history of breast cancer and BMI 
(associated with endometrioid only), as well as age at menarche, hysterectomy, and smoking (associated with 
clear cell only). Despite having the smallest number of cases, every reproductive/hormonal factor was 
significantly associated with clear cell tumors, except breastfeeding. 
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Our results further suggest that currently hypothesized, unifying mechanisms, such as incessant ovulation (3), 
do not apply equally to ovarian cancers. Several variables that determine a woman’s lifetime number of 
ovulations had significant heterogeneity across subtypes. Only parity was similarly associated with all subtypes, 
suggesting a common biologic effect (20). Notably, mucinous tumors were not associated with any ovulation-
related factors except parity, suggesting a more distinct underlying etiology.     

Ovarian cancer subtypes share some specific risk factors with other cancer sites. The inverse association 
between smoking and clear cell ovarian carcinomas is similar to the association of smoking with endometrial 
cancer (21). Mucinous ovarian cancers share histologic appearance and an association with smoking with 
colorectal cancers (22). Serous ovarian cancers had weaker associations with most hormonal and reproductive 
factors compared to non-serous cancers (with the possible exception of OC use), similar to associations 
observed for hormone receptor negative breast cancers (23). These similarities of risk factor associations 
across cancers mirror molecular data showing that tumor subtypes from different organs  may be more similar 
to each other on the molecular level compared to other subtypes at the same site (e.g., high-grade serous 
ovarian cancer and basal-like breast cancer) (24).  

While the subtype-specific associations observed in our study strongly corroborate the etiologic heterogeneity 
of ovarian cancers, a purely histology-based classification of endpoints may have limitations (25). Histologic 
evaluation is subjective and pathology practice changes over time, which could affect subtype distributions by 
location and year of diagnosis. For example, we observed the most heterogeneity between studies for 
mucinous tumors, suggesting that changes in defining mucinous tumors could have led to more variability in 
associations. However, we did not observe significant differences in subtype proportions across studies or over 
time (data not shown). We did not observe significant differences in risk factor associations by grade among 
serous tumors, our results are consistent with a prior study of endometriosis showing an increased risk for low-
grade, but not high-grade, tumors. We had relatively few low grade tumors, limiting power. Further, grade 
reported on pathology reports may not reliable (26); hence we considered moderately differentiated tumors 
separately. In general, these tumors had similar associations to high-grade tumors. Overall only 5% of serous 
tumors were low-grade, limiting potential misclassification when considering all serous tumors together (27). 
Analyses by tumor aggressiveness and tumor dominance have also shown differences in risk factor 
associations, indicating that there may be important biological heterogeneity beyond histological subtypes 
(28;29). Further, additional molecular subgroups have been described within high-grade serous ovarian 
cancers (30;31), but these subtypes have shown only limited heterogeneity in risk factor associations (32).  

In summary, we conducted the largest integrated prospective analysis of ovarian cancer risk factors to date. 
Most risk factors showed heterogeneity across histologic subtypes and each subtype had unique patterns of 
risk factor associations. Our results have important implications with respect to etiology and prevention of 
ovarian cancers. Oral contraceptives continue to be an important preventive factor for most types of ovarian 
cancer. Few other risk factors for ovarian cancer are modifiable and those that are, like smoking and obesity, 
did not show clear associations with serous carcinomas, the most common and fatal subtype. The substantial 
heterogeneity of individual risk factor associations across ovarian cancer subtypes supports that subtypes are 
indeed different diseases and underscores the importance of evaluating risk factors and biomarkers by ovarian 
cancer subtypes. Our work has implications for the development of risk prediction models, which generally 
consider ovarian cancer as a whole (33): Due to weaker associations observed for serous carcinomas, 
prediction of the clinically most important subtype may perform worse than for other types, underscoring the 
importance of finding better risk markers for serous carcinomas. Evaluation of subtype-specific risk factor and 
biomarker associations is important for better understanding of ovarian cancer etiology and for targeted 
development of novel prevention approaches; these analyses require pooling of data for rare subtypes across 
many studies in consortia.  
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Figure legends: 
Figure 1: Unsupervised hierarchical clustering of ovarian cancer histologic subtypes by their 
associations with hormonal and reproductive risk factors  

Unsupervised hierarchical clustering of the four subtypes using the beta estimates using complete linkage, and 
an uncentered correlation similarity metric. The categories used in the cluster analysis were ever vs. never 
parous, ever vs. never OC use, ever vs. never tubal ligation, age at menarche >15 years vs. <=11 years, age 
at menopause <40 years vs. 50-55 years, ever vs. never menopausal HT use, ever vs. never hysterectomy, 
family history of breast cancer (yes vs. no), family history of ovarian cancer (yes vs. no), BMI >35 vs. 20-25, 
height (per 5cm increase) and ever vs. never smoking. The color scale shows the range of beta values for 
each exposure. 
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Table 1: Characteristics of cohorts participating in the Ovarian Cancer Cohort Consortium 
Study name Study 

abbreviation 
Location Baseline 

enrollment 
period 

Baseline 
cohort 
sizea 

Median study 
participant 

age 

Median 
follow-up 

(years) 

Last year of 
follow-up 

Invasive 
ovarian 

cancer cases 
NIH-AARP Diet and Health Study AARP U.S. 1995-1997 153,084 62 11 2006 703 
Breast Cancer Detection Demonstration 
Project Follow-up Study 

BCDDP U.S. 1987-1989  36,055 61 9 1999 145 

Breakthrough Generations Study BGS UK 2001-2014 101,881 48 6 2014 75 
Canadian Study of Diet, Lifestyle, and 
Health 

CSDLH Canada 1991-1999    2,745b 58 16 2010 90 

Campaign against Cancer and Stroke CLUEII U.S. 1989 12,393 46 22 2012 82 
Cancer Prevention Study II Nutrition 
Cohort 

CPSII-NC U.S. 1992-1993 65,975 62 15 2009 549 

California Teachers Study  CTS U.S. 1995-1999 43,782 50 15 2010 185 
European Prospective Investigation into 
Cancer and Nutrition Study 

EPIC Europe 1992-2000 264,217 51 13 2010 704 

Iowa Women’s Health Study IWHS U.S. 1986 30,595 61 23 2010 268 
Multiethnic/Minority Cohort Studyc MEC U.S. 1993-1998 16,474 57 11 2011 75 
Nurses’ Health Study 1980d NHS80 U.S. 1980-1982 86,612 46 16 1998 351 

Nurses’ Health Study 1996d NHS96 U.S. 1996-1998 67,544 62 14 2010 419 
Nurses’ Health Study II NHSII U.S. 1989-1990 111,801 35 20 2011 215 
New York University Women’s Health 
Study 

NYU U.S. 1984-1991 12,431 49 24 2012 129 

Netherlands Cohort Study on diet and 
cancer 

NLCS Netherlan
ds 

1986 2,757b 62 17 2003 448 

Prostate, Lung, Colorectal and Ovarian 
Cancer Screening Trial 

PLCO U.S. 1993-2002 60,219 62 12 2009 363 

Singapore Chinese Health Study SCHS Singapore 1993-1999 31,945 56 14 2011 96 
Sister Study  SS U.S. 2003-2009 39,196 55 5 2012 39 
Swedish Mammography Cohort Study SMC Sweden 1997 33,418 60 14 2011 39 
VITamins And Lifestyle Cohort VITAL U.S. 2000-2002 28,331 60 10 2011 130 
Women's Lifestyle and Health WLHS Sweden 1991-1992 49,087 40 21 2012 201 
Women’s Health Study WHS U.S. 1993-1996 33,548 53 18 2012 204 
aAfter exclusions for baseline cancers and women with bilateral oophorectomy 
bThese cohorts were included as a case-cohort design, reflecting a total cohort population of 39,618 women for the CSDLH and 62,573 women for the NLCS. 
Appropriate weights for subcohort selection were applied in all analyses. 
cIncluding only Caucasian women.  dThe Nurses’ Health Study was broken into two study periods (1980-June 1996 and July 1996-2010) because the follow-up was 
nearly twice as long as any other study. We updated the exposures in 1996 for that follow-up period. 
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Table 2: Associationsa of hormonal and reproductive factors with invasive epithelial ovarian cancer overall and by subtypes in the Ovarian Cancer 
Cohort Consortium 

Exposure 

All invasive 
N=5510 

RR (95% CI) 

Serous 
N=3331 

RR (95% CI) 

Endometrioid 
N=592 

RR (95% CI) 

Mucinous 
N=334 

RR (95% CI) 

Clear cell 
N=269 

RR (95% CI) 

p-heterogeneity 
(between 

histologic types)b 
Parity 

Ever/never 0.68 (0.63-0.73) 0.79 (0.71-0.88) 0.48 (0.38-0.59) 0.52 (0.38-0.71) 0.33 (0.25-0.47) 3.71E-09 
Number of children, per 1 child 0.90 (0.89-0.92) 0.94 (0.91-0.96) 0.79 (0.74-0.84) 0.92 (0.83-1.01) 0.67 (0.59-0.76) 3.38E-13 
Number of children 

    0 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 

3.06E-12 
1 0.79 (0.71-0.88) 0.83 (0.71-0.96) 0.78 (0.58-1.03) 0.47 (0.29-0.78) 0.65 (0.44-0.96) 
2 0.72 (0.66-0.79) 0.84 (0.75-0.95) 0.49 (0.38-0.63) 0.56 (0.39-0.81) 0.34 (0.24-0.48) 
3 0.68 (0.62-0.74) 0.82 (0.72-0.92) 0.41 (0.31-0.54) 0.51 (0.35-0.75) 0.27 (0.17-0.40) 
4+ 0.57 (0.52-0.63) 0.69 (0.61-0.79) 0.34 (0.25-0.48) 0.53 (0.35-0.81) 0.14 (0.08-0.26) 

 Oral contraceptive use 
     Ever/never 0.84 (0.80-0.90) 0.82 (0.76-0.89) 0.89 (0.73-1.08) 1.10 (0.84-1.44) 0.79 (0.60-1.05) 0.21 

Duration of use, per 5 year increase 0.86 (0.83-0.90) 0.84 (0.80-0.89) 0.88 (0.79-0.98) 1.05 (0.92-1.21) 0.86 (0.73-1.00) 0.05 
Duration of use, years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 

0.32 
≤1  1.00 (0.90-1.11) 1.04 (0.92-1.19) 1.03 (0.76-1.39) 0.87 (0.55-1.38) 0.75 (0.46-1.23) 
>1-≤5  0.84 (0.77-0.92) 0.84 (0.75-0.94) 0.81 (0.62-1.05) 0.82 (0.55-1.22) 0.95 (0.66-1.35) 
>5-≤10 0.78 (0.70-0.87) 0.74 (0.65-0.85) 0.90 (0.67-1.20) 0.87 (0.55-1.37) 0.85 (0.55-1.30) 
>10  0.66 (0.57-0.74) 0.62 (0.52-0.73) 0.68 (0.46-0.99) 1.19 (0.74-1.91) 0.50 (0.28-0.89) 

 Duration of breastfeeding, per 1 yearc 0.96 (0.89-1.03) 0.94 (0.86-1.03) 0.85 (0.69-1.05) 0.88 (0.63-1.23) 1.03 (0.80-1.33) 0.64 

 Age at menarche 
     Per 1 year increase 0.98 (0.96-1.00) 0.99 (0.97-1.01) 0.99 (0.94-1.05) 1.02 (0.94-1.10) 0.92 (0.84-1.00) 0.33 

Age in years 
    ≤11 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 

0.58 
12 0.95 (0.87-1.03) 0.98 (0.87-1.09) 1.02 (0.79-1.32) 1.12 (0.76-1.66) 0.75 (0.51-1.10) 
13 0.94 (0.87-1.02) 1.01 (0.91-1.11) 0.88 (0.69-1.13) 1.07 (0.75-1.53) 0.80 (0.56-1.13) 
14 0.92 (0.83-1.02) 0.97 (0.85-1.10) 0.84 (0.61-1.15) 1.03 (0.65-1.62) 0.80 (0.51-1.27) 
≥15 0.87 (0.78-0.97) 0.91 (0.79-1.04) 1.02 (0.75-1.39) 1.28 (0.84-1.94) 0.56 (0.34-0.94) 

 Age at menopaused 
Per 5 year increase 1.04 (1.00-1.08) 1.03 (0.98-1.08) 1.20 (1.05-1.37) 0.90 (0.76-1.06) 1.36 (1.13-1.63) 0.003 
Age in years 

≤40 0.92 (0.79-1.07) 0.90 (0.74-1.09) 0.57 (0.33-1.00) 1.50 (0.84-2.65) 0.15 (0.03-0.74) 0.09 
>40-≤45 0.85 (0.74-0.97) 0.93 (0.78-1.10) 0.73 (0.46-1.14) 1.01 (0.54-1.88) 0.43 (0.19-0.97) 
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>45-≤50 0.94 (0.87-1.03) 0.97 (0.88-1.08) 0.81 (0.62-1.06) 1.13 (0.77-1.65) 0.89 (0.59-1.35) 
>50-≤55 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
>55 1.02 (0.88-1.18) 1.01 (0.84-1.22) 1.12 (0.71-1.76) 1.22 (0.64-2.28) 0.96 (0.45-2.03) 

 Hormone therapy used 
     Ever/never 1.40 (1.31-1.51) 1.48 (1.36-1.61) 1.72 (1.37-2.14) 1.02 (0.74-1.40) 0.90 (0.62-1.30) 0.004 

Duration of use, per 5 year increase 1.21 (1.17-1.24) 1.23 (1.19-1.27) 1.22 (1.12-1.34) 1.11 (0.96-1.30) 0.65 (0.47-0.91) 0.00005 
Duration of use, years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
0.0002 ≤5 years 1.18 (1.08-1.30) 1.26 (1.12-1.41) 1.54 (1.16-2.06) 1.08 (0.72-1.61) 0.93 (0.60-1.46) 

>5 years 1.63 (1.49-1.79) 1.83 (1.64-2.04) 1.77 (1.31-2.40) 1.14 (0.71-1.80) 0.46 (0.23-0.92) 

      Tubal ligation, ever/never 0.86 (0.76-0.97) 0.95 (0.82-1.10) 0.63 (0.43-0.92) 1.07 (0.63-1.82) 0.36 (0.18-0.70) 0.004 

Hysterectomye, ever/never 1.04 (0.96-1.12) 1.09 (0.99-1.20) 0.98 (0.77-1.25) 0.82 (0.57-1.17) 0.59 (0.38-0.93) 0.02 

Endometriosis, ever/never 1.35 (1.07-71) 1.08 (0.77-1.52) 2.47 (1.44-4.23) 1.69 (0.60-4.71) 2.63 (1.37-5.03) 0.03 
aStratified on birth year and cohort, and adjusted for age at study entry, parity, and duration of oral contraceptive use (except when parity or oral contraceptive use was the primary 
exposure of interest and then we adjusted only for the other risk factor) using pooled analyses of all cohorts combined. 
bAssessed using a likelihood ratio test comparing a Cox proportional hazards competing risks model allowing the association to vary by histologic subtype to a model forcing the 
association to be the same across subtypes. 
cParous women only. 
dPostmenopausal women only. 
eAdditionally adjusted for duration of hormone therapy use. 
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Table 3: Associationsa of family history, demographic and lifestyle factors with invasive epithelial ovarian cancer overall and by subtypes in the Ovarian 
Cancer Cohort Consortium 

Exposure 

All invasive  
N=5510 

RR (95% CI) 

Serous 
N=3331 

RR (95% CI) 

Endometrioid 
N=592 

RR (95% CI) 

Mucinous 
N=334 

RR (95% CI) 

Clear cell 
N=269 

RR (95% CI) 

p-diff 
(between 

histologic types)b 

First degree family history of breast cancer, 
ever/never 1.13 (1.03-1.23) 1.15 (1.03-1.29) 1.44 (1.11-1.86) 0.77 (0.48-1.22) 0.63 (0.35-1.09) 0.008 

 
 

     First degree family history of ovarian cancer, 
ever/never 1.46 (1.24-1.73) 1.57 (1.28-1.93) 0.98 (0.52-1.84) 1.34 (0.59-3.03) 0.96 (0.36-2.58) 0.39 

 
 

     Body mass index  
     Per 5 kg/m2 1.01 (0.98-1.04) 0.96 (0.93-1.00) 1.09 (1.00-1.19) 1.05 (0.94-1.19) 1.02 (0.91-1.15) 0.04 

In kg/m2  
     <20 1.04 (0.93-1.16) 1.09 (0.94-1.26) 0.84 (0.58-1.20) 1.47 (0.94-2.27) 0.93 (0.57-1.52) 

