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Project Objectives

This project had three principle aims:

1. Improving the scalability and efficiency of “Ultra-scale” methods for grid-based solutions to
time-dependent PDEs;

2. Sparse storage and reconstruction of information;

3. Build-in several levels of resiliencies to handle various hard faults in the system.

Progress was made in all three areas, leading to fifteen published refereed articles, five articles
in review, one completed masters thesis, and one doctoral thesis in progress. Broadly, PI Ong
and his research team worked primarily in objectives 1.) and 3.), developing parallel-in-time and
domain decomposition transmission conditions to improve scalability and resiliency of computa-
tions. PI Christlieb, PI Wang and their respective research teams worked primarily in objective
2.), developing sparse FFT algorithms and tackling the phase retrieval problem.

Personnel

This projected supported three faculty, three postdoctoral fellows, and two graduate students.
Mr. High completed his M.Sc. in the Department of Mathematics at MSU under the supervision of
Dr. Ong, and is now pursuing a Ph.D in computational science at UIUC. Dr. Ala Alzaalig is still
working on his doctoral degree at Michigan Technological University.
Faculty Supported:

• PI: Dr. Andrew J. Christlieb (2012–2015)

• PI: Dr. Benjamin W. Ong (2012–2015)

• PI: Dr. Yang Wang (2012 – 2014)

Postdoctoral Scholars Supported:

• Dr. Yang Liu (2012 – 2014)

• Dr. Ke Wang (2013 – 2014)

• Dr. Bankim Mandal (2014 – 2015)

Graduate Students supported:

• Mr. Scott High (2013, graduated with M.Sc)

• Mr. Ethan Novak (graduate research project, Summer 2015)

• Mr. Ala Alzaalig (PhD in progress)
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Scientific Workshops/Conferences

In addition to the AFOSR Computational Mathematics annual review, results from research related
to this project was disseminated at the following workshops/conferences. This list does not include
departmental seminars/colloquia at various universities.

1. “The Phase Retrieval Problem”, IPAM Workshop on Adaptive Data Analysis, Los Angeles,
CA, 2012

2. “Minimal frames for Phase Retrieval”, Workshop on Phaseless Reconstruction, FFT 2013,
College Park, MD, 2013

3. “Robust Sub-Linear Time Fourier Algorithms” SIAM Conference on Computational Science
and Engineering, Boston, MA, 2013

4. “An Optimized RIDC-DD Space-time Method for Time Dependent Partial Differential Equa-
tions”, SIAM Conference on Computational Science and Engineering, Boston, MA, 2013

5. “The Phase Retrieval Problem”, International Conference on Approximation Theory and
Applications, Hong Kong, 2013

6. “ Mathematical Investigation of Authorship Attribution: A Case Study”, New Trends in
Applied Harmonic Analysis, CIMPA 2013, Mar del Plata, Argentina, 2013

7. “Pipeline Schwarz Waveform Relaxation”, Domain Decomposition 22, Lugano, Switzerland,
2013

8. “The Phase Retrieval Problem”, Workshop on Applied Harmonic Analysis and Approximation
Theory, Guangzhou, China, 2014

9. “A Robust and Efficient Phase Retrieval Algorithm”, 5th International Conference on Scien-
tific Computing and Partial Differential Equations, Hong Kong, 2014

10. “Fast Phase Retrieval for High Dimensions”, AMS Spring Sectional Meeting, East Lansing,
2015

11. “Sub-Linear Sparse Fourier Algorithm for High Dimensional Data”, SIAM Annual Meeting
2014, Chicago, IL, 2015

12. “RIDC methods with stepsize control”, 4th Workshop on parallel-in-time integration, Dres-
den, Germany, 2015
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Summary of Results

1. Fast phase retrieval for high-dimensions
M. Iwen, A. Viswanathan, Y. Wang
eprint arXiv:1501.02377

Description: A fast phase retrieval method which is near-linear time, making it compu-
tationally feasible for large dimensional signals. Both theoretical and experimental results
demonstrate the method’s speed, accuracy, and robustness. We then use this new phase re-
trieval method to help establish the first known sublinear-time compressive phase retrieval
algorithm capable of recovering a given s-sparse vector x ∈ Cd (up to an unknown phase
factor) in just O(s log5 s · log d)-time using only O(s log4 s · log d) magnitude measurements.

2. Detection of edges from two-dimensional Fourier data using Gaussian mollifiers
A. Gelb, G. Song, A. Viswanathan and Y. Wang
eprint

Description: The detection of edges from two-dimensional truncated Fourier data is studied.
Compared to edge detection from pixel data, this is a more challenging problem since we seek
accurate local information from a small number of often noisy global measurements. Here we
develop a highly effective algorithm using a specific class of spectral mollifiers which converges
uniformly to sharp peaks along the singular support of the function.

3. Random matrices and erasure-robust frames
Y. Wang
eprint arXiv:1403.5969

Description: Data erasure and robustness are important considerations for building redun-
dant systems (frames). Can you build a system (frame) which is robust against more than
50% data erasures? This was the conjectured upper bound within the community. This paper
shows that there isn’t in fact such an upper bound. The random Gaussian frames can be
robust against data erasures of arbitrary high percentage of erasure.

4. On the decay of the smallest singular value of submatrices of rectangular matrices
Y. Liu and Y. Wang

Description: The main contribution of this paper is to show the connection between the
singular value problem and a combinatorial geometry problem. Using a technique from inte-
gral geometry and from the perspective of combinatorial geometry, we show that the smallest
singular value of submatrices is realted to the minimal distance of points to the lines connect-
ing two other points in a bounded point set. The decay rate of the minimal distance for the
set of points can then be estimated.

5. A distributed and incremental SVD algorithm for agglomerative data analysis on large net-
works
M. A. Iwen and B. W. Ong
eprint arXiv:1601.07010

Description: In this paper, an algorithm is formulated to compute the singular value decom-
position of highly-rectangular, distributed matrices efficiently using a hierachical approach.
The algorithm is proven to recover exactly the exact decomposition if the rank of the input
matrix is known a priori. Additionally, the algorithm can be used to recover the d-largest
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singular vectors with bounded error. The algorithm is shown to be stable with respect to
roundoff errors, or corruption of the original matrix entries.

6. Robust sparse phase retrieval made easy
M. Iwen, A. Viswanathan and Y. Wang
Applied and Computational Harmonic Analysis
to appear
doi: 10.1016/j.acha.2015.06.007

Description: In this paper we develop a two stage phase retrieval algorithm for phase
retrieval of sparse vectors. It is incredibly fast and robust. Furthermore it requires the
optimally small number of measurements. Our algorithm also settles a conjecture on the
number of measurements needed to perform phase retrieval for complex signals.

7. A multiscale sub-linear time Fourier algorithm for noisy data
A. J. Christlieb and D.J. Lawlor and Y. Wang
Applied and Computational Harmonic Analysis
to appear
doi: 10.1016/j.acha.2015.04.002

Description: The sparse Fourier algorithm for noiseless signals is extended to the noisy
setting. We present two such extensions, the second of which exhibits a novel form of error-
correction not unlike that of the β-encoders in analog-to-digital conversion. The algorithm
runs in time O(k log(k) log(N/k)) on average, provided the noise is not overwhelming. The
error-correction property allows the algorithm to outperform FFTW over a wide range of
sparsity and noise values, and is to the best of our knowledge novel in the sparse Fourier
transform context.

8. Pipeline Schwarz Waveform Relaxation
B. W. Ong, S. High and F. Kwok
Lecture Notes in Computational Science and Engineering, Domain Decomposition Methods
in Science and Engineering XXII
to appear

Description: Schwarz Waveform Relaxation methods are reposed to allow for pipeline par-
allelization. This increases the scalability of the waveform relaxation algorithms with high
effiiency.

9. Algorithm xxx - a family of parallel time integrators
B. W. Ong, R. D. Haynes and K. Ladd
ACM Transactions on Mathematical Software
to appear

Description: The Revisionist Intergal Deferred Correction software, a parallel-in-time inte-
grator, is able to bootstrap lower order time integrators to provide high-order approximations
in approximately the same wall clock time. The user supplied time step routine may be ex-
plicit or implicit and may make use of any auxilliary libraries which take care of the solution
of any nonlinear algebraic systems which may arise.

10. Stable signal recovery from phaseless measurements
B. Gao, Y. Wang and Z. Wu
Journal of Fourier Analysis and Applications
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(2015) pp. 1–21
doi: 10.1007/s00041-015-9434-x

Description: This paper studies the stability of the `1 minimization for the compressive
phase retrieval and to extend the instance-optimality in compressed sensing to the real phase
retrieval setting. We first show that the m = O(k log(N/k)) measurements is enough to
guarantee the `1 minimization to recover k-sparse signals stably provided the measurement
matrix A satisfies the strong RIP property. We use the results to build a parallel between
compressive phase retrieval with the classical compressive sensing.

11. Gabor orthonormal bases generated by the unit cubes
J.-P. Gabardo, C.-K. Lai and Y. Wang
Journal of Functional Analysis
Vol. 269 (2015), pp 1515–1538

Description: This paper studies Gabor orthonormal bases generated by the characteristic
functions of a unit cube. A complete characterization is given.

12. Probabilistic Estimates of the Largest Strictly Convex Singular Values of Pregaussian Random
Matrices
Y. Liu
Journal of Mathematics and Statistics (2015)

Description: The p-singular values of random matrices with Gaussian entries defined in
terms of the lp-p-norm for p > 1 is studied.

13. The probabilistic estimates on the largest and smallest q-singular values of random matrices
M.-J. Lai and Y. Liu
Mathematics of Computation
84:294 (2015), pp. 1775 – 1794
doi: 10.1090/S0025-5718-2014-02895-0

Description: In this paper, the q-singular values of random matrices with pregaussian entries
in the case 0 < q ≤ 1 are studied. The main result are decay estimates on the lower and
upper tail probabilities of the q-singular values. The k-th q-singular value of an m×n matrix
A is defined by

s
(q)
k = inf

V
sup

x∈V \{0}

‖Ax‖q
‖x‖q

,

where ‖ · ‖q denotes the lq-quasinorm (q ≥ 0) and the inf is taken over all linear subspace
V ∈ Rn of dimension at least n− k + 1.

14. A new approach for analyzing physiological time series
D. Mao, Y. Wang, and Q. Wu
Advances in Adaptive Data Analysis
(2015), pp 1550001
doi: 10.1142/S1793536915500016

Description: We developed a new approach for the analysis of physiological time series for
the purpose of detection and classification. An iterative convolution filter is used to decom-
pose the time series into various components. Statistics of these components are extracted as
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features to characterize the mechanisms underlying the time series. Motivated by the stud-
ies that show many normal physiological systems involve irregularity while the decrease of
irregularity usually implies the abnormality, the statistics for “outliers” in the components
are used as features measuring irregularity. Support vector machines are used to select the
most relevant features that are able to differentiate the time series from normal and abnormal
systems. This new approach is successfully used in the study of congestive heart failure by
heart beat interval time series.

15. Multiple authors detection: a quantitative analysis of Dream of the Red Chamber
X. Hu, Y. Wang and Q. Wu
Advances in Adaptive Data Analysis
Vol 6, Issue 4 (2014), pp 1450012
doi: 10.1142/S1793536914500125

Description: We develop an robust method based on machine learning as well as an effective
set of features for the detection of multiple authorship within a book. We apply our method
to the historic authorship controversy to show that the commonly read version of Dream of
the Red Chamber, one of the greatest novel in the Chinese literature, must be written by two
authors as suspected.

16. Invertibility and robustness of phaseless reconstruction
R. Balan and Y. Wang
Applied and Computational Harmonic Analysis
Vol 38 (2015), pp. 469–488
doi: 10.1016/j.acha.2014.07.003

Description: This paper is concerned with the question of reconstructing a vector in a
finite-dimensional real Hilbert space when only the magnitudes of the coefficients of the
vector under a redundant linear map are known. We analyze various Lipschitz bounds of the
nonlinear analysis map and we establish theoretical performance bounds of any reconstruction
algorithm. We show that robust and stable reconstruction requires additional redundancy
than the critical threshold.

17. Revisionist integral deferred correction with adaptive stepsize control
A. Christlieb, C. Macdonald, B. Ong and R. Spiteri
Communications in Applied Mathematics and Computational Science
Vol 10, Number 1 (2015), pp. 1–25
doi: 10.2140/camcos.2015.10.1

Description: This paper builds stepsize control into the revisionist integral deferred correc-
tion framework. Three variants are explored. In the most successful variant, the prediction
level is used for step-size control.

18. Phase retrieval for sparse signals
Y. Wang and Z. Xu
Applied and Computational Harmonic Analysis
Vol 37 (2014), pp. 531-544
doi: 10.1016/j.acha.2014.04.001

Description: In this paper we provide a theoretical foundation for sparse signal phase
retrieval. We build a parallel frame for sparse signal phase retrieval that is analogous to

7
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the theoretical framework for compressive sensing. In particular, we extend the RIP property
and the Null Space property from compressive sensing to sparse phase retrieval.

19. Phase retrieval from very few measurements
M. Fickus, D. Mixon, A. Nelson and Y. Wang
Linear Algebra and Appl.
Vol 449 (2014), pp. 475–499
doi: 10.1016/j.laa.2014.02.011

Description: In this paper we provide a specific construction for phase retrieval in the
complex setting where only 4n − 4 measurements are needed. This is conjectured to be the
smallest number of measurements for which phase retrieval is possible in the complex setting.

20. A hybrid MPI–OpenMP algorithm for the parallel space-time solution of time dependent
PDES
B. W. Ong, R. D. Haynes
Lecture Notes in Computational Science and Engineering, Domain Decomposition Methods
in Science and Engineering XXI
Vol 98 (2014), pp. 179–187
doi: 10.1007/978-3-319-05789-7 14

Description: The significance in correctly ordering parallel directives for the parallel space-
time solution of time-dependent PDEs using revisionist integral deferred correction (a parallel
time-integrator implemented using OpenMP) and domain decomposition (implemented using
MPI) is explored. Surprisingly, a tightly-coupled fork–join implementation is more efficient.
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FAST PHASE RETRIEVAL FOR HIGH-DIMENSIONS

MARK IWEN, ADITYA VISWANATHAN, AND YANG WANG

Abstract. We develop a fast phase retrieval method which is near-linear time, making it compu-
tationally feasible for large dimensional signals. Both theoretical and experimental results demon-
strate the method’s speed, accuracy, and robustness. We then use this new phase retrieval method
to help establish the first known sublinear-time compressive phase retrieval algorithm capable of
recovering a given s-sparse vector x ∈ Cd (up to an unknown phase factor) in just O(s log5 s · log d)-
time using only O(s log4 s · log d) magnitude measurements.

1. Introduction

We consider the phase retrieval problem of recovering a given vector x ∈ Cd, up to an unknown
global phase factor, from a set of squared magnitude measurements |Mx|2 ∈ RD, with D ≥ d.
Here M ∈ CD×d, and | · |2 : CD → RD computes the componentwise squared magnitude of each
vector entry. Our objective is to design a computationally efficient recovery method, A : RD → Cd,
which can approximately recover x using the magnitude measurements |Mx|2 that result from any
member of a relatively large class of matrices M ∈ CD×d. More specifically, we require that

(1) A
(
|Mx|2

)
= e

−iθx

for some unknown θ ∈ [0, 2π].
Phase retrieval problems arise in many crystallography and optics applications (see, e.g., [40,

30, 21, 29]). As a result, phase retrieval has been studied a great deal over the past decade within
the applied mathematics community. The majority of this work has focussed on establishing upper
and lower bounds for the number of magnitude measurements required for reconstructing x up to
a global phase factor. It has been shown, e.g., that O(d) magnitude measurements suffice for phase
retrieval of both real and complex vectors x ∈ Cd [3, 6, 17]. Furthermore, it is also known that
O(d) magnitude measurements are required [22].

There has also been a good deal of work done developing phase retrieval algorithms which are
(i) computationally efficient, (ii) robust to measurement noise, and (iii) theoretically guaranteed to
reconstruct a given vector up to a global phase error using a near-minimal number of magnitude
measurements. For example, it has been shown that robust phase retrieval is possible with D =
O(d) magnitude measurements by solving a semidefinite programming relaxation of it as a rank-1
matrix recovery problem [12, 11]. This allows polynomial-time convex optimization methods to
be used for phase retrieval. Furthermore, the runtimes of these convexity-based methods can be
reduced with the use of O(d log d) magnitude measurements [14]. Other phase retrieval approaches
include the use of spectral recovery methods together with magnitude measurement ensembles
inspired by expander graphs [2]. These methods allow the recovery of x up to a global phase factor

M.A. Iwen: Department of Mathematics and Department of ECE, Michigan State University
(markiwen@math.msu.edu). M.A. Iwen was supported in part by NSF DMS-1416752 and NSA H98230-13-1-0275.

A. Viswanathan: Department of Mathematics, Michigan State University (aditya@math.msu.edu).
Y. Wang: Department of Mathematics, The Hong Kong University of Science and Technology (yangwang@ust.hk).

Y. Wang was partially supported by NSF DMS-1043032 and AFOSR FA9550-12-1-0455.
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using O(d) magnitude measurements, and run in Ω(d2)-time in general.1 All of these approaches

utilize magnitude measurements |Mx|2 resulting from either (i) Gaussian random matrices M , or
(ii) unbalanced expander graph constructions, in order to prove their recovery guarantees.

In this paper we demonstrate that a relatively general class of invertible block circulant mea-
surement matrices M ∈ CD×d results in D = O(d logc d) magnitude measurements, |Mx|2, which
allow for phase retrieval in just O(d logc d)-time.2 In particular, we construct a well-conditioned set

of Fourier-based measurements, M ∈ CO(d log3 d)×d, which are theoretically guaranteed to allow for
the phase retrieval of a given vector with high probability in O(d log4 d)-time. These measurements
are of particular interest given that they are closely related to short-time Fourier transform based
measurements, which are off special significance in several application areas (see, e.g., [15] and the
references therein). Numerical experiments both verify the speed and accuracy of the proposed
phase retrieval approach, as well as indicate that the approach is highly robust to measurement
noise. Finally, after establishing and analyzing our general phase retrieval method, we then utilize
it in order to establish the first known sublinear-time compressive phase retrieval method capable
of recovering s-sparse vectors x (up to an unknown phase factor) in only O(s logc d)-time.

The remainder of this paper is organized as follows: In section 2 we establish notation and
discuss important preliminary results. Next, in section 3, we present our general phase retrieval
algorithm and discuss it’s runtime complexity. We then analyze the our phase retrieval algorithm
and prove recovery guarantees for specific types of Fourier-based measurement matrices in section 4.
In section 5, we empirically evaluate the proposed phase retrieval method for speed and robustness.
Finally, in section 6, we use our general phase retrieval algorithm in order to construct a sublinear-
time compressive phase retrieval method which is guaranteed to recover sparse vectors (up to an
unknown phase factor) in near-optimal time.

2. Preliminaries: Notation and Setup

For any matrix X ∈ CD×d we will denote the jth column of X by Xj ∈ CD. The conjugate

transpose of a matrix X ∈ RD×d will be denoted by X∗ ∈ Cd×D, and the singular values of any
matrix X ∈ CD×d will always be ordered as σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin(D,d)(X) ≥ 0. Also, the
condition number of the matrix X will denoted by κ(X) := σ1(X)/σmin(D,d)(X). We will use the

notation [n] := {1, . . . , n} ⊂ N for any n ∈ N. Finally, given any x ∈ Cd, the vector x opt
s ∈ Cd will

always denote an optimal s-sparse approximation to x. That is, it preserves the s largest entries in
magnitudes of x while setting the rest of the entires to 0. Note that x opt

s ∈ Cd may not be unique
as there can be ties for the sth largest entry in magnitude.

Hereafter we will assume that our measurement matrix M ∈ CD×d has D := (2δ − 1)d rows,
for a user specified value of δ ∈ N. Furthermore, we utilize the obvious decomposition of M into
(2δ − 1) blocks, M1, . . . ,M2δ−1 ∈ Cd×d, given by

(2) M =




M1

M2
...
M2δ−1


 .

Each Ml ∈ Cd×d is itself assumed to be both circulant, with

(3) (Ml)i,j := (ml)(j−i) mod d + 1

for some ml ∈ Cd, and banded, so that (ml)i = 0 for all i > δ, and 1 ≤ l ≤ 2δ − 1.3

1Their runtime complexity is dominated by the time required to solve an overdetermined linear system.
2Herein c is a fixed absolute constant.
3All indexes of vectors in Cd will automatically be considered modulo d, + 1, in this fashion hereafter.

2
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As a consequence, the squared magnitude measurements from the lth-block, |Mlx|2 ∈ Rd, can
be rewritten as

(4)
(
|Mlx|2

)
i

= (Mlx)i (Mlx)i =
δ∑

j,k=1

(ml)j(ml)k xj+i−1xk+i−1.

Let y ∈ CD be defined by

(5) yi := xd i+δ−1
2δ−1 exd i+δ−1

2δ−1 e+((i+δ−2) mod (2δ−1))−δ+1.

Furthermore, let 0α ∈ R1×α be the row vector of α zeros for any given α ∈ N, and let m̃(l,1) ∈ C1×δ

be such that

(6)
(
m̃(l,j)

)
k

:= (ml)j(ml)k.

We can now re-express |Mlx|2 ∈ Rd from (4) as M̃ly, where M̃l ∈ Cd×D is a (2δ − 1)-circulant
matrix defined by




m̃(l,1) 0δ−2 m̃(l,2) 0δ−2 m̃(l,3) . . . m̃(l,δ) 0 0 . . . 0
02δ−1 m̃(l,1) 0δ−2 m̃(l,2) 0δ−2 m̃(l,3) . . . m̃(l,δ) 0 . . . 0

. . .(
m̃(l,2)

)
2

. . .
(
m̃(l,2)

)
δ

0δ−2 m̃(l,3) 0δ−2 . . . 0 m̃(l,1) 0δ−2
(
m̃(l,2)

)
1


 .

Finally, after reordering the entries of |Mx|2 via a permutation matrix P ∈ {0, 1}D×D, we arrive
at our final form

(7) P |Mx|2 = M ′y =




M ′1 M ′2 . . . M ′δ 0 0 . . . 0
0 M ′1 M ′2 . . . M ′δ 0 . . . 0

. . .

M ′2 . . . M ′δ 0 . . . 0 . . . M ′1


y.

Here M ′ ∈ CD×D is a block circulant matrix [38] whose blocks, M ′1, . . . ,M
′
δ ∈ C(2δ−1)×(2δ−1), have

entries

(8) (M ′l )i,j :=





(mi)l(mi)j+l−1 if 1 ≤ j ≤ δ − l + 1

0 if δ − l + 2 ≤ j ≤ 2δ − l − 1

(mi)l+1(mi)l+j−2δ+1 if 2δ − l ≤ j ≤ 2δ − 1, and l < δ

0 if j > 1, and l = δ

.

Let Iα denote the α×α identity matrix. We now note that M ′ can be block diagonalized by via
the unitary block Fourier matrices Uα ∈ Cαd×αd, with parameter α ∈ N, defined by

(9) Uα :=
1√
d




Iα Iα . . . Iα

Iα Iαe
2πi
d . . . Iαe

2πi·(d−1)
d

. . .

Iα Iαe
2πi·(d−2)

d . . . Iαe
2πi·(d−2)·(d−1)

d

Iα Iαe
2πi·(d−1)

d . . . Iαe
2πi·(d−1)·(d−1)

d



.

3
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More precisely, one can see that we have

(10) U∗2δ−1 M
′ U2δ−1 = J :=




J1 0 0 . . . 0
0 J2 0 . . . 0

. . .

0 0 0 Jd−1 0
0 0 0 0 Jd




where J ∈ CD×D is block diagonal with blocks J1, · · · , Jd ∈ C(2δ−1)×(2δ−1) given by

(11) Jk :=
δ∑

l=1

M ′l · e
2πi·k·l
d .

Not so surprisingly, the fact that any block circulant matrix can be block diagonalized by block
Fourier matrices will lead to more efficient computational techniques below.

2.1. Johnson-Lindenstrauss Embeddings and Restricted Isometries. Below we will utilize
results concerning Johnson-Lindenstrauss embeddings [26, 19, 1, 13, 4, 27] of a given finite set
S ⊂ Cd into Cm for m < d. These are defined as follows:

Definition 1. Let ε ∈ (0, 1), and S ⊂ Cd be finite. An m × d matrix A is a linear Johnson-
Lindenstrauss embedding of S into Cm if

(1− ε)‖ u− v ‖22 ≤ ‖ Au−Av ‖22 ≤ (1 + ε)‖ u− v ‖22
holds ∀u,v ∈ S ∪ {0}. In this case we will say that A is a JL(m,d,ε)-embedding of S into Cm.

Linear JL(m,d,ε)-embeddings are closely related to the Restricted Isometry Property [9, 4, 18].

Definition 2. Let s ∈ [d] and ε ∈ (0, 1). The matrix A ∈ Cm×d has the Restricted Isometry
Property if

(12) (1− ε)‖ x ‖22 ≤ ‖ Ax ‖22 ≤ (1 + ε)‖ x ‖22
holds ∀x ∈ Cd containing at most s nonzero coordinates. In this case we will say that A is RIP(s,ε).

In particular, the following theorem due to Krahmer and Ward [27, 18] demonstrates that a matrix
with the restricted isometry property can be used to construct a Johnson-Lindenstrauss embedding
matrix.

Theorem 1. Let S ⊂ Cd be a finite point set with |S| = M . For ε, p ∈ (0, 1), let A ∈ Cm×d be

RIP(2s,ε/C1) for some s ≥ C2 · ln(4M/p).4 Finally, let B ∈ {−1, 0, 1}d×d be a random diagonal
matrix with independent and identically distributed (i.i.d.) symmetric Bernoulli entries on its
diagonal. Then, AB is a JL(m,d,ε)-embedding of S into Cm with probability at least 1− p.

Below we will utilize Theorem 1 together with a result concerning the restricted isometry property
for sub-matrices of a Fourier matrix. Let F ∈ Cd×d be the unitary d× d discrete Fourier transform
matrix. The random sampling matrix, R′ ∈ Cm×d, for F is then

(13) R′ :=

√
d

m
·RF

where R ∈ {0, 1}m×d is a random matrix with exactly one nonzero entry per row (i.e., each entry’s
column position is drawn independently from [d] uniformly at random with replacement). The
following theorem is proven in [18].5

4Here C1, C2 ∈ (1,∞) are both fixed absolute constants.
5See Theorem 12.32 in Chapter 12.
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Theorem 2. Let p ∈ (0, 1). If the number of rows in the random sampling matrix R′ ∈ Cm×d
satisfies both

(14)
m

ln(9m)
≥ C3 ·

s ln2(8s) ln(8d)

ε2

and

(15) m ≥ C4 ·
s log(1/p)

ε2
,

then R′ will be RIP(2s,ε/C1) with probability at least 1− p.6

We are now prepared to present and analyze our phase retrieval method.

3. A Fast Phase Retrieval Algorithm

The proposed phase retrieval algorithm works in two stages. In the first stage, the vector y ∈ CD
from (5) of local entrywise products of x ∈ Cd with its conjugate is recovered by inverting the block
circulant matrix M ′ in (7). Next, a greedy algorithm is used to recover the magnitudes and phases
of each entry of x from y (up to a global phase factor). To see how this works, note that y will
contain all of the products xixj for all i, j ∈ [d] with |i− j mod d| < δ. As a result, the magnitude
of each entry xj can be obtained directly from xjxj = |xj |2. Similarly, as long as xjxj > 0, one can

also compute the phase difference arg(xi)− arg(xj) from arg
(
xixj
xjxj

)
. Thus, the phase of xi can be

determined once arg(xj) is established. Repeating this process allows one to determine a network
of phase differences which all depend uniquely on the choice of a single entry’s unknown phase.
This entry’s phase becomes the global phase factor eiθ from (1). See Algorithm 1 for additional
details.

Algorithm 1 Fast Phase Retrieval

Input: Measurements |Mx|2 ∈ RD (Recall, e.g., (2) – (4))
Output: x̃ ∈ Cd with x̃ ≈ e−iθx for some θ ∈ [0, 2π] as per (1)

1: Compute y = (M ′)−1P |Mx|2 (see (7))
2: Use Algorithm 2 with input y ∈ CD to compute the phase angles, φj , of x̃j for all j ∈ [d]

3: Set x̃j =
√
xjxj · eiφj for all j ∈ [d], where each xjxj is obtained from y

It is important to note that Algorithm 1 assumes that the block circulant matrix M ′ arising
from our choice of measurements, M , is invertible. As we shall see in §4 and §5, this is relatively
easy to achieve. Similarly, Algorithm 2 implicitly assumes that x does not contain any strings of
δ−1 consecutive zeros (or, more generally, δ−1 consecutive entires with “very small” magnitudes).
This assumption will also be discussed in §4 and §5, and justified for arbitrary x by modifying
the measurements M . For the time being, then, we are left free to consider to the computational
complexity of Algorithm 1.

3.1. Runtime Analysis. We will begin our analysis the runtime complexity of Algorithm 1 by
considering the computation of y ∈ CD in line 1. Recalling §2, we note that the permutation
matrix P is based on a simple row reordering that clusters the first rows of M1, . . . ,M2δ−1 into
a contiguous block, the second rows of M1, . . . ,M2δ−1 into a second contiguous block, etc. (see
(2) and (3)). Thus, P |Mx|2 is simple to compute using only O(d · δ)-operations. To finish

calculating y = (M ′)−1P |Mx|2 we then use the decomposition of M ′ from (10) and compute

y = U2δ−1J−1U∗2δ−1P |Mx|2.
6Here C3, C4 ∈ (1,∞) are both fixed absolute constants.
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Algorithm 2 Naive Greedy Angular Synchronization

Input: xixj , i, j = 0, . . . , d− 1, |i− j mod d| < δ.
Output: Relative phase values: ∠xi, i = 0, . . . , d− 1.

1: Identify largest magnitude entry and set its phase to zero.

∠xj = 0, j = arg max
i

xixi, i = 0, . . . , d− 1.

Note: We recover the unknown phases up to a global phase factor.
2: Define a binary vector, phaseFlag ∈ {0, 1}d, to keep track of entries whose phase has already

been set.

phaseFlagi =

{
0, i = j,
1, else.

3: while
∑

i∈(j,j+δ)
phaseFlagi > 0 do

4: for i = 1− δ, 2− δ, . . . , 0, . . . , δ − 1 do {Set phase for the 2δ − 1 entries nearest xj}
5: if phaseFlagj+i mod d = 1 then {Do not over-write previously set phases}
6: Use the reference phase, ∠xj , and the computed phase differences, arg

(
xj+i mod dxj

xjxj

)

and arg
(
xjxj+i mod d

xjxj

)
, to set the phase of entry xj+i mod d

∠xj+i mod d = ∠xj +
1

2

(
arg

(
xj+i mod dxj

xjxj

)
− arg

(
xjxj+i mod d

xjxj

))
.

phaseFlagj+i mod d = 0.

7: end if
8: end for
9: Update the reference phase

j =

(
j + arg max

0<i<δ
xj+i mod dxj+i mod d

)
mod d

10: end while

Recalling the definition of U2δ−1 (9), one can see that both U2δ−1 and U∗2δ−1 have fast matrix-
vector multiplies (i.e., because they can be computed by performing 2δ−1 independent fast Fourier
transforms on different sub-vectors of size d). Hence, matrix-vector multiplies with both of these
matrices can be accomplished with O(δ · d log d) operations. Finally, J is block-diagonal with d
blocks of size (2δ− 1)× (2δ− 1) (see (11)). Thus, J and J−1 can both be computed using O(d · δ3)
total operations. Putting everything together, we can now see that line 1 of Algorithm 1 requires
only O(d · δ3 + δ ·d log d) operations in general. Furthermore, these computations can easily benefit
from parallelism due to the fact that the calculations above are all based on explicitly defined block
decompositions.

The second line of Algorithm 1 calls Algorithm 2 whose runtime complexity is dominated by
its main while-loop (lines 3 through 10). This loop will visit each entry of the input vector y at
most a constant number of times. Hence, it requires O(δ · d) operations. Finally, the third line
of Algorithm 1 uses only O(d) operations. Thus, the total runtime complexity of Algorithm 1 is
O(d · δ3 + δ · d log d) in general.

4. Error Analysis and Recovery Guarantees

In this section we analyze the performance of the proposed phase retrieval method (see Algo-
rithm 1), and demonstrate measurement matrices which allow it to recover arbitrary vectors, up to

6
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an unknown phase factor, with high probability. Our analysis proceeds in two steps. First, in §4.1
and §4.2, we construct a deterministic set of measurements, M ∈ CD×d, which allow Algorithm 1
to recover all relatively flat vectors x ∈ Cd. Here, “flat” simply means that all entrees of x are
bounded away from zero in magnitude. The developed measurements M are Fourier-like, roughly
corresponding to a set of damped and windowed Fourier measurements of overlapping portions of
x. In addition to being well conditioned, these Fourier measurements also have fast inverse matrix-
vector multiplies via (an additional usage of) the FFT. Hence, they confer additional computational
advantages beyond those already enjoyed by our general block circulant measurement setup.

Next, in §4.3, we extend our deterministic recovery guarantee for flat vectors to a probabilistic
recovery guarantee for arbitrary vectors. This is accomplished by right-multiplying M with a
concatenation of several Johnson-Lindenstrauss embedding matrices, each of which tends to “flatten
out” vectors they are multiplied against. In particular, we construct a set of such matrices which
are both (i) collectively unitary, and (ii) rapidly invertible as a group via (yet another usage of)
the FFT. The fact that this flattening matrix is unitary preserves the well conditioned nature of
our initial measurements, M . Furthermore, the fact that the flattening matrix enjoys a fast inverse
matrix-vector multiply via the FFT allows us to maintain computational efficiency. Finally, the fact
that the flattening matrix produces a flattened version of x with high probability allows us to apply
our deterministic recovery guarantee for flat vectors to vectors which are not initially flat. The end
result of this line of reasoning is the following recovery guarantee for noiseless measurements.

Theorem 3. Let x ∈ Cd with d sufficiently large. Then, one can select a random measurement
matrix M̃ ∈ CD×d such that the following holds with probability at least 1− 1

C·ln2(d)·ln3(ln d) :7 Algo-

rithm 1 will recover an x̃ ∈ Cd with

(16) min
θ∈[0,2π]

∥∥∥x− eiθx̃
∥∥∥
2

= 0

when given the noiseless magnitude measurements |M̃x|2 ∈ RD. Here D can be chosen to be
O(d · ln2(d) · ln3 (ln d)). Furthermore, Algorithm 1 will run in O(d · ln3(d) · ln3 (ln d))-time in that
case.

In fact, we obtain a bit more than this most basic noiseless recovery result. For example, we
derive explicit bounds on the condition number of the measurements M ′ proposed in §4.1 (as
opposed to simply proving them to be invertible). Continuing in this vein one can, in fact, easily
prove rather ugly (and not terribly enlightening) worst-case recovery guarantees for Algorithm 1
when it’s provided with noisy magnitude measurements instead of noiseless ones. However, we
will leave a careful theoretical analysis of the robustness of Algorithm 1 to measurement noise for
future work. For now, we simply direct the concerned reader to §5 after noting that Algorithm 1
appears to be highly robust to measurement noise in practice. We are now ready to begin proving
Theorem 3.

4.1. Well Conditioned Measurements. In this section we develop a set of deterministic mea-
surements M ∈ CD×d that lead to well conditioned block circulant matrices M ′ ∈ CD×D in (7).
To begin, we choose a ∈ [4,∞) and then set

(17) (ml)i =

{
e−i/a
4√2δ−1 · e

2πi·(i−1)·(l−1)
2δ−1 if i ≤ δ

0 if i > δ

7Here C ∈ R+ is a fixed absolute constant.
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for 1 ≤ l ≤ 2δ − 1, and 1 ≤ i ≤ d. This leads to blocks M ′l ∈ C(2δ−1)×(2δ−1) with entries given by

(M ′l )i,j :=





(mi)l(mi)j+l−1 = e−(2l+j−1)/a√
2δ−1 · e−

2πi·(i−1)·(j−1)
2δ−1 if 1 ≤ j ≤ δ − l + 1

0 if δ − l + 2 ≤ j ≤ 2δ − l − 1

(mi)l+1(mi)l+j−2δ+1 = e−(2l+j−2(δ−1))/a√
2δ−1 · e−

2πi·(i−1)·(j−2δ)
2δ−1 if 2δ − l ≤ j ≤ 2δ − 1, l < δ

0 if j > 1, and l = δ

.

We will now begin to bound the condition number of this block circulant matrix, M ′, by block
diagonalizing it via (10).

Considering the entries of each Jk ∈ C(2δ−1)×(2δ−1) from (11) results in two cases. First, suppose
that 1 ≤ j ≤ δ. In this case one can see that

(Jk)i,j =
e(1−j)/a√

2δ − 1
· e

−2πi·(i−1)·(j−1)
2δ−1 ·

δ−j+1∑

l=1

e
−2l/a · e 2πi·k·l

d ,(18)

=
e−(j+1)/a

√
2δ − 1

· e
−2πi·(i−1)·(j−1)

2δ−1 · e 2πi·k
d · 1− e−2(δ−j+1)/a · e 2πi·k·(δ−j+1)

d

1− e−2/a · e 2πi·k
d

.(19)

Second, suppose that δ + 1 ≤ j ≤ 2δ − 1. In this case one can see that

(Jk)i,j =
e−(j−2(δ−1))/a√

2δ − 1
· e

−2πi·(i−1)·(j−1)
2δ−1 ·

δ−1∑

l=2δ−j
e
−2l/a · e 2πi·k·l

d ,(20)

=
e−(2(δ+1)−j)/a
√

2δ − 1
· e

−2πi·(i−1)·(j−1)
2δ−1 · e

2πi·k(2δ−j)
d · 1− e−2(j−δ)/a · e 2πi·k·(j−δ)

d

1− e−2/a · e 2πi·k
d

.(21)

Let Fα ∈ Cα×α be the unitary α× α discrete Fourier transform matrix. Defining

sk,j :=

{
e−(j+1)/a · e2πi·k/d · 1−e−2(δ−j+1)/a·e2πi·k·(δ−j+1)/d

1−e−2/a·e2πi·k/d if 1 ≤ j ≤ δ
e−(2(δ+1)−j)/a · e2πi·k(2δ−j)/d · 1−e−2(j−δ)/a·e2πi·k·(j−δ)/d

1−e−2/a·e2πi·k/d if δ + 1 ≤ j ≤ 2δ − 1
,

we now have that

(22) Jk = F2δ−1




sk,1 0 . . . 0
0 sk,2 0 . . .

0 0
. . . 0

0 . . . 0 sk,2δ−1


 .

Note that the condition number of J , and therefore of M ′, will be dictated by the singular values
of these Jk matrices. Thus, we will continue by developing bounds for the singular values of each
Jk ∈ C(2δ−1)×(2δ−1).

The fact that F2δ−1 is unitary implies that

(23) min
j∈[2δ−1]

|sk,j | ≤ σ2δ−1 (Jk) ≤ σ1 (Jk) ≤ max
j∈[2δ−1]

|sk,j |

for all k ∈ [d]. Thus, we will now devote ourselves to bounding the maximum and minimum values
of |sk,j | from above and below, respectively, over all k ∈ [d] and j ∈ [2δ − 1]. These bounds will
then collectively yield an upper bound on the condition number of our block circulant measurement
matrix M ′. The following simple technical lemmas will be useful.

Lemma 1. Let x ∈ [2,∞). Then, 1− e−1/x > 2−e1/x
x ≥ 2−√e

x > 7
20·x .
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Proof: Note that 1− e−1/x =
∑∞

n=1
(−1)n+1

xnn! > 1
x ·
(

2−∑∞n=0
1

xn(n+1)!

)
> 2−e1/x

x . Furthermore,

the numerator is a monotonically increasing function of x. �

Lemma 2. Let a, b, c ∈ R+, and f : R→ R below. Then,

(1) f(x) = b · e−x/a
(
1 + c · e2x/a

)
has a unique global minimum at x = −a

2 ln(c), and

(2) f(x) = b · e−x/a
(
1− c · e2x/a

)
is monotonically decreasing.

Proof: In either case we have that f ′(x) = − b
a · e−x/a± bc

a · ex/a, and f ′′(x) = b
a2
· e−x/a± bc

a2
· ex/a.

For (1) we have a single critical point at x = −a
2 ln(c), which is a global minimum since f ′′(x) >

0 ∀x ∈ R. For (2) we have f ′(x) < 0 for all x ∈ R. �

Note that

(24) |sk,j | =





e−(j+1)/a ·
√

1+e−4(δ−j+1)/a−2e−2(δ−j+1)/a cos(2π·[δ−j+1]·k/d)
1+e−4/a−2e−2/a cos(2πk/d)

if 1 ≤ j ≤ δ

e−(2(δ+1)−j)/a ·
√

1+e−4(j−δ)/a−2e−2(j−δ)/a cos(2π·[j−δ]·k/d)
1+e−4/a−2e−2/a cos(2πk/d)

if δ + 1 ≤ j ≤ 2δ − 1

.

Fix k ∈ [d]. When 1 ≤ j ≤ δ we have

(25) max
j∈[δ]
|sk,j | ≤ max

j∈[δ]

(
e
−(j+1)/a · 1 + e−2(δ+1−j)/a

1− e−2/a

)
≤ e

−2/a(1 + e−2δ/a)
1− e−2/a ,

where the second inequality follows from part one of Lemma 2. When δ + 1 ≤ j ≤ 2δ − 1 we have

(26) max
j∈[2δ−1]\[δ]

|sk,j | ≤ max
j∈[2δ−1]\[δ]

(
e
−(2(δ+1)−j)/a · 1 + e−2(j−δ)/a

1− e−2/a

)
≤ e

−3/a(1 + e−2(δ−1)/a)
1− e−2/a ,

where the second inequality again follows from part one of Lemma 2. Finally, combining (25) and
(26) one can see that

(27) σ1 (Jk) ≤
e−2/a(1 + e−2δ/a)

1− e−2/a < a · e
−2/a(1 + e−2δ/a)

2(2− e2/a) < a · 20e−2/a

7
< 3a · e−2/a,

where the second inequality follows from Lemma 1 with a ∈ [4,∞).
Turning our attention to the lower bound, we note that part two of Lemma 2 implies that

(28) min
j∈[δ]
|sk,j | ≥ min

j∈[δ]

(
e
−(j+1)/a · 1− e−2(δ+1−j)/a

1 + e−2/a

)
≥ e

−(δ+1)/a(1− e−2/a)
1 + e−2/a

.

Similarly, part two of Lemma 2 also ensures that

(29) min
j∈[2δ−1]\[δ]

|sk,j | ≥ min
j∈[2δ−1]\[δ]

(
e
−(2(δ+1)−j)/a · 1− e−2(j−δ)/a

1 + e−2/a

)
≥ e

−(δ+1)/a(1− e−2/a)
1 + e−2/a

.

Combining (28) and (29) we see that

(30) σ2δ−1 (Jk) ≥
e−(δ+1)/a(1− e−2/a)

1 + e−2/a
>

7

20a
· e−(δ+1)/a,

where the second inequality follows from Lemma 1 with a ∈ [4,∞). We are now equipped to prove
the main theorem of this section.
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Theorem 4. Define M ′ ∈ CD×D via (17) with a := max
{

4, δ−1
2

}
. Then,

κ
(
M ′
)
< max

{
144e2,

9e2

4
· (δ − 1)2

}
.

Proof: We have from (27) and (30) that

(31) κ
(
M ′
)

=
σ1 (M ′)
σD (M ′)

=
σ1 (J)

σD (J)
≤

maxk∈[d] σ1 (Jk)

mink∈[d] σ2δ−1 (Jk)
< 9a2 · e(δ−1)/a.

Minimizing the rightmost upper bound as a function of a yields the stated result. �

Theorem 4 guarantees the existence of measurements which allow for the robust recovery of the
phase difference vector y ∈ CD defined in (5). In the next three subsections we analyze the recovery
of x ∈ Cd from y via the techniques discussed in §3.

4.2. A Recovery Guarantee for Flat Vectors. As mentioned in §3, Algorithm 1 implicitly
assumes that x ∈ Cd does not contain any strings of δ − 1 consecutive entires with very small
magnitudes (mod d). We will refer to such vectors as being “flat”. More specifically, we will utilize
the following more concrete definition.

Definition 3. Let m ∈ [d]. A vector u ∈ Cd will be called m-flat if its entries can be partitioned
into at least

⌊
d
m

⌋
contiguous blocks such that:

(1) Every block contains either m or m+ 1 entries,

(2) Every block contains at least one entry whose magnitude is ≥ ‖u‖2
2
√
d

, and

(3) All entries of u have magnitude ≤
√

3m+3
2d · ‖u‖2.

Note that Algorithm 1 will always successfully recover
⌊
(δ−1)

2

⌋
-flat vectors whenever (M ′)−1

exists. To see why, it suffices to consider the main while-loop of Algorithm 2 (i.e., lines 3 through
10). In particular, line 6 will always succeed in computing the correct (relative) phase of the entry
in question as long as |xj | > 0. Furthermore, such a j will always be discovered in line 9 if x is⌊
(δ−1)

2

⌋
-flat. This observation leads us to the following theorem.

Theorem 5. Let M ∈ CD×d be defined as in §4.1, and suppose that x ∈ Cd is m-flat for some

m ≤
⌊
(δ−1)

2

⌋
. Then, Algorithm 1 will recover an x̃ ∈ Cd with

(32) min
θ∈[0,2π]

∥∥∥x− eiθx̃
∥∥∥
2

= 0

when given the noiseless input measurements |Mx|2 ∈ RD. Furthermore, Algorithm 1 requires just
O(δ · d log d) operations in this case.

Proof: The recovery guarantee (32) follows from Theorem 4 together with the preceding paragraph.
The runtime complexity of Algorithm 1 simplifies to O(δ · d log d) operations when using the mea-
surements defined in §4.1 because the matrix J ends up having a simple factorization (see (22)). �

Of course, not all vectors are flat. We remedy this defect in the next subsection.
10
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4.3. Flattening Arbitrary Vectors with High Probability. Let W ∈ Cd×d be the random
unitary matrix

(33) W := PFB,

where P ∈ {0, 1}d×d is a permutation matrix selected uniformly at random from the set of all
d × d permutation matrices, F is the unitary d × d discrete Fourier transform matrix, and B ∈
{−1, 0, 1}d×d is a random diagonal matrix with i.i.d. symmetric Bernoulli entries on its diagonal.
For any given m ∈ [d], one can naturally partition W into

⌊
d
m

⌋
blocks of contiguous rows, each

of cardinality either m or m + 1. This defines the
⌊
d
m

⌋
sub-matrices of W , W1, . . . ,Wd−mb dmc ∈

C(m+1)×d and Wd−mb dmc+1, . . . ,Wb dmc ∈ C
m×d, by

(34) W =




W1

W2
...
Wb dmc


 .

Note that each renormalized sub-matrix of W ,
√

d
m ·Wj for j ∈

[⌊
d
m

⌋]
, is “almost” a random

sampling matrix (13) times a random diagonal Bernoulli matrix. As a result, Theorems 1 and 2

suggest that each
√

d
m ·Wj should behave like a JL(m,d,ε)-embedding of our signal x into Cm (or

Cm+1). If true, it would then be reasonable to expect that each block of m consecutive entries of
Wx should have roughly the same `2-norm as one another. This, in turn, suggests that the random
unitary matrix W should effectively flatten x with high probability, especially when m is small.

Of course, there are several small difficulties that must be addressed before the argument above

can be made rigorous. First, the rows of F contributing to
√

d
m ·Wj are effectively independently

sampled uniformly without replacement from the set of all rows of F by our choice of P . This means
that Theorem 2 does not strictly apply in our situation since we can not select any row of F more
than once. Secondly, some care must be taken in order to select the smallest value of m possible
in (34), since Wx will “become flatter” as m decreases. As a result, m will effectively provide a
theoretical lower bound on the size of δ that one can utilize and still be guaranteed to accurately
recover Wx via our §3 techniques (recall also §4.2 above). We are now ready to begin proving our
main result concerning W .

The following simple lemma will be used in order to help adapt Theorem 2 to the situation where
the rows of F are sampled uniformly without replacement.

Lemma 3. Let m ∈ N with m ≤
√
d. Independently draw x1, . . . , xm from [d] uniformly at random

with replacement. Then, P [|{x1, . . . , xm}| = m] ≥ 1/2.

Proof: A short induction argument establishes that

(35) P [|{x1, . . . , xm}| = m] =
m−1∏

j=1

(
1− j

d

)
≥ 1−

m−1∑

j=1

j

d
= 1− m2 −m

2d
.

The result now follows easily via algebraic manipulation. �

The following corollary of Theorem 2 now demonstrates that a random sampling matrix R′

formed by sampling a subset of rows of size m uniformly at random from F will still be RIP(2s,ε/C1)
with high probability.

11
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Corollary 1. Let p ∈ (0, 1). Form a random sampling matrix R′ ∈ Cm×d by independently
sampling m rows from F uniformly without replacement. If the number of rows, m, satisfies both

(36)
√
d ≥ m ≥ C3 ·

s ln2(8s) ln(8d) ln(9m)

ε2

and

(37)
√
d ≥ m ≥ C4 ·

s log(2/p)

ε2
,

then R′ will be RIP(2s,ε/C1) with probability at least 1− p.

Proof: Let S := {x1, . . . , xm}, where each xj ∈ [d] is selected independently and uniformly at
random from [d] (with replacement). Similarly, let S ′ ⊂ [d] be a subset of [d] chosen uniformly
at random from all subsets of [d] with cardinality m (i.e., let S ′ contain m elements sampled
independently and uniformly from [d] without replacement). Furthermore, let E denote the event
that the random sampling matrix whose rows from F are x1, . . . , xm is not RIP(2s,ε/C1). Finally,
let E′ denote the event that the random sampling matrix whose rows from F are the elements of
S ′ is not RIP(2s,ε/C1). Applying Lemma 3 we can now see that

(38) P [E] ≥ P
[
E
∣∣ |S| = m

]
·P [|S| = m] = P

[
E′
]
·P [|S| = m] ≥ 1

2
·P
[
E′
]
.

The stated result now follows from Theorem 2. �

We are now ready to prove that W will flatten the signal x ∈ Cd with high probability provided
that m can be chosen appropriately. We have the following theorem:

Theorem 6. Let W ∈ Cd×d be formed as per (33) for d ≥ 8. Then, Wx ∈ Cd will be m-flat with

probability at least 1− 1
m provided that

√
d ≥ m+ 1 ≥ C5 · ln2(d) · ln3 (ln d).8

Proof: Our first goal will be to show that eachW1, . . . ,Wb dmc from (34) is a is a rescaled JL(m,d,1/2)-

embedding of {x} into Cm (or Cm+1). This will guarantee that each consecutive block of m (or
m+ 1) entries of Wx has roughly the same `2-norm.

To achieve this goal we will apply Theorem 1 to each
√

d
m ·W1, . . . ,

√
d
m ·Wb dmc in order to show

that each one embeds {x} into Cm (or Cm+1) with probability at least 1 − 1
2d . The union bound

will then imply that {x} is embedded by all the
√

d
m ·Wj with probability at least 1 − 1

2m . This

argument will go through as long as each
√

d
m ·W1B

−1, . . . ,
√

d
m ·Wb dmcB

−1 is RIP(2s,1/2C1) for

some s ≥ C2 · ln(8d). Hence, we will now focus on determining the range of m which guarantees
that all

⌊
d
m

⌋
of these matrices are RIP(d2C2 · ln(8d)e,1/2C1).

To demonstrate that each
√

d
m ·WjB

−1 is RIP(d2C2 · ln(8d)e,1/2C1) with probability at least

1− 1
2d one may apply Corollary 1 with m (or m + 1) chosen as above (assuming d ≥ 8). Another

application of the union bound then establishes that all of
√

d
m ·W1B

−1, . . . ,
√

d
m ·Wb dmcB

−1 will be

RIP(d2C2 ·ln(8d)e,1/2C1) with probability at least 1− 1
2m . One final application of the union bound

then establishes our first goal: All of
√

d
m ·W1, . . . ,

√
d
m ·Wb dmc will be JL(m,d,1/2)-embeddings of

{x} with probability at least 1− 1
m .

8Here C5 ∈ R+ is a fixed absolute constant.
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To finish the proof, we now note that Wx will be m-flat whenever all
⌊
d
m

⌋
of the

√
d
m · Wj

matrices are JL(m,d,1/2)-embeddings of {x}. To see why, suppose that

1

2
‖ x ‖22 ≤

d

m
‖Wjx‖22 ≤

3

2
‖ x ‖22.

This implies that 3m
2d ‖ x ‖22 ≥ ‖Wjx‖22 ≥ m

2d‖x‖22, which can only happen if both of the following

hold: (i) at least one entry of Wjx has magnitude at least ‖x‖2
2
√
d

= ‖Wx‖2
2
√
d

, and (ii) all entires of Wjx

have magnitude less than
√

3m+3
2d ‖x‖2 =

√
3m+3
2d ‖Wx‖2. This proves the theorem. �

Theorem 6 now allows us to alter our measurements so that we can recover arbitrary vectors.
We are now ready to prove Theorem 3.

4.4. Proof of Theorem 3. We set our measurement matrix M̃ ∈ CD×d to be M̃ := MW where
M ∈ CD×d is defined as in §4.1, and W ∈ Cd×d is as defined as in (33). Theorem 6 guarantees that
Wx will be m = O(ln2(d) · ln3 (ln d))-flat with probability at least 1− 1

C5·ln2(d)·ln3(ln d) provided that

d is sufficiently large. Furthermore, if Wx is m-flat and δ ≥ 2m + 1, then Theorem 5 guarantees
that Algorithm 1 will recover an x′ ∈ Cd satisfying

(39) min
θ∈[0,2π]

∥∥∥Wx− eiθx′
∥∥∥
2

= 0

when given the noiseless input measurements |MWx|2 ∈ RD. Hence, choosing δ = O(ln2(d) ·
ln3 (ln d)) allows us to recover x′ = W

(
eiφx

)
, for some unknown phase φ ∈ [0, 2π], with probability

at least 1− 1
C5·ln2(d)·ln3(ln d) .

9 We then set x̃ = W ∗x′.

Considering the runtime complexity, we note that x′ can be obtained in O(δ · d log d) = O(d ·
ln3(d) · ln3 (ln d)) operations by Theorem 5. Computing W ∗x′ can then be done in O(d log d) oper-
ations via an inverse fast Fourier transform. The stated runtime complexity follows.

It is interesting to note that alternate constructions of flattening matrices, W , with fast inverse-
matrix vector multiplies can also be created by using sparse Johnson-Lindenstrauss embedding
matrices in the place of our Fourier-based matrices (see, e.g., [7]). Thus, one has several choices of
matrices W to use in concert with a given block-circulant measurement matrix M in principle.

5. Empirical Evaluation

We now present numerical results demonstrating the efficiency and robustness of the phase
retrieval algorithm 1. We test our algorithm on unit-norm i.i.d zero-mean complex random Gaussian
test signals. To test noise robustness, we add i.i.d random Gaussian noise to the squared magnitude
measurements at desired signal to noise ratios (SNRs); i.e.,

(40) y = |Mx|2 + n,

where y ∈ RD denotes the noisy measurement vector and the noise n ∈ RD is chosen to be i.i.d
N (0, σ2ID). The variance σ2 is chosen such that

SNR (dB) = 10 log10

(‖Mx‖22
Dσ2

)
.

Errors in the recovered signal are also reported in dB with

Error (dB) = 10 log10

(‖x̃− x‖22
‖x‖22

)
,

9The probability estimate in Theorem 3 follows immediately with C = C5.
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where x̃ denotes the recovered signal. Matlab code used to generate the numerical results is freely
available at [25].

We start by presenting numerical simulations demonstrating the efficiency of the block circulant
construction introduced in this paper. In particular, we plot the execution time for solving the
phase retrieval problem (averaged over 100 trials) in Figure 1. Simulations were performed on
a laptop computer with an Intelr CoreTMi3-3120M processor, 4GB RAM and Matlab R2014b.
For comparison, we also plot execution times for the Gerchberg–Saxton [20, 35] alternating pro-
jection and PhaseLift algorithms.10 In each case, we recover a random complex Gaussian signal
from noiseless magnitude measurements. We consider two cases: (i) Figure 1a, which plots the
execution time for solving the phase retrieval problem using 5D measurements (suitable for high
SNR applications), and (ii) Figure 1b, which plots the execution time when 4d log d block circulant
measurements are used (suitable for generic applications at a wide range of SNRs). Both plots
confirm the log-linear execution time for implementing Algorithm 1. Moreover, it is clear that
the block circulant construction introduced here is several orders of magnitude faster than equiv-
alent methods, thereby allowing us to solve high-dimensional problems previously thought to be
computationally infeasible.
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(a) Execution time – Phase Retrieval from 5D mea-
surements.
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(b) Execution time – Phase Retrieval from 4d log d
measurements.

Figure 1. Computational Efficiency of the Block-Circulant Phase Retrieval Algorithm

We next demonstrate robustness to additive noise. Figure 2a plots the reconstruction error in
recovering a d = 64 complex random Gaussian signal at different SNRs, with each data point
computed as the average of 100 trials.11 We include reconstruction results using the Gerchberg–
Saxton alternating projection and PhaseLift algorithms for comparison. The deterministic win-
dowed Fourier-like measurements introduced in §4.1 were used for the block circulant construction,
while complex random Gaussian measurements were used for the other methods. We observe
that all methods recover the underlying signal to the level of noise, although the block circulant
construction requires approximately twice the number of measurements as the other methods.

10Simulation results using PhaseLift and the Gerchberg–Saxton alternating projection algorithm use random
complex Gaussian measurements.

11A few iterations of the alternating projection algorithm were used to post-process the reconstructions.
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For completeness, we also plot the reconstruction error for a larger problem (d = 2048) in
Figure 2b for three different number of measurements (D) and using the deterministic measurement
construction. We note that the dimensions of this problem would make it be computationally
intractable (on a conventional laptop or desktop machine implemented in Matlab) for methods
such as Gerchberg–Saxton or PhaseLift.
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(a) Robustness to Additive Noise (d = 64).
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(b) Robustness to Additive Noise (d = 2048).

Noise Level in SNR (dB)
20 30 40 50 60

R
ec
on

st
ru
ct
io
n
E
rr
or

(d
B
)

-60

-50

-40

-30

-20

-10

0
Robustness to Noise (Random Masks), d = 2048

D = d3d log de
D = d4d log de
D = d6d log de

(c) Recovery using Random Masks (d = 2048).

Figure 2. Robustness to Additive Noise of the Block-Circulant Phase Retrieval
Algorithm

To illustrate the flexibility of the measurement construction introduced in this paper, we also
include results using random masks in Figure 2c. In particular, the entries of the block circulant
measurement matrix are chosen to be i.i.d. standard complex Gaussian. Moreover, we may fix the

15

23
DISTRIBUTION A: Distribution approved for public release.



block length δ and collect oversampled measurements to improve the noise robustness of the recovery
algorithm. In Figure 2c, the block length was fixed to be δ = d2d log de, oversampled measurements
(by factors of 1.5, 2 and 3) were used to recover the d = 2048 length i.i.d complex Gaussian
test signal. The figure confirms that the random block-circulant construction also demonstrates
robustness to additive noise across a wide range of SNRs, while the reconstruction accuracy improves
with the oversampling factor.

Finally, Figure 3 plots the condition number of the system matrix used to solve for the phase
differences (matrix M ′ in §2) for the deterministic block circulant measurement construction in-
troduced in §4.1. The figure plots the condition number as a function of the block length δ for
d = 64.12 It confirms that the condition number scales as a small multiple of δ2. The figure also
includes a plot of the condition number when using random masks at an oversampling factor of
1.5.
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Figure 3. Well Conditioned Measurements – Condition Number as a Function of
the Block Length δ

6. Sublinear-Time Phase Retrieval for Compressible Signals

In this section we briefly focus on the compressive phase retrieval setting, (see, e.g., [34, 36, 28,
41, 16, 37]), where one aims to approximate a sparse or compressible x ∈ Cd using fewer magnitude
measurements than required for the recovery of general x. It is known that robust compressive
phase retrieval for s-sparse vectors is possible using only O(s log(d/s)) magnitude measurements
[16, 24]. In this section we prove that it is also possible to recover s-sparse vectors x ∈ Cd up to an
unknown phase factor in only O(s log6 d)-time using O(s log5 d) magnitude measurements. Thus,
we establish the first known nearly runtime-optimal (i.e., essentially linear-time in s) compressive
phase retrieval recovery result. In particular, we prove the following theorem.

Theorem 7. There exists a deterministic algorithm A : RD → Cd for which the following holds:
Let ε ∈ (0, 1], x ∈ Cd with d sufficiently large, and s ∈ [d]. Then, one can select a random

12 The condition number is independent of the problem dimension d and depends only on the block length δ.
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measurement matrix M̃ ∈ CD×d such that

(41) min
θ∈[0,2π]

∥∥∥eiθx−A
(
|M̃x|2

)∥∥∥
2
≤
∥∥x− x opt

s

∥∥
2

+
22ε
∥∥∥x− xopt

(s/ε)

∥∥∥
1√

s

is true with probability at least 1− 1
C·ln2(d)·ln3(ln d) .13 Here D can be chosen to be O

(
s
ε ·ln3( sε )·ln3

(
ln s

ε

)

· ln d
)
. Furthermore, the algorithm will run in O

(
s
ε · ln4( sε ) · ln3

(
ln s

ε

)
· ln d

)
-time in that case.14

We prove Theorem 7 by following the generic compressive phase retrieval recipe presented in [24].
Let C ∈ Cm×d be any compressive sensing matrix with an associated sparse approximation algo-
rithm ∆ : Cm → Cd (see, e.g., [8, 10, 39, 31, 5, 32, 33]), and let P ∈ CD×m be any phase retrieval
matrix with an associated recovery algorithm Φ : RD → Cm. Then, ∆ ◦Φ : RD → Cd will approx-
imately recover compressible vectors x ∈ Cd up to an unknown phase factor when provided with
the magnitude measurements |PCx|. That is, one may first use Φ to recover eiφ(Cx) = C(eiφx)
for some unknown φ ∈ [0, 2π] from |PCx|, and then use ∆ to recover eiφx from C(eiφx). If both
Φ and ∆ are efficient, the result will be an efficient sparse phase retrieval method.

Herein we will utilize Algorithm 1 as our phase retrieval method. Note that it’s runtime is only
O(d log4 d), making it optimal up to log factors (recall Theorem 3). For the compressive sensing
method we will utilize the following algorithmic result from [23].

Theorem 8. Let ε ∈ (0, 1], σ ∈ [2/3, 1), x ∈ Cd, and s ∈ [d]. With probability at least σ the
deterministic compressive sensing algorithm from [23] will output a vector z ∈ Cd satisfying

(42) ‖x− z‖2 ≤
∥∥x− x opt

s

∥∥
2

+
22ε
∥∥∥x− xopt

(s/ε)

∥∥∥
1√

s

when executed with random linear input measurements Mx ∈ Cm. Here m = O
(
s
ε · ln

(
s/ε
1−σ

)
ln d
)

suffices. The required runtime of the algorithm is O
(
s
ε · ln

(
s/ε
1−σ

)
ln
(

d
1−σ

))
in this case.15

Theorem 7 now follows easily from Theorems 3 and 8.
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Edge Detection from Two-Dimensional Fourier Data using

Gaussian Mollifiers
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Abstract

This paper discusses the detection of edges from two-dimensional truncated Fourier spectral

data. Compared to edge detection from pixel data, this is a more challenging problem since we

seek accurate local information from a small number of often noisy global measurements. We

propose a highly effective algorithm using a specific class of spectral mollifiers which converges

uniformly to sharp peaks along the singular support of the function. We provide theoretical

guarantees and numerical simulations to show that the resulting edge map is free of spurious

edges and oscillations.

1 Introduction

The detection of jump discontinuities in piece-wise smooth functions is an important task in sev-

eral areas of science and engineering. For example, many image and video processing operations

such as segmentation and feature extraction rely on the accurate identification of edges in the

underlying image (see for example [1, Chapter 10] for a discussion). Similarly, high-order meth-

ods for the numerical solution of PDEs often incorporate jump information when the solution is

piece-wise smooth [2, Chapter 9]. Although edge detection is a non-trivial problem (especially

when dealing with discrete and/or quantized data, and in the presence of noise), efficient and

accurate algorithms such as the (W)ENO schemes, [3,4] and the Canny edge detector, [5] exist

for identifying edge locations when we start with physical space or pixel data. Certain applica-

tions, however, require that we extract edge information starting with spectral data. The most

common example is magnetic resonance imaging (MRI), where the underlying physics of nuclear

magnetic resonance implies that the MR scanner collects samples of the Fourier transform of

the specimen being imaged. Identifying edges from such data is a significantly more challeng-

ing problem since we seek accurate local information from a small number of often noisy global

measurements.

We begin by illustrating this problem in one dimension. Consider the piece-wise smooth test

1
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function f : [0, 1)→ R

f(x) = a(x) sin(πx), a(x) =





1
2 x ∈

[
0, 1

4

)

0 x ∈
[

1
4 ,

1
2

)

1 x ∈
[

1
2 ,

3
4

)

−1 x ∈
[

3
4 , 1
)
.

(1.1)

The jump discontinuities in f are completely described by its associated jump function, [f ],

defined as

[f ](x) :=

{
f(x+)− f(x−) x ∈ (0, 1)

f(0+)− f(1−) x = 0.
(1.2)

Given the first 2N + 1 Fourier coefficients of f ,

f̂(k) =

∫ 1

0

f(x)e−2πikxdx, k = −N, . . . , N,

how do we identify the locations and values of its jump discontinuities, i.e., how do we approx-

imate [f ]? The naive approach would be to compute the 2N + 1 mode Fourier partial sum

approximation of f on an equispaced grid

SNf(xj) =
∑

|k|≤N
f̂(k)e2πikxj , xj =

j

N
, j = 0, . . . , N − 1,

followed by the application of a local differencing scheme such as the (undivided) forward dif-

ference operator

D+SNf(xj) =

{
SNf(xj+1)− SNf(xj) j ∈ [0, N − 2]

SNf(x0)− SNf(xN−1) j = N − 1.
(1.3)

The results using such an approach are shown in Fig. 1a, where f, SNf and D+SNf are plotted

using dashed, solid (red) and solid(blue) lines respectively. A simple detector function of the

form

E(xj) =

{
D+SNf(xj) |D+SNf(xj)| >

∣∣D+SNf(x(j±1))
∣∣ , D+SNf(xj) > γ

0 else,
(1.4)

is used to extract jump information from D+SNf , where γ is a detection threshold. Since

SNf (and consequently, D+SNf) is a Fourier approximation of a piece-wise smooth function,

it suffers from non-physical Gibbs oscillations. The largest of these (which are 9% of the cor-

responding jump height) are observed to be of the same order of the smallest jump in Fig.

1a. Unsurprisingly, the detector function (1.4) mistakes these oscillations for legitimate edges.

Therefore, the challenge in detecting jump discontinuities from Fourier data is to distinguish

these non-physical Gibbs oscillations from legitimate edges, or, to eliminate them entirely.

The latter approach was pursued by Cochran et. al. in [6], where the detection of jump

discontinuities from one-dimensional truncated Fourier data using a special class of spectral

2
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Figure 1: Jump Detection from one-dimensional truncated Fourier data. The jumps in test function
(1.1) are detected using 2N+1 Fourier modes, with N = 32 and a reconstruction grid of 250 points.

mollifiers was discussed. They proposed to approximate [f ] by a sequence of smooth pulses,

QσN (x) =
∑

ξ∈K
[f ](ξ)σN (x− ξ), where K is the set of jump locations of f . For increasing N , QσN

is increasingly concentrated at the jumps and σ is drawn from an appropriate class of functions

so as to ensure QσN has no oscillations. Further, it was shown that a mollified Fourier derivative

operator of the form

TN [σλN ](x) = 2πi
∑

|k|≤N
k σ̂λN (k) f̂(k)e2πikx (1.5)

converges uniformly to QσN for suitable choice of σ and sequence λN . A representative result

of this method is shown in Fig. 1b, confirming the oscillation-free approximation qualities

of TN [σλN ]. The edge detector function (1.4) applied to TN [σλN ] now contains no spurious re-

sponses as was the case in Fig. 1a. We note that the jump approximation (1.5) is a specialization

of the more general class of concentration edge detectors first introduced by Gelb and Tadmor

in [7,8] and refined in [9–11]. These methods generally begin with a jump approximation of the

form

SσN [f ](x) = 2πi
∑

|k|≤N
ω

(
k

N

)
f̂(k)e2πikx, (1.6)

where ω defines a concentration factor. The corresponding physical-space concentration kernels

are typically odd, suitably scaled, smooth and oscillatory. The oscillatory nature of these kernels

makes it difficult to implement reliable edge detector functions, especially in the presence of

noise.

Needless to say, the same issues exist in two dimensions, as illustrated in Fig. 2, where the

edges of a Shepp-Logan brain phantom are identified using the Canny edge detector. A Fourier

partial sum reconstruction on a 256 × 256 grid and using 50 × 50 Fourier modes serves as the

input to the Canny edge detector. Fig. 2b plots the generated edge map while Fig. 2c shows

a cross-section at the center of the image. The identified edges and the Fourier reconstruction

along this cross-section are plotted using dashed and solid lines respectively. The comments and

3
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Figure 2: The Canny edge detector applied to a 50 × 50 mode partial sum Fourier reconstruction
of the Shepp-Logan phantom on a 256× 256 grid.

observations regarding the Gibbs phenomena in Fig. 1 apply here too. Our objective in this

paper is to extend the one-dimensional framework introduced in [6] to the detection of edges

from two-dimensional truncated and noisy Fourier data.

It is appropriate at this point to mention other related approaches to this problem and

their relative advantages and disadvantages. We start with popular pixel-space edge detectors

such as the Sobel, Prewitt or Marr-Hildreth edge detectors (see [1, Chapter 10] for a review)

as well as more specialized algorithms such as the Canny edge detector [5]. As mentioned

previously, these pixel- space approaches suffer from the tendency to mistake Gibbs oscillations

for edges when applied to Fourier data. The method proposed here is more closely related to the

two-dimensional concentration kernel approaches discussed in [12] and [13]. [12] uses statistical

hypothesis testing methods to distinguish true edges from Gibbs oscillations, while [13] uses

regularized bump functions and rotation-based post-processing operations to identify edges.

The main contribution of this paper is the use of a specific form of spectral mollifier (and

associated parameters) as well as a rigorous analysis of the same, demonstrating the oscillation-

4
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free nature of the resulting edge approximation. We note that this framework can be combined

with any other post-processing procedures, including Canny-type hysteresis edge tracking.

The rest of this paper is organized as follows: §2 introduces our two-dimensional edge de-

tection scheme. A rigorous analysis examining the convergence of the scheme and confirming

the absence of oscillaitons in the approximation is presented §3. §4 provides numerical results,

including comparisons to pixel data methods such as the Canny edge detector and existing

Fourier data schemes such as the concentration method. Performance in the presence of noise

is also examined. Some concluding remarks and future directions are presented in §5.

2 Two Dimensional Edge Detection using Gaussian Mol-

lifiers

We first give a brief introduction to the problem of detecting edges from 2-D Fourier data.

Suppose f : R2 → R is a piece-wise smooth and compactly supported on [0, 1]2. We are given

its finite Fourier data: f̂(z) for z = (z1, z2) ∈ SN := [−N,N ]2 ∩ Z2, where

f̂(z) =

∫

(x,y)∈R2

f(x, y)e−2πiz1xe−2πiz2ydxdy.

We would like to identify all of its discontinuities in [0, 1]2 and the corresponding jump heights

that will be defined below.

We next present some assumptions on the function f and define the jump heights at the

discontinuities. We will assume the set Γ of all the discontinuities consists of a few finite and

disjoint smooth curves. In particular, we could write all the discontinuities in the following two

ways:

(αj(y), y), j = 1, 2, . . . , Ny, , y ∈ R,

and

(x, ᾱj(x)), j = 1, 2, . . . ,Mx, x ∈ R,

where Ny is a finite number for all but finitely many y’s and Mx is a finite number for all but

finitely many x’s. We would also assume Mx and Ny are uniformly bounded for all x ∈ R
and all y ∈ R. A simple illustration is shown in Figure 3. Since we assume the discontinuities

are smooth curves, both αj(y) and ᾱj(x) are smooth functions locally by the Implicit Function

Theorem for almost all y’s and for almost all x’s respectively. Let fx and fy denote the partial

derivatives of f at points other than the discontinuities. Note that both fx and fy are again

piece-wise smooth with the same discontinuities of f . Let

[f ]1(x, y) = f(x+, y)− f(x−, y), and [f ]2(x, y) = f(x, y+)− f(x, y−), (x, y) ∈ R2.

We point out that when they are different, one of them must be zero. In particular, [f ]1(αj(y), y) =

[f ]2(αj(y), y) for all but y’s with α′j(y) = 0 or ∞. Consequently, we define the jump height

[f ](x, y) be either one of them when they are the same, and the nonzero one if they are differ-

ent.

5
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Figure 3: Edge Detection in two dimensions — Principle

We next introduce our edge detector by using the spectral Gaussian mollifiers. For λ > 0,

we define

IN,λ(x, y) = −2πi
∑

z∈SN
f̂(z)z1e−

‖z‖2
λ2 e2πi(z1x+z2y) (2.1)

and

JN,λ(x, y) = −2πi
∑

z∈SN
f̂(z)z2e−

‖z‖2
λ2 e2πi(z1x+z2y).

We will use the following function to detect the edges of f :

EN,λ(x, y) =
1√
πλ

[
I2
N,λ(x, y) + J2

N,λ(x, y)
]1/2

sgn(IN,λ(x, y)), (x, y) ∈ R2, (2.2)

where sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 otherwise.

We remark that without the Gaussian mollifier (i.e., λ =∞), IN,λ(x, y) and JN,λ(x, y) would

reduce to the partial derivatives of f(x), which would yield spikes at the edges in addition to

non-physical Gibbs oscillations in their vicinity. We will show in next section that with suitably

chosen λ, the function EN,β(x, y) in (2.2) is a robust and accurate edge detector.

3 Convergence Analysis

We will present in this section the convergence analysis of the edge detector EN,λ(x, y) in (2.2).

Specifically, we will present how to choose the parameter λ such that

(1) When (x, y) is away from the edge curves of f , the value of EN,λ(x, y) is close to zero.

(2) When (x, y) is on the edge curves of f , the value of EN,λ(x, y) is an approximation of the

jump height [f ](x, y).

6
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(3) The function EN,λ(x, y) behaves like sharp “mountains” rather than some oscillated peaks

around the edges. That is, the Gibbs oscillation is controlled.

(4) The edge detector EN,λ(x, y) is robust with respect to small perturbations/noises on the

spectral data f̂(z).

We point out that the convolution of f and a Gaussian function is an important resource

for locating the edges of f , since the partial derivatives of the convolution would show some

singular behaviors (sharp “mountains”) around the edges. To this end, we would define this

convolution and study the relation between its partial derivatives and our edge detector. We

consider the following Gaussian function

φ(x, y) = πe−π
2(x2+y2), (x, y) ∈ R2,

and for λ ∈ R, let

φλ(x, y) = λ2φ(λx, λy), (x, y) ∈ R2. (3.1)

We then convolve f with φλ:

Fλ(x, y) = (f ∗ φλ)(x, y) =

∫

(s,t)∈R2

f(s, t)φλ(x− s, y − t)dsdt, (x, y) ∈ R2. (3.2)

We will next focus on deriving estimates of the edge detector IN,λ. The estimates of JN,λ

could be obtained in a similar way. We shall first show a relation between IN,λ and the partial

derivative ∂Fλ
∂x . To this end, for (x, y) ∈ R2 we let

Qλ(x, y) =
∑

z∈Z2

∂Fλ(x+ z1, y + z2)

∂x
, (3.3)

and

BN (x, y) = 2πi
∑

z∈Z2\SN
f̂(z)z1e−

‖z‖2
λ2 e2πi(z1x+z2y). (3.4)

Proposition 3.1 For (x, y) ∈ R2, there holds

IN,λ(x, y) = Qλ(x, y) +BN (x, y).

Moreover, there exists a positive constant c such that for any (x, y) ∈ R2 and N ∈ N

|IN,λ(x, y)−Qλ(x, y)| ≤ cλ3e−
3N2

2λ2 .

Proof: We will prove the equality by a direct computation. To this end, we define the shift of

the partial derivatives

g(x,y)(s, t) =
∂Fλ(x+ s, y + t)

∂x
, (s, t) ∈ R2.

7
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It follows that

Qλ(x, y) =
∑

z∈Z2

g(x,y)(z).

On the other hand, a direct computation yields that ĝ(x,y)(ξ) = −2πif̂(ξ)ξ1e−
‖ξ‖2
λ2 e2πi(ξ1x+ξ2y).

By the Poisson summation formula,

Qλ(x, y) =
∑

z∈Z2

ĝ(x,y)(z) =
∑

z∈Z2

−2πif̂(z)ξ1e−
‖z‖2
λ2 e2πi(z1x+z2y)

This combined with the definition of IN,β in (2.1) and the definition of BN in (3.4) implies the

desired equality.

We next show the inequality. It is enough to show BN (x, y) is bounded by the right hand

side of the inequality. Since f ∈ L2[0, 1], there exists a positive constant c0 such that |f̂(z)| ≤ c0.

It follows from (3.4) that

|BN (x, y)| ≤ 2πc0
∑

z∈Z2\SN
z1e−

‖z‖2
λ2 = 2πc0

∑

z1>N

z1e−
z21
λ2

∑

z2>N

e−
z22
λ2 .

It is direct to observe that
∑
z1>N

z1e−
z21
λ2 ≤

∫∞
N
te−

t2

λ2 dt = λ2

2 e−
N2

λ2 . Moreover, by using

the polar coordinates, it follows from a direct computation that
∑
z2>N

e−
z22
λ2 ≤

√
π

2 λe−
N2

2λ2 .

Substituting these two estimates into the above inequality, we have

|BN (x, y)| ≤ π3/2

2
c0λ

3e−
3N2

λ2 ,

which implied the desired inequality. �

We point out that we could choose appropriate λ depending on N such that BN (x, y) con-

verges to zero uniformly, which avoids the Gibbs oscillation in the edge detectors. More details

will be shown in later results.

We shall next analyze the behavior of Qλ. In particular, we will show that Qλ has peaks at

the edges by using its relation with the partial derivative ∂Fλ
∂x . To this end, we first present a

direct computation of ∂Fλ
∂x . We let

Ĩλ(x, y) =

∫

R

Nt∑

j=1

[f ]1(αj(t), t)φλ(x− αj(t), y − t)dt, (3.5)

and

Hλ(x, y) =

∫

(s,t)∈R2

fx(s, t)φλ(x− s, y − t)dsdt. (3.6)

We have the following result of the partial derivative ∂Fλ
∂x .

Proposition 3.2 For any (x, y) ∈ R2, there holds that

∂Fλ
∂x

(x, y) = Ĩλ(x, y) +Hλ(x, y).

8
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Moreover, if the edge curves are at least ε away from the boundary of [0, 1]2, that is,
√

(x− x∗)2 + (y − y∗)2 ≥
ε for all (x, y) ∈ [0, 1]2 with either x ∈ {0, 1} or y ∈ {0, 1} and for all (x∗, y∗) on the edge curves,

then there exists a positive constant c such that for (x, y) ∈ [0, 1]2

|Qλ(x, y)− Ĩλ(x, y)| ≤ cπλ2e−π
2λ2ε2 + cπλ2 e−π

2λ2

(1− e−π2λ2)2
+ ‖fx‖∞.

Proof: We first show the equality about the decomposition of ∂Fλ
∂x . From the definition of ∂Fλ

in (3.2), we have
∂Fλ
∂x

(x, y) =

∫

(s,t)∈R2

f(s, t)
∂φλ
∂x

(x− s, y − t)dsdt.

A direct calculation of ∂φλ
∂x from (3.1) yields that

∂Fλ
∂x

(x, y) = λ3

∫

t∈R

[∫

s∈R
f(s, t)φx(λ(x− s), λ(y − t))ds

]
dt.

Note that for t ∈ R, f(·, t) has discontinuities αj(t) for 1 ≤ j ≤ Nt. For simplicity of presenta-

tion, we let α0(t) = −∞ and αNt+1(t) =∞. It follows that

∂Fλ
∂x

(x, y) = λ3

∫

t∈R

[Nt+1∑

j=1

∫ αj(t)

αj−1(t)

f(s, t)φx(λ(x− s), λ(y − t))ds
]
dt.

Apply integration by parts and we have

∂Fλ
∂x

(x, y) = λ2

∫

t∈R

[
−
Nt+1∑

j=1

f(s, t)φ(λ(x−s), λ(y−t))
∣∣∣∣
αj(t)

αj−1(t)

+

∫

R
fx(s, t)φ(λ(x−s), λ(y−t))ds

]
dt.

The desires equality follows from a direct calculation from the above equality.

We next estimate the difference of Qλ(x, y) and Ĩλ(x, y). It follows from the definition of Qλ

in (3.3) and the equality shown above that

|Qλ(x, y)− Ĩλ(x, y)| ≤
∑

z 6=0

|Ĩλ(x+ z1, y + z2)|+
∑

z∈Z2

|Hλ(x+ z1, y + z2)|. (3.7)

We will estimate the two terms in the right hand side of the above inequality separately.

We start with an estimate of first term. Note that both Nt and [f ]1(λj(t), t) are uniformly

bounded for all t. It follows from the definition of Ĩλ in (3.5) that there exists a positive constant

c0 such that

∑

z 6=0

|Ĩλ(x+ z1, y + z2)| ≤ c0
∑

z 6=0

∫

R
φλ(x+ z1 − αj(t), y + z2 − t)dt.

Note that when z 6= 0, the point (x + z1, y + z2) is not in [0, 1]2. By assumption, it is at

least ε away from the edge curves. In particular, when z ∈ E := {−1, 0, 1}2\(0, 1), we have(
(x + z1 − αj(t))2 + (y + z2 − t)2

)1/2 ≥ ε. On the other hand side, when |z1| ≥ 2, the point

(x + z1, y + z2) is at least |z1| − 1 away from the edge curves. When |z2| ≥ 2, the point

9
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(x+ z1, y + z2) is at least |z2| − 1 away from the edge curves. Substituting these estimates into

φλ as in (3.1) yields that

∑

z 6=0

|Ĩλ(x+ z1, y + z2)|

≤
∑

z∈E
|Ĩλ(x+ z1, y + z2)|+

∑

z1∈Z,|z2|≥2

|Ĩλ(x+ z1, y + z2)|+
∑

|z1|≥2,z2∈Z
|Ĩλ(x+ z1, y + z2)|

≤ 5c0πλ
2e−π

2λ2ε2 + 4c0πλ
2 1

1− e−π2λ2

e−π
2λ2

1− e−π2λ2 ,

which combined with (3.7) implies

|Qλ(x, y)− Ĩλ(x, y)| ≤ 5c0πλ
2e−π

2λ2ε2 + 4c0πλ
2 e−π

2λ2

(1− e−π2λ2)2
+
∑

z∈Z2

|Hλ(x+ z1, y + z2)|.

To show the desired result on |Qλ(x, y)− Ĩλ(x, y)|, it remains to prove
∑

z∈Z2 |Hλ(x+z1, y+

z2)| ≤ ‖fx‖∞. Note that fx(s, t) = 0 when (s, t) /∈ [0, 1]2. It is direct to observe from the

definition of Hλ in (3.6) that for any z ∈ Z2,

|Hλ(x+ z1, y + z2)| =

∣∣∣∣
∫

(s,t)∈[0,1]2
fx(s, t)φλ(x+ z1 − s, y + z2 − t)dsdt

∣∣∣∣

≤ ‖fx‖∞
∫

(s,t)∈[0,1]2
φλ(x+ z1 − s, y + z2 − t)dsdt,

It implies

∑

z∈Z2

|Hλ(x+ z1, y + z2)| ≤ ‖fx‖∞
∑

z∈Z2

∫

(s,t)∈[0,1]2
φλ(x+ z1 − s, y + z2 − t)dsdt

= ‖fx‖∞
∫

(u,v)∈R2

φλ(u, v)dudv

= ‖fx‖∞,

which finishes the proof. �

We will continue with the analysis of Ĩλ. In particular, we will show that it is concentrated

around the edges of f .

Proposition 3.3 (i) When (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε,
there exists a positive constant c such that

|Ĩλ(x, y)| ≤ cλ2e−π
2λ2ε2 .

(ii) When (x∗, y∗) is on the edge, that is, x∗ = αj0(y∗) for some j0 ∈ N, if there exists a ε > 0

such that d((αj(y), y), (αj0(y∗), y∗)) =
√

(αj(y)− αj0(y∗))2 + (y − y∗)2 ≥ ε for all j 6= j0

10
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and y ∈ [0, 1], then there exists a positive constant c such that

∣∣∣∣Ĩλ(x∗, y∗)− [f ]1(x∗, y∗)

√
πλ√

1 + (α′j0(y∗))2

∣∣∣∣ ≤ c
(
λe−π

2λ2ε2 + λ2e−π
2λ2ε2 + (λε)2 + (λε)4

)
.

Proof: (i) Note that both Nt and the jump heights [f ]1(αj(t), t) are uniformly bounded. Since

f is compactly supported on [0, 1], it follows from the definition of tIλ in (3.5) that there exists

a positive constant c0 such that

|Ĩλ(x, y)| ≤ c0
∫ 1

0

φλ(x− αj(t), y − t)dt.

By the definition of φλ in (3.1),

|Ĩλ(x, y)| ≤ c0
∫ 1

0

λ2e−π
2λ2((x−αj(t))2+(y−t)2)dt.

When dist((x, y),Γ) ≥ ε, that is, (x− αj(t))2 + (y − t)2 ≥ ε2 for all t ∈ [0, 1],

|Ĩλ(x, y)| ≤ c0λ2e−π
2λ2ε2 .

(ii) By (3.5) we have that

Ĩλ(x∗, y∗) =

∫

R

Nt∑

j=1

[f ]1(αj(t), t)φλ(αj0(y∗)− αj(t), y∗ − t)dt. (3.8)

It follows from the same argument in (i) that

∫

|t−y∗|≥ε

Nt∑

j=1

[f ]1(αj(t), t)φλ(αj0(y∗)− αj(t), y∗ − t)dt ≤ c0λ2e−π
2λ2ε2 ,

and ∫

R

∑

j 6=j0
[f ]1(αj(t), t)φλ(αj0(y∗)− αj(t), y∗ − t)dt ≤ c0λ2e−π

2λ2ε2 .

These two inequalities combined with (3.8) yields that

∣∣∣∣Ĩλ(x∗, y∗)− Ĩλ,ε(x∗, y∗)
∣∣∣∣ ≤ 2c0λ

2e−π
2λ2ε2 . (3.9)

where

Ĩλ,ε(x
∗, y∗) =

∫

|t−y∗|≤ε
[f ]1(αj0(t), t)φλ(αj0(y∗)− αj0(t), y∗ − t)dt. (3.10)

We next estimate the integral Ĩλ,ε(x
∗, y∗). Since both [f ]1 and αj0 are smooth functions

locally, there exist positive constants c1 and c2 such that for |t− y∗| ≤ ε
∣∣[f ]1(αj0(t), t)− [f ]1(αj0(y∗), y∗)

∣∣ ≤ c1|t− y∗|, (3.11)

11
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and

|αj0(t)− αj0(y∗)− α′j0(y∗)(t− y∗)| ≤ c2|t− y∗|2. (3.12)

By the definition of φλ in (3.1),

φλ(αj0(y∗)− αj0(t), y∗ − t) = πλ2e−π
2λ2[(αj0 (y∗)−αj0 (t))2+(t−y∗)2].

Since αj0 is smooth, there exists a positive constant c3 such that |αj0(t)−αj0(y∗) +α′j0(y∗)(t−
y∗)| ≤ c3|t−y∗|. This combined with (3.12) yields that

∣∣(αj0(t)−αj0(y∗))2−(α′j0(y∗))2(t−y∗)2
∣∣ ≤

c2c3|t− y∗|3. Substituting it into the above equality and putting

ψλ(t) = πλ2e−π
2λ2[1+(α′j0 (y∗))2](t−y∗)2 , (3.13)

we have ∣∣∣∣φλ(αj0(y∗)− αj0(t), y∗ − t)− ψλ(t)

∣∣∣∣ ≤ ψλ(t)
(
1− e−π

2λ2c2c3|t−y∗|3).

Since 1− e−x ≤ x for x ≥ 0,

∣∣∣∣φλ(αj0(y∗)− αj0(t), y∗ − t)− ψλ(t)

∣∣∣∣ ≤ ψλ(t)π2λ2c2c3|t− y∗|3.

We can now estimate Ĩλ,ε(x
∗, y∗) as in (3.10) following from the above inequality and (3.11)

∣∣∣∣Ĩλ,ε(x∗, y∗)−
∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)ψλ(t)dt

∣∣∣∣

≤
∣∣∣∣
∫

|t−y∗|≤ε

(
[f ]1(αj0(t), t)− [f ]1(αj0(y∗), y∗)

)
ψλ(t)dt

∣∣∣∣

+

∣∣∣∣
∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)(φλ(αj0(y∗)− αj0(t), y∗ − t)− ψλ(t))dt

∣∣∣∣

≤ c1

∣∣∣∣
∫

|t−y∗|≤ε
|t− y∗|ψλ(t)dt

∣∣∣∣+ c2c3|[f ]1(αj0(y∗), y∗)|
∣∣∣∣
∫

|t−y∗|≤ε
ψλ(t)π2λ2|t− y∗|3dt

∣∣∣∣.

It is direct to observe from (3.13) that ψλ(t) ≤ πλ2e−π
2λ2(t−y∗)2 . Moreover, there exists a

positive constant c4 such that c2c3|[f ]1(αj0(y∗), y∗) ≤ c4 for all y∗ ∈ [0, 1]. Substituting these

into the above inequality and having a change of variable u = t− y∗ yields that

∣∣∣∣Ĩλ,ε(x∗, y∗)−
∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)ψλ(t)dt

∣∣∣∣ ≤ 2c1πλ
2

∫ ε

0

ue−π
2λ2u2

du+2c4π
3λ4

∫ ε

0

u3e−π
2λ2u2

du.

Since e−π
2λ2u2 ≤ 1 for all u ≥ 0, it follows from a direct computation of the above integrals that

∣∣∣∣Ĩλ,ε(x∗, y∗)−
∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)ψλ(t)dt

∣∣∣∣ ≤ c1π(λε)2 +
1

2
c4π

3(λε)4. (3.14)

12

39
DISTRIBUTION A: Distribution approved for public release.



We next estimate the integral in the above inequality. To this end, we let F (a) =
∫ a
−a e−x

2

dx.

A direction computation from (3.13) gives that

∫

|t−y∗|≤ε
ψλ(t)dt =

λ√
1 + (α′j0(y∗))2

F
(
πλ
√

1 + (α′j0(y∗))2ε
)
.

Note that by using the polar coordinates in the integral, we have the following estimates of

F (a): π(1− e−a
2

) ≤ F 2(a) ≤ π(1− e−2a2), which implies |F (a)−√π| ≤ √πe−a
2

. Substituting

it into the above equation, we have

∣∣∣∣
∫

|t−y∗|≤ε
ψλ(t)dt−

√
πλ√

1 + (α′j0(y∗))2

∣∣∣∣ ≤
√
πλ√

1 + (α′j0(y∗))2
e−π

2(1+(α′j0 (y∗))2)λ2ε2 ≤ √πλe−π
2λ2ε2 .

Since [f ]1 is continuous, there exists a positive constant c5 such that |[f ]1(x∗, y∗)| ≤ c5 for all

y∗ ∈ [0, 1]. It implies

∣∣∣∣
∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)ψλ(t)dt− [f ]1(αj0(y∗), y∗)

√
πλ√

1 + (α′j0(y∗))2

∣∣∣∣ ≤ c5
√
πλe−π

2λ2ε2 .

The desired result follows from this combined with (3.9) and (3.14). �

We remark that we could choose appropriate λ and ε such that Ĩλ(x, y) will be arbitrarily

small when the point (x, y) is away from the edge curves and it will blow up when the point

(x, y) is on the edge curve. That is, Ĩλ(x, y) behaves like a “sharp mountain” around the edge

curves. We will present the specific choices of λ and ε in the later results.

We are now ready to present the edge detection behavior of IN,λ.

Theorem 3.4 (i) When (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε,

there exists a positive constant c such that

∣∣∣∣
IN,λ(x, y)√

πλ

∣∣∣∣ ≤ c
(
λ2e−

3N2

2λ2 + λe−π
2λ2ε2 + λ

e−π
2λ2

(1− e−π2λ2)2
+
‖fx‖∞
λ

)
.

(ii) When (x∗, y∗) is on the edge, that is, x∗ = αj0(y∗) for some j0 ∈ N, if there exists a ε > 0

such that d((αj(y), y), (αj0(y∗), y∗)) ≥ ε for all j 6= j0 and y ∈ [0, 1], then there exists a

positive constant c such that

∣∣∣∣
IN,λ(x∗, y∗)√

πλ
− [f ]1(x∗, y∗)√

1 + (α′j0(y∗))2

∣∣∣∣ ≤ c
(
λ2e−

3N2

2λ2 +λ
e−π

2λ2

(1− e−π2λ2)2
+
‖fx‖∞
λ

+(λ+1)e−π
2λ2ε2+λε2+λ3ε4

)
.

Proof: It follows immediately from Propositions 3.1, 3.2, and 3.3. �

Similarly, we could obtain the following estimates on JN,λ.

Theorem 3.5 (i) When (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε,

13
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there exists a positive constant c such that

∣∣∣∣
JN,λ(x, y)√

πλ

∣∣∣∣ ≤ c
(
λ2e−

3N2

2λ2 + λe−π
2λ2ε2 + λ

e−π
2λ2

(1− e−π2λ2)2
+
‖fy‖∞
λ

)
.

(ii) When (x∗, y∗) is on the edge, that is, y∗ = ᾱl0(x∗) for some l0 ∈ N, if there exists a ε > 0

such that d((x, ᾱl(x)), (x∗, ᾱl0(x∗))) ≥ ε for all l 6= l0 and x ∈ [0, 1], then there exists a

positive constant c such that

∣∣∣∣
JN,λ(x∗,y∗)√

πλ
− [f ]2(x∗, y∗)√

1 + (ᾱ′l0(x∗))2

∣∣∣∣ ≤ c
(
λ2e−

3N2

2λ2 +λ
e−π

2λ2

(1− e−π2λ2)2
+
‖fy‖∞
λ

+(λ+1)e−π
2λ2ε2+λε2+λ3ε4

)
.

Proof: It follows immediately from Propositions 3.1, 3.2, and 3.3. �

Consequently, we will present the main result of this paper below. In particular, we will

show the specific choices of λ and ε such that the edge detector EN,λ as in (2.2) behaves like

oscillation-free sharp “mountains” around the edges.

Theorem 3.6 If λ = c0
N

logN and ε = c1( N
logN )−p for some positive constants c0, c1 and 3

4 <

p < 1, then for large enough N ,

(i) when (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε, there exists a

positive constant c such that

|EN,λ(x, y)| ≤ c logN

N
;

(ii) when (x∗, y∗) is on the edge, that is, x∗ = αj0(y∗) and y∗ = ᾱl0(x∗) for some j0, l0 ∈ N,

if there exists a ε > 0 such that d((αj(y), y), (αj0(y∗), y∗)) ≥ ε for all j 6= j0 and y ∈ [0, 1]

and d((x, ᾱl(x)), (x∗, ᾱl0(x∗))) ≥ ε for all l 6= l0 and x ∈ [0, 1], then there exists a positive

constant c such that

∣∣EN,λ(x∗, y∗)− [f ](x∗, y∗)
∣∣ ≤ c

(
logN

N

)4p−3

.

Proof: (i) It follows from a direct computation from substituting the choices of λ and ε into

Theorems 3.4, 3.5 and the definition of EN,λ in (2.2).

(ii) Note that when x∗ = αj0(y∗) and y∗ = ᾱl0(x∗), we have [f ](x∗, y∗) = [f ]1(x∗, y∗) =

[f ]2(x∗, y∗) and

(
1√

1+(α′j0 (y∗))2

)2

+

(
1√

1+(ᾱ′l0 (x∗))2

)2

= 1. The desired result follows immedi-

ately from a direct computation from substituting the choices of λ and ε into Theorems 3.4, 3.5

and the definition of EN,λ in (2.2). �

4 Numerical Results

We now present numerical results demonstrating the accuracy of the proposed formulation.

Matlab code used to generate the figures in this section can be found at [14]. We begin with

Figure 4, where we plot the edge map of a Shepp-Logan phantom on a 256× 256 grid given its

14
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Figure 4: Edge Detection — Shepp-Logan Phantom; SN = [−50, 50]2 ∩ Z2 while the equispaced
reconstruction grid is of size 256× 256 in [0, 1]2.
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first 50× 50 Fourier modes. Low-resolution measurement acquisitions such as this are common

in MR imaging applications For reference, the partial Fourier sum reconstruction (showing

significant Gibbs oscillations) is plotted in Figure 4a. Applying the proposed spectral mollifier,

the resulting jump funtion approximation is shown in Figure 4b, while the resulting edge map

is shown in Figure 4c. Hysteresis edge tracking (similar to that implemented in the Canny edge

detector) was used to obtain Figure 4c from Figure 4b. For comparison, we also plot in Figure

4d the results of applying the standard Canny edge detector. Note the presence of a significant

number of false positives (see also Figures 4e and 4f for cross-section plots) — these are due to

the Gibbs oscillations being spuriously identified as edges by the Canny algorithm. Finally, we

note that the proposed method also provides approximations to the jump height (as illustrated

in Figure 4e) which may be useful in certain applications such as the solution of PDEs.

Next, we present a higher resolution example in Figure 5, where the edges in the Shepp-

Logan are identified starting with the first 200× 200 Fourier modes. As before, the results are

plotted on a 256× 256 equispaced grid. Figure 5a plots the Fourier partial sum reconstruction

for reference while Figure 5b plots the jump function approximation. Figures 5c and 5d plot the

edge maps generated by the proposed method and the Canny edge detector respectively, while

Figures 5e and 5f show the corresponding cross-section plots. In this case, Gibbs oscillations in

the Fourier reconstruction are localized to regions close to the true edge locations. Moreover, the

standard Canny edge detector does a good job of recognizing and suppressing spurious Gibbs

oscillations from true edges. However, note that some of the closely spaced edges are either

missing or spuriously identified by the Canny edge detector (see the cross- section plots for an

illustration), while the proposed method accurately identifies these.

Figures 4 and 5 have illustrated the performance of the method when we have perfect (noise-

less) measurements. We now consider the case where the Fourier modes are corrupted by

additive (complex) Gaussian noise; i.e.,

ĝ(z) = f̂(z) + n̂(z), z = (z1, z2) ∈ SN := [−N,N ]2 ∩ Z2,

where f̂ an ĝ denote the true and noise corrupted Fourier coefficients respectively, and n̂ denotes

additive noise in Fourier space. In Figure 6, the first 50× 50 Fourier modes of the Shepp-Logan

phantom are corrupted by i.i.d. additive complex Gaussian noise of variance 1
2N2 = 2 × 10−4.

The equivalent PSNR is

PSNR (dB) = 20 log10

max. image intensity√
Mean Square Error

=
maxi,j |f(xi, yj)|√√√√ 1

MxMy

Mx−1∑

i=0

My−1∑

j=0

[SNf(xi, yj)− SNg(xi, yj)]
2

,

where Mx,My are the number of points in the reconstruction grid (Mx = My = 256 in Figure

6) and SNf, SNg are the Fourier partial sum reconstructions of f and g respectively:

SNf(x, y) =
∑

z∈SN

f̂(z)e2πi(z1x+z2y), SNg(x, y) =
∑

z∈SN

ĝ(z)e2πi(z1x+z2y).

As before the jump function approximation, edge maps using the proposed method and the
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Figure 5: Edge Detection — Shepp-Logan Phantom; SN = [−200, 200]2 ∩ Z2 while the equispaced
reconstruction grid is of size 256× 256 in [0, 1]2.
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Figure 6: Noisy Edge Detection — Shepp-Logan Phantom; SN = [−50, 50]2 ∩ Z2 while the equis-
paced reconstruction grid is of size 256× 256 in [0, 1]2. Additive complex white Gaussian noise of
variance 2× 10−4 (PSNR 36.93 dB) was added to the Fourier modes.
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Canny edge detector, and the cross sections of the edge maps are shown in Figures 6a – 6f

respectively. We observe that the addition of noise to pre-existing Gibbs oscillations results

in the Canny edge detector generating numerous spurious edges, while the proposed method

suppresses almost all of these artifacts and generates a near-perfect edge map.

5 Concluding Remarks

In this paper, we have introduced a class of spectral mollifiers for the detection of edges from

two-dimensional truncated Fourier data. Recall that the problem of detecting edges from Fourier

spectral data is different from and more challenging than the problem of detecting edges from

pixel data. Indeed, distinguishing between true edges and Gibbs oscillations is a non-trivial task,

especially when we start with a small number of (possibly noise corrupted) Fourier coefficients.

We have shown through rigorous analysis that the jump approximations generated using the

proposed spectral mollifier are guaranteed to be free of spurious oscillations and edges. Numer-

ical results show that the resulting edge maps are accurate and outperform standard methods

such as the Canny edge detector, especially in cases where we have truncated and/or noisy data.

Several interesting avenues for future research exist, including the extension of these results

to the case of non-harmonic Fourier data, investigation of the performance of this method for

highly incomplete or interrupted data, and the extension of the method to the case of distributed

data acquisition.
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RANDOM MATRICES AND ERASURE ROBUST FRAMES

YANG WANG

Abstract. Data erasure can often occur in communication. Guarding against erasures
involves redundancy in data representation. Mathematically this may be achieved by
redundancy through the use of frames. One way to measure the robustness of a frame
against erasures is to examine the worst case condition number of the frame with a certain
number of vectors erased from the frame. The term numerically erasure-robust frames
(NERFs) was introduced in [9] to give a more precise characterization of erasure robustness
of frames. In the paper the authors established that random frames whose entries are
drawn independently from the standard normal distribution can be robust against up to
approximately 15% erasures, and asked whether there exist frames that are robust against
erasures of more than 50%. In this paper we show that with very high probability random
frames are, independent of the dimension, robust against any amount of erasures as long
as the number of remaining vectors is at least 1 + δ times the dimension for some δ0 > 0.
This is the best possible result, and it also implies that the proportion of erasures can
arbitrarily close to 1 while still maintaining robustness. Our result depends crucially
on a new estimate for the smallest singular value of a rectangular random matrix with
independent standard normal entries.

1. Introduction

Let H be a Hilbert space. A set of elements F = {fn} in H (counting multiplicity) is

called a frame if there exist two positive constants C∗ and C∗ such that for any v ∈ H we

have

(1.1) C∗‖v‖2 ≤
∑

n

|〈v, fn〉|2 ≤ C∗‖v‖2.

The constants C∗ and C∗ are called the lower frame bound and the upper frame bound,

respectively. A frame is called a tight frame if C∗ = C∗. In this paper we focus mostly on

real finite dimensional Hilbert spaces with H = Rn and F = {fn}Nj=1, although we shall

also discuss the extendability of the results to the complex case. Let F = [f1, f2, . . . , fN ]. It

1991 Mathematics Subject Classification. Primary 42C15.
Key words and phrases. Random matrices, singular values, numerically erasure robust frame (NERF),

condition number, restricted isometry property.
Yang Wang was supported in part by the National Science Foundation grant DMS-08135022 and DMS-
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2 YANG WANG

is called the frame matrix for F . It is well known that F is a frame if and only if the n×N
matrix F has rank n. Furthermore, the optimal frames bounds are given by

C∗ = σ2n(F ), C∗ = σ21(F ),

where σ1 ≥ σ2 ≥ · · ·σn > 0 are the singular values of F . Throughout this paper we shall

identify without loss of generality a frame F by its frame matrix.

The main focus of the paper is on the erasure robustness property for a frame. This

property arise in applications such as communication where data can be lost or corrupted

in the process of transmission. Suppose that we have a frame F that is full spark in the

sense that every n columns of F span Rn, it is theoretically possible to erase up to N − n
data from the full set of data {〈v, fj〉}Nj=1 while still reconstruct the signal v. This is a

simple consequence of the property that with the remaining available data {〈v, fj〉}j∈S with

|S| ≥ n, v is uniquely determined because span(fj : j ∈ S) = Rn. In practice, however,

the condition number of the matrix [fj ]j∈S could be so poor that the reconstruction is

numerically unstable against the presence of additive noise in the data. Thus robustness

against data loss and erasures is a highly desirable property for a frame. There have been

a number of studies that aim to address this important issue.

Among the first studies of erasure-robust frames was given in [10]. It was shown in

subsequent studies that that unit norm tight frames are optimally robust against one erasure

[?] while Grassmannian frames are optimally robust against two erasures [16, 11]. The

literature on erasure robustness for frames is quite extensive, see e.g. also [12, 18, 13]. In

general, the robustness of a frame F against q-erasures, where q ≤ N − n, is measured by

the maximum of the condition numbers of all n× (N − q) submatrices of F . More precisely,

let S ⊆ {1, 2, . . . , N} and let FS denote the n×|S| submatrix of F with columns fj for j ∈ S
(in its natural order, although the order of the columns is irrelevant). Then the robustness

against q-erasures of F is measured by

(1.2) R(F, q) := max
|S|=N−q

σ1(FS)

σn(FS)
.

Of course, the smaller R(F, q) is the more robust F is against q-erasures. In [9], Fickus and

Mixon coined the term numerically erasure robust frame (NERF). A frame F is (K,α, β)-

NERF if

α ≤ σn(FS) ≤ σ1(FS) ≤ β for any S ⊆ {1, 2, . . . , N}, |S| = K.
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Thus in this case R(F,N − K) ≤ β/α. Note that for any full spark n × N frame matrix

F and any n ≤ K ≤ N there always exist α, β > 0 such that F is (K,α, β)-NERF.

The main goal is to find classes of frames where the bounds α, β, and more importantly,

R(F,N −K) = β/α, are independent of the dimension n while allowing the proportion of

erasures 1 − K
N as large as possible. The authors studied in [9] the erasure robustness of

F = 1√
n
A, where the entries of A are independent random variables of the standard normal

N (0, 1) distribution. It was shown that with high probability such a matrix can be good

NERFs provided that K is no less than approximately 85% of N . The authors also proved

that equiangular frame F in Cn with N = n2 − n + 1 vectors is a good NERF against

up to about 50% erasures. As far as the proportion of erasures is concerned this was the

best known result for NERFs. However, the frame requires almost n2 vectors. The authors

posed as an open question whether there exist NERFs with K < N/2. A more recent paper

[8] explored a deterministic construction based on certain group theoretic techniques. The

approach offers more flexibility in the frame design than the far more restrictive equiangular

frames.

In this paper we revisit the robustness of random frames. We provide a much stronger

result for random frames, showing that for any δ > 0, with very high probability, the frame

F = 1√
n
A is a ((1 + δ)n, α, β)-NERF where α, β depend only on δ and the aspect ratio N

n .

One version of our result is given by the following theorem.

Theorem 1.1. Let F = 1√
n
A where A is n × N whose entries are independent Gaussian

random variables of N(0, 1) distribution. Let λ = N
n > 1. Then for any 0 < δ0 < λ− 1 and

τ0 > 0 there exist α, β > 0 depending only on δ0, λ and τ0 such that for any δ0 ≤ δ < λ− 1,

the frame F is a ((1 + δ)n, α, β)-NERF with probability at least 1− e−τ0n.

Later in the paper we shall provide more implicit estimates for α, β that will allow us to

easily compute them numerically. Note that our result is essentially the best possible, as

we cannot go to δ0 = 0. A corollary of the theorem is that for random Gaussian frames the

proportion of erasures 1 − K
N can be made arbitrary large while the frames still maintain

robustness with overwhelming probability.

Our theorem depends crucially on a refined estimate on the smallest singular value of a

random Gaussian matrix. There is a wealth of literature on random matrices. The study

of singular values of random matrices has been particularly intense in recent years due
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to their applications in compressive sensing for the construction of matrices with the so-

called restricted isometry property (see e.g.[4, 5, 1, 2]). Random matrices have also been

employed for phase retrieval [3], which aims to reconstruct a signal from the magnitudes of

its samples. For a very informative and comprehensive survey of the subject we refer the

readers to [15, 19], which also contains an extensive list of references (among the notable

ones [7, 14, 17]). For the n×N Gaussian random matrix A the expected value of σ1(A) and

σn(A) are asymptotically
√
N +

√
n and

√
N −√n, respectively. Many important results,

such as the NERF analysis of random matrices in [9] as well as results on the restricted

isometry property in compressive sensing, often utilize known estimates of σ1(A) and σn(A)

based on Hoeffding-type inequalities. One good such estimate is

(1.3) P (σn(A) <
√
N −√n− t) ≤ e− t

2

2 ,

see [19]. The problem with this estimate is that even by taking t =
√
N −√n we only get a

bound of e−(
√
λ−1)2n/2 even though the probability in this case is 0. Thus estimates such as

(1.3) that cap the decay rate are often inadequate. When applied to the erasure robustness

problem for frames they usually put a cap on the proportion of erasures. To go further we

must prove an estimate that will allow the exponent of decay to be much larger. We achieve

this goal by proving the following theorem:

Theorem 1.2. Let A be n×N whose entries are independent random variables of standard

normal N(0, 1) distribution. Let λ = N
n > 1. Then for any µ > 0 there exist constants

c, C > 0 depending only on µ and λ such that

(1.4) P
(
c
√
n ≤ σn(A) ≤ σ1(A) ≤ C√n

)
≥ 1− 3e−µn.

Furthermore, we may take C = 1 +
√
λ+
√
µ and c = sup0<t<1 ϕ(t) where

(1.5) ϕ(t) =
t
1
λ

L
− 2Ct

1− t , where L =

√
2e

λ
e
µ
λ .

Acknowledgement. The author would like to thank Radu Balan and Dustin Mixon for

very helpful discussions.

2. Smallest Singular Value of a Random Matrix: Nonasymptotic Estimate

We begin with estimates on the extremal singular values of a ranodm matrix A whose

entries are independent standard normal random variables. We shall assume throughout
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the section that A is n×N where N
n = λ > 1. One of the very important estimates is

(2.1) P
(
σ1(A) >

√
N +

√
n+ t

)
≤ e− t

2

2 ,

see [19]. Our main goal of this section is to prove the estimates for smallest singular value

σn(A) stated in Theorem 1.2. An equivalent formulation of (2.1) is

(2.2) P
(
σ1(A) > C

√
n
)
≤ e−

(C−1−
√
λ)2

2
n, C ≥ 1 +

√
λ.

Observe that

σn(A) = min
v∈Sn−1

‖A∗v‖,

where Sn−1 denotes the unit sphere in Rn.

Lemma 2.1. Let c > 0. For any v ∈ Sn−1 the probability P (‖A∗v‖ ≤ c) is independent of

the choice of v. We have

(2.3) P
(
‖A∗v‖ ≤

√
δn
)
≤
(2eδ

λ

)N
2

for any δ > 0.

Proof. The fact that P (‖A∗v‖ ≤ c) is independent of the choice of v is a well know fact,

which stems from the fact that the entries of PA are again independent standard normal

random variables for any orthogonal n× n matrix P . In particular, one can always find an

orthogonal P such that Pv = e1. Thus we may without loss of generality take v = e1. In

this case ‖A∗v‖2 = a211 + · · ·+ a21N where [a11, . . . , a1N ] denotes the first row of A. Denote

YN = a211 + · · ·+a21N . Then YN has the Γ(N2 , 1) distribution, which has the density function

ρ(t) =
1

Γ(N2 )
e−tt

N
2
−1, t > 0.

Denote m = N
2 . It follows that

P
(
‖A∗v‖ ≤

√
δn
)

= P
(
YN ≤ δn

)

=
1

Γ(m)

∫ δn

0
e−ttm−1dt

≤ 1

Γ(m)

∫ δn

0
tm−1dt

=
δmnm

Γ(m)
.

Note that Γ(m) ≥ (me )m by Stirling’s formula. The theorem now follows from N
n = λ and

m = N
2 .
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A ubiquitous tool in the study of random matrices is an ε-net. F or any ε > 0 an ε-net

for Sn−1 is a set in Sn−1 such that any point on Sn−1 is no more than ε distance away from

the set. The following result is known and can be found in [19]:

Lemma 2.2. For any ε > 0 there exists an ε-net Nε in Sn−1 with cardinality no larger

than (1 + 2ε−1)n.

Proof of Theorem 1.2. Assume that σn(A) = b
√
n. Then there exists a v0 ∈ Sn−1 such

that ‖A∗v0‖ = b
√
n. Let Nε be an ε-net for Sn−1 and take u ∈ Nε that is the closest to v0.

So ‖u− v0‖ ≤ ε. Thus

(2.4) ‖A∗u‖ ≤ ‖A∗v0‖+ ‖A∗(u− v0)‖ ≤ b
√
n+ εσ1(A).

Hence

(2.5) P
(
σn(A) ≤ c√n

)
≤
∑

u∈Nε
P
(
‖A∗u‖ ≤ c√n+ εσ1(A)

)
.

Note that

P
(
‖A∗u‖ ≤ c√n+ εσ1(A)

)
= P

(
‖A∗u‖ ≤ c√n+ εσ1(A), σ1(A) ≤ C√n

)

+ P
(
‖A∗u‖ ≤ c√n+ εσ1(A), σ1(A) > C

√
n
)
.

By Lemma 2.1 the first term on the right hand side is bounded from above by

P
(
‖A∗u‖ ≤ c√n+ εσ1(A), σ1(A) ≤ C√n

)

≤ P
(
‖A∗u‖ ≤ c√n+ εC

√
n
)
≤
(2e(c+ εC)2

λ

)N
2
.

By (2.2) the second term on the right hand side is bounded from above by

P
(
‖A∗u‖ ≤ c√n+ εσ1(A), σ1(A) > C

√
n
)

≤ P
(
σ1(A) > C

√
n
)
≤ e−

(C−1−
√
λ)2

2
n.

Thus combining these two upper bounds we obtain the estimate

(2.6) P
(
σn(A) ≤ c√n

)
≤
(

1 +
2

ε

)n((2e(c+ εC)2

λ

)N
2

+ e−
(C−1−

√
λ)2

2
n

)
.

We would like to bound P
(
σn(A) ≤ c

√
n
)

by 2e−µn. All we need then is to choose

ε, c, C > 0 so that both upper bound terms in (2.6) are bounded by e−µn. Note that

53
DISTRIBUTION A: Distribution approved for public release.



RANDOM MATRICES AND ERASURE ROBUST FRAMES 7

N
2 = λ

2n. Hence we only need

− µ ≥ ln(1 + 2ε−1) +
λ

2

(
ln 2e− lnλ+ 2 ln(c+ εC)

)
,(2.7)

−µ ≥ −1

2
(C − 1−

√
λ)2.(2.8)

The equation (2.8) leads to the condition

(2.9) C ≥
√

2µ+
√
λ+ 1.

To meet condition (2.7) we set c = rε. Then ln(c+ εC) = − ln ε−1 + ln(r +C). Thus (2.7)

becomes

(2.10) (λ− 1) ln(ε−1) ≥ µ+ ln(2 + ε) +
λ

2
ln
(2e(r + C)2

λ

)
.

Clearly, once we fix C and r, say, take C =
√

2µ+
√
λ+ 1 and r = 1, ln ε−1 will be greater

than the right hand side of (2.10) for small enough ε because of the condition λ > 1. Both

C, c only depend on λ and µ. The existence part of the theorem is thus proved.

While we have already a good explicit estimate C =
√

2µ+
√
λ+1, it remains to establish

the explicit formula for c. For any fixed r the largest ε is achieved when (2.10) is an equality,

namely

(λ− 1) ln(ε−1) = µ+ ln(2 + ε) +
λ

2
ln
(2e(r + C)2

λ

)
,

which one can rewrite as

ln(r + C) = −(1− p) ln ε− p ln(2 + ε)− lnL,

where p = λ−1 and L =
√

2e
λ e

µ
λ . It follows that

rε =
1

L

( ε

2 + ε

)p
− Cε =

1

L
t
1
λ − 2Ct

1− t ,

where t = ε
2+ε . Note that 0 < t < 1. Now we can take c to be the supreme value of rε,

which yields

(2.11) c = sup
0<t<1

{ t 1λ
L
− 2Ct

1− t
}
.

Finally, (1.4) follows from P
(
σn(A) ≤ c√n

)
≤ 2e−µn and (2.2). The proof of the theorem

is now complete.

Remark. Although there does not seem to exist an explicit formula for c given in (2.11),

there is a very good explicit approximation of it. In general, the t that maximize ϕ(t) is
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rather small. So we may approximate 2Ct
1−t simply by 2Ct and find the maximum of

(2.12) ϕ̃(t) =
1

L
t
1
λ − 2Ct.

The maximum of ϕ̃(t) is obtained at t0 = (2CλL)−
λ
λ−1 . This t0 is very close to the actual

t that maximizes ϕ(t). Thus

(2.13) c̃ := ϕ(t0) =
( 1

2CλLλ

) 1
λ−1
(

1− 1

λ

)

has c̃ ≤ c and it is a close approximation of the optimal c. Of course, Theorem 1.2 still

holds when c is replaced by c̃.

Although Theorem 1.2 is for real Gaussian random matrices, a complex version of it can

also be proved with minor modifications. A complex random variable Z = X + iY has

the complex standard normal distribution if both X and Y have the real complex normal

distribution N (0, 1). Theorem 1.2 extends to the following theorem for the complex case:

Theorem 2.3. Let A be n×N whose entries are independent random variables of complex

standard normal N(0, 1) distribution. Let λ = N
n > 1. Then for any µ > 0 there exist

constants c, C > 0 depending only on µ and λ such that

(2.14) P
(
c
√
n ≤ σn(A) ≤ σ1(A) ≤ C√n

)
≥ 1− 3e−µn.

Furthermore, we may take C =
√

2 + 2
√
λ+ 2

√
µ and c = sup0<t<1 ϕ(t) where

(2.15) ϕ(t) =
t
1
λ

L
− 2Ct

1− t , where L =

√
2e

λ
e
µ
2λ .

Proof. The proof follows the same argument as in the real case so we only sketch the proof

here. In particular we point out the places where the estimates need to be modified.

Write A = AR + iAI and set B = [AR, AI ]. Then B is an n × 2N matrix whose

entries are independent real standard normal random variables. It is easy to check that

σ1(A) ≤
√

2σ1(B). Thus by taking C = 2
√
λ+
√

2 + 2
√
µ we have via (2.1) that

(2.16) P
(
σ1(A) ≤ C√n

)
≤ e−µn.

The estimate for σn(A) follows from the same strategy as in the real case. First of all,

just like the real case for any n×n unitary matrix U the entries of UA are still independed

complex standard normal random variables. As a result the probability P (‖A∗v|| ≤
√
δn)

where v ∈ Cn is a unit vector does not depend on the choice of v. By taking v = e1 we see
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that (‖A∗v||2 has the Γ(N, 1) distribution (as opposed to the Γ(N2 , 1) distribution in the

real case). Applying Lemma 2.1 we obtain the equivalent result for the complex case in

(2.17) P
(
‖A∗v‖ ≤

√
δn
)
≤
(2eδ

λ

)N
.

Next for the ε-net, we observe that the unit sphere in Cn is precisely the unit sphere in

R2n if we identify Cn as R2n. Thus we can find an ε-net Nε of cardinality no more than

(1 + 2ε−1)2n. The proof of Theorem 1.2 now goes through with some minor modifications.

The most important one is that with (2.16) and (2.17) the inequality condition (2.7) now

becomes

−µ
2
≥ ln(1 + 2ε−1) +

λ

2

(
ln 2e− lnλ+ 2 ln(c+ εC)

)
,

where the constant C is changed to C = 2
√
λ+
√

2 + 2
√
µ. Substituting this C and µ

2 for

µ we prove the theorem.

3. Random Frames as NERFs

Our goal in this section is to establish the robustness of random frames against erasures

by proving Theorem 1.1. Here we restate Theorem 1.1 in a a different form for the benefit

of simpler notation in the proof.

Theorem 3.1. Let F = 1√
n
A where A is n × N whose entries are drawn independently

from the standard normal N (0, 1) distribution. Let λ = N
n > 1 and K = pN = pλn where

λ−1 < p ≤ 1. For any τ0 > 0 there exist constants α, β > 0 depending only on λ, p and τ0

such that F is a (K,α, β)-NERF with probability at least 1− 3e−τ0n.

Proof. There exists exactly N !
K!(N−K)! subsets S ⊆ {1, 2, . . . , N} of cardinality |S| = K. It

is well known that
N !

K!(N −K)!
≤ NN

KK(N −K)N−K
,

which can be shown easily by Stirling’s Formula or induction on N . Set sp = p ln p−1 +(1−
p) ln(1− p)−1, which has 0 ≤ sp ≤ ln 2. We have then

(3.1)
N !

K!(N −K)!
≤
(
p−p(1− p)p−1

)N
= eλspn.

Now we set µ := λsp + τ0. Let C =
√

2µ+
√
pλ+ 1 and c = sup0<t<1 ϕ(t) where ϕ(t) is

given in (1.5). Let the columns of A be {aj}Nj=1. For any S ⊆ {1, 2, . . . , N} we denote by
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AS the submatrix of A whose columns are {fj : j ∈ S}. Then for |S| = K = pλn we have

P
(
c
√
n ≤ σn(AS) ≤ σ1(AS) ≤ C√n

)
≥ 1− 3e−µn.

by Theorem 1.2. It follows that

P
(
σn(AS) ≤ c√n or σ1(AS) ≥ C√n for some S with |S| = K

)

≤
∑

|S|=K
P
(
σn(AS) ≤ c√n or σ1(AS) ≥ C√n

)

≤ 3e(λsp−µ)n = 3e−τ0n.

It follows that

P
(
c
√
n ≤ σn(AS) ≤ σ1(AS) ≤ C√n for all S with |S| = K

)
≥ 1− 3eτ0n.

This implies that, by setting α = c and β = C, F = 1√
n
A is a (K,α, β)-NERF with

probability at least 1− 3e−τ0n.

Theorems 1.1 and 3.1 states that random Gaussian frames can be robust with overwhelm-

ing probability against erasures of an arbitrary proportion of data from the original data,

at least in theory, as long as the number of remaining vectors is at least (1 + δ0)n for some

δ0 > 0. In practice one may ask how good the condition numbers are if the erasures reach

a high proportion, say, 90% of the data. We show some numerical results below.

Example 1. Let F = 1√
n
A where A is n × N whose entries are independent standard

normal random variables. Set τ0 = 0.25. In this experiment we fix K = 2n and K = 5n,

respectively, and let N vary. As N increases from N = K to N = 100K the proportion of

erasure s = 1 − K
N increases from 0 to 99%. We shall use β/α as a measure of robustness

since it is an upper bound for the condition number. Clearly, as s increases we should expect

β/α to increase. The left plot in Figure 1 shows log2(β/α) against s for both K = 2n (top

curve) and K = 5n (bottom curve). Because the frame is normalized so that each column

is on average a unit norm vector, it also makes sense to use the smallest singular value as

a measurement of robustness. The right plot in Figure 1 shows − log2(α) against s also

for both K = 2n (top curve) and K = 5n (bottom curve). Our numerical results show

that in the case K = 2n, with probability at least 1− 3e−0.5n, the condition number is no

more than 10232 for 50% erasures and no more than 611675 for 90% erasures. In the case
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Figure 1. Left: log2(β/α) against the proportion of erasures when N varies
from K to 100K while K is fixed at K = 2n (top curve) and K = 5n (bottom
curve). Right: Same as in the left figure, but for − log2(α).

K = 5n, the corresponding numbers are 139.88 and 1862.1, respectively. In fact, even with

99% erasures the condition number is no more than 42716.

Example 2. Again we let F = 1√
n
A where A is n × N whose entries are independent

standard normal random variables, and let τ0 = 0.25. In this experiment we fix N = 200n

and N = 50n, respectively, and let K vary so the proportion of erasures s = 1 − K
N varies

from 0 to 99% (N = 200n and 0 to 97% (N = 50n), respectively. Again we should expect

the robustness to go down as we increase s. The left plot in Figure 2 shows log2(β/α) against

s for N = 50n (top curve) and N = 200n (bottom curve). The right plot in Figure 2 shows

− log2(α) against s also for both N = 50n (top curve) and N = 200n (bottom curve). Our

numerical results show that in the case N = 50n, with probability at least 1− 3e−0.5n, the

condition number is no more than 31.7 for 50% erasures and 1862.1 for 90% erasures. In

the case N = 200n, the corresponding numbers are 23.48 and 315.12, respectively. Even

with 95% erasures the condition number is no more than 1312.4.
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Figure 2. Left: log2(β/α) against the proportion of erasures when K varies
while N is fixed at N = 50n (top curve) and N = 200n (bottom curve).
Right: Same as in the left figure, but for − log2(α).
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ON THE DECAY OF THE SMALLEST SINGULAR VALUE OF
SUBMATRICES OF RECTANGULAR MATRICES

YANG LIU AND YANG WANG

Abstract. In this article, we study the decay of the smallest singular value
of submatrices that consist of bounded column vectors. We find that that the
smallest singular value of submatrices is related to the minimal distance of
points to the lines connecting other two points in a bounded point set. Using
a technique from integral geometry and from the perspective of combinatorial
geometry, we show the decay rate of the minimal distance for the sets of points
if the number of the points that are on the boundary of the convex hull of any
subset is not too large, relative to the cardinality of the set. In the numeral or
computational aspect, we conduct some numerical experiments for many sets
of points and analyze the smallest distance for some extremal configurations.

1. Introduction

In recent decades, measurements, frames, and dictionaries (see for instance, [2],
[24], and [5]), all of which are essentially matrices, have been studied and used in
signal processing, such as compressed sensing, matrix recovery, phase retrieval, and
other fields. As the main characteristics of a matrix or linear transformation, the
singular values and their generalized forms have been studied in, for instance, [20],
[18], [9], [28], and [23]. It is not hard to see that the singular values of a matrix
are determined by both the magnitudes and the angles of the row vectors of the
matrix.

Rectangular matrices are of the main interest in some recent research (see, for
instance, [28] and [29]). Here we call a rectangular matrix a slim matrix if there are
more rows than columns in the matrix. Considering the columns of a slim matrix
as points in a bounded region in a plane, we show that the matrix problem can
be reduced down to a combinatorial problem. If the magnitudes of all the rows of
a rectangular matrix are bounded, we can estimate the smallest singular values of
submatrices, in terms of the size of the matrix, because there are configurations of
matrices whose minimal smallest singular values by the order of a power of the size
with some negative exponent. Some estimates on the distances among points in a
set or the distances from points to lines that connect other two points in a set of
points in a bounded region are established in this article, and the decay rate of these
distances, in some sense, essentially determines the the decay rate of the smallest
singular values of submatrices with bounded column vectors. The combinatorial
geometry problem is to related to Heilbronn’s triangle problem (see, for instance,
[16] and [4]). There have been some work on developing algorithms to find counter
example for Heilbronn’s original conjecture, but there does not appear to be any
experimentable algorithm for one to find any explicit or concrete sets of points, and

2000 Mathematics Subject Classification. 35R30, 35R60, 35Q86, 94B75, 33F05.
Key words and phrases. matrix analysis, duality, singular values, combinatorial geometry.
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DECAY OF THE SMALLEST SINGULAR VALUES OF SUBMATRICES 2

it would be interesting to see the optimal arrangements of n points in a square or
unit disk for Heilbronn’s triangle problem and this problem respectively. However,
we formulate a conjecture for a slower decay rate, which, as far as we know, is still
open.

The main contribution of this paper is to show the connection between the
singular value problem and a combinatorial geometry problem. Using a technique
from integral geometry and from the perspective of combinatorial geometry, we
show the decay rate of the minimal distance for the sets of points if the number
of the points that are not on the boundary of the convex hull of any subset is
not too large, relative to the cardinality of the set. We also obtain some other
results regarding this combinatorial geometry problem in some cases, and so for
the minimal smallest singular value of submatrices of rectangular matrices.

This paper is structured as follows: in Section 2, we prove some lemmas on the
minimal smallest singular value of slim matrices, and particularly, we show the
optimal decay rate for the base case; in Section 3, we prove a duality lemma for a
the minimal smallest singular value of matrices of size n+ k by n; in Section 4, we
undertake extensively studies on the minimal smallest singular value of matrices
of size n + 3 by n, and we obtain some results by using a technique from integral
geometry and from the perspective of combinatorial geometry; and in Section 5, we
present some numerical experimental results.

2. Some Lemmas on the Minimal Smallest Singular Value

First, we have the following lemma.

Lemma 2.1. For any real matrix A of size N by n with N ≥ n, one has
(2.1) σn (A) ≥ min

S⊆{1,...,n+1},|S|=n
σn (AS)

and
(2.2) σ1 (A) ≥ min

S⊆{1,...,n+1},|S|=n
σ1 (AS)

Proof. For any S ⊆ {1, . . . , n+ 1} with |S| = n,
(2.3) σn (AS) = inf

v∈Rn,‖v‖=1
‖ASv‖ ;

and on the other hand,
(2.4) σn (A) = inf

V⊆Rn,dim(V )=1
‖A|V ‖ = inf

v∈Rn,‖v‖=1
‖Av‖ .

Since Av is basically an vector extension ofASv for every v ∈ Rn, ‖v‖ = 1, then
(2.5) ‖ASv‖ ≤ ‖Av‖
for every v ∈ Rn, ‖v‖ = 1. Thus, it follows from (2.3) and (2.4) that
(2.6) σn (AS) ≤ σn (A)
for any S ⊆ {1, . . . , n+ 1} with |S| = n. Hence, we obtain (2.1), and similarly, we
also obtain (2.2). �

From the growth rate of the smallest singular value of random matrices estab-
lished in [3], one can obtain that

(2.7) σn (A)→
(
2−
√

2
)√

n
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for N = 2n. On the other hand,

(2.8) σn (AS) ≤ O
(

1√
n

)
.

Lemma 2.2. For any n + 1 by n matrix A =




a1
...

an+1


 with ‖ai‖ ≤ 1, i =

1, . . . , n+ 1, one has

(2.9) min
S⊆{1,...,n+1},|S|=n

σn (AS) ≤ 1√
n

Proof. Since a1, . . ., an+1 are linear dependent, there are c1, . . ., cn+1, such that

(2.10)
n+1∑

i=1
ciai = 0

with

(2.11)
n+1∑

i=1
c2i = 1.

Without loss of generality, assume cn+1 = min (c1, . . . , cn+1). If cn+1 = 0, (2.9) is
trivial, because there is an S such that AS is singular. It suffices to consider the
case of cn+1 6= 0. Therefore,

(2.12) cn+1an+1 = −
n∑

i=1
ciai

By (2.11),

(2.13) (n+ 1) c2n+1 ≤
n+1∑

i=1
c2i = 1.

It follows that

(2.14) |cn+1| ≤
1√
n+ 1

and furthermore

(2.15) ‖cn+1an+1‖√
1− c2n+1

≤ 1√
n+ 1

·
√
n+ 1√
n

= 1√
n
.

Since

(2.16) min
S⊆{1,...,n+1},|S|=n

σn (AS) ≤ ‖
∑n
i=1 ciai‖√∑n
i=1 c

2
i

= ‖cn+1an+1‖√
1− c2n+1

,

thus (2.9) follows from (2.15). �

Remark 2.3. However, one can have

(2.17) min
S⊆{1,...,n+1},|S|=n

σn (AS) > 1
n
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for some matrix A. For example,

(2.18) AT =
[

0.9969 0.6688 0.1610
−0.0782 0.7434 −0.9870

]
,

we have

(2.19) min
S⊆{1,...,n+1},|S|=n

σn (AS) = 0.6115 > 1
2 .

For matrices of size n+ 1 by n, one can have the following

Lemma 2.4. For any n + 2 by n matrix A =




a1
...

an+2


 with ‖ai‖ ≤ 1, i =

1, . . . , n+ 2, one has

(2.20) min
S⊆{1,...,n+2},|S|=n

σn (AS) ≤ C

n3/2

for some constant C > 0.
Proof. It suffices to consider matrices of size n+ 2 by n with rank no less than n.
Then for any z ∈ ker (A) with ‖z‖ = 1, we have

(2.21)

σn (AS) ≤ infz∈ker(A)
‖ASzS‖
‖zS‖

= infz∈ker(A)
‖zi1ai1+zi2ai2‖

‖zS‖

≤ infz∈ker(A)
|zi1 |‖ai1‖+|zi2 |‖ai2‖

‖zS‖

≤ infz∈ker(A)
|zi1 |+|zi2 |
‖zS‖

≤ infz∈ker(A)

√
2
√
z2
i1

+z2
i2√

1−
(
z2
i1

+z2
i2

)

where S = {1, . . . , n+ 2} \ {i1, i2} for all 1 ≤ i1, i2 ≤ n+ 2.
Let b1 and b2 be an orthonormal basis of ker (A), b1 = (b11, . . . , b1,n+2) and

b2 = (b21, . . . , b2,n+2), and denote
(

b1
b2

)
:= B. Since z ∈ ker (A) with ‖z‖ = 1,

there exist t1 and t2 such that
(2.22) z = t1b1 + t2b2

with t21 + t22 = 1. Therefore,

(2.23)
√
z2
i1

+ z2
i2

=
√

(t1b1,i1 + t2b2,i1)
2 + (t1b1,i2 + t2b2,i2)

2

= ‖(t1, t2)BSc‖
Combining (2.21), we have
(2.24) σn (AS) ≤ C inf

t21+t22=1
‖(t1, t2)BSc‖ = Cσ2 (BSc)

for some constant C > 0 and furthermore,
(2.25) min

S⊆{1,...,n+2},|S|=n
σn (AS) ≤ C min

S⊆{1,...,n+2},|S|=n
σ2 (BSc) .

Now let B = (β1, . . . , βn+2) and normalize the columns of B, then

(2.26) σ2 (BSc) ≤ max (‖βi1‖ , ‖βi2‖)σ2

((
βi1
‖βi1‖

,
βi2
‖βi2‖

))
.
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Now we can choose the indices i1 and i2, 1 ≤ i1, i2 ≤ n+ 2, such that
(2.27) b21,i1 + b22,i1 + b21,i2 + b22,i2 = ‖BSc‖F
is the smallest among all pairs of indices between 1 and n+ 2, but since

(2.28)
n+2∑

i=1
b21,i +

n+2∑

i=1
b21i = 2,

we have

(2.29) b21,i1 + b22,i1 + b21,i2 + b22,i2 ≤
4

n+ 2 ,

which implies

(2.30) max
(√

b21,i1 + b22,i1 ,
√
b21,i2 + b22,i2

)
≤ 2√

n+ 2
.

Therefore, by (2.26), we have

(2.31)
minS⊆{1,...,n+2},|S|=n σ2 (BSc) ≤ 2√

n+2σ2

((
βi1
‖βi1‖ ,

βi2
‖βi2‖

))

≤
√

2√
n+2

∥∥∥∥
βi1
‖βi1‖ −

βi2
‖βi2‖

∥∥∥∥ .

Considering the geometry of n+ 2 vectors on the unit circle and choose the closest
two vectors among the n+ 2 unit vectors, we know

(2.32)
∥∥∥∥
βi1
‖βi1‖

− βi2
‖βi2‖

∥∥∥∥ ≤ 2 sin π

n+ 2 .

Next, we will show the following inequality

(2.33) min
S⊆{1,...,n+2},|S|=n

σ2 (BSc) ≤
2
√

2√
n+ 2

sin π

n+ 2 .

Suppose that

(2.34) σ2 (BSc) ≥
2
√

2√
n+ 2

sin π

n+ 2
for all S ⊆ {1, . . . , n+ 2} with |S| = n. For any
(2.35) BSc = (βi, βj) ,
we have

(2.36)

σ2 (BSc) ≤

∥∥∥ βi

‖βi‖−
βj

‖βj‖

∥∥∥
√

1
‖βi‖2

+ 1
‖βj‖2

=
‖βi‖‖βj‖

∥∥∥ βi

‖βi‖−
βj

‖βj‖

∥∥∥
√
‖βi‖2+‖βj‖2

≤ min (‖βi‖ , ‖βj‖)
∥∥∥ βi
‖βi‖ −

βj
‖βj‖

∥∥∥
for 1 ≤ i < j ≤ n + 2. We can actually arrange the indices in βi, 1 ≤ i ≤ n + 2,
so that βi

‖βi‖ , 1 ≤ i ≤ n+ 2, are in the counterclockwise order in the unit disk. By
(2.28), we know that

(2.37)
n+2∑

i=1
‖βi‖2 = 2,
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and since any chord is shorter than its corresponding arc on a circle, we have that

(2.38)
n+2∑

i=1

∥∥∥∥
βi
‖βi‖

− βi+1
‖βi+1‖

∥∥∥∥ ≤ 2π,

assuming βn+3 = β1. From (2.36),
(2.39)

min
S⊆{1,...,n+2},|S|=n

σ2 (BSc) ≤ min1≤i<j≤n+2

(
min (‖βi‖ , ‖βj‖)

∥∥∥ βi
‖βi‖ −

βj
‖βj‖

∥∥∥
)

≤ min1≤i≤n+2

(
‖βi‖

∥∥∥ βi
‖βi‖ −

βi+1
‖βi+1‖

∥∥∥
)

From (2.37) and (2.38), one can obtain that
(2.40)

min1≤i≤n+2

(
‖βi‖

∥∥∥ βi
‖βi‖ −

βi+1
‖βi+1‖

∥∥∥
)
≤ 1

n+2
∑n+2
i=1

(
‖βi‖

∥∥∥ βi
‖βi‖ −

βi+1
‖βi+1‖

∥∥∥
)

≤ 2
√

2π
(n+2)3/2

and then (2.20) follows. �

3. Duality Lemma for matrices of size n+ k by n

First we have the following duality lemma in general.

Lemma 3.1. For any matrix A of size m by n with m ≥ n with all rows normalized
to 1, one has

(3.1) min
S⊆{1,...,m},|S|=n

σn (AS) ≤ C min
T⊆{1,...,m},|T |=m−n

σn (BT )

for some constant C > 0, where B consists of any orthogonal basis of ker (A).

Proof. Then for any z ∈ ker (A) with ‖z‖ = 1, we have

(3.2)

σn (AS) ≤ infz∈ker(A)
‖ASzS‖
‖zS‖

= infz∈ker(A)
‖zi1ai1+zi2ai2‖

‖zS‖

≤ infz∈ker(A)
|zi1 |‖ai1‖+|zi2 |‖ai2‖

‖zS‖
≤ infz∈ker(A)

‖zSc‖1
‖zS‖

≤ infz∈ker(A)

√
2‖zSc‖2√
1−‖zSc‖22

.

Let b1 and b2 be an orthonormal basis of ker (A), b1 = (b11, . . . , b1,n+2) and

b2 = (b21, . . . , b2,n+2), and denote
(

b1
b2

)
:= B. Since z ∈ ker (A) with ‖z‖ = 1,

there exist t1 and t2 such that

(3.3) z = tBSc

with t21 + t22 = 1. Therefore,

(3.4) ‖zSc‖2 = ‖tBSc‖
Combining (3.2), we have

(3.5) σn (AS) ≤ C inf
t∈Sm−n

‖tBSc‖ = Cσm−n (BSc)
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for some constant C > 0, where Sm−n is the unit sphere in Rm−n+1, and further-
more,
(3.6) min

S⊆{1,...,m},|S|=n
σn (AS) ≤ C min

T⊆{1,...,m},|T |=m−n
σn (BT ) .

�

Remark 3.2. In matrix theory and operator theory, the image of an operator is
regards as to be dual its kernel or null space. Here this duality is in a similar essence
to relationship between the restricted isometry property, Johnson-Lindenstrauss
embedding, and the null space property in signal processing, including compressed
sensing, phase retrieval, and others (see for instance, [27], [17], and [26]).

4. Decay rate for matrices of size n+ 3 by n

Let P1, . . . , Pn be in the unit disk on the plane, and d(i, j, k) be the distance of
the point Pi to the line connecting other two points Pj and Pk , 1 ≤ i, j, k ≤ n. In
this section, we want to study the decay of min1≤i,j,k≤n d(i, j, k), as n→∞.

First, let us prove the following lemma on the decay order of at least O
( 1
n

)
.

Lemma 4.1. Let P1, . . ., Pn be a set of points in the unit disk on the plane. Suppose
that P1, . . ., Pn are on the boundary of the convex hull of the point set {P1, . . . , Pn}
and d(i, j, k) is the distance of the point Pi to the line connecting other two points
Pj and Pk, 1 ≤ i, j, k ≤ n, then

(4.1) min
1≤i,j,k≤n

d(i, j, k) ≤ C

n

for some absolute constant C, C > 0, independent of n.

Proof. Let us cover the unit disk by parallel stripes of width 8
n , then the unit disk

can be covered by
⌈
n
4
⌉
such stripes. By the pigeonhole principle, there exist at least

3 points Pi0 , Pj0and Pk0which locate in the same strip, thus we have

(4.2) min
1≤i,j,k≤n

d(i, j, k) ≤ d(i0, j0, k0) ≤
8
n
.

�

Next, we prove the following lemma.

Lemma 4.2. Let P1, . . ., Pn be a set of points in the unit disk on the plane. Suppose
that P1, . . ., Pn are on the boundary of the convex hull of the point set {P1, . . . , Pn}
and d(i, j, k) is the distance of the point Pi to the line connecting other two points
Pj and Pk, 1 ≤ i, j, k ≤ n, then

(4.3) min
1≤i,j,k≤n

d(i, j, k) ≤ C

n2

for some absolute constant C, C > 0, independent of n.

Proof. Without loss of generality, we assume that the points P1, P2, . . ., and Pn
are in the counterclockwise order in the unit disk. Firstly, if P1, . . ., Pn are the
vertices of a convex polygon P, then by the Crofton formula in integral geometry
or geometric probability (see for instance [15], [22], and [30]),

(4.4) perimeter (P) = 1
2

ˆ 2π

0

ˆ 1

0
nP (θ, r) drdθ,

67
DISTRIBUTION A: Distribution approved for public release.



DECAY OF THE SMALLEST SINGULAR VALUES OF SUBMATRICES 8

where nP (θ, r) is the intersection number of the the polygon and the oriented line
which has a distance r to the origin and has an angle θ to the positive horizontal
axis. Let C be the unit circle, again by the Crofton formula, we know

(4.5) perimeter (C) = 1
2

ˆ 2π

0

ˆ 1

0
nC (θ, r) drdθ.

But since the polygon P is convex, then
(4.6) nP (θ, r) ≤ 2 = nC (θ, r) ,
and it follows from (4.4) and (4.5) that

(4.7) perimeter (P) ≤ perimeter (C) = 1
2

ˆ 2π

0

ˆ 1

0
2drdθ = 2π.

Thus the sum of the boundary edges of the polygon

(4.8)
n∑

i=1

∥∥PiPi+1
∥∥ ≤ 2π.

Now let us connect the vertices by edges P1P3, P2P4, . . . , Pn−1P1, and PnP2, then
we have

(4.9)
n∑

i=1
(∠Pi+2PiPi+1 + ∠Pi+1Pi+2Pi) = nπ − (n− 2)π = 2π

assuming Pn+1 = P1 and Pn+2 = P2, because there are n triangles and the sum of
the interior angles of the polygon is (n− 2)π. Furthermore, since
(4.10)
n∑

i=1
(sin (∠Pi+2PiPi+1) + sin (∠Pi+1Pi+2Pi)) ≤

n∑

i=1
(∠Pi+2PiPi+1 + ∠Pi+1Pi+2Pi)

therefore, we have

(4.11)
n∑

i=1
(sin (∠Pi+2PiPi+1) + sin (∠Pi+1Pi+2Pi)) ≤ 2π.

By Cauchy–Schwarz inequality,
(4.12)

∑n
i=1
∥∥PiPi+1

∥∥ 1
2
(
sin 1

2 (∠Pi+2PiPi+1) + sin 1
2 (∠Pi+1Pi+2Pi)

)

≤
(∑n

i=1 2
∥∥PiPi+1

∥∥) (
∑n
i=1 (sin (∠Pi+2PiPi+1) + sin (∠Pi+1Pi+2Pi))) .

It follow from (4.8) and (4.11) that
(4.13)

n∑

i=1

∥∥PiPi+1
∥∥ 1

2
(
sin 1

2 (∠Pi+2PiPi+1) + sin 1
2 (∠Pi+1Pi+2Pi)

)
≤ 4π · 2π = 8π2.

Since there are actually 2n terms in the above sum, then we have

(4.14) min
1≤i≤n

∥∥PiPi+1
∥∥ 1

2 sin 1
2 (∠Pi+2PiPi+1) ≤

8π2

2n = 4π2

n

or

(4.15) min
1≤i≤n

∥∥PiPi+1
∥∥ 1

2 sin 1
2 (∠Pi+1Pi+2Pi) ≤

8π2

2n = 4π2

n
.
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Notice that
(4.16)
d(i+ 1, i, i+ 2) =

∥∥PiPi+1
∥∥ sin (∠Pi+2PiPi+1) =

∥∥Pi+1Pi+2
∥∥ sin (∠Pi+1Pi+2Pi) ,

thus by (4.14) and (4.15) we know that

(4.17) min
1≤i≤n

d(i+ 1, i, i+ 2) ≤ 16π4

n2

and the claim in Lemma 4.2 follows, in the case that P1, . . ., Pn are the vertices of
a convex polygon.

Secondly, if a point is on the boundary edges of a convex hull of the point set but
is not a vertices of the convex polygon, then the distance of the point to the edge
which the point is on is zero. Thus the claim in Lemma 4.2 automatically holds in
this case. �
Remark 4.3. In the proof of the above lemma, we have used a technique from
integral geometry. For generalized theory of it, one can refer to, for instance, [31],
[10], [21], and [1].

From this lemma, we can derive the following corollary immediately.

Lemma 4.4. Let P1, . . ., Pn be a set of points in the unit disk on the plane.
Suppose that Pi1 , . . ., Pin−s , 0 ≤ s ≤ n− 4, are on the boundary of the convex hull
of the point set

{
Pi1 , . . . , Pin−s

}
and d(i, j, k) is the distance of the point Pi to the

line connecting other two points Pj and Pk, 1 ≤ i, j, k ≤ n, then

(4.18) min
1≤i,j,k≤n

d(i, j, k) ≤ C

(n− s)2

for some absolute constant C, C > 0, independent of n. In particular, if s ≤
⌊
n
2
⌋
,

we have

(4.19) min
1≤i,j,k≤n

d(i, j, k) ≤ 4C
n2 .

More generally, if s ≤ bλnc for some absolute constant λ, λ > 0, independent of n,
then

(4.20) min
1≤i,j,k≤n

d(i, j, k) ≤ C

n2 .

for some absolute constant C, C > 0, independent of n.

Remark 4.5. Note that s ≤ n− 4, because by the Sylvester–Gallai theorem (see for
instance [6] and [14]), if all the points are not collinear, there is a line which passes
through exactly two of the points, but (4.3) will trivially hold if there exist three
points in the point set that are colinear and here we only need to consider the sets
of n points which have exactly n(n−1)

2 ordinary lines, on which one can refer to [11],
and also by the Erdős–Szekeres theorem (see for instance [8] and [25]), any set of
n generic points, n ≥ 4, in the plane has at least 4 points that are the vertices of a
convex quadrilateral.

In [7] and [13], a set of 2n−2 points that contains no convex n-gon was con-
structed. We will analyze the minimal distance min1≤i,j,k≤n d(i, j, k) for this ex-
tremal case. Let

(4.21) Sk,l :=
{

(x, yk,l (x)) : 1 ≤ x ≤
(
k + l − 2
k − 1

)}
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and define yk,l (x) inductively as follows:

(1) yk,1 (1) = y1,l (1) = 1;
(2) if k > 1, l > 1, then

(4.22) yk,l (x) = yk,l−1 (x)

for 1 ≤ x ≤
(
k+l−3
k−1

)
and

(4.23) yk,l (x) = yk−1,l

(
x−

(
k + l − 3
k − 1

))
+ αk,l

for
(
k+l−3
k−1

)
< x ≤

(
k+l−2
k−1

)
, where

(4.24) αk,l =
(
k + l − 2
k − 1

)
max

(
yk,l−1

((
k + l − 3
k − 1

))
, yk−1,l

((
k + l − 3
k − 2

)))
.

From the inductive definition of yk,l (x) , we know that yk,l linearly depends on
yk,l−1 and yk−1,l. By [13], yk,l (x) is monotone increasing with respect to x for
1 ≤ x ≤

(
k+l−3
k−1

)
. But yk,l (x) increases dramatically when x becomes large.

Now let us consider Sn,n, the cardinality of Sn,n

(4.25) |Sn,n| =
(

2n− 2
n− 1

)
.

To preserve the convexity and concavity of subsets inSn,n and confine it into the
unit square, we use a similarity transformation

(4.26) T =
( ((n−1)!)2

(2n−2)! 0
0 1

yn,n((2n−2
n−1 ))

)
,

and then T (Sn,n) ⊂ [0, 1]2. Since Sn,n is one of the components of the set of
N = 22n−2 points RN that contains no convex n-gon, T (Sn,n) is the one of the
components of the set of N = 22n−2 points in [0, 1]2 that contains no convex n-gon.
From the figure 4.1, we can see that the minimal distance min1≤i,j,k≤n d(i, j, k) in
Sn,n multiplied by N2 = 24n−4 is very likely bounded, that implies the minimal
distance min1≤i,j,k≤n d(i, j, k) in the set of N = 22n−2 points RN should decay at
the rate of at least O

( 1
N2

)
.

Considering the configurations of n points in the unit disk, we have the following
lemma first.

Lemma 4.6. Let D be the unit disk, then

(4.27) min
1≤i,j,k≤n

d(vi, vj , vk) ≤ 2 sin2 π

n

for all v1, v2, . . . . . . , vn ∈ D for n = 3 and 4. Therefore

(4.28) min
1≤i,j,k≤n

d(vi, vj , vk) ≤
2π2

n2

for all v1, v2, . . . . . . , vn ∈ D for n = 3 and 4.

Proof. For n = 3, there are three points v1, v2 and v3 in D. Without loss of
generality, we can assume that the side v1v2 is the longest side and v1 and v2 lie on
the boundary of D, denoted as ∂D, because one can use translations and rotations.
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Figure 4.1. Plotted above are the smallest distances in Sn,n mul-
tiplied by 24n−4.

Let v′3 be the intersection of the line parallel to the side v1v2 and its perpendicular
bisector. Then we have

(4.29) d(v′3, v1, v2) = d(v3, v1, v2)

and then the minimal heights of the triangle 4v1v2v3 and 4v1v2v′3 are equal,
because

(4.30)
∥∥∥
−−→
v1v
′
3

∥∥∥ =
∥∥∥
−−→
v2v
′
3

∥∥∥ ≤ max (‖−−→v2v3‖ , ‖−−→v1v3‖) ≤ ‖−−→v1v2‖ ,

in other words, v1v2 is also the longest side of4v1v2v′3, and the areas of the triangle
4v1v2v3 and 4v1v2v′3 are equal.
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Now, let us move v′3 along the perpendicular bisector of the side v1v2 towards
the direction in which the height increases, until it touches the boundary ∂D at
a point denoted by v′′3 . Let the distance from a point v3 (t) on the perpendicular
bisector of the side v1v2 to the side v1v2 be t, then the minimal height of the triangle
4v1v2v3 (t)
(4.31)

t ‖−−→v1v2‖

max


‖−−→v1v2‖ ,

√
t2 +

(
‖−−→v1v2‖

2

)2



=





t, 0 < t <
√

3‖−−→v1v2‖
2

t‖−−→v1v2‖√
t2+
(
‖−−−→v1v2‖

2

)2
, t ≥

√
3‖−−→v1v2‖

2

increases as t increases. Thus the minimal height of the triangle 4v1v2v′′3 is greater
than or equal to that of the triangle 4v1v2v′3.

Then, we can do a regularization for the 4v1v2v′′3 whose vertices all lie on ∂D. If
one of the vertices does not bisect the arc ending with the other two vertices, and
without loss of generality, we can assume that v′′3 does not bisect the arc ending
with v1 and v2, then move v′′3 to the midpoint of the are, and then the new triangle
lying on ∂D has a great minimal height, by comparing trigonometric functions.
Thus, the equilateral triangle lying on ∂D has the greatest minimal height. This
finishes the proof for the case of n = 3.

For n = 4, there are two cases to consider, but we will be able to find the
maximum of the minimal heights for both cases. The first case is that one of the
four points is in the interior of the convex hall of the other three points. Let’s
assume that, v4 is in the interior of the convex hall of the other three points v1,
v2 and v3. Then if we fix v1, v2 and v3, the maximum of the minimal heights for
this case is reached when v4 is at the center of the incircle of the triangle 4v1v2v3,
because otherwise, the minimal height min1≤i,j,k≤4 d(vi, vj , vk) would be less than
the radius of the incircle of the triangle 4v1v2v3. Using an argument similar to the
case of n = 3, we can show that in this case,

(4.32) min
1≤i,j,k≤4

d(vi, vj , vk) ≤
1
2 ≤ 2 sin2 π

4 .

The second case is that the four points are all on the boundary of the convex
hull of the point set {v1, v2, v3, v4}. One can always find a rectangle R inside the
quadrilateral which has the same minimal height of the triangles of the rectangle
R as the minimal height of the triangles of the quadrilateral. By translations and
dilations, one can obtain another rectangle R′ on ∂D of which the minimal height
of the triangles is no less than minimal height of the triangles of the rectangle R.
Through maximizing a simple function, one can get that

(4.33) min
1≤i,j,k≤4

d(vi, vj , vk) ≤ 2 sin2 π

4
in this case.

In general, if all the points are on the boundary of the convex hull of the point
set {v1, v2, . . . , vn}, we have �

Lemma 4.7. Let D be the unit disk, then

(4.34) min
1≤i,j,k≤n

d(vi, vj , vk) ≤ 2 sin2 π

n
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for all v1, v2, . . . . . . , vn ∈ D if all the points are n the boundary of the convex hull
of the point set {v1, v2, . . . , vn}. Therefore

(4.35) min
1≤i,j,k≤n

d(vi, vj , vk) ≤
2π2

n2

for all v1, v2, . . . . . . , vn ∈ D if all the points are on the boundary of the convex hull
of the point set {v1, v2, . . . , vn}.
Proof. If all the points are on the boundary of the convex hull of the point set
{v1, v2, . . . , vn}, we can move the points {v1, v2, . . . , vn} towards the boundary and
have a convex n-gon whose vertices {v′1, v′2, . . . , v′n}are on ∂D whose perimeter is
no less than that of the n-gon {v1, v2, . . . , vn} , because suppose that a vertex vi0 is
not on the boundary ∂D, then the level set
(4.36) {v ∈ D : ‖−−−−→vvi0−1‖+ ‖−−−−→vvi0+1‖ = ‖−−−−−→vi0vi0−1‖+ ‖−−−−−→vi0vi0+1‖} ,
where vi0−1 and vi0+1 (assuming vn+1 = v1 ) are the adjacent vertices of vi0 , is a
ellipse. Connect the center of the disk D and vi0 by a ray and extend the ray till it
intersects the boundary ∂D at v′i0 , then

(4.37)
∥∥∥
−−−−−→
v′i0vi0−1

∥∥∥+
∥∥∥
−−−−−→
v′i0vi0+1

∥∥∥ ≥ ‖−−−−−→vi0vi0−1‖+ ‖−−−−−→vi0vi0+1‖ .

Thus
(4.38) perimeter

(
v′1v
′
2 . . . v

′
n

)
≥ perimeter (v1v2 . . . vn) .

Let θi be the central angle of the chord v′iv′i+1, assuming v′n+1 = v′1 . Then

(4.39) perimeter
(
v′1v
′
2 . . . v

′
n

)
= 2

n∑

i=1
sin θi2 ≤ 2n sin

(∑n
i=1 θi
2n

)
= 2n sin π

n

by the concavity of the sine function. Combining (4.38) and (4.39), we have

(4.40) perimeter (v1v2 . . . vn) ≤ 2n sin π
n
.

Let’s denote the angle between −−−→vivi+1 and −−−→vivi+2 by αi and the angle between−−−−−→vi+2vi+1 and −−−→vi+2vi by βi, assuming vn+1 = v1 and vn+2 = v2, then

(4.41)
n∑

i=1
αi +

n∑

i=1
βi = 2π

and furthermore, we have

(4.42)
n∑

i=1
sinαi +

n∑

i=1
sin βi ≤ 2n sin

(∑n
i=1 αi +

∑n
i=1 βi

2n

)
= 2n sin π

n

again by the concavity of the sine function. Let si := ‖−−−→vivi+1‖, xi := sinαi and
yi := sin βi for i = 1, . . . , n, then

(4.43)
n∑

i=1
xi +

n∑

i=1
yi ≤ 2n sin π

n

and

(4.44)
n∑

i=1
si ≤ 2n sin π

n
.
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Define

(4.45) F :=
n∑

i=1
si (xi + yi)− λ

(
n∑

i=1
xi +

n∑

i=1
yi − c1

)
− µ

(
n∑

i=1
si − c2

)
,

where 0 ≤ c1 ≤ 2n sin π
n and 0 ≤ c2 ≤ 2n sin π

n . Solving the system of equations,

(4.46)
n∑

i=1
xi +

n∑

i=1
yi = c1,

and

(4.47)
n∑

i=1
si = c2,

and

(4.48) ∂xiF = 0,

that is λ = si, and

(4.49) ∂siF = 0,

that is

(4.50) µ = xi + yi,

we get si = c2
n and

(4.51) xi + yi = c1
n

for i = 1, . . . , n. By the method of Lagrange multipliers with multiple constraints
(see for instance, [19] and [12]),

(4.52)
n∑

i=1
si (xi + yi) ≤

c1c2
n
≤ 4n sin2 π

n
,

which implies

(4.53) 2nmin
(

min
1≤i≤n

sixi, min
1≤i≤n

siyi

)
≤ 4n sin2 π

n
.

Thus, there exists an i0, 1 ≤ i0 ≤ n, such that either

(4.54) si0xi0 ≤ 2 sin2 π

n
or

(4.55) si0yi0 ≤ 2 sin2 π

n
,

in other words, either

(4.56) ‖−−−−−→vi0vi0+1‖ sinαi0 ≤ 2 sin2 π

n
or

(4.57) ‖−−−−−→vi0vi0+1‖ sin βi0 ≤ 2 sin2 π

n
,

which implies (4.27) as desired. �
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Now, let us consider the complementary probability that any point does not fall
into the stripes around the lines connecting the preceding points. To obtain the
conditional probability each time when a point is dropped into the disk, one needs to
have a lower bound of the covering area. This approach calculates the the covering
area of the stripes which have overlaps, but to find the covering area, it would
depend on the configurations. For example, when the fourth point is dropped into
the disk, there would be a difference on the next conditional probability whether
the point is dropped into the interior of the region formed by the three preceding
points or the exterior of the region. More precisely, if there are 4 random points,
then there will be 7 overlaps (including one of them overlapped by three stripes)
among the stripes if three points form a triangle whose interior contains the other
point, whereas there will be only 4 overlaps among the stripes if 4 points form a
quadrilateral. So the covering area depends on the configuration of the points in
the unit square or unit disk.

Furthermore, one would need to have a significantly small probability estimate
on the minimal distance greater than C

n2 or more strongly C
n3 in order to show

that the probability that the minimal distance is less than C
n2 is significantly high.

Thus, if one uses the probability approach, the covering area of the stripes may be
estimated. But the obstruction caused by configurations or convexity is still the
main hard part to solve the problem completely by soft analysis or by quasi-exact
hard analysis.

Let’s look into the subdivisions of the unit square now. Let S be a set of n points
in the unit square. Let qn be the maximum of the minimal distance from any point
of S to the line joining any other two points of S, in which the maximum is taken
over all configurations of n points in the unit square, and pn = nqn. Suppose S0
is the configuration that achieves the maximum, and divide the unit square into
4k sub-regions of equal area and equal shape, by using the midpoints of the edges,
with a suitable arrangement of the boundaries so that every point belongs to only
one sub-square. We have the following lemma regarding the behavior of pn.

Lemma 4.8. Suppose that a sub-region contains no more than n
4k+l points of S0

for some l > 0. Then there exists an n1, such that (4k+l−1)n
(4k−1)(4k+l) < n1 < n and

pn ≤ (4k−1)(4k+l)
2k(4k+l−1) pn1 .

Proof. By pigeonhole principle, there exists an sub-region Q that contains at least⌊
(4k+l−1)n

(4k−1)(4k+l)

⌋
points of S0. Let n1 be the number of points of S0 that falls into Q.

Then

(4.58) qn ≤ min
vi,vj ,vk∈Q

d(vi, vj , vk) ≤
1
2k qn1 = 1

2kn1
pn1 ≤

(
4k − 1

) (
4k + l

)

2k (4k + l − 1)n pn1.

Thus it follows that

(4.59) pn ≤
(
4k − 1

) (
4k + l

)

2k (4k + l − 1) pn1.

�

Let us continue considering the subdivisions of the unit square.
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Lemma 4.9. Let v1, . . ., vn be a set of n points in the unit square on the plane,
and connect all pairs of points by line segments. Given any ε, 0 < ε < 1, there
exist more than

⌊
n
2 − 4

ε2

⌋
distinct line segments whose length is less than ε.

Proof. Let us divide the unit square into 4k sub-squares of equal area, by using
the midpoints of the edges, with a suitable arrangement of the boundaries so that
every point belongs to only one sub square and connect every pair of points in the
same sub square by line segment.

For any given ε, 0 < ε < 1, there exists an k such that

(4.60)
√

2
ε
< 2k < 2

√
2
ε
.