0.01 
20-<25 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
25-<30 0.95 (0.89-1.02) 0.90 (0.82-0.98) 0.98 (0.80-1.21) 1.60 (1.21-2.11) 1.18 (0.88-1.60) 
30-<35 0.97 (0.88-1.07) 0.91 (0.80-1.03) 1.13 (0.85-1.50) 1.22 (0.78-1.90) 0.87 (0.54-1.41) 
≥35 1.10 (0.97-1.25) 0.98 (0.83-1.15) 1.35 (0.94-1.94) 1.09 (0.57-2.11) 1.17 (0.66-2.09) 

 
 

     Height  
     Per 0.5m 1.06 (1.03-1.08) 1.05 (1.02-1.08) 1.05 (0.98-1.12) 1.03 (0.94-1.13) 1.07 (0.96-1.19) 0.96 

In meters  
     <1.60 0.89 (0.82-0.96) 0.88 (0.79-0.97) 1.01 (0.80-1.28) 0.80 (0.58-1.11) 0.91 (0.64-1.29) 

0.50 1.60-<1.65 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
1.65-<1.70 1.03 (0.96-1.11) 1.05 (0.96-1.16) 0.93 (0.73-1.19) 0.87 (0.63-1.21) 0.91 (0.64-1.30) 
≥1.70 1.11 (1.02-1.21) 1.04 (0.94-1.16) 1.22 (0.96-1.56) 1.02 (0.72-1.45) 1.22 (0.86-1.74) 

 
 

     Smoking  
     Ever/never 1.01 (0.95-1.07) 0.99 (0.92-1.07) 0.98 (0.82-1.18) 1.43 (1.11-1.84) 1.01 (0.78-1.30) 0.05 

Per 20 pack-years 1.00 (0.96-1.04) 1.02 (0.97-1.07) 0.95 (0.82-1.10) 1.26 (1.08-1.46) 0.72 (0.55-0.94) 0.003 
In pack-years  

     Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 

0.09 
≤10 1.07 (0.97-1.19) 1.04 (0.91-1.18) 1.07 (0.80-1.44) 1.34 (0.86-2.08) 0.92 (0.60-1.41) 
>10-20 1.05 (0.93-1.20) 1.06 (0.90-1.24) 0.73 (0.46-1.13) 1.70 (1.00-2.89) 1.04 (0.61-1.77) 
>20-35 1.01 (0.89-1.15) 1.06 (0.90-1.24) 0.94 (0.64-1.39) 1.34 (0.78-2.31) 0.46 (0.21-1.00) 
>35 1.03 (0.91-1.17) 1.10 (0.95-1.28) 0.98 (0.65-1.48) 1.84 (1.11-3.05) 0.46 (0.20-1.04) 

aStratified on birth year and cohort, and adjusted for age at study entry, parity, and duration of oral contraceptive use (except when parity or oral contraceptive use was the primary 
exposure of interest and then we adjusted only for the other risk factor) using a pooled analysis of all cohorts combined. 
bAssessed using a likelihood ratio test comparing a Cox proportional hazards competing risks model allowing the association to vary by histologic subtype to a model forcing the 
association to be the same across subtypes. 



22 

Supplemental Table 1. Studiesa in the Ovarian Cancer Cohort Consortium contributing to each exposure analysis 
Variable Studies 

Ever/never parous: 
AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, 
SCHS, SMC, SS, VITAL, WHS, WLHS 

Number of children (continuous or 
categorical): 

AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, SMC, 
SS, VITAL, WHS, WLHS 

Ever/never OC use: 
AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, 
SCHS, SMC, SS, VITAL, WHS, WLHS 

Duration of OC use (continuous or 
categorical): 

AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, 
SCHS, SMC, SS, VITAL, WHS, WLHS 

Duration of breastfeeding (continuous): BGS, CTS, EPIC, NHS, NHSII, SS, WLHS 
Age at menarche (continuous or 
categorical):  

AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, 
SCHS, SMC, SS, VITAL, WHS, WLHS 

Age at menopause (continuous and 
categorical):  

AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NLCS, NYU, PLCO, SCHS, SMC, 
SS, VITAL, WHS 

Ever use of HT 
AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NLCS, NYU, PLCO, SCHS, SMC, 
SS, VITAL, WHS, WLHS 

Duration of HT use (continuous and 
categorical): 

AARP, BCDDP, BGS, CPSII-NC, CSDLH, EPIC, IWHS, MEC, NHS, NLCS, NYU, PLCO, SCHS, SMC, SS, VITAL, 
WHS 

Tubal ligation: CPSII-NC, CTS, EPIC, MEC, NHS, NHSII, NLCS, NYU, PLCO, SMC, SS, VITAL, WHS 

Hysterectomy: 
AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, SCHS, 
SMC, SS, VITAL, WHS 

Endometriosis: BGS, CTS, IWHS, NHSII, PLCO, SS 

Family history of breast cancer: 
AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, 
SCHS, SMC, VITAL, WHS 

Family history of ovarian cancer: AARP, BCDDP, BGS, CLUEII, CPSII-NC, CTS, IWHS, MEC, NHS, NHSII, NLCS, PLCO, SCHS, SS, VITAL, WHS 

BMI (continuous and categorical): 
AARP, BCDDP, BGS, CLUE, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, SCHS, 
SMC, SS, VITAL, WHS, WLHS 

Height (continuous and categorical): 
AARP, BCDDP, BGS, CLUE, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, SCHS, 
SMC, SS, VITAL, WHS, WLHS 

Ever/never smoker: 
AARP, BCDDP, BGS, CLUEII, CPSII-NC, CSDLH, CTS, EPIC, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, 
SCHS, SMC, SS, VITAL, WHS, WLHS 

Pack-years of smoking (continuous and 
categorical): BCDDP, BGS, CPSII-NC, CSDLH, IWHS, MEC, NHS, NHSII, NLCS, NYU, PLCO, SCHS, SMC, SS, VITAL, WHS 
aStudy abbreviations can be found in Table 1 
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Supplemental Table 2. Number of invasive epithelial ovarian cancer cases overall and by histologic subtype for each exposure 
Case numbers for each exposure Serous Endometrioid Mucinous Clear cell All Invasive 
Parity 

     Ever/never 3248 582 321 254 5352 
Number of children (continuous or categorical) 3208 568 303 238 5273 

Oral contraceptive use 
     Ever/never 3331 592 334 269 5510 

Duration of use (continuous or categorical) 3198 567 314 259 5271 
Duration of breastfeeding 827 157 69 64 1302 
Age at menarche (continuous or categorical) 3283 587 329 267 5417 
Age at menopause (postmenopausal only; continuous or categorical) 2124 337 208 132 3449 
HT use (postmenopausal only) 

     Ever/never 2557 392 228 149 4243 
Duration of use (continuous or categorical) 2335 333 217 136 3726 

Tubal ligation 2337 420 214 193 3848 
Hysterectomy 3287 582 326 258 5412 
Endometriosis 806 146 70 82 1391 
First degree family history of breast cancer 3219 571 319 258 5309 
First degree family history of ovarian cancer 2649 462 242 206 4347 
Body mass index (continuous or categorical) 3186 563 321 262 5281 
Height (continuous or categorical) 3227 577 324 267 5357 
Smoking 

     Ever/never 3284 589 330 268 5440 
Pack-years(continuous or categorical) 2158 379 217 187 4520 
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Supplemental Table 3. Associationsa of risk factors with ovarian cancer subtypes based on meta-analysis pooling the results of individual studies in the 
Ovarian Cancer Cohort Consortium 
Exposure Serous Endometrioid Mucinous Clear cell 
Parity 

    Ever/never 0.79 (0.71-0.87) 0.44 (0.34-0.55) 0.44 (0.31-0.63) 0.31 (0.23-0.42) 
Number of children, per 1 child 0.93 (0.91-0.96) 0.81 (0.71-0.92)b 0.86 (0.75-0.97)b 0.59 (0.49-0.72)b 
Number of children 

    0 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
1 0.85 (0.72-1.00) 0.78 (0.57-1.07) 0.63 (0.40-0.99) 0.57 (0.35-0.92) 
2 0.84 (0.75-0.95) 0.49 (0.39-0.63) 0.55 (0.40-0.78) 0.38 (0.24-0.59) 
3 0.81 (0.71-0.91) 0.44 (0.34-0.57) 0.48 (0.30-0.77) 0.30 (0.18-0.51) 
4+ 0.69 (0.60-0.80) 0.34 (0.23-0.48) 0.55 (0.38-0.80) 0.35 (0.14-0.85) 
          
Oral contraceptive use 

    Ever/never 0.83 (0.76-0.90) 0.88 (0.72-1.07) 1.11 (0.85-1.46) 0.76 (0.54-1.06) 
Duration of use, per 5 year increase 0.85 (0.79-0.91) 0.90 (0.77-1.04) 1.23 (0.91-1.65)b 0.96 (0.82-1.11) 
Duration of use, years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
≤1  1.06 (0.92-1.22) 1.17 (0.84-1.63) 1.09 (0.69-1.74) 1.36 (0.79-2.35) 
>1-≤5  0.88 (0.78-0.99) 0.92 (0.70-1.21) 1.12 (0.70-1.78) 1.39 (0.83-2.33) 
>5-≤10  0.81 (0.69-0.94) 0.95 (0.70-1.28) 1.36 (0.88-2.11) 1.11 (0.67-1.83)  
>10  0.67 (0.56-0.81) 0.78 (0.46-1.31) 1.56 (0.94-2.59) 0.75 (0.32-1.74) 
          
Duration of breastfeeding, per 1 yearc 1.01 (0.87-1.18)b 0.93 (0.78-1.11) 0.94 (0.68-1.31) 1.13 (0.93-1.36) 
          
Age at menarche 

    Per 1 year increase 0.99 (0.96-1.02) 1.02 (0.97-1.08) 1.08 (0.96-1.22)b 0.96 (0.91-1.02) 
Age in years 

    ≤11 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
12 0.96 (0.82-1.14) 0.95 (0.72-1.25) 1.16 (0.73-1.84) 0.77 (0.49-1.20) 
13 1.02 (0.92-1.13) 0.94 (0.71-1.24) 1.07 (0.73-1.57) 0.83 (0.44-1.59)  
14 0.98 (0.85-1.13) 0.84 (0.59-1.19) 1.07 (0.63-1.80) 0.77 (0.45-1.32) 
≥15 0.92 (0.77-1.10) 1.00 (0.70-1.42) 1.50 (0.90-2.48) 0.75 (0.39-1.42) 
          
Age at menopause 

    Per 5 year increase 1.04 (0.99-1.09) 1.39 (1.02-1.89)b 1.07 (0.78-1.47)b 2.06 (1.38-3.08)b 
Age in years 

    ≤40 0.99 (0.81-1.21) 0.81 (0.46-1.40) 2.00 (0. 67-5.29) 0.64 (0.14-2.89) 
>40-≤45 0.95 (0.79-1.13) 0.96 (0.64-1.44) 1.23 (0.74-2.03) 1.06 (0.35-3.22) 
>45-≤50 0.97 (0.87-1.08) 0.79 (0.59-1.05) 1.18 (0.85-1.63) 1.02 (0.65-1.59) 
>50-≤55 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
>55 1.06 (0.88-1.28) 1.17 (0.76-1.80) 2.03 (0.96-4.27) 2.00 (0.91-4.38) 
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HT used 
  Ever/never 1.47 (1.34-1.61) 1.84 (1.44-2.36) 1.08 (0.77-1.50) 0.94 (0.57-1.55) 

Duration of use, per 5 year increase 1.24 (1.18-1.31) 1.30 (1.13-1.49) 1.21 (0.93-1.58) 0.49 (0.28-0.84)b 
Duration of use, years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
≤5  1.27 (1.13-1.42) 1.86 (1.31-2.64) 1.23 (0.81-1.88) 1.08 (0.61-1.90) 
>5  1.85 (1.65-2.07) 2.22 (1.46-3.38) 1.53 (0.93-2.53) 0.95 (0.80-1.13) 
  
Tubal ligation, ever/never 0.98 (0.82-1.17) 0.80 (0.53-1.19) 1.43 (0.80-2.56) 0.63 (0.27-1.46) 

Hysterectomy, ever/nevere 1.04 (0.92-1.17) 1.20 (0.71-2.02)b 0.87 (0.60-1.27) 0.87 (0.53-1.44) 
   
Endometriosis, yes/no 1.14 (0.81-1.61) 2.84 (1.56-5.18) 5.09 (1.54-16.9) 3.44 (1.52-7.79) 

First degree family history of breast cancer, yes/no 1.21 (1.04-1.41) 1.54 (1.19-2.00) 1.13 (0.70-1.81) 1.04 (0.59-1.84) 
     
First degree family history of ovarian cancer, yes/no 0.97 (0.35-2.71)b 0.26 (0.00-16.8)b 0.01 (0.00-6.61)b 0.04 (0.00-8.57)b 
    
Body mass index 

   Per 5 kg/m2 0.97 (0.93-1.01) 1.00 (0.87-1.15)b 1.06 (0.89-1.26)b 0.95 (0.82-1.10)b 
In kg/m2 

    <20 1.11 (0.97-1.29) 1.14 (0.78-1.65) 1.77 (1.17-2.67) 1.34 (0.81-2.23) 
20-<25 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
25-<30 0.92 (0.82-1.03) 1.02 (0.82-1.26) 1.68 (1.26-2.25) 1.30 (0.95-1.77) 
30-<35 0.93 (0.82-1.05) 1.35 (1.00-1.81) 1.95 (1.23-3.10) 1.59 (0.93-2.73) 
≥35 1.05 (0.82-1.35) 1.75 (1.21-2.54) 1.96 (0.96-4.03) 2.08 (1.07-4.06) 
     
Height 

    Per 0.5m 1.05 (1.02-1.08) 1.04 (0.97-1.12) 1.07 (0.95-1.20)b 1.12 (1.07-1.17) 
In meters 

    <1.60 0.88 (0.80-0.98) 1.03 (0.82-1.30) 0.91 (0.64-1.29) 0.96 (0.66-1.39) 
1.60-<1.65 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
1.65-<1.70 1.06 (0.94-1.20) 1.01 (0.80-1.26) 0.95 (0.70-1.27) 0.92 (0.62-1.35) 
≥1.70 1.04 (0.93-1.16) 1.20 (0.93-1.55) 1.02 (0.75-1.38) 1.19 (0.81-1.75) 
     
Smoking 

    Ever/never 1.02 (0.91-1.13) 1.02 (0.85-1.22) 1.37 (1.06-1.78) 0.95 (0.71-1.27) 
Continuous pack-years, per 20 pack-years 1.05 (0.98-1.12) 1.00 (0.87-1.16) 0.77 (0.48-1.22)b 0.62 (0.34-1.13)b 
Categorical pack-years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
≤10 1.10 (0.96-1.25) 1.25 (0.93-1.69) 1.46 (0.93-2.30) 0.99 (0.61-1.61) 
>10-20 1.08 (0.91-1.28) 0.87 (0.55-1.39) 1.21 (0.79-1.84) 1.27 (0.67-2.41) 
>20-35 1.15 (0.98-1.35) 1.20 (0.79-1.81) 1.43 (0.88-2.32) 0.81 (0.34-1.95) 
>35 1.11 (0.93-1.32) 1.18 (0.76-1.83) 1.58 (0.83-3.02) 0.98 (0.40-2.40) 
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aStratified on birth year, and adjusted for age at study entry, parity, and duration of oral contraceptive use (except when parity or oral contraceptive use was the primary exposure 
of interest and then we adjusted only for the other risk factor). 
bMeta-analysis p-heterogeneity across studies <0.01 using the q-statistic from a random-effects meta-analysis.  
cParous women only. 
dPostmenopausal women only. 
eAdditionally adjusted for duration of hormone therapy use. 