Let ni be the number of points in the i-th sub-square, i = 1, . . . , 4k, then n =∑4k
i=1 ni, and the total number of the line segments in the sub-squares is

(4.61)
4k∑

i=1

ni (ni − 1)
2 ≥ 1

2

4k∑

i

(ni − 1) = n− 4k
2 ,

since ni(ni−1)
2 = 0 if ni = 0 or 1. Furthermore, by (4.60),

(4.62) n− 4k
2 >

n

2 −
4
ε2
.

Thus, the total number of line segments in the sub-squares is greater than
⌊
n
2 − 4

ε2

⌋
,

and the length of each line segment is less than ε, since the length of each side of
the sub-squares is

√
2

2k that is less than ε by (4.60). �

On the angles, one has the following lemma.

Lemma 4.10. For any α > 0, among the angles between the
⌊
n
2 − 4

ε2

⌋
distinct

lines, there exist at least
⌊
α(nε2−8)
2ε2(α+π)

⌋
angles less than α.

Proof. Take any point in the plane as the vertex of the angle π and divide the angle
into

⌊
π
α + 1

⌋
smaller angles of equal degree. We can do parallel transports on the

lines so that they pass through the vertex of the angle π. Then by the pigeonhole
principle, there must be

⌊
α(nε2−8)
2ε2(α+π)

⌋
lines falling into the same angle, which is less

than α. �

Considering the edge and angle, one has

Lemma 4.11. If the smallest angle and edge are adjacent, then

(4.63) min
1≤i,j,k≤n

d(vi, vj , vk) ≤
C

n logn
for a constant C > 0.

Proof. Choose ε = 1
logn and α = 8

n , then

(4.64)
⌊
n

2 −
4
ε2

⌋
≥ 1
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for n ≥ 6 and

(4.65)
⌊
α
(
nε2 − 8

)

2ε2 (α+ π)

⌋
≥ 1

for n ≥ 15. Therefore,

(4.66) min
1≤i,j,k≤n

d(vi, vj , vk) ≤
1

logn sin 8
n
≤ 8
n logn

for n ≥ 15, and then (4.63) follows. �

We used quasi-exact hard analysis to obtain the decay rate. However, the tools
or techniques in hard analysis may be used to obtain the same order of decay but
probably better constant in the decay rate. From the perspective of hard analysis,
based on numerical experiment results, we formulate the following conjecture for a
slower decay rate.

Conjecture 4.12. Let P1, . . ., Pn be a set of points in the unit disk on the plane
and d(i, j, k) be the distance of the point Pi to the line connecting other two points
Pj and Pk, 1 ≤ i, j, k ≤ n, then

(4.67) min
1≤i,j,k≤n

d(i, j, k) ≤ C

n1+ε0

for some absolute constant C, C > 0, independent of n and some ε0 > 0.

5. Numerical Experiments

In this section, we would like to present some numerical experimental results.
In the first and second numerical experiments, we use MATLAB to randomly

generate n points in a unit square [0, 1]2 whose two coordinates are independent
and identically distributed copies of uniformly distributed random variables and
then compute the minimal the distance of a point to the line connecting other two
points. For each matrix size n, we repeat this procedure n2times to include n2 sets
of points of size n, and then take the maximum of the minimal distance over the n2

repeats of randomly generating n points, due to the configurations increase greatly
as the size of the point increases. After that, we multiply the maximum of the
minimal distance by n2 to compare the decay rate with 1

n2 . From the figure Figure
5.1a on page 18 and Figure 5.1b on page 18, we can see that n2 min1≤i,j,k≤n d(i, j, k)
is bounded, as n increases, so min1≤i,j,k≤n d(i, j, k) decays mostly at at the order
of at least O

( 1
n2

)
if the points are generated by normal random variables.

In the third and fourth numerical experiments, we use MATLAB to randomly
generate n points in a unit square [0, 1]2 whose two coordinates are independent
and identically distributed copies uniformly distributed random variables and then
compute the minimal the distance of a point to the line connecting other two points.
For each matrix size n, we repeat this procedure n2 times to include n2 sets of points
of size n, and then take the maximum of the minimal distance over the n2 repeats
of randomly generating n points, due to the configurations increase greatly as the
size of the point increases. After that, we multiply the maximum of the minimal
distance by n3 to compare the decay rate with 1

n3 . From the figure Figure 5.2a
on page 19 and Figure 5.2b on page 19, we can see that n3 min1≤i,j,k≤n d(i, j, k) is
bounded, as n increases, so min1≤i,j,k≤n d(i, j, k) decays with high probability at at
the order of O

( 1
n3

)
mostly if the points are generated by normal random variables.
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(a) Size of the point sets up to 30
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(b) Size of the point sets up to 40

Figure 5.1. Plotted above are the smallest distances to lines mul-
tiplied by the square of the sizes of point sets, in which the two
coordinates of points are independent and identically distributed
copies of uniformly distributed random variables

In the fifth numerical experiment, we use MATLAB to randomly generate n
points in a unit square [0, 1]2 whose two coordinates are independent and identically
distributed copies uniformly distributed random variables and then compute the
minimal the distance of a point to the line connecting other two points. For each
matrix size n, we repeat this procedure 80 times to include n2 sets of points of
size n, and then take the maximum of the minimal distance over the 80 repeats of
randomly generating n points, due to the configurations increase greatly as the size
of the point increases. After that, we multiply the maximum of the minimal distance
by n3 to compare the decay rate with 1

n3 . From Figure 5.3a on page 20, we can see
that n3 min1≤i,j,k≤n d(i, j, k) is bounded, as n increases, so min1≤i,j,k≤n d(i, j, k)
decays with high probability at at the order of O

( 1
n3

)
mostly if the points are

generated by normal random variables. In the sixth numerical experiment, we
use MATLAB to randomly generate n points in a unit square [0, 1]2 whose two
coordinates are independent and identically distributed copies uniformly distributed
random variables and then compute the minimal the distance of a point to the line
connecting other two points. For each matrix size n, we repeat this procedure 100
times to include 100 sets of points of size n, and then take the maximum of the
minimal distance over the n2 repeats of randomly generating n points, due to the
configurations increase greatly as the size of the point increases. After that, we
multiply the maximum of the minimal distance by n3 to compare the decay rate
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(a) Size of the point sets up to 30
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(b) Size of the point sets up to 40

Figure 5.2. Plotted above are the smallest distances to lines mul-
tiplied by the square of the sizes of point sets, in which the two
coordinates of points are independent and identically distributed
copies uniformly distributed random variables.

with 1
n3 . From Figure 5.3b on page 20, we can see that n3 min1≤i,j,k≤n d(i, j, k) is

bounded, as n increases, so min1≤i,j,k≤n d(i, j, k) decays with high probability at at
the order of O

( 1
n3

)
mostly if the points are generated by normal random variables.
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A DISTRIBUTED AND INCREMENTAL SVD ALGORITHM FOR1

AGGLOMERATIVE DATA ANALYSIS ON LARGE NETWORKS2
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Abstract. In this paper it is shown that the SVD of a matrix can be constructed efficiently in4
a hierarchical approach. The proposed algorithm is proven to recover the singular values and left5
singular vectors of the input matrix A if its rank is known. Further, the hierarchical algorithm can6
be used to recover the d largest singular values and left singular vectors with bounded error. It is7
also shown that the proposed method is stable with respect to roundoff errors or corruption of the8
original matrix entries. Numerical experiments validate the proposed algorithms and parallel cost9
analysis.10

Key words. Singular value decomposition; low-rank approximations; distributed computing;11
incremental SVD12

AMS subject classifications. 15-A23, 65-F2013

1. Introduction. The singular value decomposition (SVD) of a matrix,14

A = UΣV ∗,(1)1516

has applications in many areas including principal component analysis [13], the so-17

lution to homogeneous linear equations, and low-rank matrix approximations. If A18

is a complex matrix of size D × N , then the factor U is a unitary matrix of size19

D × D whose first nonzero entry in each column is a positive real number, 1 Σ is a20

rectangular matrix of size D×N with non-negative real numbers (known as singular21

values) ordered from largest to smallest down its diagonal, and V ∗ (the conjugate22

transpose of V ) is also a unitary matrix of size N × N . If the matrix A is of rank23

d < min(D,N), then a reduced SVD representation is possible:24

A = Û Σ̂V̂ ∗,(2)2526

where Σ̂ is a d×d diagonal matrix with positive singular values, Û is an D×d matrix27

with orthonormal columns, and V̂ is a d×N matrix with orthonormal columns.28

The SVD of A is typically computed in three stages: a bidiagonal reduction step,29

computation of the singular values, and then computation of the singular vectors.30

The bidiagonal reduction step is computationally intensive, and is often targeted for31

parallelization. A serial approach to the bidiagonal reduction is the Golub–Kahan32

bidiagonalization algorithm [9], which reduces the matrix A to an upper-bidiagonal33

matrix by applying a series of Householder reflections alternately, applied from the34

left and right. Low-level parallelism is possible by distributing matrix-vector multi-35

plies, for example by using the cluster computing framework Spark [21]. Using this36

form of low-level parallelism for the SVD has been implemented in the Spark project37

∗Department of Mathematics and Department of Electrical and Computer Engineering, Michigan
State University, East Lansing, MI, (markiwen@math.msu.edu). M. A. Iwen was supported in part
by NSF DMS-1416752. Computational resources were provided by the Institute for Cyber-Enabled
Research @ MSU.
†Department of Mathematical Sciences, Michigan Technological University, Houghton, MI

(ongbw@mtu.edu). B. W. Ong was supported in part by AFOSR FA9550-12-1-0455. Computational
resources were provided by Superior, the high-performance computing cluster @ MTU.

1This last condition on U guarantees that the SVD of A ∈ CN×N will be unique whenever AA∗

has no repeated eigenvalues.
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2 M. A. IWEN AND B. W. ONG

MLlib [18], and Magma [1], which develops its own framework to leverage GPU ac-38

celerators and hybrid manycore systems. Alternatively, parallelization is possible on39

an algorithmic level; it is possible by applying independent reflections simultaneously,40

for example [15] maps the bidiagonalization algorithm to graphical processing (GPU)41

units, and [14] executes the bidiagonalization on a distributed cluster. Load balancing42

is an issue for such parallel algorithms however, because the number of off-diagonal43

columns (or rows) to eliminate get successively smaller. More recently, two-stage ap-44

proaches have been proposed and utilized in high-performance implementations for45

the bidiagonal reduction [16, 10]. The first stage reduces the original matrix to a46

banded matrix, the second stage subsequently reduces the banded matrix to the de-47

sired upper-bidiagonal matrix. A heroic effort to optimize the algorithms to hide48

latency and cache misses was discussed and implemented [10]. Parallelization is also49

possible if one uses a probabilistic approach to approximating the SVD [11].50

In this paper, we are concerned with finding the SVD of highly rectangular matri-51

ces, N � D. In many applications where such problems are posed, one typically cares52

about the singular values and the left singular vectors. For example, this work was53

motivated by the SVDs required in Geometric Multi-Resolution Analysis (GMRA)54

[2]; the higher-order singular value decomposition (HOSVD) [7] of a tensor requires55

the computation of n SVDs of very rectangular matrices, where n is the number of56

tensor modes. Similarly, tensor train factorization algorithms [19] for tensors require57

the computation of many very rectangular SVDs. In fact, the SVDs of distributed58

and highly rectangular matrices of data appear in many big-date era machine learning59

applications. To find the SVD of highly rectangular matrices, many methods have60

focused on randomized techniques; [17] provides a recent survey of these techniques.61

Alternatively, one can take an incremental approach to computing the SVD of an62

input matrix. Such methods have the advantage that they can be used to help effi-63

ciently analyze datasets which (rapidly) evolve over time. Examples of such methods64

include [5], which computes the SVD of a matrix by adding one column at a time, or65

more generally, one can add blocks of a matrix at each time. In [4] a block-incremental66

approach for estimating the dominant singular values and vectors of a highly rectan-67

gular matrix is described. It is based on a QR factorization of blocks from the input68

matrix, which can be done efficiently in parallel. In fact, the QR decomposition can69

be computed using a communication-avoiding QR (CAQR) factorization [8], which70

utilizes a tree-reduction approach.71

Our approach is similar in spirit to [8], but differs in that we utilize a block72

decomposition approach that utilizes a partial SVD rather than a full QR factoriza-73

tion. This is advantageous if the application only requires the singular values and/or74

left singular vectors as in tensor factorization [7, 19] and GMRA applications [2].75

Another approach would be to compute the eigenvalue decomposition of the Gram76

matrix, AA∗ [3]. Although computing the Gram matrix in parallel is straightforward77

using the block inner product, a downside to this approach is a loss of numerical78

precision, and the general availability of the entire matrix A, which one may not have79

easy access to (i.e., computation of the Gram matrix, AA∗, is not easily achieved in80

an incremental and distributed setting).81

The remainder of the paper is laid out as follows: In Section 2, we motivate82

incremental approaches to constructing the SVD before introducing the hierarchical83

algorithm. Theoretical justifications are given to show that the algorithm exactly84

recovers the singular values and left singular vectors if the rank of the matrix A is85

known. An error analysis is also used to show that the hierarchical algorithm can be86

used to recover the d largest singular values and left singular vectors with bounded87

This manuscript is for review purposes only.
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A DISTRIBUTED AND INCREMENTAL SVD ALGORITHM 3

error, and that the algorithm is stable with respect to roundoff errors or corruption of88

the original matrix entries. In Section 3, numerical experiments validate the proposed89

algorithms and parallel cost analysis.90

2. An Incremental (hierarchical) SVD Approach. The overall idea behind91

the proposed approach is relatively simple. We require a distributed and incremental92

approach for computing the singular values and left singular vectors of all data stored93

across a large distributed network. This can be achieved by, e.g., performing an94

incremental partial SVD separately on each network node by occasionally combining95

each node’s previously computed partial SVD representation of its past data with a96

new partial SVD of its more recent data. The result of this approach will be that97

each separate network node always contains a fairly accurate approximation of it’s98

cumulative data over time. Of course, these separate partial SVDs must then be99

merged together in order to understand the network data as a whole. Toward this100

end, neighboring node’s partial SVD approximations can be combined hierarchically101

in order to compute a global partial SVD of the data stored across the entire network.102

Note that the accuracy of the entire approach will be determined by the accuracy103

of the (hierarchical) partial SVD merging technique, which is ultimately what leads104

to the proposed method being both incremental and distributed. Theoretical analysis105

of this partial SVD merging technique is the primary purpose of this section. In106

particular, we prove the proposed partial SVD merging scheme is both numerically107

robust to data and/or roundoff errors, and also accurate even when the rank of the108

overall data matrix A is underestimated and/or purposefully reduced.109

2.1. Mathematical Preliminaries. Let A ∈ CD×N be a highly rectangular110

matrix, with N � D. Further, let Ai ∈ CD×Ni with i = 1, 2, . . . ,M , denote the block111

decomposition of A, i.e., A =
[
A1|A2| · · · |AM

]
.112

Definition 1. For any matrix A ∈ CD×N , (A)d ∈ CD×N is an optimal rank d113

approximation to A with respect to Frobenius norm ‖ · ‖F if114

inf
B∈CD×N

‖B −A‖F = ‖(A)d −A‖F , subject to rank (B) ≤ d.115
116

Further, if A has the SVD decomposition A = UΣV ∗, then (A)d =
∑d
i=1 uiσiv

∗
i ,117

where ui and vi are singular vectors that comprise U and V respectively, and σi are118

the singular values.119

This first lemma proves that partial SVDs of blocks of our original data matrix,120

A ∈ CD×N , can combined block-wise into a new reduced matrix B which has the121

same singular values and left singular vectors as the original A. This basic lemma can122

be considered as the simplest merging method for either constructing an incremental123

SVD approach (different blocks of A have their partial SVDs computed at different124

times, which are subsequently merged into B), a distributed SVD approach (different125

nodes of a network compute partial SVDs of different blocks of A separately, and then126

send them to a single master node for combination into B), or both.127

Lemma 2. Suppose that A ∈ CD×N has rank d ∈ {1, . . . , D}, and let Ai ∈128

CD×Ni , i = 1, 2, . . . ,M be the block decomposition of A, i.e., A =
[
A1|A2| · · · |AM

]
.129

Since Ai has rank at most d, each block has a reduced SVD representation,130

Ai =
d∑

j=1

uijσ
i
j(v

i
j)
∗ = Û iΣ̂iV̂ i∗, i = 1, 2, . . . ,M.131

132
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4 M. A. IWEN AND B. W. ONG

Let B :=
[
Û1Σ̂1|Û2Σ̂2| · · · |ÛM Σ̂M

]
. If A has the reduced SVD decomposition, A =133

Û Σ̂V̂ ∗, and B has the reduced SVD decomposition, B = Û ′Σ̂′V̂ ′
∗
, then Σ̂ = Σ̂′, and134

Û = Û ′W , where W is a unitary block diagonal matrix satisfying Û = Û ′W . If none135

of the nonzero singular values are repeated then Û = Û ′ (i.e., W is the identity when136

all the nonzero singular values of A are unique).137

Proof. The singular values of A are the (non-negative) square root of the eigen-138

values of AA∗. Using the block definition of A,139

AA∗ =
M∑

i=1

Ai(Ai)∗ =
M∑

i=1

Û iΣ̂i(V̂ i)∗(V̂ i)(Σ̂i)∗(Û i)∗ =
M∑

i=1

Û iΣ̂i(Σ̂i)∗(U i)∗140

141

Similarly, the singular values of B are the (non-negative) square root of the eigenvalues142

of BB∗.143

BB∗ =
M∑

i=1

(Û iΣ̂i)(Û iΣ̂i)∗ =
M∑

i=1

Û iΣ̂i(Σ̂i)∗(Û i)∗144

145

Since AA∗ = BB∗, the singular values of B must be the same as the singular values146

of A. Similarly, the left singular vectors of both A and B will be eigenvectors of147

AA∗ and BB∗, respectively. Since AA∗ = BB∗ the eigenspaces associated with each148

(possibly repeated) eigenvalue will also be identical so that Û = Û ′W . The block149

diagonal unitary matrix W (with one unitary h× h block for each eigenvalue that is150

repeated h-times) allows for singular vectors associated with repeated singular values151

to be rotated in the matrix representation Û .152

We now propose and analyze a more useful SVD approach which takes the ideas153

present in Lemma 2 to their logical conclusion.154

2.2. An Incremental (Hierarchical) SVD Algorithm. The idea is to lever-155

age the result in Lemma 2 by computing (in parallel) the SVD of the blocks of A,156

concatenating the scaled left singular vectors of the blocks to form a proxy matrix B,157

and then finally recovering the singular values and left singular vectors of the original158

matrix A by finding the SVD of the proxy matrix. A visualization of these steps are159

shown in Figure 1. Provided the proxy matrix is not very large, the computational and160

memory bottleneck of this algorithm is in the simultaneous SVD computation of the161

blocks Ai. If the proxy matrix is sufficiently large that the computational/memory162

overhead is significant, a multi-level hierarchical generalization is possible through163

repeated application of Lemma 2. Specifically, one could generate multiple proxy ma-164

trices by concatenating subsets of scaled left singular vectors obtained from the SVD165

of blocks of A, find the SVD of the proxy matrices and concatenate those singular166

vectors to form a new proxy matrix, and then finally recover the singular values and167

left singular vectors of the original matrix A by finding the SVD of the proxy ma-168

trix. A visualization of this generalization is shown in Figure 2 for a two-level parallel169

decomposition. A general q-level algorithm is described in Algorithm 1.170

2.3. Theoretical Justification. In this section we will introduce some addi-171

tional notation for the sake of convenience. For any matrix A ∈ CD×N with SVD172

A = UΣV ∗, we will let A := UΣ = AV ∈ CD×N . 2 Given this notation Lemma 2173

can be rephrased as follows:174

2It is important to note that A is not necessarily uniquely determined by A if, e.g., A is rank
deficient and/or has repeated singular values. In these types of cases many pairs of unitary U and

This manuscript is for review purposes only.

85
DISTRIBUTION A: Distribution approved for public release.



A DISTRIBUTED AND INCREMENTAL SVD ALGORITHM 5

A = [A 1|A 2| · · · | AM ]

Û 2, Σ̂ 2Û 1, Σ̂ 1 · · · ÛM , Σ̂M

[Û 1Σ̂ 1|Û 2Σ̂ 1A 2| · · · | ÛM Σ̂M ]

Û , Σ̂

S V D S V D S V D

S V D

Fig. 1. Flowchart for a simple (one-level) distributed parallel SVD algorithm. The different
colors represent different processors completing operations in parallel.

Algorithm 1 A q-level, distributed SVD Algorithm for Highly Rectangular A ∈
CD×N , N � D.

Input: q (# levels),
n (# local SVDs to concatenate at each level),
d ∈ {1, . . . , D} (intrinsic dimension),
A1,i := Ai ∈ CD×Ni for i = 1, 2, . . . ,M (block decomposition of A; algorithm
assumes M = nq – generalization is trivial)

Output: U ′ ∈ CD×d ≈ the first d columns of U , and Σ′ ∈ Rd×d ≈ (Σ)d.
1: for p = 1, . . . , q do
2: Compute (in parallel) the SVDs of Ap,i = Up,iΣp,i

(
V p,i

)∗
for i =

1, 2, . . . ,M/n(p−1), unless the Up,iΣp,i are already available from a previous
run.

3: Set Ap+1,i :=
[(
Up,(i−1)n+1Σp,(i−1)n+1

)
d

∣∣∣ · · ·
∣∣∣
(
Up,inΣp,in

)
d

]
for i =

1, 2, . . . ,M/np.
4: end for
5: Compute the SVD of Aq+1,1

6: Set U ′ := the first d columns of Uq+1,1, and Σ′ :=
(
Σq+1,1

)
d
.

Corollary 1. Suppose that A ∈ CD×N has rank d ∈ {1, . . . , D}, and let Ai ∈
CD×Ni , i = 1, 2, . . . ,M be the block decomposition of A, i.e., A =

[
A1|A2| · · · |AM

]
.

Since Ai has rank at most d for all i = 1, 2, . . . ,M , we have that

(A)d = A =
[
A1
∣∣ A2

∣∣ · · ·
∣∣ AM

]
=
[
(A1)d

∣∣ (A2)d
∣∣ · · ·

∣∣ (AM )d

]
.

175

V may appear in a valid SVD of A. Below, one can consider A to be AV for any such valid unitary
matrix V . Similarly, one can always consider statements of the form A = B as meaning that A and
B are equivalent up to multiplication by a unitary matrix on the right. This inherent ambiguity does
not effect the results below in a meaningful way.
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Û 2i , Σ̂ 2i · · · Û ki +1 , Σ̂ ki +1 · · · ÛM , Σ̂M· · ·Û i+1 , Σ̂ i+1Û i , Σ̂ i· · ·Û 1, Σ̂ 1

[Û 1Σ̂ 1| · · · |Û i Σ̂ i ] [Û i+1 Σ̂ i+1 | · · · |Û 2i Σ̂ 2i ] · · · [Û k i+1 Σ̂ k i+1 | · · · | ÛM Σ̂M ]

Û 2,1, Σ̂ 2,1 Û 2,2, Σ̂ 2,2 · · · Û 2,k , Σ̂ 2,k

[Û 2,1Σ̂ 2,1| · · · |Û 2,k Σ̂ 2,k ]

Û , Σ̂

A = [A 1|A 2| · · · | AM ]

S V D S V D S V D S V D S V D S V D

S V DS V DS V D

S V D

Fig. 2. Flowchart for a two-level hierarchical parallel SVD algorithm. The different colors
represent different processors completing operations in parallel.

We can now prove that Algorithm 1 is guaranteed to recover A when the rank of176

A is known. The proof follows by inductively applying Corollary 1.177

Theorem 1. Suppose that A ∈ CD×N has rank d ∈ {1, . . . , D}. Then, Algo-178

rithm 1 is guaranteed to recover an Aq+1,1 ∈ CD×N such that Aq+1,1 = A.179

Proof. We prove the theorem by induction on the level p. To establish the base
case we note that

A =
[
(A1,1)d

∣∣ (A1,2)d
∣∣ · · ·

∣∣ (A1,M )d

]
=
[
A1,1

∣∣ A1,2
∣∣ · · ·

∣∣ A1,M
]

holds by Corollary 1. Now, for the purpose of induction, suppose that

A =
[
(Ap,1)d

∣∣ (Ap,2)d
∣∣ · · ·

∣∣ (Ap,M/n(p−1))d

]
=
[
Ap,1

∣∣ Ap,2
∣∣ · · ·

∣∣ Ap,M/n(p−1)
]

holds for some some p ∈ {1, . . . , q}. Then, we can use the induction hypothesis and180

repartition the blocks of A to see that181

A =
[
(Ap,1)d

∣∣ (Ap,2)d
∣∣ · · ·

∣∣ (Ap,M/n(p−1))d

]
182

=
[
· · ·

∣∣∣
[
(Ap,(i−1)n+1)d . . . (Ap,in)d

] ∣∣∣ · · ·
]
, i = 1, . . . ,M/np183

=
[
Ap+1,1

∣∣ Ap+1,2
∣∣ · · ·

∣∣ Ap+1,M/np
]
,(3)184185
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where we have utilized the definition of Ap+1,i from line 3 of Algorithm 1 to get (3).
Applying Corollary 1 to the matrix in (3) now yields

A =
[
Ap+1,1

∣∣ Ap+1,2
∣∣ · · ·

∣∣ Ap+1,M/np
]
.

Finally, we finish by noting that each Ap+1,i will have rank at most d since A is of186

rank d. Hence, we will also have A =
[
(Ap+1,1)d

∣∣ (Ap+1,2)d
∣∣ · · ·

∣∣ (Ap+1,M/np)d

]
,187

finishing the proof.188

Our next objective is to understand the accuracy of Algorithm 1 when it is called189

with a value of d that is less than rank of A. To begin we need a more general version190

of Lemma 2.191

Lemma 3. Suppose Ai ∈ CD×Ni , i = 1, 2, . . . ,M . Further, suppose matrix A has192

block components A =
[
A1|A2| · · · |AM

]
, and B has block components B =

[
(A1)d|(A2)d| · · · |(AM )d

]
.193

Then, ‖(B)d − A‖F ≤ ‖(B)d − B‖F + ‖B − A‖F ≤ 3‖(A)d − A‖F holds for all194

d ∈ {1, . . . , D}.195

Proof. We have that196

‖(B)d −A‖F ≤ ‖(B)d −B‖F + ‖B −A‖F197

≤ ‖(A)d −B‖F + ‖B −A‖F198

≤ ‖(A)d −A‖F + 2‖B −A‖F.199200

Now letting (A)id ∈ CD×Ni , i = 1, 2, . . . ,M denote the ith block of (A)d, we can see201

that202

‖B −A‖2F =
M∑

i=1

‖(Ai)d −Ai‖2F203

≤
M∑

i=1

‖(A)id −Ai‖2F204

= ‖(A)d −A‖2F.205206

Combining these two estimates now proves the desired result.207

We can now use Lemma 3 to prove a theorem that that will help us to bound208

the error produced by Algorithm 1 when d is chosen to be less than the rank of rank209

of A. It improves over Lemma 3 (in our setting) by not implicitly assuming to have210

access to any information regarding the right singular vectors of the blocks of A. It211

also demonstrates that the proposed method is stable with respect to additive errors212

by allowing (e.g., roundoff) errors, represented by Ψ, to corrupt the original matrix213

entries. Note that Theorem 2 is a strict generalization of Corollary 1. Corollary 1 is214

recovered from it when Ψ is chosen to be the zero matrix, and d is chosen to be the215

rank of A.216

Theorem 2. Suppose that A ∈ CD×N has block components Ai ∈ CD×Ni , i =

1, 2, . . . ,M , so that A =
[
A1|A2| · · · |AM

]
. Let B =

[
(A1)d

∣∣ (A2)d
∣∣ · · ·

∣∣ (AM )d

]
,

Ψ ∈ CD×N , and B′ = B + Ψ. Then, there exists a unitary matrix W such that
∥∥∥(B′)d −AW

∥∥∥
F
≤ 3
√

2‖(A)d −A‖F +
(

1 +
√

2
)
‖Ψ‖F

holds for all d ∈ {1, . . . , D}.217
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Proof. Let A′ =
[
A1
∣∣ A2

∣∣ · · ·
∣∣ AM

]
. Note that A′ = A by Corollary 1. Thus,

there exists a unitary matrix W ′′ such that A′ = AW ′′. Using this fact in combination
with the unitary invariance of the Frobenius norm, one can now see that

‖(B′)d −A′‖F =
∥∥(B′)d −AW ′′

∥∥
F

=
∥∥∥(B′)d −AW ′

∥∥∥
F

=
∥∥∥(B′)d −AW

∥∥∥
F

for some unitary matrixes W ′ and W . Hence, it suffices to bound ‖(B′)d −A′‖F.218

Proceeding with this goal in mind we can see that219

‖(B′)d −A′‖F ≤ ‖(B′)d −B′‖F + ‖B′ −B‖F + ‖B −A′‖F220

=

√√√√
D∑

j=d+1

σ2
j (B + Ψ) + ‖Ψ‖F + ‖B −A′‖F221

=

√√√√√
dD−d

2 e∑

j=1

σ2
d+2j−1(B + Ψ) + σ2

d+2j(B + Ψ) + ‖Ψ‖F + ‖B −A′‖F222

≤

√√√√√
dD−d

2 e∑

j=1

(σd+j(B) + σj(Ψ))
2

+ (σd+j(B) + σj+1(Ψ))
2

+ ‖Ψ‖F + ‖B −A′‖F223

224

where the last inequality results from an application of Weyl’s inequality to the first225

term (see, e.g., Theorem 3.3.16 in [12]). Utilizing the triangle inequality on the first226

term now implies that227

‖(B′)d −A′‖F ≤

√√√√
D∑

j=d+1

2σ2
j (B) +

√√√√
D∑

j=1

2σ2
j (Ψ) + ‖Ψ‖F + ‖B −A′‖F228

≤
√

2 (‖(B)d −B‖F + ‖B −A′‖F) +
(

1 +
√

2
)
‖Ψ‖F.229

230

Applying Lemma 3 to bound the first two terms now concludes the proof after noting231

that ‖(A′)d −A′‖F = ‖(A)d −A‖F.232

This final theorem bounds the total error of Algorithm 1 with respect to the true233

matrix A up to right multiplication by a unitary matrix. The structure of its proof is234

similar to that of Theorem 1.235

Theorem 3. Let A ∈ CD×N and q ≥ 1. Then, Algorithm 1 is guaranteed to236

recover an Aq+1,1 ∈ CD×N such that (Aq+1,1)d = AW + Ψ, where W is a unitary237

matrix, and ‖Ψ‖F ≤
((

1 +
√

2
)q+1 − 1

)
‖(A)d −A‖F.238

Proof. Within the confines of this proof we will always refer to the approximate
matrix Ap+1,i from line 3 of Algorithm 1 as

Bp+1,i :=
[(
Bp,(i−1)n+1

)
d

∣∣∣ · · ·
∣∣∣ (Bp,in)d

]
,

for p = 1, . . . , q, and i = 1, . . . ,M/np. Conversely, A will always refer to the original
(potentially full rank) matrix with block components A =

[
A1|A2| · · · |AM

]
, where

M = nq. Furthermore, Ap,i will always refer to the error free block of the original
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matrix A whose entries correspond to the entries included in Bp,i. 3 Thus, A =[
Ap,1|Ap,2| · · · |Ap,M/n(p−1)

]
holds for all p = 1, . . . , q + 1, where

Ap+1,i :=
[
Ap,(i−1)n+1

∣∣∣ · · ·
∣∣∣ Ap,in

]

for all p = 1, . . . , q, and i = 1, . . . ,M/np. For p = 1 we have B1,i = Ai = A1,i239

for i = 1, . . . ,M by definition as per Algorithm 1. Our ultimate goal is to bound240

the renamed (Bq+1,1)d matrix from lines 5 and 6 of Algorithm 1 with respect to the241

original matrix A. We will do this by induction on the level p. More specifically, we242

will prove that243

1. (Bp,i)d = Ap,iW p,i + Ψp,i, where244

2. W p,i is always a unitary matrix, and245

3. ‖Ψp,i‖F ≤
((

1 +
√

2
)p − 1

)∥∥(Ap,i)d −Ap,i
∥∥
F

,246

holds for all p = 1, . . . , q + 1, and i = 1, . . . ,M/n(p−1).247

Note that conditions 1 − 3 above are satisfied for p = 1 since B1,i = Ai = A1,i

for all i = 1, . . . ,M by definition. Thus, there exist unitary W 1,i for all i = 1, . . . ,M
such that

(B1,i)d = (A1,i)d =
(
A1,i

)
d
W 1,i = A1,iW 1,i +

((
A1,i

)
d
−A1,i

)
W 1,i,

where Ψ1,i :=
((
A1,i

)
d
−A1,i

)
W 1,i has ‖Ψ1,i‖F =

∥∥(A1,i
)
d
−A1,i

∥∥
F
≤
√

2
∥∥(A1,i

)
d
−A1,i

∥∥
F
.248

Now suppose that conditions 1 − 3 hold for some p ∈ {1, . . . , q}. Then, one can249

see from condition 1 that250

Bp+1,i :=
[(
Bp,(i−1)n+1

)
d

∣∣∣ · · ·
∣∣∣ (Bp,in)d

]
251

=
[
Ap,(i−1)n+1W p,(i−1)n+1 + Ψp,(i−1)n+1

∣∣∣ · · ·
∣∣∣ Ap,inW p,in + Ψp,in

]
252

=
[
Ap,(i−1)n+1W p,(i−1)n+1

∣∣∣ · · ·
∣∣∣ Ap,inW p,in

]
+
[
Ψp,(i−1)n+1

∣∣∣ · · ·
∣∣∣ Ψp,in

]
253

=
[
Ap,(i−1)n+1

∣∣∣ · · ·
∣∣∣ Ap,in

]
W̃ + Ψ̃,254

255

where Ψ̃ :=
[
Ψp,(i−1)n+1

∣∣∣ · · ·
∣∣∣ Ψp,in

]
, and256

W̃ :==




W p,(i−1)n+1 0 0 0

0 W p,(i−1)n+2 0 0

0 0
. . . 0

0 0 0 W p,in



.257

Note that W̃ is unitary since its diagonal blocks are all unitary by condition 2. There-258

fore, we have Bp+1,i = Ap+1,iW̃ + Ψ̃.259

We may now bound
∥∥∥
(
Bp+1,i

)
d
−Ap+1,iW̃

∥∥∥
F

using a similar argument to that260

3That is, Bp,i is used to approximate the singular values and left singular vectors of Ap,i for all
p = 1, . . . , q + 1, and i = 1, . . . ,M/np−1
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10 M. A. IWEN AND B. W. ONG

employed in the proof of Theorem 2.261

∥∥∥
(
Bp+1,i

)
d
−Ap+1,iW̃

∥∥∥
F
≤
∥∥(Bp+1,i

)
d
−Bp+1,i

∥∥
F

+
∥∥∥Bp+1,i −Ap+1,iW̃

∥∥∥
F

262

=

√√√√
D∑

j=d+1

σ2
j

(
Ap+1,iW̃ + Ψ̃

)
+ ‖Ψ̃‖F263

≤

√√√√
D∑

j=d+1

2σ2
j

(
Ap+1,iW̃

)
+

√√√√
D∑

j=1

2σ2
j (Ψ̃) + ‖Ψ̃‖F264

=
√

2
∥∥Ap+1,i −

(
Ap+1,i

)
d

∥∥
F

+
(

1 +
√

2
)
‖Ψ̃‖F.(4)265

266

Appealing to condition 3 in order to bound ‖Ψ̃‖F we obtain267

‖Ψ̃‖2F =
n∑

j=1

‖Ψp,(i−1)n+j‖2F ≤
((

1 +
√

2
)p
− 1
)2 n∑

j=1

∥∥∥(Ap,(i−1)n+j)d −Ap,(i−1)n+j
∥∥∥
2

F
268

≤
((

1 +
√

2
)p
− 1
)2 n∑

j=1

∥∥∥(Ap+1,i)jd −Ap,(i−1)n+j
∥∥∥
2

F
,269

270

where (Ap+1,i)jd denotes the block of (Ap+1,i)d corresponding to Ap,(i−1)n+j for j =271

1, . . . , n. Thus, we have that272

‖Ψ̃‖2F ≤
((

1 +
√

2
)p
− 1
)2 n∑

j=1

∥∥∥(Ap+1,i)jd −Ap,(i−1)n+j
∥∥∥
2

F
273

=
((

1 +
√

2
)p
− 1
)2 ∥∥(Ap+1,i)d −Ap+1,i

∥∥2
F
.(5)274

275

Combining (4) and (5) we can finally see that276

∥∥∥
(
Bp+1,i

)
d
−Ap+1,iW̃

∥∥∥
F
≤
[√

2 + (1 +
√

2)
((

1 +
√

2
)p
− 1
)] ∥∥(Ap+1,i

)
d
−Ap+1,i

∥∥
F

277

=

((
1 +
√

2
)p+1

− 1

)∥∥(Ap+1,i
)
d
−Ap+1,i

∥∥
F
.(6)278

279

Note that
∥∥∥
(
Bp+1,i

)
d
−Ap+1,iW̃

∥∥∥
F

=
∥∥∥(Bp+1,i)d −Ap+1,iW p+1,i

∥∥∥
F

whereW p+1,i280

is unitary. Hence, we can see that conditions 1 - 3 hold for p + 1 with Ψp+1,i :=281

(Bp+1,i)d −Ap+1,iW p+1,i.282

Having proven that the method is accurate for low rank A, we are now free to283

consider it’s computational costs.284

2.4. Parallel Cost Model and Collectives. To analyze the parallel commu-285

nication cost of the hierarchical SVD algorithm, the α – β – γ model for distributed–286

memory parallel computation [6] is used. The parameters α and β respectively rep-287

resent the latency cost and the transmission cost of sending a “word” between two288

processors. In our presentation, a word will refer to a vector of doubles in RD, i.e.,289

a vector of size D × 1. The parameter γ represents the time for one floating point290

operation (FLOP).291
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The q-level hierarchical Algorithm 1 seeks to find the d largest singular values292

and left singular vectors of a matrix A. If the matrix A is decomposed into M = nq293

blocks, where n being the number of local SVD’s being concatenated at each level,294

the send/receive communication cost for the algorithm is is295

q (α+ d (n− 1)β) ,296297

assuming that the data is already distributed on the compute nodes and no scatter298

command is required. If the (distributed) right singular vectors are needed, then a299

broadcast of the left singular vectors to all nodes incurs a communication cost of300

α+ dM β.301

Suppose A is a D×N matrix, N � D. The sequential SVD is typically performed302

in two phases: bidiagonalization (which requires (2N D2 + 2D3) flops) followed by303

diagonalization (negligible cost). If M processing cores are available to compute the304

q-level hierarchical SVD method in Algorithm 1, and the matrix A is decomposed305

into M = nq blocks, where n is again the number of local SVD’s being concatenated306

at each level. The potential parallel speedup can be approximated by307

(2ND2 + 2D3)γ

γ(2(N/M)D2 + 2D3) + q(2dnD2 + 2D3) + q(α+ d(n− 1)β)
.(7)308

309

3. Numerical Validation. In the first experiment, the left singular vectors and310

the singular values of a matrix A (D = d = 800, N = 1, 152, 000) are found. We utilize311

a shared memory system which has 6 TB of memory and eight sockets, each equipped312

with a twelve-core Intel E7-8857v2 processor, for a total of 96 processing cores. Since313

the input data and memory storage required by the SVD algorithms fit in memory on314

this specialized compute node, we performed a strong scaling study of our one-level315

distributed SVD algorithm, benchmarked against the LAPACK SVD routine, dgesvd,316

implemented in the threaded Intel MKL library. In a pre-processing step, the matrix317

A is decomposed with each block of A stored in separate HDF5 files, hosted on a318

high-speed Lustre server capable of 6GB/s read/write i/o. The observed speedup319

is reported in Figure 3. In the blue curve, the observed speedup is reported for a320

varying number of MKL worker threads. In the red curve, the speedup is reported321

for a varying number of worker threads i, applied to an appropriate decomposition of322

the matrix. Each worker uses the same Intel MKL library to compute the SVD of the323

decomposed matrices (each using a single thread), the proxy matrix is assembled, and324

the master thread computes the SVD of the proxy matrix using the Intel MKL library,325

again with a single thread. Each numerical experiment is run four times, and the326

average walltime used to compute the observed speedup. The parallel performance327

of our distributed SVD is far superior, this in spite of the fact that our algorithm328

was implemented using MPI 2.0 and does not leverage the inter-node communication329

savings that is possible with newer MPI implementations. The dip in performance330

when more than 48 cores are used is likely attributed to non-uniform memory access331

on this large shared-memory node.332

In the second experiment, we perform a weak scaling study, where the size of333

the input matrix A is varied depending on the number of worker nodes, A = 2000×334

32, 000M , where M is the number of compute cores. The experiment was conducted335

on a shared high-performance cluster (other users may be running computationally336

intensive processes on the same node, communication heavy processes on the network,337

or i/o heavy processes taxing the shared file systems), leading to some variability in338

the study. Each data point in Figure 4 is computed using the average walltime from339
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Fig. 3. Strong scaling study of the dgesvd function in the threaded Intel MKL library (blue)
and the proposed distributed SVD algorithm (red). The input matrix is of size 800×1, 152, 000. The
slightly “better than ideal” speedup is likely due to better utilization of cache in each socket.

five numerical experiments. Additionally, the network is constructed using a fat-340

tree topology that is oversubscribed by a ratio of 2:1, resulting in further variability341

based on the compute resources that were allocated for each numerical experiment.342

The theoretical peak efficiency is computed using equation 7, assuming negligible343

communication overhead.

100 101 102
0

0.2

0.4

0.6

0.8

1

Number of Cores

E
ffi

ci
en

cy

n = 2
theoretical peak, n = 2

n = 3
theoretical peak, n = 3

n = 4
theoretical peak, n = 4

Fig. 4. Weak scaling study of the hierarchical SVD algorithm. The input matrix is of size
2000× (32000M), where M is the processing cores used in the computation. The observed efficiency
is plotted for various n’s (number of scaled singular vectors concatenated at each hierarchical level).
There is a slight efficiency gain when increasing n, until the communication cost dominates, or the
size of the proxy matrix becomes significantly large.

344
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In the last experiment, we repeat the weak scaling study (where the size of the345

input matrix A is varied depending on the number of worker nodes, A = 2000 ×346

32, 000M , where M is the number of compute cores, but utilize a priori knowledge347

that the rank of A is much less than the ambient dimension. Specifically, we construct348

a data set with d = 100� 2000. The hierarchical SVD performs more efficiently if the349

intrinsic dimension of the data can be estimated a priori. There is a loss of efficiency350

when more than 64 cores are utilized. This is likely attributed to the network topology351

of the assigned computational resources.
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Fig. 5. Weak scaling study of the hierarchical SVD algorithm applied to data with intrinsic
dimension much lower than the ambient dimension. The input matrix is of size 2000× (32000M),
where M is the processing cores used in the computation. The intrinsic dimension is d = 100 �
2000. The observed efficiency is plotted for various n’s (number of scaled singular vectors concate-
nated at each hierarchical level). As expected, the theoretical and observed efficiency are better if
the intrinsic dimension is known (or can be estimated) a priori.

352

4. Concluding Remarks and Acknowledgments. In this paper, we show353

that the SVD of a matrix can be constructed efficiently in a hierarchical approach.354

Our algorithm is proven to recover exactly the singular values and left singular vectors355

if the rank of the matrix A is known. Further, the hierarchical algorithm can be used356

to recover the d largest singular values and left singular vectors with bounded error.357

We also show that the proposed method is stable with respect to roundoff errors or358

corruption of the original matrix entries. Numerical experiments validate the proposed359

algorithms and parallel cost analysis.360

Although not shown in the paper, the right singular vectors can be computed361

efficiently (in parallel) if desired, once the left singular vectors and singular values are362

known. The master process broadcasts the left singular vectors and singular values363

to each process. Then columns of the right singular vectors can be constructed by364

computing 1
σj

(Ai)∗uj , were Ai is the block of A residing on process i, and (σj , uj)365

is the jth singular value and left singular vector respectively. The authors note that366

the practicality of the hierarchical algorithm is questionable for sparse input matrices,367

since the assembled proxy matrices as posed will be dense. Further investigation in368

this direction is required, but beyond the scope of this paper. Lastly, the hierarchical369
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algorithm has a map–reduce flavor that will lend itself well to a map reduce framework370

such as Apache Hadoop [20] or Apache Spark [22].371
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In this short note we propose a simple two-stage sparse phase retrieval strategy 
that uses a near-optimal number of measurements, and is both computationally 
efficient and robust to measurement noise. In addition, the proposed strategy is 
fairly general, allowing for a large number of new measurement constructions and 
recovery algorithms to be designed with minimal effort.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Herein we consider the phase retrieval problem of reconstructing a given vector x ∈ CN from noisy 
magnitude measurements of the form

bi := |〈pi,x〉|2 + ni, (1)

where pi ∈ CN is a measurement vector, and ni ∈ R represents arbitrary measurement noise, for 
i = 1, . . . , M . In particular, we focus on the setting where the dimension N is either very large, or else 
the number of measurements allowed, M , is otherwise severely restricted. In either case, our inability to 
gather the M = O(N) measurements required for the recovery of x in general [20] forces us to consider 
the possibility of approximating x using only M � N magnitude measurements, if possible. This is the 
situation motivating the compressive phase retrieval problem (see, e.g., [30,31,26,24,34,15,32,35]), in which 
one attempts to accurately approximate x ∈ CN using only M = o(N) magnitude measurements (1) under 
the assumption that x is either sparse, or compressible.
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One question regarding the compressive phase retrieval problem is how many measurements are needed to 
allow for stable reconstruction of x. Clearly, compressive phase retrieval requires at least as many measure-
ments as the corresponding classical compressive sensing problem since one is given less information. Hence, 
stable compressive phase retrieval requires at least O(s log(N/s)) magnitude measurements3 – but can it be 
done with M = O(s log(N/s)) measurements? It is shown in [15] that stable compressive phase retrieval is 
indeed achievable with M = O(s log(N/s)) measurements for real x if the entries of pi are real independent 
and identically distributed (i.i.d.) Gaussians. However, this question was unresolved in the complex case. In 
this note we extend the result to the complex case. Furthermore, we do so in a constructive way by providing 
a computational procedure which can stably reconstruct complex x using only O(s log(N/s)) magnitude 
measurements.

Unlike previous sparse phase retrieval approaches, we propose a generic two-stage solution technique 
consisting of (i) using the phase retrieval technique of one’s choice to recover compressive sensing measure-
ments of x, Cx ∈ Cm, followed by (ii) utilizing the compressive sensing method of one’s choice in order to 
approximate x from the recovered measurements Cx. As we shall see, the generic nature of the proposed 
sparse phase retrieval procedure not only allows for a relatively large number of measurement matrices and 
recovery algorithms to be used, but also allows robust recovery guarantees for the sparse phase retrieval 
problem to be proven in the complex setting essentially “for free” by combining existing robust recovery 
results from the compressive sensing literature with robust recovery results for the standard phase retrieval 
setting. As a result, we are able to show that O(s log(N/s)) magnitude measurements suffice in order to re-
cover a large class of compressible vectors with the same quality of error guarantee as commonly achieved in 
the compressive sensing literature. Finally, numerical experiments demonstrate that the proposed approach 
is also both efficient and robust in practice.

2. Background

In this section we briefly recall selected results from the existing literature on compressive sensing [14,17]
and phase retrieval [3,2,12,11,1,16]. Let ‖x‖0 denote the number of nonzero entries in a given x ∈ CN , and 

‖x‖p denote the standard �p-norm of x for all p ≥ 1, i.e., ‖x‖p :=
(∑N

n=1 |xn|p
)1/p

for all x ∈ CN .

2.1. Compressive sensing

Compressive sensing methods deal with the construction of an m × N measurement matrix, C, with 
m minimized as much as possible subject to the constraint that an associated approximation algorithm, 
ΔC : Cm → CN , can still accurately approximate any given vector x ∈ CN . More precisely, compressive 
sensing methods allow one to minimize m, the number of rows in C, as a function of s and N such that

‖ΔC (Cx) − x‖p ≤ Cp,q · s 1
p − 1

q

(
inf

z∈CN ,‖z‖0≤s
‖x − z‖q

)
(2)

holds for all x ∈ CN in various fixed �p,�q norms, 1 ≤ q ≤ p ≤ 2, for an absolute constant Cp,q ∈ R (e.g., see 
[13,17]). Note that this implies that x will be recovered exactly if it contains only s nonzero entries. Similarly, 
x will be accurately approximated by ΔC (Cx) any time its �q-norm is dominated by its largest s entries.

There are a wide variety of measurement matrices C ∈ Cm×N with m = O(s log(N/s)) that have asso-
ciated approximation algorithms, ΔC, which are computationally efficient, numerically robust, and able to 
achieve error guarantees of the form (2) for all x ∈ CN . For example, this is true of “most” random matrices 
C ∈ Cm×N with i.i.d. subgaussian random entries [4,17]. Similarly, one may construct such a C ∈ Cm×N with 

3 See, e.g., Chapter 10 of [17] concerning the minimal number of measurements required for stable compressive sensing.98
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high probability by selecting a set of m = O(s log4 N) rows uniformly at random from an N × N discrete 
Fourier transform matrix (or, more generally, from any “sufficiently flat” N × N unitary matrix) [17]. In 
either case, one may then use a large number of approximation algorithms, ΔC, that will achieve error guar-
antees along the lines of (2), including convex optimization techniques [8–10], iterative hard thresholding 
[7], (regularized) orthogonal matching pursuit [33,25,28,29], and the CoSaMP algorithm [27], to name just 
a few.

More generally, any matrix with the robust null space property [13] will have an associated approximation 
algorithm that is both computationally efficient and numerically robust. Let S ⊆ {1, 2, . . . , N}, and x ∈ CN . 
Then, xS will denote x with all entries not in S set to zero. That is,

(xS)j :=
{

0, if j /∈ S,

xj , if j ∈ S.

The robust null space property can now be defined as follows.

Definition 1. Let s, m, N ∈ N be such that s < m < N . We will say that the matrix C ∈ Cm×N satisfies the 
�2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0 if

‖xS‖1 ≤ ρ‖xSc‖1 + τ‖Cx‖2

holds for all x ∈ CN and S ⊂ {1, 2, . . . , N} with cardinality |S| ≤ s, where Sc denotes the complement of S.

In particular, the following robust compressive sensing result for matrices with the null space property 
is a restatement of Theorem 4.22 from [17].

Theorem 1. Suppose that the matrix C ∈ Cm×N satisfies the �2-robust null space property of order s with 
constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CN , the vector

x̃ := arg min
z∈CN

‖z‖1 subject to ‖Cz − y‖2 ≤ η, (3)

where y := Cx + e for some e ∈ Cm with ‖e‖2 ≤ η, will satisfy

‖x − x̃‖2 ≤ C√
s

·
(

inf
z∈CN ,‖z‖0≤s

‖x − z‖1

)
+ Dη (4)

for some constants C, D ∈ R+ that only depend on ρ and τ .

Many matrices exist with the �2-robust null space property including, e.g., “most” randomly constructed 
subgaussian and subsampled discrete Fourier transform matrices (as per above). Thus, in some sense it is 
not difficult to find a matrix C ∈ Cm×N to which Theorem 1 will apply. Furthermore, x̃ from (3) can be 
computed efficiently via convex optimization techniques. See [17] for details.

2.2. Phase retrieval

Noisy phase retrieval problems involve the reconstruction of a given vector x ∈ CN , up to a global phase 
factor, from magnitude measurements of the form

bi := |〈pi,x〉|2 + ni, (5)

where pi ∈ CN and ni ∈ R for i = 1, . . . , M . Vectorizing (5) yields99
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b := |Px|2 + n, (6)

where b, n ∈ RM , P ∈ CM×N , and | · |2 : CM → RM computes the component-wise squared magnitude 
of each vector entry. Thus, the primary objective of phase retrieval is to construct a recovery algorithm, 
ΦP : RM → CN , that satisfies a relative error guarantee such as, e.g.,

min
θ∈[0,2π]

(∥∥ΦP (b) − eiθx
∥∥

2
‖x‖2

)q

≤ CP · ‖n‖2√
M‖x‖2

2
(7)

for a particular measurement matrix P ∈ CM×N , q ∈ [1, 2], and approximation factor CP ∈ R+ (which may 
depend on P).

Several recovery algorithms achieve error guarantees along the lines of (7) while using at most M =
O(N log N) measurements, including both PhaseLift [12,11] as well as a more recent graph-theoretic and 
frame-based approach [1]. In particular, the following robust phase retrieval result is a variant of Theorem 1.3 
from [11].4

Theorem 2. Let P ∈ CM×N have its M rows be independently drawn either uniformly at random from the 
sphere of radius 

√
N in CN , or else as complex normal random vectors from N (0, IN/2) + iN (0, IN/2). 

Then, ∃ universal constants B̃, C̃, D̃ ∈ R+ such that the PhaseLift procedure ΦP : RM → CN satisfies

min
θ∈[0,2π]

∥∥ΦP (b) − eiθx
∥∥

2 ≤ C̃ · ‖n‖1
M‖x‖2

(8)

for all x ∈ CN with probability 1 − O(e−B̃M ), provided that M ≥ D̃N . Here b, n ∈ RM are as in (6).

Finally, it is important to note that the PhaseLift procedure from Theorem 2 can be computed via 
semidefinite programming techniques. Thus, it is computationally tractable for modest dimensions, N . See 
[12,11] for details.

3. A simple two-stage technique for sparse phase retrieval

In this section we consider using noisy magnitude measurements of the form

b := |PCx|2 + n, (9)

where P ∈ Cm̃×m is any phase retrieval matrix with an associated recovery algorithm ΦP : Rm̃ → Cm that 
has an error guarantee along the lines of (7), and C ∈ Cm×N is any compressive sensing matrix with an 
associated approximation algorithm ΔC : Cm → CN that has an error guarantee like (2). In this situation 
the composition of the two recovery algorithms, ΔC ◦ ΦP : Rm̃ → CN , should accurately approximate 
x ∈ CN , up to a global phase factor, from b whenever x is sufficiently sparse or compressible. This leads us 
to the following intuitive observation.

Proposition 1. Let A = PC where C ∈ Cm×N has the robust null space property and P ∈ Cm̃×m is a stable 
phase retrieval matrix. Then, A has the stable compressive phase retrieval property.

More specifically, the following compressive phase retrieval result follows easily from Theorems 1 and 2.

4 Equation (1.8) in Theorem 1.3 is technically incorrect as stated in [11]. See [22] for a corrected and simplified proof of Theorem 2
as stated herein. 100
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Theorem 3. Let P ∈ Cm̃×m have its m̃ rows be independently drawn either uniformly at random from the 
sphere of radius 

√
m in Cm, or else as complex normal random vectors from N (0, Im/2) + iN (0, Im/2). 

Furthermore, suppose that C ∈ Cm×N satisfies the �2-robust null space property of order s with constants 
0 < ρ < 1 and τ > 0. Then, there exists a phase retrieval procedure, ΦP : Rm̃ → Cm, and a compressive 
sensing recovery algorithm, ΔC : Cm → CN , such that

min
θ∈[0,2π]

∥∥eiθx − ΔC (ΦP (b))
∥∥

2 ≤ C√
s

·
(

inf
z∈CN ,‖z‖0≤s

‖x − z‖1

)
+ D · ‖n‖1

m̃‖Cx‖2
(10)

holds for all x ∈ CN with probability 1 − O(e−Bm̃), provided that m̃ ≥ E · m. Here b, n ∈ Rm̃ are as in (9), 
and B, E ∈ R+ are universal constants, while C, D ∈ R+ are constants that only depend on ρ and τ .

Considering the number of magnitude measurements required by Theorem 3, we note that m̃ =
O(s log(N/s)) such measurements will suffice to achieve (10) for all x ∈ CN with high probability whenever 
C ∈ Cm×N is, e.g., a random matrix with i.i.d. subgaussian random entries. In this situation C will also 
likely have both (i) the �2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0, and 
(ii) a small restricted isometry constant of order 2s, δ2s < 1 (see, e.g., §6.2 and §9.1 of [17] for details). As 
a consequence, C will also satisfy

1
τ

· max
S⊂{1,...,N},|S|=s

(‖xS‖1 − ρ‖xSc‖1) ≤ ‖Cx‖2 ≤
√

1 − δ2s

(
‖x‖2 + ‖x‖1√

2s

)
(11)

for all x ∈ CN with high probability (w.h.p.).5 Considering Theorem 3 error guarantee (10) in light of (11), 
we can now see that Theorem 3 implies that all sufficiently compressible vectors with, e.g.,

1√
m̃

≤ 1
τ

· max
S⊂{1,...,N},|S|=s

(‖xS‖1 − ρ‖xSc‖1) (12)

will also satisfy

min
θ∈[0,2π]

∥∥eiθx − ΔC (ΦP (b))
∥∥

2 ≤ C√
s

·
(

inf
z∈CN ,‖z‖0≤s

‖x − z‖1

)
+ D‖n‖2 (13)

w.h.p. whenever C is a random matrix with i.i.d. subgaussian entries.
Finally, it is interesting to note that the two-stage approach outlined in this section also confers some 

computational advantages. Mainly, the phase retrieval recovery algorithm ΦP : Rm̃ → Cm only needs 
to recover a vector of length m = O(s log(N/s)). This allows phase retrieval approaches based on, e.g., 
semidefinite programming to efficiently approximate significantly larger vectors x ∈ CN than otherwise 
possible when N � s.

4. Empirical evaluation

We now present representative results demonstrating the numerical robustness and efficiency of the 
proposed two-step strategy. For the results in this section, we use PhaseLift [12,11] and Basis Pursuit [9] to 
solve the phase retrieval and compressive sensing problems in steps (i) and (ii), respectively. Moreover, we 
use complex Gaussian phase retrieval matrices P and real Gaussian compressive sensing matrices C. Matlab 
code used to generate the numerical results – implemented using the optimization software packages TFOCS 
[6,5] and CVX [19,18] – is freely available at [23].

5 The lower bound is a simple consequence of Definition 1. For the upper bound see, e.g., Exercise 6.6 in [17].101
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Fig. 1. Robustness to additive noise: N = 1024, s = 5, m̃ = �14s log(N/s)�.

In each of the following results, we recover sparse, unit-norm complex vectors whose non-zero indices are 
independently and randomly chosen, and, whose non-zero entries are i.i.d. standard complex Gaussians.

Fig. 1 illustrates the robustness of the recovery procedure to additive noise. We add i.i.d. zero-mean 
Gaussian noise at several signal-to-noise ratios (SNRs) to m̃ = �14s log(N/s)� magnitude measurements 
(N = 1024, s = 5, m̃ = 371) and record relative reconstruction errors in decibels. Each data point on 
the graph was obtained by averaging the results of 100 trials. We observe that the reconstruction error in 
every case is approximately equal to the added noise level, confirming the robust recovery properties of the 
proposed method.

Next, we demonstrate efficiency by plotting the average runtime and minimum number of measurements 
necessary for successful reconstruction. For the purposes of this discussion, we classify a reconstruction as 
successful if the relative �2-norm error in the recovered signal is less than 10−5. We also provide comparisons 
with Compressive Phase Retrieval via Lifting (CPRL) [30], an existing framework for sparse phase retrieval. 
Simulations were performed on a laptop computer with an Intel® CoreTM i3-3120M processor, 4 GB RAM 
and Matlab R2014a. We first consider the reconstruction of an s-sparse signal (N = 64) from perfect 
(noiseless) measurements. The minimum number of measurements6 required for successful reconstruction is 
plotted in Fig. 2a, while the corresponding runtime, averaged over 100 trials, is plotted in Fig. 2b. Fig. 2a was 
generated by starting with a small number of measurements, m̃, and incrementing this number to ensure 
successful reconstruction in at least 95 of the 100 trials. We notice that the PhaseLift+BP formulation 
requires a small number of additional measurements when compared to CPRL. This is potentially only 
the case for small values of s since Theorem 3 shows that O(s log(N/s)) measurements suffice for the 
PhaseLift+BP formulation. Moreover, since the PhaseLift+BP solution is obtained by solving a smaller 
SDP, the average runtime is significantly smaller (by several orders of magnitude) than CPRL, as shown in 
Fig. 2b.

5. Discussion

It is interesting to note that the compressive phase retrieval strategy discussed herein also immediately 
implies the existence of stable sublinear-time compressive phase retrieval algorithms. These can be achieved 
by combining the phase retrieval technique of one’s choice with a o(N)-time compressive sensing method 

6 For the PhaseLift+BP implementation, we fixed the compressive sensing problem dimension to be m = �1.75s log(N/s)�.102
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Fig. 2. Runtime performance and minimum number of measurements required: N = 64, noiseless measurements.

(see, e.g., [21]) in order to create a o(N)-time compressive phase retrieval algorithm. In addition, we conclude 
by noting that random combinations of a random set of rows from a Fourier matrix will also exhibit the 
stable compressive phase retrieval property by Proposition 1/Theorem 3. This is of particular interest due 
to the special role that Fourier measurements play in many applications.
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We extend the recent sparse Fourier transform algorithm of [1] to the noisy setting, 
in which a signal of bandwidth N is given as a superposition of k � N frequencies 
and additive random noise. We present two such extensions, the second of which 
exhibits a form of error-correction in its frequency estimation not unlike that of the 
β-encoders in analog-to-digital conversion [2]. On k-sparse signals corrupted with 
additive complex Gaussian noise, the algorithm runs in time O(k log(k) log(N/k))
on average, provided the noise is not overwhelming. The error-correction property 
allows the algorithm to outperform FFTW [3], a highly optimized software package 
for computing the full discrete Fourier transform, over a wide range of sparsity and 
noise values.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Fast Fourier Transform (FFT) [4] is a fundamental numerical algorithm whose importance in a wide 
variety of applications cannot be overstated. The FFT reduces the runtime complexity of calculating the 
discrete Fourier transform (DFT) of a length N array from the naive O(N2) to O(N log(N)). At the time 
of its introduction in the mid-1960s, it dramatically increased the size of problems that a typical computer 
could handle. Over the past fifty years the typical size of data sets has grown by orders of magnitude, and 
in certain application areas (e.g. cognitive radio and ultra-wideband radar [5,6]) the computation of the 
full FFT is no longer tractable on commodity hardware. In this and other instances, however, it is known 
a priori that the signals of interest have small frequency support; that is, their Fourier transforms are sparse. 
This problem has received attention from a number of research communities over the past decade, who have 
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shown that it is possible to significantly outperform the FFT in both runtime and sampling requirements 
when the number of significant Fourier modes k is much less than the nominal bandwidth N . Early works 
addressing this topic from the perspective of learning boolean functions include [7,8].

The sparse Fourier transform problem was first studied explicitly in [9,10], the latter of which gave a 
randomized algorithm with runtime and sampling complexity O(k2 polylog(N)).3 This was later improved 
to O(k polylog(N)) [11] through the use of unequally-spaced FFTs [12]. For a given failure probability δ
and accuracy parameter ε, the algorithm returns a k-term approximation ŷ to the DFT of the input x̂ such 
that with probability 1 − δ it holds that

‖x̂ − ŷ‖2
2 ≤ (1 + ε)‖x̂ − x̂k‖2

2. (1)

Here x̂k is the best k-term approximation to x̂ and ‖ · ‖2 is the discrete �2 norm. In [13], a randomized 
O(k2polylog(N)) algorithm for the sparse Fourier transform problem was given in the context of list de-
coding.4 A separate group of authors [14] has developed a modified version of the algorithm of [11] with 
runtime O(log(N)

√
Nk log(N)). While the dependence on N is sub-optimal asymptotically, in practice this 

algorithm is significantly faster than either [10] or [11]. The same authors presented an improved algorithm 
with runtime O(k log(N) log(N/k)) in [15] whose frequency identification procedure is very similar to [1], 
upon which the present work is based. However, the performance of [15] in the presence of noise has yet to 
be evaluated empirically.

The algorithms described in the previous paragraph are all randomized, and so will fail on each signal 
with positive probability. Recognizing this as a potential detriment in failure-intolerant applications, two 
authors have independently given deterministic algorithms for the sparse Fourier transform problem. In 
[16,17] an algorithm with poly(k, log(N)) runtime was given where the exponent on k is at least six.5
This high dependence on k renders the algorithm infeasible in practice, and it has not been implemented. 
However, we note that algorithms of [18,16,17] address a strictly wider class of signals than those with 
k-sparse Fourier spectrum, specifically those satisfying ‖Ŝ‖1/‖Ŝ‖2 ≤ polylog(N). In [19], the combinatorial 
properties of aliasing among frequencies were exploited to give an algorithm with runtime and sampling 
complexity O(k2 polylog(N)). While this represented a major improvement over the theoretical runtime 
complexity of [16], in practice it only outperformed the FFT for relatively modest values of the sparsity k.

Most recently the authors of [1] gave a deterministic algorithm whose sampling and runtime complexity 
are O(k log(k)) in the average case and O(k2 log(k)) in the worst case. The worst-case bounds are asymp-
totically of the same order in k (up to log factors) as [19], but over a representative class of random signals 
it was shown to significantly outperform its deterministic and randomized competitors. This was achieved 
by sampling the input at two sets of equispaced points slightly offset in time. This time shift appears in 
the Fourier domain as a frequency modulation, which allows the authors to both detect when aliasing has 
occurred and, for frequencies that are isolated (i.e. not aliased), to calculate the frequency value directly. 
While [19] also uses properties of aliasing to reconstruct frequency values, it is not able to distinguish be-
tween aliased and non-aliased terms until sufficiently many DFTs of coprime lengths have been computed, 
and so is unable to perform any better in the average case than in the worst case. In the empirical evaluation 
of [1] an improvement of over two orders of magnitude was observed over [11] and [19].

In this paper we extend the algorithm of [1] to noisy environments in two distinct ways. The first of 
these, which is a minor modification of the noiseless algorithm, is based on a certain rounding of the 
frequency estimates and was previously reported in [1]. In this work we provide an improved algorithm 
and more detailed analysis of that earlier work. The second extension is the main result of this paper 

3 We write f = polylog(g) to indicate that f = O(logc(g)) for some unspecified constant c.
4 The runtime of this algorithm was incorrectly stated as O(k11/2polylog(N)) in [1].
5 This algorithm is a de-randomization of the randomized algorithm presented in [18].106
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(summarized in Algorithm 1 and Theorem 4.5), a multiscale error-correcting algorithm that utilizes offset 
time samples at geometrically spaced time shifts. This extension is in essence a progressive frequency 
identification algorithm not unlike the β-encoders for analog-to-digital conversion [2]. While prior works 
have utilized multiscale frequency identification procedures [7–9,13,18,16,17], the connection to β-encoders 
is to the best of our knowledge novel. The new algorithm gives excellent performance in the noisy setting 
without significantly increasing the computational costs from the noiseless case. For both extensions we 
provide detailed mathematical analysis as well as empirical evaluations. While both extensions work well 
in the noisy environment, the multiscale algorithm achieves comparable accuracy at a significantly lower 
computational cost.

It should be emphasized that our algorithm assumes access to an underlying continuous signal S(t), 
t ∈ [0, 1], rather than a discrete set of equidistant samples of S, which is the setting for the previous 
scholarship mentioned above. Indeed, this assumption is critical for our multiscale algorithm, as it allows 
the separation of nearby modes by sampling at finer scales. While this makes comparisons with other algo-
rithms less straightforward, the assumption is valid in several application domains, including ultra-wideband 
radar [6]. It should also be noted that, as we discuss briefly in Section 5.4, a trivial modification of our mul-
tiscale algorithm is able to recover a single non-integral frequency in random noise. Other works addressing 
this problem assume a minimum separation between modes [20,21], which is the effect achieved by our 
continuous signal assumption.

The remainder of this paper is organized as follows. In Section 2 we review the notation introduced in 
[1] that will be necessary in the sequel. We also describe our noise model, discuss some of the problems 
noisy signals present for the algorithm of [1], and argue that in certain applications the �2 error metric is 
inappropriate and should be replaced with a form of Earth Mover’s Distance. We also describe the random 
signal model used in the empirical evaluations in Section 5. In Section 3 we give our first modified algorithm 
and analyze the dependence of the sampling rate on the noise level. In Section 4 we describe our multiscale 
frequency identification procedure, and in Section 5 we provide an empirical evaluation of the accuracy and 
speed of both algorithms. Finally in Section 6 we provide a brief conclusion.

2. Preliminaries

2.1. Notation and brief review

In this section we introduce the notation that will be used in the remainder of this paper and briefly 
review the results in [1]. We denote by Z the set of integers, C the set of complex numbers, and we let N
be a fixed (large) natural number. We write �x� to denote the largest integer less than or equal to x. All 
logarithms are in base two unless explicitly specified.

We consider frequency-sparse band-limited signals S : [0, 1) → C of the form

S(t) =
∑

ω∈Ω
aωe2πiωt, (2)

where Ω is a finite set of integers bounded in [−N/2, N/2) and 0 �= aω ∈ C for each ω ∈ Ω. Denote by 
amin = min{|aω| : ω ∈ Ω}. For simplicity we shall extend S(t) periodically to a function on the whole real 
line. The Fourier samples of S are given by

Ŝ(h) =
1∫

0

S(t)e−2πihtdt, h ∈ Z, (3)

so that for signals of the form (2) we have Ŝ(ω) = aω for ω ∈ Ω and Ŝ(h) = 0 for all other h ∈ Z.107
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In practice we work with data of finite length. Given any finite sequence s = (s0, s1, . . . , sp−1) of length 
p its DFT is given by

ŝ[h] =
p−1∑

j=0
sje−2πijh/p =

p−1∑

j=0
s[j]W jh

p , (4)

where h = 0, 1, . . . , p − 1, s[j] := sj and Wp := e−2πi/p is the primitive p-th root of unity. The FFT [4]
allows the computation of ŝ in O(p log p) steps.

To obtain a fast reconstruction algorithm we apply the DFT to selected finite sample sets of S(t). Let p
be a positive integer and ε > 0. The two sample sets we use extensively are Sp and Sp,ε, which are length 
p samples of S(t) given by

Sp[j] = S
( j

p

)
, Sp,ε[j] = S

( j

p
+ ε

)
, j = 0, 1, . . . , p − 1. (5)

For each h let Λp,h = {ω ∈ Ω : ω ≡ h (mod p)}, where ω ≡ h (mod p) indicates that ω − h is divisible by p. 
It is a simple derivation to obtain

Ŝp[h] = p
∑

ω∈Λp,h

aω, Ŝp,ε[h] = p
∑

ω∈Λp,h

aωe2πiεω. (6)

Let ω (mod p) indicate the remainder after division of ω by p. In the ideal scenario where all {ω (mod p) :
ω ∈ Ω} are distinct we have

Ŝp[h] =
{

paω h = ω (mod p) for some ω ∈ Ω,

0 otherwise, (7)

and similarly

Ŝp,ε[h] =
{

paωe2πiεω h = ω (mod p) for some ω ∈ Ω,

0 otherwise. (8)

Thus, the nonzero elements of Ŝp[h] occur precisely at the locations h = ω (mod p) for some ω ∈ Ω, and 
moreover for such h we have |Ŝp[h]| = |Ŝp,ε[h]|. Furthermore for each ω ∈ Ω and h = ω (mod p) we have 
Ŝp,ε[h]
Ŝp[h] = e2πiεω. Hence

2πεω ≡ Arg
(

Ŝp,ε[h]
Ŝp[h]

)
(mod 2π), (9)

where Arg(z) denotes the phase angle of the complex number z in [−π, π). Now assume that we have 
|ε| ≤ 1

N . Then ω is completely determined by (9), as there will be no wrap-around aliasing. Hence

ω = 1
2πε

Arg
(

Ŝp,ε[h]
Ŝp[h]

)
. (10)

The weight aω can be recovered via aω = Ŝp[h]/p. In fact, more generally, if we have an estimate of ω ∈ Ω, 
say |ω| < L

2 , then by taking ε ≤ 1
L the same reconstruction formula (10) holds. We will use this observation 

in Section 4 when we develop a multiscale frequency identification procedure for noisy signals.108
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Of course it is possible that not all {ω (mod p) : ω ∈ Ω} are distinct. For an ω ∈ Ω we say ω has a 
collision modulo p, or simply has a collision when there is no ambiguity in the modulus p, if there is at least 
one other ω′ ∈ Ω such that ω ≡ ω′ (mod p). In [1] a criterion is developed to detect collisions in the noiseless 
case. For ω ∈ Ω and h = ω (mod p), it is clear that a necessary condition for no collision to occur is

∣∣∣ Ŝp,ε[h]
Ŝp[h]

∣∣∣ = |e2πiεω| = 1. (11)

It is shown in [1] that for a randomly chosen ε > 0 the converse holds with probability one, and furthermore 
checking the condition (11) for several ε would be sufficient to deterministically decide whether ω has a 
collision. In Section 4 we use this latter observation to devise a robust test for collisions even in the presence 
of noise.

The algorithm developed in [1] for recovering S(t) is as follows: First we pick a prime p = p1, which is 
roughly 5k where k = |Ω| is the number of modes in S(t) (k is commonly referred to as the sparsity of 
S(t)). By taking p ≥ 5k we ensure that on average collisions do not occur for more than 90% of ω ∈ Ω. Let 
Ω′ denote the subset of Ω consisting of all non-collision ω ∈ Ω. For each ω ∈ Ω′ we recover aωe2πiωt, and 
update S(t) to

S1(t) = S(t) −
∑

ω∈Ω′

aωe2πiωt. (12)

We now apply the above procedure again for S1(t) with a different prime p = p2 approximately in the range 
of 5k1, where k1 = k − |Ω′| is now the sparsity for S1(t). This process is repeated until all modes are found.

In the implementation of the algorithm we set a small threshold in (11) to check for collisions. This means 
there is a small probability that a collision is undetected by our criterion and a false value ω0 is put into 
Ω′ when it shouldn’t be. In subsequent iterations, this will create a new mode −c0e2πiω0t for some c0 ∈ C
in S1(t). By the use of different primes pj in each iteration this false mode will be identified and subtracted 
from the final reconstruction. In Section 4.3 we provide an improved aliasing test for our multiscale algorithm 
which makes the inclusion of spurious frequencies even less likely. However, it is still possible that incorrect 
modes are inserted before being deleted in the high-noise regime, as we discuss in Section 5.3.

2.2. Noise model

In a number of potential application areas for sparse Fourier algorithms, the samples collected will be 
corrupted by noise. One example of sparse Fourier transforms being used on real data is given in [22], where 
an application to faster GPS location is presented. Several previous works have considered the sparse Fourier 
transform problem for noisy signals, including the case of adversarial noise in [7,13].6 Random noise models 
have been considered in [15,18,16,17], although the algorithms presented in those works for noisy signals 
have yet to be implemented and evaluated empirically.

In this paper we assume an i.i.d. noise model

Sn
p[j] = S

(
j

p

)
+ nj = Sp[j] + nj , (13)

where n = (nj) are i.i.d. complex random variables with mean 0 and variance σ2. A typical model is to 
assume {nj} are i.i.d. complex Gaussian. With this noise model we have

6 The algorithm of [10] implicitly addresses this challenging setting as well.109
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Ŝn
p[h] = Ŝp[h] + n̂[h], (14)

where

n̂[h] =
p−1∑

j=0
nje−2πihj/p. (15)

By the i.i.d. property for {nj} we have for each h

E
[
n̂[h]

]
= 0 (16)

and

Var
[
n̂[h]

]
= pσ2, (17)

where the expectations are taken with respect to the randomness in the noise. This yields

E
[
Ŝn

p[h]
]

= Ŝp[h] (18)

and

E
[
|Ŝn

p[h] − Ŝp[h]|2
]

= pσ2. (19)

Thus, a typical noisy DFT coefficient Ŝn
p[h] will deviate from the true value Ŝp[h] by an amount proportional 

to σ
√

p. Similarly, for Sn
p,ε = Sp,ε + nε we will have

E
[
Ŝn

p,ε[h]
]

= Ŝp,ε[h] (20)

and

E
[
|Ŝn

p,ε[h] − Ŝp,ε[h]|2
]

= pσ2. (21)

We now pick a non-collision ω ∈ Ω. Then for h = ω (mod p) we will have

Ŝn
p[h] = paω + O(σ√

p),

Ŝn
p,ε[h] = paωe2πiωε + O(σ√

p). (22)

As a result aω can now be estimated easily via

aω = 1
p
Ŝn

p[h] + O
( σ√

p

)
. (23)

The real challenge lies in the recovery of the frequencies in Ω. Assume that |Ŝp,ε| has a peak at h. Then 
h = ω (mod p) for some ω ∈ Ω. If there is no collision for ω, in the noiseless environment ω is recovered 
via (10) as long as ε ≤ 1

N . In the noisy setting Ŝp,ε[h]/Ŝp[h] must be replaced by Ŝn
p,ε[h]/Ŝn

p[h]. Interestingly, 
the mean of Ŝn

p,ε[h]/Ŝn
p[h] is in general not Ŝp,ε[h]/Ŝp[h] as a result of the division. Nevertheless we have110
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Ŝn
p,ε[h]
Ŝn

p[h]
= Ŝp[h]e2πiωε + n̂ε[h]

Ŝp[h] + n̂[h]

=
Ŝp[h]e2πiωε + O

(
σ
√

p
)

Ŝp[h] + O
(
σ
√

p
)

=
e2πiωε + O

(
σ

aω
√

p

)

1 + O
(

σ
aω

√
p

)

= e2πiωε + O
(

σ

aω
√

p

)
. (24)

Thus the ratio of noisy DFT coefficients agrees with the noiseless ratio up to an error term on the order of 
σ

|aω|√p .
Given this estimate for the ratio of noisy DFT coefficients, we can derive bounds for the error in the 

Lee norm for the phase angle computed via Arg(z). Let L be a lattice in R. For any θ ∈ R the Lee norm 
associated with the lattice L for θ is given by the distance of θ to the lattice L, i.e. ‖θ‖L := mink∈L |θ − k|. 
Under the Lee norm associated with the lattice 2πZ it is well known that for z, η ∈ C with |η| < |z|,

‖ Arg (z + η) − Arg(z)‖2πZ = ‖ Arg
(
1 + z−1η

)
‖2πZ

≤ |z−1η|. (25)

Thus for a non-collision ω ∈ Ω and h = ω (mod p), the estimates (25) and (24) combined yield
∥∥∥∥∥Arg

(
Ŝn

p,ε[h]
Ŝn

p[h]

)
− 2πωε

∥∥∥∥∥
2πZ

≤ O
(

σ

|aω|√p

)
. (26)

When we apply the estimate (10) for ω under the noise model we will end up with an approximation

ωn := 1
2πε

Arg
(

Ŝn
p,ε[h]
Ŝn

p[h]

)
(27)

such that

‖ωn − ω‖Z ≤ O
(

σ

2πε|aω|√p

)
. (28)

Now if we apply the algorithm developed in [1] the ratio σ
εamin

√
p is critical in determining the sensitivity of 

our phase estimation (as well as the weight estimation) to noise. Without any modifications to the algorithm 
it is thus important that we choose the lengths p so that σ

εamin
√

p is within the tolerance.

2.3. Earth mover distance

In the existing literature on sparse Fourier transforms, the �2 norm is most often used to assess the quality 
of approximation. There are many reasons for this choice, with the two most convincing perhaps being the 
completeness of the complex exponentials with respect to the �2 norm and Parseval’s theorem. For certain 
applications, however, this choice of norm is inappropriate. For example, in wide-band spectral estimation 
and radar applications, one is interested in identifying a set of frequency intervals containing active Fourier 
modes. In this case, an estimate ω̃ of the true frequency ω with |ω̃ − ω| � N is useful, but unless ω̃ = ω

the �2 metric will report an error of size O(amin). 111
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For these reasons, we propose measuring the approximation error of sparse Fourier transform problems 
with the Earth Mover Distance (EMD) [23]. Originally developed in the context of content-based image 
retrieval, EMD measures the minimum cost that must be paid (with a user-specified cost function) to 
transform one distribution of points into another. EMD can be calculated efficiently as the solution of a linear 
program corresponding to a certain flow minimization problem. In addition to allowing for misidentified 
frequencies, this choice of error metric also has the flexibility to measure the quality of approximation for 
signals with non-integer frequencies. This important problem has recently been considered in [20], and while 
not the primary focus of this manuscript, in Section 5.4 we consider a modification of our proposed algorithm 
which allows for the identification of a single non-integer frequency in the presence of noise.

For our problem, we consider the cost to move a set of estimated Fourier modes and coefficients 
{
(ω̃j , aω̃j

)
}k̃

j=1 to the true values 
{
(ωj , aωj

)
}k

j=1 under the cost function

d1
(
(ω, aω), (ω̃, aω̃);N

)
:= |ω − ω̃|

N
+ |aω − aω̃|. (29)

This choice of cost function strikes a balance between the fidelity of the frequency estimate (as a fraction 
of the bandwidth) and that of the coefficient estimate. We also consider the “phase-only” cost function

dω(ω1, ω2;N) := |ω1 − ω2|
N

, (30)

which provides a measure of how close our frequency estimates are to the true values. We denote the EMD 
using d1 by EMD(1) and using dω by EMD(ω) in our empirical studies in Section 5 below.

Since these error metrics may be unfamiliar to the reader, we note here that the theoretical best possible 
EMD(1) error is easy to compute in the special case when the EMD(ω) error is zero (i.e., all frequencies 
are estimated correctly). In this case, we can combine (23) with (29) above to yield

EMD(1) = O
(

kσ

amin
√

p

)
. (31)

Note in particular that since we measure distances in �1 the error scales with k, rather than 
√

k as would 
be the case in �2. The case when EMD(ω) is non-zero is much more difficult to analyze and is an important 
question that merits considerable attention. We plan to conduct such a study in future work.

2.4. Random signal model

For the average-case analysis in Section 4.3.3 and the empirical evaluations in Section 5 we consider signals 
with uniformly random phase over the bandwidth and coefficients chosen uniformly from the complex unit 
circle. In other words, given k and N , we choose k frequencies ωj uniformly at random (without replacement) 
from [−N/2, N/2) ∩ Z. The corresponding Fourier coefficients aj are of the form e2πiθj , where θj is drawn 
uniformly from [0, 1). The signal is then given by

S(t) =
k∑

j=1
aje2πiωjt. (32)

This is the standard signal model considered in previous empirical evaluations of sub-linear Fourier algo-
rithms [24,19,14,1]. We note here that we also conducted the empirical evaluations of Section 5 on signals 
whose Fourier coefficients have varying magnitudes. These results did not differ substantively from those 
on signals of the form (32), so we omit a detailed discussion.112
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Fig. 1. The rounding procedure is exact as long as the phase estimate ω̃ is within p/2 of correct multiple of p (blue region in figure). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Rounding: a minor modification of noiseless algorithm

A simple modification to the noiseless algorithm of [1] for the noisy case is to increase the sample 
lengths p. By choosing p large enough, the error from noise can be mitigated to be within a given toler-
ance. The modification can be viewed simply as rounding, and we include it here both as a more direct 
and simple-to-implement extension as well as for comparison purposes. When the noise level is low, this 
modification yields reasonably good results.

As in the noiseless case we choose the shift ε > 0 so that ε ≤ 1
N . In the noiseless case ε = 1

N would be 
sufficient to avoid wrap-around aliasing in the phase reconstruction. Due to the presence of noise we will 
need to make ε slightly smaller because of (28). Let us analyze the recovery of a candidate frequency ω ∈ Ω
if we simply carry out the same process as in the noiseless environment.

First we choose a length p. Assume that ω ∈ Ω does not collide with any other ω′ ∈ Ω modulo p. Let 
h = ω (mod p). The reconstruction of ω utilizes two factors. First, the location of peaks in the DFT are 
robust to noise: even with a relatively high noise level we may take h = ω (mod p) to be exact. Second, by (28)
the frequency reconstruction from noisy measurements is correct up to an error term of size O 

(
σ

εamin
√

p

)
. 

By combining these two measures we can more reliably estimate ω.
Our proposed modification is to simply round the noisy frequency estimate

ω̃ = 1
2πε

Arg
(

Ŝn
p,ε[h]
Ŝn

p[h]

)
(33)

to the nearest integer of the form np + h. This improved estimate is therefore given by

ω̃′ = p · round
(

ω̃ − h

p

)
+ h, (34)

where round(x) returns the nearest integer to x. For low noise levels this modification will return the true 
value ω, while for larger noise levels it is possible that ω̃ deviates by more than p/2 from the true frequency ω. 
In this case the estimate ω̃′ will be wrong by a multiple of p. Larger values of p will reduce the likelihood 
of an error in frequency estimation. See Fig. 1 for an illustration of this rounding procedure.

To ensure that the estimated frequencies are sufficiently far from the branch cut of Arg(z) along the 
negative real axis, we take the shift ε ≤ 1

2N . The estimated frequencies then satisfy −N ≤ ω̃ < N , while 
the true frequencies lie in the smaller interval [−N/2, N/2). It is thus extremely unlikely that the deviations 
due to the noise will push the estimates across the discontinuity.

We saw in the previous section that the error in the phase estimation is on the order of σ(aminp)−1/2

when using the reconstruction formula (10). When using the rounding procedure (34), however, we should 
expect accurate results for a wider range of sample lengths p and noise levels σ. Indeed, note that the 
rounded frequency estimate ω̃′ is exact as long as

|ω̃ − ω| <
p

2 . (35)113
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Fig. 2. (Left) Mean phase error (in log scale) for frequency estimation via (10). (Right) Mean phase error (in log scale) for frequency 
estimation with rounding via (34). The red dashed line marks the transition to exact recovery when p > (2σ/ε)2/3.

Recall from Section 2.2 that the error of the frequency estimate ω̃ is on the order of O( σ
εamin

√
p ). Let us 

assume that it is bounded by C σ
εamin

√
p for some constant C. Combining this with the requirement (35) we 

see that the rounded frequency estimate ω̃′ will be exact provided

C
σ

εaminp3/2 <
1
2 . (36)

It follows that we get exact reconstruction if p ≥
(

2Cσ
εamin

)2/3
.

To illustrate this relationship, we generated 1000 test signals with frequencies chosen uniformly at random 
from [−N/2, N/2) and set the corresponding coefficient to unity. Thus our test signals for this empirical trial 
were one-term trigonometric polynomials. For this test we took N = 222, ε = 1

2N and investigated a range 
of parameters (σ, p). We reconstructed the frequencies in two ways: first, simply using the formula (10), and 
second by combining this estimate with the rounding procedure (34). In Fig. 2 we plot the average phase 
error in logarithmic scale as a function of both σ and p, which were varied from 2.5 × 10−5 to 0.4096 and 
from 10 to 163 840, respectively, by powers of two.

In the plot on the left, which corresponds to reconstruction using only (10), we can clearly see the contours 
of constant phase error obeying the relationship log2(p) = 2 log2(σ) + α for various α. This confirms our 
analytic estimate from Section 2.2 that the phase error is proportional to σ/(amin

√
p). In the plot on the 

right, which corresponds to the improved reconstruction using (34), we can see that for large values of σ and 
small values of p the same relationship holds. However, for smaller σ and larger p we see an abrupt transition 
to exact reconstruction (the white area in the upper-left). The boundary of this region (red dashed line) 
follows the relationship log2(p) = 2

3 log2(σ) + 16, corresponding to C = 1 in (36) above. This confirms that 
for small enough values of the ratio σ

εaminp3/2 the rounding procedure is exact.

3.1. Algorithm

Our first algorithm for noisy signals is only a slight modification of the noiseless algorithm presented in 
[1, Algorithm 1]. Considering (36), we change the lower bound

p > c1k (37)

to

p > max
{

c1k, c2

(
σ

εamin

)2/3
}

, (38)114
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where c1, c2 are constants. In this way we ensure that the choice of p is always large enough to isolate most 
of the k frequencies on average as well as being large enough to ensure that the rounding procedure (34) is 
exact. In all of our experiments in Section 5 below we took c2 = 4.

4. A multiscale algorithm

In Section 3 we saw that increasing p sufficed to ensure that the rounding procedure was exact. While 
this gives good results in terms of accuracy, the increased runtime associated with larger noise levels is 
undesirable. The main contribution of this paper is a multiscale algorithm for recovering the frequency set 
Ω of the signal S(t). This algorithm achieves similar accuracy while providing an improvement of several 
orders of magnitude in computational efficiency.

The key feature of this multiscale algorithm is the employment of multiple shifts εj, which enable us 
to improve the accuracy of the phase estimations progressively without the need to significantly increase 
the sample length p. As we will see, taking successively larger shifts enables a form of error-correction 
in our frequency estimates at finer and finer scales, in essence “zooming in” on the true frequencies in a 
multiscale fashion. The idea of progressively learning finer scale approximations to significant frequencies 
has appeared in prior works addressing the sparse Fourier transform problem, including [7–9,13,18,16,17], 
but the connection to β-encoders is to the best of our knowledge novel.

In Section 4.1 we give some background on our multiscale method and introduce the main idea of our 
algorithm. In Section 4.2 we prove that our multiscale approximations are accurate estimates of the true 
frequencies, and in Section 4.3 we describe the basic multiscale algorithm, discuss several implementation 
details, and present our main Theorem (4.5).

4.1. Multiscale frequency estimation

The main idea for the multiscale algorithm is that a value can be estimated with high precision with an 
inaccurate (coarse) estimator applied progressively at different scales, much like in analog-to-digital conver-
sion where a signal value can be estimated with very high precision by the very coarse binary quantization. 
In our sparse Fourier recovery algorithm, the coarse estimator is the approximation formula given by (26)

εω =Z
1
2π Arg

(
Ŝn

p,ε[h]
Ŝn

p[h]

)
, (39)

where =Z is measured by the Lee norm ‖ · ‖Z.
For simplicity let us assume for the moment that our signal contains a single frequency ω with non-zero 

Fourier coefficient. For a fixed p, let ω̃ be our estimate for ω using the rounding procedure from Section 3
with shift ε0 ≤ 1

N . Then we have

ω̃ = ω (mod p), (40)

although in general ω̃ may differ from ω by a multiple of p.
Suppose now that we repeat the computation of ω̃ using a larger shift ε1 > ε0; that is, we sample our 

signal at time points j
p + ε1, take the FFT, and compute

b1 = 1
2π Arg

(
Ŝn

p,ε1 [h]
Ŝn

p[h]

)
(41)

(note that we do not divide by ε1 here). Since in general ε1 > 1
N , we cannot take b1/ε1 as an estimate for ω, 

although it still holds that 115
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Fig. 3. Diagram of the multiscale frequency estimation procedure, with a candidate frequency pictured as a string of digits, from 
most significant on the left to least significant on the right. In this figure, blue regions represent correct digits learned by the 
algorithm, and orange regions represent digits where errors are likely. In the first iteration, the most significant bits are learned 
using shift ε−1

0 . Subsequent iterations give corrections at finer scales ε−1
1 , . . . , ε−1

m . (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

b1 ≈ ε1ω (mod [−1
2 ,

1
2)), (42)

where x (mod [−1
2 ,

1
2)) is the unique value y in [−1

2 , 
1
2 ) such that x ≡ y (mod 1). We can use this fact to 

estimate the error ω − ω̃ as follows. Note that

ε1(ω − ω̃) = ε1ω − ε1ω̃

≈ (b1 − ε1ω̃) (mod [−1
2 ,

1
2 )), (43)

so that

ω − ω̃ ≈ (b1 − ε1ω̃) (mod [−1
2 ,

1
2 ))

ε1
. (44)

This estimate of the error is not exact, since there is still noise that can perturb the calculated value b1
from the true value ε1ω (mod [−1

2 ,
1
2 )). However, analogously to (28) we have

(ω − ω̃) − (b1 − ε1ω̃) (mod [−1
2 ,

1
2 ))

ε1
= O

(
σ

ε1amin
√

p

)
, (45)

which immediately implies that the updated estimate satisfies

ω −
(

ω̃ +
(b1 − ε1ω̃) (mod [−1

2 ,
1
2 ))

ε1

)
= O

(
σ

ε1amin
√

p

)
. (46)

Since ε1 > ε0, adding the correction term (44) to our previous estimate ω̃ will give a finer approximation 
to the true frequency ω. By iterating this error correction process with progressively larger shifts εj, we 
obtain an algorithm which adaptively corrects for the error in a multiscale fashion. See Fig. 3 for a diagram 
of the multiscale estimation procedure. In the next section we provide a detailed analysis of this multiscale 
approximation scheme, and prove that the frequency estimates it produces are accurate.

4.2. Analysis of multiscale approximations

We begin with a technical lemma relating arithmetic in the Lee norm ‖ ·‖Z to that on the interval [−1
2 , 

1
2 ). 

It will be used repeatedly in the sequel.

Lemma 4.1. Let δ > 0 and x ∈ [−1
2 + δ, 12 − δ]. Assume that ‖x − b‖Z < δ and b ∈ [−1

2 , 
1
2 ). Then |x − b| < δ.116
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Proof. Let r = ‖x − b‖Z. Then x − b = ±r + k for some k ∈ Z. If k = 0 we have

|x − b| = ‖x − b‖Z < δ (47)

by hypothesis, so the claim holds. Now assume k �= 0. Note that

|x − b| ≤ |x| + |b| ≤ 1 − δ (48)

by the triangle inequality and the assumptions on x and b. At the same time, we have

| ± r + k| ≥ 1 − r > 1 − δ. (49)

This is a contradiction, since (48) and (49) cannot hold simultaneously. Thus we must in fact have k = 0, 
and the claim holds. �

The following theorem formalizes the multiscale frequency estimation procedure which was introduced 
in the previous section.

Theorem 4.2. Let ω ∈ [−N
2 , N2 ). Let 0 < ε0 < ε1 < · · · < εm and b0, b1, . . . , bm ∈ R such that

‖εjω − bj‖Z < δ, 0 ≤ j ≤ m (50)

where 0 < δ ≤ 1
4 . Assume that ε0 ≤ 1−2δ

N and βj := εj/εj−1 ≤ (1 − 2δ)/(2δ). Then there exist c0, c1, . . . ,
cm ∈ R, each computable from {εj} and {bj}, such that

|ω̃ − ω| ≤ δ

ε0

m∏

j=1
β−1

j , where ω̃ :=
m∑

j=0

cj

εj
. (51)

Proof. Denote ω0 := ω. We first note that

|ε0ω0| ≤ ε0
N

2 ≤ 1
2 − δ, (52)

where the second inequality follows from the assumptions of the theorem. Let c0 = b0 (mod [−1
2 ,

1
2)), so 

that |ε0ω0 − c0| < δ by Lemma 4.1. Let λ0 = c0/ε0, which represents a coarse estimate of ω0 with the error 
bound

|λ0 − ω0| < δ/ε0. (53)

Next, let ω1 = ω0 − λ0. By the above |ω1| < δ/ε0 and

|ε1ω1| <
ε1δ

ε0
= β1δ ≤ 1

2 − δ. (54)

We then have

‖ε1ω − b1‖Z = ‖ε1ω1 − (b1 − ε1λ0)‖Z < δ. (55)

Set c1 = b1 − ε1λ0 (mod [−1
2 ,

1
2 )). It follows from Lemma 4.1 again that |ε1ω1 − c1| < δ. We set λ1 = c1/ε1.117
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We can recursively define cj, λj and ωj for all 1 ≤ j ≤ m. In general we define ωj := ωj−1 − λj−1. This 
leads to

|εjωj | <
εjδ

εj−1
= βjδ ≤ 1

2 − δ. (56)

Set

cj = (bj − εjλj−1) (mod [−1
2 ,

1
2 )), (57)

which yields

‖εjωj − cj‖Z < δ. (58)

Lemma 4.1 now gives |εjωj − cj | < δ. Set λj = cj/εj .
Finally denote ωm+1 = ωm − λm. It is straightforward now to verify that

ω = ω0 =
m∑

j=0
λj + ωm+1

=
m∑

j=0

cj

εj
+ ωm+1. (59)

Furthermore, by construction ωm+1 = ωm −λm, which has |ωm+1| ≤ δ/εm. By hypothesis εm = ε0
∏m

j=1 βj , 
yielding

|ωm+1| ≤ δ

ε0

m∏

j=1
β−1

j (60)

and completing the proof. �
Remark 4.1. From the proof of Theorem 4.2 the values cj and ω̃ are explicitly computable through the 
recursive formula ω0 = ω, c0 = b0 (mod [−1

2 ,
1
2 )), λ0 = c0/ε0 and

⎧
⎪⎨
⎪⎩

ωj = ωj−1 − λj−1
cj = (bj − εjλj−1) (mod [−1

2 ,
1
2 ))

λj = cj/εj

(61)

for 1 ≤ j ≤ m. Equivalently, we can write the updated frequency estimates along the lines of (46) as

ω̃0 = b0/ε0

ω̃n+1 = ω̃n +
(bn − εnω̃n) (mod [−1

2 ,
1
2 ))

εn
. (62)

Corollary 4.3. Assume that in the above theorem we have βj = β where β ≤ (1 − 2δ)/(2δ), i.e. εj = βjε0

for all j. Let p > 0 and m ≥
⌊
logβ

2δ
pε0

⌋
+ 1. Then

|ω̃ − ω| ≤ δ

ε0
β−m <

p

2 . (63)
118

DISTRIBUTION A: Distribution approved for public release.



JID:YACHA AID:1039 /FLA [m3L; v1.152; Prn:5/05/2015; 12:48] P.15 (1-22)
A. Christlieb et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 15

Proof. This is a straightforward corollary. By Theorem 4.2 we have

|ω̃ − ω| ≤ δ

ε0

m∏

j=1
β−1

j = δ

ε0
β−m. (64)

It is easy to check that m =
⌊
logβ

2δ
pε0

⌋
+ 1 is the smallest integer such that δ

ε0
β−m < p

2 . �
Note that as mentioned in Section 3, even with noise the value ω (mod p) can be accurately computed 

very reliably. Thus if the difference |ω − ω̃| is smaller than p
2 then ω can be recovered exactly by taking the 

closest integer to ω̃ with the same residue modulo p.
In numerical tests we choose uniform βj = β. While making β as large as it can be for a given error 

estimate δ will undoubtedly reduce the computational cost, there is nevertheless a good reason that we 
should not be too “greedy” and be more conservative by choosing a smaller β > 1. The reason is that given 
the random nature of the noise the error bound δ is only in the average sense. To minimize reconstruction 
errors we should try to provide as much latitude as possible for the uncertainties associated with the error 
estimate δ. Hence it is useful to ask how much latitude does one get for given choices of ε0 and β.

Theorem 4.4. Let ω ∈ [−N
2 , N2 ), ε0 > 0 and β > 1. Set εj = βjε0 for 1 ≤ j ≤ m. Assume that we have 

b0, b1, . . . , bm ∈ R such that

‖εjω − bj‖Z < δ, 1 ≤ j ≤ m (65)

where

δ = min
(1 − ε0N

2 ,
1

2β + 2

)
. (66)

Then the estimate ω̃ of ω given by ω̃ :=
∑m

j=0
cj

εj
satisfies

|ω̃ − ω| ≤ δ

ε0
β−m, (67)

where cj are given in (61).

Proof. The proof is straightforward. Note that Theorem 4.2 holds under the conditions ε0 ≤ 1−2δ
N and 

βj ≤ 1−2δ
2δ . These two conditions are equivalent to the condition δ ≤ min

( 1−ε0N
2 , 1

2β+2
)
. Clearly, δ =

min
(1−ε0N

2 , 1
2β+2

)
is the largest admissible value for δ. �

4.3. Algorithm

In this section we provide some details of our implementation of the multiscale frequency estimation 
procedure described in Section 4.1. In particular, we discuss the choice of various parameters necessary for 
reconstruction according to Theorem 4.2 as well as changes made to the aliasing detection test from [1]
to improve robustness in the presence of noise. We give pseudocode for the iterative frequency estimation 
procedure in Algorithm 1; the full algorithm is given by replacing lines 6–22 in [1, Algorithm 1] with this 
procedure. We also present our main Theorem (4.5) stating the correctness and average and worst case 
runtime and sampling complexity of the multiscale algorithm.119
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Algorithm 1 MultiscaleFreqEst.
Input: S(t), N, k, β, σ, amin, cσ, η
Output: {ω̃�}k̃

�=1

p ← max
{
c1k,

(
β(β+1)amincσσ

π

)2}

τ ← cσσ
amin

√
p , m ← 1 +

⌊
logβ

N
p

⌋

vote� ← 0, � = 1, . . . , k
Ŝp ← FFT of 1

p -samples of S(t)
5: for j = 0 to m do

εj ← βj

2N

Ŝp,εj
← FFT of εj-shifted 1

p -samples of S(t)
for � = 1 to k do

h ← index of �th largest peak in Ŝp

10: r ←
∣∣∣∣
∣∣∣Ŝp,εj

[h]
∣∣∣∣∣∣Ŝp[h]

∣∣∣
− 1

∣∣∣∣
if r > τ then

vote� ← vote� + 1
end if
bj ← 1

2π Arg
(

Ŝn
p,εj

[h]

Ŝn
p
[h]

)

15: if j = 0 then
ω̃� ← bj/εj

else
ω̃� ← ω̃� + (bj − εj ω̃�) (mod [− 1

2 , 1
2 ))/εj

end if
20: if j = m then

ω̃� ← p · round
(

ω̃�−h
p

)
+ h

end if
end for

end for
25: return ω̃� with vote� ≤ η(m + 1)

4.3.1. Choice of p
It remains to determine the choice of sampling length p, given the parameter β and the noise level σ. 

Recall from the proof of Theorem 4.2 that the estimated frequency ω̃ is given by the sum 
∑m

j=1 λj , where 
λj = cj/εj . Moreover, the difference between successive frequency approximations is given in terms of λj as

ωj := ωj−1 − λj−1 =⇒ λj = ωj − ωj+1. (68)

Thus we can decompose the error of approximation at stage j + 1 as

|ω − ωj+1| = |(ωj − ωj+1) − (ωj − ω)|
= |λj − (ωj − ω)|. (69)

By Theorem 4.2 the left-hand side of (69) satisfies

|ω − ωj+1| <
δ

εj+1
, (70)

while analogously to (28) the right-hand side of (69) satisfies

|λj − (ωj − ω)| ≤ O
(

σ

2πεjamin
√

p

)
. (71)

Denoting by cσ the constant in the right-hand side above and equating the two upper bounds gives

2πδ
√

p

amincσσ
= εj+1

εj
=: β. (72)120

DISTRIBUTION A: Distribution approved for public release.



JID:YACHA AID:1039 /FLA [m3L; v1.152; Prn:5/05/2015; 12:48] P.17 (1-22)
A. Christlieb et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 17

Under the assumptions of Theorem 4.4, we have

δ = min
(

1 − ε0N

2 ,
1

2β + 2

)
. (73)

Since we take ε0 = 1
2N and fix β > 1, the latter term is necessarily the smaller. Plugging this into (72)

above and rearranging to solve for p gives

p =
(

β(β + 1)amincσσ

π

)2
. (74)

As in the rounding algorithm, we require in addition that p > c1k, so the sample lengths for the multiscale 
algorithm are chosen to satisfy

p > max
{

c1k,

(
β(β + 1)amincσσ

π

)2
}

. (75)

4.3.2. Robust aliasing test
As noted in Section 2.1, our frequency estimation procedure works only for non-collision ω. In [1] two tests 

were given to determine whether a collision had occurred at a candidate frequency. In the implementation 
of that algorithm in the noiseless setting, requiring the ratio (11) to be within some threshold of unity 
sufficed to detect collisions. In the setting of the current paper, where the samples are corrupted with noise, 
we resort to the second of the tests given in [1], which examines the ratios (11) for several values of ε. For 
0 ≤ j ≤ m we compute the ratio (11) and compare it with a threshold τ . We count the number of times 
the ratio exceeds τ and reject those frequencies which fail more than an η fraction of the tests. Since we 
expect fluctuations in this ratio due to noise of order σ

amin
√

p we set τ to be a small constant multiple of this 
quantity.

4.3.3. Number of iterations
Recall from Corollary 4.3 that, for constant βj = β, m =

⌊
logβ

2δ
pε0

⌋
+ 1 shifts suffices to ensure that 

the estimated frequency satisfies |ω̃ − ω| < p
2 . As in Section 3 we take ε0 = 1

2N to avoid the branch 
cut of Arg(z). Assume that the first term in (75) is the larger of the two, so that p = O(k). Then after 
O(log(N/k)) iterations, by rounding the approximate frequency ω̃ to the closest integer of the form np +h, 
where h = ω (mod p) is known from the location of the peak in Ŝn

p, we will recover the true frequency ω. 
With the results of [1, Theorems 3–4] this immediately implies the following

Theorem 4.5. Let Sn(t) = S(t) + n(t), where Ŝ(ω) is k-sparse with integral frequencies satisfying ω ∈
Ω ⊂ [−N/2, N/2) and n is complex i.i.d. Gaussian noise of variance σ2. Moreover, suppose that k >

C(β(β + 1)aminσ)2 for a constant C. There is a deterministic algorithm that, given N, k, β and access to 
Sn(t) returns a list of k pairs (ω̂, ̂aω̂) such that (i) each ω̂ ∈ Ω and (ii) for each ω̂, there is an ω ∈ Ω such 
that |aω − âω̂| ≤ C ′σ/

√
k.

The average-case runtime and sampling complexity are

O(k log(k) log(N/k)) and O(k log(N/k)),

respectively, over the class of signals in Section 2.4. The worst-case runtime and sampling complexities are

O(k2 log(k) log(N/k)) and O(k2 log(N/k)),

respectively. 121
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Fig. 4. (a) Average EMD(1) error of the algorithms as a function of noise level σ. (b) Average EMD(ω) error as a function of noise 
level σ. Due to the log scale on the y axis, all EMD(ω) values have been shifted up by 10−16 for clarity.

Proof. Replacing lines 6–22 of [1, Algorithm 1] with the multiscale frequency estimation procedure of 
Algorithm 1 yields an algorithm with the stated runtime and sampling complexities. The termination 
criteria of [1, Algorithm 1] ensures that k frequencies are returned, and the previous analysis in this section 
ensures that the returned frequencies are correct. The coefficient estimates âω̂ satisfy (23), which together 
with the assumption on k yields the claim. �
5. Empirical evaluation

In this section we describe the results of an empirical evaluation of the algorithms of Sections 3 and 4. 
We focus on two aspects of the algorithms’ performance: accuracy as measured in the EMD(1) and EMD(ω)
metrics (cf. Section 2.3), and runtime as a function of both the sparsity k and the noise level σ. In all of 
the experiments reported below, we report averages over 100 random test signals generated according to 
the prescription in Section 2.4. The bandwidth for these tests was fixed at N = 222.

All experiments were conducted in C++ on a Linux machine with four Intel Xeon X5355 dual-core 
processors at 2.66 GHz and 64 Gb of RAM. The GNU compiler was used with optimization flag -O3. For 
the multiscale algorithm, it was determined after extensive testing that the choice of parameters c1 = 2, 
cσ = 6, η = 1

4 , β = 2.5 gave a satisfactory balance between runtime and accuracy. All FFTs were computed 
using FFTW3 [3]. For comparison, we also present the results of the same trials for two alternative sparse 
Fourier algorithms: sFFT 1.0 [14] and AAFFT [24].

5.1. Accuracy

In Fig. 4 (a) we plot the average EMD(1) error of the algorithms as a function of the noise level σ. For the 
rounding algorithm, the EMD(1) error increases as σ2/3, while for the other three it increases linearly. In all 
cases the EMD(1) error is dominated by the coefficient error. The coefficient estimates in all four algorithms 
are given by an empirical average of the samples, and so the accuracy is determined by the number of 
samples taken. This explains both the scaling of the error of our rounding algorithm (recall from Section 3122
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Fig. 5. (a) Average runtime vs. sparsity k for the algorithms tested. (b) Average runtime vs. noise level σ.

that p >
(

σ
εamin

)2/3
), as well as the larger EMD(1) error of our multiscale algorithm, which performs well 

even with c1 as small as two. The multiscale error correction allows us to take much coarser sampling rates 
to achieve a tolerable error. As we show in the next subsection, these coarser sampling rates lead to much 
improved runtime.

In order to assess the accuracy of the frequency lists returned by each of the four algorithms, in Fig. 4 (b) 
we plot the average EMD(ω) error as a function of the noise level. The EMD(ω) error was zero for all trials 
of the rounding algorithm, as expected due to the choice of p. Moreover, for all but the highest noise level, 
the EMD(ω) error of the multiscale algorithm was zero in all trials. For most values of σ, the EMD(ω) error 
of sFFT 1.0 was non-zero, indicating that even at low to moderate noise levels, erroneous frequencies are 
returned. The EMD(ω) error of AAFFT was always less than 1/N , indicating that true frequencies were 
recovered in all cases; the non-zero values are numerical artifacts.

5.2. Runtime

In Fig. 5 (a) we plot the average runtime of the algorithms as a function of the sparsity k for a fixed 
value of the noise level σ = 0.512 and the parameter c1 = 2. As a reference for runtime comparisons, 
we also plot the time taken by FFTW3 on the same machine. For the rounding algorithm, we see that 
there is no dependence on k until k = 64; this is a consequence of the requirement (38) on the choice of 
sampling rate. Thus at this noise level our modified algorithm is slightly slower than a highly optimized 
FFT implementation. The average runtime of our multiscale algorithm scales slightly superlinearly with k, 
which is expected given the runtime bound O(k log(k) log(N/k)) of Section 4.3.3. Moreover, we note that 
for all levels of sparsity tested, the multiscale algorithm outperforms AAFFT, sFFT 1.0, and FFTW3.

In Fig. 5 (b) we plot the average runtime of the algorithms as a function of the noise level σ for a fixed 
value of the sparsity k = 256. For the rounding algorithm we can see the approximate dependence of the 
runtime on σ2/3, as dictated by the choice of p in (38). For the multiscale algorithm, there is no dependence 
on σ until the very noisy case σ = 0.512. 123
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Fig. 6. Average number of spurious frequencies inserted and deleted by the multiscale algorithm as a function of k and σ.

5.3. Spurious frequencies

As noted in Section 2, due to noise it is possible that one or more spurious frequencies are introduced 
into our signal representation. In subsequent iterations, any such spurious frequency will be identified and 
subtracted from the updated representation. Since this happens with non-zero probability, it is of interest 
to examine how often such an insertion and deletion occurs. In Fig. 6, we plot the average number of 
spurious frequencies inserted and deleted by the multiscale algorithm as a function of k and σ. It is clear 
that the inclusion of spurious frequencies only occurs in the high-noise, high-sparsity regime. Moreover, on 
average only one such wrong frequency appears in an intermediate representation even in this challenging 
environment. This indicates that our robust aliasing test of Section 4.3.2 does a very good job at detecting 
collisions in all but the most extreme circumstances.

5.4. Non-integer frequency estimation

We report here on an experiment to investigate the utility of our multiscale algorithm for the estimation of 
a single non-integer frequency. While an exhaustive study is beyond the scope of this paper, it is interesting 
to note that a minor modification of our multiscale frequency estimation algorithm performs quite well in 
practice. In addition, this setting provides another justification for use of the EMD metric for assessing 
the quality of the output of our algorithm, since there is no way to compare non-integer frequencies using 
a discrete �2 norm. See also [20] for a brief discussion of the output evaluation metric for this problem. 
The question of estimating multiple non-integer (or off-grid) frequencies in noise is difficult, requiring more 
robust methods than those described here. Recent work addressing this question from the algorithms and 
optimization perspectives include [20] and [21], respectively.

In the non-integer frequency case, we modify Algorithm 1 to omit lines 20–22, i.e. we do not round 
our frequency estimates to the nearest integer with the same remainder as h. Our frequency estimates are 
thus not necessarily integers, and an empirical evaluation shows that they approximate the true non-integer 
frequencies quite well, even in the presence of noise. In our empirical evaluation, we set the single non-integer 
frequency to be 

√
2u, where u is uniform on 

(
−� N

2
√

2�, � N
2
√

2�
)
, and set the corresponding coefficient to be 

unity. In Fig. 7 we plot the average EMD(ω) error as a function of the noise level σ, averaged over 100 trials. 
It is clear from the figure that the EMD(ω) error scales linearly with the noise level, indicating the robustness 
of our estimation procedure for the single-frequency case. We do not attempt to explain this phenomenon 
here, and leave a detailed study of this important question as a topic for future work.124
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Fig. 7. Average EMD(ω) error vs. noise level σ for a single non-integer frequency.

6. Conclusion

In this paper we gave two extensions of the sparse Fourier algorithm of [1] to handle noisy signals. The 
first of these was a minor modification of the original algorithm that involved rounding frequency estimates 
to the nearest integer with the correct residue modulo the inverse sampling rate. We showed that in order 
for this modification to correctly identify the true frequencies in Gaussian noise of standard deviation σ
the sampling rate needed to satisfy p ≥ (aminσ)2/3. While this resulted in accurate approximations of the 
Fourier transform in the EMD(1) and EMD(ω) metrics, the sampling rate requirement forced the algorithms 
to be slow in practice.

The second extension overcame this pitfall by introducing a multiscale approach to frequency estimation 
inspired by the literature on β-encoders in analog-to-digital conversion. By using samples of the input at 
multiple geometrically spaced time shifts, our algorithm exhibits a form of error correction in its frequency 
estimation. This allows the use of much coarser sampling rates than the first modification, which in turn leads 
to greatly reduced runtimes in our empirical evaluation. The error correction of our multiscale algorithm is 
similar to that of the β-encoders, and this connection is to the best of our knowledge novel in the sparse 
Fourier transform context.
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Pipeline Schwarz Waveform Relaxation

Benjamin Ong1, Scott High2, and Felix Kwok3

Abstract To leverage the computational capability of modern supercomputers, ex-
isting algorithms need to be reformulated in a manner that allows for many con-
current operations. In this paper, we outline a framework that reformulates classical
Schwarz waveform relaxation so that successive waveform iterates can be computed
in a parallel pipeline fashion after an initial start-up cost. The communication costs
for various implementations are discussed, and numerical scaling results are pre-
sented.

Key words: Schwarz waveform relaxation, pipeline parallelism, domain decompo-
sition, distributed computing

1 Introduction

Schwarz Waveform Relaxation (SWR) introduced in [2] has been analyzed for a
wide range of time-dependent problems, including the parabolic heat equation [7],
wave equation and advection-diffusion equations [6, 8], Maxwell’s equations [4],
and the porous medium equation [9]. In contrast to classical Schwarz iterations,
where the time-dependent PDE is discretized in time and domain-decomposition is
applied to the sequence of steady-state problems, SWR solves time-dependent sub-
problems; this relaxes synchronization of the sub-problems and provides a means
to couple disparate solvers applied to individual sub-problems, for example [10].
SWR has also been shown in [8, 1] to have superlinear convergence for small time
windows. This paper outlines a framework that reformulates SWR so that successive
waveform iterates can be computed in a pipeline fashion, allowing for increased con-
currency and hence, increased scalability for SWR-type algorithms. In §2, we review
the SWR algorithm before introducing and comparing several Pipeline Schwarz
Waveform Relaxation algorithms (PSWR) in §3. Numerical scaling results for the
linear heat equation are presented in §4.
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2 Schwarz Waveform Relaxation

Denote the PDE of interest as

ut = L (t,u), (x, t) ∈Ω × [0,T ] (1)
u(x,0) = f (x), x ∈Ω

u(z, t) = g(z, t), z ∈ ∂Ω .

Consider a partitioning of the domain, Ω = ∪iΩi. The domains in the partition may
be overlapping or non-overlapping. Let ui denote the solution on sub-domain Ωi.
Then, equation (1) can be decomposed into a coupled system of equations,

(ui)t = L (t,ui), (x, t) ∈Ωi× [0,T ] (2)
ui(x,0) = f (x), x ∈Ωi

ui(z, t) = g(z, t), z ∈ ∂Ωi∩∂Ω ,

Ti j(ui(z, t)) = Ti j(u j(z, t)), z ∈ ∂Ωi∩∂Ω j.

where T are transmission operators appropriate to the equation (1). SWR decouples
the system of PDEs in equation (2). Let u[k]i denote the k-th waveform iterate on
sub-domain Ωi. After specifying an initial estimate for the sub-domain solution on
the interfaces, u[0]i (z, t),z ∈ ∂Ωi \ ∂Ω , the SWR algorithm iteratively solves PDEs
(3) for waveform iterates k = 1,2, . . . until convergence,

(u[k]i )t = L (t,u[k]i ), (x, t) ∈Ωi× [0,T ] (3)

u[k]i (x,0) = f (x), x ∈Ωi

u[k]i (z, t) = g(z, t), z ∈ ∂Ωi∩∂Ω ,

Ti j(u
[k]
i (z, t)) = Ti j(u

[k−1]
j (z, t)), z ∈ ∂Ωi∩∂Ω j.

A pseudo-code for the algorithm is presented on the next page. Observe that
SWR allows for each sub-domain to independently compute time-dependent solu-
tions on their respective sub-domains (lines 9-11) During each waveform iteration,
transmission data on each sub-domain is aggregated for the entire computational
time interval before boundary data is exchanged between neighboring sub-domains
(lines 12-14).

3 Pipeline Schwarz Waveform Relaxation

Using a similar approach described in [3, 12], the relaxation framework can be
rewritten so that after initial start-up costs, multiple waveform iterations can be
computed in a pipeline-parallel fashion. A graphical example of the PSWR algo-
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Schwarz Waveform Relaxation Algorithm
1. MPI Initialization
2. parallel for i = 1 . . .N (Sub-domain)
3. for t = ∆ t . . .T
4. Guess u[0]i (z, t), z ∈ ∂Ωi∩∂Ω j
5. end
6. end
7. for k = 1 . . .K (Waveform iteration)
8. parallel for i = 1 . . .N (Sub-domain)
9. for t = ∆ t . . .T
10. Solve for u[k]i (t,x)
11. end
12. for t = ∆ t . . .T
13. Exchange transmission data T (u[k]i (t,z))
14. end
15. Check convergence
16. end
17. end
.

rithm for two subdomains is shown in Figure 1. To simplify the presentation, we

Iteration 1

Iteration 2

Iteration 3

Iteration 1

Iteration 2

Iteration 3

Wall clock time

Fig. 1 The proposed PSWR algorithm allows for multiple Schwarz waveform iterations to be
simultaneously computed. After an initial start-up cost, multiple iterates are computed in a pipeline
fashion.

first present the algorithm for the simplified case where the same time discretization
is used for all sub-problems (Pipeline Schwarz Waveform Relaxation Algorithm 1).

Several observations should be made about the proposed PSWR algorithm. First,
a Schwarz iteration can only proceed if boundary data (i.e. transmission conditions)
from the previous iterate are available; this condition (part of the start-up cost before
the PSWR algorithm can be run in a pipeline fashion) is checked by the if statement
in line 12. Secondly, transmission data is exchanged after every time step to facilitate
the pipeline parallellism. This added synchronization can be relaxed at the expense
of increasing the start-up cost needed to run this algorithm in a pipeline fashion. This
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Pipeline Schwarz Waveform Relaxation Algorithm 1
1. MPI Initialization
2. parallel for i = 1 . . .N (Sub-domain)
3. for t = ∆ t . . .T
4. Guess u[0]i (z, t), z ∈ ∂Ωi∩∂Ω j
5. end
6. Set t [0] = T
7. end
8. parallel for k = 1 . . .K (Waveform iteration)
9. parallel for i = 1 . . .N (Sub-domain)
10. set t [k] = ∆ t
11. While t [k] ≤ T
12. If t [k] < t [k−1]

13. Solve for u[k]i (t [k],x)

14. Exchange transmission data T (u[k]i (t [k],z))
15. t [k]← t [k]+∆ t
16. end
17. end
18. Check convergence
19. end
20. end
.

pipeline parallelism allows for N ·K concurrent processes in the PSWR algorithm
with efficiency Nt

K+Nt
(accounting for start-up costs), where Nt is the number of time

steps used to discretize the time domain [0,T ], N is the number of sub-domains, K
is the number of waveform iterates. This contrasts with the SWR algorithm, which
can only utilize N concurrent processes corresponding to the N sub-domains. This
increased concurrency in PSWR comes with the overhead of an increased number
of messages and synchronization.

For the SWR algorithm, one needs to send O(K − 1) message of size O(Nt).
If N ·K processors are used in a pipeline parallel fashion as described in Pipeline
Schwarz Waveform Relaxation Algorithm 1, O((K−1) ·Nt) messages of size O(1)
are needed. More generally, if N · p processors are used in the PSWR algorithm,
where p<K is a multiple of K, then O((p−1)/p ·K ·Nt) messages of size O(1), and
O(K/p−1) messages of size O(Nt), are needed. We note that the PSWR algorithm
can also be implemented using a framework the naturally reduces the number of
messages in a system. Assuming a heterogeneous computing platform (where each
socket has multiple cores), one can use the MPI-3 framework [11] or the OpenMP
protocol in the outer “parallel for” statement in line 8, to aggregate transmission data
from line 14 naturally before exchanging transmission data with neighboring nodes.
Alternatively, because nodes working on waveform iterate k only need to communi-
cate with waveform iterates k−1, the PSWR algorithm allows for a natural grouping
of nodes so that one can (in principle) use multiple overlapping communicators to
leverage data/network-topology and software defined networking advances [5] to
add scalability.
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Generalizations to allow for disparate time discretizations in each sub-problem
are possible. We list the algorithm without implementation. Unlike PSWR Algo-
rithm 1, it is not possible to keep the “pipe” full, i.e. domain i might necessarily
need to wait for it’s neighbouring domains to provide boundary data. Additionally,
solving for u[k]i (t [k]i ,x) in line 14 requires an interpolation algorithm to correctly ob-
tain the correct transmission condition to be used in the solution of (3). Lastly, an
implementation decision has to be made on how to collect and store the data from
neighboring domains before the interpolation is used to obtain the transmission con-
ditions for an update in line 14.

Pipeline Schwarz Waveform Relaxation Algorithm 2
1. MPI Initialization
2. parallel for i = . . .1..N (Sub-domain)
3. for ti = ∆ ti . . .T
4. Guess u[0]i (z, t), z ∈ ∂Ωi∩∂Ω j
5. end
6. Set t [0]i = T
7. end
8. parallel for k = 1 . . .K (Waveform iteration)
9. parallel for i = 1 . . .N (Sub-domain)
10. initialize ∆ t [k]i

11. set t [k]i = ∆ t [k]i

12. While t [k]i ≤ T

13. If t [k]i < t [k−1]
j for all neighbors j

14. Solve for u[k]i (t [k]i ,x)

15. Send transmission data T (u[k]i (t [k]i ,z)) to neighbor nodes
16. t [k]i ← t [k]i +∆ t [k]i
17. end
18. end
19. Check convergence
20. end
21. end
.

4 Numerical Experiments

We present results from scaling studies, which vary the number of computational
cores used to compute the PSWR algorithm while keeping total discretized problem
size constant. The diffusion equation ut = k(uxx +uyy) is solved in R2 using a cen-
tered five point finite-difference approximation in space, and a backward Euler time
integrator. In our first scaling study, 400x400 grid points are decomposed into 4x4
non-overlapping domains for 400 total time steps. Optimized robin transmission
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Fig. 2 The error of the waveform iterates at time T is computed relative to monodomain solu-
tion for a 4× 4 decomposition of the problem using optimized transmission conditions. The con-
vergence behavior of the PSWR algorithm is identical to the convergence behavior of the SWR
algorithm.

conditions of the form

Ti j[·] =
(

d
dn̂

+ p
)
[·], T ji[·] =

(
d
dn̂
− p
)
[·],

are used, where d
dn̂ is the derivative in the normal direction, and p = 1. (A recur-

sive formula is used to compute the transmission condition in lieu of discretizing
the derivative in the normal direction). In each experiment a total of 16 full wave-
form iterations are completed. Timing results are obtained using the stampede su-
percomputer at the Texas Advanced Computing Center. Good parallel efficiency and
speedup is observed in spite of the increase in the number of messages required by
the PSWR algorithm. Note that the 4×4×1 case is identically the SWR algorithm.

Nx×Ny×Nk # cores walltime speedup efficiency
4×4×1 16 293.02 seconds 1.00 × 1.00
4×4×2 32 149.92 seconds 1.95 × 0.98
4×4×4 64 75.48 seconds 3.89 × 0.97
4×4×8 128 38.71 seconds 7.57 × 0.95

4×4×16 256 23.90 seconds 12.26 × 0.77

In our second scaling study, 1600x1600 grid points are decomposed into 16x16
non-overlapping domains domains for 400 total time steps. Again, a centered five
point finite difference stencil, a backward Euler time integrator, and optimized trans-
mission conditions are used. Good parallel efficiency and speedup is observed even
with the increased synchronization/number of messages in the system.
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Nx×Ny×Nk # cores walltime speedup efficiency
16×16×1 256 295.86 seconds 1.00 × 1.00
16×16×2 512 155.98 seconds 1.90 × 0.95
16×16×4 1024 77.10 seconds 3.84 × 0.96
16×16×8 2048 43.20 seconds 6.85 × 0.86

16×16×16 4096 26.65 seconds 11.10 × 0.69

In the above computations, a linear solve on a sub-domain takes O(10−2) sec-
onds. This relatively small problems size was chosen (100× 100 on each sub-
domain) so that communications would play a substantial role in the timing studies.
The presented efficiencies can be improved by partitioning the problem to be more
computationally expensive (i.e. more time is spent in the linear solve).

5 Conclusions

In this paper, we have reformulated classical Schwarz waveform relaxation to allow
for pipeline-parallel computation of the waveform iterates, after an initial startup
cost. Theoretical estimates for the parallel speedup and communication overhead
are presented, along with scaling studies to show the effectiveness of the pipeline
Schwarz waveform relaxation algorithm.
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1. INTRODUCTION
The fast, accurate solution of an initial-value problem (IVP) of the form

y′(t) = f(t,y), y(0) = y0, t ∈ [0, T ], (1)

where y(t) ∈ CN , f : [R × CN ] → CN , is of practical interest in scientific computing.
IVP (1) often arises from the spatial discretization of partial differential equations, and
may require either an explicit or implicit time-integrator. The purpose of this software
is to “wrap” a user-implemented first-order explicit or implicit solver for IVP (1) into
a high-order parallel solver; that is, given (tn, yn, fn), a user specifies a function that
returns (tn+1, yn+1, fn+1) using either a forward Euler or backward Euler integrator.
This work differs from existing ODE integration software or libraries, where a user
typically only needs to specify the system of ODEs and relevant problem parameters.
The upside is that our software provides a parallel–in–time solution while giving the
user complete control of the first-order time step routine. For example, the user may
chose their own quality libraries for the solution of systems of nonlinear algebraic
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equations or efficient linear system solvers particularly tuned to the structure of their
problems.

There are three general approaches for a time-parallel solution of IVPs [Burrage
1993]. One approach is “parallelism-across-the-problem”, where a problem is decom-
posed into sub-problems that can be computed in parallel, and an iterative procedure
is used to couple the sub-problems. Examples of this class of methods include parallel
wave-form relaxation methods [Vandewalle and Roose 1989]. The second approach is
“parallel-across-the-step” methods, where the time domain is partitioned into smaller
temporal subdomains which are solved simultaneously. Examples of this class of meth-
ods include parareal methods [Maday and Turinici 2002; Gander and Vandewalle
2007], where the method alternates between applying a coarse sequential solver and a
fine parallel solver. The third approach is “parallelism-across-the-method”, where one
exploits concurrent function evaluations within a step to generate a parallel time inte-
grator. This approach typically allows for small-scale parallelism, constrained by the
number of function evaluations that can evaluated in parallel. This is often related
to the order of the approximation. Examples of Runge–Kutta methods where stages
can be evaluated in parallel include [Miranker and Liniger 1967; Enenkel and Jack-
son 1997; Ketcheson and bin Waheed 2014]. Alternatively, one can use a predictor–
corrector framework to generate parallel-across-the-method time integrators. This in-
cludes parallel extrapolation methods [Kappeller et al. 1996], and RIDC integrators
[Christlieb et al. 2010; Christlieb and Ong 2011], which are the focus of this paper. A
survey of parallel time integration methods has recently appeared [Gander 2015].

1.1. Related Software
There are several well established software packages for solving differential algebraic
equations, however not many of them are able to solve IVPs (1) in parallel. For sequen-
tial integrators, probably the most well known are MATLAB routines ode45, ode23,
ode15s [Shampine et al. 1999] to solve their systems of differential equations. These
schemes use embedded RK pairs or numerical differentiation formulas (of the speci-
fied order) to approximate solutions to the differential equations using adaptive time-
stepping. Readers might also be familiar with DASSL [Petzold 1983], which imple-
ments backward differentiation formulas of order one through five. The nonlinear sys-
tem at each time-step is solved by Newton’s method, and the resulting linear systems
are solved using routines from LINPACK. DASSL leverages the SLATEC Common
Mathematical Library [Vandevender and Haskell 1982] for step-size adaptivity. Also
popular are ODEPACK [Hindmarsh 1983] and VODE [Brown et al. 1989], a collection
of fortran solvers for IVPs, SUNDIALS, a suite of robust time integrators and nonlin-
ear solvers [Hindmarsh et al. 2005], and there are a variety of ODE and DAE time
steppers implemented in PETSc [Balay et al. 2014] and GSL [Gough 2009].

The selection of parallel solvers for IVPs is fairly sparse. EPPEER [Schmitt 2013] is a
Fortran95/OpenMP implementation of explicit parallel two-step peer methods [Weiner
et al. 2008] for the solution of ODEs on multicore architectures. PyPFASST [Emmett
2013] is a python implementation of a modified parareal solver for ODEs and PDEs
[Emmett and Minion 2012]. XBRAID [Schroder et al. 2015] is a C library that im-
plements a multigrid-reduction-in-time algorithm [Falgout et al. 2014], where mul-
tiple time-grids of different granularity are distributed across processors using MPI.
PFASST++ [Emmett et al. 2015] is a C++ implementation of the “ parallel full approx-
imation scheme in space and time (PFASST) algorithm [Emmett and Minion 2014].
There are other implementations (such as the dependency-driven parareal framework
developed at Oakridge National Laboratory [Elwasif et al. 2011]) that do not appear
to be available for download at present.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2015?.

136
DISTRIBUTION A: Distribution approved for public release.



RIDC Methods: Software for Parallel-Time Integration 0:3

2. REVIEW OF RIDC METHODS
Spectral deferred correction (SDC) [Dutt et al. 2000] provides an iterative correction of
an approximate solution by solving an integral formulation of an error equation. This
integral form stabilizes the classical differential deferred correction approach. RIDC
is a re–formulation of SDC, pipelining successive calculations so that corrections can
be obtained in parallel with an appropriate time lag. SDC, in contrast, is a sequential
algorithm. Unlike the spectral deferred correction, which uses Gauss–Lobatto nodes,
RIDC uses uniformly spaced nodes to minimize the memory footprint and to allow one
to embed high order integrators [Christlieb et al. 2009; 2010].

The basic idea of the IDC and RIDC approaches is to formulate associated error IVPs
which correct numerical errors from the solutions to IVP (1); the parallelism arises
from the ability to simultaneously compute solutions to both IVP (1) and solutions
to the associated error IVPs. In this section, we review the formulation of the error
equations, discretizations, and parallel properties of the RIDC algorithm. Please refer
to [Christlieb et al. 2010; Christlieb and Ong 2011] for accuracy and stability properties
of the RIDC approach.

2.1. Error IVPs
Denote the (unknown) exact solution of IVP (1) as y(t), and the approximate solution
as u(t), with u(0) = y(0). The error in the approximate solution is e(t) = y(t) − u(t).
Define the residual (sometimes known as the defect) as r(t) = u′(t)− f(t, u). Then, the
time derivative of the error satisfies

e′(t) = y′(t)− u′(t) = f(t, u+ e)− f(t, u)− r(t).
Since e(0) = u(0)−y(0) = 0, we have just derived the associated error IVP. For stability,
the integral form of the error IVP is preferred [Dutt et al. 2000],

(
e+

∫ t

0

r(τ) dτ

)′
= f(t, u+ e)− f(t, u). (2)

Observing that the corrected approximation u + e is still an approximation if the
error equation (2) is solved numerically, we adopt a more general notation which will
allow us to iteratively correct the solution until a desired accuracy is reached. Denote
the initial approximation as u[0], the pth approximation as u[p], and the error to u[p] as
e[p]. Then, the error equation can be rewritten as

(
e[p] +

∫ t

0

r[p](τ) dτ

)′
= f(t, u[p] + e[p])− f(t, u[p]), (3)

where r[p] = u[p](t)′ − f(t, u[p]).

2.2. Discretization
With some algebra, a first-order explicit discretization of (3), written in terms of the
solution, gives

u
[p+1]
n+1 = u[p+1]

n + ∆tf(tn, u
[p+1]
n )−∆tf(tn, u

[p]
n ) +

∫ tn+1

tn

f(τ, u[p]) dτ. (4)

Likewise a first-order implicit discretization of (3) gives

u
[p+1]
n+1 = u[p+1]

n + ∆tf(tn+1, u
[p+1]
n+1 )−∆tf(tn+1, u

[p]
n+1) +

∫ tn+1

tn

f(τ, u[p]) dτ. (5)
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In both semi-descretizations (4) and (5), a sufficiently accurate quadrature is needed
to approximate the integrals present [Dutt et al. 2000]. If a first order predictor was
applied to obtain an approximate solution to (1), and first order correctors such as (4)
and (5) are used, approximating the quadrature using

∫ tn+1

tn

f(τ, u[p]) dτ ≈





p+1∑

ν=0

αpνf(tn+1−ν , u
[p]
n+1−ν), if n ≥ p,

p+1∑

ν=0

αpνf(tν , u
[p]
ν ), if n < p,

,

where αpν are quadrature weights,

αpν =





∫ tn+1

tn

p+1∏

i=0,i6=ν

(t− tn+1−i)
(tn+1−ν − tn+1−i)

dt, if n ≥ p,
∫ tn+1

tn

p+1∏

i=0,i6=ν

(t− ti)
(tν − ti)

dt, if n < p

results in a P th order method, if (P − 1) such corrections are applied.

2.3. Stability
A study of the (linear) stability of explicit RIDC methods is provided in [Christlieb
et al. 2010] and for implicit RIDC methods in [Christlieb and Ong 2011]. The results
indicate that the region of absolute stability of RIDC methods approach the region of
absolute stability of the underlying predictor as the number of time steps increases.
Moreoever, for the implicit RIDC4-BE method preserves the A–stability property of
backward Euler.

2.4. Parallelization
As mentioned earlier, the parallelism arises from the ability to simultaneously com-
pute solutions to both IVP (1) and solutions to the associated error IVPs (3). This is
possible if there is some staggering to decouple solutions of IVP (1) and the error equa-
tions. As shown in Figure 1, staggering of one timestep is required to compute solutions
in a pipeline parallel fashion. For example, while the predictor computes a solution at
time t10, the first corrector computes the correction at time t9, the second corrector
the second correction at time t8, and so on. We discuss the “memory footprint” and
the startup routine required by the RIDC method in Section 2.5 before presenting a
pseudo algorithm for the RIDC methods on page 6.

2.5. Memory Footprint, Efficiency, Start-up and Shut-down
Figure 1 also shows the “memory footprint” required to execute the RIDC method in a
pipeline-parallel fashion. The memory footprint are copies of the solution vector eval-
uated at earlier correction/prediction levels and time steps; one can also think of the
memory footprint as the discretization stencil across the different correction and pre-
diction levels. For a P th order RIDC method, the (P−1)st correction update (i.e. solving
error IVP #(P-1)) requires a stencil of size (P + 1), the (P − 2)nd correction requires an
additional (P−2) size stencil, the (P−2)nd correction requires an additional (P−3) size
stencil, and so on. The total memory footprint required for a P th order RIDC method
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IVP (1.1)

Error IVP #1

Error IVP #2

Error IVP #3

t. . . t4 t5 t6 t7 t8 t9 t10 . . .

Fig. 1. In a RIDC method,
solution values and correc-
tion terms are computed in a
pipeline fashion. For example,
while a processor is comput-
ing a solution to IVP (1) at
t10, a second processor com-
putes corrections to the numer-
ical error at time t9, a third
processor computes additional
corrections at time t8, and so
forth. (i.e., the open circles de-
note solutions that are simul-
taneously computed). The solid
circles denote stored solution
values that are needed for the
quadrature approximation.

is
(
P−1∑

i=1

(i+ 1)

)
+ 1 =

(P − 1)(P )

2
+ (P − 1) + 1 =

P (P + 1)

2
.

In [Christlieb et al. 2010] it is shown that the ratio of time steps taken by P th-order
RIDC–Euler method, using K steps before a restart, to the number of steps taken by
the forward Euler method is

γ = 1 +
(P − 1)2

K
.

This shows that the method becomes more efficient (in terms of wall-clock time) as K
increases. One does have to balance a large value of K with the possible increase in
error this may cause. A study of this balance is provided in [Christlieb et al. 2010].

Because of the staggering, start-up steps are needed to fill the memory footprint. As
discussed in [Christlieb et al. 2010], one should control the start-up steps to minimize
the size of the memory footprint; that is, it is more desirable to stall the predictors and
lower-level correctors initially (as appropriate) until all predictors and correctors can
be marched in a pipeline fashion with the minimal memory footprint. For example,
Figure 2 shows the start-up routine for a fourth-order RIDC method. Initially, only the
predictor advances the solution from t0 to t1 in step one. In steps two and three, both
the predictor and first corrector are advanced to populate the memory stencil in prepa-
ration for the second corrector. In step four, only the second corrector is advanced; the
predictor and first corrector are stalled because the memory stencil needed to advance
the second corrector from t1 to t2 is the same memory stencil needed to advance the
corrector from t0 to t1.

Although this concept is easy to grasp, the startup algorithm looks non-intuitive at
first glance. Algorithm 1 specifies the nuts-and-bolts of the start-up routine. The RIDC
method can be run in a pipe-line fashion (with the minimal memory footprint) after
startnum − 1 initialization steps, where startnum = min(1, p(p+1)

2 − 1). For example,
no initialization is required if p = 1. If p = 4, eight initialization steps are required
– the RIDC method starts marching in a pipeline fashion at step nine. In the RIDC
software, this startup routine is implemented using the filter variable.

The shut-down routine for the RIDC method is straightforward; each predictor and
corrector only advances the solution until the final time, tF , is reached. The parallel
RIDC pseudo-code is summarized in Algorithm 2.
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t0 t1 t2 t3 t4 t5 t5 . . .
t

Error IVP #3 0 7 8 9

Error IVP #2 0 4 5 6 9

Error IVP #1 0 2 3 5 6 9

IVP (1.1) 0 1 2 3 5 6 9

Fig. 2. Start-up routine for
a fourth-order RIDC method.
Observe that the predictor and
lower order correctors are occa-
sionally stalled to ensure that
a minimal memory footprint
is used for the RIDC method.
The fourth-order RIDC startup
takes eight steps; from step
nine on, the RIDC method can
be marched in a pipeline fash-
ion.

ALGORITHM 1: RIDC Startup-Routine

startnum = min(1, p(p+1)
2

− 1);
for p = 1 to (P − 1) do

march previous levels (i.e. 0, . . . , (p− 1)) in a pipe for one step;
march current level (p− 1) steps;
march levels 0, . . . , p, in a pipe for one step;

end

ALGORITHM 2: RIDC Pseudo Code
fill memory stencil, compute startnum ;
for nt = startnum to NT do

for p = 0 to (P − 1) do in parallel
if p = 0 then

use step to advance solution on prediction level (if tF not reached on prediction
level);

else
use corr fe or corr be to advance solution on correction level p (if tF not reached on
correction level p);

end
end
update memory stencil ;

end

3. RIDC SOFTWARE
To utilize popular sequential integrators as described in Section 1.1, a user often spec-
ifies f(t, y), the range of integration [0, T ], the initial condition y0 = y(0) (and for
DASSL, the derivative y′0 = y′(0)), and integrator parameters (such as parameters
for controlling step-size adaptivity). While these general purpose time integration rou-
tines are convenient and easy to use, this “black-box” approach (for example, a user
does not have to deal with the nonlinear solves arising from the backward differen-
tiation formulas) sometimes precludes the use of additional information, such as the
use of a problem-specific preconditioner, sparsity of the matrices, or multigrid iterative
solvers.

The RIDC software presented here differs from the type of time-integration soft-
ware mentioned above in that a first-order, user-specified, advance for t → t + ∆t is
bootstrapped to generate a high-order, parallel integrator using the integral deferred
correction framework described in Section 2.
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3.1. Under the hood
The RIDC software and examples are coded in C++; task parallelism is achieved using
OpenMP threads to solve the predictors and the correctors in parallel. This mode of
parallelism was chosen to accommodate the data movement/communication required
by the RIDC algorithm when solving equations (4) and (5). We assume that the user-
defined step routine to advance the solution is a first-order sequential integrator, al-
though with some minor modifications to the RIDC software provided, bootstrapping
higher order integrators is possible. The RIDC software can also be modified to lever-
age a thread-safe user-defined step routine, for example a CUDA-accelerated step rou-
tine [Ong et al. 2012] or an MPI-parallelized step routine [Christlieb et al. 2012] can
be utilized, see Section 3.3. If the step routine uses an explicit Euler integrator, the
RIDC software assumes that un+1 satisfies

un+1 − un = ∆tf(tn, un).

If the step routine uses an implicit Euler integrator, the RIDC software assumes that
un+1 satisfies

un+1 − un = ∆tf(tn+1, un+1).

The RIDC software treats this step routine as a black box, as depicted in Figure 3.

Step Routine
(∆t, tn, un) (tn+1, un+1) Fig. 3. User-defined step routine that ad-

vances a solution from tn to tn+1.

The RIDC functions solve equations (4) and (5) by creating the necessary data struc-
tures to store copies of the solution vector described in Section 2.5, and then perform-
ing the appropriate algebraic computations on these stored solution values. First, con-
sider the explicit Euler discretization of the error equation (4). Observe that u[p+1]

n+1

can be constructed by applying the user-defined step routine to u[p+1]
n to obtain ṽ

[p+1]
n+1 ,

and then adding −∆tf(tn, u
[p]
n ) +

∫ tn+1

tn
f(τ, u[p]) dτ to ṽ[p+1]

n+1 to finally obtain u
[p+1]
n+1 . The

explicit RIDC wrapper is displayed in Figure 4.

Step Routine

Post-Process

(∆t, tn, u
[p+1]
n )

ṽ
[p+1]
n+1

(tn+1, u
[p+1]
n+1 )

Fig. 4. A visualization of the RIDC
wrapper to obtain a solution to equa-
tion (4). The post process takes an input
ṽ
[p+1]
n+1 and returns ṽ[p+1]

n+1 −∆tf(tn, u
[p]
n )+

∫ tn+1
tn

f(τ, u[p]) dτ .

A similar observation can be made about the implicit Euler discretization of the
error equation (5), however, one first constructs the intermediate value ṽ

[p+1]
n =

u
[p+1]
n − ∆tf(tn, u

[p]
n ) +

∫ tn+1

tn
f(τ, u[p]) dτ , and then applies the user-defined step func-

tion to ṽ[p+1]
n . The implicit RIDC wrapper is displayed in Figure 5.
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Pre-Process

Step Routine

(∆t, tn, u
[p+1]
n )

ṽ
[p+1]
n

(tn+1, u
[p+1]
n+1 )

Fig. 5. A visualization of the RIDC wrap-
per to obtain a solution to equation (5).
The pre-process takes an input u

[p+1]
n

and returns ũ
[p+1]
n − ∆tf(tn, u

[p+1]
n ) +∫ tn+1

tn
f(τ, u[p]) dτ .

3.2. Discussion
The computational overhead of RIDC methods resides mainly in the quadrature ap-
proximation, and the subsequent linear combinations used to compute the corrected
solutions. Provided this computational overhead is small compared to an evaluation of
the step routine, good parallel speedup is achieved. In practice, this is almost always
the case for implicit RIDC methods where solutions to linear equations, and/or New-
ton iterations are required. For explicit RIDC methods, good parallel speedup is only
observed when the step routine is sufficiently expensive, such as in the computation of
self-consistent forces for an n-body problem [Christlieb et al. 2010].

As mentioned in Section 2.5, the RIDC method has to store copies of the solution vec-
tor evaluated at ealier correction/prediction levels. Although this memory requirement
might appear restrictive, the memory footprint for high order single-step, multi-step
or general linear methods are similar. Implicit RIDC methods also benefit from the
loose coupling between the prediciton and corection equations; whereas a general im-
plicit s-stage implicit RK method neccessitates the solution of a system of (potentially
nonlinear) sN equations, where N are the number of differential algebraic equations.
A pth-order RIDC method constructed using backward Euler integrators requires the
solution of p decoupled systems of N (potentially nonlinear) algebraic equations.

3.3. Possible Generalizations
For clarity, only the simplest variant of the RIDC method (constructed using first order
Euler integrators, uniform time-stepping, serial computation of the step routine) has
been presented, and released as part of the base software version. Here, we make
some remarks on how the base version of the software can be modified by the user to
accommodate several generalizations discussed in this secton; indeed, the authors will
release (when possible) modified versions of the software within the source repository
that illustrate how to generate generalized RIDC integrators.

Step-size adaptivity for error control: In [Christlieb et al. 2015], various variants of
adaptive RIDC methods were presented. In the simplest variant, one uses standard er-
ror control stratagies to adaptively select step-sizes while solving IVP (1). These adap-
tively selected step-sizes are used for solving the error equations (2). To build step-size
adaptivity into the provided RIDC software, the following modifications will be needed:
(i) modify the time-loop appropriately to allow for non-uniform steps, (ii) modify the
driver file appropriately to take a user-defined tolerance (as opposed to the number of
time steps), (iii) recompute the integration matrix containing the quadrature weights
at every time step. The user will presumably provide an additional adapt step func-
tion, which takes as inputs the solution at time t, the previous time step used, ∆told, a
tolerance tol, and returns the time step selected, ∆t, and the solution at the new time
step, t+ ∆t.

Restarts: As discussed in [Christlieb et al. 2010], the RIDC method accumulates er-
ror while running in a pipeline fashion – the most accurate solution does not propagate
to the earlier prediction/correction levels. In some cases, it might be advantageous to
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stop the RIDC method, and use the most accurate solution to “restart” the computa-
tion. This requires only a simple modification to the main RIDC loop in ridc.cpp.

Constructing RIDC methods using higher-order integrators: With a few modifica-
tions, it is possible to use higher-order single step integrators within the RIDC soft-
ware. The memory stencil, integration matrix and quadrature approximations will
need to be modified in ridc.cpp.

Semi-implicit RIDC methods: Although semi-implicit RIDC methods have been con-
structed and studied in [Ong et al. 2012], it is in general not possible to wrap a user-
defined semi-implicit step function to solve the error equation (2). Consider the IVP

y′(t) = fN (t,y) + fS(t,y),

where fS contains stiff terms and fN contains the nonstiff terms. A first-order user-
defined step function to solve this IVP would look like

un+1 − un = ∆tfN (tn, un) + ∆tfS(tn+1, un+1),

whereas the first-order IMEX discretization of the error equation (2) is

u
[p+1]
n+1 = u[p+1]

n + ∆t
[
fN (tn, u

[p+1]
n ) + fS(tn+1, u

[p+1]
n+1 )

]
−∆t

[
fN (tn, u

[p]
n ) + fS(tn+1, u

[p]
n+1)

]

+

∫ tn+1

tn

[
fN (τ, u[p]) + fS(τ, u[p])

]
dτ.

Althought it is not obvious how to automaticaly bootstrap a semi–implicit step func-
tion, a user can leverage the data structures and quadrature approximations in
ridc.cpp to construct a new corr fbe function, which should look similar in structure
to the users’ step function.

Using accelerators for the step routine: Many computing clusters feature nodes with
multiple accelerators, e.g. Nvidia GPGPUs or Intel Xeon Phis. If the user wishes to pro-
vide a step routine that is accelerated using these emerging architectures, the RIDC
code can be modified to leverage multiple accelerators in a computational node. Modifi-
cations that are required include: adding an input variable “level” (an integer from 0 to
p− 1, where p is the desired order / number of accelerators in the system) into the step
routine, a function call within the step function to specify the appropriate accelerator,
e.g. cudaSetDevice for the NVIDIA GPGPUs, and a modification of ridc.cpp so that
the prediction/correction level is fed into the step function, ensuring that the linear
algebra is performed on the appropriate accelerator.

Using distributed MPI for the step routine: Although the RIDC software can be mod-
ified to allow for an MPI-distributed step routine (provided this step-routine is thread
safe), we showed in [Haynes and Ong 2014] that a tighter coupling of the hybrid MPI-
OpenMP formulation to reduce the number of messages is necessary for performance.

4. NUMERICAL EXPERIMENT
The software includes several examples verifying that the RIDC methods attain their
designed orders of accuracy. As mentioned, these examples also serve as templates for
the user to bootstrap their own first order time integration methods to give a parallel–
in–time approximation. Good parallel speedup is observed when the computational
overhead for the RIDC methods (namely, the quadrature approximation and the linear
combinations to compute the corrected solutions) is small compared to an evaluation
of the step routine. Here, we present the numerical results for the Brusselator in R1.

ut = A+ u2v − (B + 1)u+ αuxx, (6)
vt = Bu− u2v + αvxx,
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with A = 1, B = 3 and α = 0.02, initial conditions

u(0, x) = 1 + sin(2πx), v(0, x) = 3,

and boundary conditions

u(t, 0) = u(t, 1) = 1, v(t, 0) = v(t, 1) = 3.

A central finite difference approximation is used to discretize equation (6). The re-
sulting nonlinear system of equations is solved using a Newton iteration. In the tim-
ing results, the Intel Math Kernel Library (MKL) is used to solve the linear sys-
tem arising in each Newton iteration. The code for this example can be found in the
examples/brusselator mkl directory. Figure 6 shows a standard convergence study of
error versus number of timesteps to demonstrate that the RIDC software bootstraps
the first order integrator to generate a high-order method of the desired accuracy.

10−1.8 10−1.6 10−1.4 10−1.2 10−1
10−13

10−10

10−7

10−4

10−1

slope=4

slope=1

∆t

E
rr

or

Euler
RIDC-2
RIDC-3
RIDC-4
RIDC-5

Fig. 6. Standard convergence
study of error versus time step,
∆t, showing that RIDC meth-
ods achieve their designed or-
ders of accuracy.

In Figure 7, the walltime used to compute each ridc method is plotted to show
the “weak scaling” capability of RIDC methods. For example, the fourth-order RIDC
method computes a solution using four computing cores that is 3-5 orders of magnitude
more accurate than the first order Euler solution in approximately the same wallclock
time. Tming results using a serial three-stage, fifth-order RADAU IIA integrator is also
presented. A fifth order RIDC method (with five computing cores) provides a solution
with comparable accuracy in 10% of the walltime. The scaling studies were performed
on a single computational node consisting of a dual socket Intel E5-2670v2 chipset.

5. CONCLUSIONS
In this paper, we presented the revisionist integral deferred correction (RIDC) soft-
ware for solving systems of initial values problems. The approach bootstraps lower or-
der time integrators to provide high order approximations in approximately the same
wall clock time, providing a multiplicative increase in the number of compute cores uti-
lized. The C++ framework produces a parallel–in–time solution of a system of initial
value problems given user supplied code for the right hand side of the system and the
sequential code for a first-order time step. The user supplied time step routine may be
explicit or implicit and may make use of any auxiliary libraries which take care of the
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101 102
10−13

10−10
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10−4

10−1
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E
rr
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Euler
RIDC-2
RIDC-3
RIDC-4
RIDC-5

Radau IIA (5)

Fig. 7. The error as a function of walltime is plotted for various RIDC methods. Here, two computing cores
(set via OMP NUM THREADS=2) is used to compute the second order RIDC method (RIDC-2), three computing
cores are used to compute RIDC-3, four computing cores are used to compute RIDC-4, and give compute
cores are used to compute RIDC-5. A single computing core was used to compute Radau IIA. The RIDC
software computes a pth order solution in approximately the same wall clock time as an Euler solution,
provided p computing cores are available. The parallel RIDC methods also provide good speedup over a
serial Radau IIA integrator.

solution of the nonlinear algebraic systems which arise or the numerical linear algebra
required.
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1 Introduction

In this paper we consider the phase retrieval for sparse signals with noisy measure-
ments, which arises in many different applications. Assume that

b j := |〈a j , x0
〉| + e j , j = 1, . . . ,m

where x0 ∈ R
N , a j ∈ R

N and e j ∈ R is the noise. Our goal is to recover x0 up to
a unimodular scaling constant from b := (b1, . . . , bm)� with the assumption of x0
being approximately k-sparse. This problem is referred to as the compressive phase
retrieval problem [9].

The paper attempts to address two problems. Firstly we consider the stability of
�1 minimization for the compressive phase retrieval problem where the signal x0 is
approximately k-sparse, which is the �1 minimization problem defined as follows:

min ‖x‖1 subject to
∥∥|Ax | − |Ax0|

∥∥
2 ≤ ε, (1.1)

where A := [a1, . . . , am]� and |Ax0| := [|〈a1, x0〉|, . . . , |〈am, x0〉|]�. Secondly we
investigate instance-optimality in the phase retrieval setting.

Note that in the classical compressive sensing setting the stable recovery of a k-
sparse signal x0 ∈ C

N can be done using m = O(k log(N/k)) measurements for
several classes of measurement matrices A. A natural question is whether stable com-
pressive phase retrieval can also be attained withm = O(k log(N/k)) measurements.
This has indeed proved to be the case in [6] if x0 ∈ R

N and A is a random real Gaussian
matrix. In [8] a two-stage algorithm for compressive phase retrieval is proposed, which
allows for very fast recovery of a sparse signal if the matrix A can be written as a prod-
uct of a random matrix and another matrix (such as a random matrix) that allows for
efficient phase retrieval. The authors proved that stable compressive phase retrieval
can be achieved with m = O(k log(N/k)) measurements for complex signals x0 as
well. In [10], the strong RIP (S-RIP) property is introduced and the authors show that
one can use the �1 minimization to recover sparse signals up to a global sign from the
noiselessmeasurements |Ax0| provided A satisfies S-RIP. Naturally, one is interested
in the performance of �1 minimization for the compressive phase retrieval with noisy
measurements. In this paper, we shall show that the �1 minimization scheme given in
(1.1) will recover a k-sparse signal stably from m = O(k log(N/k)) measurements,
provided that the measurement matrix A satisfies the strong RIP (S-RIP) property.
This establishes an important parallel for compressive phase retrieval with the classi-
cal compressive sensing. Note that in [11] such a parallel in terms of the null space
property was already established.

The notion of instance optimalitywas first introduced in [5]. We use ‖x‖0 to denote
the number of non-zero elements in x . Given a norm ‖ · ‖X such as the �1-norm and
x ∈ R

N , the best k-term approximation error is defined as

σk(x)X := min
z∈�k

‖x − z‖X ,
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where

�k := {x ∈ R
N : ‖x‖0 ≤ k}.

We use � : Rm �→ R
N to denote a decoder for reconstructing x . We say the pair

(A,�) is instance optimal of order k with constant C0 if

‖x − �(Ax)‖X ≤ C0σk(x)X (1.2)

holds for all x ∈ R
N . In extending it to phase retrieval, our decoder will have the

input b = |Ax |. A pair (A,�) is said to be phaseless instance optimal of order k with
constant C0 if

min
{
‖x − �(|Ax |)‖X , ‖x + �(|Ax |)‖X

}
≤ C0σk(x)X (1.3)

holds for all x ∈ R
N . We are interested in the following problem : Given ‖ · ‖X and

k < N , what is the minimal value of m for which there exists (A,�) so that (1.3)
holds?

The null space N (A) := {x ∈ R
N : Ax = 0} of A plays an important role in the

analysis of the original instance optimality (1.2) (see [5]). Here we present a null space
property forN (A), which is necessary and sufficient, for which there exists a decoder
� so that (1.3) holds. We apply the result to investigate the instance optimality where
X is the �1 norm. Set

�1(|Ax |) : = argmin
z∈RN

{
‖z‖1 : |Ax | = |Az|

}
.

We show that the pair (A,�1) satisfies (1.3) with X being the �1-norm provided A
satisfies the strong RIP property (see Definition 2.1). As shown in [10], the Gaussian
random matrix A ∈ R

m×N satisfies the strong RIP of order k for m = O(k log(N/k).
Hence m = O(k log(N/k)) measurements suffice to ensure the phaseless instance
optimality (1.3) for the �1-norm exactly as with the traditional instance optimality
(1.2).

2 Auxiliary Results

In this section we provide some auxiliary results that will be used in later sections.
For x ∈ R

N we use ‖x‖p := ‖x‖�p to denote the p-norm of x for 0 < p ≤ ∞. The
measurement matrix is given by A := [a1, . . . , am]T ∈ R

m×N as before. Given an
index set I ⊂ {1, . . . ,m} we shall use AI to denote the sub-matrix of A where only
rows with indices in I are kept, i.e.,

AI := [a j : j ∈ I ]�.
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The matrix A satisfies the Restricted Isometry Property (RIP) of order k if there exists
a constant δk ∈ [0, 1) such that for all k-sparse vectors z ∈ �k we have

(1 − δk)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δk)‖z‖22.

It was shown in [2] that one can use �1-minimization to recover k-sparse signals

provided that A satisfies the RIP of order tk and δtk <

√
1 − 1

t where t > 1.
To investigate compressive phase retrieval, a stronger notion of RIP is given in [10]:

Definition 2.1 (S-RIP)We say thematrix A = [a1, . . . , am]� ∈ R
m×N has the Strong

Restricted Isometry Property of order k with bounds θ−, θ+ ∈ (0, 2) if

θ−‖x‖22 ≤ min
I⊆[m],|I |≥m/2

‖AI x‖22 ≤ max
I⊆[m],|I |≥m/2

‖AI x‖22 ≤ θ+‖x‖22 (2.1)

holds for all k-sparse signals x ∈ R
N , where [m] := {1, . . . ,m}. We say A has the

Strong Lower Restricted Isometry Property of order k with bound θ− if the lower
bound in (2.1) holds. Similarly we say A has the Strong Upper Restricted Isometry
Property of order k with bound θ+ if the upper bound in (2.1) holds.

The authors of [10] proved that Gaussian matrices with m = O(tk log(N/k))
satisfy S-RIP of order tk with high probability.

Theorem 2.1 ([10]) Suppose that t > 1 and A = (ai j ) ∈ R
m×N is a random

Gaussian matrix with m = O(tk log(N/k)) and ai j ∼ N (0, 1√
m

). Then there exist

θ−, θ+ ∈ (0, 2) such that with probability 1 − exp(−cm/2) the matrix A satisfies the
S-RIP of order tk with constants θ− and θ+, where c > 0 is an absolute constant and
θ−, θ+ are independent of t .

The following is a very useful lemma for this study.

Lemma 2.1 Let x0 ∈ R
N and ρ ≥ 0. Suppose that A ∈ R

m×N is a measurement

matrix satisfying the restricted isometry property with δtk ≤
√

t−1
t for some t > 1.

Then for any

x̂ ∈
{
x ∈ R

N : ‖x‖1 ≤ ‖x0‖1 + ρ, ‖Ax − Ax0‖2 ≤ ε
}

we have

‖x̂ − x0‖2 ≤ c1ε + c2
2σk(x0)1√

k
+ c2 · ρ√

k
,

where c1 =
√
2(1+δ)

1−√
t/(t−1)δ

, c2 =
√
2δ+

√
(
√
t (t−1)−δt)δ√

t (t−1)−δt
+ 1.

151
DISTRIBUTION A: Distribution approved for public release.



J Fourier Anal Appl

Remark 2.1 We build the proof of Lemma 2.1 following the ideas of Cai and Zhang
[2]. The full proof is given in Appendix for completeness. It is well-known that an
effective method to recover approximately-sparse signals x0 in the traditional com-
pressive sensing is to solve

x# := argmin
x

{‖x‖1 : ‖Ax − Ax0‖2 ≤ ε}. (2.2)

The definition of x# shows that

‖x#‖1 ≤ ‖x0‖1, ‖Ax# − Ax0‖2 ≤ ε,

which implies that

‖x# − x0‖2 ≤ C1ε + C2
σk(x0)1√

k
,

provided that A satisfies the RIP condition with δtk ≤ √
1 − 1/t for t > 1 (see [2]).

However, in practice one prefers to design fast algorithms to find an approximation
solution of (2.2), say x̂ . Thus it is possible to have ‖x̂‖1 > ‖x0‖1. Lemma 2.1 gives
an estimate of ‖x̂ − x0‖2 for the case where ‖x̂‖1 ≤ ‖x0‖1 + ρ.

Remark 2.2 In [7], Han and Xu extend the definition of S-RIP by replacing the m/2
in (2.1) by βm where 0 < β < 1. They also prove that, for any fixed β ∈ (0, 1),
the m × N random Gaussian matrix satisfies S-RIP of order k with high probability
provided m = O(k log(N/k)).

3 Stable Recovery of Real Phase Retrieval Problem

3.1 Stability Results

The following lemma shows that the map φA(x) := |Ax | is stable on �k modulo a
unimodular constant provided A satisfies strong lower RIP of order 2k. Define the
equivalent relation ∼ on RN and CN by the following: for any x, y, x ∼ y iff x = cy
for some unimodular scalar c, where x, y are in R

N or CN . For any subset Y of RN

or CN the notation Y/ ∼ denotes the equivalent classes of elements in Y under the
equivalence. Note that there is a natural metric D∼ on C

N/ ∼ given by

D∼(x, y) = min|c|=1
‖x − cy‖.

Our primary focus in this paper will be onRN , and in this case D∼(x, y) = min{‖x −
y‖2, ‖x + y‖2}.
Lemma 3.1 Let A ∈ R

m×N satisfy the strong lower RIP of order 2k with constant
θ−. Then for any x, y ∈ �k we have

‖|Ax | − |Ay|‖22 ≥ θ− min(‖x − y‖22, ‖x + y‖22).
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Proof For any x, y ∈ �k we divide {1, . . . ,m} into two subsets:

T = { j : sign(〈a j , x〉) = sign(〈a j , y〉)}

and

T c = { j : sign(〈a j , x〉) = −sign(〈a j , y〉)}.