Supplemental Table 4. Associationsa of risk factors with among serous ovarian carcinomas by grade in the Ovarian Cancer Cohort Consortium 

Exposure 
Well-

differentiatedb 
Moderately-

differentiated 
Poorly-

differentiated 
Unknown 

grade p-het.c

Parity 
  Ever/never 0.72 (0.43-1.21) 0.78 (0.60-1.02) 0.82 (0.71-0.96) 0.83 (0.67-1.04) 0.12 

Number of children, per 1 child 0.90 (0.80-1.02) 0.89 (0.84-0.95) 0.93 (0.91-0.96) 0.96 (0. 19-1.00) 0.33 
Number of children 

    0 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
1 0.71 (0.33-1.52) 0.90 (0.62-1.30) 0.86 (0.70-1.07) 0.87 (0.64-1.18) 
2 0.79 (0.44-1.42) 0.86 (0.64-1.16) 0.87 (0.74-1.03) 0.84 (0.65-1.07) 0.65 
3 0.82 (0.46-1.47) 0.71 (0.52-0.99) 0.87 (0.73-1.03) 0.84 (0.65-1.07) 
4+ 0.45 (0.22-0.94) 0.66 (0.47-0.93) 0.67 (0.55-0.80) 0.84 (0.64-1.09) 

Oral contraceptive use 
 Ever/never 1.16 (0.74-1.82) 0.78 (0.63-0.96) 0.85 (0.76-0.96) 0.81 (0.69-0.95) 0.38 

Duration of use, per 5 year increase 0.79 (0.62-1.02) 0.81 (0.72-0.92) 0.90 (0.84-0.96) 0.79 (0.71-0.89) 0.18 
Duration of use, years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
≤1  1.89 (1.01-3.54) 0.96 (0.67-1.38) 1.04 (0.67-1.24) 0.99 (0.76-1.29) 
>1-≤5  1.05 (0.60-1.86) 0.89 (0.67-1.19) 0.83 (0.71-0.97) 0.89 (0.71-1.11) 0.36 
>5-≤10  0.98 (0.50-1.94) 0.83 (0.60-1.16) 0.77 (0.64-0.93) 0.62 (0.46-0.84) 
>10  0.60 (0.23-1.54) 0.44 (0.27-0.73) 0.75 (0.60-0.94) 0.51 (0.35-0.75) 

Duration of breastfeeding, per 1 yeard 1.06 (0.68-1.66) 0.93 (0.74-1.15) 0.95 (0.83-1.08) 0.89 (0.74-1.08) 0.86 

Age at menarche 
 Per 1 year increase 1.02 (0.91-1.14) 1.00 (0.94-1.06) 1.00 (0.97-1.03) 0.95 (0.90-0.98) 0.24 

Age in years 
    ≤11 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 

12 1.20 (0.65-2.19) 0.93 (0.70-1.26) 1.06 (0.90-1.24) 0.86 (0.69-1.06) 
13 1.30 (0.78-2.18) 0.97 (0.75-1.26) 1.12 (0.97-1.28) 0.78 (0.64-0.95) 0.12 
14 1.17 (0.58-2.32) 0.76 (0.53-1.09) 1.14 (0.96-1.37) 0.78 (0.60-1.01) 
≥15 1.01 (0.47-2.14) 1.09 (0.78-1.52) 0.87 (0.71-1.07) 0.77 (0.59-1.01) 
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Age at menopause 
 Per 5 year increase 1.50 (1.19-1.87) 1.03 (0.92-1.16) 1.04 (0.97-1.11) 1.02 (0.92-1.13) 0.10 

Age in years 
    ≤45 0.23 (0.08-0.64) 0.95 (0.67-1.35) 0.91 (0.76-1.09) 0.95 (0.72-1.26) 

>45-≤50 0.46 (0.25-0.83) 1.14 (0.86-1.50) 0.96 (0.83-1.11) 1.04 (0.83-1.29) 0.05 
>50-≤55 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
>55 0.29 (0.07-1.18) 1.19 (0.74-1.92) 0.99 (0.77-1.28) 1.22 (0.85-1.77) 

HT usee 
 Ever/never 1.81 (1.13-2.91) 1.68 (1.33-2.11) 1.49 (1.33-1.68) 1.29 (1.08-1.54) 0.25 

Duration of use, per 5 year increase 1.35 (1.19-1.53) 1.27 (1.18-1.37) 1.21 (1.16-1.27) 1.22 (1.14-1.31) 0.54 
Duration of use, years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
≤5  1.32 (0.69-2.54) 1.39 (1.02-1.89) 1.25 (1.07-1.46) 1.15 (1.07-1.45) 0.45 
>5  3.01 (1.75-5.17) 2.19 (1.65-2.91) 1.79 (1.54-2.06) 1.66 (1.33-2.07) 

Tubal ligation, ever/never 1.26 (0.67-2.39) 1.07 (0.72-1.60) 0.93 (0.77-1.12) 0.62 (0.44-0.89) 0.11 

Hysterectomy, ever/neverf 0.88 (0.53-1.46) 1.15 (0.91-1.46) 1.04 (0.92-1.19) 1.07 (0.89-1.28) 0.79 

Endometriosis, yes/no 3.77 (1.24-11.5) 1.54 (0.72-3.30) 1.11 (0.70-1.74) 0.57 (0.18-1.80) 0.12 

First degree family history of breast cancer, yes/no 1.24 (0.70-2.21) 1.24 (0.94-1.67) 1.13 (0.97-1.32) 1.13 (0.97-1.32) 0.74 

First degree family history of ovarian cancer, yes/no 0.90 (0.22-3.71) 1.35 (0.76-2.41) 1.61 (1.23-2.10) 1.58 (1.04-2.40) 0.80 

Body mass index 
 Per 5 kg/m2 0.88 (0.71-1.11) 0.97 (0.88-1.06) 0.92 (0.87-0.97) 1.04 (0.96-1.13) 0.06 

In kg/m2 
    <20 1.36 (0.69-2.69) 0.84 (0.55-1.28) 1.16 (0.96-1.41) 1.15 (0.85-1.55) 

20-<25 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
25-<30 0.95 (0.60-1.52) 1.04 (0.83-1.29) 0.83 (0.73-1.29) 0.87 (0.73-1.04) 0.52 
30-<35 0.80 (0.40-1. 95) 0.93 (0.68-1.27) 0.85 (0.71-1.00) 1.00 (0.79-1.28) 
≥35 0.98 (0.41-2.32) 0.85 (0.54-1.35) 0.89 (0.71-1.11) 1.22 (0.90-1.67) 

Height 
    Per 0.5m 1.07 (0.94-1.21) 1.04 (0.97-1.12) 1.07 (1.03-1.11) 1.02 (0.96-1.08) 0.53 
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In meters 
    <1.60 0.93 (0.53-12.60) 0.95 (0.73-1.22) 0.80 (0.70-0.93) 1.00 (0.82-1.22) 

1.60-<1.65 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 0.55 
1.65-<1.70 1.38 (0.84-2.29) 0.99 (0.77-1.28) 1.03 (0.90-1.18) 1.15 (0.94-1.40) 
≥1.70 1.14 (0.64-2.04) 1.06 (0.80-1.41) 1.04 (0.90-1.21) 0.95 (0.75-1.21) 

Smoking 
    Ever/never 1.14 (0.87-1.49) 0.96 (0.83-1.10) 0.95 (0.89-1.17) 1.05 (0.94-1.17) 0.30 

Continuous pack-years, per 20 pack-years 0.90 (0.61-1.33) 1.00 (0.87-1.16) 0.99 (0.93-1.06) 1.08 (0.98-1.20) 0.50 
Categorical pack-years 

    Never 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 
≤20 1.21 (0.67-2.22) 1.01 (0.75-1.39) 1.06 (0.92-1.23) 1.05 (0.82-1.34) 0.95 
>20 0.82 (0.37-1.78) 1.03 (0.74-1.43) 1.06 (0.90-1.24) 1.15 (0.90-1.48) 
aStratified on birth year and cohort, and adjusted for age at study entry, parity, and duration of oral contraceptive use (except when parity or oral contraceptive use was the primary 
exposure of interest and then we adjusted only for the other risk factor) using pooled analyses of all cohorts combined. Excluding 5 cohorts with no information on grade for any 
ovarian cancer cases. 
bNumber of cases ranges from 29 (breastfeeding)-125 (OC use) for well-differentiated, 114 (Endometriosis)-505 (OC use) for moderately-differentiated, 343 (breastfeeding)-1669 
(OC use) for poorly-differentiated, and 141 (endometriosis)-790 (OC use) for unknown grade.  
cAssessed using a likelihood ratio test comparing a Cox proportional hazards competing risks model allowing the association to vary by grade to a model forcing the association to 
be the same across grades. 
dParous women only. 
ePostmenopausal women only. 
fAdditionally adjusted for duration of hormone therapy use. 
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Appendix 2: Revised, submitted manuscript outlining the methods for risk prediction 
modeling in the Ovarian Cancer Association Consortium that are being applied to the 
OC3 
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ABSTRACT 

 
Previously developed models for predicting absolute risk of invasive epithelial ovarian 

cancer have considered a limited number of risk factors and have low discriminatory power 
(area under the receiver operating characteristic curve, AUCs<0.60). As such, we developed 
and internally validated a relative risk prediction model that incorporates 17 established 
epidemiological risk factors and 17 genome-wide significant single nucleotide polymorphisms 
(SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 
controls) from the Ovarian Cancer Association Consortium. We developed a hierarchical logistic 
regression model for predicting case-control status that included imputation of missing data. We 
randomly divided the data into an 80% training sample and used the remaining 20% for model 
evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed 
similarly (AUC=0.649).  Both models performed better than a baseline model with age and study 
site only (AUC=0.563). The best predictive power was obtained in the full model among women 
under 50 years of age (AUC=0.714), however, the addition of SNPs increased the AUC the 
most for women over 50 (AUC = 0.638 versus 0.616).  Adapting this improved model to 
estimate absolute risk and evaluating it in prospective datasets is warranted. 

Introduction 
Almost 22,000 new cases of ovarian cancer and 14,270 deaths from ovarian cancer were 
expected in 2014, accounting for 5% of cancer deaths among women; most (85-90%) are 
epithelial (1). The five-year survival for localized ovarian cancer is 92%, but most cases are 
diagnosed at a distant stage when the five-year survival is only 27% (2). Epithelial ovarian 
cancer (EOC) has no specific symptoms, and no screening or early detection measures have 
been adopted clinically, making disease prevention and identification of high-risk women key to 
reducing mortality (1). 

Risk prediction models can provide objective estimates for use in clinical decision-
making, identification of highest-risk individuals who can benefit from preventive measures, 
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development of preventive intervention studies at the population level, and creation of risk-
benefit indices (3). EOC risk prediction is challenging due to its rarity and the modest effects of 
most known risk factors, although several well-established risk factors have been identified. Oral 
contraceptive (OC) use (4), parity (5), and tubal ligation (6, 7) are inversely associated with risk 
of EOC; family history of breast or ovarian cancer is positively associated with risk (8). Older 
age at menarche and menopausal hormone therapy (MHT) (particularly estrogen only therapy)  
have been associated with increased risk of EOC while breastfeeding and hysterectomy have 
been associated with decreased risk, in some, but not all, studies (6, 9-16). Although reports 
have been inconsistent, a recent report of 12 population-based case-control studies concluded 
that aspirin use was associated with reduced EOC risk (17). Further, endometriosis has been 
associated with risk of low-grade serous, endometrioid, and clear cell EOC (18, 19). 

EOC risk prediction models generally have low discrimination (area under the curve 
(AUC) <0.60), which may be partly due to exclusion of women who reported premenopausal 
hysterectomy (with or without unilateral oophorectomy), incomplete inclusion of risk factors (e.g., 
tubal ligation), or prediction in specific sub-populations (e.g., at time of hysterectomy or women 
with symptoms) (20-25). Although some existing risk prediction models specifically address risk 
among BRCA1 and BRCA2 mutation carriers (26, 27), these mutations are rare in the general 
population; prior models for women of average risk have not considered genetic susceptibility. 
With 17 confirmed genetic susceptibility variants reported for EOC (28-34), our objective was to 
develop and internally validate a relative risk prediction model for invasive EOC among women 
of average risk that incorporated all established and strongly probable epidemiologic risk 
factorsand genetic susceptibility data from 11 case-control studies in the United States (US) that 
are members of the Ovarian Cancer Association Consortium (OCAC).  

METHODS 
Study populations and inclusion criteria 

The analysis included 11 US-based case-control studies in the OCAC (Table 1) (14, 35-
45). All studies were population-based, with the exception of the MAY study, which was clinic-
based; MAY controls were women attending the Mayo Clinic’s Departments of Family Medicine 
and General Internal Medicine for general medical exams. All studies had ethics board approval 
and obtained written informed consent. Data were included for women who were 30 years of 
age or older at diagnosis (cases) or interview/reference date (controls), had no prior history of 
cancer (except non-melanoma skin cancer), and self-identified as white, non-Hispanic; most 
women were confirmed to be of European ancestry by genetic analysis. Controls had to have at 
least one intact ovary and cases were limited to invasive EOC. Most cases (81%) were recruited 
within one year of diagnosis. After exclusions, the analysis included data from 5,793 invasive 
EOC case patients and 9,512 controls. We randomly sampled 80% of the participants 
(n=12,244) for estimation and model building; the remaining 20% (n=3,061) were retained for 
independent validation. 

Risk factor data 
Data from each study on known and suspected risk factors, and demographic and 

clinical variables, were submitted to the OCAC data coordination center at Duke, where 
common coding schemes were applied; data were originally collected via questionnaire. The 
following risk factors were available in the majority of studies: age at menarche (continuous 
years); OC use (ever/never); duration of OC use (continuous months); aspirin use (low dose, 
high dose, or irregular/no use); number of full term pregnancies (continuous), number of non-full 
term pregnancies (continuous variable; derived by subtracting parity from number of 
pregnancies); breastfeeding status (ever/never); duration of breastfeeding (continuous months); 
age at end of last pregnancy (continuous years); tubal ligation (yes/no); hysterectomy more than 
1 year prior to diagnosis (cases) or interview/reference age (controls) (yes/no); endometriosis 
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(yes/no); body mass index (BMI) within five years of diagnosis/interview; menopause status at 
diagnosis (cases) or interview/reference age (controls) (pre-/post-menopausal); MHT use 
(ever/never); type of MHT (unopposed estrogen replacement therapy only/all other MHT use); 
history of breast cancer in a first degree relative (yes/no); and history of ovarian cancer in a first 
degree relative (yes/no). We considered additional potential risk factors (e.g., non-steroidal anti-
inflammatory drug use (NSAIDs), age at tubal ligation) that were ultimately not included 
because they were not significant predictors of EOC in preliminary models and were missing 
from a large percentage of participants. Due to frequency matching, age was included in all 
models to avoid bias (46). 

Genetic susceptibility data 
The OCAC evaluated 23,239 SNPs in 43 individual studies that were grouped into 34 

case-control strata; two previous genome-wide association studies (GWAS) informed the 
OCAC-specific SNP selection for the Collaborative Oncological Gene-environment Study 
(COGS) (34). Analysis of the GWAS and COGS genotype data identified and confirmed 17 
susceptibility loci (Supplemental Table 1) (28-34) that are included in our risk prediction model. 
Some, but not all, participants from the studies in our analysis contributed to the GWAS (MAY, 
NCO, NEC) and COGS (all studies except CON) genotyping efforts, requiring imputation of 
missing SNPS for the remaining women. 

Statistical Analysis 
We used generalized additive models (GAMs) (R package mgcv) (47-49) with random 

effects for study site, fixed effects for categorical variables and SNPs, and smooth non-
parametric functions for continuous variables as part of exploratory model fitting using subjects 
with complete data. Some evidence supports that risk factor associations may vary by 
menopausal status (50). However, because age at menopause was missing from 59% of the 
post-menopausal women and is difficult to determine for some women due to premenopausal 
hysterectomy and hormone use, we fit separate models for women under 50 years of age and 
women 50 years and older. The GAMs suggested that nonlinear functions of the continuous 
variables could be approximated with linear functions of the variables (p > 0.05) with the 
exception of OC duration. The square root of OC duration did not produce a significant increase 
in the deviance over using the spline terms (p = 0.2265), while a linear term for OC duration was 
rejected (p=0.0114). We retained linear terms with the original continuous variables except for 
OC duration, which used the square root transformation. 

All risk factors except age had some missing data; 80% of the participants were missing 
information on at least one risk factor (Table 2). Rather than limit analysis to participants with 
complete data or drop risk factors from the model, we developed a Bayesian model (51) that 
provided a coherent sequence of conditional models for case-control status, the risk factors, and 
indicators of whether they are missing (in the case of data not missing at random) (52); missing 
risk factors and indicators were modeled as functions of other risk covariates as well as 
education level, smoking status, and alcohol use (Table 3). The joint model specification for the 
risk factors and ovarian cancer status allowed all observed data to be incorporated and 
simultaneous inference for model parameters and missing data via Markov Chain Monte Carlo 
(MCMC) using JAGS (53). The increased sample size obtained by using participants with partial 
information can increase power, while the multiple imputations through MCMC provide valid 
confidence intervals for statistical inference by addressing uncertainty in the missing values and 
reducing bias induced by complete case analyses when data are not missing at random (54). 