Clearly one of T and T c will have cardinality at least m/2. Without loss of generality
we assume that T has cardinality no less than m/2. Then

‖|Ax | − |Ay|‖22 = ‖AT x − AT y‖22 + ‖ATc x + ATc y‖22
≥ ‖AT x − AT y‖22
≥ θ−‖x − y‖22
≥ θ− min(‖x − y‖22, ‖x + y‖22).

��
Remark 3.1 Note that the combination of Lemma 3.1 and Theorem 2.1 shows that
for an m × N Gaussian matrix A with m = O(k log(N/k)) one can guarantee the
stability of the map φA(x) := |Ax | on �k/ ∼.

3.2 The Main Theorem

In this part, we will consider howmany measurements are needed for the stable sparse
phase retrieval by �1-minimization via solving the following model:

min ‖x‖1 subject to ‖|Ax | − |Ax0|‖22 ≤ ε2, (3.1)

where A is our measurement matrix and x0 ∈ R
N is a signal we wish to recover. The

next theorem tells under what conditions the solution to (3.1) is stable.

Theorem 3.1 Assume that A ∈ R
m×N satisfies the S-RIP of order tk with bounds

θ−, θ+ ∈ (0, 2) such that

t ≥ max
{ 1

2θ− − θ2−
,

1

2θ+ − θ2+

}
.

Then any solution x̂ for (3.1) satisfies

min{‖x̂ − x0‖2, ‖x̂ + x0‖2} ≤ c1ε + c2
2σk(x0)1√

k
,

where c1 and c2 are constants defined in Lemma 2.1.
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Proof Clearly any x̂ ∈ R
N satisfying (3.1) must have

‖x̂‖1 ≤ ‖x0‖1 (3.2)

and

‖|Ax̂ | − |Ax0|‖22 ≤ ε2. (3.3)

Now the index set {1, 2, . . . ,m} is divisible into two subsets

T = { j : sign(〈a j , x̂〉) = sign(〈a j , x0〉)},
T c = { j : sign(〈a j , x̂〉) = −sign(〈a j , x0〉)}.

Then (3.3) implies that

‖AT x̂ − AT x0‖22 + ‖ATc x̂ + ATc x0‖22 ≤ ε2. (3.4)

Here either |T | ≥ m/2 or |T c| ≥ m/2. Without loss of generality we assume that
|T | ≥ m/2. We use the fact

‖AT x̂ − AT x0‖22 ≤ ε2. (3.5)

From (3.2) and (3.5) we obtain

x̂ ∈
{
x ∈ R

N : ‖x‖1 ≤ ‖x0‖1, ‖AT x − AT x0‖2 ≤ ε
}

. (3.6)

Recall that A satisfies S-RIP of order tk and constants θ−, θ+. Here

t ≥ max{ 1

2θ− − θ2−
,

1

2θ+ − θ2+
} > 1. (3.7)

The definition of S-RIP implies that AT satisfies the RIP of order tk in which

δtk ≤ max{1 − θ−, θ+ − 1} ≤
√
t − 1

t
(3.8)

where the second inequality follows from (3.7). The combination of (3.6), (3.8) and
Lemma 2.1 now implies

‖x̂ − x0‖2 ≤ c1ε + c2
2σk(x0)1√

k
,

where c1 and c2 are defined in Lemma 2.1. If |T c| ≥ m
2 we get the corresponding

result

‖x̂ + x0‖2 ≤ c1ε + c2
2σk(x0)1√

k
.

The theorem is now proved. ��
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This theorem demonstrates that, if the measurement matrix has the S-RIP, the real
compressive phase retrieval problem can be solved stably by �1-minimization.

4 Phase Retrieval and Best k-term Approximation

4.1 Instance Optimality from the Linear Measurements

We introduce some definitions and results in [5]. Recall that for a given encoder matrix
A ∈ R

m×N and a decoder � : Rm �→ R
N , the pair (A,�) is said to have instance

optimality of order k with constant C0 with respect to the norm X if

‖x − �(Ax)‖X ≤ C0σk(x)X (4.1)

holds for all x ∈ R
N . SetN (A) := {η ∈ R

N : Aη = 0} to be the null space of A. The
following theorem gives conditions under which the (4.1) holds.

Theorem 4.1 ([5]) Let A ∈ R
m×N , 1 ≤ k ≤ N and ‖ · ‖X be a norm on RN . Then a

sufficient condition for the existence of a decoder � satisfying (4.1) is

‖η‖X ≤ C0

2
σ2k(η)X , ∀η ∈ N (A). (4.2)

A necessary condition for the existence of a decoder � satisfying (4.1) is

‖η‖X ≤ C0σ2k(η)X , ∀η ∈ N (A). (4.3)

For the norm X = �1 it was established in [5] that instance optimality of order k
can indeed be achieved, e.g. for a Gaussian matrix A, with m = O(k log(N/k)). The
authors also considered more generally taking different norms on both sides of (4.1).
Following [5], we say the pair (A,�) has (p, q)-instance optimality of order k with
constant C0 if

‖x − �(Ax)‖p ≤ C0k
1
q − 1

p σk(x)q , ∀x ∈ R
N , (4.4)

with 1 ≤ q ≤ p ≤ 2. It was shown in [5] that the (p, q)-instance optimality of order k
can be achieved at the cost of havingm = O(k(N/k)2−2/q) log(N/k)measurements.

4.2 Phaseless Instance Optimality

A natural question here is whether an analogous result to Theorem 4.1 exists for
phaseless instance optimality defined in (1.3). We answer the question by presenting
such a result in the case of real phase retrieval.

Recall that a pair (A,�) is said to be have the phaseless instance optimality of
order k with constant C0 for the norm ‖.‖X if

min
{
‖x − �(|Ax |)‖X , ‖x + �(|Ax |)‖X

}
≤ C0σk(x)X (4.5)

holds for all x ∈ R
N .
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Theorem 4.2 Let A ∈ R
m×N , 1 ≤ k ≤ N and ‖ · ‖X be a norm. Then a sufficient

condition for the existence of a decoder� satisfying the phaseless instance optimality
(4.5) is: For any I ⊆ {1, . . . ,m} and η1 ∈ N (AI ), η2 ∈ N (AIc ) we have

min{‖η1‖X , ‖η2‖X } ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X . (4.6)

A necessary condition for the existence of a decoder � satisfying (4.5) is: For any
I ⊆ {1, . . . ,m} and η1 ∈ N (AI ), η2 ∈ N (AIc ) we have

min{‖η1‖X , ‖η2‖X } ≤ C0

2
σk(η1 − η2)X + C0

2
σk(η1 + η2)X . (4.7)

Proof We first assume (4.6) holds, and show that there exists a decoder � satisfying
the phaseless instance optimality (4.5). To this end, we define a decoder� as follows:

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)X .

Suppose x̂ := �(|Ax0|). We have |Ax̂ | = |Ax0| and σk(x̂)X ≤ σk(x0)X . Note that
〈a j , x̂〉 = ±〈a j , x0〉. Let I ⊆ {1, . . . ,m} be defined by

I =
{
j : 〈a j , x̂〉 = 〈a j , x0〉

}
.

Then

AI (x0 − x̂) = 0, AIc (x0 + x̂) = 0.

Set

η1 := x0 − x̂ ∈ N (AI ),

η2 := x0 + x̂ ∈ N (AIc ).

A simple observation yields

σk(η1 − η2)X = 2σk(x̂)X ≤ 2σk(x0)X , σk(η1 + η2)X = 2σk(x0)X . (4.8)

Then (4.6) implies that

min{‖x̂ − x0‖X , ‖x̂ + x0‖X } = min{‖η1‖X , ‖η2‖X }
≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X

≤ C0σk(x0)X .

Here the last equality is obtained by (4.8). This proves the sufficient condition.
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We next turn to the necessary condition. Let� be a decoder for which the phaseless
instance optimality (4.5) holds. Let I ⊆ {1, . . . ,m}. For any η1 ∈ N (AI ) and η2 ∈
N (AIc ) we have

|A(η1 + η2)| = |A(η1 − η2)| = |A(η2 − η1)|. (4.9)

The instance optimality implies

min
{
‖�(|A(η1 + η2)|) + η1 + η2‖X , ‖�(|A(η1 + η2)|) − (η1 + η2)‖X

}

≤ C0σk(η1 + η2)X . (4.10)

Without loss of generality we may assume that

‖�(|A(η1 + η2)|) + η1 + η2‖X ≤ ‖�(|A(η1 + η2)|) − (η1 + η2)‖X .

Then (4.10) implies that

‖�(|A(η1 + η2)|) + η1 + η2‖X ≤ C0σk(η1 + η2)X . (4.11)

By (4.9), we have

‖�(|A(η1 + η2)|) + η1 + η2‖X = ‖�(|A(η2 − η1)|) − (η2 − η1) + 2η2‖X
≥ 2‖η2‖X − ‖�(|A(η2 − η1)|) − (η2 − η1)‖X .

(4.12)

Combining (4.11) and (4.12) yields

2‖η2‖X ≤ C0σk(η1 + η2)X + ‖�(|A(η2 − η1)|) − (η2 − η1)‖X . (4.13)

At the same time, (4.9) also implies

‖�(|A(η1 + η2)|) + η1 + η2‖X = ‖�(|A(η2 − η1)|) + (η2 − η1) + 2η1‖X
≥ 2‖η1‖X − ‖�(|A(η2 − η1)|) + (η2 − η1)‖X .

(4.14)

Putting (4.11) and (4.14) together, we obtain

2‖η1‖X ≤ C0σk(η1 + η2)X + ‖�(|A(η2 − η1)|) + (η2 − η1)‖X . (4.15)

It follows from (4.13) and (4.15) that

min {‖η1‖X , ‖η2‖X } ≤ C0

2
σk(η1 + η2)X

+ 1

2
min{‖�(|A(η2 − η1)|)−(η2−η1)‖X , ‖�(|A(η2 − η1)|)

+ (η2 − η1)‖X } ≤ C0

2
σk(η1 + η2)X + C0

2
σk(η1 − η2)X .
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Here the last inequality is obtained by the instance optimality of (A,�). For the case
where

‖�(|A(η1 + η2)|) − (η1 + η2)‖X ≤ ‖�(|A(η1 + η2)|) + η1 + η2‖X ,

we obtain

min{‖η1‖X , ‖η2‖X } ≤ C0

2
σk(η1 + η2)X + C0

2
σk(η1 − η2)X

via the same argument. The theorem is now proved. ��
We next present a null space property for phaseless instance optimality, which

allows us to establish parallel results for sparse phase retrieval.

Definition 4.1 We say a matrix A ∈ R
m×N satisfies the strong null space property

(S-NSP) of order k with constant C if for any index set I ⊆ {1, . . . ,m}with |I | ≥ m/2
and η ∈ N (AI ) we have

‖η‖X ≤ C · σk(η)X .

Theorem 4.3 Assume that a matrix A ∈ R
m×N has the strong null space property of

order 2k with constant C0/2. Then there must exist a decoder � having the phaseless
instance optimality (1.3) with constant C0. In particular, one such decoder is

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)X .

Proof Assume that I ⊆ {1, . . . ,m}. For any η1 ∈ N (AI ) and η2 ∈ N (AIc ) we must
have either ‖η1‖X ≤ C0

2 σ2k(η1)X or ‖η2‖X ≤ C0
2 σ2k(η2)X by the strong null space

property. If ‖η1‖X ≤ C0
2 σ2k(η1)X then

‖η1‖X ≤ C0

2
σ2k(η1)X ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X .

Similarly if ‖η2‖X ≤ C0
2 σ2k(η2)X we will have

‖η2‖X ≤ C0

2
σ2k(η2)X ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X .

It follows that

min{‖η1‖X , ‖η2‖X } ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X . (4.16)

Theorem 4.2 now implies that the required decoder � exists. Furthermore, by the
proof of the sufficiency part of Theorem 4.2,

158
DISTRIBUTION A: Distribution approved for public release.



J Fourier Anal Appl

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)X

is one such decoder. ��

4.3 The Case X = �1

Wewill now apply Theorem 4.3 to the �1-norm case. The following lemma establishes
a relation between S-RIP and S-NSP for the �1-norm.

Lemma 4.1 Let a, b, k be integers. Assume that A ∈ R
m×N satisfies the S-RIP of

order (a + b)k with constants θ−, θ+ ∈ (0, 2). Then A satisfies the S-NSP of order
ak under the �1-norm with constant

C0 = 1 +
√
a(1 + δ)

b(1 − δ)
,

where δ is the restricted isometry constant and δ := max{1 − θ−, θ+ − 1} < 1.

We remark that the above lemma is the analogous to the following lemma providing
a relationship between RIP and NSP, which was shown in [5]:

Lemma 4.2 ([5, Lemma 4.1]) Let a = l/k, b = l ′/k where l, l ′ ≥ k are integers.
Assume that A ∈ R

m×N satisfies the RIP of order (a + b)k with δ = δ(a+b)k < 1.
Then A satisfies the null space property under the �1-norm of order ak with constant

C0 = 1 +
√
a(1+δ)√
b(1−δ)

.

Proof By the definition of S-RIP, for any index set I ⊆ {1, . . . ,m} with |I | ≥ m/2,
the matrix AI ∈ R

|I |×N satisfies the RIP of order (a + b)k with constant δ(a+b)k =
δ := max{1 − θ−, θ+ − 1} < 1. It follows from Lemma 4.2 that

‖η‖1 ≤
(

1 +
√
a(1 + δ)

b(1 − δ)

)

σak(η)1

for all η ∈ N (AI ). This proves the lemma. ��
Set a = 2 and b = 1 in Lemma 4.1 we infer that if A satisfies the S-RIP of order

3k with constants θ−, θ+ ∈ (0, 2), then A satisfies the S-NSP of order 2k under

the �1-norm with constant C0 = 1 +
√

2(1+δ)
1−δ

. Hence by Theorem 4.3, there must
exist a decoder that has the instance optimality under the �1-norm with constant 2C0.
According to Theorem 2.1, by takingm = O(k log(N/k)) a Gaussian random matrix
A satisfies S-RIP of order 3k with high probability. Hence, there exists a decoder �

so that the pair (A,�) has the the �1-norm phaseless instance optimality at the cost
of m = O(k log(N/k)) measurements, as with the traditional instance optimality.

We are now ready to prove the following theorem on phaseless instance optimality
under the �1-norm.
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Theorem 4.4 Let A ∈ R
m×N satisfy the S-RIP of order tk with constants 0 < θ− <

1 < θ+ < 2, where

t ≥ max

{
2

θ−
,

2

2 − θ+

}
> 2.

Let

�(|Ax0|) = argmin
x∈RN

{‖x‖1 : |Ax | = |Ax0|} . (4.17)

Then (A,�) has the �1-norm phaseless instance optimality with constant C = 2C0
2−C0

,

where C0 = 1 +
√

1+δ
(t−1)(1−δ)

and as before

δ := max{1 − θ−, θ+ − 1} ≤ 1 − 2

t
.

Proof of Lemma 4.1 Let x0 ∈ R
N and set x̂ = �(|Ax0|). Then by definition

‖x̂‖1 ≤ ‖x0‖1 and |Ax̂ | = |Ax0|.

Denote by I ⊆ {1, . . . ,m} the set of indices

I = {
j : 〈a j , x̂〉 = 〈a j , x0〉

}
,

and thus 〈a j , x̂〉 = −〈a j , x0〉 for j ∈ I c. It follows that

AI (x̂ − x0) = 0 and AIc (x̂ + x0) = 0.

Set

η := x̂ − x0 ∈ N (AI ).

We know that A satisfies the S-RIP of order tk with constants θ−, θ+ where

t ≥ max

{
2

θ−
,

2

2 − θ+

}
> 2.

For the case |I | ≥ m/2, AI satisfies the RIP of order tk with RIP constant

δ = δtk := max{1 − θ−, θ+ − 1} ≤ 1 − 2

t
< 1.

Take a := 1, b := t − 1 in Lemma 4.1. Then A satisfies the �1-norm S-NSP of order
k with constant
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C0 = 1 +
√

1 + δ

(t − 1)(1 − δ)
< 2.

This yields

‖η‖1 ≤ C0‖ηT c‖1, (4.18)

where T is the index set for the k largest coefficients of x0 in magnitude. Hence
‖ηT ‖1 ≤ (C0 − 1)‖ηT c‖1. Since ‖x̂‖1 ≤ ‖x0‖1 we have

‖x0‖1 ≥ ‖x̂‖1 = ‖x0 + η‖1 = ‖x0,T + x0,T c + ηT + ηT c‖1
≥ ‖x0,T ‖1 − ‖x0,T c‖1 + ‖ηT c‖1 − ‖ηT ‖1.

It follows that

‖ηT c‖1 ≤ ‖ηT ‖1 + 2σk(x0)1 ≤ (C0 − 1)‖ηT c‖1 + 2σk(x0)1

and thus

‖ηT c‖1 ≤ 2

2 − C0
σk(x0)1.

Now (4.18) yields

‖η‖1 ≤ C0‖ηT c‖1 ≤ 2C0

2 − C0
σk(x0)1,

which implies

‖x̂ − x0‖1 ≤ C0‖ηT c‖1 ≤ 2C0

2 − C0
σk(x0)1.

For the case |I c| ≥ m/2 identical argument yields

‖x̂ + x0‖1 ≤ C0‖ηT c‖1 ≤ 2C0

2 − C0
σk(x0)1.

The theorem is now proved. ��

By Theorem 2.1, an m × N random Gaussian matrix with m = O(tk log(N/k))
satisfies the S-RIP of order tk with high probability. We therefore conclude that the
�1-norm phaseless instance optimality of order k can be achieved at the cost of m =
O(tk log(N/k)) measurements.
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4.4 Mixed-Norm phaseless Instance Optimality

We now consider mixed-norm phaseless instance optimality. Let 1 ≤ q ≤ p ≤ 2 and
s = 1/q − 1/p. We seek estimates of the form

min{‖x − �(|Ax |)‖p, ‖x + �(|Ax |)‖p} ≤ C0k
−sσk(x)q (4.19)

for all x ∈ R
N . We shall prove both necessary and sufficient conditions for mixed-

norm phaseless instance optimality.

Theorem 4.5 Let A ∈ R
m×N and 1 ≤ q ≤ p ≤ 2. Set s = 1/q−1/p. Then a decoder

� satisfying the mixed norm phaseless instance optimality (4.19) with constant C0
exists if: for any index set I ⊆ {1, . . . ,m} and any η1 ∈ N (AI ), η2 ∈ N (AIc ) we
have

min{‖η1‖p, ‖η2‖p} ≤ C0

4
k−s

(
σk(η1 − η2)q + σk(η1 + η2)q

)
. (4.20)

Conversely, assume a decoder � satisfying the mixed norm phaseless instance opti-
mality (4.19) exists. Then for any index set I ⊆ {1, . . . ,m} and any η1 ∈ N (AI ),
η2 ∈ N (AIc ) we have

min{‖η1‖p, ‖η2‖p} ≤ C0

2
k−s

(
σk(η1 − η2)q + σk(η1 + η2)q

)
.

Proof of Lemma 4.1 The proof is virtually identical to the proof of Theorem 4.2. We
shall omit the details here in the interest of brevity. ��
Definition 4.2 (Mixed-NormStrongNull SpaceProperty)We say that A has themixed
strong null space property in norms (�p, �q) of order k with constantC if for any index
set I ⊆ {1, . . . ,m} with |I | ≥ m/2 the matrix AI ∈ R

|I |×N satisfies

‖η‖p ≤ Ck−sσk(η)q

for all η ∈ N (AI ), where s = 1/q − 1/p.

The above is an extension of the standard definition of themixed null space property
of order k in norms (�p, �q) (see [5]) for a matrix A, which requires

‖η‖p ≤ Ck−sσk(η)q

for all η ∈ N (A). We have the following straightforward generalization of Theorem
4.3.

Theorem 4.6 Assume that A ∈ R
m×N has the mixed strong null space property of

order 2k in norms (�p, �q) with constant C0/2, where 1 ≤ q ≤ p ≤ 2. Then there
exists a decoder � such that the mixed-norm phaseless instance optimality (4.19)
holds with constant C0.
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We establish relationships between mixed-norm strong null space property and the
S-RIP. First we present the following lemma that was proved in [5].

Lemma 4.3 ([5, Lemma 8.2]) Let k ≥ 1 and k̃ = �k( Nk )2−2/q�. Assume that A ∈
R
m×N satisfies the RIP of order 2k + k̃ with δ := δ2k+k̃ < 1. Then A satisfies

the mixed null space property in norms (�p, �q) of order 2k with constant C0 =
21/p+1/2

√
1+δ
1−δ

+ 21/p−1/q .

Proposition 4.1 Let k ≥ 1 and k̃ = �k( Nk )2−2/q�. Assume that A ∈ R
m×N satisfies

the S-RIP of order 2k + k̃ with constants 0 < θ− < 1 < θ+ < 2. Then A satisfies
the mixed strong null space property in norms (�p, �q) of order 2k with constant

C0 = 21/p+1/2
√

1+δ
1−δ

+ 21/p−1/q , where δ is the RIP constant and δ := δ2k+k̃ =
max{1 − θ−, θ+ − 1}.
Proof of Lemma 4.1 By definition for any index set I ⊆ {1, . . . ,m} with |I | ≥
m/2, the matrix AI ∈ R

|I |×N satisfies RIP of order 2k + k̃ with constant C0 =
21/p+1/2

√
1+δ
1−δ

+ 21/p−1/q , where δ is the RIP constant and δ := δ2k+k̃ = max{1 −
θ−, θ+ − 1}. By Lemma 4.3, we know that AI satisfies the mixed null space property

in norms (�p, �q) of order 2k with constant C0 = 21/p+1/2
√

1+δ
1−δ

+ 21/p−1/q , in other
words for any η ∈ N (AI ),

‖η‖p ≤ Ck−sσ2k(η)q .

So A satisfies the mixed strong null space property. ��
Corollary 4.1 Let k ≥ 1 and k̃ = k( Nk )2−2/q . Assume that A ∈ R

m×N satisfies the

S-RIP of order 2k + k̃ with constants 0 < θ− < 1 < θ+ < 2. Let δ := δ2k+k̃ =
max{1 − θ−, θ+ − 1} < 1. Define the decoder � for A by

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)q . (4.21)

Then (4.19) holds with constant 2C0, where C0 = 21/p+1/2
√

1+δ
1−δ

+ 21/p−1/q .

Proof of Lemma 4.1 By the Proposition 4.1, the matrix A satisfies the mixed strong

null space property in (�p, �q) of order 2k with constant C0 = 21/p+1/2
√

1+δ
1−δ

+
21/p−1/q . The corollary now follows immediately from Theorem 4.6. ��
Remark 4.1 Combining Theorem 2.1 and Corollary 4.1, the mixed phaseless instance
optimality of order k in norms (�p, �q) can be achieved for the price ofO(k(N/k)2−2/q

log(N/k)) measurements, just as with the traditional mixed (�p, �q)-norm instance
optimality. Theorem3.1 implies that the �1 decoder satisfies the (p, q) = (2, 1)mixed-
norm phaseless instance optimality at the price of O(k log(N/k)) measurements.
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Appendix: Proof of Lemma 2.1

We will first need the following two Lemmas to prove Lemma 2.1.

Lemma 5.1 (Sparse Representation of a Polytope [2,12]) Let s ≥ 1 and α > 0. Set

T (α, s) :=
{
u ∈ R

n : ‖u‖∞ ≤ α, ‖u‖1 ≤ sα
}
.

For any v ∈ R
n let

U(α, s, v) :=
{
u ∈ R

n : supp(u) ⊆ supp(v), ‖u‖0 ≤ s, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α
}
.

Then v ∈ T (α, s) if and only if v is in the convex hull of U(α, s, v), i.e. v can be
expressed as a convex combination of some u1, . . . , uN in U(α, s, v).

Lemma 5.2 ([1, Lemma 5.3]) Assume that a1 ≥ a2 ≥ · · · ≥ am ≥ 0. Let r ≤ m and
λ ≥ 0 such that

∑r
i=1 ai + λ ≥ ∑m

i=r+1 ai . Then for all α ≥ 1 we have

m∑

j=r+1

aα
j ≤ r

⎛

⎝ α

√∑r
i=1 a

α
i

r
+ λ

r

⎞

⎠

α

. (5.1)

In particular for λ = 0 we have

m∑

j=r+1

aα
j ≤

r∑

i=1

aα
i .

We are now ready to prove Lemma 2.1.

Proof Set h := x̂ − x0. Let T0 denote the set of the largest k coefficients of x0 in
magnitude. Then

‖x0‖1 + ρ ≥ ‖x̂‖1 = ‖x0 + h‖1
= ‖x0,T0 + hT0 + x0,T c

0
+ hT c

0
‖1

≥ ‖x0,T0‖1 − ‖hT0‖1 − ‖x0,T c
0
‖1 + ‖hT c

0
‖1.

It follows that

‖hT c
0
‖1 ≤ ‖hT0‖1 + 2‖x0,T c

0
‖1 + ρ

= ‖hT0‖1 + 2σk(x0)1 + ρ.
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Suppose that S0 is the index set of the k largest entries in absolute value of h. Then
we can get

‖hSc0‖1 ≤ ‖hT c
0
‖1 ≤ ‖hT0‖1 + 2σk(x0)1 + ρ

≤ ‖hS0‖1 + 2σk(x0)1 + ρ.

Set

α := ‖hS0‖1 + 2σk(x0)1 + ρ

k
.

We divide hSc0 into two parts hSc0 = h(1) + h(2), where

h(1) := hSc0 · I{i : |hSc0 (i)|>α/(t−1)}, h(2) := hSc0 · I{i : |hSc0 (i)|≤α/(t−1)}.

A simple observation is that ‖h(1)‖1 ≤ ‖hSc0‖1 ≤ αk. Set

� := |supp(h(1))| = ‖h(1)‖0.

Since all non-zero entries of h(1) have magnitude larger than α/(t − 1), we have

αk ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

α

t − 1
= α�

t − 1
,

which implies � ≤ (t − 1)k. Thus we have:

〈
A(hS0 + h(1)), Ah

〉 ≤ ‖A(hS0 + h(1))‖2 · ‖Ah‖2 ≤ √
1 + δ · ‖hS0 + h(1)‖2 · ε.

(5.2)

Here we apply the facts that ‖hS0 + h(1)‖0 = � + k ≤ tk and A satisfies the RIP
of order tk with δ := δAtk . We shall assume at first that tk as an integer. Note that
‖h(2)‖∞ ≤ α

t−1 and

‖h(2)‖1 = ‖hSc0‖1 − ‖h(1)‖1 ≤ kα − α�

t − 1
= (k(t − 1) − �)

α

t − 1
. (5.3)

We take s := k(t − 1) − � in Lemma 5.1 and obtain that h(2) is a weighted mean

h(2) =
N∑

i=1

λi ui , 0 ≤ λi ≤ 1,
N∑

i=1

λi = 1

where ‖ui‖0 ≤ k(t − 1) − �, ‖ui‖1 = ‖h(2)‖1, ‖ui‖∞ ≤ α/(t − 1) and supp(ui ) ⊆
supp(h(2)). Hence
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‖ui‖2 ≤ √‖ui‖0 · ‖ui‖∞ = √
k(t − 1) − � · ‖ui‖∞

≤ √
k(t − 1) · ‖ui‖∞

≤ α
√
k/(t − 1).

Now for 0 ≤ μ ≤ 1 and d ≥ 0, which will be chosen later, set

β j := hS0 + h(1) + μ · u j , j = 1, . . . , N .

Then for fixed i ∈ [1, N ]

N∑

j=1

λ jβ j − dβi = hS0 + h(1) + μ · h(2) − dβi

= (1 − μ − d)(hS0 + h(1)) − dμui + μh.

Recall that α = ‖hS0‖1+2σk (x0)1+ρ

k . Thus

‖ui‖2 ≤ √
k/(t − 1)α (5.4)

≤ ‖hS0‖2√
t − 1

+ 2σk(x0)1 + ρ√
k(t − 1)

≤ ‖hS0 + h(1)‖2√
t − 1

+ 2σk(x0)1 + ρ√
k(t − 1)

= z + R√
t − 1

,

where z := ‖hS0 + h(1)‖2 and R := 2σk (x0)1+ρ√
k

. It is easy to check the following
identity:

(2d − 1)
∑

1≤i< j≤N

λiλ j‖A(βi − β j )‖22

=
N∑

i=1

λi

∥∥∥A(

N∑

j=1

λ jβ j − dβi )
∥∥∥
2

2
−

N∑

i=1

λi (1 − d)2‖Aβi‖22, (5.5)

provided that
∑N

i=1 λi = 1. Choose d = 1/2 in (5.5) we then have

N∑

i=1

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui + μh

)∥∥∥
2

2
−

N∑

i=1

λi

4
‖Aβi‖22 = 0.
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Note that for d = 1/2,

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui + μh

)∥∥∥
2

2

=
∥∥∥A

(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

+ 2
〈
A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)
, μAh

〉
+ μ2‖Ah‖22.

It follows from
∑N

i=1 λi = 1 and h(2) = ∑N
i=1 λi ui that

N∑

i=1

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui + μh

)∥∥∥
2

2

=
∑

i

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

+ 2
〈
A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
h(2)

)
, μAh

〉
+ μ2‖Ah‖22

=
∑

i

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

+ μ(1 − μ)
〈
A(hS0 + h(1)), Ah

〉
−

N∑

i=1

λi

4
‖Aβi‖22. (5.6)

Set μ = √
t (t − 1) − (t − 1). We next estimate the three terms in (5.6). Noting that

‖hS0‖0 ≤ k, ‖h(1)‖0 ≤ � and ‖ui‖0 ≤ s = k(t − 1) − �, we obtain

‖βi‖0 ≤ ‖hS0‖0 + ‖h(1)‖0 + ‖ui‖0 ≤ t · k

and ‖( 12 −μ)(hS0 + h(1))− μ
2 ui‖0 ≤ t · k. Since A satisfies the RIP of order t · k with

δ, we have

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

≤ (1 + δ)‖(1
2

− μ)(hS0 + h(1)) − μ

2
ui‖22

= (1 + δ)
(
(
1

2
− μ)2‖(hS0 + h(1))‖22 + μ2

4
‖ui‖22

)

= (1 + δ)
(
(
1

2
− μ)2z2 + μ2

4
‖ui‖22

)

and

‖Aβi‖22 ≥ (1 − δ)‖βi‖22 = (1 − δ)(‖hS0 + h(1)‖22 + μ2 · ‖ui‖22)
= (1 − δ)(z2 + μ2 · ‖ui‖22).
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Combining the result above with (5.2) and (5.4) we get

0 ≤ (1 + δ)

N∑

i=1

λi

(
(
1

2
− μ)2z2 + μ2

4
‖ui‖22

)
+ μ(1 − μ)

√
1 + δ · z · ε

− (1 − δ)

N∑

i=1

λi

4
(z2 + μ2‖ui‖22)

=
N∑

i=1

λi

((
(1 + δ)(

1

2
− μ)2 − 1 − δ

4

)
z2 + δ

2
μ2‖ui‖22

)
+ μ(1 − μ)

√
1 + δ · z · ε

≤
N∑

i=1

λi

((
(1 + δ)(

1

2
− μ)2 − 1 − δ

4

)
z2 + δ

2
μ2 (z + R)2

t − 1

)

+ μ(1 − μ)
√
1 + δ · z · ε

=
(
(μ2 − μ) + δ

(1
2

− μ + (1 + 1

2(t − 1)
)μ2

))
z2

+
(
μ(1 − μ)

√
1 + δ · ε + δμ2R

t − 1

)
z + δμ2R2

2(t − 1)

= −t
(
(2t − 1) − 2

√
t (t − 1)

)
(

√
t − 1

t
− δ)z2

+
(
μ2

√
t

t − 1

√
1 + δ · ε + δμ2R

t − 1

)
z + δμ2R2

2(t − 1)

= μ2

t − 1

(
−t (

√
t − 1

t
− δ)z2 + (

√
t (t − 1)(1 + δ)ε + δR)z + δR2

2

)
,

which is a quadratic inequality for z. We know δ <
√

(t − 1)/t . So by solving the
above inequality we get

z ≤ (
√
t (t − 1)(1 + δ)ε + δR) + (

(
√
t (t − 1)(1 + δ)ε + δR)2 + 2t (

√
(t − 1)/t − δ)δR2

)1/2

2t (
√

(t − 1/t) − δ)

≤
√
t (t − 1)(1 + δ)

t (
√

(t − 1)/t − δ)
ε + 2δ + √

2t (
√

(t − 1)/t − δ)δ

2t (
√

(t − 1)/t − δ)
R.

Finally, noting that ‖hSc0‖1 ≤ ‖hS0‖1 + R
√
k, in the Lemma 5.2, if we set m = N ,

r = k, λ = R
√
k ≥ 0 and α = 2 then ‖hSc0‖2 ≤ ‖hS0‖2 + R. Hence

‖h‖2 =
√

‖hS0‖22 + ‖hSc0‖22
≤

√
‖hS0‖22 + (‖hS0‖2 + R)2
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≤
√
2‖hS0‖22 + R ≤ √

2z + R

≤
√
2(1 + δ)

1 − √
t/(t − 1)δ

ε +
(√

2δ + √
t (

√
(t − 1)/t − δ)δ

t (
√

(t − 1)/t − δ)
+ 1

)

R.

Substitute R into this inequality and the conclusion follows.
For the case where t · k is not an integer, we set t∗ := �tk�/k, then t∗ > t and

δt∗k = δtk <

√
t−1
t <

√
t∗−1
t∗ . We can then prove the result by working on δt∗k . ��
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1. Introduction

Let g be a non-zero function in L2(Rd) and let Λ be a discrete countable set on R2d, 
where we identify R2d to the time-frequency plane by writing (t, λ) ∈ Λ with t, λ ∈ Rd. 
The Gabor system associated with the window g consists of the set of translates and 
modulates of g:

G(g,Λ) = {e2πi〈λ,x〉g(x − t) : (t, λ) ∈ Λ}. (1.1)

Such systems were first introduced by Gabor [5] who used them for applications in 
the theory of telecommunication, but there has been a more recent interest in using 
Gabor system to expand functions both from a theoretical and applied perspective. The 
branch of Fourier analysis dealing with Gabor systems is usually referred to as Gabor, 
or time-frequency, analysis. Gröchenig’s monograph [6] provide an excellent and detailed 
exposition on this subject.

Recall that the Gabor system is a frame for L2(Rd) if there exist constants A, B > 0
such that

A‖f‖2 ≤
∑

(t,λ)∈Λ

|〈f, e2πi〈λ,·〉g(· − t)〉|2 ≤ B‖f‖2, f ∈ L2(Rd). (1.2)

It is called an orthonormal basis for L2(Rd) if it is complete and the elements of the sys-
tem (1.1) are mutually orthogonal in L2(Rd) and have norm 1, or, equivalently, ‖g‖ = 1
and A = B = 1 in (1.2). One of the fundamental problems in Gabor analysis is to 
classify the windows g and time-frequency sets Λ with the property that the associated 
Gabor system G(g, Λ) forms a (Gabor) frame or an orthonormal basis for L2(Rd). This 
is of course a very difficult problem and only partial results are known. For example, to 
the best of our knowledge, the complete characterization of time-frequency sets Λ for 
which (1.1) is a frame for L2(Rd) was only done when g = e−πx2 , the Gaussian window. 
Lyubarskii, and Seip and Wallsten [15,17] showed that G(e−πx2

, Λ) is a Gabor frame if 
and only if the lower Beurling density of Λ is strictly greater than 1. If we assume that Λ
is a lattice of the form aZ ×bZ, then it is well known that ab ≤ 1 is a necessary condition 
for (1.1) to form a frame for L2(Rd). Gröchenig and Stöckler [7] showed that for totally 
positive functions, (1.1) is a frame if and only if ab < 1. If we consider g = χ[0,c), the 
characteristic function of an interval, the associated characterization problem is known 
as the abc-problem in Gabor analysis. By rescaling, one may assume that c = 1. In that 
case, the famous Janssen tie showed that the structure of the set of couples (a, b) yielding 
a frame is very complicated [9,8]. A complete solution of the abc-problem was recently 
obtained by Dai and Sun [2].

In this paper, we focus our attention on Gabor system of the form (1.1) which yield 
orthonormal bases for L2(Rd). Perhaps the most natural and simplest example of Gabor 
orthonormal basis is the system G(χ[0,1]d , Zd ×Zd). The orthonormality property for this 
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system easily follows from that facts that the Euclidean space Rd can be partitioned by 
the Zd-translates of the hypercube [0, 1]d and that the exponentials e2πi〈n,x〉 form an 
orthonormal basis for the space of square-integrable functions supported on any of these 
translated hypercubes. A direct generalization of this observation is the following:

Proposition 1.1. Let |g| = |K|−1/2χK , where | · | denotes the Lebesgue measure, and 
K ⊂ Rd is measurable with finite Lebesgue measure. Suppose that:

• The translates of K by the discrete set J are pairwise a.e. disjoint and cover Rd up 
to a set of zero measure.

• For each t ∈ J , the set of exponentials {e2πi〈λ,x〉 : λ ∈ Λt} is an orthonormal basis 
for L2(K).

Let

Λ =
⋃

t∈J
{t} × Λt. (1.3)

Then G(g, Λ) is a Gabor orthonormal basis for L2(Rd).

Although its proof is straightforward and will be omitted (see also [14]), this proposi-
tion gives us a flexible way of constructing large families of Gabor orthonormal basis. The 
first condition above means that K is a translational tile (with J called an associated 
tiling set) and the second one that L2(K) admits an orthonormal basis of exponentials. 
If this last condition holds, K is called a spectral set (and each Λt is an associated spec-
trum). The connection between translational tiles and spectral sets is quite mysterious. 
They were in fact conjectured to be the same class of sets by Fuglede [3], but that state-
ment was later disproved by Tao [18] and the exact relationship between the two classes 
remains unclear.

For the fixed window gd = χ[0,1]d , we call a countable set Λ ⊂ R2d standard if it 
is of the form (1.3). Motivated by the complete solution to the abc-problem, our main 
objective in this paper is to characterize the discrete sets Λ (not necessarily lattices) 
with the property that the Gabor system G(gd, Λ) is a Gabor orthonormal basis. First, 
by generalizing the notion of orthogonal packing region (see Section 2) in the work of 
Lagarias, Reeds and Wang [12] to the setting of Gabor systems, we deduce a general 
criterion for G(gd, Λ) to be a Gabor orthonormal basis.

Theorem 1.2. G(gd, Λ) is a Gabor orthonormal basis if and only if G(gd, Λ) is an orthog-
onal set and the translates of [0, 1]2d by the elements of Λ tile R2d.

This criterion offers a very simple solution to our problem in the one-dimensional case.
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Theorem 1.3. In dimension d = 1, the system G(g1, Λ) is a Gabor orthonormal basis if 
and only if Λ is standard.

However, such a simple characterization ceases to exist in higher dimensions. We will 
introduce an inductive procedure which allows us to construct a Gabor orthonormal 
basis with window gd from a Gabor orthonormal basis with window gn, n < d. This 
procedure can be used to produce many non-standard Gabor orthonormal basis and we 
call a set Λ obtained through this procedure pseudo-standard. Assuming a mild condi-
tion on a low-dimensional time-frequency space, we show that G(gd, Λ) are essentially 
pseudo-standard (see Theorem 3.6).

Although we do not have a complete description of the sets Λ yielding Gabor or-
thonormal bases with window gd in dimension d ≥ 3, we managed to obtain a complete 
characterization of those discrete sets Λ ⊂ R4 such that G(g2, Λ) form an orthonormal 
basis for L2(R2).

Theorem 1.4. G(χ[0,1]2 , Λ) is a Gabor orthonormal basis for L2(R2) if and only if we can 
partition Z into J and J ′ such that either

Λ =
⋃

n∈J
{(m + tn,k, n, j + μk,m,n, k + νn) : m, j, k ∈ Z}

∪
⋃

m∈Z

⋃

n∈J ′

{(m + tn, n)} × Λm,n

or

Λ =
⋃

m∈J
{(m,n + tm,j , j + νm, k + μj,m,n) : n, j, k ∈ Z}

∪
⋃

n∈Z

⋃

m∈J ′

{(m,n + tm)} × Λm,n,

where Λm,n+[0, 1]2 tile R2 and tn,k, μk,m,n and νn are real numbers in [0, 1) as a function 
of m, n or k. See Fig. 1.

We organize the paper as follows. In Section 2, we provide some preliminaries nota-
tions and prove Theorem 1.2. In Section 3, we prove Theorem 1.3 and introduce the 
pseudo-standard time-frequency set. In the last section, we focus on dimension 2 and 
prove Theorem 1.4.

2. Preliminaries

In this section, we explore the relationship between Gabor orthonormal bases and 
tilings in the time-frequency space. This theory will be an extension of spectral-tile 
duality in [12] to the setting of Gabor analysis. Denote by |K| the Lebesgue measure of 
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Fig. 1. This figure illustrates the time-domain of Λ in the first situation of Theorem 1.4. We basically 
partition R2 by horizontal strips. Some strips, like R × [0, 1] with n = 0, have overlapping structure. This 
corresponds to the first union of Λ. Some strips, like R × [1, 2] with n = 1, have tiling structures. This 
corresponds to the second union of Λ.

a set K. We say that a closed set T is a region if |∂T | = 0 and T o = T . A bounded 
region T is called a translational tile if we can find a countable set J such that

(1) |(T + t) ∩ (T + t′)| = 0, t, t′ ∈ J , t �= t′, and
(2)

⋃
t∈J (T + t) = Rd.

In that case, J is called a tiling set for T and T +J a tiling of Rd. We will say that T +J
is a packing of Rn if (1) above is satisfied. We can generalize the notion of tiling and 
packing to measures and functions. Given a positive Borel measure μ and f ∈ L1(Rn)
with f ≥ 0, the convolution of f and μ is defined to be

f ∗ μ(x) =
∫

f(x − y) dμ(y), x ∈ Rn

(where a Borel measurable function is chosen in the equivalence class of f to define the 
integral above). We say that f + μ is a tiling (resp. packing) of Rd if f ∗ μ = 1 (resp. 
f ∗ μ ≤ 1) almost everywhere with respect to the Lebesgue measure. It is clear that if 
f = χT and μ = δJ where δJ =

∑
t∈J δt, then f ∗ μ = 1 is equivalent to T + J being a 

tiling.
First, we start with the following theorem which gives us a very useful criterion to 

decide if a packing is actually a tiling. In fact, special cases of this theorem were proved by 
many different authors in different settings (see e.g. [12, Theorem 3.1], [11, Lemma 3.1]
and [13]), but the following version is the most general one as far as we know.

Theorem 2.1. Suppose that F, G ∈ L1(Rn) are two functions with F, G ≥ 0 and ∫
Rn F (x) dx =

∫
Rn G(x) dx = 1. Suppose that μ is a positive Borel measure on Rn such 

that

F ∗ μ ≤ 1 and G ∗ μ ≤ 1.

Then, F ∗ μ = 1 if and only if G ∗ μ = 1.
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Proof. By symmetry, it suffices to prove one side of the equivalence. Assuming that 
F ∗ μ = 1, we have

1 = F ∗ μ ⇒ 1 = 1 ∗ G = G ∗ F ∗ μ = F ∗ G ∗ μ.

Letting H = G ∗μ we have 0 ≤ H ≤ 1 and H ∗F = 1. We now show that H = 1. Indeed 
letting A be the set {x ∈ Rn, H(x) < 1} and B = Rn \ A, we have

(H ∗ F )(x) =
∫

Rn

H(y)F (x − y) dy =
∫

A

H(y)F (x − y) dy +
∫

B

H(y)F (x − y) dy.

Now, if |A| > 0, we have
∫

Rn

∫

A

F (x − y) dy dx = |A| > 0

and there exists thus a set E with positive measure such that
∫

A

F (x − y) dy > 0, x ∈ E.

If x ∈ E, we have
∫

A

H(y)F (x − y) dy +
∫

B

H(y)F (x − y) dy <

∫

A

F (x − y) dy +
∫

B

F (x − y) dy

= (1 ∗ F )(x) = 1.

This contradicts to the fact that H ∗ F = 1 almost everywhere. Hence, |A| = 0 and 
H = 1 follow. �

Let f, g ∈ L2(Rd). We define the short time Fourier transform of f with respect to 
the window g be

Vgf(t, ν) =
∫

R2d

f(x) g(x − t) e−2πi〈ν,x〉 dx.

Let G(g, Λ) be a Gabor orthonormal basis. Since translating Λ be an element of R2d

does not affect the orthonormality nor the completeness of the given system, there is 
no loss of generality in assuming that (0, 0) ∈ Λ. We say that a region D (⊂ R2d) is an 
orthogonal packing region for g if

(D◦ − D◦) ∩ Z(Vgg) = ∅.

Here Z(Vgg) = {(t, ν) : Vgg(t, ν) = 0}.
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Lemma 2.2. Suppose that G(g, Λ) is a mutually orthogonal set of L2(Rd). Let D be any 
orthogonal packing region for g. Then Λ − Λ ⊂ Z(Vgg) ∪ {0} and Λ + D is a packing 
of R2d. Suppose furthermore that G(g, Λ) is a Gabor orthonormal basis. Then |D| ≤ 1.

Proof. Let (t, λ), (t′, λ′) ∈ Λ be two distinct points in Λ. Then
∫

g(x − t′) g(x − t) e−2πi(λ−λ′)x dx = 0,

or equivalently, after the change of variable y = x − t′,
∫

g(x) g(x − (t − t′)) e−2πi(λ−λ′)x dx = 0.

Hence, Vgg(t −t′, λ −λ′) = 0 and (t, λ) −(t′, λ′) ∈ Z(Vgg). This means that (t, λ) −(t′, λ′) /∈
D◦−D◦. Therefore, the intersection of the sets (t, λ) +D and (t′, λ′) +D has zero Lebesgue 
measure.

Suppose now that G(g, Λ) is a Gabor orthonormal basis. Denote by R the diameter 
of D. By the packing property of Λ + D,

|D| · #(Λ ∩ [−T, T ]2d)
(2T )2d

= 1
(2T )2d

∣∣∣∣∣∣
⋃

λ∈Λ∩[−T,T ]2d

(D + λ)

∣∣∣∣∣∣

≤ 1
(2T )2d

∣∣[−T − R, T + R]2d
∣∣ = (1 + R

T
)2d.

Taking limit T → ∞ and using the fact that Beurling density of Λ is 1 [16], we have 
|D| ≤ 1. �

We say that an orthogonal packing region D for g is tight if we have furthermore 
|D| = 1. We now apply Theorem 2.1 to the Gabor orthonormal basis problem.

Theorem 2.3. Suppose that G(g, Λ) is an orthonormal set in L2(Rd) and that D is a tight 
orthogonal packing region for g. Then G(g, Λ) is a Gabor orthonormal basis for L2(Rd)
if and only if Λ + D is a tiling of R2d.

Proof. Let F = χD and G = |Vgf |2/‖f‖2
2. Then 

∫
R2d F = 1 and 

∫
R2d G = ‖g‖2

2 = 1. 
Now, as D is an orthogonal packing region for g, we have in particular

∑

λ∈Λ
χD(x − λ) ≤ 1.

This shows that

δΛ ∗ F = δΛ ∗ χD ≤ 1.
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Moreover, Λ + D is a tiling of R2d if and only if δΛ ∗ χD = 1. On the other hand, (g, Λ)
being a mutually orthogonal set, Bessel’s inequality yields

∑

(t,λ)∈Λ

∣∣∣∣∣∣

∫

Rd

f(x) g(x − t) e−2πi〈λ,x〉 dx

∣∣∣∣∣∣

2

≤ ‖f‖2, f ∈ L2(Rd),

or, replacing f by f(x − τ)e2πiνx with (τ, ν) ∈ R2d,

∑

(t,λ)∈Λ

|Vgf(τ − t, ν − λ)|2 ≤ ‖f‖2, f ∈ L2(Rd).

Hence,

δΛ ∗ G = δΛ ∗ |Vgf |2
‖f‖2 ≤ 1

with equality if and only if the Gabor orthonormal system is in fact a basis. The con-
clusion follows then from Theorem 2.1. �
Proof of Theorem 1.2. Let gd = χ[0,1]d . Using Theorem 2.3, we just need to show that 
[0, 1]2d is a tight orthogonal packing region for gd.

We first consider the case d = 1. For g1 = χ[0,1], a direct computation shows that

Vg1g1(t, ν) =

⎧
⎪⎨
⎪⎩

0, |t| ≥ 1;
1

2πiν

(
e2πiνt − e2πiν

)
, 0 ≤ t ≤ 1;

1
2πiν

(
1 − e2πiν(t+1)) , −1 ≤ t ≤ 0.

(2.1)

The zero set of Vg1g1 is therefore given by

Z(Vg1g1) = {(t, ν) : |t| ≥ 1} ∪ {(t, ν) : ν(1 − |t|) ∈ Z \ {0}}. (2.2)

Hence, (0, 1)2 − (0, 1)2 = (−1, 1)2 does not intersect the zero set and therefore [0, 1]2 is 
a tight orthogonal packing region for g1.

We now consider the case d ≥ 2. As we can decompose gd as χ[0,1](x1) . . . χ[0,1](xd), 
we have

Vgd
gd(t, ν) = Vg1g1(t1, ν1) . . . Vg1g1(td, νd) where t = (t1, . . . , td) and ν = (ν1, . . . , νd).

The zero set of Vgd
gd is therefore given by

Z(Vgd
gd) = {(t, v) : |t|max ≥ 1} ∪

(
d⋃

i=1
{(t, ν) : νi(1 − |ti|) ∈ Z \ {0})}

)
(2.3)
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where |t|max = max{t1, . . . , td}. It follows that [0, 1]2d is a tight orthogonal packing 
region for gd. �

The following example will not be used in later discussion, but it demonstrates the 
usefulness of the theory for windows other than the unit cube.

Example 2.4. Let g(x) = 2
e2x+e−2x be the hyperbolic secant function. It can be shown 

([10]; see also [4]) that

Vgg(t, ν) = π sin(πνt)e−πiνt

sinh(2t) sinh(π2ν/2)

and the zero set is given by

Z(Vgg) = {(t, ν) : tν ∈ Z \ {0}}.

Hence, [0, 1]2 is a tight orthogonal packing region for g. Note that the zero set does not 
contain any points on the x-axis and y-axis. There is no tiling set Λ for [0, 1]2 such that 
Λ − Λ ⊂ Z(Vgg) ∪ {0} (see also Proposition 3.2 in the next section) and thus there is no 
Gabor orthonormal basis using the hyperbolic secant as a window. This can be viewed 
as a particular case of a version of the Balian–Low theorem valid for irregular Gabor 
frames which was recently obtained in [1] and which state that Gabor orthonormal bases 
cannot exist if the window function is in the modulation space M1(Rd).

3. Gabor orthonormal bases

Using Lemma 2.2, Theorem 1.2 may be restated in the following way:

Theorem 3.1. G(χ[0,1]d , Λ) is a Gabor orthonormal basis if and only if the inclusion 
Λ − Λ ⊂ Z(Vgg) ∪ {0} holds and Λ + [0, 1]2d is a tiling.

In view of the previous result, the possible translational tilings of the unit cube on 
R2d play a fundamental role in the solution of our problem. A characterization for these 
is not available in arbitrary 2d dimension but it is easily obtained when d = 1. We prove 
this result here for completeness but it should be well known.

Proposition 3.2. Suppose that χ[0,1]2 + J is a tiling of R2 with (0, 0) ∈ J . Then J is of 
either of the following two forms:

J =
⋃

k∈Z
(Z + ak) × {k} or J =

⋃

k∈Z
{k} × (Z + ak) (3.1)

where ak are any real numbers in [0, 1) for k �= 0 and a0 = 0.
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Proof. By Keller’s criterion for square tilings (see e.g. [12, Proposition 4.1]), for any 
(t1, t2) and (t′

1, t
′
2) in J , ti − t′

i ∈ Z \ {0} for some i = 1, 2. Taking (t′
1, t

′
2) = (0, 0), we 

obtain that, for any (t1, t2) ∈ J \ {(0, 0)}, one of t1 or t2 belongs to Z \ {0}. If J ⊂ Z, 
we must have J = Z for χ[0,1]2 + J to be tiling of R2 and Z can be written as either of 
the sets in (3.1) by taking ak = 0 for all k. Suppose that there exists (s1, s2) ∈ J such 
that s1 is not an integer and s2 ∈ Z. If (t1, t2) ∈ J and t2 /∈ Z, then both t1 and t1 − s1
must be integers which would imply that s1 is an integer, contrary to our assumption. 
Hence, (s1, s2) ∈ J implies s2 ∈ Z and we can write

J =
⋃

k∈Z
Jk × {k},

for some discrete set Jk ⊂ R. For χ[0,1]2 + J to be a tiling of R2, the set Jk must be 
of the form Jk = Z + ak. In that case J can be expressed as one of the sets in the first 
collection appearing in (3.1).

Similarly, if there exists (s1, s2) ∈ J such that s2 is not an integer and s1 ∈ Z, J can 
be expressed as one of the sets in the second collection appearing in (3.1). This completes 
the proof. �

We say that the Gabor orthonormal basis G(χ[0,1]d , Λ) is standard if

Λ =
⋃

t∈J
{t} × Λt,

where J +[0, 1]d tiles Rd and Λt is a spectrum for [0, 1]d. (Note that, by the result in [12], 
Λt + [0, 1]d must then be a tiling of Rd for every t ∈ J .)

The following result settles the one-dimensional case.

Theorem 3.3. G(χ[0,1], Λ) is a Gabor orthonormal basis if and only if Λ is standard.

Proof. We just need to show that Λ being standard is a necessary condition for 
G(χ[0,1], Λ) to be a Gabor orthonormal basis. We can also assume, for simplicity, that 
(0, 0) ∈ Λ. By Proposition 3.1, if G(χ[0,1], Λ) is a Gabor orthonormal basis, then 
Λ − Λ ⊂ Z(Vgg) ∪ {0} and Λ + [0, 1]2 must be a tiling of R2. By Proposition 3.2, 
Λ must be of either one of the forms in (3.1). Note that Λ is standard in the second case. 
In order to deal with the first case, suppose that

Λ =
⋃

k∈Z
(Z + ak) × {k}, with ak ∈ [0, 1), k �= 0, a0 = 0.

We now show that this is impossible unless ak = 0 for all k (which reduces to the case 
Λ = Z2, which is standard). We can assume, without loss of generality, that ak �= 0
for some k > 0 with k being the smallest such index. If ak �= 0 for some k, then both 
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(ak, k) and (0, k − 1) are in Λ. The orthogonality of the Gabor system then implies that 
(ak, 1) ∈ Z(Vgg). Using (2.2), we deduce that 1 · (1 − |ak|) ∈ Z \ {0}. That means ak

must be an integer, which is a contradiction. Hence, the first case is impossible unless 
ak = 0 for all k and the proof is completed. �

A description of all time-frequency sets Λ for which G(χ[0,1]d , Λ) is a Gabor orthonor-
mal basis however become vastly more complicated when d ≥ 2. In particular, as we will 
see, the standard structure cannot cover all possible cases. Consider integers m, n > 0
such that m + n = d. For convenience and to be consistent with our previous notation, 
we will write the cartesian product of the two time-frequency spaces R2m and R2n in the 
non-standard form

R2d = R2m × R2n = {(s, t, λ, ν) : (s, λ) ∈ R2m, (t, ν) ∈ R2n}.

We will also denote by Π1 the projection operator from R2d to R2m defined by

Π1 ((s, t, λ, ν)) = (s, λ), (s, t, λ, ν) ∈ R2d = R2m × R2n. (3.2)

To simplify the notation, we also define gk = χ[0,1]k for any k ≥ 1. We now build a new 
family of time-frequency sets on R2d as follows. Suppose that G(χ[0,1]m , Λ1) is a Gabor 
orthonormal basis for L2(Rm) and that we associate with each (s, λ) ∈ Λ1, a discrete 
set Λ(s,λ) in R2n such that G(χ[0,1]n , Λ(s,λ)) is a Gabor orthonormal basis of L2(Rn). We 
then define

Λ =
⋃

(s,λ)∈Λ1

{(s, t, λ, ν) : (t, ν) ∈ Λ(s,λ)}. (3.3)

We say that a Gabor system G(χ[0,1]d , Λ) with Λ as in (3.3) is pseudo-standard.

Proposition 3.4. Every pseudo-standard Gabor system G(χ[0,1]d , Λ) is a Gabor orthonor-
mal basis of L2(Rd).

Proof. If x ∈ Rm and y ∈ Rn, we have gd(x, y) = gm(x)gn(y) (for m + n = d). This 
yields immediately that

Vgd
gd(s, t, λ, ν) = Vgm

gm(s, λ)Vgn
gn(t, ν), (s, λ) ∈ R2m, (t, ν) ∈ R2n. (3.4)

Suppose that ρ = (s, t, λ, ν) and ρ′ = (s′, t′, λ′, ν′) are distinct elements of Λ. If (s, λ) =
(s′, λ′), then (t, ν) and (t′, ν′) are distinct elements of Λ(s,λ) and we have thus

(t′ − t, ν′ − ν) ∈ Z(Vgn
gn)
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which implies that Z(Vgd
gd)(ρ′ − ρ) = 0. On the other hand, if (s, λ) �= (s′, λ′)), we have 

then

(s′ − s, λ′ − λ) ∈ Z(Vgm
gm)

which implies again that Z(Vgd
gd)(ρ′ − ρ) = 0. This proves the orthonormality of the 

system G(χ[0,1]d , Λ). This proposition can now be proved by invoking Theorem 3.1 if we 
can show that Λ + [0, 1]2d is a tiling of R2d. To prove this, we note that Λ1 + [0, 1]2m

is a tiling of the subspace R2m by Theorem 3.1 and that, similarly, for each (t, λ) ∈
Λ(t,λ) + [0, 1]2n is a tiling of R2n. This easily implies the required tiling property and 
concludes the proof. �
Example 3.5. Consider the two-dimensional case d = 2. Let

Λ1 =
⋃

m∈Z
{m} × (Z + μm), μm ∈ [0, 1).

Associate with each γ = (m, j + μm) ∈ Λ1, the set

Λγ =
⋃

n∈Z
{n + sm,j} × (Z + νn,m,j), sm,j ∈ R, νn,m,j ∈ [0, 1).

Then,

Λ := {(m,n + sm,j , j + μm, k + νn,m,j) : m,n, j, k ∈ Z}

(written in the form of (t1, t2, λ1, λ2) where (t1, t2) are the translations and (λ1, λ2) the 
frequencies) has the pseudo-standard structure. Note that the parameters sm,j can be 
chosen so that the set Λ is not standard as the set

{(m,n + sm,j) : m,n, j ∈ Z} + [0, 1]2

will not tile R2 in general. For example, for m = n = 0, we could let s0,0 = 0 and the 
numbers s0,j could be chosen as distinct numbers in the interval [0, 1). The square [0, 1]2
would then overlap with infinitely many of its translates appearing as part of the Gabor 
system.

Using a similar procedure to higher dimension, we can produce many non-standard 
Gabor orthonormal bases with window χ[0,1]d . However, the pseudo-standard structure 
still cannot cover all possible cases of time-frequency sets. A time-frequency set could be 
a mixture of pseudo-standard and standard structure. For example, consider the set

Λ =
⋃

n∈Z\{1}
{(m + tn,k, n, j + μk,m,n, k + νn) : j, k ∈ Z} ∪ {(m, 1)} × Λm,
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where Λm + [0, 1]2 tiles R2. This set consists of two parts. The first part is a subset of a 
set having the pseudo-standard structure while the second part is a subset of a set having 
the standard one. Moreover, the translates of the unit square associated with the first 
part are disjoint with those associated with the second part, showing that G(χ[0,1]2 , Λ)
is a mutually orthogonal set. Since Λ is clearly a tiling of R4, Theorem 3.1 shows that 
G(χ[0,1]2 , Λ) is a Gabor orthonormal basis.

In the next section, we will classify all possible sets Λ ⊂ R4 with the property that 
G(χ[0,1]2 , Λ) is a Gabor orthonormal basis for L2(R2). However, we have

Theorem 3.6. Let d = m + n and let Π1 : R2d → R2m be defined by (3.2). Suppose that 
(χ[0,1]d , Λ) is a Gabor orthonormal basis and that Π1(Λ) +[0, 1]2m tiles R2m. Then Λ has 
the pseudo-standard structure.

Proposition 3.7. Let d = m + n and suppose that (χ[0,1]d , Λ) is a Gabor orthonormal 
basis for L2(Rd). If (s0, λ0) ∈ R2m, consider the translate of the unit hypercube in R2m, 
C = (s0, λ0) + [0, 1)2m, and define

Λ(C) := {(t, ν) ∈ R2n : (s, t, λ, ν) ∈ Λ and (s, λ) ∈ C}.

Then (χ[0,1]n , Λ(C)) is a Gabor orthonormal basis for L2(R2n).

Proof. We first show that the system (χ[0,1]n , Λ(C)) is orthogonal. Let (t, ν) and (t′, ν′)
be distinct elements of Λ(C). There exist (s, λ) and (s′, λ′) in R2m such that (s, t, λ, ν) and 
(s′, t′, λ′, ν′) both belong to Λ. Using the mutual orthogonality of the system (χ[0,1]d , Λ)
together with (3.4), we have

Vgm
gm(s − s′, λ − λ′) = 0 or Vgn

gn(t − t′, ν − ν′) = 0.

Note that, as both (s, λ) and (s′, λ′) belong to C, we have |s − s′|max < 1 and |λ −
λ′|max < 1. In particular, Vgm

gm(s − s′, λ − λ′) �= 0 and the orthogonality of the system 
(χ[0,1]n , Λ(C)) follows.

If (s, λ) ∈ Π1(Λ) (as defined in (3.2)), let

Λ(s,λ) = {(t, ν) : (s, t, λ, ν) ∈ Λ}.

Let f1 ∈ L2(Rm), f2 ∈ L2(Rn) and (s0, λ0) ∈ R2m. Applying Parseval’s identity to the 
function

f(x, y) = e2πiλ0·x f1(x − s0) f2(y), x ∈ Rm, y ∈ Rn,

we obtain that
182
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∫

Rm

|f1(x)|2 dx

∫

Rn

|f2(y)|2 dy

=
∑

(s,λ)∈Π1(Λ)

∑

(t,ν)∈Λ(s,λ)

|Vgm
f1(s − s0, λ − λ0)|2 |Vgn

f2(t, ν)|2

=
∑

(s,λ)∈Π1(Λ)

∑

(t,ν)∈Λ(s,λ)

|Vf1gm(s0 − s, λ0 − λ)|2 |Vgn
f2(t, ν)|2.

Defining

w(s, λ) = ‖f2‖−2
2

∑

(t,ν)∈Λ(s,λ)

|Vgn
f2(t, ν)|2 and μ =

∑

(s,λ)∈Π1(Λ)

w(s, λ) δ(s,λ)

for f2 �= 0, the above identity can be written as
∫

Rm

|f1(x)|2 dx =
∑

(s,λ)∈Π1(Λ)

w(s, λ) |Vf1gm(s0 − s, λ0 − λ)|2 =
(
μ ∗ |Vf1gm|2

)
(s0, λ0).

On the other hand, letting χ̌[0,1)2m(s, λ) = χ[0,1)2m(−s, −λ) and defining C and Λ(C) as 
above, we have also

(
μ ∗ χ̌[0,1)m

)
(s0, λ0) =

∑

(s,λ)∈Π1(Λ)

w(s, λ)χ[0,1)2m(s − s0, λ − λ0)

=
∑

(s,λ)∈Π1(Λ)∩C

w(s, λ)

= ‖f2‖−2
2

∑

(t,ν)∈Λ(C)

|Vgn
f2(t, ν)|2 ≤ 1,

where the last inequality results from the orthogonality of the system (χ[0,1]n , Λ(C))
proved earlier. Since (s0, λ0) is arbitrary in R2m and

∫

R2m

|Vf1gm(s, λ)|2 ds dλ = ‖f1‖2
2,

Theorem 2.1 can be used to deduce that μ ∗ χ̌[0,1)m = 1. This shows that
∑

(t,ν)∈Λ(C)

|Vgn
f2(t, ν)|2 = ‖f2‖2, f2 ∈ L2(Rn),

and thus that the system (χ[0,1]n , Λ(C)) is complete, proving our claim. �
Proof of Theorem 3.6. Let J = Π1(Λ) and, for any (s, λ) ∈ J , define

Λ(s,λ) = {(t, ν) : (s, t, λ, ν) ∈ Λ}.
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If (s0, λ0) ∈ J , let C = (s0, λ0) + [0, 1)2m, and

Λ(C) := {(t, ν) ∈ R2n : (s, t, λ, ν) ∈ Λ and (s, λ) ∈ C}.

Proposition 3.7 shows that the system (χ[0,1]n , Λ(C)) forms a Gabor orthonormal basis. 
By assumption J + [0, 1)2m tiles R2m. Hence, (s0, λ0) + [0, 1)2m contains exactly one 
point in J , i.e. (s0, λ0), and we have

Λ(C) = {(t, ν) : (s0, t, λ0, ν) ∈ Λ} = Λ(s0,λ0).

Therefore, we can write Λ as

Λ =
⋃

(s0,λ0)∈J
{(s0, λ0)} × Λ(s0,λ0).

Our proof will be complete if we can show that J is a Gabor orthonormal basis of 
L2(Rm).

As J is a tiling set, by Proposition 3.1 it suffices to show that the inclusion J − J ⊂
Z(Vgm

gm) ∪ {0} holds. Let (s, λ) and (s′, λ′) be distinct points in J . As Λ(s,λ) + [0, 1)2n

tiles R2n, so does Λ(s,λ) + [−1, 0)2n, and we can find (t, ν) ∈ Λ(s,λ) such that 0 ∈ (t, ν) +
[−1, 0)2n, or, equivalently, with (t, ν) ∈ [0, 1)2n. Similarly, we can find (t′, ν′) ∈ Λ(s′,λ′)
such that (t′, ν′) ∈ [0, 1)2n. Using the fact that (χ[0,1]d , Λ) is a Gabor orthonormal basis 
of L2(R2d), we have

(s, t, λ, ν) − (s′, t′, λ′, ν′) ∈ Z(Vgd
gd),

or, equivalently,

Vgm
gm(s − s′, λ − λ′) = 0 or Vgn

gn(t − t′, ν − ν′) = 0.

Note that, since |t −t′| < 1 and |ν−ν′| < 1, Vgn
gn(t −t′, ν−ν′) �= 0. Hence (s, λ) −(s′, λ′) ∈

Z(Vgm
gm) as claimed. �

4. Two-dimensional Gabor orthonormal bases

In this section, our goal will be to classify all possible Gabor orthonormal basis gen-
erated by the unit square on R2.

Given a fixed Gabor orthonormal basis G(χ[0,1]2 , Λ) and a set A ⊂ R2, we define the 
sets

Γ(A) = {(λ1, λ2) ∈ R2 : (t1, t2, λ1, λ2) ∈ Λ, (t1, t2) ∈ A},

and, for any (λ1, λ2) ∈ R2 and any set B ⊂ R2, we let
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TA(λ1, λ2) = {(t1, t2) ∈ R2 : (t1, t2, λ1, λ2) ∈ Λ, (t1, t2) ∈ A}

and

TA(B) = {(t1, t2) ∈ R2 : (t1, t2, λ1, λ2) ∈ Λ, (t1, t2) ∈ A, (λ1, λ2) ∈ B}.

In particular, the set TA(Γ(A)) collects all the couples (t1, t2) ∈ A such that 
(t1, t2, λ1, λ2) ∈ Λ for some (λ1, λ2) ∈ R2.

We say that a square is half-open if it is a translate of one of the sets

[0, 1)2, (0, 1]2, [0, 1) × (0, 1] or (0, 1] × [0, 1).

Two measurable subsets of Rd will be called essentially disjoint if their intersection has 
zero Lebesgue measure. In the derivation below, we will make use of the identity

Vg2g2(t1, t2, λ1, λ2) = Vg1g1(t1, λ1)Vg1g1(t2, λ2), (t1, t2, λ1, λ2) ∈ R4,

which implies, in particular, that

Vg2g2(t1, t2, λ1, λ2) = 0 ⇔ Vg1g1(t1, λ1) = 0 or Vg1g1(t2, λ2) = 0.

Moreover, using (2.3), the zero set of Vg2g2 is given by

Z(Vg2g2) = {(t, λ) : |t|max ≥ 1} ∪
( 2⋃

i=1
{(t, ν) : λi(1 − |ti|) ∈ Z \ {0})}

)
. (4.1)

This implies that if |t|max < 1 and (t, λ) ∈ Z(Vg2g2), then, there exists i ∈ {1, 2} and for 
some integer m �= 0 such that

|λi| = |m|
1 − |ti|

≥ 1,

with a strict inequality if ti �= 0. These properties will be used throughout this section.

Lemma 4.1. Let G(χ[0,1]2 , Λ) be a Gabor orthonormal basis for L2(R2) and let C be a 
half-open square. Then,

(i) Γ(C) + [0, 1]2 is a packing of R2.
(ii) If (λ1, λ2) ∈ Γ(C), then TC(λ1, λ2) consists of one point.

Proof. (i) Let (λ1, λ2) and (λ′
1, λ

′
2) be distinct elements of Γ(C). By definition, we can 

find (t1, t2) and (t′
1, t

′
2) in C such that (t1, t2, λ1, λ2), (t′

1, t
′
2, λ

′
1, λ

′
2) ∈ Λ. We then have

0 = Vg1g1(t1 − t′
1, λ1 − λ′

1)Vg1g1(t2 − t′
2, λ2 − λ′

2).
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If, without loss of generality, the first factor on the right-hand side of the previous 
equality vanishes, the fact that |t1 − t′

1| < 1 shows the existence of an integer k > 0 such 
that

|λ1 − λ′
1| = k/(1 − |t1 − t′

1|) ≥ 1.

Hence, the cubes (λ1, λ2) + [0, 1]2 and (λ′
1, λ

′
2) + [0, 1]2 are essentially disjoint.

(ii) Suppose that TC(λ1, λ2) contains two distinct points (t1, t2) and (t′
1, t

′
2). Then,

0 = Vg1g1(t1 − t′
1, 0)Vg1g1(t2 − t′

2, 0).

As Vg1g1(t, 0) �= 0 for any t with |t| < 1, we must have |t1 − t′
1| ≥ 1 or |t2 − t′

2| ≥ 1, 
contradicting the fact that both (t1, t2) and (t′

1, t
′
2) belong to C. �

In the following, we will denote by ∂A the boundary of a set A. The next result will 
be useful.

Lemma 4.2. Under the hypotheses of the previous lemma, consider an element λ =
(λ1, λ2) of Γ(C) and let TC(λ) = {(t1, t2)}. Then for any x ∈ ∂(λ + [0, 1]2), we can 
find λx = (λ1,x, λ2,x) ∈ Γ(C) such that x ∈ ∂(λx + [0, 1]2). Moreover, for any such λx, 
letting TC(λx) = {tx}, where tx = (t1,x, t2,x), we can find i0 ∈ {1, 2} such that ti0,x = ti0
and λi0,x = λi0 + 1 or λi0 − 1.

Proof. We can write x = (λ1 + ε1, λ2 + ε2), where 0 ≤ εi ≤ 1, i = 1, 2 and εi ∈ {0, 1}
for at least one index i. Let a = (a1, a2) ∈ R2 with 0 < ai < 1 for i = 1, 2 and consider 
the point (ta, x) := (t1 + a1, t2 + a2, λ1 + ε1, λ2 + ε2) in R4. Since Λ + [0, 1]4 is a tiling on 
R4 and the point (ta, x) is a point on the boundary of (t, λ) + [0, 1]4, we can find some 
point (tx,a, λx,a) ∈ Λ \ {(t, λ)} such that (ta, x) ∈ (tx,a, λx,a) + [0, 1]4. Let tx,a = (t′

1, t
′
2)

and λx,a = (λ′
1, λ

′
2). We have

{−ai ≤ ti − t′
i ≤ 1 − ai,

−εi ≤ λi − λ′
i ≤ 1 − εi,

i = 1, 2. (4.2)

Using the orthogonality of the system G(χ[0,1]2 , Λ), we can find i0 ∈ {1, 2} such that 
Vg1g1(ti0 − t′

i0
, λi0 − λ′

i0
) = 0. Note that ti0 − t′

i0
�= 0 would imply that |λi0 − λ′

i0
| > 1

which is impossible from (4.2). Hence, ti0 = t′
i0

and λi0 − λ′
i0

�= 0.
Moreover, as Vg1g1(0, v) �= 0 if |v| < 1, Vg1g1(ti0 − t′

i0
, λi0 − λ′

i0
) = 0 can only occur

if |λi0 − λ′
i0

| = 1. This shows also that εi0 ∈ {0, 1} in that case. This proves the last 
statement of our claim and the fact that x ∈ ∂(λx,a +[0, 1]2). The proof will be complete 
if we can show that λx,a ∈ Γ(C) for some choice of a.

For simplicity, we consider the half-open square to be C = [b1, b1 + 1) × [b2, b2 + 1). 
Our assertion will be true if the point tx,a = (t′

1, t
′
2) constructed above satisfies the 

inequalities bi ≤ t′
i < bi + 1 for i = 1, 2. As ti0 = t′

i0
, the inequalities clearly hold for 

186
DISTRIBUTION A: Distribution approved for public release.



1532 J.-P. Gabardo et al. / Journal of Functional Analysis 269 (2015) 1515–1538

i = i0. Suppose that the other index j falls out of the range, say t′
j < bj (the case 

t′
j ≥ bj +1 is similar). We consider (ta′ , x) with a′

j = t′
j +1 − tj + δ for some small δ > 0. 

Note that, by (4.2), we have ti + ai − 1 ≤ t′
i ≤ ti + ai for i = 1, 2, and, in particular,

a′
j = t′

j + 1 − tj + δ ≥ aj + δ > 0.

We have also a′
j < 1. Indeed, the inequality t′

j − tj + 1 + δ ≥ 1 would imply that 
t′
j + 1 + δ ≥ 1 + tj . This is not possible, as bj ≤ tj < bj + 1, so 1 + tj ≥ bj + 1. But 
t′
j < bj , so t′

j + 1 < bj + 1, so for δ small,

t′
j + 1 + δ < bj + 1 ≤ 1 + tj

which yields a contradiction.
Using the previous argument with a′ replacing a, we guarantee the existence of t′′

j

such that t′
j + δ = tj + a′

j − 1 ≤ t′′
j ≤ tj + a′

j = t′
j + 1 + δ and the associated point 

(ta′ , λx,a′) = (t′′
1 , t

′′
2 , λ

′′
1 , λ

′′
2) in Λ with the property that x ∈ ∂(λx,a′ + [0, 1]2) for some 

index i′0 such that |λi′
0
−λ′′

i′
0
| = 1, ti′

0
= t′′

i′
0

and εi′
0

∈ {0, 1}. We claim that t′′
j = t′

j+1. Now, 
(t′

1, t
′
2, λ

′
1, λ

′
2) and (t′′

1 , t
′′
2 , λ

′′
1 , λ

′′
2) are in Λ. The mutual orthogonality property implies 

that Vg1g1(t′
i − t′′

i , λ
′
i − λ′′

i ) = 0 for some i = 1, 2.
Suppose that x is not of the corner points of λ + [0, 1]2. In that case, the index i such 

that εi ∈ {0, 1} is unique and it follows that i0 = i′0. This implies in particular, that 
t′
i0

= t′′
i0

(as t′
i0

= ti0 = ti′
0

= t′′
i′
0

= t′′
i0

). Furthermore, the second set of inequalities 
in (4.2) shows that λ′

i0
= λ′′

i0
= λi0 − 1 if εi0 = 0 and λ′

i0
= λ′′

i0
= λi0 + 1 if εi0 = 1. We 

have thus λ′
i0

= λ′′
i0

in both cases. We have thus

Vg1g1(t′
i0 − t′′

i0 , λ
′
i0 − λ′′

i0) = Vg1g1(0, 0) = 1.

Therefore, the other index j must satisfy Vg1g1(t′
j − t′′

j , λ
′
j − λ′′

j ) = 0. The inequalities

−εj ≤ λj − λ′
j ≤ 1 − εj and − εj ≤ λj − λ′′

j ≤ 1 − εj

yield −1 ≤ λ′
j − λ′′

j ≤ 1. However, δ ≤ t′′
j − t′

j ≤ 1 + δ. The Vg1g1 would not be zero 
unless t′′

j ≥ t′
j + 1 (≥ bj). Hence, t′

j + 1 ≤ t′′
j ≤ t′

j + 1 + δ. This forces that t′′
j = t′

j + 1. 
This completes the proof for non-corner points. If x is of the corner point, as the square 
constructed for the non-corner will certainly cover the corner point. Therefore, the proof 
is completed. �

With the help of the previous two lemmas, the following tiling result for Γ(C) follows 
immediately.

Corollary 4.3. Let C be a half-open square. Then Γ(C) + [0, 1]2 is a tiling of R2.

Proof. It suffices to prove the following statement: suppose that J +[0, 1]2 is non-empty 
packing of R2. If, for any x ∈ ∂(t + [0, 1]2) where t ∈ J , we can find tx ∈ J with tx �= t
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such that x ∈ ∂(tx + [0, 1]2), then J + [0, 1]2 is a tiling of R2. Indeed, by Lemma 4.1(i) 
and Lemma 4.2, Γ(C) + [0, 1]2 is a packing of R2 and satisfies the stated property. It is 
thus a tiling of R2.

To prove the previous statement, we note that as J + [0, 1]2 is packing, it is a closed 
set. Suppose that J + [0, 1]2 satisfies the property above and that Rd \ (J + [0, 1]2) �= ∅. 
Let x ∈ ∂(J + [0, 1]2) and assume that x ∈ t + [0, 1]2. We can then find tx ∈ J with 
tx �= t such that x ∈ ∂(tx + [0, 1]2). Note that if x were not a corner point of either 
t +[0, 1]2 or tx +[0, 1]2, then x would be in the interior of J +[0, 1]2. Hence, x must be a 
corner point of t + [0, 1]2 or tx + [0, 1]2. As the set of all the corner points of the squares 
in J +[0, 1]2 is countable, the Lebesgue measure of the open set Rd \ (J +[0, 1]2) is zero 
and Rd \ (J + [0, 1]2) is thus empty, proving our claim. �
Lemma 4.4. Let C be a half-open square and suppose that (λ1, λ2) ∈ Γ(C) with 
TC(λ1, λ2) = {(t1, t2)}. Then all the sets TC(λ′

1, λ
′
2) with (λ′

1, λ
′
2) ∈ Γ(C) are either 

of the form {(t1, t2 + s)} or {(t1 + s, t2)} for some real s with |s| < 1 depending on 
(λ1, λ2).

Proof. We first make the following remark. If (α1, α2), (β1, β2) ∈ Γ(C) are such that 
the two squares (α1, α2) + [0, 1]2 and (β1, β2) + [0, 1]2 intersect each other and also both 
intersect a third square (γ1, γ2) + [0, 1]2 with (γ1, γ2) ∈ Γ(C), then, letting TC(γ1, γ2) =
{(r1, r2)}, we have

TC(α1, α2) = {(r1 + a, r2)} and TC(β1, β2) = {(r1 + b, r2)}

or

TC(α1, α2) = {(r1, r2 + a)} and TC(β1, β2) = {(r1, r2 + b)},

for some real a, b. Indeed, using Lemma 4.2, we have TC(α1, α2) = {(r1 + a, r2)} or 
{(r1, r2 + a)} and TC(β1, β2) = {(r1 + b, r2)} or {(r1, r2 + b)}. Suppose, for example, 
that TC(α1, α2) = {(r1 + a, r2)} and TC(β1, β2) = {(r1, r2 + b). Since the two squares 
intersect each other, we must have |α1 − β1| ≤ 1 and |α2 − β2| ≤ 1. The orthogonality 
property also implies that either (a, α1 − β1) or (−b, α2 − β2) is in the zero set of Vg1g1. 
But since we have |a|, |b| < 1, this would imply that |α1 − β1| > 1 or |α1 − β2| > 1, 
which cannot happen. As Γ(C) + [0, 1]2 is a tiling of R2, for any square (σ1, σ2) + [0, 1]2
intersecting the square (λ1, λ2) + [0, 1]2 and with (σ1, σ2) ∈ Γ(C), we can find another 
square (δ1, δ2) + [0, 1]2, with (δ1, δ2) ∈ Γ(C) and with (δ1, δ2) + [0, 1]2 intersecting both 
squares (σ1, σ2) + [0, 1]2 and (λ1, λ2) + [0, 1]2. By the previous remark, the conclusion of 
the lemma holds for all the squares that neighbor the square (λ1, λ2) + [0, 1]2. Replacing 
this original square by one of the neighboring squares and continuing this process, we 
obtain the conclusion of the lemma for all the squares in the tiling Γ(C) + [0, 1]2 by an 
induction argument. This proves our claim. �
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Suppose that the system G(χ[0,1]2 , Λ) gives rise to a non-standard Gabor orthonor-
mal basis of L2(R2). Then, some of the squares will have overlaps and, without loss of 
generality, we can assume that

|[0, 1]2 ∩ [0, 1]2 + (t1, t2)| > 0

for some (t1, t2) in the translation component of Λ.

Lemma 4.5. If (0, 0, 0, 0) ∈ Λ, then the sets T[0,1)2(λ1, λ2) where (λ1, λ2) ∈ Γ([0, 1)2)
are either all of the form {(t, 0)} or all of the form {(0, t)} with some t (depending on 
(λ1, λ2)) with |t| < 1. In the first case, if there exists some (λ1, λ2) ∈ Γ([0, 1)2) with 
T[0,1)2(λ1, λ2) = (t, 0) and t �= 0, then

Γ([0, 1)2) =
⋃

k∈Z
(Z + μk,0) × {k} (4.3)

for some 0 ≤ μk,0 < 1. Moreover, we can find 0 ≤ tk < 1 such that

T[0,1)2((Z + μk,0) × {k}) = {(tk, 0)}, k ∈ Z, (4.4)

and

Λ ∩ ([0, 1)2 × R2) = {(tk, 0, j + μk,0, k) : j, k ∈ Z}. (4.5)

(In the second case, Γ([0, 1)2) =
⋃

k∈Z{k} × (Z + μk,0) and T[0,1)2({k} × (Z + μk,0)) =
{(0, tk)}, Λ ∩ ([0, 1)2 × R2) = {(0, tk, k, j + μk,0) : j, k ∈ Z}).

Proof. If λ = (0, 0), we have T[0,1)2(λ) = {(0, 0)} as (0, 0, 0, 0) ∈ Λ. By Lemma 4.4, any 
(λ1, λ2) ∈ Γ([0, 1)2) with the square (λ1, λ2) +[0, 1]2 intersecting [0, 1]2 on the λ1, λ2-plane 
satisfies T[0,1)2(λ1, λ2) = {(t, 0)} or T[0,1)2(λ1, λ2){(0, t)} with |t| < 1. Without loss of 
generality, we assume that the first case holds. As Γ([0, 1)2) + [0, 1]2 is a tiling of R2, 
for any square C = (λ1, λ2) + [0, 1]2, with (λ1, λ2) ∈ Γ([0, 1)2), we can find squares 
Ci = (λ1,i, λ2,i) + [0, 1]2 for i = 0, . . . , k with (λ1,i, λ2,i) ∈ Γ([0, 1)2) and such that 
C0 = [0, 1]2, Ck = C, and with Ci and Ci+1 touching each other for all i = 0, . . . , k − 1.

We have T[0,1)2(λ1,1, λ2,1) = {(t1, 0)} for some number t1 with |t1| < 1. Since C2 and 
C0 both intersect C1, T[0,1)2(λ1,2, λ2,2) = {(t2, 0)} by Lemma 4.4 again. Inductively, we 
have T[0,1)2(λ1,i, λ2,i) = {(ti, 0)}, i = 1, . . . , k, which proves the first part.

Consider the case where, for any (λ1, λ2) ∈ Γ([0, 1)2), there exists a number t =
t(λ1, λ2) such that T[0,1)2(λ1, λ2) = {(t, 0)} and assume that t(λ1, λ2) �= 0 for at least 
one couple (λ1, λ2) ∈ Γ([0, 1)2). Suppose that Γ([0, 1)2) is not of the form in (4.3). By 
Corollary 4.3 and Proposition 3.2, we must have Γ([0, 1)2) =

⋃
k∈Z{k} × (Z + ak) with 

0 ≤ ak < 1 and at least one ak �= 0. Consider the distinct points

(t, 0, k, ak + j) and (t′, 0, k − 1, ak−1 + j), both in Λ.
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We must have that either (t − t′, 1) ∈ Z(Vg1g1) or (0, ak − ak−1) ∈ Z(Vg1g1). However, 
since |ak−ak−1| < 1, the second case is impossible. This means that (t −t′, 1) ∈ Z(Vg1g1)
which is possible only if t = t′. Therefore the fact that (t, 0, k, ak + j) ∈ Λ implies that 
t = tj for some real tj. We now prove by induction on |j| that tj = 0 for all j ∈ Z. The 
case j = 0 is clear as (0, 0, 0, 0) ∈ Λ by assumption. If our claim is true for all |j| ≤ J

where J ≥ 0, choose k ∈ Z such that ak+1 �= 0 and ak = 0 if such k exists. Suppose first 
that j > 0. There exist thus t ∈ [0, 1) such that

(tj+1, 0, k, j + 1) and (0, 0, k + 1, ak+1 + j) both belong to Λ.

This implies that either (t, −1) ∈ Z(Vg1g1) or (0, ak+1 − 1) ∈ Z(Vg1g1). This last case is 
impossible and the first one is only possible if t = 0, showing that tj+1 = 0. Similarly by 
considering the points

(tj−1, 0, k + 1, ak+1 + j − 1) and (0, 0, k, j) which both belong to Λ,

we can conclude that tj−1 = 0 for j < 0. If k as above does not exist, there exists a 
choice k′ ∈ Z such that ak′−1 �= 0 and ak′ = 0. By considering the points

(tj+1, 0, k′, j + 1) and (0, 0, k′ − 1, ak′−1 + j) if j > 0

and the points

(tj−1, 0, k′ − 1, ak′−1 + j − 1) and (0, 0, k′, j) if j < 0

which all belong to Λ, we conclude that tj = 0 if |j| = J + 1. This proves (4.3).
If we are in the first case, i.e.

Γ([0, 1)2) =
⋃

k∈Z
(Z + μk,0) × {k},

let m, m′ be distinct integers. We have then

T[0,1)2(m + μn,0, n) = {(tm, 0)} and T[0,1)2(m′ + μn,0, n) = {(tm′ , 0)}

which implies that Vg1g1(tm − tm′ , m − m′) = 0 or Vg1g1(0, 0) = 0. The second case is 
clearly impossible while the first one is possible only when tm = t′

m. This shows that (4.4)
and (4.5) follow immediately from (4.3) and (4.4). �

Note that Lemma 4.5 implies that Γ([0, 1)2) = Γ({(x, 0) : 0 ≤ x < 1}) and 
Γ((0, 1)2) = ∅ if (0, 0, 0, 0) ∈ Λ.
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Lemma 4.6. Under the assumptions of Lemma 4.5, suppose that there exists (λ1, λ2) ∈
Γ([0, 1)2) with T[0,1)2(λ1, λ2) = (t, 0) and t �= 0. Then we can find numbers tk with 
0 ≤ tk < 1 and μk,m, k, m ∈ Z, with 0 ≤ μk,m < 1, such that

Λ ∩ (R × [0, 1) × R2) = {(m + tk, 0, j + μk,m, k) : j, k,m ∈ Z}.

Proof. By the result of Lemma 4.5, we have the identities (4.4) and (4.5). Let T =
{tk, k ∈ Z} ⊂ [0, 1) where tk, k ∈ Z, are the numbers appearing in (4.4). Let s1, s2 ∈ T

with s1 < s2. Consider the half-open squares C = (s1, 0) + [0, 1)2 and C ′ = (s1, 0) +
((0, 1] × [0, 1)). Then we know that Γ(C) + [0, 1]2 and Γ(C ′) + [0, 1]2 both tile R2. Let 
P0 = {(s1, y) : 0 ≤ y < 1} and P1 = {(s1 + 1, y) : 0 ≤ y < 1}. Note that Γ(P0) =
Γ({(s1, 0)}). Moreover,

Γ(C) = Γ(P0) ∪ Γ(C \ P0), Γ(C ′) = Γ(C ′ \ P1) ∪ Γ(P1)

and since C \ P0 = C ′ \ P1, Γ(P0) = Γ(P1). We have

TC′(Γ(P1)) ⊂ {(s1 + 1, y), 0 ≤ y < 1}

but since (s2, 0) ∈ C ′, we must have TC′(Γ(P1)) = (s1 + 1, 0) by Lemma 4.4. Since

Γ(P0) = {(j + μk,0, k) : j, k ∈ Z, tk = s1}

and π2(Γ(P0)) = π2(Γ(P1)), where π2 is the projection to the second coordinate, we have

Γ({(1 + s1, 0)}) = Γ(P1) = {(j + μk,1, k) : j, k ∈ Z, tk = s1},

for some constants μk,1 with 0 ≤ μk,1 < 1 using Proposition 3.2. Applying this argument 
to s1 = 0 and s2 = t, we obtain that

Λ ∩
(
{1} × [0, 1) × R2) = {(j + μk,1, k) : j, k ∈ Z, tk = 0}.

Similar arguments applied to s1 = s and s2 = 1 show that, for any s ∈ T , we have

Λ ∩
(
{s + 1} × [0, 1) × R2) = {(j + μk,1, k) : j, k ∈ Z, tk = s},

and that Λ ∩
(
{s + 1} × [0, 1) × R2) is empty if s ∈ [0, 1) \ T . The same idea can also be 

used to show the existence of constants μk,−1 with 0 ≤ μk,1 < 1 such that

Λ ∩
(
{s − 1} × [0, 1) × R2) =

{ {(j + μk,−1, k) : j, k ∈ Z, tk = s}, s ∈ T,

∅, s ∈ [0, 1) \ T,

and, more generally using induction, that, for any m ∈ Z, we can find constants μk,m

with 0 ≤ μk,m < 1 such that
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Λ ∩
(
{s + m} × [0, 1) × R2) =

{ {(j + μk,m, k) : j, k ∈ Z, tk = s}, s ∈ T,

∅, s ∈ [0, 1) \ T.

This proves our claim. �
We can now complete the proof of the main result of this section which gives a 

characterization for the subsets Λ of R4 with the property that the associated set of time-
frequency shifts applied to the window χ[0,1]2 yields an orthonormal basis for L2(R2).

Proof of Theorem 1.4. It follows from Lemma 4.4 that either all T[0,1)2(λ1, λ2), (λ1, λ2) ∈
Γ([0, 1)2) are either of the form {(t, 0)} or all are of the form {(0, t)} with some t �= 0. 
In the first case, we deduce from Lemma 4.6 that

Λ ∩ (R × [0, 1) × R2) = {(m + tk, 0, j + μk,m, k) : j, k,m ∈ Z}

for certain numbers tk and μk,m in the interval [0, 1). We now show that Λ will be of the 
first of the two possible forms given in the theorem. (Similarly, the second form follows 
from the second case of Lemma 4.6.)

Letting C = [0, 1)2 and C ′ = [0, 1) × (0, 1], we note that both Γ(C) + [0, 1]2 and 
Γ(C ′) + [0, 1]2 tile R2 but Γ((0, 1)2) is empty. Hence, Γ(C ′) = Γ({(x, 1) : 0 ≤ x < 1}). 
It means that any set TC′(λ1, λ2) with (λ1, λ2) ∈ Γ(C ′) is of the form {(t, 1)} for some 
t = t(λ1, λ2) with 0 ≤ t < 1. We now have two possible cases: either the cardinality of 
TC′(Γ(C ′) is larger than one or equal to one. In the first case, we can find two distinct 
elements of TC′(Γ(C ′)) and we can then replicate the proof of Lemma 4.6 to obtain that

Λ ∩ (R × [1, 2) × R2) = {(m + tk, 1, j + μk,m,1, k) : j, k ∈ Z}.

In the other case, TC′(Γ(C ′)) = {(t1, 1)} for some t1 with 0 ≤ t1 < 1. If we translate C ′

horizontally and use the same argument as in the proof of Lemma 4.6, we see that

Λ ∩ (R × [1, 2) × R2) = {(m + t1, 1)} × Λm,1,

where Λm,1 is a spectrum for the unit square [0, 1]2. This last property is equivalent to 
Λm,1 + [0, 1]2 being a tiling of R2 by the result in [12].

We can then prove the theorem inductively by translating the square C ′ in the vertical 
direction using integer steps. �
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Mainly, using analytical techniques, we show the probabilistic estimate, 
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convex singular values, when the number of rows of the matrices becomes 

very large and the lower tail probability of theirs as well. These results 
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Introduction 

The largest singular value and the smallest singular 

value of random matrices in l2-norm, including Gaussian 

random matrices, Bernoulli random matrices, 

subgaussian random matrices, etc, have attracted major 

research interest in recent years and have applications in 

compressed sensing, a technique for recovering sparse or 

compressible signals. For instance, (Soshnikov, 2002; 

Soshnikov and Fyodorov, 2004) studied the largest 

singular value of random matrices and (Rudelson and 

Vershynin, 2008a; 2008b; Tao and Vu, 2010) and some 

others, studied the smallest singular values. 
In the study of the asymptotic behavior of 

eigenvalues of symmetric random matrices, Wigner 
symmetric matrix is a typical example, whose upper (or 
lower) diagonal entries are independent random 
variables with uniform bounded moments. Wigner 
proved in (Wigner, 1958) that the normalized 
eigenvalues are asymptotically distributed in the 
semicircular distribution. Precisely, let A be a symmetric 
gaussian random matrix of size n×n whose upper 
diagonal entries are independent and identically-
distributed copies of the standard gaussian random 
variable, then the empirical distribution function of the 

eigenvalues of 
1

n

 A is asymptotically: 

 

21
4 | | 2

( ) : 2

0 | | 2

x dx for x
p x

for x

π


− ≤

= 
 >

 (1.1)  

As the matrix size n goes to infinity. This is the well-
known Wigner’s Semicircle law, which provides the 
precise description of the statistical behavior of 
eigenvalues of matrix of large size. In another case, for a 
random matrix whose entries are independent and 
identically-distributed (i.i.d.) copies of a complex 
random variable with mean 0 and variance 1, Tao and 

Vu, (2008; Tao et al., 2010) that the eigenvalues of 
1

n

 

a converges to the uniform distribution on the unit circle 

as n goes to ∞ and that holds not only for the random 
matrices with real entries but also for complex entries. 
Their result has also generalized (Girko, 1985) and solved 
the circular law conjecture open since the 1950’s, that the 
smallest eigenvalue converges to the uniform distribution 
over the unit disk as n tends to infinity (Bai, 1997).  

The largest singular values of matrices are actually 

their p-norm, which, from a geometric perspective, 

has connectionsa with the Minkowski space, complex 

l
p
 space, in differential geometry, for which one can 

refer to (Liu, 2013; 2011), because one can view the 

p-norm of a matrix as a generalization of the p-norm 

of a vector. 
For random matrices whose entries are i.i.d. random 

variable satisfying certain moment conditions, the largest 
singular value was studied in (Geman, 1980; Yin et al., 
1988). Tracy and Widom (1996) that the limiting law of 
largest eigenvalue distributions of Gaussian Orthogonal 
Ensemble (GOE) is given in terms of a particular 
Painlevé II function, which is the well-known Tracy-
Widom law. Furthermore, the distribution of the 
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eigenvalue of Wishart matrices, WN,n = AA*, where A = 

AN,n is a Gaussian random matrix of size N×n, was 
studied in (Johansson, 2000; Johnstone, 2001). They 
showed that the distribution of largest eigenvalue of 
Wishart matrices converges to the Tracy-Widom law as 

n

N
tend to some positive constant. More generally, the 

non-gaussian random matrices were studied in 
(Soshnikov, 2002). Seginer (2000) compared the 
Euclidean operator norm of a random matrix with i.i.d. 
mean zero entries to the Euclidean norm of its rows and 
columns. Later, (Latala, 2005) gave the upper bound on 
the expectation (or average value) of largest singular 
value namely the norm of any random matrix whose 
entries are independent mean zero random variables with 
uniformly bounded fourth moment. 

The condition number, which is the ratio of the 
largest singular value over the smallest singular value of 
a matrix, is critical to the stability of linear systems. In 
(Edelman, 1988), the distribution of the condition 
number of Gaussian random matrices, was particularly 
investigated in numerical experiments. As a typical 
example of subgaussian random matrices, the 
invertibility of Bernoulli random matrices was also 
studied. Tao and Vu (2007) the probability of Bernoulli 
random matrices to be singular is shown to be at 

most ( )
3

1
4

n

o
 

+ 
 

, where n is the size of the matrices. 

Their result shows that the probability of the smallest 
singular value of Bernoulli random matrices to be zero is 
exponentially small as n tends to infinity. Recently, the 

singularity probability ( )
3

1
4

n

o
 

+ 
 

 has been improved to 

( )
1

1
2

n

o
 

+ 
 

 by (Bourgain et al., 2010). 

The recent studies of the smallest singular value have 
also been motivated, in a large sense, by some open 
questions or conjectures. Spielman and Teng (2002) the 
following conjecture was proposed in the International 
Congress of Mathematicians in 2002. 

Conjecture 1.1 

Let ξ be Bernoulli random variable, in other words, 

( ) ( )
1

1 1
2

P Pξ ξ− = = − = . Then: 

 

( ) n

n

t
P s M t c

n

ξ
  

≤ ≤ +  
  

  (1.2)  

 
for all t>0 and some 0<c<1. 

In the breakthrough work on the estimate on the 
smallest singular value, (Rudelson and Vershynin, 
2008a), Rudelson and Vershynin obtained the upper tail 

probabilistic estimate on the smallest value in l2-norm 
for square matrices of centered random variables, with 
unit variance and appropriate moment assumptions. In 
particular, they proved the Spielman-Teng conjecture up 
to a constant. The lower tail probabilistic estimate on the 
smallest value in l2-norm for square matrices was 
estimated in (Rudelson and Vershynin, 2008b). These 
results have shown that the smallest singular value of the 

n×n subgaussian random matrices is of order 
1

2
n

−

 in high 

probability for large n. In a more explicit way, the 
distribution of the smallest singular value of random was 
given in (Tao and Vu, 2010) by using property testing 
from combinatorics and theoretical computer science. 
The pregaussian matrices were used to recover sparse 
image in (Rauhut, 2010) and matrix recovery, on 
which one can refer to (Oymak et al., 2011; Lai et al., 
2012). Very recently, Rudelson and Vershynin (2010) 
gave a comprehensive survey on the extreme singular 
values of random matrices. 

It is well-known that the classic singular value is 
defined in terms of l2-norm, then a natural question 
would be what if one defines the singular value by the lq-
quasinorm for 0<q≤1 and lp-norm for p>1. There were 
some remarkable results by other researchers on the 
largest singular values of random matrices in the l2-
norm. Geman  (1980; Yin et al., 1988) showed that the 
largest singular value of random matrices of size m×N 
with independent entries of mean 0 and variance 1 tends 

to m N+  almost surely. The largest and smallest q-

singular values of pregaussian random matrices for 
0<q≤1 were studied in (Lai and Liu, 2014), which has 
applications in a technique of signal processing (Foucart 
and Lai, 2010; 2009; Lai and Liu, 2011) and other areas. 
Similar to the q-singular value when 0<q≤1, the strictly 
convex largest p-singular value, in which p>1, can be 
defined and we will show the probabilistic estimate, 
precisely, the decay, on the upper tail probability of the 
largest strictly convex p-singular value, when the 
number of rows of the matrices becomes very large and 
the lower tail probability of theirs as well. These results 
provide probabilistic description or picture on the 
behaviors of the largest p-singular values of random 
matrices in probability.  

The Largest p-Singular Value 

The p-singular values of a matrix, in general, can be 

defined in the way of maximum of minimums or 

supremum of infimums. In largest p-sigular values can 

be defined as follows:  

Definition 2.1 

For an m×N matrix A, the largest p-singular value of 

A denoted as ( )
1

p

s  (A) is defined as: 
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( ) ( ) { }1
: || || : || || 1

p N

p p
s A sup Ax x with x= ∈ =ℝ  (2.1)  

 
For given p>1. 

Lai and Liu (2014), the following lemma on a linear 
bound for partial binomial expansion was established. 

Lemma 2.2  

For every positive integer n: 
 

( )
1

2

1 8

n
n kk

n
k

n
x x x

k

−

 
= + 
 

 
− ≤ 

 
∑  (2.2) 

 
For all x∈ [0, 1]. 

The above lemma can be applied to estimate 
probabilities. 

Lemma 2.3  

Suppose ξ1, ξ2, ···, ξn are i.i.d copies of a random 

variable ξ, then for any ε>0: 
 

( )
1

| | 8 | |
2

n
p

i

i

n
P P

ε
ξ ξ ε

=

 
≤ ≤ ≤ 

 
∑  (2.3)  

 
For any given p>1. 
Proof. Given p>1, we have the relation on the 

probability events that: 
 

( )1

1

,... : | |
2

n
p

n i

i

mε
ξ ξ ξ

=

 
≤ 

 
∑  (2.4) 

 

Is contained in: 
 

( ){ }1, 1

1
2

... :| | ,... | | ,... | | :
n

p p p

n i ik in

n
k

ξ ξ ξ ε ξ ε ξ ε ε
 

= + 
 

≤ > > =∪  (2.5) 

 
where, {i1, i2, · · ·, ik} is a subset of {1, 2 ···, n} and {ik+1, 
···, in} is its complement. 

Let x = P(|ξ1|
p
 ≤ε), then by the union probability: 

 

( ) ( )
1

2

1

n
n kk

n
k

n
P x x

k
ε

−

 
= + 
 

 
= − 

 
∑   (2.6)  

 
And applying Lemma 2.2, we have: 

 

( ) ( )1
8 8 | |P x Pε ξ ε≤ = ≤  (2.7)  

 
Since the event (2.4) is contained in the event (2.5): 

 

( ) ( )1

1

| | 8 | |
2

n
p p

i

i

n
P P P

ε
ξ ε ξ ε

=

 
≤ ≤ ≤ ≤ 

 
∑  (2.8) 

 
To estimate the lower tail probability of the largest 

p-singular value, we have the following theorem on 

the lower tail probability of the largest p-singular 
value for p>1. 

Theorem 2.4 

Let ξ be a pregaussian variable normalized to have 

variance 1 and A is an m×N matrix with i.i.d. copies of ξ 

in its entries, then for every p>1 and any ε>0, there 

exists γ>0 such that: 
 

( ) ( )
1

1

p p
P s A mγ ε

 
≤ ≤ 

 
 

 (2.9)  

 

Which γ only depends on p, ε and the pregaussian 
variable ξ. 

Proof. Since aij is pregaussian with variance 1, then 

any ε>0, there is some δ>0, such that: 
 

( )| |
8

p

ij
P a

ε
δ≤ ≤  (2.10)  

 

But we know: 
 

( )
( )

1

1

| |
1

m p
p

ij

i

p
s A a

=

 
≥  
 
∑  (2.11)  

 

For all j, because by the definition of the largest p-
singular value 2.1, choosing x to be the standard basis 

vectors of RN
 gives us maxj ( ) ( ) ( )

1

11
| |

m ppp

iji
a s A

=

≤∑ . 

Therefore, by Lemma 2.3: 
 

( ) ( )

( )

1
1

1

1

| |
2 2

8 | |

m
p

p pp

ijo

i

p

ij

m
P s A m P a

P a

δ δ

δ ε

=

 
   ≤ ≤ ≤      

 

≤ ≤ ≤

∑
 (2.12)  

 

Thus let

1

2

pδ
γ

 
=  
 

, then (2.9) follows. 

For the upper tail probability of the largest p-
singular value, p>1, we can derive the following 
lemma first by using the Minkowski inequality and 
discrete Hölder inequality. 

Lemma 2.5 

For p≥1, (2.1) defines a norm on the space of m × N 
matrices and: 
 

( ) ( )
1

1
|| || || ||

p

p p

j p j p
j j

max a s A N max a

−

≤ ≤  (2.13)  

 
In which aj, j = 1, 2, ···, N, are the column vectors of A. 
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Applying the above lemma, an estimate we can 

derive easily for Bernoulli random matrices, whose 

every entry equals to 1 or-1 with equal probability (Tao 

and Vu, 2009), is the following theorem on the upper tail 

probability of the largest p-singular value of Bernoulli 

matrices for p>1. 

Theorem 2.6 

Let ξ be a Bernoulli random variable normalized to 

have variance 1 and A be an m×N matrix with i.i.d. 
copies of ξ in its entries, then: 
 

( ) ( )
11 1

1

p

pp p pm s A m N

−

≤ ≤  (2.14)  

 

One may conjecture that the bound might be
1

pm . 

However, considering the Bernoulli matrices, whose 
entries are in Bernoulli distribution, as special 
subgaussian matrices, the expectation of the largest p-

singular value may not be 
1

pm . Indeed, let A be an m× m 

Bernoulli matrix and x be a non-zero vector in Rm. The 

expectation of the largest p-singular value:  
 

( ) ( )( )1

|| ||

|| ||

p p

p

Ax
E s A E

x
≤   (2.15)  

 

For all x∈Rm and particularly for x = (1,···, 1) ∈ Rm, 

we have: 
 

1
1

1

1

|| ||
| ... |

|| ||

n p
p pp

i in

ip

Ax
E n E

x

−

=

 
== ∈ + +∈ 

 
∑  (2.16)  

 

Now let Xi: = ∈i1 +···+∈in, then ( )
1

11
... |

n pp

i ini
E

=

∈ + +∈∑  is 

the expectation of the lp-norm of the vector (X1, X2, ···, Xn). 
We also have the following result on the upper tail 

probability of the largest p-singular value of Bernoulli 
matrices for p>1. 

Theorem 2.7 

Let A be an m×m Bernoulli matrix with every entry 
equal to 1 or-1 with equal probability, then one has: 
 

( ) ( )( ) ( )1

p

m
P s A K exp cm≥ ≤ −  (2.17)  

 
For some K>0 and some absolute constant c>0. 

Proof. Let A = (∈ij)m×m and 1m

p
S

−  be the unit sphere with 

respect to lp-norm in Rm, then for any 1m

p
x S

−

∈ , by the 

convexity of the function f (t) := tp for p>1: 

1

1

1

1

1 1

|| ||

| | || ||

p ppm m
p

p ij j

i j i

p pm m

ij j p

i j

Ax x m

x m x m

−

= −

= =

 
 = ∈ ≤
 
 

 
∈ = =  

 

∑∑

∑∑

  (2.18) 

 
Therefore we have: 
 

|| ||
p

E Ax m≤  (2.19)  

 

For all 1m

p
x S

−

∈ . By Chernoff bound, we get: 

 

( ) ( )
( )

|| || || || || ||
p p p

P Ax Km P Ax KE Ax

exp cKm

≥ ≤ ≥

≤ −

 (2.20)  

 
For any K>2 and some absolute constant c>0. 
By Lemma 4.10 in (Pisier, 1999), there is a subset N 

which is a δ-net of 1m

p
S

−

 with cardinality: 

 

( )
2

1

m

card N
δ

 
≤ + 
 

 (2.21)  

 

Finally, using the union bound of probability and an 
approximation of any point on the sphere by points of 

the δ-net, we obtain (2.17).  
For the rectangular matrices, we have the following 

theorem on the upper tail probability of the largest p-
singular value of rectangular matrices for 1<p≤2. 

Theorem 2.8 

Let ξ be a pregaussian variable normalized to have 

variance 1 and A is an m× N matrix with i.i.d. copies of ξ 

in its entries, then for every 1<p≤2 and any ε>0, there 
exists K>0 such that: 
 

( ) ( )
21 1

2 2

1

p

p p p
P s A K m m N ε

−  
 ≥ + ≤ 

  
  

 (2.22)  

 

where, K only depends on p, ε and the pregaussian 
variable ξ. 

Proof. By the discrete Hölder inequality and the 
definition of the largest p-singular value: 
 

( ) ( )

( ) ( )

1

, 0 , 0

1 1

1 12
222

1

2

|| ||

|| ||

|| ||

|| ||

N N

p p

x x x xp

p

p

Ax
s A sup sup

x

m Ax
m s A

x

∈ ≠ ∈ ≠

−

−

= ≤

=

ℝ ℝ

 (2.23)  

 

We also know that there exists K>0 such that: 
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( ) ( )
1 1

2
2 2

1
P s A K m N ε

  
≥ + ≤   

  
 (2.24)  

 

Therefore, we have: 
 

( ) ( )

( ) ( )

1 11 1

2 22 2

1

1 1

2
2 2

1

p
P s A K m m N

P s A K m N ε

−  
 ≥ + 

  
  

  
≤ ≥ + ≤   

  

 (2.25)  

 
To have a full generalization, let us derive the 

following useful lemma.  
In general, for the relation between 

( ) ( )
1 1

1 1
, 1, 1,

q q

s and s q
p q
+ = > one can deduce the following 

duality lemma on general rectangular matrices. 

Lemma 2.9 

For any q≥1 and m × N matrix A: 
 

( ) ( ) ( ) ( )1 1

q p T
s A s A=  (2.26)  

 

where, 
1 1

1
p q
+ = .  

Proof. By the discrete Hölder inequality, we know 

that if 
1 1

1
p q
+ =  then: 

 

, || ||
q

Ax y Ax≤  (2.27)  

 

For all x∈R
N
 and y∈R

m
 with ||y||p = 1 and 

furthermore the equality holds for some y0 with ||y0 ||p = 
1. Thus: 
 

,|| || 1

|| || ,
m

p

p

y y

Ax sup Ax y
∈ =

=

ℝ

 (2.28) 

 
By the definition of the largest q-singular value: 

 
( ) ( )1 ,|| || 1

,|| || 1 ,|| || 1

|| ||

,

N
q

N m
q p

q

qx x

x x y y

s A sup Ax

sup sup Ax y

∈ =

∈ = ∈ =

=

=

ℝ

ℝ ℝ

 (2.29) 

 
In the same way, we also have: 
 

( ) ( )
1 ,|| || 1

1
,|| ||

,

m
Np x x q

p T

y y

s A sup sup Ax y
=

∈ =

∈

=

ℝ
ℝ

 (2.30)  

 

Finally, using 〈Ax, y〉 = 〈AT
y, x〉 and switching the 

supremums, we get ( ) ( ) ( ) ( )1 1

q p T
s A s A= .  

We have the following remarks on the above lemma. 

Remark 2.10 

One can also obtain the above lemma the operator 
duality on the dual spaces. 

Remark 2.11 

The above lemma allows us to obtain the 

probabilistic estimates on ( ) ( )1

p

s A  for p>2 by taking the 

transpose of A and using the estimates on ( ) ( )1

q T
s A .  

Thus using the duality lemma, we obtain. 

Theorem 2.12 

(Lower tail probability of the largest p-singular value 

of rectangular matrices, p>2). Let ξ be a pregaussian 

random variable normalized to have variance 1 and A be 

an m×N matrix with i.i.d. copies of ξ in its entries, then 

for every p>2 and any ε>0, there exists γ>0 such that: 

 

( ) ( )
1

1

p

p p
P s A mγ ε

− 
≤ ≤ 

 
 

 (2.31)  

 

which, γ only depends on p, ε and the pregaussian 
random variable ξ. 

Moreover, we have the upper tail probability of the 

largest p-singular value of rectangular matrices for p>2. 

Theorem 2.13  

(Upper tail probability of the largest p-singular value 

of rectangular matrices, p>2). Let ξ be a pregaussian 

variable normalized to have variance 1 and A is an m×N 

matrix with i.i.d. copies of ξ in its entries, then for every 

p>2 and any ε>0, there exists K>0 such that: 
 

( ) ( )
1 21

22

1

p p

p p p
P s A K N m N ε

− −  
 ≥ + ≤ 

  
  

  (2.32)  

 

where, K only depends on p, ε and the pregaussian 
variable ξ. 

Numerical Experiments 

In general, matrix p-norms are, in fact, NP-hard to 

approximate if p ≠ 1,2,∞, on which one can refer to 

(Hendrickx and Olshevsky, 2010; Liu, 2014; Higham, 

1992). In this section, however, we would like to show 

the results from some numerically computable 

experiments on the p-singular value for p>1 and q-

singular value for 0<q≤1 of random matrices. 
For p = 2, we plot the largest 2-singular value of 

Gaussian random matrices of size n×n, where n runs 
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from 1 through 100. Figure 1 this graph shows that the 2-

singular value is ( )O n . 

For p = 1, in the first numerical experiment we plot 
the largest 1-singular value of Gaussian random of size 

n×n, where n runs from 1 through 100. Figure 2 the 
graph shows that the largest 1-singular value is O (n). 

In the second numerical experiment for p = 1, we 
plot the largest 1-singular value of Gaussian random 

matrices of size n×n, where n runs from 1 through 
200. Figure 3 the graph shows that the largest 1-
singular value is O (n). 

In the third experiment for p = 1, we plot the largest 
1-singular value of Gaussian random matrices of size 

n×n, where n runs from 1 through 400. Figure 4 the 
graph shows that the largest 1-singular value is O (n). 

For p = ∞, we plot the largest ∞-singular value of 
Gaussian random matrices of size n×n, where n runs 
from 1 through 500. Figure 5 this graph shows that the 
∞-singular value is O (n). 

Higham (1992), the p-norm of a matrix of size m by n 
was estimated reliably in O (mn) operations and an 
algorithm that can estimate the p-norm in a specific 

accuracy, within a factor of
1

1
p

n

−

, was provided. Using this 

algorithm, we plot the largest 4-singular value of Gaussian 
random matrices and Bernoulli random matrices of size 

m×n, where m and n run from 1 through 81 Fig. 6 and 7. 
 

  
 

Fig.1. Largest 2-singular value of Gaussian random matrices 
 

 
 

Fig. 2. Largest 1-singular value of Gaussian random matrices: Experiment 1 
 

 
 

Fig. 3. Largest 1-singular value of Gaussian random matrices: Experiment 2 
 

 
 

Fig. 4. Largest 1-singular value of Gaussian random matrices: Experiment 3 
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Fig. 5. Largest ∞-singular value of Gaussian random matrices 
 

 
 

Fig. 6. Largest 4-singular value of Gaussian random matrices 
 

 
 

Fig. 7. Largest 4-singular value of Bernoulli random matrices 
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THE PROBABILISTIC ESTIMATES ON THE LARGEST AND
SMALLEST q-SINGULAR VALUES OF RANDOM MATRICES

MING-JUN LAI AND YANG LIU

Abstract. We study the q-singular values of random matrices with pre-
Gaussian entries defined in terms of the �q-quasinorm with 0 < q ≤ 1. In
this paper, we mainly consider the decay of the lower and upper tail prob-
abilities of the largest q-singular value s

(q)
1 , when the number of rows of the

matrices becomes very large. Based on the results in probabilistic estimates on
the largest q-singular value, we also give probabilistic estimates on the smallest
q-singular value for pre-Gaussian random matrices.

1. Introduction

The extremal spectrum or the largest and smallest singular values of random
matrices have been of interest to many research communities including numerical
analysis and multivariate statistics. For example, the condition numbers of ran-
dom matrices were of interest as early as in von Neumann and Goldstein’1947, [28]
and Smale’1985, [19], and distribution of the largest and smallest eigenvalues of
Wishart matrices was studied in Wishart’1928, [30]. Some estimates for the prob-
ability distribution of the norm of a random matrix transformation were obtained
in Bennett, Goodman and Newman’1975, [2]. In 1988, Edelman presented a com-
prehensive study on the distribution of the condition numbers of Gaussian random
matrices together with many numerical experiments (cf. [5]). In particular, Edel-
man explained several interesting applications of eigenvalues of random matrices
in graph theory, the zeros of Riemann zeta functions, as well as in nuclear physics
(cf. [6]). Indeed, the well-known semi-circle law (cf. Wigner’1962, [29]) states that
the histogram for the eigenvalues of a large random matrix is roughly a semi-circle.
To be more precise, let A be a Gaussian random matrix and M(x) denote the pro-
portion of eigenvalues of the Gaussian orthogonal ensemble (A + AT )/(2

√
n) (the

symmetric part of A/
√

n) that are less than x. Then the semi-circle law asserts
that

d

dx
M(x) →

{
2
π

√
1 − x2, ifx ∈ [−1, 1],

0, otherwise.
This interesting property has made a long lasting impact and attracted many
researchers to extend and generalize the semi-circle law. See recent papers of
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1776 MING-JUN LAI AND YANG LIU

Tao and Vu’2008, [24] and Rudelson and Vershynin’2010, [17] for new results
and surveys and the references therein. It is known that the largest eigenvalue
of Ms = 1

s
Vn×s(Vn×s)T converges to (1 + √

y)2 almost surely (cf. Geman’1980,
[10]) and the smallest eigenvalue converges to (1 − √

y)2 almost surely (cf. Sil-
verstein’1985, [18]), where Vn×s is a Gaussian random matrix of size n × s with
n/s → y ∈ (0, 1] and Vn×s(Vn×s)T is called a Wishart matrix. The behavior of the
largest singular value of random matrices A with i.i.d. entries is well studied. If a
random variable ξ has a bounded fourth moment, then the largest eigenvalue s1(A)
of an n×n random matrix A with i.i.d. copies of ξ satisfies the following property:

lim
n→∞

s1(A)√
n

= 2
√

Eξ2

almost surely. See, e.g., Yin, Bai, Krishnaiah’1988, [31] and Bai, Silverstein and
Yin’1988, [1]. The bounded fourth moment is necessary and sufficient in this case.
However, the behavior of the smallest singular value for general random matrices
has been much less known. Although Edelman showed that for every ε > 0, the
smallest eigenvalue sn(A) of Gaussian random matrix A of size n × n has

P
(
sn(A) ≤ ε√

n

)
≤ ε

for any ε > 0, the probability estimates for sn(A) for general random matrix A
were not known until the results in Rudelson and Vershynin’2008, [14]. In fact,
Rudelson in [16] presented a less accurate probability estimate for sn(A), and soon
both Rudelson and Vershynin found a simpler proof of much accurate estimate in
[15]. More precisely, Rudelson and Vershynin first showed (cf. [15]) the following
results:

Theorem 1.1. If A is a matrix of size n × n whose entries are independent
random variables with variance 1 and bounded fourth moment, then

lim
ε→0+

lim sup
n→∞

P
(
sn(A) ≤ ε√

n

)
= 0.

Furthermore, in Rudelson and Vershynin’2008, [14], they presented a proof of
the following

Theorem 1.2. Let A be an n×n matrix whose entries are i.i.d. centered random
variables with unit variance and fourth moment bounded by B. Then

lim
K→+∞

lim sup
n→∞

P
(
sn(A) ≥ K√

n

)
= 0.

These two results settled down a conjecture by Smale in [18] (the results on the
Gaussian case were established by Edelman and Szarek; see [6] and [22]). More
precise estimates for largest and smallest eigenvalues are given for sub-Gaussian
random matrices, Bernoulli matrices, covariance matrices, and general random ma-
trices of the form M +A with deterministic matrix M and random matrix A in the
last ten years. See, e.g. [25], [20], [14], [26], [23] and the references in [17].

In this paper, we extend these studies on the probability estimate of the largest
and smallest singular values of random matrices in the �2-norm and give estimates
for these extremal spectra in the setting of the �q-quasinorm for 0 < q ≤ 1. Not
only is it interesting to know if the probability estimates for largest and smallest
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LARGEST AND SMALLEST q-SINGULAR VALUES 1777

singular values of random matrices in the �2-norm can be extended to the setting
of the �q-quasinorm, there are also some definite advantages of using the general
�q-quasinorm when studying the restricted isometry property of random matrices as
suggested in Chartrand and Steneva’2008, [4], Foucart and Lai’2009, [8] and Foucart
and Lai’2010, [9]. In addition to Gaussian and sub-Gaussian random matrices, we
would like to study the probability estimates for pre-Gaussian random matrices.
A random variable ξ is pre-Gaussian if ξ has mean zero and the moment growth
condition E(|ξ|k) ≤ k!λk/2, i.e. (E(|ξ|k))1/k ≤ Cλk for k ≥ 1 (cf. Buldygin and
Kozachenko’2000, [3]). Note that the moment growth condition for a sub-Gaussian
random variable η is

(
E
(
|η|k

))1/k ≤ BC
√

k.
To be precise on what we are going to study in this paper, for any vector x =

(x1, · · · , xn)T in Rn, let

‖x‖q
q =

n∑

i=1
|xi|q

for q ∈ (0,∞). It is known that for q ≥ 1, ‖·‖q is a norm for Rn and ‖·‖q
q is a quasi-

norm for Rn for q ∈ (0, 1) that satisfies all the properties for a norm except the
triangle inequality. Let A = (aij)1≤i≤m,1≤j≤n be a matrix. The standard largest
q-singular value is defined by

(1.1) s
(q)
1 (A) := sup

{
‖Ax‖q

‖x‖q

: x ∈ Rn with x 	= 0
}

.

It is known that for q ≥ 1, the equation in (1.1) defines a norm on the space of
m × n matrices. In addition, we know

(1.2) max
j

‖aj‖q ≤ s
(q)
1 (A) ≤ n

q−1
q max

j
‖aj‖q ,

where aj , j = 1, 2, · · · , n, are the column vectors of A. We refer to any book on
matrix theory for the properties of the largest singular value sq

1(A) when q ≥ 1, for
example, [11]. However, for q ∈ (0, 1), the properties of sq

1(A) are not well-known.
For convenience, we shall explain some useful properties in the Preliminaries section.

The purpose of this paper is to study the matrix spectrum, e.g. sq
1(A) for random

matrix A with pre-Gaussian entries. Two sets of our main results are the following

Theorem 1.3 (Upper tail probability of the largest q-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m × m matrix
with i.i.d. copies of ξ in its entries. Then for any 0 < q < 1,

(1.3) P
(
s
(q)
1 (A) ≥ Cm

1
q

)
≤ exp (−C ′m)

for some C, C ′ > 0 only dependent on the pre-Gaussian variable ξ.

Theorem 1.4 (Lower tail probability of the largest q-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m × m matrix
with i.i.d. copies of ξ in its entries. Then there exists a constant K > 0 such that

(1.4) P
(
s
(q)
1 (A) ≤ Km

1
q

)
≤ cm

for some 0 < c < 1, where K only depends on the pre-Gaussian variable ξ.

These results have their counterparts in papers by Yin, Bai, Krishnaiah’1988,
[31], Bai, Silverstein and Yin’1988, [1] and Sosnikov’2002, [20] for the �2-norm. It
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1778 MING-JUN LAI AND YANG LIU

is interesting to know if the above results hold for general random matrices whose
entries are i.i.d. copies of a random variable of the bounded fourth moment.

Next we would like to study the smallest singular values. In general we can
define the k-th q-singular value as follows.
Definition 1.1. The k-th q-singular value of an m × n matrix A is defined by
(1.5)

s
(q)
k (A) := inf

{
sup

{
‖Ax‖q

‖x‖q

: x ∈ V \ {0}
}

: V ⊆ Rn, dim (V ) ≥ n − k + 1
}

.

It is easy to see that
(1.6) s

(q)
1 (A) ≥ s

(q)
2 (A) ≥ . . . ≥ s

(q)
min(m,n) (A) ≥ 0.

The smallest singular value sq
min(m,n) is also of special interest in various studies.

In the lower tail probability estimate, we divide the study in two cases when m > n
(tall matrices) and m = n (square matrices) under the assumption that A is of full
rank. The study is heavily dependent on the known results on the compressible and
incompressible vectors. In the upper tail probability estimate, we use the known
estimates on the projection in the �2-norm. Another set of main results is as follows.
For tall random matrices, we have
Theorem 1.5 (Lower tail probability on the smallest q-singular value). Let us fix
0 < q ≤ 1. Let ξ be the pre-Gaussian random variable with mean 0 and variance
1. Suppose that A is an m × n matrix with i.i.d. copies of ξ in its entries with
m > n. Then there exist some ε > 0, c > 0 and λ ∈ (0, 1) dependent on q and ε
such that
(1.7) P

(
s(q)
m (A) ≤ εm1/q

)
< e−cm

when n ≤ λm.
For square random matrices, we have

Theorem 1.6 (Lower tail probability on the smallest q-singular value). Let us fix
0 < q ≤ 1. Let ξ be the pre-Gaussian random variable with variance 1 and A be
an n×n matrix with i.i.d. copies of ξ in its entries. Then for any ε > 0, one has

(1.8) P
(
s(q)
n (A) ≤ γn−1/q

)
< ε,

where γ > 0 depends only on the pre-Gaussian variable ξ.
The above theorem is an extension of Theorem 1.1. Finally we have

Theorem 1.7 (Upper tail probability on the smallest q-singular value). Given any
0 < q ≤ 1, let ξ be a pre-Gaussian random variable with variance 1 and A be an
n×n matrix with i.i.d. copies of ξ in its entries. Then for any K > e, there exist
some C > 0, 0 < c < 1, and α > 0 which are only dependent on the pre-Gaussian
variable ξ such that

(1.9) P
(
s(q)
n (A) > Kn−1/2

)
≤ C (lnK)α

Kα
+ cn.

In particular, for any ε > 0, there exist some K > 0 and n0 such that

(1.10) P
(
s(q)
n (A) > Kn−1/2

)
< ε

for all n ≥ n0.
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The above theorem is an extension of Theorem 1.2. Note that we are not able
to prove

(1.11) P
(
s(q)
n (A) > Kn−1/q

)
< ε

under the assumptions in Theorem 1.7. However, we strongly believe that the above
inequality holds. We leave it as a conjecture.

The remainder of the paper is devoted to the proof of these five theorems which
give a good understanding of the spectrum of pre-Gaussian random matrices in �q-
quasinorm with 0 < q ≤ 1. We shall present the analysis in four separate sections
after the Preliminaries section.

2. Preliminaries

First of all, one can easily derive the following

Lemma 2.1. For 0 < q < 1, the equation in (1.1)) defines a quasinorm on the
space of m × N matrices. In particular, we have

(
s
(q)
1 (A + B)

)q

≤
(
s
(q)
1 (A)

)q

+
(
s
(q)
1 (B)

)q

for any m × N matrices A and B. Moreover,

(2.1) s
(q)
1 (A) = max

j
‖aj‖q

for 0 < q ≤ 1, where aj , j = 1, . . . , N , are the columns of matrix A.

Proof. It is straightforward and not hard to show that s
(q)
1 (A), q ≤ 1, defines a

quasinorm on matrices by using the quasi-norm properties of ‖x‖q, the �q-quasinorm
on vectors.

To prove equation (2.1), on one hand, we have

(2.2) ‖Ax‖q
q ≤

N∑

j=1
|xj |q · ‖aj‖q

q ≤ ‖x‖q
q max

j
‖aj‖q

q

for 0 < q ≤ 1, which implies

(2.3) s
(q)
1 (A) ≤ max

j
||aj ||q.

On the other hand, by (1.1), we have

(2.4) s
(q)
1 (A) = sup

x∈RN ,‖x‖q=1
‖Ax‖q ≥ ‖Aej‖q = ||aj ||q

for every j, where ej is the j-th standard basis vector of RN , and then it follows
that

(2.5) s
(q)
1 (A) ≥ max

j
||aj ||q.

Thus, combined with (2.3), we obtain the equation (2.1) for 0 < q ≤ 1 as desired.
�

Next we need the following elementary estimate. Mainly we need a linear bound
for partial binomial expansion.
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1780 MING-JUN LAI AND YANG LIU

Lemma 2.2 (Linear bound for partial binomial expansion). For every positive
integer n,

n∑

k=�n
2 �+1

(
n
k

)
xk (1 − x)n−k ≤ 8x

for all x ∈ [0, 1].

Proof. Let us start with an even integer. For every x ∈
[ 1

8 , 1
]
, we have

(2.6)
2n∑

k=n+1

(
2n
k

)
xk (1 − x)2n−k ≤

2n∑

k=0

(
2n
k

)
xk (1 − x)2n−k = 1 ≤ 8x.

But for x ∈
[
0, 1

8
]
, we let

f (x) :=
2n∑

k=n+1

(
2n
k

)
xk (1 − x)2n−k

.

By De Moivre-Stirling’s formula (see e.g. [7]) and furthermore the estimate in [13],

n! =
√

2πn
(n

e

)n

eλn ,

where 1
12n+1 < λn < 1

12n . We have

(2.7)
(

2n
n

)
=

√
2π2n

( 2n
e

)2n
eλ2n

(√
2πn

(
n
e

)n
eλn

)2 = 4n

√
πn

eλ2n−2λn ≤ 4n

√
πn

.

Since
(

2n
k

)
≤
(

2n
n

)
for n + 1 ≤ k ≤ 2n,

(2.8)

f (x) ≤
2n∑

k=n+1

(
2n
n

)
xk (1 − x)2n−k ≤

2n∑

k=n+1

(
2n
n

)
xk ≤ n

(
2n
n

)
xn+1

for all x ∈ [0, 1]. Using (2.7), we have

(2.9) f (x) ≤ 4n

√
n

π
xn+1.

Letting g(x) = 4n
√

n
πxn, we have

ln(g(x)) = n ln(4x) + 1
2 lnn − 1

2 ln π ≤ −n ln 2 + 1
2 lnn − 1

2 ln π ≤ 0

for x ∈ [0, 1/8]. Thus we have f(x) ≤ x ≤ 8x. Also, we can have a similar estimate
for odd integers. These complete the proof. �

Remark 2.1. The coefficient on the right-hand side can be improved by Markov’s
inequality, but the estimate obtained by the analytic technique above is actually
good enough for the purposes of this paper.

Next we review the smallest q-singular values. Without loss of generality, we
consider m ≥ n. Then the n-th q-singular value is the smallest q-singular value
which can also be expressed in another way.
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Lemma 2.3. Let A be an m×n matrix with m ≥ n. Then the smallest q-singular
value

(2.10) s(q)
n (A) = inf

{
‖Ax‖q

‖x‖q

: x ∈ Rn with x 	= 0
}

.

Proof. By the definition,
(2.11)

s
(q)
n (A) = inf

{
sup

{ ‖Ax‖q

‖x‖q
: x ∈ V \ {0}

}
: V ⊆ Rn, dim (V ) ≥ 1

}

≤ inf
{
sup

{ ‖Av‖q

‖v‖q
: v ∈ V \ {0}

}
: V = span (x) : x ∈ Rn \ {0}

}

= inf
{‖Ax‖q

‖x‖q
: x ∈ Rn with x 	= 0

}
.

We also know the infimum can be achieved by considering the unit Sq-sphere in the
finite-dimensional space, and so the claim follows. �

In particular, if A is an n × n matrix, we know

(2.12)

s
(q)
n (A) = inf

{
‖Ax‖q

‖x‖q

: x ∈ Rn with x 	= 0
}

= 1

sup
{∥∥A−1x

∥∥
q

‖x‖q

: x ∈ Rn with x 	= 0
}

= 1
s
(q)
1 (A−1)

.

The estimate of the largest q-singular value can be used to estimate the smallest
q-singular values based on this relation.

As we see, the q-singular value is defined by the �q-quasinorm, as opposed to the
�2-norm, but using a similar proof for the relationship between the rank of a matrix
and its smallest singular value in �2, one has the following relationship between the
rank of a matrix and its smallest q-singular value.

Lemma 2.4. For any positive integer m and n, an m×n matrix A is of full rank
if and only if s

(q)
min(m,n) (A) > 0.

Remark 1. One could also derive this lemma by the properties of singular values
defined by the �2-norm and by using the inequalities on the relations between the
�2-norm and the �q-quasinorm.

We shall need the following result to estimate the smallest q-singular values.

Lemma 2.5. Let A be a matrix of size m × N . Suppose that m ≥ N . Then

s
(q)
min(m,N)(A) ≤ min

j
‖aj‖q .

Proof. Choose ej0 to be a standard basis vector of RN such that ‖Aej0‖q =
minj ‖aj‖q and use the definition of s

(q)
min(m,N)(A) for m ≥ N . �

The following generalization of Lemma 4.10 in Pisier’1999, [12] will be used in a
later section.
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1782 MING-JUN LAI AND YANG LIU

Lemma 2.6. For 0 < q ≤ 1, let Sq := {x ∈ Rn : |x|q = 1} denote the unit sphere
of Rn in the �q-quasinorm. For any δ > 0, there exists a finite set Uq ⊆ Sq with

min
u∈Uq

‖x − u‖q
q ≤ δ for all x ∈ Sq and card(Uq) ≤

(
1 + 2

δ

)n/q

.

Proof. Let (u1, . . . , uk) be a set of k points on the sphere Sq such that |ui −j |qq > δ
for all i 	= j. We choose k as large as possible. Thus, it is clear that

min
1≤i≤k

|x − ui|qq ≤ δ for all x ∈ Sq.

Let Bq := {x ∈ Rn : |x|q ≤ 1} be the unit ball of Rn relative to the quasinorm | · |q.
It is easy to see that the (δ/2)-balls centered at ui,

ui +
(

δ

2

)1/q

Bq, 1 ≤ i ≤ k,

are disjoint. Indeed, if x would belong to the (δ/2)-ball centered at xi as well as
the (δ/2)-ball centered at xj , we would have

|ui − uj |qq ≤ |ui − x|qq + |uj − x|qq ≤ δ

2 + δ

2 = δ,

which is a contradiction. Besides, it is easy to see that

ui +
(

δ

2

)1/q

Bq ⊆
(

1 + δ

2

)1/q

Bq, 1 ≤ i ≤ k.

By comparison of volumes, we get

kVol
((

δ

2

)1/q

Bq

)
=

k∑

i=1
Vol
(
ui +

(
δ

2

)1/q

Bq

)
≤ Vol

((
1 + δ

2

)1/q

Bq

)
.

Then, by homogeneity of the volumes, we have

k

(
δ

2

)n/q

Vol (Bq) ≤
(

1 + δ

2

)n/q

Vol (Bq) ,

which implies that k ≤
(

1 + 2
δ

)n/q

. This completes the proof. �

3. The upper tail probability of the largest q-singular value

We begin with the following

Theorem 3.1 (Upper tail probability of the largest 1-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m × m matrix
with i.i.d. copies of ξ in its entries. Then

(3.1) P
(
s
(1)
1 (A) ≥ Cm

)
≤ exp (−C ′m)

for some C, C ′ > 0 only dependent on the pre-Gaussian variable ξ.

Proof. Since aij are i.i.d. copies of the pre-Gaussian variable ξ, Eaij = 0, and there
exist some λ > 0 such that E |aij |k ≤ k!λk for all k. Without loss of generality, we
may assume that λ ≥ 1. With the variance Ea2

ij = 1, we have

E |aij |k ≤
Ea2

ij

2 Hk−2k!
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for H := 2λ3 and all k ≥ 2. By the Bernstein inequality (cf. Theorem 5.2 in [3]),
we know that

P

(∣∣∣∣∣
m∑

i=1
aij

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2 (m + tH)

)
= 2 exp

(
− t2

2 (m + 2tλ3)

)

for all t > 0 and for each j = 1, · · · , N . In particular, when t = Cm,

(3.2) P

⎛
⎝
∣∣∣∣∣∣

m∑

j=1
aij

∣∣∣∣∣∣
≥ Cm

⎞
⎠ ≤ 2 exp

(
− C2m

4Cλ3 + 2

)
.

Here a condition on C will be determined later.
On the other hand, by Lemma 2.1,

s
(1)
1 (A) = max

j
||aj ||1 =

m∑

i=1
|aij0 |

for some j0. Furthermore, for any t > 0, by the probability of the union,

(3.3) P

(
m∑

i=1
|aij | ≥ t

)
≤

∑

(ε1,...,εm)∈{−1,1}m

P

(
m∑

i=1
εiaij ≥ t

)
.

But −aij has the same pre-Gaussian properties as aij0 , precisely, E (−aij) = 0 and
E |−aij |k ≤ k!λk. Thus we have

(3.4)

P
(
s
(1)
1 (A) ≥ Cm

)
≤ m P

(
m∑

i=1
|aij | ≥ Cm

)

≤ 2mmP

(∣∣∣∣∣
m∑

i=1
aij

∣∣∣∣∣ ≥ Cm

)

≤ 2mm exp
(
− C2m

4Cλ3+2

)

≤ exp
(
−
(

C2

4Cλ3+2 − ln 2 − 1
)
m
)
.

To obtain an exponential decay for the probability P
(
s
(1)
1 (A) ≥ Cm

)
, we require

that C2

4Cλ3+2 − ln 2 − 1 > 0, for which

(3.5) C > 2λ3 + 2λ3 ln 2 +
√

2 + 2 ln 2 + 4λ6 + 8λ6 ln 2 + 4λ6 ln2 2.

That is, choosing C ′ = C2

4Cλ3+2 − ln 2 − 1, we get (3.1). �

The previous theorem allows us to estimate the largest q-singular value for 0 <
q < 1. The estimate can follow easily from Theorem 3.1, but it is one of the tail
probabilistic estimates we wanted to obtain, so let us state it as a theorem, which
is Theorem 1.3.

Proof of Theorem 1.3. By Hölder’s inequality, we have ‖aj‖q ≤ m
1
q −1 ‖aj‖1 for

0 < q < 1. It follows from Lemma 2.1 that

(3.6) s
(q)
1 (A) = max

j
‖aj‖q ≤ m

1
q −1s

(1)
1 (A).
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1784 MING-JUN LAI AND YANG LIU

From (3.1), we have

(3.7)
P
(
s
(q)
1 (A) ≥ Cm

1
q

)
≤ P

(
m

1
q −1s

(1)
1 (A) ≥ Cm

1
q

)

= P
(
s
(1)
1 (A) ≥ Cm

)

≤ exp (−C ′m)
for some C, C ′ > 0 . �

4. The lower tail probability of the largest q-singular value

Let us use the result in Lemma 2.2 to give estimates on the lower tail probabilities
of the largest q-singular value.

Lemma 4.1. Suppose ξ1, ξ2, · · · , ξn are i.i.d. copies of a random variable ξ.
Then for any ε > 0,

(4.1) P

(
n∑

i=1
|ξi| ≤ nε

2

)
≤ 8P (|ξ| ≤ ε) .

Proof. First, we have the relation on the probability events that

(4.2)
{

(ξ1, . . . , ξn) :
n∑

i=1
|ξi| ≤ nε

2

}

is contained in
(4.3)

n⋃

k=� n
2 �+1

⋃

{i1, . . . , ik}
⊂ {1, . . . , n}

{
(ξ1, . . . , ξn) : |ξi1 | ≤ ε, . . . , |ξik | ≤ ε,

∣∣ξik+1

∣∣ > ε, . . . , |ξin | > ε
}

,

where {i1, i2, . . . , ik} is a subset of {1, 2, . . . , n} and {ik+1, . . . , in} is its comple-
ment, and let us denote the set (4.3) by E .

Let x = P (|ξ1| ≤ ε). Then by the union probability,

(4.4) P (E) =
n∑

k=�n
2 �+1

(
n
k

)
xk (1 − x)n−k ,

and applying Lemma 2.2, we have
(4.5) P (E) ≤ 8x = 8P (|ξ1| ≤ ε) .
Since the event (4.2) is contained in the event (4.3), we have

(4.6) P

(
n∑

i=1
|ξi| ≤ nε

2

)
≤ P (E) ≤ 8P (|ξ1| ≤ ε) .

�

We start with a lower tail probability for the 1-singular values.

Theorem 4.1 (Lower tail probability of the largest 1-singular value). Let ξ be a
pre-Gaussian variable normalized to have variance 1 and A be an m × m matrix
with i.i.d. copies of ξ in its entries. Then there exists a constant K > 0 such that

(4.7) P
(
s
(1)
1 (A) ≤ Km

)
≤ cm
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LARGEST AND SMALLEST q-SINGULAR VALUES 1785

for some 0 < c < 1, where K only depends on the pre-Gaussian variable ξ.

Proof. Since aij has variance 1, there exists δ > 0 and 0 ≤ β < 1 such that
(4.8) P (|aij | ≤ δ) = β.

Let Bj be the number of variables in {aij}m
i=1 that are less than or equal to δ.

Then if
∑m

i=1 |aij | ≤ δ · λm for 0 < λ < 1, then Bj ≥ (1 − λ)m, because otherwise∑m
i=1 |aij | > δ · λm. It follows that

(4.9) P

(
m∑

i=1
|aij | ≤ δ · λm

)
≤ P (Bj ≥ (1 − λ)m) .

By Markov’s inequality,

(4.10) P (Bj ≥ (1 − λ)m) ≤ EBi

(1 − λ)m,

but Bj satisfies a binomial distribution of m independent experiments, each of
which yields success with probability β; therefore

(4.11) P (Bj ≥ (1 − λ)m) ≤ β

1 − λ
.

By choosing suitable λ, we can make 0 < β
1−λ < 1. Thus

(4.12) P

(
m∑

i=1
|aij | ≤ δ · λm

)
≤ c

for some 0 < c < 1. It follows that

(4.13)
P
(
s
(1)
1 (A) ≤ λδm

)
= P (max1≤j≤N (

∑m
i=1 |aij |) ≤ λδm)

=
∏m

j=1 P ((
∑m

i=1 |aij |) ≤ λδm)
≤ cm.

Thus letting K = λδ, we obtain (3.1).
�

For general 0 < q < 1, we have Theorem 1.4.

Proof of Theorem 1.4. We can use the same method as in the proof of Theorem 4.1.
Since aij has nonzero variance, there exists δ > 0 and 0 ≤ β < 1 such that
(4.14) P (|aij |q ≤ δ) = β.

Then by Lemma 4.1 and substituting aij in the proof of Theorem 4.1 by |aij |q,

(4.15)
P
(
s
(q)
1 (A) ≤ (λδ)

1
q m

1
q

)
= P (max1≤j≤N (

∑m
i=1 |aij |q) ≤ λδm)

=
∏m

j=1 P ((
∑m

i=1 |aij |q) ≤ λδm)
≤ cm

for some 0 < c < 1. Thus letting K = (λδ)
1
q , (1.4) follows. �

Remark 2. If one uses the quasinorm comparison inequality s
(q)
1 (A) ≤ s

(1)
1 (A) for

0 < q ≤ 1, one can get

(4.16) P
(
s
(q)
1 (A) ≤ Km

)
≤ cm

for 0 < q ≤ 1, but with a loss of the estimate on P
(
s
(q)
1 (A) ≤ Km

1
q

)
.
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Since the bounded moment growth condition for pre-Gaussian variables is not
needed in the proof of Theorem 4.1, the above proofs also show that the theorem
holds for any random variable with nonzero variance. Therefore, more generally,
we have

Theorem 4.2. Let ξ be a random variable with non-zero variance and A be an
m × m matrix with i.i.d. copies of ξ in its entries. Then there exists a constant
K > 0 such that

(4.17) P
(
s
(q)
1 (A) ≤ Km

1
q

)
≤ cm

for some 0 < c < 1, where K only depends on ε and the random variable ξ.

5. The lower tail probability of the smallest q-singular value

In this section, we first study the probability estimates of the smallest q-singular
value of rectangular random matrices with m > n. Then we give some estimates
for square random matrices.

5.1. The tall random matrix case. In this subsection, we assume that n ≤ λm
with λ ∈ (0, 1) and consider the smallest q-singular value of random matrices of
size m × n.

Theorem 5.1. Given any 0 < q ≤ 1, let ξ be the pre-Gaussian random variable
with variance 1 and A be an m × n matrix with i.i.d. copies of ξ in its entries.
Then there exist some γ > 0, b > 0 and ν ∈ (0, 1) dependent on the pre-Gaussian
random variable ξ such that

(5.1) P
(
s(q)
n (A) < γm1/q

)
< e−bm

with n ≤ νm.

To prove this result, we need to establish a few lemmas.

Lemma 5.1. Fix any 0 < q ≤ 1. For any ξ1, · · · , ξm that are i.i.d. copies of
a pre-Gaussian variable with non-zero variance, for any c ∈ (0, 1) there exists
λ ∈ (0, 1), that does not depend on m, such that

(5.2) P

(
m∑

k=1
|ξk|q < λm

)
≤ cm.

Proof. For any ξ1, · · · , ξm that are i.i.d. copies of a pre-Gaussian variable with
non-zero variance, we know that there exists some δ > 0 such that

(5.3) ε0 := P (|ξk| ≤ δ) < 1
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for k = 1, 2, · · · ,m, because otherwise the pre-Gaussian variable would have a zero
variance. Then using the Riemann–Stieltjes integral for expectation, we have

E exp
(

−|ξk|q
λ

)
=

∞̂

0

exp
(

− tq

λ

)
dP (|ξk| ≤ t)

≤
δ
ˆ

0

dP (|ξk| ≤ t) +
∞̂

δ

exp
(

− tq

λ

)
dP (|ξk| ≤ t)

= ε0 +
∞̂

δ

exp
(

− tq

λ

)
dP (|ξk| ≤ t) .

Choose λ > 0 to be small enough such that

exp
(

− tq

λ

)
≤ exp

(
−δq

λ

)
<

ε0
2 (1 − ε0)

for t ≥ δ. Therefore, it follows that

E exp
(

−|ξk|q
λ

)
≤ ε0 + ε0

2 (1 − ε0)

∞̂

δ

dP (|ξk| ≤ t) ≤ ε0 + ε0
2 = 3

2ε0.

Finally, applying Markov’s inequality, we obtain

P

(
m∑

k=1
|ξk|q < λm

)
= P

(
exp

(
m − 1

λ

m∑

k=1
|ξk|q

)
> 1

)

≤ E

(
exp

(
m − 1

λ

m∑

k=1
|ξk|q

))

= em
m∏

k=1
E exp

(
−|ξk|q

λ

)
.

≤ (3eε0/2)m.

For any c ∈ (0, 1), we choose ε0 such that 3eε0/2 = c. This completes the proof. �

The following lemma is a property of the linear combination of pre-Gaussian
variables, which allows us to obtain the probabilistic estimate on ‖Av‖q for the
pre-Gaussian ensemble A.

Lemma 5.2 (Linear combination of pre-Gaussian variables). Let aij, i = 1, 2,

· · · , m and j = 1, 2, . . . , n be pre-Gaussian variables and ηi =
n∑

j=1
aijxj. Then ηi

are pre-Gaussian variables for i = 1, 2, . . . , m.

Proof. Since aij are pre-Gaussian variables, Eaij = 0, and there are constants
λij > 0 such that E |aij |k ≤ k!λk

ij for i = 1, 2, . . . ,m and j = 1, 2, . . . , N . It is easy
to see

Eηi =
N∑

j=1
xjEaij = 0.
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Letting ‖x‖1 =
∑N

i=1 |xj |, we use the convexity to have

E
(
|ηi|k

)
≤ E

⎛
⎝‖x‖1

N∑

j=1
|aij |

|xj |
‖x‖1

⎞
⎠

k

≤ ‖x‖k
1

N∑

j=1

|xj |
‖x‖1

E (|aij |)k ≤ k!‖x‖k
1(max

j
{λij})k

for all integers k ≥ 1. Thus, ηk is a pre-Gaussian random variable. �
Combining two lemmas above, we obtain the following

Lemma 5.3. Given any 0 < q ≤ 1 and letting A be an m × n pre-Gaussian
matrix, for any c ∈ (0, 1) there exists λ ∈ (0, 1) such that

(5.4) P
(
‖Av‖q < λ1/qm1/q

)
≤ cm

for each v ∈ Sq, where Sq is the (n − 1)-dimensional unit sphere in the �q-
quasinorm.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By using Lemma 2.6, for any δ > 0 there exists a δ-net Uq

in unit sphere Sq such that

min
u∈Uq

‖x − u‖q
q ≤ δ for all x ∈ Sq and card(Uq) ≤

(
1 + 2

δ

)n/q

.

By Lemma 5.3, for all v ∈ Uq we have

(5.5) P
(
‖Av‖q

q < λm, for all v ∈ Uq

)
≤
(

1 + 2
δ

)n/q

cm.

Since the event s
(q)
n (A) < γm

1
q implies ‖Av′‖q < 2γm

1
q for some v′ ∈ Sq,

P(s(q)
n (A) < γm1/q) ≤ P

(
‖Av‖q < 2γm1/q for some v ∈ Sq

)
.

If v ∈ Uq, we use (5.5) with 2γ < λ1/q to have

(5.6) P(s(q)
n (A) < γm1/q) ≤

(
1 + 2

δ

)n/q

cm.

If v 	∈ Uq, we use Theorem 1.3 to have

P
(
‖Av‖q < 2γm1/q with v ∈ Sq\Uq

)

≤ e−c1m + P
(
s
(q)
1 (A) ≤ Km1/q and ‖Av‖q < 2γm1/q with v ∈ Sq\Uq

)
.

When v ∈ Sq\Uq in the event that s
(q)
1 (A) ≤ Km1/q and ‖Av‖q < 2γm1/q, there

exists a u ∈ Uq within a q-distance δ such that
‖Au‖q

q ≤ ‖A (v − u)‖q
q + ‖Av‖q

q

≤
(
s
(q)
1 (A)

)q

‖v − u‖q
q + ‖Av‖q

q

≤ Kqmδ + (2γ)qm
< λqm
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if δ <
λq − (2γ)2

Kq
. We can use (5.5) again to conclude

(5.7)

P
(
s
(q)
1 (A) ≤ Km1/q and ‖Av‖q < 2γm1/q for some v ∈ Sq\Uq

)
≤
(

1 + 2
δ

)n/q

cm.

If we choose ν and c small enough in Lemma 5.1 with n = νm such that

c2 :=
(

1 + 2
δ

)ν/q

c < 1,

we have thus completed the proof by choosing b > 0 such that e−c1m + e−c2m ≤
e−bm. �

5.2. The square random matrix case. Now let us consider the square random
matrices with pre-Gaussian entries.

Theorem 5.2. Given any 0 < q ≤ 1, let ξ be the pre-Gaussian random variable
with variance 1 and A be an n × n matrix with i.i.d. copies of ξ in its entries.
Then for any ε > 0 and 0 < q ≤ 1, there exist some K > 0 and c > 0 dependent
on ε and the pre-Gaussian random variable ξ such that

(5.8) P
(
s(q)
n (A) < εn− 1

q

)
< Cε + Cαn + P

(
‖A‖ > Kn− 1

2

)
,

where α ∈ (0, 1) and C > 0 depend only on the pre-Gaussian variable and K.

To prove the above theorem, we generalize the ideas in Rudelson and Ver-
shynin’2008, [15] to the setting of the �q-quasinorm. We first decompose Sn−1

q

into the set of compressible vectors and the set of incompressible vectors. The con-
cepts of compressible and incompressible vectors in Sn−1

2 were introduced in [15].
See also Tao and Vu’2009, [27]. We shall use a generalized version of these concepts.
Recall that ‖x‖0 denotes the number of nonzero entries of the vector x ∈ Rn.

Definition 5.1 (Compressible and incompressible vectors in Sn−1
q ). Fix ρ, λ ∈

(0, 1). Let Compq (λ, ρ) be the set of vectors v ∈ Sn−1
q such that there is a vector

v′ with ‖v′‖0 ≤ λn satisfying ‖v − v′‖q ≤ ρ. The set of incompressible vectors is
defined as
(5.9) Incompq (λ, ρ) := Sn−1

q \ Compq (λ, ρ) .

Now using the decomposition in Definition 5.1, we have

(5.10)
P
(
s
(q)
n (A) < εn− 1

q

)
≤ P

(
infv∈Compq(λ,ρ) ‖Av‖q < εn− 1

q

)

+P
(
infv∈Incompq(λ,ρ) ‖Av‖q < εn− 1

q

)
.

In the following we are going to consider each of the two terms on the right hand
side of the above equation. For the first term on compressible vectors, we can apply
Lemma 5.3 since

(5.11) P
(

inf
v∈Incompq(λ,ρ)

‖Av‖q < εn− 1
q

)
≤ P

(
inf

v∈Incompq(λ,ρ)
‖Av‖q < νn

1
q

)
,

to conclude that it actually decays exponentially for n > 1, where ν = λ1/q as in
Lemma 5.3.

However, for incompressible vectors, we first consider distq (Xj , Hj), which de-
notes the distance between column Xj of an n×n random matrix A and the span of
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1790 MING-JUN LAI AND YANG LIU

other columns Hj := span (X1, · · · , Xj−1, Xj+1, . . . , Xn) in the �q-quasinorm. We
generalize a result on the probability estimate of the distance in the �2-norm in [15]
to the �q-quasinorm setting. This allows us to transform the probabilistic estimate
on ‖Av‖q for v ∈ Incompq (λ, ρ) to the probabilistic estimate on the average of the
distances distq (Xj , Hj), j = 1, 2, . . . , n.

Lemma 5.4. Let A be an n × n random matrix with columns X1, . . ., Xn, and
let

Hj := span (X1, · · · , Xj−1, Xj+1, · · · , Xn) .
Then for any ρ, λ ∈ (0, 1) and ε > 0, one has

(5.12) P
(

inf
v∈Incompq(λ,ρ)

‖Av‖q < ερn− 1
q

)
<

1
λn

n∑

j=1
P (distq (Xj , Hj) < ε) ,

in which distq is the distance defined by the �q-quasinorm.

Proof. For every v ∈ Incompq (λ, ρ), by Definition 5.1, there are at least λn com-
ponents of v, vj , satisfying |vj | ≥ ρn− 1

q , because otherwise, v would be within
�q-distance ρ of the sparse vector, the restriction of v on the components vj satis-
fying |vj | ≥ ρn− 1

q with sparsity less than λn, and thus v would be compressible.
Thus if we let I1 (v) :=

{
j : |vj | ≥ ρn− 1

q

}
, then |I1 (v)| ≥ λn.

Next, let I2 (A) := {j : distq (Xj , Hj) < ε} and E be the event such that for the
cardinality of I2 (A), |I2 (A)| ≥ λn. Applying Markov’s inequality, we have

P (E) = P ({I2 (A) : |I2 (A, ε)| ≥ λn})

≤ 1
λn

E |I2 (A)|

= 1
λn

E {j : distq (Xj , Hj) < ε}

= 1
λn

n∑

j=1
P (distq (Xj , Hj) < ε) .

Since Ec is the event such that
|{j : distq (Xj , Hj) ≥ ε}| > (1 − λ)n

for random matrix A, if Ec occurs, then for every v ∈ Incompq (λ, ρ),
|I1 (v)| + |I2 (A)| > λn + (1 − λ)n = n.

Hence there is some j0 ∈ I1 (v) ∩ I2 (A). So we have

‖Av‖q ≥ distq (Av,Hj0) = distq (vj0Xj0 , Hj0) = |vj0 | distq (Xj0 , Hj0) ≥ ερn− 1
q .

If the events ‖Av‖q < ερn− 1
q occur, then E also occurs. Thus

P
(

inf
v∈Incompq(λ,ρ)

‖Av‖q < ερn− 1
q

)
≤ P (E) ≤ 1

λn

n∑

j=1
P (distq (Xj , Hj) < ε) .

These complete the proof. �

Note that distq (Xj , Hj) ≥ dist (Xj , Hj) because ‖·‖q ≥ ‖·‖2. Thus we can take
the advantage of the estimate on P (dist (Xj , Hj) < ε) given in [15] to obtain the
estimate on P (distq (Xj , Hj) < ε).
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Theorem 5.3 (Distance bound (cf. [15])). Let A be a random matrix whose
entries are independent variables with variance at least 1 and fourth moment
bounded by B. Let K ≥ 1. Then for every ε > 0,

(5.13) P
(
dist (Xj , Hj) < ε and ‖A‖ ≤ Kn− 1

2

)
≤ C (ε + αn) ,

where α ∈ (0, 1) and C > 0 depend only on B and K.
The above theorem implies that

(5.14)
P (distq (Xj , Hj) < ε) ≤ P (dist (Xj , Hj) < ε) ≤ C (ε + αn) + P

(
‖A‖ ≤ Kn− 1

2

)
.

Combining (5.10) and applying Lemma 5.4, we now reach the desired inequality in
Theorem 5.2.

Furthermore, since A is pre-Gaussian, using a standard concentration bound we
know that for every ε > 0 there exists some K > 0 such that P

(
‖A‖ ≤ Kn− 1

2

)
< ε.

Thus, we have proved Theorem 1.6.

6. The upper tail probability of the smallest q-singular value

In this section, we continue to study the estimate of the upper tail probability
of the smallest q-singular value of an n × n pre-Gaussian matrix. Mainly we are
going to prove Theorem 1.7. To do so, we need some preparation.

Let Xj be the j-th column vector of A and πj be the projection onto the subspace
Hj := span (X1, . . . , Xj−1, Xj+1, · · · , Xn). We first have
Lemma 6.1. For every α > 0, one has

(6.1) P
(
‖Xj − πj (Xj)‖q ≥ αn

1
q − 1

2

)
≤ c1e

−c2α + c3n
−c4

for each j = 1, 2, . . . , n, where c1, c2, c3, c4 > 0 are constants independent of j, n,
and q.
Proof. Without loss of generality, assume j = 1. Write (a1, a2, . . . , an) := X1 −
π1 (X1). Applying the Bessy-Esseen theorem (see for instance [21]), we know that

(6.2) P
(
‖Xj − πj (Xj)‖2 ≥ α

)
= P

(∣∣∣∣∣

∑n
i=1 aiξi√∑n

i=1 a2
i

∣∣∣∣∣ ≥ α

)
= P (|g| ≥ α) + O

(
n−c

)

for some c > 0, where g is a standard normal random variable.
By the Hölder inequality,

‖Xj − πj (Xj)‖q ≤ n
1−q

q ‖Xj − πj (Xj)‖1 ≤ n
1
q − 1

2 ‖Xj − πj (Xj)‖2 .

It follows that
P
(
‖Xj − πj (Xj)‖q ≥ n

1
q − 1

2 α
)

≤ P
(
n

1
q − 1

2 ‖Xj − πj (Xj)‖2 ≥ n
1
q − 1

2 α
)

= P
(
‖Xj − πj (Xj)‖2 ≥ α

)
.

Therefore it follows from (6.2) that

P
(
‖Xj − πj (Xj)‖q ≥ αn

1
q − 1

2

)
≤ P (|g| ≥ α) + O

(
n−c

)

= 2√
2π

ˆ ∞

α

e− 1
2x2

dx + O
(
n−c

)

≤ c1e
−c2α + c3n

−c4

for some positive constants c1, c2, c3, c4. �
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We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. From Section 5.2 and by Lemma 2.4, we know that the n×n
pre-Gaussian matrix A is invertible with very high probability. Thus, we have
(6.3)

P
(
s(q)
n (A) ≤ αt

ε
· n−1/q

)
≥ P

(
‖v‖q ≤ α,

∥∥A−1v
∥∥

q
≥ ε

t
· n1/q for some v ∈ Rn

)
.

Thus it suffices to show that

(6.4) P
(
‖v‖q ≤ α,

∥∥A−1v
∥∥

q
≥ ε

t
· n1/q

)
≥ 1 − ε

for some vector v 	= 0.
Using the result established in Rudelson and Vershynin’2008, [14], we can easily

get the desired probability of the event that
∥∥A−1v

∥∥
q

≤ ε
t ·n 1

q occurs. Indeed, since∥∥A−1v
∥∥

q
≥
∥∥A−1v

∥∥
2, we know that

(6.5)
P
(∥∥A−1v

∥∥
q

≤ ε
t · n−1/q

)
≤ P

(∥∥A−1v
∥∥

2 ≤ ε
t · n1/q

)

= P
(∥∥A−1v

∥∥
2 ≤ ε

t ·
(
n2/q

)1/2)

≤ 2p
(
4ε, t, n2/q

)
,

where p (ε, t, n) := c5

(
ε + e−c6t

2 + e−c7n
)

for some positive constants c5, c6, c7.
Next let us choose v = X1 − π1 (X1). Lemma 6.1 together with the estimate in

(6.5) yield (6.4). Indeed, letting u = t =
√

lnM with M > 1 and ε = 1
M , we have

(6.6) P
(
s(q)
n (A) > M lnM · n−1/2

)
≤ C

Mα
+ cn

for some C > 0, 0 < c < 1, and α > 0. Then choosing K := M lnM , we have
(6.7)

P
(
s(q)
n (A) > Kn−1/2

)
≤ C (lnM)α

Kα
+cn ≤ C (ln (M lnM))α

Kα
+cn = C (lnK)α

Kα
+cn

if M ≥ e, which requires K > e. These complete the proof. �
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A New Approach for Analyzing Physiological

Time Series

Dong Mao, Yang Wang, and Qiang Wu
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1 Introduction

An understanding of physiological time series such as the heart-beat inter-

vals is important to many areas, like heart-attack prediction, cardiovascular

health, sport and exercise, etc. The study of time series can reveal underlying

mechanisms of the physiological system, which usually contains both deter-

ministic and stochastic components. Therefore the analysis of time series is

very complicated because of the nonlinear and non-stationary characteristics

of physiological time series data. Over the past years, time series analysis

methods are applied to quantify physiological data for identification and clas-

sification (see [7, 12]). The application of physiological time series analysis

commonly focus on measuring different aspects of time series data such as

complexity, regularity, predictability, dimensionality, randomness, self sim-

ilarity, etc. The tools used in these techniques include but not restrict to

the mean, standard deviation, Fourier transform, wavelet, entropy, fractal

1
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dimension, pattern detection (see [8, 13]).

Recently a new mathematical tool, empirical mode decomposition (EMD),

was proposed by Norden Huang et al (see [5, 6]). It decomposes a time se-

ries into a finite sum of intrinsic mode functions (IMF) that generally admit

well-behaved Hilbert transforms. This decomposition is based on the local

characteristic time scale of the data, which makes EMD applicable to ana-

lyze nonlinear and non-stationary signals. EMD and Hilbert transform to-

gether, called the Hilbert-Huang transform (HHT), usually allow to construct

meaningful time-frequency representations of signals using instantaneous fre-

quency of the data. EMD and HHT have been applied with great success

in many application areas such as biological and medical sciences, geology,

astronomy, engineering, and others (see [5, 1, 3, 6, 11, 10]). Another interest-

ing set of examples is the work of L.Yang, who has successfully applied EMD

based techniques for texture analysis and Chinese handwriting recognition

(see [16, 17, 15, 18]).