The first stage Bernoulli models expressed the log odds of the probability of EOC (!_!) 
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for the two groups (denoted by g) via a generalized linear mixed model with random effects for 
the 11 studies to account for differential baseline odds due to study design: 

(ii) 

 random effects to account for birth cohort (c): 

(iii) β j , ci
g ~

ind
N(β j

g ,σ j
2 )

for the six hormonally-related covariates Z (i.e., indicator of OC use, square root of OC duration, 
indicator of MHT use, indicator of type of MHT usage, interaction of the indicator of 
hysterectomy with MHT use and type of MHT use) to allow potential birth year differences due 
to formulation changes, and finally fixed effects for the remaining risk factors in X in each group 
(17 epidemiological risk factors and the 17 SNPs). All of the group specific means, , for 
random effects and fixed effect coefficients for the other exposures were given independent 
normal prior distributions, with a mean  and a prior standard deviation of one, reflecting the 

expectation that population log odds ratios (log ORs) should be well within plus or minus 2 
based on prior estimates and standard deviations from the literature. For the 17 SNPs, we used 
informative prior distributions based on log ORs from the GWAS and COGS samples 
independent from the 11 studies included in model development (Supplemental Table 2). The 
hierarchical formulation allows coefficients to “shrink” to common coefficients across sites, 
cohorts and age groups if significant variation is not present, but provides flexibility to account 
for differences among groups while avoiding issues of multiple testing. Distributions for the 
missing data models are given in Table 3. For example, missing SNPs were modeled using a 
multinomial model with the probabilities for the number of rare alleles given an informative 
Dirichlet prior distribution centered at genotype probabilities under Hardy-Weinberg and a mass 
parameter in the Dirichlet equivalent to 1000 observations; genotype probabilities were 
calculated using the Minor Allele Frequencies (MAF) taken from GWAS and COGS samples 
from OCAC not used in this analysis (Supplemental Table 2). Combined with genotype data, 
other risk variables, and case-control status, missing SNPs were generated using their 
respective predictive distributions given the observed data and values of parameters at each 
iteration in the Markov chain. 

Models with and without the SNPs were fit to the training data (random sample of 80%) 
and used to predict case-control status on the validation data (remaining 20%). Inference was 
based on 70,000 iterations of the MCMC algorithm. The first 20,000 iterations were used to 
assess convergence of the MCMC and the last 50,000 were used for inference with the training 
data and predictions in the validation set. Point estimates of log ORs were estimated by the 
median of the samples from the posterior distribution of each of the parameters; (Bayesian) 
95% confidence intervals (CI) were obtained by taking the 2.5th percentile and 97.5th percentile 
of the estimated posterior distribution for each parameter (55). Predictions for each participant in 
the training data were based on the mean of the posterior predictive distribution which was 
estimated using the Monte Carlo average over posterior draws of missing predictors and 
parameters in equation (i). For comparison, we also fit a model adjusting for study site and age 
only (baseline model), and study site, age, and SNPs, omitting the epidemiological risk factors. 

Model validation 
We compared the models with and without SNPs, and with and without the 

epidemiological variables, on the basis of their overall discriminatory accuracy and calibration in 
the independent validation data. We evaluated the discriminatory accuracy of the risk prediction 
models using the AUC from the receiver operating characteristics (ROC) curve. Predictive 
performance on the validation set was also assessed using calibration plots that compared the 
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predicted risk (score) from the model to the observed proportions across groups defined by 
study sites, birth cohorts, age, and number of pregnancies. 

RESULTS 
The training set had 4,662 cases and 7,586 controls; the evaluation set had 1,131 cases 

and 1,926 controls (Table 2). Women averaged 57 years of age. As expected, in both the 
training and evaluation sets, case patients were less likely to use OCs, have been pregnant, 
and have a tubal ligation than controls and more likely to have a family history of breast or 
ovarian cancer and use MHT. The distribution of SNPs was similar to those observed in the 
larger GWAS and COGs datasets. 

Table 4 provides estimates of the log ORs (medians) and 95% Bayesian CIs for the 
group-specific coefficients from the hierarchical logistic regression model with the 17 SNPs; 
estimates from the model without the 17 SNPs were similar (Supplemental Table 3). Most of the 
epidemiological risk factors included in the model were statistically significant predictors among 
women under 50, however, in general, the directions of associations were comparable across 
groups. Notably, some associations were weaker among older women compared to the younger 
women, including duration of OC use, number of pregnancies and breastfeeding, family history 
of breast or ovarian cancers, endometriosis, tubal ligation, MHT use and type, and hysterectomy, 
while low-dose aspirin use showed a significant protective effect in women age 50 and older. 
Furthermore more of the SNPs were statistically significant for women age 50 and older, which 
represent the majority of women in this study. Endometriosis, duration of OC use, tubal ligation, 
family history of breast and ovarian cancer, number of non-full term pregnancies, rs2072590, 
rs10088218 in 8q24, rs9303542, rs7651446 in 5p15, rs3814113,  rs56318008,  and rs183211  
contributed significantly to all of the group-specific models. 

The AUC for models for all women, women under 50, and women 50 and over, for the 
models without and with SNPs are shown in Figures 1A and 1B, respectively; the inclusion of 
the SNPs provided a small improvement (0.015 change in the AUC) in predictions for the 
validation data in terms of AUC for all women, with the biggest improvement for women 50 and 
over (0.026 increase). Among all women, the AUC was 0.664 with SNPs and 0.649 without 
SNPs (but including epidemiological factors), which is a marked improvement over the AUC for 
the models with age and study site alone (AUC=0.563) and for age, study site, and the 17 SNPs 
(AUC=0.600) (Table 5). The posterior probability that the AUC for the full model with SNPs and 
epidemiological factors is better than the AUC for the model with age, study site, and SNPs 
alone was 99.8%, while there was a 70% chance that the addition of SNPs improved AUC over 
the model with age, study site, and epidemiological factors. The best predictive power was 
obtained for women under 50: AUC=0.714 and 0.713 in the models with and without the SNPs, 
respectively. Lower AUCs were observed in women 50 and over (0.638 with SNPs and 0.612 
without SNPs).  Finally for comparison, we generated a target ROC curve with an AUC of 0.75 
for a widely accepted clinically actionable discrimination by sequentially adding hypothetical 
SNPs generated with a minor allele frequency of 0.20 and a log odds ratio of 0.15 (within the 
range of currently validated SNPS for EOC) until the AUC exceeded 0.75.  Under this setting, 
on average 58 additional SNPS would be needed (95% CI: 39, 79) to increase the AUC from 
0.66 to 0.75. 

Figure 2 and Supplemental Figure 1 suggest that the model is well-calibrated across risk 
score deciles, studies, birth cohorts, age, and number of pregnancies.  

DISCUSSION 
Our validated relative risk prediction model for EOC includes an extensive list of 

established non-genetic risk factors for ovarian cancer and 17 novel genetic variants. We 
divided the data set of 5,793 cases and 9,512 controls of non-Hispanic, European ancestry, in 
an 80:20 ratio for use in independent modeling and evaluation analyses. Overall, the model’s 
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predictive capacity was modest and epidemiologic factors contributed to the increase in the 
AUC substantially more than the SNPs. The methodology for imputation developed here may be 
adapted for prospective validation. 

Previous ovarian cancer risk prediction analyses have included fewer than 1,000 cases 
in any given phase of model development or validation (23, 24). Our much larger sample size 
provided ample power for stratification by age (<50 versus ≥50) and permitted us to include a 
much larger number of accepted epidemiologic risk factors, as well as 17 genetic loci. This, 
coupled with the imputation of missing data, provided the power necessary to detect and 
estimate higher order interaction effects. The model includes an interaction between MHT use 
and hysterectomy status dependent on age. 

In contrast to previous models, we developed a joint model for disease status, risk 
factors, and missingness. A strength of our approach was the use of MCMC methods that allow 
for simultaneous inference for missing data and model parameters. This allowed us to include 
all participants in the analysis while correctly accounting for the observed sample sizes in 
interval and error estimates of odds ratios. This is critical when variables, such as hysterectomy 
status, are not missing at random and would therefore lead to biased inferences using most 
standard methods, including complete-case analysis (54). The hierarchical framework also 
permits parsimonious adjustment for birth cohort effects in hormonal exposures, such as OC 
and MHT use, where formulations have changed over time. 

To date, absolute risk prediction models for ovarian cancer have achieved moderate 
discriminatory accuracy in the general population. A recent model, which included first degree 
family history of breast or ovarian cancer, duration of MHT use, parity, and duration of OC use, 
and was developed and externally validated among women over age 50, had an AUC of 0.59 
(23). The best model from the Nurses’ Health Studies included duration of ovulation (age (for 
premenopausal women) or age at menopause minus age at menarche minus one year per 
pregnancy and years of OC use), duration of menopause, and tubal ligation; the overall AUC for 
the model predicting ovarian cancer was approximately 0.60 (24). Our full model obtained 
higher overall predictive accuracy (AUC=0.664), albeit estimated in a case-control setting, in 
part because more established risk factors were included and we allowed for associations to 
vary by strata in the population (age), as well as birth cohorts. 

The predictive ability of the model was substantially higher for younger (AUC=0.714) 
than older women (AUC=0.638), despite the increase in incidence of ovarian cancer with age. 
This is consistent with the Rosner risk prediction model (24), in which the AUCs generally were 
higher for women under 50. One reason for the improved prediction in younger women is that 
many of the risk factors occur during pre-menopause and appear to have stronger associations 
in younger women, perhaps in part because the exposure to the risk factors is more proximal 
(50). Our results are consistent with studies of individual risk factors suggesting, for example, 
that the protective effects of hysterectomy, OC use and tubal ligation attenuate with increasing 
time since last use (or surgery) (4, 6, 50). 

Recent efforts to improve risk estimation have focused on common genetic variation. 
However, the addition of common SNPs to risk prediction models has not yet resulted in 
dramatically improved discriminatory accuracy, in real or simulated data scenarios (56-58). Our 
findings are consistent with this; addition of the 17 confirmed SNPs improved the AUC of the 
model incorporating epidemiologic risk factors by a small amount (AUC=0.664 with SNPs 
versus AUC=0.649 without). Our model addresses women of average baseline risk and 
mutation status of highly penetrant susceptibility genes such as BRCA1 and BRCA2 was not 
included since these data were not available. Although the model accounts for family history of 
breast and ovarian cancer, the inclusion of the mutation status and other high penetrant rare 
variants may improve prediction in future efforts. However, even strongly associated risk factors 
(genetic or non-genetic) may only modestly improve upon a risk model’s discriminatory 
accuracy (59) and a very large number of susceptibility SNPs (i.e., several hundred) are 
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required to make a substantial impact because of their small relative risks (60); our simulation 
results suggest that an additional 39 to 79 SNPs may be needed to increase the AUC to a 
clinically actionable discriminatory value of 0.75. This is similar to observations for breast cancer, 
where a 3-4 unit increase can be achieved with addition of 60-70 SNPs (61-66). 
 The model may be improved by extension to predict histologic subtypes of EOC, as risk 
factor associations may vary by histology (19).  Further gains in predictive accuracy may 
accompany discovery and inclusion of additional novel risk factors. In breast cancer, the 
addition of sex hormones and mammographic density added substantially to risk prediction 
models (67, 68). Finally, these results may not be generalizable to other racial or ethnic groups 
or to other countries. 

Our model was developed and internally validated among participants from case-control 
studies. Although this study design may be subject to misclassification and selection bias, the 
studies were predominantly population-based and our associations are similar in direction and 
magnitude to those observed in cohort studies. To be clinically meaningful, the relative risk 
estimates must be combined with a model of age-specific baseline population risk to provide 
estimates of absolute risk. Hierarchical models provide a natural framework for integrating 
relative risk estimates from this study -- and propagating their uncertainty -- into future models 
for absolute risk within prospective studies.  
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Figure 1. Receiver Operating Characteristic Curve for Models A) Without and B) With 
SNPs 

The receiver operating characteristic (ROC) curve plots the true positive fraction (i.e., sensitivity) 

versus the false positive fraction (i.e., 1-specificity) at various threshold settings. The ROC curve 

in (a) represents the relative risk prediction model containing age, study site, and 17 risk factors; 

the ROC curve in (b) represents the full relative risk prediction model containing the variables in 

(a) plus 17 confirmed genetic susceptibility variants. For each model, 3 ROC curves are 

presented for women grouped by: all ages (dark blue), women under 50 years of age (light blue), 

and women 50 years of age and older (green). The area under the curve (AUC), a measure of 

discriminatory power equivalent to the ‘c statistic’ in binary models, is presented for each ROC 

curve. A fourth hypothetical target ROC curve (magenta) is depicted based on adding additional 

hypothetical SNPs with a MAF of 0.20 and log odds ratio of 0.15 (similar to the current data) 
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until the AUC is 0.75 or more; on average 58 additional SNPS would be needed (95% CI: 39, 

79). 

Figure 2. Calibration Plots for Risk Scores 

The calibration plot represents the agreement between the average predicted probability of 

epithelial ovarian cancer (i.e., risk score) and observed outcomes (i.e., relative frequency of 

cases) in the full risk prediction model containing age, study site, 17 risk factors, and 17 

confirmed genetic susceptibility variants for women included in the analysis.  Women were 

divided into ten bins determined by increasing risk (0.10 long).  The vertical and horizontal bars 

reflect uncertainty in the average predicted risk and mean under a Bernoulli model, respectively. 
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Table 1. Description of 11 Case-Control Studies Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model 
From the Ovarian Cancer Association Consortium (OCAC). 
      

Study 
(Reference) Study Name Location Period of 

Ascertainment 

Age Range 
(Median) in 

Yrs 

No. 
Controls 

No. 
Cases 

Response 
Ratesa 

Controls Cases 

CON (41) Connecticut Ovarian 
Cancer Study CT 1998-2003 34-81 (55) 466 318 61% 69% 

         
DOV (14) Diseases of the Ovary 

and their Evaluation Western WA 2002-2009 35-74 (57) 1527 894 62% 74% 

         
HAW (38) Hawaii Ovarian Cancer 

Case-Control Study 
HI, Southern 

CA 1993-2008 30-90 (57) 345 236 80% 78% 

         

HOP (37) 

Novel Risk Factors and 
Potential Early 
Detection Markers for 
Ovarian Cancer 

Western PA, 
Northeast OH, 
Western NY 

2003-2009 30-94 (57) 1561 570 68% 71% 

         

MAY (36) 
Mayo Clinic Ovarian 
Cancer Case-Control 
Study 

IA, IL, MN, ND, 
SD, WI 2000-2010 30-92 (60) 842 533 58% 91% 

         
NCO (42) North Carolina Ovarian 

Cancer Study NC 1999-2008 30-75 (57) 751 651 60% 67% 

         

NEC (43) 
New England Case-
Control Study of 
Ovarian Cancer 

NH, Eastern 
MA 1992-2003 30-78 (54) 1067 704 64% 71% 

         
NJO (35) New Jersey Ovarian 

Cancer Study NJ 2002-2008 30-87 (60) 336 185 40% 47% 

         

STA (39) 
Genetic Epidemiology 
of Ovarian Cancer 
Study 

San Francisco 
Bay Area, CA 1997-2001 30-65 (50) 330 276 75% 75% 

         
UCI (45) University of California 

Irvine Ovarian Study Southern CA 1993-2005 30-86 (56) 505 318 80% 67% 
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USC (40, 
44) 

Los Angeles County 
Case-Control Studies 
of Ovarian Cancer 

Los Angeles 
County, CA 1992-2002 30-85 (57) 1782 1108 72% 60% 

Abbreviations: CA, California; CT, Connecticut; HI, Hawaii; IA, Iowa; IL, Illinois; MA, Massachusetts; MN, Minnesota; NC, North 
Carolina; ND, North Dakota; NH, New Hampshire; NJ, New Jersey; No, number; NY, New York; OH, Ohio; PA, Pennsylvania; SD, 
South Dakota; WA, Washington; WI, Wisconsin; Yrs, years. 
aResponse rates were calculated differently across studies; algorithms are available upon request. 
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Table 2. Frequency Distributionsa of Risk Factors Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model 
by Case-Control Status for the Training and Evaluation Sets. 