The main purpose of this paper is to develop a new approach for the

analysis of physiological times series. Our approach is motivated by two

intuitions and coupled with modern machine learning techniques. The first

intuition comes from a belief that a physiological system should contain a de-

terministic part that reflects the basic mechanism for the system to survive

and a stochastic part that represents the variability of resilience. Mathe-

matically they can be represented by the low frequency and high frequency

components of a physiological signal. This motivates the application of meth-

ods of decomposing signals into various components according to frequencies

in the quantitative analysis of physiological time series. Examples include

2
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the Fourier transform, wavelets, EMD. In our method we will use an itera-

tive convolution filter which is an alternative of EMD. The second intuitions

comes from a statistical perspective of irregularity. A lot of study has proved

that normal physiological systems show irregularity due to the existence of

stochastic components while the decrease of irregularity usually imply the

abnormality. From statistical perspective, irregularity of a data set is repre-

sented by the “outliers”. This motivates us to study the statistics of outliers

in physiological time series. However, we must be careful in dong so. Prac-

tical physiological times series usually contains noise which may also appear

as outliers. We have to guarantee the “outliers” we examined are not pure

noise. This is possible because true outliers do not have informative struc-

tures and could be detected. The second intuition is the motivation for our

feature construction in section 2.2.

These two intuitions enable us to decompose the physiological times series

and construct features for our quantitative analysis. Combining with the well

established feature selection techniques in machine learning we can remove

the redundancy of the features and find relevant statistics for classification of

physiological time series. SVM-RFE (Support Vector MachineRecursive Fea-

ture Elimination) is suggested in this paper for linear classification problems.

The details of our approach will be described in Section 2.

We will use our approach to the study of congestive heart failure problems.

The purposes is two-fold: The first is to build good classifier to enable good

diagnosis. The second is to find what kind of irregularity is related to the

heart health. The results and discussions are summarized in Section 3.

The novelty of our method is mainly the following two points. Firstly,

3
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although we decompose the time series into components of different frequen-

cies, we do not compare them from the frequency domain. Secondly, we

proved that the outliers in a physiological time series are usually not true

outliers but are informative instead.

2 Method

2.1 Signal decomposition

Let L be a low pass filter. Denote by T the weak limit of the the operator

(I − L)n as n→∞, i.e., for a discrete signal X and time t

T (X)(t) = lim
n→∞

(I − L)n(X)(t).

Using this operator iteratively, a signal X can be decomposed as follows: Let

F1 = T (X) and for k ≥ 2,

Fk = T

(
X −

k−1∑

i=1

Fi

)
.

After m steps we get F1, . . . , Fm which we call mode functions and the resid-

ual

R = X −
m∑

i=1

Fi.

Then we have

X = F1 + F2 + . . .+ Fm +R.

In this decomposition, roughly speaking the former mode functions are noise

or high frequency components and the latter mode functions are low fre-

quency components and R is the trend.

4
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This procedure follows the spirit of the traditional EMD introduced in

[5]. In the traditional EMD, the low pass filter L is chosen as the average

of the upper envelope (the cubic spline connecting the local maxima) and

the lower envelope (the cubic spline connecting the local minima). This

method, although has been successfully used in many applications, is lack of

theoretical foundation and has its limitations.

In [9] a new approach is proposed. In this new approach the low pass

filter is a moving average generated by a mask a = (aj)
N
j=−N that gives the

L(X) as the convolution of a and X, i.e.,

L(X)(t) =
N∑

j=−N

ajX(j + t).

With this choice of L we call the operator T an iterative convolution filter.

A rigorous mathematical foundation and convergence analysis is in [9, 14].

Note the mask a is finitely supported on [−N,N ] and N is called the window

size. The flexibility to choose the window size is crucial in applications and

forms a main advantage of this method.

Similar to decompositions by many other methods like Fourier transform

and wavelets , the trend and low frequency components are usually assumed

to characterize the profile of the signal and the high frequency components

characterize the details. In different applications we need the features of

difference components.

2.2 Feature extraction

After decomposing the signal into the mode functions and the trend, we

need to extract statistics that can characterize the essential features of these

5
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components. This step requires a priori knowledge of the problem under

consideration. It could be rather weak. But without any priori knowledge,

it is difficult to get proper statistics. Also, this step is strongly problem

dependent. In the following let us use the heart-beat intervals as an example

to illustrate how to construct the features.

For each mode function Fi, we first get its meanmi and standard deviation

σi. By the previous studies [2] the healthy heart beats more irregularly than

the unhealthy heart. This motivates us to design the statistics to measure the

irregularity. To this end, we consider the terms that are larger than m + σ

and find their mean and standard deviation. We also find the mean and

standard deviation of the terms that are larger than m+ 2σ. Symmetrically

we also get the mean and standard deviation of those terms that are smaller

than m − σ and m − 2σ. Note all these terms are in some sense “outliers”

and it is natural to use the statistics of the outliers as the characterization

of the irregularity.

Next we consider the local maxima and local minima of Fi. These two

series measure the local upper amplitude. For each series we consider the ten

statistics as those for Fi.

Therefore for each component we get 30 statistics.

Unlike in [2], we use the whole 24-hour heart beat time series and as-

sume we do not know the periods for different activities such as sleeping and

walking. We think the statistics for different periods should be different and

not all of them represent the difference between the healthy and unhealthy

people. This motivates the idea of split the whole time series into subseries.

Suppose we have K subseries for each patient. Then we get K subcompo-

6
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nents for each mode function which will be denoted by Fij, j = 1, . . . , K. For

each subcomponent Fij we also get the 30 statistics as for Fi. For the same

statistics, we have K values from the K subcomponents. We compute the

mean of all values, the mean of lower half and upper half, respectively. This

gives 90 statistics as summary. So for each component we get 120 statistics.

For physiological signals, we believe the trend and low frequency com-

ponents are determined by the fundamental mechanism while the individual

differences should be reflected by the high frequency components. In case

that we do not have much knowledge about the disease to be diagnosed we

may assume the features may also comes from the trend. So the same 120

statistics are also computed for the trend component.

2.3 Feature subset selection

After the above two steps we have get many features for the data. Usually

only a small part of them are related to the diagnosis and the physiological

mechanism of the disease. The task of the third step is to find the relevant

ones. This will be realized by eliminating the irrelevant ones step by step.

Firstly, if a statistic is almost constant, then it is useless in the diagnosis

and should be eliminated. For example, the means of the mode functions mi

are all approximately zero and should be eliminated.

Next we use the SVM-RFE method [4] to rank the features. In this

method, given a set of training samples, we first train linear SVM to get

a classifier and then rank the features according to the weights. Because

of large feature size and small training samples, the classifier might not be

as good. Also, the high correlation between the features may result the

7
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relevant features to have small weights. These reasons could lead the rank to

be inaccurate. In order to refine the rank we eliminate the least important

feature and repeat the process to re-rank the remained features. Running

this process iteratively we finally get the refined rank of the features.

With this rank of features we can conclude which statistics are useful

for the diagnosis and characterize the essence of the underlying physiological

mechanism. Good classifiers can then be built to make accurate diagnosis.

3 Experiments and Results

In this section we apply our new method described in Section 2 to the hear

beat interval times series and report our results and conclusions.

3.1 The data set

The data set includes the heart beat interval time series of 72 healthy people

and 43 CHF patients. For each people the heart beat interval is measured

for 24 hours under various activities. In our experiment we will assume the

activity period is not known. The average ages of these two groups are both

55 years. The standard deviation of age of CHF patients is 11 years and

which of healthy people is 16 years. If divide CHF patients into 4 degrees

where the degree I is a slight CHF and the degree IV is a severe CHF, most

CHF patients are of the degree III.

8
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Figure 1: The mean and variance (in second) of the times series, ’o’ for

healthy people and ‘*’ for CHF patients.

3.2 A primary study

Before using our new method, we study the classification ability of two simple

statistics: mean and variance. In Figure 1 we plot the mean and variance

of the heart beat intervals for the healthy people and CHF patients. We see

that the healthy people and the CHF patients can be roughly separated. The

average heart beat interval of healthy people is larger and so is the variance.

It shows the heart of healthy people beats slower and more irregularly. This

observation coincides with the previous study.

At the same time, we notice that several cases falling into the healthy

people show to be severe CHF patients. So we conjecture that the mean and

variance might not reflect the essence of the underlying mechanism, although

9
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they have good separability.

3.3 Experiment: feature extraction

For each time series, we use the iterative convolution filter to realize the

signal decomposition. In this step we need to specify the window size of the

mask. It turns out it should be chosen between 50 and 100 to be stable. In

our experiment it is chosen to be 50.

We then calculate the statistics proposed in Subsection 2.2. Here we need

to specify the parameter K, the number of subseries. If a statistic really cap-

tures the essence of the data set, it should be stable and independent of the

choice of K once it is chosen within a reasonable interval. Our experiments

show that K = 50 is a good choice. Most heart beat signals were recorded

for a little bit more than 24 hours. Thus when K = 50, each subseries is

around 30 minutes of record.

Previous studies have shown that healthy heart beats irregularly. In

statistics, irregularity could be measured by statistics of “outliers” that are

not due to noise. This motivates us to consider the upper half mean and

the lower half mean of the fluctuations. At the same time, from the study in

Section 3.2 we find that a healthy heart beats slower than an unhealthy heart

in average. These two intuitions enlighten us to conjecture that those larger

heart beat intervals (i.e. slower heart beats) in the times series characterize

the difference between the healthy people and CHF patients. To confirm

this, we do a correlation analysis.

For the first two IMFs of the 50 components of each time series, we

calculate and sort the mean and standard deviation of those terms larger

10
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than mean plus standard deviation and those terms larger than mean plus

two times standard deviation. For each statistic we compute its correlation

to the CHF disease. The result is plotted in Figure 2 in red color. We

compute the same indices for those items smaller than the mean minus one

and two times standard deviation. The result is plotted in Figure 2 in blue

color. From the comparison we see that, in average, correlations of the

statistics associated to the larger fluctuations are larger and the upper half

mean of these statistics are stable. This observation motives us to disregard

the smaller fluctuations and the statistics for those.

3.4 Feature ranking and subset selection

To rank the features, we randomly split the data set into two subsets as

the training set and the test set, respectively. In the training set we have 50

healthy subjects and 30 CHF subjects and in the test set there are 22 healthy

and 13 CHF subjects. We use the training set to build the SVM classifier

and use the test set to control the accuracy. Using the SVM-RFE methods

described in Subsection 2.3 we rank the features. To guarantee the stability

of the rank we repeat this procedure 1000 times and choose the statistics

that appear most frequently in the model.

In all 1000 repeats, the classification error on the test data set is summa-

rized in the following table:

number of errors 0 1 2 3 4 5

number of repeats 823 116 42 14 4 1

11
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Figure 2: The correlations of various statistics to the CHF disease. The

first column is for the first IMF and the second column is for the second

IMF. The first line is for the mean of those items larger than the mean

plus standard deviation (red line) and those items smaller than the mean

minus the standard deviation (blue line). The second line is for the standard

deviation of two types items. The third line is for the mean of those items

larger than the mean plus 2 times standard deviation (red line) and those

items smaller than the mean minus 2 times standard deviation (blue line).

The forth line is for the standard deviation of two types of items.

12

234
DISTRIBUTION A: Distribution approved for public release.



We list the top 10 statistics selected by this procedure:

1. IMF 1: For the subseries consisting of local maxima, find all terms which

are greater than the mean plus two times standard deviation, then compute

the standard deviation.

2. IMF 1: For the subseries consisting of local maxima, find all terms which

are less than the mean minus two times standard deviation, then compute

the standard deviation.

3. IMF 1: Equally divide the series into K subseries, for each subseries find

all terms which are less than the mean minus two times standard deviation,

compute the standard deviation, then take the mean of these K standard

deviations.

4. IMF 1: Equally divide the series into K subseries, find local maxima of

each subseries, find all terms of local maxima which are greater than the

mean plus two times standard deviation, compute the standard deviation,

then take the mean of these K standard deviations.

5. IMF 1: Equally divide the series into K subseries, find local minima of

each subseries, find all terms of local minima which are greater than the

mean plus two times standard deviation, compute the standard deviation,

then take the mean of these K standard deviations .

6. IMF 2: Find all terms which are greater than the mean plus two times

standard deviation, then compute the standard deviation.

7. IMF 2: Equally divide the series intoK subseries, for each subseries find all

terms which are greater than the mean plus two times standard deviation,

compute the standard deviation, then take the mean of these K standard

deviations.

13
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8. IMF 2: Equally divide the series into K subseries, find local maxima of

each subseries, find all terms of local maxima which are greater than the

mean plus two times standard deviation, compute the standard deviation,

then take the mean of these K standard deviations.

9. IMF 2: Equally divide the series into K subseries, find local minima of

each subseries, find all terms of local minima which are less than the mean

minus two times standard deviation, compute the standard deviation, then

take the mean of these K standard deviations.

10. Trend: Equally divide the series into K subseries, find local maxima

of each subseries, find all terms of local minima which are greater than the

mean plus standard deviation, compute the standard deviation, then take

the mean of these K standard deviations.

These 10 statistics that appear most frequently in the model all measure

the irregularity of the local amplitude. Take Statistics 1 and Statistics 7 as

the example. They are obtained as the following. To get Statistics 1, for

the first IMF F1, find the local maxima u and compute the mean m and

the standard deviation σ of u. Then we choose terms greater than m + 2σ

and find their standard deviation. To get Statistics 7, for the subseries of

the second IMF F2j, j = 1, . . . , K, compute the mean m2j and the standard

deviation σ2j of F2j. Then we choose terms greater than m2j + 2σ2j of F2j

and find their standard deviations. Then we compute the mean of K such

standard deviations. In the following figure we show the distribution of the

healthy people and CHF patients using these two statistics. From this figure

it is easy to see that healthy people and CHF patients are well separated.

Observing these two statistics, we find that both of them measure the

14
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Figure 3: CHF * vs Healthy ◦. The x-axis is Statistics 1 and the y-axis is

Statistics 7.

ability of the heart beat to become extremely slower than usual. Our result

shows that the strong adaptability of extremely slower heart beat might be

the irregularity that characterizes the healthy hearts.

3.4.1 Reliability of the top features

We have found that the most relevant features are statistics for the “outliers”,

i.e., those items larger than mean plus two times standard deviations, or items

less than mean minus two times standard deviations for IMFs. A natural

question arises: “Is this accidental?” This is equivalent to ask whether the

outliers taken into account are noise or informative.

In order to answer this question we further analyze these outliers. Firstly

we notice that the up and down fluctuations are not balanced for both healthy

people and CHF patients. The percentage of items larger than mean plus two

times standard deviation for healthy people is 2.84% and those items smaller

than the mean minus stand deviation is only 2.35%. For CHF patients the

15
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percentages are 2.49% and 2.17%, respectively. This observation is the first

evidence that outliers are not due to noise because otherwise they should be

balanced distributed. Moreover, recall for normal distribution the percentage

of one-side outliers outside the two times standard deviation is 2.28%. We

see the outliers for CHF is closer to it due to noise while those for healthy

people are much more and probably due to not only noise and hence are

informative.

To further confirm our conclusion, we do the following test: we calculate

the statistics for the items larger than the mean plus v times standard devia-

tion with the variable v changes from 0 to 2 and investigate their correlation

to the CHF disease. Here we consider three quartile of the 50 standard devia-

tions of these items in the 50 components. The correlation is plotted in Figure

4. From this analysis, we see the correlation increases with v. Such a trend

appears also in other statistics. This clear trend implies that the relevancy

between these statistics and the CHF disease is not accidental. Instead, we

should consider the outliers informative and their properties characterize the

essence difference between healthy people and CHF patients.

4 Conclusions and discussions

In this paper we developed a new approach for the analysis of the physio-

logical times series. The motivation comes from that the physiological times

series usually contains both deterministic and stochastic parts and they can

be represented by the low and high frequency components of the times se-

ries. Our new method uses an iterative filter to realize the decomposition
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Figure 4: Corrections of the statistics described in Section 3.4.1 with v vary-

ing from 0 to 2.

of the times series into high and low frequency components and study their

statistics. SVM-RFE is then used to select highly relevant features.

Our method is applied to analyze the heart beat interval time series for

CHF disease. The top features are found to measure the ability of heart to

beat extremely slowly. Healthy heart show strong ability which we conjecture

are due to the strong resilience to the environment and human activities.
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This paper is concerned with the question of reconstructing a vector in a finite-
dimensional real Hilbert space when only the magnitudes of the coefficients of the 
vector under a redundant linear map are known. We analyze various Lipschitz 
bounds of the nonlinear analysis map and we establish theoretical performance 
bounds of any reconstruction algorithm. The discussion of robustness is with respect 
to random noise and with respect to deterministic perturbations. We show that 
robust and uniformly stable reconstruction is not achievable with the minimum 
redundancy for phaseless reconstruction. Robust reconstruction schemes require 
additional redundancy than the critical threshold.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the question of reconstructing a vector x in a finite-dimensional real Hilbert 
space H of dimension n when only the magnitudes of the coefficients of the vector under a redundant linear 
map are known.

Specifically our problem is to reconstruct x ∈ H up to an overall change of sign from the magnitudes 
{|〈x, fk〉|, 1 ≤ k ≤ m} where F = {f1, . . . , fm} is a frame (complete system) for H.

A previous paper [6] described the importance of the phaseless reconstruction problem. One particular 
case is when the coefficients are obtained from an Undecimated Wavelet Transform. This case is relevant 
for instance in some audio and image signal processing applications, as well as in neural computations as 
performed by the auditory cortex [13].

While [6] presents some necessary and sufficient conditions for reconstruction, the general problem of 
finding fast/efficient algorithms is still open. In [3] we describe one solution in the case of STFT coefficients.

For vectors in real Hilbert spaces, the reconstruction problem is easily shown to be equivalent to a 
combinatorial problem. In [7] this problem is further proved to be equivalent to a (nonconvex) optimization 
problem.
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A different approach (which we called the algebraic approach) was proposed in [2]. While it applies to 
both real and complex cases, noiseless and noisy cases, the approach requires solving a linear system of 
size exponentially in the space dimension. This algebraic approach generalizes the approach in [8] where 
reconstruction is performed with complexity O(n2) (plus computation of the principal eigenvector for a 
matrix of size n). However this method requires m = O(n2) frame vectors.

Recently the authors of [10] developed a convex optimization algorithm (a SemiDefinite Program called 
PhaseLift) and proved its ability to perform exact reconstruction in the absence of noise, as well as its 
stability under noise conditions. In a separate paper [11], the authors further developed a similar algorithm 
in the case of windowed DFT transforms. Inspired by the PhaseLift and MaxCut algorithms, but operating 
in the coefficients space, the authors of [16] proposed a SemiDefinite Program called PhaseCut. They show 
the algorithm yields the exact solution in the absence of noise under similar conditions as PhaseLift.

The paper [4] presents an iterative regularized least-square algorithm for inverting the nonlinear map 
and compares its performance to a Cramer–Rao lower bound for this problem in the real case. The paper 
also presents some new injectivity results which are incorporated into this paper.

A different approach is proposed in [1]. There the authors use a 4-term polarization identity together 
with a family of spectral expander graphs to design a frame of bounded redundancy (m

n ≤ 236) that yields 
an exact reconstruction algorithm in the absence of noise.

The authors of [14] study several robustness bounds to the phase recovery problem in the real case. 
However their approach is different from ours in several respects. First they consider a probabilistic setup 
of this problem, where data x and frame vectors fj ’s are random vectors with probabilities from a class of 
subgaussian distributions. Additionally, their focus is on classes of k-sparse signals. In our paper we analyze 
stability bounds of reconstruction for a fixed frame using deterministic analytic tools. After that we present 
asymptotic behavior of these bounds for random frames.

Finally, the authors of [9] analyze the phaseless reconstruction problem for both the real and complex 
case. In the real case the authors obtain the exact upper Lipschitz constant for the nonlinear map αF , 
namely 

√
B where B is the upper frame bound. For the lower Lipschitz constant, they give an estimate 

between two computable singular eigenvalues. Our results have overlaps with their results. However, in 
our paper we improve the lower Lipschitz constant by giving its exact value. There are some significant 
differences between this paper and [9]. In addition to studying of the Lipschitz property of the map αF we 
focus also on two related but different settings. First we study the robustness of the reconstruction given 
a fixed error allowance in measurements. Second we also consider the Lipschitz property of the map αF2. 
The authors of [9] point out that the map αF2 is not bi-Lipschitz. However in our paper we show αF2

becomes bi-Lipschitz for a different metric on the domain. With this metric (the one induced by the nuclear 
norm on the set of symmetric operators) the nonlinear map αF2 is bi-Lipschitz with constants indicated in 
Theorem 4.5. Furthermore the same conclusion holds true in the complex case, although this will be studied 
elsewhere.

The organization of the paper is as follows. Section 2 formally defines the problem and reviews existing 
inversion results in the real case. Section 3 establishes information theoretic performance bounds, namely 
the Cramer–Rao lower bound. Section 4 contains robustness measures of any reconstruction algorithm. 
Section 5 presents a stochastic analysis of these bounds. Section 6 presents a numerical example and is 
followed by references.

2. Background

Let us denote by H = Rn the n-dimensional real Hilbert space Rn with scalar product 〈, 〉. Let F =
{f1, . . . , fm} be a spanning set of m vectors in H. In finite dimension (as it is the case here) such a set 
forms a frame. In the infinite dimensional case, the concept of frame involves a stronger property than 
completeness (see for instance [12]). We review additional terminology and properties which remain still 243

DISTRIBUTION A: Distribution approved for public release.



R. Balan, Y. Wang / Appl. Comput. Harmon. Anal. 38 (2015) 469–488 471

true in the infinite dimensional setting. The set F is a frame if and only if there are two positive constants 
0 < A ≤ B < ∞ (called frame bounds) so that

A‖x‖2 ≤
m∑

k=1

∣∣〈x, fk〉
∣∣2 ≤ B‖x‖2

. (2.1)

When we can choose A = B the frame is said tight. For A = B = 1 the frame is called Parseval. The frame 
matrix corresponding to F is defined as F = [f1, f2, . . . , fm] with the vectors fj ∈ F as its columns. We 
shall frequently identify F with its corresponding frame matrix F . The largest A and smallest B in (2.1)
are called the lower frame bound and upper frame bound of F , and they are given by

A = λmax
(
FF ∗) = σ2

1(F ), B = λmin
(
FF ∗) = σ2

n(F ) (2.2)

where λmax, λmin denote the largest and smallest eigenvalues respectively, while σ1, σn denote the first and 
n-th singular values respectively. A set of vectors F of the n-dimensional Hilbert space H is said to be full 
spark if any subset of n vectors is linearly independent.

For a vector x ∈ H, the collection of coefficients {〈x, fj〉 : 1 ≤ j ≤ m} represents the analysis map 
of vector x given by the frame F , and from which x can be completely reconstructed. In the phaseless 
reconstruction problem, we ask the following question: Can x be reconstructed from {|〈x, fj〉| : 1 ≤ j ≤ m}? 
Consider the following equivalence relation ∼ on H: x ∼ y if and only if y = cx for some unimodular 
constant c, |c| = 1. Since we focus on the real vector space H = Rn, we have x ∼ y if and only if x = ±y. 
Clearly the phaseless reconstruction problem cannot distinguish x and y if x ∼ y, so we will be looking 
at reconstruction on Ĥ := H/ ∼= Rn/ ∼ whose elements are given by equivalent classes x̂ = {x, −x} for 
x ∈ Rn. The analogous analysis map for phaseless reconstruction is the following nonlinear map

αF : Ĥ → Rm
+ , αF (x̂) =

[∣∣〈x, f1〉
∣∣,
∣∣〈x, f2〉

∣∣, . . . ,
∣∣〈x, fm〉

∣∣]T . (2.3)

Note that αF can also be viewed as a map from Rn to Rm
+ . Throughout the paper we will not make an 

explicit distinction unless such a distinction is necessary.
Thus the phaseless reconstruction problems aims to reconstruct x̂ ∈ Ĥ from the map αF (x). We say a 

frame F is phase retrievable if one can reconstruct x̂ ∈ Ĥ for all x̂, or in other words, αF is injective on Ĥ. 
The main objective of this paper is to analyze robustness and stability of the inversion map, and to give 
performance bounds of any reconstruction algorithm.

Before proceeding further we first review existing results on injectivity of the nonlinear map αF . In 
general a subset Z of a topological space is said generic if its open interior is dense. However in the 
following statements, the term generic refers to Zarisky topology: a set Z ⊂ Kn×m = Kn × · · · × Kn is 
said generic if Z is dense in Kn×m and its complement is a finite union of zero sets of polynomials in nm

variables with coefficients in the field K (here K = R).

Theorem 2.1. Let F be a frame in H = Rn with m elements. Then the following hold true:

1. The frame F is phase retrievable in Ĥ if and only if for any disjoint partition of the frame set F =
F1 ∪ F2, either F1 spans Rn or F2 spans Rn.

2. If F is phase retrievable in Ĥ then m ≥ 2n − 1. Furthermore, for a generic F with m ≥ 2n − 1 the map 
αF is phase retrievable in Ĥ.

3. Let m = 2n − 1. Then F is phase retrievable in Ĥ if and only if F is full spark.244
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4. Let

a0 := min
‖x‖=‖y‖=1

m∑

j=1

∣∣〈x, fj〉
∣∣2∣∣〈y, fj〉

∣∣2 ≥ 0, (2.4)

so that
m∑

k=1

∣∣〈x, fk〉
∣∣2∣∣〈y, fk〉

∣∣2 ≥ a0‖x‖2‖y‖2
. (2.5)

Then F is phase retrievable on Ĥ if and only if a0 > 0.
5. For any x ∈ Rn define the matrix R(x) by

R(x) :=
m∑

j=1

∣∣〈x, fj〉
∣∣2fjf

∗
j . (2.6)

Let λmin(R(x)) denote the smallest eigenvalue of R(x), and let a0 = min‖x‖=1 λmin(R(x)). Equivalently 
let a0 be the largest constant so that R(x) ≥ a0‖x‖2I for all x ∈ H, where I is the identity matrix.
Then F is phase retrievable on Ĥ if and only if a0 > 0.
Additionally the constant a0 introduced here is the same as the constant a0 given by (2.4).

The results (1)–(3) are in [6], and (4)–(5) are in [4].

3. Information theoretic performance bounds

In this section we derive expressions for the Fisher Information Matrix and obtain performance bounds 
for reconstruction algorithms in the noisy case.

Consider the following noisy measurement process:

yk =
∣∣〈x, fk〉

∣∣2 + νk, νk ∼ N
(
0, σ2), 1 ≤ k ≤ m (3.1)

where the noise model is AWGN (additive white Gaussian noise): each random variable νk is independent 
and normally distributed with zero mean and σ2 variance.

Consider the noiseless case first (that is νk = 0). Obviously one cannot obtain the exact vector x ∈ H

due to the global sign ambiguity. Instead the best outcome is to identify (that is, to estimate) the class 
x̂ = {x, −x} from αF (x). As such, we fix a disjoint partition of the punctured Hilbert space H, Rn \ {0} =
Ω1 ∪ Ω2, such that Ω2 = −Ω1. We make the choice that the vector x belongs to Ω1. Hence any estimator 
of x is a map ω : Rm −→ Ω1 ∪ {0}. Denote by Ω̊1 its interior as a subset of Rn. Such a decomposition is, 
for example

Ω1 =
n⋃

k=1

{
x ∈ Rn : xk ≥ 0, xj = 0 for j < k

}
.

Note its interior is given by Ω̊1 = {x ∈ Rn, x1 > 0}.
Under these assumptions we compute the Fisher Information matrix (see [15]). This is given by

(
I(x)
)
k,j

= E
[(

∇ logL(x)
)(

∇ logL(x)
)T ] (3.2)

where the likelihood function L(x) is given by 245
DISTRIBUTION A: Distribution approved for public release.



R. Balan, Y. Wang / Appl. Comput. Harmon. Anal. 38 (2015) 469–488 473

L(x) = p(y|x) = 1
(2π)m/2σm

exp
(

− 1
2σ2

m∑

k=1

∣∣yk −
∣∣〈x, fk〉

∣∣2∣∣2
)

. (3.3)

After some algebra (see [4]) we obtain

I(x) = 4
σ2 R(x), R(x) =

m∑

j=1

∣∣〈x, fj〉
∣∣2fjf

T
j . (3.4)

Note the matrix R(x) is exactly the same as the matrix introduced in (2.6). Thus we obtain the following 
results:

Theorem 3.1. The frame F is phase retrievable if and only if the Fisher information matrix I(x) is invertible 
for any x �= 0.

When F is phase retrievable let a0 be the positive constant introduced in (2.4). Then

I(x) ≥ 4a0
σ2 ‖x‖2

I (3.5)

where I is the n × n identity operator.

This allows to state the following performance bound result (see [15] for details on the Cramer–Rao lower 
bound).

Theorem 3.2. Assume x ∈ Ω̊1. Let ω : Rm → Ω1 be any unbiased estimator for x. Then its covariance 
matrix is bounded below by the Cramer–Rao lower bound:

Cov
[
ω(y)

]
≥
(
I(x)
)−1 = σ2

4
(
R(x)

)−1
. (3.6)

Furthermore, any efficient estimator (that is, any unbiased estimator ω that achieves the Cramer–Rao Lower 
Bound (3.6)) has the covariance matrix bounded from above by

Cov
[
ω(y)

]
≤ σ2

4a0‖x‖2 I (3.7)

and Mean-Square error bounded above by

MSE(ω) = E
[∥∥ω(y) − x

∥∥2] ≤ nσ2

4a0‖x‖2 . (3.8)

Remark 3.3. We point out the importance of the constant a0 introduced in (2.4). On the one hand it 
represents a necessary and sufficient condition for phase retrievability as stated in Theorem 2.1. On the 
other hand the above results prove that a0 provides also a bound for the Fisher Information matrix and 
hence a bound for any efficient estimator of x̂. The larger this constant a0, the smaller the variance of 
the efficient estimator. As we prove in the next section, the same constant a0 represents the lower Lips-
chitz bound for the map αF2 (4.13) considered between (Ĥ, d1) and the Euclidean space (Rm, ‖ · ‖) – see 
Theorem 4.5. 246
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Additionally, similar expressions involving the bound a0 occur in the complex case as well. Both the 
stochastic bound above and the bi-Lipschitz result in Theorem 4.5 can be extended to the complex case – 
see [5].

4. Robustness measures for reconstruction

In this section we analyze the robustness of deterministic phaseless reconstruction. Additionally we con-
nect the constant a0 introduced earlier in Theorem 2.1 and used in Theorem 3.1 to quantities directly 
computable from the frame F .

Our approach is to analyze the stability in the worst case scenario, for which we consider the following 
measures. Denote d(x, y) := min(‖x − y‖, ‖x + y‖). For any x ∈ Rn and ε > 0 define

Qε(x) = max
{y:‖αF (x)−αF (y)‖≤ε}

d(x, y)
ε

. (4.1)

The size of Qε(x) measures the worst case stability of the reconstruction for the vector x, under the 
assumption that the total noise level is controlled by ε. We also study the global stability by analyzing the 
measures

qε := max
‖x‖=1

Qε(x), q0 := lim sup
ε→0

qε, q∞ := sup
ε>0

qε. (4.2)

Here ‖.‖ denotes usual Euclidian norm. Note that Qε(x) has the scaling property Qε(x) = Q|c|ε(cx) for any 
real c �= 0. Thus it is natural to focus on unit vectors x.

We introduce now some quantities that play key roles in the estimation of these robustness measures. 
For the frame F let F = [f1, f2, · · · , fm] be its frame matrix. Denote by F [S] = {fk, k ∈ S} the subset of 
F indexed by a subset S ⊆ {1, 2, . . . , m}, and by FS the frame matrix corresponding to F [S] (which is the 
matrix with vectors in F [S] as its columns). Set

A[S] := σ2
n(FS) = λmin

(
FSF ∗

S

)
, (4.3)

where as usual σn and λmin denote the n-th singular value and the minimal eigenvalue, respectively. Note 
that A[S] is in fact the lower frame bound of F [S].

Let S denote the collection of subsets S of {1, 2, . . . , m} so that dim(span(F [Sc])) < n, where Sc =
{1, 2, . . . , m} \ S is the complement of S. In other words, rank(FSc) < n. Denote by Δ and ω the following 
expressions:

Δ = min
S

√
A[S] + A

[
Sc
]

(4.4)

ω = min
S∈S

σn(FS). (4.5)

All of them depend of course on F . However since we fix F throughout the paper, we shall not explicitly 
reference F in the notation for simplicity as there will not be any confusion. Clearly

Δ ≤ ω. (4.6)

Proposition 4.1. Let ε > 0. Then the stability measurement function Qε(x) is given by

Qε(x) = 1
ε

max
(w1,w2)∈Υ

min
{
‖w1‖, ‖w2‖

}
(4.7)247
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where the constraint set Υ is given by

Υ =
{

(w1, w2)
∣∣ 1

2(w1 + w2) = x,
m∑

j=1
min
(∣∣〈fj , w1〉

∣∣2,
∣∣〈fj , w2〉

∣∣2) =
∥∥F ∗

Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≤ ε2

}
,

(4.8)

where S := S(w1, w2) = {j : |〈fj , w1〉| ≤ |〈fj , w2〉|}.

Proof. For any x, y ∈ Rn let w1 = x + y and w2 = x − y. Then x = 1
2 (w1 + w2) and y = 1

2 (w1 − w2). It is 
easy to check that for S = {j : |〈fj , w1〉| ≤ |〈fj , w2〉|} we have

∣∣〈fj , x〉
∣∣−
∣∣〈fj , y〉

∣∣ =
{

±〈fj , w1〉 j ∈ S,

±〈fj , w2〉 j ∈ Sc.

In other words,

∣∣〈fj , x〉
∣∣−
∣∣〈fj , y〉

∣∣ = min
(∣∣〈fj , w1〉

∣∣,
∣∣〈fj , w2〉

∣∣). (4.9)

Let F be the frame matrix of F . We thus have

∥∥αF (x) − αF (y)
∥∥2 =

∑

j∈S

∣∣〈fj , w1〉
∣∣2 +

∑

j∈Sc

∣∣〈fj , w2〉
∣∣2 =

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2.

Note that d(x, y) = min(‖w1‖, ‖w2‖). The proposition now follows. �
The above proposition allows us to establish the following stability result for the worst case scenario.

Theorem 4.2. Assume that the frame F is phase retrievable. Let A > 0 be the lower frame bound for the 
frame F and let τ := min{σn(FS) : S ⊆ {1, . . . , m}, rank(FS) = n}.

(A) For any ε > 0 we have

min
{

1
ε
,
1
ω

}
≤ qε ≤ 1

Δ
. (4.10)

(B) If ε < τ then qε = 1
ω . Consequently q0 = 1

ω .
(C) For any nonzero x ∈ Rn and any 0 < ε < Δx we have

Qε(x) = 1√
A

, (4.11)

where

Δx := 2τ
max(‖fj‖) + τ

min
{∣∣〈fj , x〉

∣∣ : 〈fj , x〉 �= 0
}
.

(D) The upper bound q∞ equals the reciprocal of Δ:

q∞ = 1
Δ

. (4.12)
248
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Proof. To prove (A) we first establish the upper bound in (4.10). Let x ∈ Rn. By Proposition 4.1 we have

Qε(x) = 1
ε

max
w1,w2

min
{
‖w1‖, ‖w2‖

}

under the constraints 1
2 (w1 + w2) = x and

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≤ ε2

for some S. Now assume without loss of generality that ‖w1‖ ≤ ‖w2‖. Then

ε2

‖w1‖2 ≥ ‖F ∗
Sw1‖2 + ‖F ∗

Scw2‖2

‖w1‖2

≥ σ2
n(FS) + σ2

n(FSc)‖w2‖2

‖w1‖2

≥ Δ.

It follows that

1
ε

min{‖w1‖, ‖w2‖} ≤ 1
Δ

.

Thus Qε(x) ≤ 1
Δ .

To establish the lower bound in (4.10) we construct for any ε > 0 an x ∈ Rn and vectors w1, w2 satisfying 
the imposed constraints. Let S be a subset of {1, 2, . . . , m} such that rank(FSc) < n and σn(FS) = ω. 
Choose v1, v2 ∈ Rn with the property ‖v1‖ = ‖v2‖ = 1 and

∥∥F ∗
Sv1
∥∥ = ω, F ∗

Scv2 = 0.

Set

t = min
{

ε

ω
, 1
}
, and w1 = tv1.

Hence ‖w1‖ = t ≤ 1. Now we select an s ∈ R so that ‖w1 + sv2‖ = 2. This is always possible since 
s �→ ‖w1 + sv2‖ is continuous and ‖w1 + 0v2‖ = t ≤ 1 ≤ 2 ≤ ‖w1 + 3v2‖. Set w2 = sv2 so ‖w1 + w2‖ = 2. 
We have

|s| = ‖sv2‖ ≥ ‖w1 + sv2‖ − ‖w1‖ = 2 − t ≥ 1.

Thus ‖w2‖ ≥ ‖w1‖. Now let

x = 1
2(w1 + w2) and y = 1

2(w1 − w2).

We have then

∥∥αF (x) − αF (y)
∥∥2 =

m∑

j=1
min
(∣∣〈fj , w1〉

∣∣2,
∣∣〈fj , w2〉

∣∣2)

≤
∑

j∈S

∣∣〈fj , w1〉
∣∣2 +

∑

j∈Sc

∣∣〈fj , w2〉
∣∣2

= t2ω2 ≤ ε2.249
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Furthermore

d(x, y) = min(‖w1‖, ‖w2‖) = ‖w1‖ = t.

Hence for this x we have

Qε(x) ≥ d(x, y)
ε

= min
{

1
ε
,
1
ω

}
.

It follows that qε ≥ min{1
ε , 

1
ω}. Now by taking ε > 0 sufficiently small we have qε ≥ 1

ω .
We now prove (B). Assume that ε ≤ min{σn(FS) : rank(FS) = n}. Then clearly we have ε ≤ ω. Thus 

by (4.10) we have qε ≥ 1
ω . Again for each x ∈ Rn with ‖x‖ = 1 we consider w1, w2 for the estimation of 

qε(x). The constraint ‖w1 + w2‖ = 2 implies either ‖w1‖ ≥ 1 or ‖w2‖ ≥ 1. Without loss of generality we 
assume that ‖w1‖ ≥ 1. For the constraint ‖F ∗

Sw1‖2 + ‖F ∗
Scw2‖2 ≤ ε2 for some S, assume that rank(FS) = n

then we have
∥∥F ∗

Sw1
∥∥ ≥ σn(FS)‖w1‖ ≥ min

{
σn(FS): rank(FS) = n

}
> ε.

This is a contradiction. So rank(FS) < n and hence

ε2 ≥
∥∥F ∗

Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≥
∥∥F ∗

Scw2
∥∥2 ≥ ω2‖w2‖2.

Thus ‖w2‖ ≤ ε
ω . Proposition 4.1 now yields qε = 1

ω , proving part (B).
Now we prove (C). We go back to the formulation in Proposition 4.1.

Qε(x) = 1
ε

max
w1,w2

min
{
‖w1‖, ‖w2‖

}

under the constraints 1
2 (w1 + w2) = x and

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≤ ε2

where S := S(w1, w2) = {j: |〈fj , w1〉| ≤ |〈fj , w2〉|}. Since αF is injective, either rank(FS) = n or
rank(FSc) = n by Theorem 2.1 (1). Without loss of generality we assume rank(FS) = n. Thus ε ≥ ‖F ∗

Sw1‖ ≥
τ‖w1‖. So ‖w1‖ ≤ ε/τ . We show that for any k ∈ Sc we must have 〈fk, x〉 = 0. Assume otherwise and write 
w2 = 2x − w1, Lx := min{|〈fj , x〉| : 〈fj , x〉 �= 0}. Then

∣∣〈fk, w2〉
∣∣ ≥ 2

∣∣〈fk, x〉
∣∣−
∣∣〈fk, w1〉

∣∣ ≥ 2Lx − max
(
‖fj‖

)
‖w1‖ ≥ 2Lx − max

(
‖fj‖

) ε
τ

> ε.

This is a contradiction. Thus for k ∈ Sc we have 〈fk, x〉 = 0 and
∣∣〈fj , w2〉

∣∣ =
∣∣〈fj , 2x − w1〉

∣∣ =
∣∣〈fj , w1〉

∣∣.

It follows that
∥∥F ∗

Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 =
∥∥F ∗w1

∥∥2 ≤ ε2.

Thus ‖w1‖ ≤ ε/
√

A and hence Qε(x) ≤ 1√
A

. Now we show the bound can be achieved. Let w1 satisfy 

‖F ∗w1‖ =
√

A‖w1‖ = ε. Such a w1 always exists. Then clearly w1 and w2 = 2x − w1 satisfy the required 
constraints, and it is easy to check that min(‖w1‖, ‖w2‖) = ‖w1‖ = ε/

√
A.250
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Finally we prove (D). By the result at part (A), q∞ ≤ 1
Δ . It is therefore sufficient to show that Qε(x) ≥ 1

Δ

for some x and ε. Let S0 be the subset that achieves the minimum in (4.4). Let u, v ∈ H be unit eigenvectors 
corresponding to the lowest eigenvalues of FS0F

∗
S0

and FSc
0F

∗
Sc

0
respectively. Thus

∥∥F ∗
S0u
∥∥2 = A[S0],

∥∥F ∗
Sc

0
v
∥∥2 = A

[
Sc

0
]

Let x = (u + v)/2 and ε = Δ, and set w1 = u, w2 = v. Then by Proposition 4.1

Qε(x) ≥ min(‖w1‖, ‖w2‖)
ε

= 1
Δ

since

m∑

j=1
min
(∣∣〈fj , w1〉

∣∣2,
∣∣〈fj , w2〉

∣∣2) ≤
∥∥F ∗

S0w1
∥∥2 +

∥∥F ∗
Sc

0
w2
∥∥2 = ε2

This concludes the proof. �
Remark. It may seem strange that Qε(x) = 1√

A
for all x �= 0 and sufficiently small ε while q0 = 1

ω , where 

ω is typically much smaller than 
√

A. The reason is that for Qε(x) = 1√
A

to hold, ε depends on x. Thus we 
cannot exchange the order of lim supε→0 and max‖x‖=1.

Related to the study of stability of phaseless reconstruction is the study of the Lipschitz property of the 
map αF on Ĥ := Rn/ ∼. We analyze the bi-Lipschitz bounds of both αF and αF 2, which is simply the map 
αF with all entries squared, i.e.

αF
2(x) :=

[∣∣〈fj , x〉
∣∣2, . . . ,

∣∣〈fm, x〉
∣∣2]T . (4.13)

We shall consider two distance functions on Ĥ = Rn/ ∼: the standard distance d(x, y) := min(‖x − y‖,
‖x +y‖) and the distance d1(x, y) := ‖xx∗ −yy∗‖1 where ‖X‖1 denotes the nuclear norm of X, which is the 
sum of all singular values of X. Specifically we are interested in examining the local and global behavior of 
the following ratios

U(x, y) := ‖αF (x) − αF (y)‖
d(x, y) , V (x, y) := ‖αF 2(x) − αF 2(y)‖

d1(x, y) . (4.14)

While all norms in finite dimensional spaces are equivalent, we choose to consider d1, the nuclear norm 
induced distance on Ĥ, because the Lipschitz lower and upper bounds are very much related to the matrix 
R(x) introduced in Theorem 2.1.

We first investigate the bounds for U(x, y). For this the upper bound is relatively straightforward. Let 
w1 = x − y and w2 = x + y. We have already shown in the proof of Theorem 4.2 using (4.9) that

∥∥αF (x) − αF (y)
∥∥2 =

m∑

j=1
min
(∣∣〈fj , w1〉

∣∣2,
∣∣〈fj , w2〉

∣∣2)

≤ min
{

m∑

j=1

∣∣〈fj , w1〉
∣∣2,

m∑

j=1

∣∣〈fj , w2〉
∣∣2
}

≤ B min
{
‖w1‖2, ‖w2‖2} = Bd2(x, y),251
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where B is the upper frame bound of the frame F . Thus U(x, y) has an upper bound U(x, y) ≤
√

B. 
Furthermore, the bound is sharp. To see this, pick a unit vector x ∈ Rn such that 

∑m
j=1 |〈fj , w1〉|2 = B and 

set y = 2x. Then U(x, y) =
√

B.
To study the lower bound U(x, y) we now consider the following quantities:

ρε(x) := inf
{y:d(x,y)≤ε}

U(x, y),

ρ(x) := lim inf
{y:d(x,y)→0}

U(x, y) = lim inf
ε→0

ρε(x),

ρ0 := inf
x

ρ(x),

ρ∞ := inf
d(x,y)>0

U(x, y).

We apply the equality

U2(x, y) =
∑m

j=1 min(|〈fj , w1〉|2, |〈fj , w2〉|2)
min(‖w1‖2

, ‖w2‖2)

where again w1 = x − y and w2 = x + y. Now fix x and let d(x, y) < ε. Without loss of generality we may 
assume ‖y − x‖ < ε. Thus ‖w1‖ < ε and ‖w2 − 2x‖ = ‖w1‖ < ε. Let S = {j, 〈fj , x〉 �= 0} and set

ε0(x) := mink∈S |〈fk, x〉|
maxk∈S ‖fk‖ . (4.15)

Note for any w1 with ‖w1‖ < ε0 and k ∈ S we have
∣∣〈fk, w2〉

∣∣ =
∣∣2〈fk, x〉 − 〈fk, w1〉

∣∣ ≥ 2
∣∣〈fk, x〉

∣∣−
∣∣〈fk, w1〉

∣∣ ≥ 2ε0(x)‖fk‖ − ‖w1‖‖fk‖ ≥
∣∣〈fk, w1〉

∣∣,

whereas for k ∈ Sc we have
∣∣〈fk, w2〉

∣∣ =
∣∣〈fk, w1〉

∣∣.

Hence min(|〈fj , w1〉|2, |〈fj , w2〉|2) = |〈fj , w1〉|2 for all j whenever ε < ε0(x). It follows that

U2(x, y) =
∑m

j=1 |〈fj , w1〉|2

‖w1‖2 =
m∑

j=1

∣∣∣∣
〈

w1
‖w1‖

, fj

〉∣∣∣∣
2
.

Thus U2(x, y) ≥ A where A is the lower frame bound for the frame F . Furthermore this lower bound is 
achieved whenever w1 = x − y is an eigenvector corresponding to the smallest eigenvalue of FF ∗. This 
implies that

ρε(x) =
√

A

whenever ε < ε0(x). Consequently ρ(x) =
√

A. We have the following theorem:

Theorem 4.3. Assume that the frame F is phase retrievable. Let A, B be the lower and upper frame bounds 
for the frame F , respectively and for each x ∈ Rn, let ε0(x) be given in (4.15). Then

(1) U(x, y) ≤
√

B for any x, y ∈ Rn with d(x, y) > 0.
(2) Assume that ε < ε0(x). Then ρε(x) =

√
A. Consequently ρ(x) = ρ0 =

√
A.252
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(3) Δ = ρ∞ ≤ ω ≤ ρ0 = ρ(x) =
√

A.
(4) The map αF is bi-Lipschitz with (optimal) upper Lipschitz bound 

√
B and lower Lipschitz bound ρ∞:

ρ∞d(x, y) ≤
∥∥αF (x) − αF (y)

∥∥ ≤
√

Bd(x, y), ∀x, y ∈ Ĥ

Proof. We have already proved (1) and (2) of the theorem in the discussion. It remains only to prove (3) 
since (4) is just a restatement of (1) and (3). Note that

ρ2
∞ = inf

d(x,y)>0
U2(x, y) = inf

w1,w2 	=0

∑m
j=1 min(|〈fj , w1〉|2, |〈fj , w2〉|2)

min(‖w1‖2
, ‖w2‖2)

.

For any w1, w2, assume without loss of generality that 0 < ‖w1‖ ≤ ‖w2‖. Let S = {j : |〈fj , w1〉| ≤ |〈fj , w2〉|}. 
Set v1 = w1/‖w1‖, v2 = w2/‖w2‖ and t = ‖w2‖/‖w1‖ ≥ 1. Then

∑m
j=1 min(|〈fj , w1〉|2, |〈fj , w2〉|2)

min(‖w1‖2
, ‖w2‖2)

=
∑

j∈S

∣∣〈fj , v1〉
∣∣2 + t2

∑

j∈Sc

∣∣〈fj , v2〉
∣∣2

≥
∑

j∈S

∣∣〈fj , v1〉
∣∣2 +

∑

j∈Sc

∣∣〈fj , v2〉
∣∣2

≥ Δ2.

Hence ρ∞ ≥ Δ.
Let S and u, v ∈ H be normalized (eigen) vectors that achieve the bound Δ, that is:

‖u‖ = ‖v‖ = 1,
∑

k∈S

∣∣〈u, fk〉
∣∣2 +

∑

k∈Sc

∣∣〈v, fk〉
∣∣2 = Δ2.

Set x = u + v and y = u − v. Then, following [9]

∥∥αF (x) − αF (y)
∥∥2 =

∑

k∈S

∣∣∣∣〈u + v, fk〉
∣∣−
∣∣〈u − v, fk〉

∣∣∣∣2 +
∑

k∈Sc

∣∣∣∣〈u + v, fk〉
∣∣−
∣∣〈u − v, fk〉

∣∣∣∣2

≤ 4
(∑

k∈S

∣∣〈u, fk〉
∣∣2 +

∑

k∈Sc

∣∣〈v, fk〉
∣∣2
)

= 4Δ2.

On the other hand

d(x, y) = min
(
‖x − y‖, ‖x + y‖

)
= 2.

Thus we obtain

‖αF (x) − αF (y)‖
d(x, y) ≤ Δ.

The theorem is now proved. �
Remark. The two quantities, ρ∞ and q∞ satisfy ρ∞ = 1

q∞
. However there are subtle differences between 

Qε(x) and ρε(x) so that the simple relationship ρε(x) = 1/Qε(x) does not usually hold. One such difference 
is due to the significance of ε for the two bounds. See the numerical example presented in the last section.253
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Remark. The upper Lipschitz bound 
√

B has been obtained independently in [9]. The lower Lipschitz 
bound we obtained here strenghtens the estimates given in [9]. Specifically their estimate for ρ∞ reads 
σ ≤ ρ∞ ≤

√
2σ where

σ = min
S

max
(
σn(FS), σn(FSc)

)
(4.16)

Clearly σ ≤ Δ ≤
√

2σ.

We conclude this section by turning our attention to the analysis of V (x, y). A motivation for studying 
it is that in practical problems the noise is often added directly to αF2 as in (3.1) rather than to αF . Such 
noise model is used in many studies of phaseless reconstruction, e.g. in the Phaselift algorithm [10], or in 
the IRLS algorithm in [4].

Let Symn(R) denote the set of n × n symmetric matrices over R. It is a Hilbert space with the standard 
inner product given by 〈X,Y 〉 := tr(XY T ) = tr(XY ). The nonlinear map αF2 actually induces a linear 
map on Symn(R). Write X = xxT for any x ∈ Rn. Then the entries of αF 2(x) are

(
αF

2(x)
)
j

=
∣∣〈fj , x〉

∣∣2 = xT fjf
T
j x = tr(FjX) = 〈Fj , X〉, (4.17)

where Fj := fjf
T
j . Now we denote by A the linear operator A : Symn(R) −→ Rm with entries

(
A(X)

)
j

= 〈Fj , X〉 = tr(FjX).

Let Sp,q
n be the set of n ×n real symmetric matrices that have at most p positive and q negative eigenvalues. 

Thus S1,0
n denotes the set of n × n real symmetric non-negative definite matrices of rank at most one. Note 

that spectral decomposition easily shows that X ∈ S1,0
n if and only if X = xxT for some x ∈ Rn.

The following lemma will be useful in this analysis

Lemma 4.4. The following are equivalent.

(A) X ∈ S1,1
n .

(B) X = xxT − yyT for some x, y ∈ Rn.
(C) X = 1

2(w1w
T
2 + w2w

T
1 ) for some w1, w2 ∈ Rn.

Furthermore, for X = 1
2 (w1w

T
2 + w2w

T
1 ) its nuclear norm is ‖X‖1 = ‖w1‖‖w2‖.

Proof. (A) ⇒ (B) is a direct result of spectral decomposition, which yields X = β1u1u
T
1 −β2u2u

T
2 for some 

u1, u2 ∈ Rn and β1, β2 ≥ 0. Thus X = xxT − yyT where x :=
√

β1u1 and y :=
√

β2u2.
(B) ⇒ (C) is proved directly by setting w1 = x − y and w2 = x + y.
We now prove (C) ⇒ (A) by computing the eigenvalues of X = 1

2 (w1w
T
2 +w2w

T
1 ). Obviously rank(X) ≤ 2. 

Let λ1, λ2 be the two (possibly) nonzero eigenvalues of X. Then

λ1 + λ2 = tr{X} = 〈w1, w2〉,
λ2

1 + λ2
2 = tr

{
X2} =

(
‖w1‖2‖w2‖2 +

∣∣〈w1, w2〉
∣∣2)/2.

Solving for eigenvalues we obtain

λ1 = 1
2
(
〈w1, w2〉 + ‖w1‖‖w2‖

)
,

λ2 = 1
2
(
〈w1, w2〉 − ‖w1‖‖w2‖

)
.254
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Hence, by Cauchy–Schwarz inequality, λ1 ≥ 0 ≥ λ2 which proves X ∈ S1,1
n . Furthermore, it also shows that 

the nuclear norm of X is ‖X‖1 = |λ1| + |λ2| = ‖w1‖‖w2‖. �
Now we analyze V (x, y). Parallel to the study of U(x, y) we consider the following quantities:

με(x) := inf
{y:d(x,y)≤ε}

V (x, y),

μ(x) := lim inf
{y:d(x,y)→0}

V (x, y) = lim inf
ε→0

με(x),

μ0 := inf
x

μ(x),

μ∞ := inf
d(x,y)>0

V (x, y),

as well as the upper bound supd1(x,y)>0 V (x, y). By (4.17) we have |〈fj , x〉|2 − |〈fj , y〉|2 = 〈Fj , X〉 where 
Fj = fjf

T
j and X = xxT − yyT . Hence

V 2(x, y) =
∑m

j=1 |〈Fj , X〉|2
‖X‖2

1
.

Set w1 = x − y and w2 = x + y and apply Lemma 4.4 we obtain

V 2(x, y) =
∑m

j=1 |〈fj , w1〉|2|〈fj , w2〉|2
‖w1‖2‖w2‖2 . (4.18)

We can immediately obtain the upper bound:

V (x, y) ≤
(

sup
‖e1‖=1,‖e2‖=1

m∑

j=1

∣∣〈fj , e1〉
∣∣2∣∣〈fj , e2〉

∣∣2
)1/2

=
(

max
‖e‖=1

m∑

j=1

∣∣〈fj , e〉
∣∣4
)1/2

=: ΛF
2

where ΛF denotes the operator norm of the linear analysis operator T : H → Rm, T (x) = (〈x, fk〉)mk=1
defined between the Euclidian space H = Rn and the Banach space Rm endowed with the l4-norm:

ΛF =
(

max
‖x‖=1

m∑

k=1

∣∣〈x, fk〉
∣∣4
)1/4

(4.19)

Note also that

ΛF
2 = max

‖x‖=1
λmax

(
R(x)

)

where R(x) was defined in (2.6). An immediate bound is ΛF ≤
√

B max ‖fk‖ with B the upper frame bound 
of F .

Fix x �= 0 and let d(x, y) → 0. Then either y → x or y → −x. Without loss of generality we assume that 
x → y. Thus w1 = x − y → 0 and w2 = x + y → 2x. However w1/‖w1‖ can be any unit vector. Thus

μ2(x) = 1
‖x‖2 inf

‖u‖=1

m∑

j=1

∣∣〈fj , x〉
∣∣2∣∣〈fj , u〉

∣∣2 = 1
‖x‖2 inf

‖u‖=1

〈
R(x)u, u

〉
= 1

‖x‖2 λmin
(
R(x)

)

where R(x) was introduced in (2.6). Thus we obtain255
DISTRIBUTION A: Distribution approved for public release.



R. Balan, Y. Wang / Appl. Comput. Harmon. Anal. 38 (2015) 469–488 483

μ2(x) = 1
‖x‖2 λmin

(
R(x)

)
, μ2

0 = min
‖u‖=1

λmin
(
R(u)

)
.

On the other hand note

inf
d(x,y)>0

V 2(x, y) = inf
w1,w2 	=0

∑m
j=1 |〈fj , w1〉|2|〈fj , w2〉|2

‖w1‖2‖w2‖2 = min
‖u‖=1

λmin
(
R(u)

)
= a2

0,

where a0 was introduced in (2.4). Thus we proved:

Theorem 4.5. Assume the frame F is phase retrievable. Then

μ(x) = 1
‖x‖
√

λmin
(
R(x)

)
, (4.20)

μ∞ = μ0 = min
u:‖u‖=1

√
λmin

(
R(u)

)
= √

a0. (4.21)

Furthermore αF2 is bi-Lipschitz with upper Lipschitz bound ΛF
2 and lower Lipschitz bound 

√
a0:

√
a0d1(x, y) ≤

∥∥αF
2(x) − αF

2(y)
∥∥ ≤ ΛF

2d1(x, y)

where a0 is the same positive constant used in Theorems 2.1 and 3.1, and ΛF is the norm of the analysis 
operator defined between the Euclidian space H and l4({1, 2, . . . , m}).

Remark. Note that the distance d(., .) is not equivalent to d1(., .). Theorem 4.5 now also implies that αF2

is not bi-Lipschitz with respect to the distance d(., .) on Ĥ. This fact was pointed out in [9].

5. Robustness and size of redundancy

Previous sections establish results on the robustness of phaseless reconstruction for the worst case sce-
nario. A natural question is to ask: can “reasonable” robustness be achieved for a given frame, and in 
particular with small number of samples? We shall examine how q∞ scales as the dimension n increases.

Consider the case where m = 2n −1. This is the minimal redundancy required for phaseless reconstruction. 
In this case any frame F would have Δ = ω. Hence we have min{1/ω, 1/ε} ≤ qε = 1/ω. The stability of 
the reconstruction is thus mostly controlled by the size of 1/ω. The question is: how big is ω, especially as 
n increases?

Assume that the frame elements of F are all bounded by L, ‖fj‖ ≤ L for all fj ∈ F . Consider the n + 1
elements {fj : j = 1, . . . , n +1}. They are linearly dependent so we can find cj ∈ R such that 

∑n+1
j=1 cjfj = 0. 

Without loss of generality we may assume |cn+1| = min{|cj |}. Set v = [c1, c2, . . . , cn]T . Let G = [f1, . . . , fn]. 
Then Gv =

∑n
j=1 cjfj = −cn+1fn+1. Now all |cj | ≥ |cn+1| so ‖v‖ ≥ √

n|cn+1|. Thus

‖Gv‖ = |cn+1|‖fn+1‖ ≤ L√
n

‖v‖.

It follows that σn(G) ≤ L√
n
, and hence

ω ≤ L√
n
. (5.1)

Note that here we have considered only the first n + 1 vectors of the frame F . The actual value of 
ω will likely decay much faster as n increases. In a preliminary work we are able to establish the bound 
ω ≤ CL/

√
n3 where C is independent of n [18]. But even this estimate is likely far from optimal.256
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Conjecture 5.1. Let m = 2n − 1 and ‖fj‖ ≤ L for all fj ∈ F . Then there exist constants C > 0 and 
0 < β < 1 independent of n such that

ω ≤ CLβn.

A related problem is as follows: Consider an n × (n + k) matrix F = [g1, g2, . . . , gn+k]. Let τ =
min{σn(FS) : S ⊂ {1, . . . , n + k}, |S| = n}. Assume that all ‖gj‖ ≤ 1. How large can τ be? For k = 1 we 
have already seen that it is bounded from above by C/

√
n. The preliminary work [18] shows that for k = 1

it is bounded from above by C/n
3
2 .

Conjecture 5.2. There exists a constant C = C(k, n) such that

τ ≤ C

nk− 1
2
,

where C(k, n) = Ok(logqk n) for some qk > 0. Here Ok denotes the dependence on k.

Thus in the minimal setting with m = 2n − 1 it is impossible to achieve scale independent stability for 
phaseless reconstruction. The same arguments can be used to show that even when m = 2n + k0 for some 
fixed k0 scale independent stability is not possible. A natural question is whether scale independent stability 
is possible when we increase the redundancy of the frame. As it turns out this is possible via a recent work 
by Wang [17]. More precisely, the following result follows from the main results in [17]:

Theorem 5.3. Let r0 > 2 and let F = 1√
n
G where G is an n × m random matrix whose elements are i.i.d. 

normal N(0, 1) random variables such that m/n = r0. Then there exist constants 0 < Δ0 ≤ ω0 dependent 
only on r0 and not on n such that with high probability we have

Δ ≥ Δ0, ω ≥ ω0.

Proof. Theorem 1.1 and Theorem 3.1 of [17] proves the following result: Let λ > Δ > 1 be fixed. Assume 
that A = 1√

n
B where B is an n ×N random Gaussian matrix with i.i.d. N(0, 1) entries such that N/n = λ. 

Then there exists a constant c > 0 depending only on τ0, λ and Δ such that

min
S⊆{1,...,N},|S|≥Δn

σn(AS) ≥ c

with probability at least 1 − 3e−τ0n. The value c was explicitly estimated in terms of τ0, λ and Δ in the 
proof of Theorem 3.1 in [17].

The theorem now readily follows. Observe that because r0 > 2, in the expression for Δ we may choose 
λ = r0 Δ = r0

2 > 1 and clearly we have

Δ ≥ min
S⊆{1,...,N},|S|≥Δn

σn(FS) ≥ Δ0,

for some Δ0 > 0 independent of n. For ω we may choose λ = r0 and Δ = r0 − 1 > 1. Again the theorem of 
[17] implies that

ω ≥ min
S⊆{1,...,N},|S|≥Δn

σn(FS) ≥ ω0. �
In the theorem the values Δ0 and ω0 can be estimated explicitly using the estimates in [17]. Here with 

high probability is in the standard sense that the probability is at least 1 − c0e
−βn for some c0, β > 0. Thus 257
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Fig. 1. Plots of sample medians of Δ and ω (left plot) and Δ and σ, 
√

2σ (right plot) for randomly generated frames of size m = 2n. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Plots of largest sample value of Δ and ω (left plot) and Δ and σ, 
√

2σ (right plot) for randomly generated frames of size 
m = 2n. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

scale independent stable phaseless reconstruction is possible whenever the redundancy is greater than 2 +Δ, 
Δ > 0, at least for random Gaussian matrices.

6. Numerical examples

In this section we present two numerical studies of the stability bounds derived earlier.
1. First consider the following setup. For each n between 2 and 14 we generate 100 realizations of random 

frames of m = 2n vectors where each entry is i.i.d. normally distributed with zero mean and unit variance. 
For each realization we compute Δ, ω and σ. For each fixed n we compute the sample median, the largest 
sample value and the smallest sample value of these random variables.

Fig. 1 contains the plots of sample medians of Δ, ω and σ’s for each value of n. The left plot contains 
only Δ (the lower Lipschitz constant) and ω (the lower Lipschitz constant for small perturbations); the right 
plot contains Δ and the two bounds σ and 

√
2σ as obtained in [9]. Similar statistics are plotted in Fig. 2

where sample medians are replaced by the largest sample values, and in Fig. 3 where sample medians are 
replaced by smallest sample values.

Note there is about 1–2 orders of magnitude spread between the largest and the smallest sample value 
of these random variables. 258
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Fig. 3. Plots of largest sample value of Δ and ω (left plot) and Δ and σ, 
√

2σ (right plot) for randomly generated frames of size 
m = 2n. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

2. Next we consider the following specific example. H = R2, m = 4 and the frame containing

f1 =
[

1
0

]
, f2 =

[
0
1

]
, f3 =

[
1
1

]
, f4 =

[
1

−1

]

which is a tight frame of bounds A = B = 3. The frame is full spark hence phase retrievable. The bounds 
Δ and ω defined by (4.4) and (4.5) are given by

Δ =
√

3 −
√

5 = 0.874032, ω = 1

which corresponds to choices S = {1, 3} and S = {1, 2, 3}, respectively. The parameters σ introduced in 
(4.16) is given by

σ =

√
3 −

√
5

2 = 0.618034

and corresponds to S = {1, 3}. The parameter τ introduced in the statement of Theorem 4.2 is given by 

the same expression, τ = σ =
√

3−
√

5
2 = 0.618034 and corresponds to the same selection S = {1, 3}.

Tedious algebra can provide closed form expressions for ρε(x) as function of radius ε. Because of scaling 
relation ρcε(cx) = ρε(x) for all c > 0 it follows that only the direction of x describes this function. For 
instance for x(1) = (1, 0) we obtain the following expression:

ρε

(
x(1)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

√
3, ε < 1√

2√
3 − 4

√
2

ε + 4
ε2 ,

1√
2 ≤ ε <

√
2

1,
√

2 ≤ ε

For x(2) = (1, 1) we obtain:

ρε

(
x(2)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

√
3, ε < 1
√

3 − 4
ε + 4

ε2 , 1 ≤ ε < 2
√

2, 2 ≤ ε

The plots of these two functions are depicted in Fig. 4.259
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Fig. 4. Plots of ρε(x(1)) (left plot) and ρε(x(2)) (right plot) as function of radius ε. The red circle is at 
√

A =
√

3. The horizontal 
dotted line is the lower bound Δ = 0.874. (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

Fig. 5. Plots of ρε(x(3)) as function of radius ε. The red circle is at 
√

A =
√

3. The horizontal dotted line is the lower bound 
Δ = 0.874. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Following the proof of Theorem 4.3 it follows the critical direction that achieves the lower bound 
√

Δ is 
given by x = u + v where u and v are the two normalized eigenvectors associated to the lowest eigenvalue 
(i.e. the lower frame bound) for {f1, f3} and {f2, f4} respectively. The lowest eigenvalue is given by 3−

√
5

2
and the eigenvectors are

u =

⎡
⎢⎣

−
√

2
5+

√
5

1+
√

5√
2(5+

√
5)

⎤
⎥⎦ , v =

⎡
⎢⎣

−
√

2
5−

√
5

1−
√

5√
2(5−

√
5)

⎤
⎥⎦

and thus the critical vector is

x(3) = u + v =

⎡
⎢⎣

−
√

2
5+

√
5 −
√

2
5−

√
5

1+
√

5√
2(5+

√
5)

1−
√

5√
2(5−

√
5)

⎤
⎥⎦ =

[
−1.3764
0.3249

]

The function ρε(x(3)) is computed numerically and is plotted in Fig. 5. For reference we pictured a cir-
cle at 

√
A =

√
3 and we plotted a dotted line at Δ = 0.874. We remark in all three cases, the limit 260
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limε→0 ρε(x) =
√

A = ρ0 as predicted by Theorem 4.3. Furthermore, minε>0,x ρε(x) = Δ = ρ∞ as proved 
in same Theorem 4.3.
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MULTIPLE AUTHORS DETECTION: A QUANTITATIVE ANALYSIS OF
DREAM OF THE RED CHAMBER

XIANFENG HU, YANG WANG, AND QIANG WU

A bs t r a c t . Inspired by the authorship controversy of Dream of the Red Chamber and the applica-
tion of machine learning in the study of literary stylometry, we develop a rigorous new method for
the mathematical analysis of authorship by testing for a so-called chrono-divide in writing styles.
Our method incorporates some of the latest advances in the study of authorship attribution, par-
ticularly techniques from support vector machines. By introducing the notion of relative frequency
as a feature ranking metric our method proves to be highly e↵ective and robust.

Applying our method to the Cheng-Gao version of Dream of the Red Chamber has led to con-
vincing if not irrefutable evidence that the first 80 chapters and the last 40 chapters of the book
were written by two di↵erent authors. Furthermore, our analysis has unexpectedly provided strong
support to the hypothesis that Chapter 67 was not the work of Cao Xueqin either.

We have also tested our method to the other three Great Classical Novels in Chinese. As expected
no chrono-divides have been found. This provides further evidence of the robustness of our method.

1. I n t r o d u c t i o n

Dream of the Red Chamber (˘¢â) by Cao Xueqin (˘»é) is one of China’s Four Great

Classical Novels. For more than one and a half centuries it has been widely acknowledged as

the greatest literary masterpiece ever written in the history of Chinese literature. The novel is

remarkable for its vividly detailed descriptions of life in the 18th century China during the Qing

Dynasty and the psychological a↵airs of its large cast of characters. There is a vast literature in

Redology, a term devoted exclusively to the study of Dream of the Red Chamber, that touches upon

virtually all aspects of the book one can imagine, from the analysis of even minor characters in the

book to in-depth literary study of the book. Much of the scope of Redology is outside the focus of

this paper.

The original manuscript of Dream of the Red Chamber began to circulate in the year 1759. The

problems concerning the text and authorship of the novel are extremely complex and have remained

very controversial even today, and they remain an important part of Redology studies. Cao, who

Key words and phrases. Dream of the Red Chamber, Cao Xueqing, Redology, machine learning, support vector
machine (SVM), recursive feature elimination (RFE), literary stylometry, authorship authentication, chrono-divide.
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2 XIANFENG HU, YANG WANG, AND QIANG WU

died in 1763-4, did not live to publish his novel. Only hand-copied manuscripts – some 80 chapters

– had been circulating. It was not until 1791 the first printed version was published, which was

put together by Cheng Weiyuan (ßï) and Gao E (p) and was known as the Cheng-Gao

version. The Cheng-Gao version has 120 chapters, 40 more than the various hand-copied versions

that were circulating at the time. Cheng and Gao claimed that this “complete version” was based

on previously unknown working papers of Cao, which they obtained through di↵erent channels.

It was these last 40 chapters that were the subject of intense debate and scrutiny. Most modern

scholars believe that these 40 chapters were not written by Cao. Many view those late additions as

the work of Gao E. Some critics, such as the renowned scholar Hu Shi ( ), called them forgeries

perpetrated by Gao, while others believe that Gao was duped into taking someone else’s forgery as

an original work. There is, however, a minority of critics who view the last 40 chapters as genuine.

The analysis of the authenticity of the last 40 chapters has largely been based on the examination

of plots and prose style by Redology scholars and connoisseurs. For example, many scholars consider

the plotting and prose of the last 40 chapters to be inferior to the first 80 chapters. Others have

argued that the fates of many characters in the end were inconsistent with what earlier chapters

have been foreshadowing. A natural question is whether a mathematical stylometry analysis of the

book can shed some light on this authenticity debate.

The problem of style quantification and authorship attribution in literature goes at least as far

back as 1854 by the English mathematician Augustus De Morgan [7], who in a letter to a cler-

gyman on the subject of Gospel authorship, suggested that the lengths of words might be used

to di↵erentiate authors. In 1897 the term stylometry was coined by the historian of philosophy,

Wincenty Lutaslowski, as a catch-all for a collection of statistical techniques applied to questions

of authorship and evolution of style in the literary arts (see e.g. [12]). Today, literary stylometry

is a well developed and highly interdisciplinary research area that draws extensively from a num-

ber of disciplines such as mathematics and statistics, literature and linguistics, computer science,

information theory and others. It is a central area of research in statistical learning (see e.g. [9]).

A popular classic technique for stylometric analysis of authorship involves comparing frequencies

of the so-called function words, a class of words that in general have little content meaning, but

instead serve to express grammatical relationships with other words within a sentence. Although

this technique is still widely used today, the field of literary stylometry has seen impressive ad-

vances in recent years, with more and more new and sophisticated mathematical techniques as well
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as softwares being developed. We shall not focus on these advances here. Instead we refer all inter-

ested readers to the excellent survey articles by Juola [10] and Stamatatos [14] for a comprehensive

discussion of the latest advances in the field.

Although there is a vast Redology literature going back over 100 years, the number of studies

of the book based on mathematical and statistical techniques is surprisingly small, particularly in

view of the fact that such techniques have been used widely in the West for settling authorship

questions. Among the notable e↵orts, Cao [3] meticulously broke down a number of function

characters and words into classes according to their functions. By analyzing their frequencies in

the first 40 chapters, the middle 40 chapters and the last 40 chapters, Cao concluded that the first

80 chapters and the last 40 chapters were written by di↵erent authors. Zhang & Liu [2] examined

the occurrence of 240 characters in the book that are outside the GB2312 encoding system, and

found that 210 of them have appeared exclusively in the first 80 chapters while only 20 of them

have appeared exclusively in the last 40 chapters. This led to the same conclusion by the authors.

Yue [1] studied the authorship by combining both historical knowledge and statistical tools. In the

study Yue tested two hypotheses, that the last 40 chapters were not written by the same author

or they were written by the same author. His study focused on the frequencies of 5 particular

function characters, the proportion of texts to poems in each chapter, and a few other stylometric

peculiarities such as the number of sentences ended with the character “Ma” (Ì). Using various

statistical techniques the comparisons led the paper to draw the conclusion that it is unlikely that

the first 80 chapters and the last 40 chapters were written by the same author. At the same

time, using historic knowledge about the book and the original author Cao Xueqin, the paper also

speculated that it was not likely that the last 40 chapters were created entirely by a single di↵erent

author such as Gao E. In the opposite direction, the studies of Chan [6] and Li & Li [11] concluded

that the entire book was likely written by a single author. The study [11] focused on the usage

of functional characters while [6] examined the usage of some eighty thousand characters. Both

studies tabulated the frequencies of the selected characters, which led to a frequency vector for

each of the first 40 chapters, the middle 40 chapters and the last 40 chapters. The correlations

of these frequency vectors were computed. In [11] the correlations were found to be large enough

for the authors to conclude that the entire 120 chapters of the book were written by the same

author. In [6] a fourth frequency vector using parts of the book The Gallant Ones (Â=<D)

was added for comparison. The author found significantly higher correlations among the first three

frequency vectors from chapters of Dream of the Red Chamber than the correlations between the
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fourth frequency vector and the first three. This fact formed the basis of the conclusion by the

author that all 120 chapters were written by a single author. A di↵erent conclusion was reached

by Li [4]. By analyzing the frequencies of 47 functional characters and applying several statistical

tests the author conjectured that the last 40 chapters were put together by Gao E using unedited

and unfinished manuscripts by Cao Xueqin and his family members.

Although some of these aforementioned studies are impressive in their scopes, missing conspicu-

ously from the Redology literature are studies based on the latest advances in literary stylometry,

particularly some of the new and powerful methods from machine learning theory. While comparing

the frequencies of function characters and words is clearly a viable way to analyze the authorship

question, care needs to be taken to account for random fluctuations of these frequencies, especially

when some of the function characters and words used for comparison have limited occurrences

overall in the book and some times not at all in some chapters. None of the aforementioned studies

employed cross validation to address random fluctuations. We have substantial reservations about

drawing conclusions from correlations alone as in the studies of Chan [6] and Li & Li [11], because

the di↵erentiating power of any single variable such as correlation is rather limited. It would be

interesting to see a more comprehensive study of correlations on a large corpus of texts in Chinese

to determine its e↵ectiveness as a metric for authorship attribution, something the authors failed

to do in both studies. The use of the book The Gallant Ones in [6] for benchmark comparison

is curious to us in particular, especially considering that the author did not limit to just function

characters. The two books are of two di↵erent genres and are di↵erent in their respective back-

ground settings. Considering these di↵erences and the fact that The Gallant Ones is known not to

be written by Cao Xueqin, it would be a shock if the correlation between the last 40 chapters of

Dream of the Red Chamber and the first 80 chapters is not higher than the correlation between the

last 40 chapters and The Gallant Ones. It is possible that the correlation computed in [6] tells more

about the genre than the authorship of the books. Again, without extensive evidence that using the

same technique the correlation between two bodies of texts written by di↵erent authors is generally

low even when the plots are closely related, the argument made in [6] is unconvincing at best. The

objective of this paper is to present a rigorous stylometric analysis of Dream of the Red Chamber

that incorporates some of the latest advances in the study of authorship attribution, particularly

techniques from the theory of machine learning. To minimize the impact of random fluctuations

we have meticulously followed well established protocols in selecting significant features by proper

randomization of training and testing samples.
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We shall detail our methodology in the next section, including feature construction and selection

techniques in machine learning. In Section 3, we use our approach to the study of authorship of

Dream of the Red Chamber and show the experimental results. In Section 4 we use our approach

to analyze the other three Great Classical Novels. Finally in Section 5 we present some additional

comments and our conclusions.

2. C h r o n o - d i v i d e a n d M e t h o d o l o g y

The main idea behind statistically or computationally-supported authorship attribution is that

by measuring some textual features we can distinguish between texts written by di↵erent authors.

Nearly a thousand di↵erent measures including sentence length, word length, word frequencies,

character frequencies, and vocabulary richness functions had been proposed thus far [13] over the

years. Some of these measures, such as frequencies of function words, have proven e↵ective while

others, such as length of words, have proven less e↵ective [10]. The field of literary stylometry has

seen impressive advances over the years, and has become an increasingly important research field

in the digital age with the explosion of texts online.

This paper focuses on a particular class of authorship controversies, in which there is a suspected

change of authorship at some point of a book. In other words, one suspects that the first X chapters

of a book were written by one author while the remaining Y chapters were written by another.

Clearly, the authorship controversy for Dream of the Red Chamber falls into this category. Since

no two authors have exactly the same writing style, no matter how similar they might be, a book

written in such a fashion would have a stylistic discontinuity going from Chapter X to Chapter

X +1. If we can quantify the styles of the two authors by a stylometric function S(n) (a classifier)

where n denotes chapters, or chronologically ordered samples, of the book in question, this stylistic

discontinuity will appear as a dividing point in the stylometric function S(n) going from n = X to

n = X + 1. Because the samples are ordered by time, we shall call this divide in the stylometric

function S(n) a chrono-divide in style, or simply a chrono-divide. This paper develops a technique

for verifying and detecting chrono-divides in books or other body of texts. Knowing X and Y , as

it is the case with Dream of the Red Chamber, can help validating the conclusion but is not always

necessary for our method. Our method does not apply to any body of texts where two authors

share the writing in an interwoven way without a chrono-divide.
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The underlying principle of our study is that if a book is in fact written by two authors A and B,

then there should exist a group of features that characterize the di↵erence of their respective styles.

These features will lead to a stylometric function that separate the book into two di↵erent classes.

In the rest of the paper we shall use the more conventional term classifier for such a stylometric

function. The foundational principle for literary stylometry is built around finding such classifiers.

Suppose that a chrono-divide in style exists. Then an e↵ective classifier will show a break point

somewhere in the middle of the book, before and after which the classifier gives positive values and

negative values, respectively. Thus in analyzing a book suspected to be written by two authors with

a chrono-divide, one can look for a classifier that gives rise to such a break point. The existence

of such a classifier will provide strong support for the two-author hypothesis. Conversely, if such

a classifier cannot be found then we can confidently reject the two-author with a chrono-divide

hypothesis.

We use function characters and words to build and select a group of stylometric features having

the highest discriminative power, and from which we construct our classifier. We shall detail our

method in the following subsections.

2.1. Initial stylometric feature extraction. Suppose the book in question is suspected to be

written by two authors. For simplicity we shall call the part written by author A Part A and the

part written by author B Part B. In many cases, such as with Dream of the Red Chamber, both

Part A and part B are known. In some cases, they are not precisely known. However, for books

suspected to have a chrono-divide from authorship change, there is usually a good estimate for

where the divide is. Typically the first few chapters can be confidently attributed to A and the last

few chapters to B.

We begin by choosing a feature set consisting of the kinds of features that might be used consis-

tently by a single author over a variety of writings. Typically, these features include the frequencies

of words (or characters for books in Chinese), phrases, mean and variation of sentence length,

and frequencies of direct speeches and exclamations, and others. In our analysis, to get a better

understanding of an author’s writing style, we first find the most frequently used characters and

words in the book, e.g. we would find the 500 most frequently used characters in the whole book,

from which we pick out only, say, n function characters. We choose m words (combinations of

characters) among the 300 most frequently used words in the same way. An important point is

that by selecting only function characters and words we obtain a selection of characters and words
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that are content independent. This leads to an initial set of features consisting of the frequencies

of the n characters and the m words, plus the mean and variance of sentence length as well as

the frequencies of direct speeches and exclamations. These features will be computed over given

sample texts of the book (e.g. chapters). We normalize each sample text in the following way: set

the median of the mean and variation of sentence length and the frequencies of direct speeches,

exclamations, n characters and m words in each work of A and B to be 1. For each sample, we

now get n+m+ 4 features.

2.2. Data preparation. Having constructed the appropriate feature vectors, we build a distin-

guishing model through a machine learning algorithm. To do so requires careful data preparation.