Risk factors included in model 

Training Set Evaluation Set 
Controls 
(n=7586) 

Cases 
(n=4662) 

Controls 
(n=1926) 

Cases 
(n=1131) 

N (%) N (%) N (%) N (%) 
Age at diagnosis/interview 
 Mean (SD) 56.2 (11.6) 57.58 (10.9) 56.69 (11.7) 57.51 (10.9) 
Age at menarche 

Mean (SD) 12.7 (1.6) 12.6 (1.5) 12.7 (1.5) 12.6 (1.5) 
 Missing age at menarche 63 (1) 95 (2) 19 (1) 28 (2) 
Oral contraceptive use 

Ever Used 5341 (70) 2750 (60) 1350 (71) 682 (60) 
Missing OC use 69 (1) 58 (1) 12 (1) 16 (1) 
Mean months of OC use (SD) 74.7 (69.4) 58.3 (61.3) 76.3 (70.9) 59.1 (55.0) 
Median months of OC use 57 36 58 48 
Missing months of OC use 89 (1) 79 (2) 19 (1) 21 (2) 

Pregnancy History 
     Mean number of full-term pregnancies (SD) 2.2 (1.5) 1.9 (1.6) 2.2 (1.6) 1.9 (1.5) 

Missing number of full-term pregnancies 44 (1) 31 (1) 8 (<1) 10 (1) 
Mean number of pregnancies (SD) 3.2 (1.7) 3.0 (1.7) 3.2 (1.7) 2.9 (1.6) 
Missing number of pregnancies 45 (1) 31 (1) 8 (<1) 10 (1) 
Mean number of non-full term pregnancies (SD) 0.65 (1.1) 0.52 (1.0) 0.60 (1.0) 0.53 (1.0) 

Missing number of non-full term pregnancies 45 (1) 31 (1) 8 (<1) 10 (1) 
Mean age at end of last pregnancy (SD) 30.5 (5.5) 29.5 (5.6) 30.7 (5.5) 29.8 (5.7) 
Missing age at end of last pregnancy 638 (8) 413 (9) 162 (8) 94 (8) 

Breastfeeding 
Ever breastfed 3250 (43) 1507 (32) 799 (41) 393 (35) 
Missing breastfeeding status 1201 (16) 621 (13) 306 (16) 128 (11) 
Mean months of breastfeeding (SD) 14.2 (16.3) 11.6 (15.8) 14.7 (15.8) 10.8 (12.7) 
Missing breastfeeding duration 1203 (16) 623 (29) 306 (16) 128 (11) 

Tubal ligation 
Had tubal ligation 1585 (21) 709 (15) 380 (20) 185 (16) 
Missing tubal ligation 892 (12) 329 (7) 232 (12) 70 (6) 
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Endometriosis 
Had endometriosis 585 (8) 475 (10) 137 (7) 124 (11) 

 Missing endometriosis 354 (5) 367 (8) 78 (4) 93 (8) 
Family history (1st degree relative) 

Breast cancer 1073 (14) 760 (16) 277 (14) 167 (15) 
Missing breast cancer history 305 (4) 247 (5) 82 (4) 65 (6) 
Ovarian cancer 202 (3) 239 (5) 55 (3) 53 (5) 
Missing ovarian cancer history 397 (5) 284 (6) 99 (5) 78 (7) 

Body mass index 
Mean BMI (SD) 26.44 (6.11) 26.82 (6.42) 26.50 (6.09) 26.47 (6.12) 

 Missing BMI 342 (5) 275 (6) 74 (4) 67 (6) 
Aspirin use 

Irregular or non-user 3786 (50) 2349 (50) 975 (51) 572 (51) 
Regular user of low-dose aspirin 186 (3) 64 (1) 46 (2) 19 (2) 
Regular user of high-dose aspirin 247 (3) 103 (2) 49 (3) 38 (3) 
Missing aspirin use 3367 (44) 2146 (46) 856 (44) 502 (44) 

Menopausal status 
Post-menopausal 4818 (64) 3215 (69) 1247 (65) 774 (68) 

 Missing menopausal status 174 (2) 72 (2) 46 (2) 20 (2) 
Hysterectomy 

Had hysterectomyb 1015 (13) 738 (16) 248 (13) 167 (15) 
Missing hysterectomy 147 (2) 595 (13) 36 (2) 151 (13) 

Menopausal hormone therapy 
Ever used MHT 2938 (39) 1907 (41) 749 (39) 477 (42) 
Missing MHT use 108 (1) 139 (3) 30 (2) 42 (4) 
Only used unopposed estrogen 833 (11) 642 (14) 206 (31) 152 (13) 
Missing type of MHT 477 (6) 443 (10) 110 (11) 114 (10) 

rs1243180c 
1 minor allele 2313 (41) 1512 (45) 631 (45) 342 (42) 

 2 minor alleles 523 (9) 368 (11) 140 (10) 86 (10) 
rs2072590c 

1 minor allele 2414 (43) 1533 (45) 649 (46) 355 (43) 
2 minor alleles 546 (10) 404 (12) 132 (9) 106 (13) 

rs11782652c 
1 minor allele 734 (13) 476 (14) 163 (12) 125 (15) 
2 minor alleles 25 (<1) 19 (1) 6 (<1) 5 (1) 
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rs10088218c          
 1 minor allele 1306 (23) 689 (20)  348 (25) 185 (22) 
 2 minor alleles 105 (2) 43 (1)  21 (2) 9 (1) 
rs757210c          
 1 minor allele 2599 (46) 1567 (46)  662 (47) 379 (46) 
 2 minor alleles 762 (14) 525 (16)  180 (13) 123 (15) 
rs9303542c          
 1 minor allele 2219 (40) 1456 (43)  598 (43) 337 (41) 
 2 minor alleles 407 (7) 301 (9)  110 (8) 65 (8) 
rs7651446c          
 1 minor allele 527 (9) 423 (12)  121 (9) 117 (14) 
 2 minor alleles 15 (<1) 13 (<1)  7 (1) 9 (1) 
rs3814113c          
 1 minor allele 2421 (43) 1377 (41)  623 (44) 318 (39) 
 2 minor alleles 594 (11) 290 (9)  135 (10) 70 (8) 
rs8170c          
 1 minor allele 1735 (31) 1077 (32)  414 (30) 284 (34) 
 2 minor alleles 174 (3) 119 (4)  38 (3) 31 (4) 
rs10069690c          
 1 minor allele 2147 (39) 1350 (40)  523 (38) 322 (39) 
 2 minor alleles 351 (6) 234 (7)  101 (7) 58 (7) 
rs12942666c          
 1 minor allele 1719 (31) 1107 (33)  403 (29) 274 (33) 
 2 minor alleles 195 (3) 143 (4)  59 (4) 29 (4) 
Abbreviations: BMI, body mass index; MHT, menopausal hormone therapy; N, number; OC, oral contraceptive; SD, standard 
deviation. 
aFrequency distributions are based on non-missing data. Percent missing is based on the variable of interest and any upper level 
variable related to it. For example, women who are missing OC use status, and therefore duration of OC use, are combined with 
women who report ever using OCs but are missing duration of use to reach the number and percentage of women who are missing 
months of OC use. 
bWomen reporting hysterectomies more than one year prior to diagnosis (cases) or interview/reference date (controls) are 
considered to have had hysterectomy. 
c Missing genotype data were approximately the same across the 11 SNPs: The percentage of participants missing genotype data 
was 26% (training set controls), 27%-28% (training set cases and evaluation set controls), and 27% (evaluation set cases). 
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Table 3. Risk Factors Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model and Distributions and 
Covariates Used in Models to Impute Missing Values for Risk Factors with Missing Values.a

Risk factor  Covariates included in imputation model for Risk Factor | Distribution 
SNP genotypes Site | Multinomial-Dirichlet 

Family history ovarian cancer Site |  Bernoulli 

Family history breast cancer Family history ovarian cancer, site | Bernoulli 

Endometriosis Cohort, age, site | Bernoulli 

Menopausal status Alcohol, smoking status, age, site | Bernoulli 

Tubal ligation Endometriosis, education, age, cohort, site | Bernoulli 

Hysterectomy Endometriosis, tubal ligation, family history breast cancer, family history ovarian cancer, age, 
cohort, site | Bernoulli 

Height (BMI) Site, cohort | Gaussian 

Weight (BMI) Site, cohort, height, age, smoking status, education | Gaussian 

Aspirin use Site, cohort, age, smoking status, BMI | Bernoulli 

Ever used MHT Menopausal status, hysterectomy, education, age, cohort, site | Bernoulli 

Type of MHT Ever used MHT, menopausal status, hysterectomy, education, age, cohort, site  | Bernoulli 

Age at menarche Age, cohort, site | truncated Student t 

Ever used OCs Cohort, site | Bernoulli 

Duration OC use Ever used OCs, age, cohort, site | truncated Gaussian 

Number of pregnancies 

Number of full-term births 

Hysterectomy, tubal ligation, ever used OCs, endometriosis, education, smoking, alcohol, age, 
cohort, site | PoissonNumber of Pregnancies, Hysterectomy, tubal ligation, ever used OCs, 
endometriosis, education, smoking, alcohol, age, cohort, site | Binomial 

Age at end of last pregnancy Number of pregnancies, age at menarche, smoking status, education, age, cohort, site | 
truncated Gaussian 
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Ever breastfed Number of pregnancies, smoking status, education, cohort, site | Bernoulli 

Duration breastfeeding Number of pregnancies, smoking status, education, age, cohort, site |  truncated Gaussian 
Abbreviations: BMI, body mass index; MHT, menopausal hormone therapy; OC, oral contraceptive; SNP, single nucleotide 
polymorphism. 
aLeft hand side variables (i.e., risk factors) may depend on any covariates given in the right hand column. 
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Table 4. Estimates of Log Odds Ratios (Medians) and 95% Bayesian Confidence Intervals for Risk 
Factors Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model Containing 
17 Confirmed SNPs, Stratified by Age (<50, ≥50) at Diagnosis (Cases) or Interview/Reference Age 
(Controls).a 

Risk Factor Age at Diagnosis/Interview <50 Age at Diagnosis/Interview >50 

 
Median 95% CI Median 95% CI 

Age 0.0308 0.0117, 0.0438 -0.0067 -0.0205, 0.0014 
High-dose Aspirin 0.05 -0.4624, 0.6254 -0.1223 -0.3517, 0.062 
Low-dose Aspirin -0.3338 -1.6847, 0.747 -0.2982 -0.5838, -0.0262 
BMI 0.0252 0.0148, 0.0381 0.0023 -0.0059, 0.0087 
Duration of 
Breastfeeding -0.0079 -0.0166, 0.0001 -0.0091 -0.0149, -0.0035 
Breastfeeding -0.3251 -0.5537, -0.0882 -0.0342 -0.1658, 0.0889 
Endometriosis 0.5193 0.2967, 0.7637 0.2347 0.0645, 0.4095 
Family History Breast 
Cancer 0.317 0.0885, 0.5534 0.1663 0.0537, 0.2902 
Family History Ovarian 
Cancer 1.3687 0.9383, 1.7791 0.4949 0.2625, 0.7273 
Hysterectomy and No 
MHT -0.7656 -1.2045, -0.3448 -0.0592 -0.2585, 0.1699 
Age at End of Last 
Pregnancy -0.0148 -0.0289, -0.0024 -0.005 -0.0108, 0.0017 
Age at Menarche -0.0891 -0.1389, -0.0373 0.0067 -0.0259, 0.0315 
Menopausal Status 0.1161 -0.18, 0.3834 0.0955 -0.0744, 0.2697 
MHT Estrogen without 
Hysterectomy 1.5661 0.992, 1.8842 -0.1107 -0.3277, 0.1101 
MHT Estrogen and 
Hysterectomy -2.1774 -2.7231, -1.5081 0.2408 -0.027, 0.4781 
MHT Other without 
Hysterectomy 0.1682 -0.2312, 0.482 -0.182 -0.3235, -0.0267 
MHT Other and 
Hysterectomy 1.2814 -0.1834, 2.5757 0.0166 -0.3454, 0.5927 
Ever Used OCs -0.219 -0.4963, -0.0029 -0.0069 -0.1703, 0.1463 
Duration OC Use -0.1275 -0.1521, -0.1008 -0.0546 -0.0756, -0.0374 
Non-Full-Term 
Pregnancies -0.1005 -0.2088, 0.0233 -0.0719 -0.1144, -0.034 
Full-Term Births -0.1227 -0.203, -0.0463 -0.0644 -0.1188, -0.0166 
Tubal Ligation -0.4349 -0.6769, -0.2126 -0.2668 -0.4027, -0.1423 
rs1243180 0.1089 -0.0116, 0.2168 0.1499 0.0806, 0.2232 
rs2072590 0.1653 0.0695, 0.2806 0.1342 0.0629, 0.2034 
rs11782652 0.0686 -0.0858, 0.2117 0.0765 -0.037, 0.1985 
rs10088218 -0.1946 -0.3243, -0.0688 -0.1644 -0.2719, -0.0647 
rs757210 0.0275 -0.0711, 0.1192 0.0757 0.0048, 0.1472 
rs9303542 0.1151 0.003, 0.216 0.1857 0.1078, 0.2599 
rs7651446 0.266 0.0877, 0.4144 0.2974 0.1702, 0.4162 
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rs3814113 -0.1142 -0.2172, -0.0052 -0.1719 -0.2483, -0.1062 
rs8170 0.0368 -0.0851, 0.1388 0.0771 -0.0028, 0.161 
rs10069690 0.0236 -0.1049, 0.115 0.1044 0.0332, 0.1843 
rs56318008 0.1816 0.0705, 0.3095 0.1825 0.0862, 0.2661 
rs58722170 -0.028 -0.1337, 0.0807 0.0156 -0.0587, 0.0929 
rs17329882 0.11 -0.0026, 0.2086 0.1441 0.0749, 0.2237 
rs116133110 -0.0788 -0.1743, 0.0271 -0.085 -0.1608, -0.0139 
rs635634 0.0644 -0.0627, 0.1807 0.071 -0.0135, 0.1492 
chr17_29181220 -0.0946 -0.2029, 0.0192 -0.1193 -0.1914, -0.0463 
rs183211 0.1355 0.0323, 0.2447 0.0989 0.0318, 0.162 
Abbreviations: BMI, body mass index; CI, confidence interval; MHT, menopausal hormone therapy; 
N/A, not applicable; OC, oral contraceptive. 
a Estimates and intervals are based on the training set only. 

 

Table 5. Predictive power for relative risk prediction models for invasive 
epithelial ovarian cancer that include age, study site, 17 
epidemiological risk factors, or 17 confirmed genetic susceptibility 
variants. 
 

Age Study 
Site 

Epidemiological 
Risk Factors SNPs  ROC 

AUC 
Included Included Included Included  0.664 
Included Included Included Not Included  0.649 
Included Included Not Included Included  0.601 
Included Included Not Included Not Included  0.563 
Abbreviations: ROC AUC, receiver operating characteristic curve area 
under the curve; SNPs, single nucleotide polymorphisms. 

 

  



53 

Appendix 3: JAGS output for OC3 risk prediction model algorithm 

Fit of Absolute Risk Model to OC3 Phase I 80% 
Training Set 

ESI 

October 

14, 2015 

1  JAGs Baseline Model for  Phase I OC3  Data 

1.1  Load  Data 

load("/proj/pooc3s/pooc30d/home/bl/oc3phaseI.data/oc3phaseI.RData") 

1.2  JAGs Data Structure 

## JAGS Data Structure: ## 
colnames(BL$mort)[colnames(BL$mort)=="96+"
]<-"96" minAge<-31 
## Exclude women>80yo at BL and eval samples: 
x.train <- x[(x$train == 1)&(x$AgeAtBL<=80),]
## ******* Select 10% Sub-Samples: ********** 
keep<-sample(1:nrow(x.train),size=floor(nrow(x.train)/10),replace=FALSE) 
x.train<-x.train[keep,]
dim(x.train) 

## [1] 32392 52 nsamp<-nrow(x.train) 
keep<-sample(1:nrow(OCAC),size=floor(nrow(OCAC)/5),replace=FALSE) 
ocac<-
OCAC[keep,] 
nsamp0<-
nrow(ocac) 
dim(ocac) 

## [1] 
3061 72 

## ******* Structures & Variables: ********* 
DM.study<-model.matrix(train~-1+factor(study),data=x.train) 
colnames(DM.study)<-
substr(colnames(DM.study),14,nchar(colnames(DM.study))) 
DM.cohort<-model.matrix(train~-
1+factor(cohort),data=x.train) 
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colnames(DM.cohort)<-
paste("c",substr(colnames(DM.cohort),15,nchar(colnames(DM.cohort))),sep="") 
nc<-ncol(DM.cohort) 
DM.cohort<-cbind(DM.cohort,rep(0,nrow(DM.cohort)),rep(0,nrow(DM.cohort))) 
colnames(DM.cohort)[(nc+1):(nc+2)]<-c("c1960","c1965") 
rm(nc) 
smoke.mat<-matrix(0,nrow=3,ncol=3) 

smoke.mat[1,3]<-1 ## current smoker is index 1, cat 3 
smoke.mat[2,1]<-1 ## never smoker is index 2, cat 1 
smoke.mat[3,2]<-1 ## past smoker is index 3, cat 2 
## Ask about these: 
x.train$ocmos[(!is.na(x.train$ocever))&(x.train$ocever=="Ever")&(x.train$ocmos==0)]<-NA
x.train$ocmos[(!is.na(x.train$ocever))&(x.train$ocever=="Never")]<-NA
x.train$ul.ocdur<-((12*(x.train$AgeAtBL - 10))^(1/3))
x.train$ul.ocdur[x.train$AgeAtBL > 55]<-((12*(55 - 10))^(1/3))
## OCAC versions: 
DM.study0<-model.matrix(case~-1+factor(site),data=ocac) 
colnames(DM.study0)<-substr(colnames(DM.study0),13,15) 
DM.cohort0<-model.matrix(case~-1+factor(cohort),data=ocac) 
colnames(DM.cohort0)<-paste("c",substr(colnames(DM.cohort0),15,18),sep="") 
ocac$ul.ocdur<-((12*(ocac$refage - 10))^(1/3)) 
ocac$ul.ocdur[ocac$refage > 55]<-((12*(55 - 10))^(1/3)) 
BLdat<-list(n.BLages=ncol(BL$mort), 

min.age=minAge, 
n.BLyears=nrow(BL$mort),
BLages=as.numeric(colnames(BL$mort)), 
## BLyears=as.numeric(rownames(BL£mort)), 
h.mort=BL$mort,
h.all.a=BL$allinc.a,
h.all.b=BL$allinc.b,
h.ov.a=BL$ovinc.a,
h.ov.b=BL$ovinc.b,
bso.mu=bsoRatePars$bso.mu[1:3], 
bso.prec=solve(bsoRatePars$bso.var[1:3,1:3]), 
bsoLogRR.mu=(-2.910518), ## bsoRR.mean.ie2 (no brca+ ) 
bsoLogRR.prec=6.997364, ## bsoRR.sd.ie2^(-2) 
## adjust following to col index in BL£mort, etc, structures 
a.a=floor(x.train$AgeAtBL - minAge + 1),
a.f=floor(x.train$EventAge - minAge + 1),
N=nsamp, 
Y=floor(x.train$BirthYr - 1900), 
Event=(1*(x.train$EventType>1)), 
Outcome=x.train$EventType, 
zero=matrix(0,nrow=nsamp,ncol=66), 
mu0=rep(0,100), 
prec1=diag(1,nrow=100,ncol=100), 
prec001=diag(0.01,nrow=100,ncol=100), 
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smoke=smoke.mat, 
edu=diag(1,nrow=5,ncol=5), 
precCCtoC=c(10000,4), ## sd=0.01 if �same�; sd=0.5 if �different��

n.rf=15, 
p=ncol(DM.study), ## ******* OC3 variables ******* 
X=DM.study, X.c=DM.cohort[,-
1], p.c=ncol(DM.cohort[,-1]), 
ocever=x.train$oceverN, 
ocdur=((x.train$ocmos)^(1/3)), 
ul.ocdur=x.train$ul.ocduralc=
x.train$alcN, 
fhbrca=x.train$fhbrcaN, 
fhovca=x.train$fhovcaN, 
edu.idx=x.train$educationN, 
smoke.idx=x.train$smokeN, 
menstat=x.train$menstatN, 
mage=x.train$menarchage, 
endo=x.train$endomN, 
tlig=x.train$tligN, 
Outcome0=ocac$case, ## ********* OCAC variables (end in 0) ****** 
p0=ncol(DM.study0), 
N0=nsamp0, 
X0=DM.study0, 
X.c0=DM.cohort0[,-1], 
a.a0=floor(ocac$refage - minAge + 1), 
ocever0=ocac$oceverN, 
ocdur0=((ocac$ocmos)^(1/3)), 
ul.ocdur0=ocac$ul.ocdur, 
alc0=ocac$alcN, 
fhbrca0=ocac$fhbrcaN, 
fhovca0=ocac$fhovcaN, 
edu.idx0=ocac$educationN, 
smoke.idx0=ocac$smokeN, 
menstat0=ocac$menstatN, 
mage0=ocac$menarchage, 
tlig0=ocac$tligN, 
endo0=ocac$endomN) 

 

 
 
1.3  Model 

 
 
## Specification of Model in JAGS Language. ## 
BLmodel <- function() { 

## Parameter structures and priors: 
for (y in 1:n.BLyears) { 

for (a in 1:n.BLages) { 
h.all[y, a] ~ dbeta(h.all.a[y, a], h.all.b[y, a]) %_% 

T(h.ov[y, a], 1) 
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h.ov[y, a] ~ dbeta(h.ov.a[y, a], h.ov.b[y, a])
h.othr[y, a] <- (h.all[y, a] - h.ov[y, a])
h.ovB0[y, a] <- (h.ov[y, a]/(1 + ((bsoRR - 1) * bsoCDF[BLages[a]]))) ## BSO=0
h.ovB1[y, a] <- (bsoRR * h.ovB0[y, a]) ## BSO=1
h.eventB0[y, a] <- (h.mort[y, a] + h.othr[y, a] + h.ovB0[y,

a]) 
h.eventB1[y, a] <- (h.mort[y, a] + h.othr[y, a] + h.ovB1[y,

a]) 
} 

} 
## Cumulative probabilities of surviving to age A=a BSO-free: Note 
## that (bsoCDF(a)-bsoCDF(a-1)) = Pr(BSO(a)=1|M(a)=0,BSO(a-1)=0) 

## Need: Pr(BSO(a.b)=1,BSO(a-1)=0,...,BSO(a0+1)=0|M(a)=0) and 
## Pr(BSO(a.e)=0,BSO(a-1)=0,...,BSO(a0+1)=0|M(a)=0) where a.b=age 
## at BSO and a.e is age at other event. a.b is set to a.e if no 
## bso. b = age at BL; a=age at BSO; a>=b b=1 <=> bl.age=30, b=66 
## <=> bl.age=95 
CPBSOFree[1] <- (1 - h.bso[1]) 
h.bso[1] <- (bsoCDF[1] - bsoRatePar[1] * pnorm(0, bsoRatePar[2],

bsoRatePrec)) 
bsoCDF[1] <- bsoRatePar[1] * pnorm(1, bsoRatePar[2], bsoRatePrec) 
for (a in 2:100) { 

CPBSOFree[a] <- CPBSOFree[a - 1] * (1 - h.bso[a]) 
h.bso[a] <- (bsoCDF[a] - bsoCDF[a - 1])
bsoCDF[a] <- bsoRatePar[1] * pnorm(a, bsoRatePar[2], bsoRatePrec) 

} 
bsoRatePrec <- bsoRatePar[3]^(-2) 
bsoRatePar ~ dmnorm(bso.mu, bso.prec) 
bsoRR ~ dlnorm(bsoLogRR.mu, bsoLogRR.prec) %_% I(, 1) 
## Likelihood, OC3 Samples: 
for (i in 1:N) { 

## relative hazards 
rh.event[i] <- exp(inprod(alpha[], X[i, ]) + a[1] * ocever[i] + 

a[2] * fhbrca[i] + a[3] * fhovca[i] + inprod(a[4:7], edu[edu.idx[i], 
2:5]) + a[8] * alc[i] + inprod(a[9:10], smoke[smoke.idx[i], 
2:3]) + a[11] * menstat[i] + a[12] * ocdur[i] * ocever[i] + 
a[13] * mage[i] + a[14] * endo[i] + a[15] * tlig[i]) 
rh.mort[i] <- exp(inprod(beta[], X[i, ]) + b[1] * ocever[i] + 
b[2] * fhbrca[i] + b[3] * fhovca[i] + inprod(b[4:7], edu[edu.idx[i], 
2:5]) + b[8] * alc[i] + inprod(b[9:10], smoke[smoke.idx[i], 
2:3]) + b[11] * menstat[i] + b[12] * ocdur[i] * ocever[i] + 
b[13] * mage[i] + b[14] * endo[i] + b[15] * tlig[i]) 

rh.othr[i] <- exp(inprod(gamma[], X[i, ]) + g[1] * ocever[i] + 
g[2] * fhbrca[i] + g[3] * fhovca[i] + inprod(g[4:7], edu[edu.idx[i], 
2:5]) + g[8] * alc[i] + inprod(g[9:10], smoke[smoke.idx[i], 
2:3]) + g[11] * menstat[i] + g[12] * ocdur[i] * ocever[i] + 
g[13] * mage[i] + g[14] * endo[i] + g[15] * tlig[i]) 

rh.ovca[i] <- exp(inprod(delta[], X[i, ]) + d[1] * ocever[i] + 
d[2] * fhbrca[i] + d[3] * fhovca[i] + inprod(d[4:7], edu[edu.idx[i], 
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2:5]) + d[8] * alc[i] + inprod(d[9:10], smoke[smoke.idx[i], 
2:3]) + d[11] * menstat[i] + d[12] * ocdur[i] * ocever[i] + 
d[13] * mage[i] + d[14] * endo[i] + d[15] * tlig[i]) 

## 1=age30, 66=age95 
for (a in a.a[i]:(a.f[i] - 1)) { 

pr.B0[i, a] <- (CPBSOFree[a + min.age - 1]/CPBSOFree[a.a[i] + 
min.age - 2]) 

zero[i, a] ~ dpois((pr.B0[i, a] * h.eventB0[Y[i], a] + 
(1 - pr.B0[i, a]) * h.eventB1[Y[i], a]) * rh.event[i]) 

} 
pr.atfuB0[i] <- (CPBSOFree[a.f[i] + min.age - 1]/CPBSOFree[a.a[i] + 

min.age - 2]) 
Event[i] ~ dpois((pr.atfuB0[i] * h.eventB0[Y[i], a.f[i]] + 

(1 - pr.atfuB0[i]) * h.eventB1[Y[i], a.f[i]]) * rh.event[i]) 
 

pi.event[i, 1] <- (1 - step(Event[i] - 0.5)) 
pi.event[i, 2] <- (h.mort[Y[i], a.f[i]] * rh.mort[i]) * step(Event[i] - 

0.5) 
pi.event[i, 3] <- (h.othr[Y[i], a.f[i]] * rh.othr[i]) * step(Event[i] - 

0.5) 
pi.event[i, 4] <- ((pr.atfuB0[i] * h.ovB0[Y[i], a.f[i]] + 

(1 - pr.atfuB0[i]) * h.ovB1[Y[i], a.f[i]]) * rh.ovca[i]) * 
step(Event[i] - 0.5) Outcome[i] ~ 

dcat(pi.event[i, ]) 
## Risk Factor Distributions: 
ocever[i] ~ dbern(pi.ocever[i]) 
pi.ocever[i] <- ilogit(i.ocever + inprod(s.ocever[], X[i, 

2:p]) + inprod(c.ocever[], X.c[i, ]) + inprod(edu.ocever[1:4], 
edu[edu.idx[i], 2:5])) 

ocdur[i] ~ dnorm(mu.ocdur[i], prec.ocdur) %_% T(0, ul.ocdur[i]) 
mu.ocdur[i] <- (i.ocdur + inprod(s.ocdur[], X[i, 2:p]) + inprod(c.ocdur[], 

X.c[i, ]) + age.ocdur * a.a[i] + inprod(edu.ocdur[1:4], 
edu[edu.idx[i], 2:5])) 

fhbrca[i] ~ dbern(pi.fhbrca[i]) 
pi.fhbrca[i] <- ilogit(i.fhbrca + inprod(s.fhbrca[], X[i, 

2:p])) 
fhovca[i] ~ dbern(pi.fhovca[i]) 
pi.fhovca[i] <- ilogit(i.fhovca + fhbrca.fhovca * fhbrca[i]) 
edu.idx[i] ~ dcat(pi.edu[i, 1:5]) 
pi.edu[i, 1] <- 1 
pi.edu[i, 2] <- exp(i.edu[1] + inprod(s.edu[1, ], X[i, 2:p]) + 

inprod(c.edu[1, ], X.c[i, ])) 
pi.edu[i, 3] <- exp(i.edu[2] + inprod(s.edu[2, ], X[i, 2:p]) + 

inprod(c.edu[2, ], X.c[i, ])) 
pi.edu[i, 4] <- exp(i.edu[3] + inprod(s.edu[3, ], X[i, 2:p]) + 

inprod(c.edu[3, ], X.c[i, ])) 
pi.edu[i, 5] <- exp(i.edu[4] + inprod(s.edu[4, ], X[i, 2:p]) + 

inprod(c.edu[4, ], X.c[i, ])) 
alc[i] ~ dbern(pi.alc[i]) 
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pi.alc[i] <- ilogit(i.alc + inprod(s.alc[], X[i, 2:p]) + inprod(c.alc[], 
X.c[i, ]) + inprod(edu.alc[1:4], edu[edu.idx[i], 2:5])) 

smoke.idx[i] ~ dcat(pi.smoke[i, 1:3]) 
pi.smoke[i, 1] <- 1 
pi.smoke[i, 2] <- exp(i.smoke[1] + inprod(s.smoke[1, ], X[i, 

2:p]) + inprod(c.smoke[1, ], X.c[i, ]) + alc.smoke[1] * 
alc[i] + inprod(edu.smoke[1, 1:4], edu[edu.idx[i], 2:5])) 

pi.smoke[i, 3] <- exp(i.smoke[2] + inprod(s.smoke[2, ], X[i, 
2:p]) + inprod(c.smoke[2, ], X.c[i, ]) + alc.smoke[2] * 
alc[i] + inprod(edu.smoke[2, 1:4], edu[edu.idx[i], 2:5])) 

menstat[i] ~ dbern(pi.meno[i]) 
pi.meno[i] <- ilogit(i.meno + inprod(s.meno[], X[i, 2:p]) + age.meno * 

a.a[i] + alc.meno * alc[i] + inprod(smoke.meno[], smoke[smoke.idx[i],
2:3])) 

mage[i] ~ dlnorm(mu.mage[i], prec.mage) 
mu.mage[i] <- i.mage + inprod(s.mage[], X[i, 2:p]) + inprod(c.mage[], 

X.c[i, ]) 

endo[i] ~ dbern(pi.endo[i]) 
pi.endo[i] <- ilogit(i.endo + inprod(s.endo[], X[i, 2:p]) + 

inprod(c.endo[], X.c[i, ]) + age.endo * a.a[i]) 
tlig[i] ~ dbern(pi.tlig[i]) 
pi.tlig[i] <- ilogit(i.tlig + inprod(s.tlig[], X[i, 2:p]) + inprod(c.tlig[], 

X.c[i, ]) + age.tlig * a.a[i] + inprod(edu.tlig[1:4], edu[edu.idx[i], 2:5]) + 
endo.tlig * endo[i]) 

} 
## Likelihood, OCAC Samples: 
for (i in 1:N0) { 

pi.case[i] <- ilogit(i.case0 + inprod(delta0[], X0[i, 2:p0]) + d0[1] * 
ocever0[i] + d0[2] * fhbrca0[i] + d0[3] * fhovca0[i] + inprod(d0[4:7], 
edu[edu.idx0[i], 2:5]) + d0[8] * alc0[i] + inprod(d0[9:10], 
smoke[smoke.idx0[i], 2:3]) + d0[11] * menstat0[i] + d0[12] * 
ocdur0[i] * ocever0[i] + d0[13] * mage0[i] + d0[14] * endo0[i] + 
d0[15] * tlig0[i]) 

Outcome0[i] ~ dbern(pi.case[i]) 
## Risk Factor Distributions: 
ocever0[i] ~ dbern(pi.ocever0[i]) 
pi.ocever0[i] <- ilogit(i.ocever + inprod(s.ocever0[], X0[i, 

2:p0]) + inprod(c.ocever[], X.c0[i, ]) + inprod(edu.ocever[1:4], 
edu[edu.idx0[i], 2:5])) 

ocdur0[i] ~ dnorm(mu.ocdur0[i], prec.ocdur) %_% T(0, ul.ocdur0[i]) 
mu.ocdur0[i] <- (i.ocdur + inprod(s.ocdur0[], X0[i, 2:p0]) + 

inprod(c.ocdur[], X.c0[i, ]) + age.ocdur * a.a0[i] + inprod(edu.ocdur[1:4], 
edu[edu.idx0[i], 2:5])) 

fhbrca0[i] ~ dbern(pi.fhbrca0[i]) 
pi.fhbrca0[i] <- ilogit(i.fhbrca + inprod(s.fhbrca0[], X0[i, 

2:p0])) 
fhovca0[i] ~ dbern(pi.fhovca0[i]) 
pi.fhovca0[i] <- ilogit(i.fhovca + fhbrca.fhovca * fhbrca0[i]) 
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edu.idx0[i] ~ dcat(pi.edu0[i, 1:5]) 
pi.edu0[i, 1] <- 1 
pi.edu0[i, 2] <- exp(i.edu[1] + inprod(s.edu0[1, ], X0[i, 

2:p0]) + inprod(c.edu[1, ], X.c0[i, ])) 
pi.edu0[i, 3] <- exp(i.edu[2] + inprod(s.edu0[2, ], X0[i, 

2:p0]) + inprod(c.edu[2, ], X.c0[i, ])) 
pi.edu0[i, 4] <- exp(i.edu[3] + inprod(s.edu0[3, ], X0[i, 

2:p0]) + inprod(c.edu[3, ], X.c0[i, ])) 
pi.edu0[i, 5] <- exp(i.edu[4] + inprod(s.edu0[4, ], X0[i, 

2:p0]) + inprod(c.edu[4, ], X.c0[i, ])) 
alc0[i] ~ dbern(pi.alc0[i]) 
pi.alc0[i] <- ilogit(i.alc + inprod(s.alc0[], X0[i, 2:p0]) + 

inprod(c.alc[], X.c0[i, ]) + inprod(edu.alc[1:4], edu[edu.idx0[i], 
2:5])) 

smoke.idx0[i] ~ dcat(pi.smoke0[i, 1:3]) 
pi.smoke0[i, 1] <- 1 
pi.smoke0[i, 2] <- exp(i.smoke[1] + inprod(s.smoke0[1, ], 

X0[i, 2:p0]) + inprod(c.smoke[1, ], X.c0[i, ]) + alc.smoke[1] * 
alc0[i] + inprod(edu.smoke[1, 1:4], edu[edu.idx0[i], 2:5])) 

pi.smoke0[i, 3] <- exp(i.smoke[2] + inprod(s.smoke0[2, ], 
 

X0[i, 2:p0]) + inprod(c.smoke[2, ], X.c0[i, ]) + alc.smoke[2] * 
alc0[i] + inprod(edu.smoke[2, 1:4], edu[edu.idx0[i], 2:5])) 

menstat0[i] ~ dbern(pi.meno0[i]) 
pi.meno0[i] <- ilogit(i.meno + inprod(s.meno0[], X0[i, 2:p0]) + age.meno * 

a.a0[i] + alc.meno * alc0[i] + inprod(smoke.meno[], smoke[smoke.idx0[i], 
2:3])) 

mage0[i] ~ dlnorm(mu.mage0[i], prec.mage) 
mu.mage0[i] <- i.mage + inprod(s.mage0[], X0[i, 2:p0]) + inprod(c.mage[], 

X.c0[i, ]) 
endo0[i] ~ dbern(pi.endo0[i]) 
pi.endo0[i] <- ilogit(i.endo + inprod(s.endo0[], X0[i, 2:p0]) + 

inprod(c.endo[], X.c0[i, ]) + age.endo * a.a0[i]) 
tlig0[i] ~ dbern(pi.tlig0[i]) 
pi.tlig0[i] <- ilogit(i.tlig + inprod(s.tlig0[], X0[i, 2:p0]) + inprod(c.tlig[], 

X.c0[i, ]) + age.tlig * a.a0[i] + inprod(edu.tlig[1:4], edu[edu.idx0[i], 2:5]) + 
endo.tlig * endo0[i]) 

} 
a ~ dmnorm(mu0[1:n.rf], prec1[1:n.rf, 1:n.rf]) b ~ 
dmnorm(mu0[1:n.rf], prec1[1:n.rf, 1:n.rf]) g ~ 
dmnorm(mu0[1:n.rf], prec1[1:n.rf, 1:n.rf]) for (i in 
1:n.rf) { 

d[i] ~ dnorm(d0[i], precCCtoC[1 + CdiffCC[i]]) 
CdiffCC[i] ~ dbern(pi.diff) 

} 
pi.diff ~ dbeta(1, 10) 
d0 ~ dmnorm(mu0[1:n.rf], prec1[1:n.rf, 1:n.rf]) 
i.ocever ~ dnorm(0, 0.01) i.ocdur 
~ dnorm(0, 0.01) i.fhbrca ~ 
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dnorm(0, 0.01) i.fhovca ~ dnorm(0, 
0.01) 
i.edu ~ dmnorm(mu0[1:4], prec001[1:4, 1:4])
i.alc ~ dnorm(0, 0.01)
i.smoke ~ dmnorm(mu0[1:2], prec001[1:2, 1:2])
i.meno ~ dnorm(0, 0.01) i.mage ~
dnorm(0, 0.01) i.endo ~ dnorm(0, 
0.01) i.tlig ~ dnorm(0, 0.01) 
i.case0 ~ dnorm(0, 0.01)
fhbrca.fhovca ~ dnorm(0, 1) 
s.ocever ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)])
s.ocever0 ~ dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 -

1)]) 
c.ocever ~ dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c])
s.ocdur ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)]) s.ocdur0 ~
dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 - 1)]) c.ocdur ~ 
dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
age.ocdur ~ dnorm(0, 1) 
s.alc ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)]) s.alc0 ~
dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 - 1)]) c.alc ~ 
dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
edu.ocever ~ dmnorm(mu0[1:4], prec1[1:4, 1:4]) 

edu.ocdur ~ dmnorm(mu0[1:4], prec1[1:4, 1:4]) 
edu.alc ~ dmnorm(mu0[1:4], prec1[1:4, 1:4]) 
s.fhbrca ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)])
s.fhbrca0 ~ dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 -

1)]) 
s.meno ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)]) s.meno0 ~
dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 - 1)]) alc.meno ~ dnorm(0, 
1) 
age.meno ~ dnorm(0, 1) 
smoke.meno ~ dmnorm(mu0[1:2], prec1[1:2, 1:2]) 
s.mage ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)]) s.mage0 ~
dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 - 1)]) c.mage ~ 
dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
s.endo ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)]) s.endo0 ~
dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 - 1)]) c.endo ~ 
dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
age.endo ~ dnorm(0, 1) 
s.tlig ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 1), 1:(p - 1)]) s.tlig0 ~
dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 1), 1:(p0 - 1)]) c.tlig ~ 
dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
edu.tlig ~ dmnorm(mu0[1:4], prec1[1:4, 1:4]) 
age.tlig ~ dnorm(0, 1) 
endo.tlig ~ dnorm(0, 1) for (i 
in 1:4) { 

s.edu[i, 1:(p - 1)] ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p -
1), 1:(p - 1)]) 
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s.edu0[i, 1:(p0 - 1)] ~ dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 
1), 1:(p0 - 1)]) 

c.edu[i, 1:p.c] ~ dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
} 
for (i in 1:2) { 

s.smoke[i, 1:(p - 1)] ~ dmnorm(mu0[1:(p - 1)], prec1[1:(p - 
1), 1:(p - 1)]) 

s.smoke0[i, 1:(p0 - 1)] ~ dmnorm(mu0[1:(p0 - 1)], prec1[1:(p0 - 
1), 1:(p0 - 1)]) 

c.smoke[i, 1:p.c] ~ dmnorm(mu0[1:p.c], prec1[1:p.c, 1:p.c]) 
edu.smoke[i, 1:4] ~ dmnorm(mu0[1:4], prec1[1:4, 1:4]) 

} 
alc.smoke ~ dmnorm(mu0[1:2], prec1[1:2, 1:2]) 
for (i in 1:p) { 

alpha[i] ~ dnorm(0, prec.event) beta[i] 
~ dnorm(0, prec.mort) gamma[i] ~ 
dnorm(0, prec.othr) delta[i] ~ dnorm(0, 
prec.ovca) 

} 
for (i in 1:(p0 - 1)) { 

delta0[i] ~ dnorm(0, prec.ovca) 
} 
prec.ocdur <- pow(sd.ocdur, -2) 
prec.event <- pow(sd.event, -2) 
prec.mort <- pow(sd.mort, -2) 

 

prec.othr <- pow(sd.othr, -2) 
prec.ovca <- pow(sd.ovca, -2) 
prec.mage <- pow(sd.ovca, -2) 
sd.ocdur ~ dexp(1) 
sd.event ~ dexp(1) 
sd.mort ~ dexp(1) 
sd.othr ~ dexp(1) 
sd.ovca ~ dexp(1) 
sd.mage ~ dexp(1) 

} 
 
 
 
1.4  Initial Values 

 
 
##################### Starting Values: # 
BLinits <- function() { 

alc.init <- rep(1, length(BLdat$alc)) 
alc.init[!(is.na(BLdat$alc))] <- NA alc.init0 
<- rep(1, length(BLdat$alc0)) 
alc.init0[!(is.na(BLdat$alc0))] <- NA 
ocever.init <- rep(0, length(BLdat$ocever)) 
ocever.init[!(is.na(BLdat$ocever))] <- NA 
ocever.init0 <- rep(0, length(BLdat$ocever0)) 
ocever.init0[!(is.na(BLdat$ocever0))] <- NA 
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fhovca.init <- rep(0, length(BLdat$fhovca)) 
fhovca.init[!(is.na(BLdat$fhovca))] <- NA 
fhovca.init0 <- rep(0, length(BLdat$fhovca0)) 
fhovca.init0[!(is.na(BLdat$fhovca0))] <- NA 
fhbrca.init0 <- rep(0, length(BLdat$fhbrca0)) 
fhbrca.init0[!(is.na(BLdat$fhbrca0))] <- NA 
smoke.init <- rep(NA, length(BLdat$smoke.idx)) 
smoke.init[is.na(BLdat$smoke.idx)] <- 1 smoke.init0 
<- rep(NA, length(BLdat$smoke.idx0)) 
smoke.init0[is.na(BLdat$smoke.idx0)] <- 1 edu.init 
<- rep(NA, length(BLdat$edu.idx)) 
edu.init[is.na(BLdat$edu.idx)] <- 1 
edu.init0 <- rep(NA, length(BLdat$edu.idx0)) 
edu.init0[is.na(BLdat$edu.idx0)] <- 1 ocdur.init 
<- rep(NA, length(BLdat$ocdur)) 
ocdur.init[is.na(BLdat$ocdur)] <- 2 ocdur.init0 
<- rep(NA, length(BLdat$ocdur0)) 
ocdur.init0[is.na(BLdat$ocdur0)] <- 2 meno.init 
<- rep(NA, length(BLdat$menstat)) 
meno.init[is.na(BLdat$menstat)] <- 1 meno.init0 
<- rep(NA, length(BLdat$menstat0)) 
meno.init0[is.na(BLdat$menstat0)] <- 1 mage.init 
<- rep(NA, length(BLdat$mage)) 
mage.init[is.na(BLdat$mage)] <- 13 
mage.init0 <- rep(NA, length(BLdat$mage0)) 
mage.init0[is.na(BLdat$mage0)] <- 13 

endo.init <- rep(0, length(BLdat$endo)) 
endo.init[!(is.na(BLdat$endo))] <- NA 
endo.init0 <- rep(0, length(BLdat$endo0)) 
endo.init0[!(is.na(BLdat$endo0))] <- NA 
tlig.init <- rep(0, length(BLdat$tlig)) 
tlig.init[!(is.na(BLdat$tlig))] <- NA 
tlig.init0 <- rep(0, length(BLdat$tlig0)) 
tlig.init0[!(is.na(BLdat$tlig0))] <- NA 
return(list(h.all = BL$allinc, h.ov = BL$ovinc, alpha = rep(0, 

ncol(DM.study)), beta = rep(0, ncol(DM.study)), gamma = rep(0, 
ncol(DM.study)), delta = rep(0, ncol(DM.study)), delta0 = rep(0, 
ncol(DM.study0) - 1), sd.ocdur = 1, sd.event = 0.1, sd.mort = 0.1, 
sd.othr = 0.1, sd.ovca = 0.1, bsoRatePar = bsoRatePars$bso.mu[1:3], 
bsoRR = 0.05, a = rep(0, BLdat$n.rf), b = rep(0, BLdat$n.rf), 
g = rep(0, BLdat$n.rf), d = rep(0, BLdat$n.rf), CdiffCC = rep(0, 

BLdat$n.rf), d0 = rep(0, BLdat$n.rf), i.ocever = 0.5, 
s.ocever = rep(0, (BLdat$p - 1)), c.ocever = rep(0, BLdat$p.c),
edu.ocever = rep(0, 4), s.ocever0 = rep(0, (BLdat$p0 - 1)), i.ocdur 
= 3, s.ocdur = rep(0, (BLdat$p - 1)), c.ocdur = rep(0, 

BLdat$p.c), edu.ocdur = rep(0, 4), age.ocdur = 0.1, s.ocdur0 = rep(0, 
(BLdat$p0 - 1)), i.edu = rep(1, 4), s.edu = matrix(0, 
nrow = 4, ncol = (BLdat$p - 1)), c.edu = matrix(0, nrow = 4, 
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ncol = BLdat$p.c), s.edu0 = matrix(0, nrow = 4, ncol = (BLdat$p0 - 
1)), i.smoke = rep(1, 2), s.smoke = matrix(0, nrow = 2, 
ncol = (BLdat$p - 1)), c.smoke = matrix(0, nrow = 2, ncol = BLdat$p.c), 

s.smoke0 = matrix(0, nrow = 2, ncol = (BLdat$p0 - 1)), edu.smoke = matrix(0, 
nrow = 2, ncol = 4), alc.smoke = rep(0, 2), i.alc = 1, 

s.alc = rep(0, (BLdat$p - 1)), c.alc = rep(0, BLdat$p.c), 
edu.alc = rep(0, 4), s.alc0 = rep(0, (BLdat$p0 - 1)), i.fhbrca = (-1), 
s.fhbrca = rep(0, (BLdat$p - 1)), s.fhbrca0 = rep(0, (BLdat$p0 - 

1)), i.fhovca = (-2), fhbrca.fhovca = 1, i.meno = 1, age.meno = 0, 
alc.meno = 0, smoke.meno = rep(0, 2), s.meno = rep(0, (BLdat$p - 

1)), s.meno0 = rep(0, (BLdat$p0 - 1)), i.mage = 2.5, s.mage = rep(0, 
(BLdat$p - 1)), s.mage0 = rep(0, (BLdat$p0 - 1)), c.mage = rep(0, 
BLdat$p.c), sd.mage = 0.12, i.endo = 0.15, s.endo = rep(0, 
(BLdat$p - 1)), c.endo = rep(0, BLdat$p.c), age.endo = 0, s.endo0 

= rep(0, (BLdat$p0 - 1)), i.tlig = 0.15, s.tlig = rep(0, 
(BLdat$p - 1)), c.tlig = rep(0, BLdat$p.c), age.tlig = 0, s.tlig0 

= rep(0, (BLdat$p0 - 1)), endo.tlig = 0, edu.tlig = rep(0, 
4), mage = mage.init, mage0 = mage.init0, endo = endo.init, 

endo0 = endo.init0, tlig = tlig.init, tlig0 = tlig.init0, 
ocever = ocever.init, ocever0 = ocever.init0, ocdur = ocdur.init, 
ocdur0 = ocdur.init0, fhovca = fhovca.init, fhovca0 = fhovca.init0, 
fhbrca0 = fhbrca.init0, alc = alc.init, alc0 = alc.init0, 
smoke.idx = smoke.init, smoke.idx0 = smoke.init0, edu.idx = edu.init, 
edu.idx0 = edu.init0)) 

} 
 
 
library(coda) 
library(rjags) 

 

library(R2WinBUGS) 
library(R2jags) fun.model.file 
<- "BLmodel" 
write.model(BLmodel, fun.model.file) 
BLparameters <- c("bsoRatePar", "bsoRR", "alpha", "beta", "gamma", "delta", 

"delta0", "sd.event", "sd.mort", "sd.othr", "sd.ovca", "sd.ocdur", 
"i.fhovca", "fhbrca.fhovca", "i.ocever", "s.ocever", "c.ocever", 
"edu.ocever", "s.ocever0", "i.fhbrca", "s.fhbrca", "s.fhbrca0", "i.edu", 
"s.edu", "c.edu", "s.edu0", "i.alc", "s.alc", "c.alc", "edu.alc", 
"s.alc0", "i.smoke", "s.smoke", "c.smoke", "alc.smoke", "edu.smoke", 
"s.smoke0", "i.meno", "s.meno", "alc.meno", "age.meno", "smoke.meno", 
"s.meno0", "i.ocdur", "s.ocdur", "c.ocdur", "age.ocdur", "edu.ocdur", 
"s.ocdur0", "i.mage", "s.mage", "s.mage0", "c.mage", "sd.mage", "i.endo", 
"s.endo", "c.endo", "age.endo", "s.endo0", "i.tlig", "s.tlig", "c.tlig", 
"age.tlig", "s.tlig0", "edu.tlig", "endo.tlig", "CdiffCC", "pi.diff", 
"a", "b", "g", 
"d", "d0") 
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2  JAGS Parameter Estimation 

system.time(BLjags <- jags(data = BLdat, inits = BLinits, parameters = BLparameters, 
fun.model.file, progress.bar = "none", n.chains = 1, n.iter = 3500, 
n.burnin = 1000, n.thin = 5, DIC = F))

## Compiling model graph 
## Resolving undeclared variables 
## Allocating nodes 
## Graph Size: 5011276 
## 
## Initializing model 
## user system elapsed 
## 172837.351 15.701 173010.576 

## ---- Run Times: -------------------------------------------- 
## nsamp n.iter time vars 32.4K 3.5K 47198=13.1hrs Study 32.4K 3.5K 
## 81707=22.7hrs Study+FH.bc+FH.ov+ocever 32.4K 3.5K 66087=18.4hrs 
## Study+FH.bc+FH.ov+ocever+edu 32.4K 3.5K 69081=19.2hrs 
## Study+FH.bc+FH.ov+ocever+edu+smoke+alc 32.4K 3.5K 83680=23.2hrs 
## Study+FH.bc+FH.ov+ocever+edu+smoke+alc+meno 32.4K 3.5K 
## 115425=32.1hrs Study+FH.bc+FH.ov+ocever+edu+smoke+alc+meno+ocdur 
## ---- ++(20% OCAC) ------ 32.4K 3.5K 145760=40.5hrs 
## Study+FH.bc+FH.ov+ocever+edu+smoke+alc+meno+ocdur 32.4K 3.5K 
## 128950=35.8hrs 
## Study+FH.bc+FH.ov+ocever+edu+smoke+alc+meno+ocdur+mage 32.4K 
## 3.5K 134437=37.3hrs 
## Study+FH.bc+FH.ov+ocever+edu+smoke+alc+meno+ocdur+mage+endo 
## 32.4K 3.5K hrs 
## Study+FH.bc+FH.ov+ocever+edu+smoke+alc+meno+ocdur+mage+endo+tlig 

dim(simMatrix <- BLjags$BUGSoutput$sims.matrix) 

## [1] 500 521 

## Risk Factor Labels 
rf.names <- c("ocever", "fhbrca", "fhovca", "edu.col", "edu.grad", "edu.hs", 

"edu.lths", "alc", "smoke.past", "smoke.now", "meno.stat", "ocdur", 
"mage", "endo", "tlig") 

## Pr(Case Control -- Cohort Effect Difference): 
prDiff <- apply(simMatrix[, substr(colnames(simMatrix), 1, 7) == "CdiffCC"], 

2, mean) 
names(prDiff) <- rf.names 
prDiff 

## ocever fhbrca fhovca edu.col edu.grad edu.hs 
## 0.076 0.226 0.034 0.072 0.024 0.054 
## edu.lths alc smoke.past smoke.now meno.stat ocdur 
## 0.696 0.040 0.124 0.168 0.204 0.026 
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## mage endo tlig 
## 0.108 0.122 0.062  

hist(simMatrix[, "pi.diff"], prob = TRUE, las = 1, main = "Pr(C2CC Difference)", 
xlab = "Pr(C2CC Difference)", nclass = 20) 

grid <- seq(0, 1, by = 0.01) 
lines(grid, dbeta(grid, 1, 10), col = 2, lwd = 2) 

Pr(C2CC Difference) 
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Pr(C2CC Difference) 

## Marginal Posterior Histograms 
source("Functions.R") 

margPostHist(par.set = "bso", layout = c(2, 2)) 
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## NULL 
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## NULL 

margPostHist(par.set = "othr", layout = c(4, 2)) 
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## NULL 
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## NULL 

margPostHist(par.set = "ovca.cc", layout = c(3, 2)) 
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## NULL 

 
rfplots <- paste("rf", 1:BLdat$n.rf, sep = "") 
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rm(rfplots) 
## Trace Plots: 



1 

pdf("TracePlot.pdf", height = 9, width = 6.5) 

par(mfrow = c(4, 1), las = 1) cnames <- 
colnames(simMatrix) for (i in 

1:ncol(simMatrix)) { 
plot(simMatrix[, i], las = 1, main = paste("Trace of ", cnames[i], 

sep = "")) 
} 
dev.off() 

## pdf 

## 2 

2.0.1 Wrap–Up 

gc() 

## used (Mb) gc trigger (Mb) max used (Mb) 

## Ncells 472477 25.3 940480 50.3 940480 50.3 

## Vcells 27347683 208.7 59615938 454.9 59613884 454.9 save.image() 
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Appendix 4: Results for androgen and IGF-1 concentrations and risk of ovarian cancer by histology 
 

Odds ratios (95% CI) for invasive EOC for doubling and by tertiles in the OC3 1  
 Invasive 

 Sets OR 95% CI ptrend 

Testosterone    

Q1     398 ref  

Q2    443 1.18 (1.00 - 1.39)  

Q32    460 1.24 (1.04 - 1.47)  0.03 

Doubling3 1,301 1.12 (1.01 - 1.23)   0.03 

Free 
Testosterone 

   

Q1     286 ref  

Q2    287 1.03 (0.84 - 1.26)  

Q32    292 1.05 (0.86 - 1.29)  0.05 

Doubling3    865 1.10 (1.00 - 1.21)  0.06 

Androstenedio
ne 

   

Q1     450 ref  

Q2    387 0.86 (0.72 - 1.02)  

Q32    470 1.07 (0.89 - 1.27)  0.15 

Doubling3 1,307 1.07 (0.97 - 1.19)  0.19 

DHEAS    

Q1     213 ref  

Q2    225 1.05 (0.83 - 1.33)  

Q32    207 0.95 (0.74 - 1.23)  0.92 

Doubling3    645 0.98 (0.88 - 1.10)  0.76 

SHBG    

Q1     311 ref  

Q2    250 0.82 (0.67 - 1.00)  

Q32    325 1.08 (0.88 - 1.31)   0.85 

Doubling3    886 1.02 (0.91 - 1.14)   0.77 
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IGF    

Q1     460 ref  

Q2    424 0.91 (0.78 - 1.08)  

Q32    386 0.81 (0.68 - 0.97) <0.01 

Doubling3 1,270 0.82 (0.73 - 0.93) <0.01 
1Results were derived from conditional logistic regression models, additionally adjusted for OC use 
(never/ever/missing) and parity (never/ever/missing).  
2The p value for trend across tertiles is based on a continuous probit score (generating a rank for each person 
in each cohort by hormone level). 3Linear trends for doubling of hormone concentrations estimated on log2 
scale.  
4 Pair-wise heterogeneity tests were performed, using the likelihood ratio test comparing models assuming (1) 
the same association between exposure and outcomes compared to (2) a model assuming different 
associations for each subtype. 
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Odds ratios (95% CI) for EOC by histological subtypes for doubling and by tertiles in the OC31 
Serous Endometrioid Mucinous Clear Cell 

Sets OR 95%CI ptrend Sets OR 95%CI ptrend Sets OR 95%CI ptrend Sets OR 95%CI ptrend phet 

Testosterone 

Q1  222 ref   35 ref  45 ref 15 ref 

Q2 229 1.16 (0.92 - 1.46)    60 1.44 (0.87 - 2.38)   61 1.34 (0.86 - 2.08)  27 1.50 (0.67 - 3.37)  

Q32 204 0.96 (0.76 - 1.23) 0.51   69 1.78 (1.07 - 2.98) 0.07  84 1.95 (1.25 - 3.03) 0.05 17 0.73 (0.30 - 1.77) 0.82  

Doubling3 655 0.96 (0.83 - 1.10) 0.57 164 1.39 (1.02 - 1.89) 0.04 190 1.29 (1.01 - 1.66) 0.04 59 1.06 (0.67 - 1.69) 0.80 0.02 

Free Testosterone 

Q1  155 ref  25 ref  35 ref 11 ref 

Q2 151 1.03 (0.78 - 1.36)  32 0.99 (0.51 - 1.93)  48 1.46 (0.85 - 2.52) 10 0.85 (0.29 - 2.48)  

Q32 129 0.82 (0.62 - 1.10) 0.64 36 1.00 (0.52 - 1.93) 0.54  50 1.49 (0.88 - 2.52) 0.03 20 1.98 (0.68 - 5.78) 0.28  

Doubling3 435 0.97 (0.84 - 1.11) 0.64 93 1.09 (0.79 - 1.5) 0.62 133 1.33 (1.03 - 1.71) 0.03 41 1.28 (0.81 - 2.02) 0.28 0.06 

Androstenedione 

Q1  235 ref  46 ref  56 ref 21 ref 

Q2 204 0.88 (0.70 - 1.11)   45 0.70 (0.42 - 1.18)   51 0.90 (0.57 - 1.42)  15 0.80 (0.36 - 1.77)  

Q32 217 0.99 (0.77 - 1.27) 0.72  73 1.02 (0.61 - 1.71) 0.80  84 1.57 (1.02 - 2.43) 0.03 24 0.75 (0.36 - 1.60) 0.75  

Doubling3 656 0.96 (0.83 - 1.11) 0.62 164 1.04 (0.76 - 1.43) 0.79 191 1.33 (1.03 - 1.72) 0.03 60 1.02 (0.67 - 1.55) 0.94 0.26 

DHEAS 

Q1  123 ref  17 ref    8 ref   7 ref 

Q2 120 0.98 (0.71 - 1.35)  20 0.71 (0.30 - 1.65)  14 1.04 (0.35 - 3.1) 11 2.31 (0.65 - 8.21)  

Q32 104 0.78 (0.55 - 1.11) 0.31 27 1.06 (0.43 - 2.61) 0.82 20 1.71 (0.55 - 5.33) 0.21 13 2.49 (0.74 - 8.37) 0.31  

Doubling3 347 0.92 (0.79 - 1.06) 0.24 64 1.06 (0.72 - 1.55) 0.78 42 1.42 (0.84 - 2.42) 0.19 31 1.24 (0.71 - 2.17) 0.45 0.56 

SHBG 
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Q1 147 ref  30 ref  56 ref 19 ref 

Q2 141 0.87 (0.66 - 1.16)  27 1.07 (0.55 - 2.08)   28 0.61 (0.36 - 1.04)  12 0.72 (0.29 - 1.79)  

Q32 157 1.12 (0.85 - 1.48) 0.71 37 1.51 (0.80 - 2.87) 0.63  51 0.95 (0.58 - 1.55) 0.78 12 0.66 (0.26 - 1.67) 0.30  

Doubling3 445 1.06 (0.91 - 1.24) 0.46 94 1.17 (0.81 - 1.68) 0.40 135 0.93 (0.68 - 1.28) 0.66 43 0.74 (0.45 - 1.22) 0.23 0.24 

IGF 

Q1 211 ref  56 ref  67 ref 25 ref 

Q2 209 0.95 (0.75 - 1.21)  48 0.77 (0.46 - 1.28)   64 0.91 (0.60 - 1.39)  20 0.70 (0.33 - 1.52)  

Q32 209 0.94 (0.73 - 1.21) 0.21  59 0.81 (0.48 - 1.38) 0.34  55 0.75 (0.48 - 1.19) 0.21 12 0.50 (0.21 - 1.23) 0.07  

Doubling3 630 0.89 (0.74 - 1.06) 0.20 163 0.83 (0.57 - 1.22) 0.35 186 0.81 (0.58 - 1.13) 0.21 57 0.55 (0.29 - 1.05) 0.07 0.71 

1Results were derived from conditional logistic regression models, additionally adjusted for OC use (never/ever) and parity (never/ever).  
2The p value for trend across tertiles is based on a continuous probit score (generating a rank for each person in each cohort by hormone level). 
3Linear trends for doubling of hormone concentrations estimated on log2 scale.  
4 Pair-wise heterogeneity tests were performed, using the likelihood ratio test comparing models assuming (1) the same association between exposure 
and outcomes compared to (2) a model assuming different associations for each subtype. 
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Appendix 5: Submitted aims for an R01 using the OC3 to examine inflammation and ovarian cancer risk 

Ovarian cancer is the fifth leading cause of cancer death in the US.1,2 Few ovarian cancer risk factors (e.g., 
pregnancy) are easily modifiable,3 thus it is critical to identify new, potentially modifiable/treatable risk factors to 
improve prevention. Further, established risk factors show different associations by tumor subtypes,4-7 with few 
being associated with aggressive disease (e.g., serous, death within 3 years). This highlights two critical needs 
in ovarian cancer research: (1) consortia to accrue enough well-characterized cases to assess associations by 
tumor subtypes and (2) identification of pathways that drive the development of aggressive tumors. Here, we 
propose to comprehensively characterize the role of inflammation, a modifiable exposure, in ovarian cancer 
leveraging, and expanding the resources of, the Ovarian Cancer Cohort Consortium (OC3), a collaboration of 
23 cohorts with >8,000 ovarian cancer cases (~1500 with biomarker data) in 1.5 million women  

Increasing evidence supports inflammation as a key mechanism in ovarian cancer; however, questions remain. 
Ovarian tumors are characterized by dysregulation of interleukin (IL)-6 and tumor necrosis factor (TNF) α;8-12 
patients with high circulating IL-6 and TNFα have worse survival, suggesting inflammation may be related to 
aggressive disease.13,14 However, prospective studies evaluating circulating levels of these markers have been 
mixed, although most were small.15-18 Conversely, despite a lack of biologic data supporting C-reactive protein 
(CRP) in ovarian tumorigenesis, pre-diagnosis CRP has been consistently positively associated with ovarian 
cancer risk, particularly for overweight women.16-21 However, CRP is non-specific, and as it likely reflects other 
inflammatory processes that promote carcinogenesis, it may not directly impact ovarian cancer risk. That said, 
factors that increase CRP (e.g., smoking22) are not strongly related to overall ovarian cancer risk.23 Further, 
CRP, IL-6, and TNFα are increased by ovarian tumors,24,25 leading to the potential for reverse causation. Thus, 
ovarian cancer research would be greatly enhanced by assessing: (1) novel inflammatory exposures, (2) 
combining biomarkers or exposures to reflect overall inflammatory profiles, since each likely explains only a 
small portion of the variation in inflammation relevant for ovarian cancer, and (3) if associations are stronger for 
aggressive disease and persist over follow-up. Thus, we propose to evaluate circulating CRP, IL-6, and TNFα-
R2 (a marker of TNFα activation), their genetic predictors, and a wide range of inflammatory exposures with 
ovarian cancer risk overall and by tumor subtype, including immunohistochemical (IHC) subtyping, and to 
consider if grouping exposures that define inflammatory profiles highlights pathways for prevention.  

Currently the OC3 includes baseline exposure data and disease follow-up for up to 35 years. To implement this 
proposal, we will incorporate biomarker data from serum/plasma, DNA, and, in a pilot study, tumor tissue, to 
comprehensively define individual inflammatory profiles. Additionally, while the long follow-up allows for accrual 
of many cases, misclassification of exposures that change over time due to temporal trends (e.g., medications) 
or increasing prevalence with age (e.g., chronic diseases) is a concern. To address this, we propose to collect 
updated exposure data from 15 studies with follow-up questionnaires. This collaborative study has substantial 
potential to further understanding of ovarian cancer, leading to improved prevention, via the following aims: 

1. To assess the relationship of circulating levels of CRP, IL-6, and TNFα-R2 as well as the genetically-
determined component of each marker (via Mendelian randomization analysis) with risk of ovarian cancer.
a. We hypothesize that CRP, IL-6 and TNFα-R2, are positively associated with risk overall, that the

association persists for at least 10 years after blood draw, and that the associations are stronger for
aggressive tumor phenotypes and overweight/obese women.

b. We hypothesize that considering patterns of CRP, IL-6 and TNFα-R2 levels (e.g., high levels of all
three markers) will elucidate individuals at high risk of ovarian cancer.

c. Based on biologic data, we hypothesize that genetically-determined levels of IL-6 and TNFα-R2, but
not CRP, are associated with ovarian cancer risk, particularly for aggressive tumors.

2. To examine inflammation-related exposures with ovarian cancer risk overall and by subtype.
a. We hypothesize that adiposity, inflammatory diet score, talc use, short or long sleep duration, IUD use,

lifetime ovulatory cycles, allergies and asthma, autoimmune disease, cardiovascular disease, diabetes,
and depression are associated with increased risk of ovarian cancer, while use of NSAIDS, antibiotics,
statins, and bisphosphonates lower risk, with stronger associations for aggressive tumor phenotypes.
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b. We hypothesize that grouping exposures based on associations with CRP, IL-6 and TNFα-R2 levels,
and preliminarily by type of immune response elicited (Th1, Th2, Th17), will elucidate biologic
mechanisms that are important in ovarian cancer pathogenesis.

c. Secondarily, we hypothesize that the inflammatory exposures in Aim 2a are more strongly related to
high-grade serous tumors or tumors that have tumor-associated macrophages as assessed by IHC.
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