Since we usually have in hand only limited samples while the number of features will be very

large, building a model directly on the entire book will easily lead to over-fitting. To overcome

the over-fitting problem, we use the standard technique of separating the whole data into samples

consisting of training data and test data. Our model will be established based only on the training

data while its performance is tested over the independent test data. If we know Part A and Part

B already then a subset of each can be designated as training data. For books suspected to have

a chrono-divide in style, the training data will consist of the first few chapters and the last few

chapters. The rest of the book will be used as test data.

In order to obtain more training sets and testing sets we shall chunk the book in question into

smaller pieces of sample texts of relatively uniform size and style. In all the books we have studied,

we have kept the sample texts to be at least 1000 characters long. In the case of Dream of the Red

Chamber each sample text is a chapter.

2.3. Feature subset selection. When we build authorship analysis the model using the training

data only, we do not use all the features (n + m + 4 features). Instead we start out with all of

them, but eventually select a subset of features that achieves the highest discriminative powers.

Feature subset selection has been well understood for high dimensional data analysis in the machine

learning context. First, the number of discriminative features may be small because the number of

features an author uses in a consistently di↵erent way from others is usually not very big. Moreover,

the classifier can perform very poorly if too many irrelevant features are included into the model.

In this paper we will use Support Vector Machines Recursive Feature Elimination (SVM-RFE)

introduced in [8] to realize feature selection.
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SVM-RFE is a feature ranking method. Given the a set of samples we can use linear SVM to

build a linear classifier. It ranks the importance of the features according to their weights. As

mentioned above, because of large feature size and small sample size, the classifier might not be

robust. In addition, the high correlation between the features may result in small weights for

relevant features. Thus the ranking by SVM classifier directly may be inaccurate. In order to refine

the ranking, the least important feature is removed and the linear SVM classifier is retrained. This

new classifier provides a refined ranking for the remaining features. The process is then repeated

until the ranking of all features are refined. This is the SVM-RFE method introduced [8]. The

idea underlying SVM-RFE is that in each repeat, although the overall ranking may be poor, the

least important feature is seldom a relevant one. By iteratively eliminating the least important

features the new classifiers will become more and more reliable and hence will provide better and

better ranking. In the application of gene expression data analysis SVM-RFE has been proven to

be substantially superior to the SVM direct ranking without RFE.

However in general SVM-RFE is not stable under the perturbation of samples. A small change

in samples may result in very di↵erent feature ranking. There are two possible reasons. One is that

the highly correlated variables are too sensitive and may be ranked in di↵erent orders by di↵erent

classifiers. Another is that, due to the randomness, some subset of samples might be singular in the

sense that they are less representative for the whole data structure. As a result the SVM classifiers

are over-fitting and the feature ranking by SVM-RFE is therefore unreliable. The first situation is

less harmful for classification performance while the second is vital. To overcome this phenomenon

and guarantee the stability of the ranking, we use a pseudo-aggregation technique. We randomly

choose a subset of training samples to run SVM-RFE to select the top important features. This

process is repeated tens or hundreds times and only those features that appear important very

frequently are deemed as truly important ones. This removes the randomness and results in a

much more reliable ranking.

With this ranking of features, we can conclude which statistics are useful for quantifying the

writing style. We use cross validation to select the number of features included in the final classifi-

cation model. This group of features is a stable and most discriminative subset of features. A final

classifier is built to classify the test data.

2.4. Data analysis. The classifier we have built is used to analyze the authorship question. We

examine the discriminative power of the classifier on the training data. If it cannot even reliably
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classify the training data we can convincingly reject the two-author hypothesis. Even if it can the

telling story will be whether it can classify, or detect a chrono-divide, from the test data. If it fails

then again we should reject the two-author hypothesis. On the other hand, if the the classifier

classifies the training data, and it can also classify the test data accurately or detect a clear chrono-

divide, we can then convincingly conclude that the book does contain two di↵erent writing styles

and can therefore be confidently attributed to two di↵erent authors. Moreover, the feature subset

and the classifier describe the di↵erence of the two authors’ writing styles.

2.5. The algorithm. In the following we summarize the process of our algorithm:

(1) Initialize the data (the book), which contains parts A and B suspected to be written by

two di↵erent authors.

(2) Split part A and part B into many sections and extract the features for each section as

described in section 2.1. This forms the whole data set D, containing DA and DB.

(3) Choose a portion (e.g. 20%-30%) of DA and DB respectively to form the test data set and

leave the remaining as the training data set. The test data will not be used until the final

model is built.

(4) Randomly choose a subset from the training data as modeling data and the rest (again

20%-30%) as the validation data. Run SVM-RFE on the modeling data and using the

validation data to determine all the parameters used. This provides a ranking of all the

n+m+ 4 features extracted in step 2.

(5) For d range from 1 to n+m+4, build a classifier using only the top d features and evaluate

their performance on the validation data. The best model is the one with minimal validation

error and minimal number of top features. The feature subset of this best model is recorded.

(6) Repeat T times step 4 and step 5 to obtain T best models and T subsets of corresponding

important features. We recommend T to be larger than 50. Rank all the features in these

subsets according to their appearance frequency. Denote N as the total number of features

included.

(7) For d = 1, ..., N , using cross validation to select the number of features that should be

included in the final classifier. Denote it by d⇤. Note we require both the cross validation

error and the number of features to be as small.

(8) Retrain the model using the whole training set based on this top d⇤ important features.
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(9) Using the classifier to classifying the test data. Draw the conclusion according to the

performance.

Since our ranking process involves aggregation of large number of models that are trained using

SVM-RFE based on di↵erent subsets of the same data source, we refer to our approach as pseudo-

aggregation SVM-RFE method.

3. A n a l y sis o f Dream of the Red Chamber

Having established a rigorous protocol for the study of authorship of a body of texts, we apply

this protocol to investigate the authorship controversy of the Cheng-Gao version of Dream of the

Red Chamber. In particular we investigate the existence of a chrono-divide at Chapter 80.

The book is first divided into samples. To balance the number of samples, we generate one

sample for each of the first 80 chapters while using the conventional practice of duplicating each

of the last 40 chapters into two chapters to obtain 80 samples. From those samples we extract the

features by calculating the statistics proposed in subsection 2.1. These features are then normalized

for fair comparison. In total we have 196 variables. They are the 144 characters and 48 words,

the normalized mean and variation of sentence length, and the frequencies of direct speeches and

exclamations.

To investigate the authorship controversy we perform three separate tests. First we build a

classifier for the whole book and look for the existence of a chrono-divide at Chapter 80. For added

robustness and reliability we also perform the same tests only on the first 80 chapters and the last

40 chapters.

3.1. Separability of the chapters by Cao and Gao. In the first experiment we apply our

method to the whole Chen-Gao version of Dream of the Red Chamber. Samples from the first 60

chapters are designated as training samples for one class while samples from the last 30 chapters

are designated as training samples for another class. The remaining samples, from Chapter 61 to

90, are held out as test samples. The training samples are further randomly split into modeling

data of 80 samples and validation data of 40 samples. The SVM-RFE is repeated 100 times and

d⇤ is chosen using 50 cross validation runs. We have the following observations.

Instability of SVM-RFE. The randomness of the modeling set has resulted in very substan-

tial fluctuations in the number of features selected as well as feature rankings. The resulted
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Modeling set Features Selected Validation Error
1 ßß“ß£ßßßûßQßßOßä 5/40
2 £ßêßvß– 1/40

T a b l e 1. The features and validation errors of the classifiers obtained from two
randomly selected modeling subsets.

classifier may also perform quite di↵erently. Table 3.1 lists the features selected using two dif-

ferent modeling data sets. One selects 11 features and the other selects only 4, with only one

feature in common. The classifiers also perform di↵erently. The experiments clearly establish

the instability of SVM-REF.

Given such instability one cannot reliably draw any conclusions from any single run. For

example, if a modeling data set separates the training data well it might be due to over-fitting.

Conversely if it separates poorly it might be due to under-fitting. This problem is overcome

with our Pseudo Aggregate SVM-RFE method.

Stability of Pseudo Aggregate SVM-RFE. Our pseudo aggregate SVM-RFE approach

repeats SVM-RFE 100 times using randomized data sets. The data set from each repeat is used

to select a set of features, from which a classifier is being built. For simplicity we shall refer to

the data set, features and the resulting classifier together from a repeat as a model. To counter

random fluctuations we consider important features to be those that appear frequently among

the 100 classifiers. This reduced the instability caused by randomness. In fact, our belief is as

follows: if the two classes are well separated, there should exist a set of features that help to

build a good classifier. Most modeling subsets should be able to select these features out and

only a limited number of modeling sets might be singular and miss them. Conversely, if the

two classes cannot be well separated, no consistently discriminative features exist. Di↵erent

modeling set may lead to totaly di↵erent feature subset. As a result, no feature appears with

high frequency in all 100 models. This philosophy, however, is only partially true. When

the two classes cannot be separated, the modeling process sometimes can overfit the data by

selecting a lot of variables which results in high absolute frequencies for some less important or

irrelevant features. Such a phenomenon is usually accompanied by large number of variables

and low validation accuracy. To improve the process we propose a more appropriate metric,
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which we call relative frequency. In relative frequency we weight the frequency by two criteria.

In the first criteria a variable appearing in short models is weighted more than the variables

appearing in long models. This leads to a weight of h(nj) for a variable in the j-th model, with

nj being the number of variables in the j-th model. In the second criteria a variable in a model

with high predictive accuracy is weighted more than a variable with poor predictive accuracy.

This provides another weight g(Aj) for a variable in the j-th model, where Aj denotes the

accuracy of the j-th model computed from the validation process. Mathematically the relative

frequency for a variable xi in a test run of M repeats is defined as

(3.1) rf(xi) =
1

M

MX

j=1

g(Aj)h(nj)1(xi appears in model j).

In our study we always set M = 100. Also, we set g(Aj) = exp( Aj�1
[2Aj�1]+

) where [t]+ =

max{0, t} and h(nj) = [1� cnj ]+ for some constant c. For g(Aj) the idea is that if the weight

should decay fast if the accuracy is close to 50% or less because it indicates that the classifier

is simply not e↵ective. For h(nj) we put in a penalty for the number of variables used in a

model. In our experiments we have chosen c = 1/30, which seems to work well.

Our experiments show that features yielded from relative frequency rankings are very sta-

ble and consistent. We have performed runs of 100 repeats using di↵erent random seeds in

MATLAB, and the results are always similar. An additional benefit of using relative frequency

instead of absolute frequency is that the existence of an e↵ective classifier is typically accom-

panied by high relative frequencies for the top features, while low relative frequencies for the

top features usually imply poor separability. Hence we can use relative frequency as a simple

guide on the separability of the samples. We will show some examples in the next section.

Results and conclusion. In Experiment 1 we have performed a run of 100 repeats on the

entire Cheng-Gao version of Dream of the Red Chamber. Altogether 70 features have appeared

in at least one model. However, of those only a small number of them have appeared with

high enough frequency to be viewed as being important. We apply cross validation to select

the number of features, and the mean cross validation error rate against di↵erent number of

features is plotted in Figure 1 (a). The figure tells us that 10 to 50 features are enough to

tell the style di↵erence between the two parts. Using less characters and words is insu�cient,

while using more degrades the performance also by bringing in too much noise. The small

cross validation error rate is encouraging, and it is already hinting a strong possibility that
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MULTIPLE AUTHORS DETECTION 13

the two training sample sets have significant stylistic di↵erences to support the two-author

hypothesis.

To settle the two-author hypothesis more definitively we apply our classifier on the test

data, which until now has never been used during the feature selection and classifier modeling

process. In particular we investigate the existence of a chrono-divide in the values obtained

through classifier. Figure 1 (b), which plots these values, clearly shows a chrono-divide at

Chapter 80: For Chapter 81-90 the classifier yields all negative values while for Chapters 61-

80 the classifier yields all positive values with the exception of Chapter 67. Allowing some

statistical abberations to occur, our results provide an extremely convincing if not irrefutable

evidence that there exist clear stylometric di↵erences between the writings of the first 80

chapters and the last 40 chapters. This di↵erence strongly supports the two-author hypothesis

for Dream of the Red Chamber. We also note that our investigation did not need to assume

that the knowledge that the stylistic change should be at Chapter 80. The fact that the

chrono-divide we have detected is indeed at Chapter 80 lends even stronger support to the

two-author hypothesis.

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of features

cr
os

s 
va

lid
at

io
n 

er
ro

r r
at

e

60 65 70 75 80 85 90
−4

−3

−2

−1

0

1

2

3

chapter number

SV
M

 c
la

ss
ifi

ca
tio

n 
va

lu
e

(a) (b)

F i g u r e 1. Experiment 1: (a) Mean cross validation error rate; (b) Values of SVM
classifier on chapters 60-90.
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14 XIANFENG HU, YANG WANG, AND QIANG WU

Interestingly, the fact that Chapter 67 appeared as an “outlier” in our classification serves as

further evidence to the validity of our analysis. It was only after the tests we realized that the

authorship of Chapter 67 itself is one of the controversies in Redology. Unlike the main controversy

about the authorship of the first 80 chapters and the last 40 chapters, experts are less unified in

their positions here. Again, our results strongly suggests that Chapter 67 is stylistically di↵erent

from the rest of the first 80 chapters, and it may not be written by Cao. Our finding is consistent

with the conclusion of [5].

3.2. Non-separability of the first 80 chapters. To further validate our method we apply the

same tests to the first 80 chapters of Dream of the Red Chamber to see whether we can get a

chrono-divide (Experiment 2). We use the first 30 and last 30 chapters as the training data and

leave chapters 31-50 as the test data. Figure 2 shows the mean cross validation error and the values

of SVM classifier on the test data chapters 31-50. The experiment shows many more features have

been selected in the 100 repeats, implying the di�culty of find a consistent subset of discriminative

features. The large errors on the training data also indicate the di�culty for separation. When

the classifier is applied to the test data, there is clearly no chrono-divide. This suggests that our

method yields a conclusion that is completely consistent with what is known.
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F i g u r e 2. Experiment 2: (a) Mean cross validation error rate; (b) Values of SVM
classifier on chapters 31-50. Note there is no chrono-divide.
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3.3. Analysis of chapters 81-120: style change over time. We next apply our method to the

last 40 chapters (Experiment 3). Our first experiment has already confirmed that they are unlikely

to be written by Cao. However, there are still debates on whether these were written entirely by

one author (most likely Gao himself), or by more than one author. Our mathematical analysis may

o↵er some insight here.

We split the 40 chapters into two subsets as before. The training data include Chapters 81-95 as

one class and Chapters 106-120 as another. The test data are the middle 10 chapters. Because of

the relatively small number of samples we have subdivided each chapter into 2 sections to increase

the sample size. As a result we now have 60 samples in the training data and 20 in test data, with

2 samples corresponding to one chapter. The mean cross validation error of the final classifier and

its classification values on the test samples are shown in Figures 3 (a) and (b) respectively.

In this experiment we observe that the performance in terms of both the classifier and feature

ranking is noticeably worse than that in Experiment 1 but substantially better than that in Ex-

periment 2. Furthermore, unlike the results from the first two experiments, the values from the

classifier show an interesting trend. Compared with Figure 2 (b) where the values appeared to lack

any order, the values here exhibit a clear gradual downward shift. On the other hand, compared to

Figure 1 (b) the values plotted in 3 (b) do not show a clear sharp chrono-divide, even though the

values change gradually from being positive to being negative. What it tells us is that the writing

style of the last 80 chapters had undergone a graduate change, but this change is unlikely to be

due to change of authorship.

Our results here could be subject to several interpretations. One plausible interpretation is that

Gao might indeed obtained some incomplete set of manuscripts by Cao, and tried to complete the

novel based on what he had obtained. The style change is a result of the lack of genuine work

by Cao as the story developed. A more plausible interpretation is that the last 40 chapters were

written by someone such as Gao trying to imitate Cao’s style, and over time the author became

sloppier and returned more and more to his own style.
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F i g u r e 3. Experiment 3: (a) Mean cross validation error rate; (b) Values of SVM
classifier on chapters 96-105, which correspond to the samples 31-50 in all 80 samples.
Note two samples come from one chapter in this experiment.

4. A n a l y sis o f t h e o t h e r t h r e e G r e a t C l a ssi c a l N o v e l s

To further bolster the credibility of our approach we test our method on the other three Great

Classical Novels in Chinese literature, Romance of the Three Kingdoms (nI¸¬), Water Margin

(YÈD), and Journey to the West (‹iP). Unlike Dread of the Red Chamber, there is no

authorship controversy for these other three novels. Thus if our method is indeed robust we should

expect negative answers for the two-author hypotheses for all of them by finding no chrono-divides.

As with Dream of the Red Chamber, we split each of the three novels into training samples and

test samples. Both Romance of the Three Kingdoms and Water Margin have 120 chapters. In both

cases we designate the first 30 chapters and the last 30 chapters as the two classes of training data,

and the middle 60 chapters as test data. For Journey to the West the two classes of training data

are the first and last 25 chapters respectively, with the middle 50 chapters as test data.

We use the same procedure to test for chrono-divides on the three novels. Compared to Dream

of the Red Chamber, the selected features show much lower relative frequencies, indicating di�culty

in di↵erentiating between the writing styles. Table 2 show the relative frequencies (with c = 1/30)

of the top 8 features for each of the four Great Classical Novels. Also of note is that in the case of
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F i g u r e 4. Classification results from the test sampels of the other three classical
novels: (a) Romance of the Three Kingdoms ; (b) Water Margin; (c) Journey to the
West.

Water Margin, 51 features are used to build a classifier from the 60 training data, which is clearly

another strong indication of the di�culty.

Novel Relative frequencies of top 8 features
Dream of the Red Chamber 0.57 0.46 0.43 0.36 0.31 0.30 0.29 0.19

Romance of the Three Kingdoms 0.31 0.27 0.26 0.25 0.23 0.22 0.17 0.15
Water Margin 0.18 0.17 0.16 0.16 0.14 0.11 0.11 0.10

Journey to the West 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02

T a b l e 2. Relative frequencies of the top ranked 8 features in each of the four Great
Classical Novels.

Figure 4 plots the values from the classifiers for all three novels. In all cases the values fluctuate

in such a way that it is quite clear that no chrono-divides exist, as expected.

This analysis shows that our approach can reliably reject the two-author hypothesis when it is

false, lending further support to the e↵ectiveness and robustness of our method.

5. C o n c l usi o ns

Inspired by authorship controversy of Dream of the Red Chamber and the application of SVM

in the study of literary stylometry, we have developed a mathematically rigorous new method for

the analysis of authorship by testing for a chrono-divide in writing styles. We have shown that the

method is highly e↵ective and robust. Applying our method to the Cheng-Gao version of Dream

of the Red Chamber has led to convincing if not irrefutable evidence that the first 80 chapters and

the last 40 chapters of the book were written by two di↵erent authors. Furthermore, our analysis
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18 XIANFENG HU, YANG WANG, AND QIANG WU

has unexpectedly provided strong support to the hypothesis that Chapter 67 was not the work of

Cao Xueqin either.

The methodology in this paper is rather e↵ective in selecting the most important features for clas-

sification through a new ranking system based on relative frequency. A series of future experiments

should be included in the application of this methodology to wider range of works.

It is worth mentioning that there are several other attempts to complete Dream of the Red

Chamber from the its first 80 chapters, among them is Continued Dream of the Red Chamber (Y

˘¢â) by Qi Zichen (ãfõ). Using the same features for building the classifier in Experiment

1, we can compute the Euclidean distances between all chapters and their distances of chapters

from Continued Dream of the Red Chamber, see Figure 5. Surprisingly, although these features

are obtained in favor of the di↵erences between Cao and Cheng-Gao, they lead to even larger

distance between the first 80 chapters and those chapters of Continued Dream of the Red Chamber.

It obviously implies that the style of the 40 chapters by Cheng-Gao are more similar to the 80

chapters by Cao compared to Continued dream of the Red Chamber. Maybe that’s why the Cheng-

Gao version is more popular than other versions.
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REVISIONIST INTEGRAL DEFERRED CORRECTION
WITH ADAPTIVE STEP-SIZE CONTROL

ANDREW J. CHRISTLIEB, COLIN B. MACDONALD,
BENJAMIN W. ONG AND RAYMOND J. SPITERI

Adaptive step-size control is a critical feature for the robust and efficient numerical
solution of initial-value problems in ordinary differential equations. In this paper,
we show that adaptive step-size control can be incorporated within a family of
parallel time integrators known as revisionist integral deferred correction (RIDC)
methods. The RIDC framework allows for various strategies to implement step-
size control, and we report results from exploring a few of them.

1. Introduction

The purpose of this paper is to show that local error estimation and adaptive step-
size control can be incorporated in an effective manner within a family of parallel
time integrators based on revisionist integral deferred correction (RIDC). RIDC
methods, introduced in [10], are “parallel-across-the-step” integrators that can be
efficiently implemented with multicore [10; 6], multi-GPGPU [4], and multinode
[9] architectures. The “revisionist” terminology was adopted to highlight that (1)
RIDC is a revision of the standard integral defect correction (IDC) formulation [12],
and (2) successive corrections, running in parallel but (slightly) lagging in time,
revise and improve the approximation to the solution.

RIDC methods have been shown to be effective parallel time-integration methods.
They can typically produce a high-order solution in essentially the same amount
of wall-clock time as the constituent lower-order methods. In general, for a given
amount of wall-clock time, RIDC methods are able to produce a more accurate
solution than conventional methods. These results have thus far been demonstrated
with constant time steps. It has long been accepted that local error estimation
and adaptive step-size control form a critical part of a robust and efficient strategy
for solving initial-value problems in ordinary differential equations (ODEs), in
particular problems with multiple timescales; see [15], for example. Accordingly, in
order to assess the practical viability of RIDC methods, it is important to establish

MSC2010: 65H10, 65L05, 65Y05.
Keywords: initial-value problems, revisionist integral deferred correction, parallel time integrators,

local error estimation, adaptive step-size control.
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2 CHRISTLIEB, MACDONALD, ONG AND SPITERI

whether they can operate effectively with variable step sizes. It turns out that
there are subtleties associated with modifying the RIDC framework to incorporate
functionality for local error estimation and adaptive step-size control: there are a
number of different implementation options, and some of them are more effective
than others.

The remainder of this paper is organized as follows. In Section 2, we review
the ideas behind RIDC as well as strategies for local error estimation and step-size
control. We then combine these ideas to propose various strategies for RIDC meth-
ods with error and step-size control. In Section 3, we describe the implementation
of these strategies within the RIDC framework and suggest avenues that can be
explored for a production-level code. In Section 4, we demonstrate that the use of
local error estimation and adaptive step-size control inside RIDC is computationally
advantageous. Finally, in Section 5, we summarize the conclusions reached from
this investigation and comment on some potential directions for future research.

2. Review of relevant background

We are interested in numerical solutions to initial-value problems (IVPs) of the
form {

y′(t)= f (t, y(t)), t ∈ [a, b],
y(a)= ya.

(1)

where y(t) : R→ Rm , ya ∈ Rm , and f : R× Rm
→ Rm . We first review RIDC

methods, a family of parallel time integrators that can be applied to solve (1). Then,
we review strategies for local error estimation and adaptive step-size control for
IVP solvers.

2.1. RIDC. RIDC methods [10; 6; 4] are a class of time integrators based on
integral deferred correction [12] that can be implemented in parallel via pipelining.
RIDC methods first compute an initial (or provisional) solution, typically using a
standard low-order scheme, followed by one or more corrections. Each correction
revises the current solution and increases its formal order of accuracy. After initial
startup costs, the predictor and all the correctors can be executed in parallel. It has
been shown that parallel RIDC methods with uniform step-sizes give almost perfect
parallel speedups [10]. In this section, we review RIDC algorithms, generalizing
the overall framework slightly to allow for nonuniform step-sizes on the different
correction levels.

We denote the nodes for correction level ` by

a = t [`]0 < t [`]1 < · · ·< t [`]N [`] = b,

where N [`] denotes the number of time steps on level `. In practice, the nodes on
each level are obtained dynamically by the step-size controller.
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2.1.1. The predictor. To generate a provisional solution, a low-order integrator is
applied to solve the IVP (1). For example, a first-order forward Euler integrator
applied to (1) gives

η[0]n = η
[0]
n−1+

(
t [0]n − t [0]n−1

)
f (t [0]n−1, η

[0]
n−1), (2)

for n = 1, 2, . . . , N [0], with η[0]0 = ya , and where we have indexed the prediction
level as level 0. We denote η[`](t) as a continuous extension [15] of the numerical
solution at level `, i.e., a piecewise polynomial η[0](t) that satisfies

η[0](t [0]n )= η[0]n .

The continuous extension of a numerical solution is often of the same order of
accuracy as the underlying discrete solution [15]. Indeed, for the purposes of this
study, we assume η[`](t) is of the same order as η[`]n .

2.1.2. The correctors. Suppose an approximate solution η(t) to IVP (1) is com-
puted. Denote the exact solution by y(t). Then, the error of the approximate
solution is e(t)= y(t)− η(t). If we define the defect as δ(t)= f (t, η(t))− η′(t),
then

e′(t)= y′(t)− η′(t)= f (t, η(t)+ e(t))− f (t, η(t))+ δ(t).

The error equation can be written in the form[
e(t)−

∫ t

a
δ(τ ) dτ

]′
= f (t, η(t)+ e(t))− f (t, η(t)), (3)

subject to the initial condition e(a) = 0. In RIDC, the corrector at level ` solves
for the error e[`−1](t) of the solution η[`−1](t) at the previous level to generate the
corrected solution η[`](t),

η[`](t)= η[`−1](t)+ e[`−1](t).

For example, a corrector at level ` that corrects η[`−1](t) by applying a first-order
forward Euler integrator to the error equation (3) takes the form

e[`−1](t [`]n )− e[`−1](t [`]n−1)−

∫ t [`]n

t [`]n−1

δ[`−1](τ ) dτ =

1t [`]n
[

f
(
t [`]n−1, η

[`−1](t [`]n−1)+ e[`−1](t [`]n−1)
)
− f

(
t [`]n−1, η

[`−1](t [`]n−1)
)]
,

where 1t [`]n = t [`]n − t [`]n−1. After some algebraic manipulation, one obtains

η[`]n = η
[`]
n−1+1t [`]n

[
f
(
t [`]n−1, η

[`](t [`]n−1)
)
− f

(
t [`]n−1, η

[`−1](t [`]n−1)
)]

+

∫ t [`]n

t [`]n−1

f
(
τ, η[`−1](τ )

)
dτ . (4)
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The integral in (4) is approximated using quadrature,∫ t [`]n

t [`]n−1

f
(
τ, η[`−1](τ )

)
dτ ≈

| ET[`]n |∑
i=1

α
[`−1]
n,i f (τi , η

[`−1](τi )), τi ∈ ET
[`]
n , (5)

where the set of quadrature nodes, ET[`]n , for a first-order corrector satisfies

1. | ET[`]n | = `+ 1,

2. ET[`]n ⊆ {t
[`−1]
n }

N [`−1]

n=0 ,

3. min( ET[`]n )≤ t [`]n−1,

4. max( ET[`]n )≥ t [`]n .

The quadrature weights, α[`−1]
n,i , are found by integrating the interpolating Lagrange

polynomials exactly,

α
[`−1]
n,i =

| ET[`]n |∏
j=1, j 6=i

∫ t [`]n

t [`]n−1

(t − τ j )

(τi − τ j )
dt, τi ∈ ET

[`]
n . (6)

The term f
(
t [`]n−1, η

[`−1](t [`]n−1)
)

in (4) is approximated using Lagrange interpolation,

f
(
t [`]n−1, η

[`−1](t [`]n−1)
)
≈

| ET[`]n |∑
i=1

γ
[`−1]
n,i f

(
τi , η

[`−1](τi )
)
, τi ∈ ET

[`]
n , (7)

where the same set of nodes, ET[`]n , for the quadrature is used for the interpolation.
The interpolation weights are given by

γ
[`−1]
n,i =

| ET[`]n |∏
j=1, j 6=i

(t [`]n−1− τ j )

(τi − τ j )
, τi ∈ ET

[`]
n . (8)

2.2. Adaptive step-size control. Adaptive step-size control is typically used to
achieve a user-specified error tolerance with minimal computational effort by varying
the step-sizes used by an IVP integrator. This is commonly done based on a local
error estimate. It is also generally desirable that the step-size vary smoothly over
the course of the integration. We review common techniques for estimating the
local error, followed by algorithms for optimal step-size selection.

2.2.1. Error estimators. Two common approaches for estimating the local trunca-
tion error of a single-step IVP solver are through the use of Richardson extrapolation
(commonly used within a step-size selection framework known as step doubling)
and embedded Runge–Kutta pairs [15]. Step doubling is perhaps the more intuitive
technique. The solution after each step is estimated twice: once as a full step and
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RIDC WITH ADAPTIVE STEP-SIZE CONTROL 5

once as two half steps. The difference between the two numerical estimates gives
an estimate of the truncation error. For example, denoting the exact solution to
IVP (1) at time tn+1t as y(tn+1t), the forward Euler step starting from the exact
solution at time tn and using a step-size of size 1t is

η1,n+1 = y(tn)+1t f (tn, yn),

and the forward Euler step using two steps of size 1t/2 is

η2,n+1 =

(
y(tn)+

1t
2

f (tn, yn)

)
+
1t
2

f
(

tn +
1t
2
, y(tn)+

1t
2

f (tn, yn)

)
.

Because forward Euler is a first-order method (and thus has a local truncation error
of O(1t2)), the two numerical approximations satisfy

y(tn +1t)= η1,n+1+ (1t)2φ+O(1t3)+ · · · ,

y(tn +1t)= η2,n+1+ 2
(
1t
2

)2

φ+O(1t3)+ · · · ,

where a Taylor series expansion gives that φ is a constant proportional to y′′(tn).
The difference between the two numerical approximations gives an estimate for the
local truncation error of η2,n+1,

en+1 = η2,n+1− η1,n+1 =
1t2

2
φ+O(1t3).

An alternative approach to estimating the local truncation error is to use embedded
RK pairs [11]. An s-stage Runge–Kutta method is a single-step method that takes
the form

ηn+1 = ηn +1t
s∑

i=1

bi ki ,

where

ki = f
(

ti + ci h, ηn +1t
s∑

j=1

ai j k j

)
, i = 1, 2, . . . , s.

The idea is to find two single-step RK methods, typically one with order p and the
other with order p− 1, that share most (if not all) of their stages but have different
quadrature weights. This is represented compactly in the extended Butcher tableau

c A
b
b̂
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6 CHRISTLIEB, MACDONALD, ONG AND SPITERI

Denoting the solution from the order-p method as

η∗n+1 = ηn +1t
s∑

i=1

b̂i ki , (9a)

and the solution from the order-(p− 1) method as

ηn+1 = ηn +1t
s∑

i=1

bi ki , (9b)

the error estimate is

en+1 = ηn+1− η
∗

n+1 =1t
s∑

i=1

(bi − b̂i )ki , (9c)

which is O(1t p).
A third approach for approximating the local truncation error is possible within

the deferred correction framework. We observe that in solving the error equation (3),
one is in fact obtaining an approximation to the error. As discussed in Section 3.3,
it can be shown that the approximate error after ` first-order corrections satisfies
o(1t p0+`+1). We shall see in Section 3.3 that this error estimate proves to be a
poor choice for optimal step-size selection because in our formulation the time step
selection for level ` does not allow for the refinement of time steps at earlier levels.

2.2.2. Optimal step-size selection. Given an error estimate from Section 2.2.1 for
a step 1t , one would like to either accept or reject the step based on the error
estimate and then estimate an optimal step-size for the next time step or retry the
current step. Following [16], Algorithm 1 outlines optimal step-size selection given
an estimate of the local truncation error. In lines 1–4, one computes a scaled error
estimate. In line 5, an optimal time step is computed by scaling the current time
step. In lines 6–10, a new time step is suggested; a more conservative step-size is
suggested if the previous step was rejected.

3. RIDC with adaptive step-size control

There are numerous adaptive step-size control strategies that can be implemented
within the RIDC framework. We consider three of them in this paper as well as
discuss other strategies that are possible.

3.1. Adaptive step-size control: prediction level only. One simple approach to
step-size control with RIDC is to perform adaptive step-size control on the prediction
level only, e.g., using step doubling or embedded RK pairs as error estimators for the
step-size control strategy. The subsequent correctors then use this grid unchanged
(i.e., without performing further step-size control). With this strategy, corrector ` is
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RIDC WITH ADAPTIVE STEP-SIZE CONTROL 7

Input:
yn: approximate solution at time tn;
yn+1: approximate solution at time tn+1;
en+1: error estimate for yn+1;
p: order of integrator;
m: number of ODEs;
atol, rtol: user specified tolerances;
prev_rej: flag that indicates whether the previous step was rejected;
α < 1: safety factor;
β > 1: allowable change in step-size.

Output:
accept_flag: flag to accept or reject this step;
1tnew: optimal time step

1 Set a(i)=max{|yn(i)|, |yn+1(i)|}, i = 1, 2, . . . ,m.
2 Compute τ(i)= atol+ rtol ∗ a(i), i = 1, 2, . . . ,m.

3 Compute ε =

√∑m
i=1(e(i)/τ(i))

2

m
.

4 Compute 1topt =1t (1
ε
)1/(p+1).

5 if prev_rej then
6 1tnew = αmin{1t,max{1topt ,1t/β}}
7 else
8 1tnew = αmin{β1t,max{1topt ,1t/β}}
9 end

10 if ε > 1 then
11 accept_flag= 1
12 else
13 accept_flag= 0
14 end

Algorithm 1: Optimal step-size selection algorithm. The approximate solution,
the error estimate, and its order are provided as inputs. For the numerical
experiments in Section 4, we fix α = 0.9, β = 10.

lagged behind corrector `−1 so that each node simultaneously computes an update
on its level (after an initial startup period). This is illustrated graphically in Figure 1.
In principle, near optimal parallel speedup is maintained with this approach provided
the computational overhead for the RIDC method (i.e., the interpolation, quadrature,
and linear combination of solutions) is small compared to the advance of predictor
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8 CHRISTLIEB, MACDONALD, ONG AND SPITERI

prediction (`= 0)

correction (`= 1)

correction (`= 2)

correction (`= 3)

t. . . t4 t5 t6 t7 t8 t9 t10 . . .

Figure 1. Schematic diagram of step-size control on the prediction level only. The filled
circles denote previously computed and stored solution values at particular times. The
corrections are run in parallel (but lagging in time) and the open circles indicate which
values are being simultaneously computed. The stencil of points required by each level
is shown by the “bubbles” surrounding certain grid points; the thick horizontal shading
indicates the integrals needed in (4).

from tn to tn+1; in this implementation, a small memory footprint similar to [10]
can be used. Additionally, an interpolation step is circumvented because the nodes
are the same on each level. There are however a few potential drawbacks to this
approach. First, it is not clear how to distribute the user-defined tolerance among the
levels. Clearly, satisfying the user-specified tolerance on the prediction level defeats
the purpose of the deferred correction approach. Estimating a reduced tolerance
criterion may be possible a priori, but such an estimate would at present be ad hoc.
Second, there is no reason to expect the corrector (4) should take the same steps to
satisfy an error tolerance when computing a numerical approximation to the error
equation (3).

3.2. Adaptive step-size control: all levels. A generalization of the above formula-
tion is to utilize adaptive step-size control to solve the error equations (3) as well.
The variant we consider is step doubling on all levels, where each predictor and
corrector performs Algorithm 1; embedded RK pairs can also be used to estimate
the error for step-size adaptivity on all levels. Intuitively, step-size control on every
level gives more opportunity to detect and adapt to error than simply adapting using
the (lowest-order) predictor. For example, this allows the corrector take a smaller
step if necessary to satisfy an error tolerance when solving the error equation. Some
drawbacks are: (i) an interpolation step is necessary because the nodes are generally
no longer in the same locations on each level, (ii) more memory registers are
required, and (iii) there is a potential loss of parallel efficiency because a corrector
may be stalled waiting for an adequate stencil to become available to compute a
quadrature approximation to the integral in (4). Another issue — both a potential
benefit and a potential drawback — is the number of parameters that can be tuned
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RIDC WITH ADAPTIVE STEP-SIZE CONTROL 9

prediction (`= 0)

correction (`= 1)

correction (`= 2)

correction (`= 3)

t

Figure 2. Schematic diagram of a scenario when step-size control is applied on all levels.
Unlike in Figure 1, here each level has its own grid in time. Solid circles indicate particular
times and levels where the solution is known. In this particular diagram, levels `= 0, 1, 3
are all able to advance simultaneously to the open circles. However, correction level `= 2
is unable to advance to the time indicated by the triangle symbol because correction level
` = 1 has not yet computed far enough. The stencil of points required by each level
is shown by the “bubbles” surrounding certain grid points; the thick horizontal shading
indicates the integrals needed in (4). Note in particular that the dashed stencil includes a
open circle at level `= 1 that is not yet computed.

for each problem. A discussion on the effect of tolerance choices for each level is
provided in Section 4. One can in practice also tune step-size control parameters
α, β, atol, and rtol for Algorithm 1 separately on each level. Figure 2 highlights
that some nodes might not be able to compute an updated solution on their current
level if an adequate stencil is not available to approximate the integral in (4) using
quadrature. In this example, the level `= 2 correction is unable to proceed because
it would require interpolated solution values not yet available from level ` = 1,
whereas the prediction level `= 0 and corrections `= 1 and `= 3 are all able to
advance the solution by one step.

3.3. Adaptive step-size control: using the error equation. A third strategy one
might consider is adaptive step-size control for the error equation (3) using the
solution to the error equation itself as the error estimate. (One still uses step
doubling or embedded RK pairs to obtain an error estimate for step-size control
on the predictor equation (1).) At first glance, this looks promising provided the
order of the integrator can be established because it is used to determine an optimal
step-size. One would expect computational savings from utilizing available error
information, as opposed to estimating it via step doubling or an embedded RK pair.

If first-order predictor and first-order correctors are used to construct the RIDC
method, the analysis in [17] can be easily extended to the proposed RIDC methods
with adaptive step-size control. We note that the numerical quadrature approximation
given in (5) and the numerical interpolation given in (7) are accurate to the order
O(1t`+2

n ); this is sufficient for the inductive proof in [17] to hold. Hence, one
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10 CHRISTLIEB, MACDONALD, ONG AND SPITERI

can show that the method has a formal order of accuracy O(1t`+2), where 1t =
maxn,`(t [`]n − t [`]n−1).

Although the formal order of accuracy can be established, using the error estimate
from successive levels is a poor choice for optimal step-size selection. Consider
step-size selection for level `, time step t [`]n , using η[`]n − η

[`−1](t [`]n ) as the error
estimator in Algorithm 1. The optimal step-size is chosen to control the local
error estimate via the step-size 1t [`]n = t [`]n − t [`]n−1. However, the local error for the
correctors generally contains contributions from the solutions at all the previous
levels. The validity of the asymptotic local error expansion of the RIDC method in
terms of 1t [`]n requires that 1t =maxn,`(t [`]n − t [`]n−1) be sufficiently small, and it is
not normally possible to guarantee this in the context of an IVP solver. In other
words, the step-size controller for a corrector at a given level cannot control the
entire local error, and hence standard step-control strategies, which are predicated
on the validity of error expansions in terms of only the step-size to be taken, cannot
be expected to perform well. We present some numerical tests in Section 4.2.4
to illustrate the difficulties with using successive errors as the basis for step-size
control.

3.4. Further discussion. There are many other strategies/implementation choices
that affect the overall performance of the adaptive RIDC algorithm. Some have
already been discussed in the previous section. We summarize some of the imple-
mentation choices that must be made:

• The choice of how to estimate the error of the discretization must be made. Three
possibilities have already been mentioned: step doubling, embedded RK pairs,
and solutions to the error equation (3). A combination of all three is also possible.

• If an IVP method with adaptive step-size control is used to solve (3), choices
must be made as to how the tolerances and step-size control parameters, α and β,
are to be chosen for each correction level.

We also list a few implementation details that should be considered when de-
signing adaptive RIDC schemes.

• If adaptive step-size control is implemented on all levels, some correction levels
may sit idle because the information required to perform the quadrature and
interpolation in (4) is not available. This idle time adversely affects the parallel
efficiency of the algorithm. One possibility to decrease this idle time is instead
of taking an “optimal step” (as suggested by the step-size control routine), one
could take a smaller step for which the quadrature and interpolation stencil is
available. There is some flexibility in choosing exactly which points are used
in the quadrature stencil, and it might also be possible to choose a stencil to
minimize the time that correction levels are sitting idle.
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RIDC WITH ADAPTIVE STEP-SIZE CONTROL 11

• Because values are needed from lower-order correction levels, the storage required
by a RIDC scheme depends on when values can be overwritten (see, e.g., the
stencils in Figures 1 and 2). Thus to avoid increasing the storage requirements,
the prediction level and each correction level should not be allowed to get too far
ahead of higher correction levels. Although this is also the case for the nonadaptive
RIDC schemes [10; 6], if adaptive step-size control is implemented on all levels
(Figure 2), the memory footprint is likely to increase. Some consideration should
thus be given to a potential trade-off between parallel efficiency and the overall
memory footprint of the scheme.

• It is important to reduce round-off error when computing the quadrature weights (6)
and the interpolation weights (8). This can be done by through careful scaling
and control of the order of the floating-point operations [3].

• If one wishes to use higher-order correctors and predictors to construct RIDC
integrators, we note that the convergence analysis in [7; 8; 5] only holds for
uniform steps. A nonuniform mesh introduces discrete “roughness” (see [8]);
hence, an increase of only one order per correction level is guaranteed even though
a high-order method is used to solve (3).

• RIDC methods necessarily incur computational overhead costs, for example, quad-
rature evaluation (5), interpolation evaluation (7), and the combination of these
components in (4). Parallel speedup can only be expected if the computational
overhead is small compared to the advance of predictor from tn to tn+1.

Additionally, the RIDC framework, by construction, solves a series of error
equations to generate a successively more accurate solution. This framework can
be potentially be exploited to generate order-adaptive RIDC methods. For example,
one might control the number of corrector levels adaptively based on an error
estimate.

4. Numerical examples

We focus on the solutions to three nonlinear IVPs. The first is presented in [1]; we
refer to it as the Auzinger IVP:


y′1 =−y2+ y1(1− y2

1 − y2
2),

y′2 = y1+ 3y2(1− y2
1 − y2

2),

y(0)= (1, 0)T , t ∈ [0, 10],

(AUZ)

that has the analytic solution y(t)= (cos t, sin t)T .
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12 CHRISTLIEB, MACDONALD, ONG AND SPITERI

The second is the IVP associated with the Lorenz attractor:
y′1 = σ(y2− y1),

y′2 = ρy1− y2− y1 y3,

y′3 = y1 y2−βy3,

y(0)= (1, 1, 1)T , t ∈ [0, 1].

(LORENZ)

For the parameter settings σ = 10, ρ = 28, β = 8/3, this system is highly sensitive
to perturbations, and an IVP integrator with adaptive step-size control may be
advantageous.

The third is the restricted three-body problem from [15]; we refer to it as the
Orbit IVP:

y′′1 = y1+ 2y′2−µ
′
y1+µ

D1
−µ

y1−µ
′

D2
,

y′′2 = y2− 2y′1−µ
′

y2

D1
−µ

y2

D2
,

D1 = ((y1+µ)
2
+ y2

2)
3/2, D2 = ((y1−µ

′)2+ y2
2)

3/2,

µ= 0.012277471, µ′ = 1−µ.

(ORBIT)

Choosing the initial conditions

y1(0)= 0.994, y′1(0)= 0, y2(0)= 0,

y′2(0)=−2.00158510637908252240537862224,

gives a periodic solution with period tend = 17.065216560159625588917206249.
We now present numerical evidence to demonstrate that:

1. RIDC integrators with nonuniform step-sizes converge and achieve their de-
signed orders of accuracy.

2. RIDC methods with adaptive step-size constructed using step doubling (on the
prediction level only) and embedded RK error estimators (on the prediction
level only) converge.

3. RIDC methods with adaptive step-size control based on step doubling to
estimate the local error on the prediction and correction levels converge;
however, the step-sizes selected are poor (many rejected steps), even for the
smooth Auzinger problem.

4. RIDC methods with adaptive step-size control based on step doubling to
estimate the local error on the prediction level but using the solution to the
error equation for step-size control results is problematic.

The numerical examples chosen are canonical problems designed to illustrate the
step-size adaptivity properties of the RIDC methods. Because the computational
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overhead is significant compared to the advance of an Euler solution from time
tn to tn+1, a runtime analysis does not reveal parallel speedup for any of these
examples. Whereas the number of function evaluations is an effective parameter for
comparing algorithms, we need a different metric to compare a parallel algorithm
to a sequential algorithm. Where appropriate, we tabulate the number of sets of
concurrent function evaluations as a proxy for measuring parallel speedup when
the function evaluation costs dominate. A set of concurrent function evaluations
consists of function evaluations that can be evaluated in parallel.

4.1. RIDC with nonuniform step-sizes. For our first numerical experiment, we
demonstrate that RIDC integrators with nonuniform step-sizes converge and achieve
their design orders of accuracy. Figure 3 shows the classical convergence study
(error as a function of mean step-size) for the RIDC integrator applied to (AUZ).
Figure 3(a) shows the convergence of RIDC integrators with uniform step-sizes;
Figure 3(b)–(d) shows the convergence of RIDC integrators when random step-sizes
are chosen. The random step-sizes are chosen so that

1t [`]n ∈

[
1
ω
1t [`]n−1, ω1t [`]n−1

]
, ω ∈ R,

where ω controls how rapidly a step-size is allowed to change. The figures show
that RIDC integrators with nonuniform step-sizes achieve their designed order of
accuracy (each additional correction improves the order of accuracy by one), at
least up to order 6. In Figure 3 (corresponding to RIDC with uniform step-sizes),
we observe that the error stagnates at a value significantly larger than machine
precision. This is likely due to numerical issues associated with quadrature on
equispaced nodes [14]. We note that ω = 1 gives the uniformly distributed case.
We also observe that as the ratio of the largest to the smallest cell increases, the
performance of higher-order RIDC methods degrades, likely due to round-off error
associated with calculating the quadrature and interpolation weights.

Figure 4 shows the convergence study (error as a function of mean step-size)
for (LORENZ). The reference solution is computed using an RK-45 integrator
with a fine time step. Similar observations can be made that RIDC methods with
nonuniform step-sizes converge with their designed orders of accuracy (at least up
to order 6).

4.2. Adaptive RIDC. We study four different variants of RIDC methods with adap-
tive step-size control: (i) step doubling is used for adaptive step-size control on
the prediction level only (Section 4.2.1); (ii) an embedded RK pair is used for
adaptive step-size control on the prediction level only (Section 4.2.2); (iii) step
doubling is used for adaptive step-size control on the prediction and correction
levels (Section 4.2.3); and (iv) step doubling is used for adaptive step-size control
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(a) Uniform steps. (b) Random steps, ω = 2.
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(c) Random steps, ω = 4. (d) Random steps, ω = 100.

Figure 3. Auzinger IVP: The design order is illustrated for the RIDC methods.

on the prediction level, and the computed errors from the error equation (3) are
used for adaptive step-size control on the correction levels.

4.2.1. Step doubling on the prediction level only. In this numerical experiment, we
solve the orbit problem (ORBIT) using a fourth-order RIDC method (constructed
using forward Euler integrators), and adaptive step-size control on the prediction
level only, where step doubling is used to provide the error estimate. As shown in
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(a) Ratio = 1 (uniform). (b) Ratio = 2.
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(c) Ratio = 4. (d) Ratio = 100.

Figure 4. Lorenz IVP: the design order is illustrated for the RIDC methods.

Figure 5, successive correction loops are able to reduce the error in the solution
and recover the desired orbit. The red circles in Figure 5(a) indicate rejected
steps. Figure 6(a) shows that RIDC with step doubling only on the prediction level
converges as the tolerance is reduced. In this experiment, the RIDC integrator is
reset after every 100 accepted steps. By “reset” [10], we mean that the highest-
order solution after every 100 steps is used as an initial condition to reinitialize the
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(a) Prediction. (b) First correction.
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(c) Second correction. (d) Third correction.

Figure 5. Orbit problem: although the prediction level gives a highly inaccurate solution,
successive correction loops are able to reduce the error and produce the desired orbit. The
red circles on the prediction level (a) indicate rejected steps.

provisional solution; e.g., instead of solving (1), one solves a sequence of problems{
y′(t)= f (t, y), t ∈ [t100(i−1),min(b, t100i )],

y(t100(i−1))= η
[P−1]
100(i−1),

if (L−1) correctors are applied and η[L−1]
0 = ya . The time steps chosen by the RIDC

integrator with resets performed every 100 and 400 steps are shown in Figure 6(b)
and (c).

In Figure 6(b), 1tmin= 1.06×10−4. If a nonadaptive fourth-order RIDC method
was used with 1tmin, 160814 uniform time steps would have been required. By
adaptively selecting the time steps for this example and tolerance, the adaptive RIDC
method required approximately one one-hundredth of the functional evaluations,
corresponding to a one hundred-fold speedup. The effective parallel speedup can be
computed by taking the ratio of the total number of function evaluations required and
the number of sets of concurrent function evaluations required. For the computation
in Figure 6(b) where a reset is performed after every 100 steps, the parallel speedup
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rtol atol error naccept nreject

10−3.5 10−6.5 2.72·10−1 1456 99
10−4.0 10−7.0 2.08·10−2 2650 81
10−4.5 10−7.5 5.35·10−5 4730 68
10−5.0 10−8.0 7.39·10−5 8436 42
10−5.5 10−8.5 6.72·10−6 15031 10

(a) Convergence study.
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(b) Adaptive step-sizes selected (reset every 100 steps).
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(c) Adaptive step-sizes selected (reset every 400 steps).

Figure 6. Orbit problem: (a) convergence of a fourth-order RIDC method constructed
with forward Euler integrators and adaptive step-size control on the prediction level (using
step doubling). Convergence is measured relative to the exact solution as the tolerance is
decreased. A reset is performed after every 100 accepted steps for this convergence study.
In (b), the step-sizes selected for rtol= 10−3.5 and atol= 10−6.5 are displayed as the
solid curve and rejected steps as ×s; a reset is performed after every 100 steps. In (c), the
reset is performed after every 400 steps. Observe that although the number of rejected
steps increases, the overall 1t chosen remains qualitatively similar.

(if four processors are available) can be computed using

(1456× 5)+ 99
(1456× 2)+ (14× 6)+ 99

= 2.38.
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The numerator consists of the total number of function evaluations arising from
the number of steps taken and the computation of the error estimate using step
doubling and the number of function evaluations arising from the rejected steps. The
denominator consists of the number of concurrent function evaluations (including
startup costs for the RIDC method). Note that three of the processors sit idle while
that step doubling computation is being processed. The parallel speedup can be
improved if more levels are chosen, or if the number of resets are reduced. If a
reset is performed after every 400 steps (Figure 6(c)), the parallel speedup is

(1591× 5)+ 88
(1591× 2)+ (4× 6)+ 88

= 2.44.

4.2.2. Embedded RK on the prediction level only. In this numerical experiment, we
repeat the orbit problem (ORBIT) using a fourth-order RIDC method constructed
again using forward Euler integrators, but the step-size adaptivity on the prediction
level uses a Heun–Euler embedded RK pair. This simple scheme combines Heun’s
method, which is second order, with the forward Euler method, which is first order.
Figure 7(a) shows the convergence of this adaptive RIDC method as the tolerance
is reduced. As the previous example, the RIDC integrator is reset after every 100
accepted steps for the convergence study. In Figure 7(b) and (c), we show the time
steps chosen by the RIDC integrator with resets performed after 100 or 400 steps,
respectively.

For the computation in Figure 7(b) where a reset is performed after every 100
steps, the parallel speedup (if four processors are available) is

(2441× 5)+ 60
(2441× 2)+ (24× 6)+ 60

= 2.41.

If a reset is performed after every 400 steps (Figure 7(c)), the parallel speedup is

(2276× 5)+ 80
(2276× 2)+ (5× 6)+ 80

= 2.46.

Not surprisingly, the time steps chosen by the RIDC method are dependent on
the specified tolerances and the error estimator (and consequently the integrators
used to obtain a provisional solution to (1)) used for the control strategy. One
can easily construct a RIDC integrator using higher-order embedded RK pairs to
solve for a provisional solution to (1), and then use the forward Euler method to
solve the error equation (3) on subsequent levels. For example, Figure 8 shows the
step-sizes chosen when the Bogacki–Shampine method [2] (a 3(2) embedded RK
pair) and the popular Runge–Kutta–Fehlberg 4(5) pair [13] are used to compute
the provisional solution (and error estimate) for the RIDC integrator. The same
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rtol atol error naccept nreject

10−3.5 10−6.5 4.91·10−2 2082 93
10−4.0 10−7.0 2.96·10−3 3754 71
10−4.5 10−7.5 2.36·10−4 6703 50
10−5.0 10−8.0 2.28·10−5 11945 20
10−5.5 10−8.5 1.77·10−6 21277 10

(a) Convergence study.
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(b) Adaptive step-sizes selected (reset every 100 steps).
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(c) Adaptive step-sizes selected (reset every 400 steps).

Figure 7. Orbit problem: (a) convergence of a fourth-order RIDC method constructed
with forward Euler integrators and adaptive step-size control on the prediction level (using
an embedded RK pair to estimate the error). Convergence is measured relative to the
exact solution as the tolerance is decreased. A reset is performed after every 100 accepted
steps for this convergence study. In (b), the step-sizes selected for rtol = 10−3.5 and
atol = 10−6.5 are displayed as the solid curve and rejected steps as ×s; a reset is
performed after every 100 steps. In (c), the reset is performed after every 400 steps.

tolerance of rtol = 10−3.5 is used to generate both graphs. As the order and
accuracy of the predictor increases, one can take larger time steps. For this example,
using higher-order embedded RK pairs as step-size control mechanisms for RIDC
methods result in less variations in time steps.
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0 5 10 15
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t

1
t

ERK-23
ERK-45

Figure 8. Step-sizes selected by RIDC methods constructed using a Bogacki–Shampine
method, a 3(2) embedded pair (red) and the Runge–Kutta–Fehlberg 4(5) pair. Rejected
steps are indicated with ×s.

4.2.3. Step doubling on all levels. As mentioned in Section 3.2, it might be ad-
vantageous to use adaptive step-size control when solving the error equations.
This affords a myriad of parameters that can be used to tune the step-size control
mechanism. In this set of numerical experiments, we explore how the choice of
tolerances for the prediction/correction levels affect the step-size selection.

We first solve the Auzinger IVP using step doubling on all the levels, i.e., both
predictor and corrector levels. In Figure 9, we show the computed step-sizes when
we naively choose the same tolerances on each level. As expected, the predictor
has to take many steps (to satisfy the stringent user-supplied tolerance), whereas
life is easy for the correctors. The effective parallel speedup is

(5479+ 196+ 19+ 24)× 2+ 15
(5481× 2)+ 15

= 1.04.

0 0.5 110−8

10−5

10−2

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 10−8 10−10 2.028·10−5 5479 0
1 10−8 10−10 8.793·10−7 196 0
2 10−8 10−10 2.618·10−8 19 6
3 10−8 10−10 1.486·10−6 24 9

Figure 9. Auzinger IVP: step-size control is implemented on all prediction and correction
levels. The same tolerances are used for each level. As expected, the predictor has a hard
time (forward Euler must satisfy a stringent tolerance); on the other hand, life is easy for
the correctors. Rejected steps are indicated with ×s. For this set of tolerances, 5481 sets of
concurrent function evaluations are needed.
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In principle, the correctors are not even needed. Equally important to note is that
the error increases after the last correction loop. This might seem surprising at first
glance but ultimately may not unreasonable because the steps selected to solve the
third correction are not based on the solution to the error equation but rather the
original IVP.

Instead of naively choosing the same tolerances on each level, we now change
the tolerance at each level, as described in Figure 10. By making this simple change,
the number of accepted steps on each level are now on the same order of magnitude.
Not surprisingly, the predictor still selects good steps. Interestingly in Figure 10(a),
the first correction is “noisy”, especially initially. For this set of tolerances, the
effective parallel speedup is

(58+ 7+ 30+ 61)× 2+ (52+ 7+ 24)
(135× 2)+ (52+ 7+ 24)

= 1.52.

0 0.5 1
10−5

10−3

10−1

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 1 ·10−4 1 ·10−6 2.026 ·10−3 58 0
1 1 ·10−6 1 ·10−8 6.945 ·10−5 78 52
2 1 ·10−8 1·10−10 1.265 ·10−7 30 7
3 1 ·10−10 1·10−12 9.579 ·10−8 61 24

(a) Set 1 of tolerances.

0 0.5 1
10−5

10−3

10−1

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.026 ·10−3 58 0
1 1 ·10−5 1·10−7 1.805 ·10−4 29 12
2 1 ·10−7 1·10−9 1.172 ·10−6 20 6
3 1 ·10−9 1·10−11 7.216 ·10−7 39 11

(b) Set 2 of tolerances.

Figure 10. Auzinger IVP: different tolerances at each level. With the first set of tolerances,
the step-size controller for the predictor is well behaved, as it is for the second and third
correctors. The step-size controller for the first corrector however is noisy. 135 sets
of concurrent function evaluations are needed to generate (b). With the second set of
tolerances, the step-size controller for all correctors is reasonably well behaved. Here, 64
sets of concurrent function evaluations are needed.
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By picking a different set of tolerances, we can eliminate the noise, as shown in
Figure 10(b). For this set of tolerances, the parallel speedup is

(58+ 24+ 20+ 39)× 2+ (12+ 6+ 11)
(64× 2)+ (12+ 6+ 11)

= 1.98.

4.2.4. Using solutions from the error equation. As mentioned in Section 3.3, using
the solution from the error equation (3) as the local error estimate for step-size
control on a given level is potentially problematic because the step-size controller
can only control the local error introduced on that level whereas the true local error
generally contains contributions from all previous levels. For completeness, we
present the results of this adaptive RIDC formulation applied to the Orbit problem
(Figure 12) and the Auzinger problem (Figure 11). Step doubling is used for step-
size adaptivity on the predictor level, solutions from the error equation are used to
control step-sizes for the corrector levels. For the Auzinger problem, we observe
in the top figure that if the tolerances are held fixed on each level, each correction
level improves the solution. If the tolerance is reduced slightly on each level, the
step-size controller gives a poor step-size selection (many rejected steps), even
for this smoothly varying problem. For the Orbit IVP, Figure 12 shows that the
corrector improves the solution if the tolerances are held fixed at all levels; however
the corrector requires many steps. A second correction loop was not attempted.
Reducing the tolerance for the first corrector resulted in inordinately many rejected
steps.

5. Conclusions

In this paper, we formulated RIDC methods that incorporate local error estimation
and adaptive step-size control. Several formulations were discussed in detail: (i)
step doubling on the prediction level, (ii) embedded RK pairs on the prediction level,
(iii) step doubling on the prediction and error levels, and (iv) step doubling for the
prediction level but using the solution from the error equation for step-size control;
other formulations are also alluded to. A convergence theorem from [17] can be
extended to RIDC methods that use adaptive step-size control on the prediction level.
Numerical experiments demonstrate that RIDC methods with nonuniform steps
converge as designed and illustrate the type of behavior that might be observed
when adaptive step-size control is used on the prediction and correction levels.
Based on our numerical study, we conclude that adaptive step-size control on the
prediction level is viable for RIDC methods. In a practical application where a
user gives a specified tolerance, this prescribed tolerance must be transformed to a
specific tolerance that is fed to the predictor.
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` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.031 ·10−3 59 0
1 1 ·10−4 1·10−6 7.249 ·10−4 33 3
2 1 ·10−4 1·10−6 6.513 ·10−6 26 10
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t
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cor1
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` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.031 ·10−3 59 0
1 1 ·10−5 1·10−7 1.063 ·10−5 657 305
2 1 ·10−6 1·10−8 9.446 ·10−8 75 76
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t
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` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.031 ·10−3 59 0
1 1 ·10−7 1·10−9 1.178 ·10−7 60571 94

Figure 11. Auzinger problem: step doubling on prediction level, using successive levels
for error estimation for step control on the error equation. Step-size controller for the
corrector is noisy.
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0 5 10 1510−8

10−5

10−2

t

1
t

pred
corr1

` rtol atol error naccept nreject

0 1 ·10−4 1·10−4 2.405 2261 230
1 1 ·10−4 1·10−4 7.234 ·10−1 475181 84

Figure 12. Orbit problem: step doubling on prediction level, using successive levels for
error estimation for step control on the error equation.
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The aim of this paper is to build up the theoretical framework for the recovery of
sparse signals from the magnitude of the measurements. We first investigate the
minimal number of measurements for the success of the recovery of sparse signals
from the magnitude of samples. We completely settle the minimality question for
the real case and give a bound for the complex case. We then study the recovery
performance of the �1 minimization for the sparse phase retrieval problem. In
particular, we present the null space property which, to our knowledge, is the first
sufficient and necessary condition for the success of �1 minimization for k-sparse
phase retrieval.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The theory of compressive sensing has generated enormous interest in recent years. The goal of compres-
sive sensing is to recover a sparse signal from its linear measurements, where the number of measurements
is much smaller than the dimension of the signal, see e.g. [4–6,12]. The aim of this paper is to study the
problem of compressive sensing without the phase information. In this problem the goal is to recover a
sparse signal from the magnitude of its linear samples.

Recovering a signal from the magnitude of its linear samples, commonly known as phase retrieval or
phaseless reconstruction, has gained considerable attention in recent years [1,2,7,8]. It has important ap-
plication in X-ray imaging, crystallography, electron microscopy, coherence theory and other applications.
In many applications the signals to be reconstructed are sparse. Thus it is natural to extend compressive
sensing to the phase retrieval problem.
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We first introduce the notation and briefly describe the mathematical background of the problem. Let
F = {f1, f2, . . . , fm} be a set of vectors in Hd where H is either R or C. Assume that x ∈ Hd such that
bj = |〈x, fj〉|. The phase retrieval problem asks whether we can reconstruct x from {bj}m

j=1. Obviously, if
y = cx where |c| = 1 then |〈y, fj〉| = |〈x, fj〉|. Thus the best phase retrieval can do is to reconstruct x up to
a unimodular constant.

Consider the equivalence relation ∼ on H := Hd: x ∼ y if and only if there is a constant c ∈ H with
|c| = 1 such that x = cy. Let H̃ := H/∼. We shall use x̃ to denote the equivalent class containing x. For a
given F in H define the map MF : H̃ −→ Rm

+ by

MF (x̃) =
[∣∣〈x̃, f1〉

∣∣2, . . . ,
∣∣〈x̃, fm〉

∣∣2]�. (1.1)

The phase retrieval problem asks whether an x̃ ∈ H̃ is uniquely determined by MF (x̃), i.e. x̃ is recoverable
from MF (x̃). We say that a set of vectors F has the phase retrieval property, or is phase retrievable, if MF
is injective on H̃ = Hd/∼.

It is known that in the real case H = R the set F needs to have at least m ≥ 2d − 1 vectors to have the
phase retrieval property; furthermore a generic set of m ≥ 2d−1 elements in Rd will have the phase retrieval
property, (cf. Balan, Casazza and Edidin [1]). In the complex case H = C the same question remains open,
and is perhaps the most prominent open problem in phase retrieval. It is known that m ≥ 4d − 2 generic
vectors in Cd have the phase retrieval property [1]. The result is improved to m ≥ 4d − 4 in [10]. The
m = 4d − 4 vectors having the phase retrieval property are also constructed in [3]. The current conjecture
is that phase retrieval property in Cd can only hold when m ≥ 4d − 4.

The aforementioned results concern the general phase retrieval problem in Hd. In many applications,
however, the signal x is often sparse with ‖x‖0 = k 	 d.

We use the standard notation Hd
k to denote the subset of Hd whose elements x have ‖x‖0 ≤ k. Let

H̃k denote Hd
k/∼. A set F of vectors in Hd is said to have the k-sparse phase retrieval property, or is

k-sparse phase retrievable, if any x̃ ∈ H̃k is uniquely determined by MF (x̃). In other words, the map MF
is injective on H̃k. One may naturally ask: How many vectors does F need to have so that F is k-sparse
phase retrievable?

The best current results on the k-sparse phase retrieval property are proved by Li and Voroninski [16],
which state that k-sparse phase retrieval property can be achieved by having m ≥ 4k and m ≥ 8k vectors
for the real and complex case, respectively (see also [18]).

In Section 2, we prove sharper results for a set of vectors F to have the k-sparse phase retrieval property.
In the real case H = R we obtain a sharp result. We show that for any k < d the set F must have at least
m ≥ 2k elements to be k-sparse phase retrievable. Furthermore, any m ≥ 2k generic vectors will be k-sparse
phase retrievable. In the complex case H = C we proved that any m ≥ 4k − 2 generic vectors have the
k-sparse phase retrieval property. We conjecture that this bound is also sharp, namely for k < d a set F in
Cd needs at least 4k − 2 vectors to have the k-sparse phase retrieval property.

A foundation of compressive sensing is built on the fact that the recovery of a sparse signal from a
system of under-determined linear equations is equivalent to finding the extremal value of �1 minimization
under certain conditions. The �1 minimization is extended to the phase retrieval in [17] and one also develops
many algorithms to compute it (see [20,22]). However, there have been few theoretical results on the recovery
performance of �1 minimization for sparse phase retrieval. In Section 3, we present the null space property,
which, to our knowledge, is the first sufficient and necessary condition for the success of �1 minimization
for k-sparse phase retrieval. If we take k = d, the null space property is reduced to a condition of the set of
vectors F under which MF is injective on Cd/∼ and we present it in Section 4.312
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2. Minimal sample number for k-sparse phase retrieval

In this section we study the problem of minimal number of samples (measurements) required for k-sparse
phase retrieval. We shall introduce more notations here. Often it is convenient to identify a set of vectors
F = {f1, f2, . . . , fm} with the matrix F = [f1, f2, . . . , fm] whose columns are the vectors fj . When F is a
frame this is known as the frame matrix of F . We shall use the term frame matrix for F regardless whether
F is a frame or not. Also for integers n ≤ m we use the notation [n : m] to denote the set {n, n+1, . . . ,m}.
For x ∈ Hd, we set |x| := [|x1|, . . . , |xd|]. Similar to before, we let

Rd
k :=

{
x ∈ Rd : ‖x‖0 ≤ k

}
.

Our first theorem completely settles the minimality question for k-sparse phase retrieval in the real case
H = R.

Theorem 2.1. Let F = {f1, . . . , fm} be a set of vectors in Rd. Assume that F is k-sparse phase retrievable
on Rd. Then m ≥ min{2k, 2d−1}. Furthermore, a set F of m ≥ min{2k, 2d−1} generically chosen vectors
in Rd is k-sparse phase retrievable.

Proof. Note that the full sparsity case k = d is already known: m ≥ 2d − 1 vectors are needed for phase
retrieval and a generic set of F with m ≥ 2d − 1 vectors will have the phase retrieval property. So we will
focus only on k < d.

We first prove that m ≥ 2k. Assume F has m < 2k elements. We prove F does not have the k-sparse
phase retrieval property by constructing x, y ∈ Rd

k with |〈x, fj〉| = |〈y, fj〉| but x �= ±y.
We divide F into two groups: F1 = {fj : j ∈ [1 : k]} and F2 = {fj : j ∈ [k+1 : m]}. Let the corresponding

frame matrices be F1 and F2, respectively. Consider the subspace

W =
{
[x1, x2, . . . , xk+1, 0, . . . , 0]� ∈ Rd : x1, . . . , xk+1 ∈ R

}
.

For the first group F1, there exists a u ∈ W \ {0} such that F�
1 u = 0, i.e. 〈fj , u〉 = 0 for all 1 ≤ j ≤ k. This

is because dim(W ) = k + 1 and there are only k equations. Note also that there are at most k − 1 vectors
in the second group F2 since m − k < 2k − k = k. Thus the solution space

{
v ∈ W : F�

2 v = 0
}

has dimension at least 2. Hence, there exist linearly independent α, β ∈ W so that for all t, s ∈ R

v = tα + sβ

satisfies

F�
2 v = 0, i.e. 〈fj , v〉 = 0 for j ∈ [k + 1 : m].

Write u = [u1, u2, . . . , ud]� (where uj = 0 for j > k +1). Since α and β are linearly independent, we may
without loss of generality assume [α1, α2]� and [β1, β2]� are linearly independent, where α = [α1, . . . , αd]�
and β = [β1, . . . , βd]�. We first consider the case where either u1 �= 0 or u2 �= 0. Then there exist s0, t0 ∈ R
with (s0, t0) �= (0, 0) so that

u1 = t0α1 + s0β1,

−u2 = t0α2 + s0β2.313
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Now set v̄ = t0α + s0β and

x := u + v̄, y := u − v̄.

Clearly x, y ∈ Rd
k since supp(x) ⊆ {1, 3, . . . , k + 1} and supp(y) ⊆ {2, 3, . . . , k + 1}. Moreover

〈fj , x〉 = 〈fj , u〉 + 〈fj , v̄〉 =
{

〈fj , v̄〉 j ≤ k

〈fj , u〉 j > k,

and similarly

〈fj , y〉 = 〈fj , u〉 − 〈fj , v̄〉 =
{

〈fj , v̄〉 j ≤ k

−〈fj , u〉 j > k.

It follows that |〈fj , x〉| = |〈fj , y〉| for all j but x �= ±y. We next consider the case where u1 = u2 = 0. Then
there exist s0, t0 ∈ R with (s0, t0) �= (0, 0) so that

0 = t0α1 + s0β1,

1 = t0α2 + s0β2.

Similar to before, we set v̄ = t0α + s0β and

x := u + v̄, y := u − v̄.

Then x, y ∈ Rd
k and |〈fj , x〉| = |〈fj , y〉| for all j but x �= ±y. Thus F does not have the k-sparse phase

retrieval property in Rd
k.

We next prove that a set F of m ≥ 2k generic vectors will have the k-sparse phase retrieval property.
Let us first fix I, J ⊂ [1 : N ] with #I = #J = k. The goal is to prove that if x, y ∈ RN

k with supp(x) ⊂ I

and supp(y) ⊂ J satisfying

∣∣〈fj , x〉
∣∣2 =

∣∣〈fj , y〉
∣∣2, j = 1, . . . ,m, (2.1)

then x = ±y. Eq. (2.1) implies that for all j we have

〈fj , x − y〉 · 〈fj , x + y〉 = 0. (2.2)

Thus either 〈fj , x − y〉 = 0 or 〈fj , x + y〉 = 0. Without loss of generality, we assume that

〈fj , x − y〉 = 0, j ∈ [1 : n]

〈fj , x + y〉 = 0, j ∈ [n + 1 : m]. (2.3)

Set

L := I ∩ J and � := #L.

For convenience we write

x = ux + vx, supp(ux) ⊂ L, supp(vx) ⊂ I \ L,

y = uy + vy, supp(uy) ⊂ L, supp(vy) ⊂ J \ L.314
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We abuse the notation a little by viewing vx ∈ Rk−� since it is supported on I \ L with #(I \ L) = k − �.
Similarly we view vy ∈ Rk−� and ux, uy ∈ R�. Set

w− := ux − uy, w+ := ux + uy, and z :=

⎡
⎢⎢⎢⎣

vx

vy

w−
w+

⎤
⎥⎥⎥⎦ ∈ R2k.

Using the notions above, we have

〈fj , x − y〉 = 〈fj , vx〉 − 〈fj , vy〉 + 〈fj , w−〉,
〈fj , x + y〉 = 〈fj , vx〉 + 〈fj , vy〉 + 〈fj , w+〉. (2.4)

Set A := F� where F is the frame matrix of F . Combining (2.3) and (2.4) now yields

[
A[1:n],I\L −A[1:n],J\L A[1:n],L 0

A[n+1:m],I\L A[n+1:m],J\L 0 A[n+1:m],L

]
⎡
⎢⎢⎢⎣

vx

vy

w−
w+

⎤
⎥⎥⎥⎦ = 0, (2.5)

where for any index sets J1, J2 we use the notation AJ1,J2 to denote the sub-matrix of A with the rows
indexed in J1 and columns indexed in J2. To show x = ±y we only need to show that the linear equations
(2.5) force vx = 0, vy = 0 and either w− = 0 or w+ = 0.

We first consider the case n ≥ 2k − �. In this case, we consider only the first set of Eqs. (2.5)

[
A[1:n],I\L −A[1:n],J\L A[1:n],L

]
⎡
⎢⎣

vx

vy

w−

⎤
⎥⎦ = 0. (2.6)

Note that the matrix
[
A[1:n],I\L −A[1:n],J\L A[1:n],L

]

has dimensions n × (2k − �). The elements are generically chosen. Thus it has full rank 2k − �. It follows
that (2.6) has only trivial solution vx = 0, vy = 0 and w− = 0. Hence x = y.

We next consider the case with m − n ≥ 2k − �. Here we consider the second set of Eq. (2.5):

[
A[n+1:m],I\L A[n+1:m],J\L A[n+1:m],L

]
⎡
⎢⎣

vx

vy

w+

⎤
⎥⎦ = 0. (2.7)

The same argument used for the case n ≥ 2k − � now applies to yield vx = 0, vy = 0 and w+ = 0. Hence in
this case x = −y.

We finally consider the case where n < 2k − � and m − n < 2k − �. In this case we must have

2k − � > m − n ≥ 2k − n,

and hence n > �. Similarly, we have � < 2k − n ≤ m − n. We argue that the rank of the matrix in (2.5) is
2k when F� is generic. Let B denote the matrix in (2.5). If rank(B) < 2k then all 2k × 2k sub-matrices of315
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B have determinant 0. Note that each determinant is either identically 0 or a nontrivial polynomial of the
entries of F . Hence if there exists a single example of a matrix B with rank(B) = 2k then rank(B) = 2k
for a generic choice of F . We shall construct an example of such an F with rank(B) = 2k. Set

A[1:n],L =
[

I�

0

]
, A[n+1:m],L =

[
I�

0

]
,

[A[1:n],I\L,−A[1:n],J\L] =
[

0
H1

]
, [A[n+1:m],I\L,−A[n+1:m],J\L] =

[
0

H2

]
,

where I� denotes the � × � identity matrix. With this choice, for almost all H1 ∈ R(n−�)×(2k−2�), H2 ∈
R(m−n−�)×(2k−2�) we have rank(B) = 2k. The solution to (2.5) is thus trivial, namely vx = 0, vy = 0,
w− = 0 and w+ = 0. Thus x = y = 0. The theorem is now proved. �

We next consider the complex case. Similar to the real case we set

Cd
k :=

{
x ∈ Cd : ‖x‖0 ≤ k

}
.

Then we have

Theorem 2.2. A set F of m ≥ 4k − 2 generically chosen vectors in Cd is k-sparse phase retrievable.

Proof. We shall identify F with F where F = {f1, f2, . . . , fm} is the corresponding frame matrix, F = [fij ].
Following the technique in [1] we shall view F as an element in R2md. The goal here is to show that the
set of matrices F that are not k-sparse phase retrievable has local real dimension strictly smaller than 2md

provided m ≥ 4k − 2.
For any subset of indices I, J ⊂ [1 : d] with #I = #J = k let GI,J denote the set of matrices in Cd×m

with the following property: There exist x, y ∈ Cd where supp(x) ⊂ I, supp(y) ⊂ J and x �= cy with |c| = 1
such that MF (x) = MF (y), i.e. |〈fj , x〉| = |〈fj , y〉| for all j. Now if MF (x) = MF (y), then for any a, ω ∈ C
with |ω| = 1 we also have MF (ax) = MF (aωy). Thus for any F ∈ GI,J we may find x, y ∈ Cd with
MF (x) = MF (y) such that

• supp(x) ⊂ I, supp(y) ⊂ J .
• The first nonzero entry of x is 1.
• The first nonzero entry of y is real and positive.

Let X denote the subset of Cd consisting of elements x ∈ Cd whose first nonzero entry is 1. Let Y denote
the subset of Cd consisting of elements y ∈ Cd whose first nonzero entry, if it exists, is real and positive.
Note that in essence X can be viewed as the projective space Pd−1 \ {0} and Y can be viewed as the set
Cd/∼. Let Cd

I denote the set of vectors x ∈ Cd such that supp(x) ⊆ I. Now consider the set of 3-tuples

AI,J :=
{
(F, x, y)

}

with the following properties:

• x ∈ X ∩ Cd
I and y ∈ Y ∩ Cd

J .
• x �= ωy for any ω ∈ C with |ω| = 1.
• MF (x) = MF (y). 316
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Now the projection of AI,J to the first component gives the full set GI,J . Each (F, x, y) ∈ AI,J gives rise
to the constraints |〈fj , x〉| = |〈fj , y〉| for j ∈ [1 : m], which lead to the set of quadratic equations in Re(fij),
Im(fij) (by viewing x, y as fixed)

∣∣∣∣∣
N∑

k=1
fkjxk

∣∣∣∣∣

2

=
∣∣∣∣∣

N∑

k=1
fkjyk

∣∣∣∣∣

2

, j = 1, . . . ,m. (2.8)

Note that all equations are independent and each is non-trivial because x �= y in Cd/∼. Thus for any fixed
x, y the set of such A = [fij ] satisfying (2.8) is a real algebraic variety of (real) codimension m. Hence, AI,J

has local dimension everywhere at most

2md − m + dimR
(
X ∩ Cd

I

)
+ dimR

(
Y ∩ Cd

J

)
= 2md − m + 2k − 2 + 2k − 1 = 2md − (m − 4k + 3).

It follows from m ≥ 4k−2 that AI,J has local (real) dimension at most 2md−1. Now GI,J is the projection
of AI,J onto the first component. Thus, GI,J has dimension at most 2md − 1. In other words, a generic
F ∈ Cd×m is not in GI,J .

Finally, the set of F ∈ Cd×m not having the k-sparse phase retrieval property for Cd
k is the union of all

GI,J with #I = #J = k. It is a finite union. The theorem is now proved. �
Remark. Although the above theorem shows that in the complex case any m ≥ 4k − 2 generically chosen
vectors are k-sparse phase retrievable, it is unknown whether 4k−2 is in fact the minimal number required.
It will be interesting to use the technology developed in [10] to improve the result.

3. Null space property for sparse phase retrieval

In this section, we investigate the performance of �1 minimization for sparse phase retrieval with extending
the null space property in compressed sensing to the phase retrieval setting. We first introduce the null space
property in compressed sensing, and then extend it to the phase retrieval setting on Rd

k and Cd
k, respectively.

3.1. Null space property

A key concept in compressive sensing is the so-called null space property of a matrix. For a given frame
F = {f1, . . . , fm} ⊂ Hd, we use F to denote the frame matrix. Let N (F ) denote the kernel of F�, i.e.,

N (F ) =
{
η ∈ Hd : 〈fj , η〉 = 0, j = 1, . . . ,m

}
.

To state conveniently, when F = ∅, we set N (F ) := Hd.

Definition 3.1. The matrix F satisfies the null space property of order k if for any nonzero η = [η1, . . . , ηd]� ∈
N (F ) and any T ⊂ [1 : d] with #T ≤ k it holds that

‖ηT ‖1 < ‖ηT c‖1,

where T c is the complementary index set of T and ηT is the restriction of η to T .

A fundamental result in compressed sensing is that a signal x ∈ Hd
k can be recovered via the �1 mini-

mization if and only if the sensing matrix A has the null space property of order k. We state it as follows
(see [9,13–15,19]): 317
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Theorem 3.1. Let F be a set of vectors in Hd and F be the associated frame matrix. Then F satisfies the
null space property of order k if and only if it has

argmin
x∈Hd

{
‖x‖1 : F�x = F�x0

}
= x0

for every x0 ∈ Hd
k.

3.2. The null space property for the real sparse phase retrieval

Our goal here is to extend Theorem 3.1 to the phase retrieval for the real signal. For a given frame
F = {f1, . . . , fm} and a subset S of [1 : m] we shall use FS to denote the set FS := {fj : j ∈ S}. Similarly
for the frame matrix we shall use FS to denote the corresponding frame matrix of FS , i.e. the matrix whose
columns are the vectors of FS . We first consider the real case.

Theorem 3.2. Let F = {f1, f2, . . . , fm} be a set of vectors in Rd and F be the associated frame matrix. The
following properties are equivalent:

(A) For any x0 ∈ Rd
k we have

argmin
x∈Rd

{
‖x‖1 :

∣∣F�x
∣∣ =

∣∣F�x0
∣∣} = {±x0}, (3.1)

where |F�x| = [|〈f1, x〉|, . . . , |〈fm, x〉|]�.
(B) For every S ⊆ [1 : m], it holds

‖u + v‖1 < ‖u − v‖1

for all nonzero u ∈ N (FS) and v ∈ N (FSc) satisfying ‖u + v‖0 ≤ k.

Proof. First we show (B) ⇒ (A). Let b = [b1, . . . , bm]� := |F�x0| where x0 ∈ Rd
k. For a fixed ε ∈ {1,−1}m

set bε := [ε1b1, . . . , εmbm]�. We now consider the following minimization problem:

min ‖x‖1 s.t. F�x = bε. (3.2)

The solution to (3.2) is denoted as xε. We claim that for any ε ∈ {1,−1}m we must have

‖xε‖1 ≥ ‖x0‖1

if xε exists (it may not exist), and the equality holds if and only if xε = ±x0.
To prove the claim let ε∗ ∈ {1,−1}m such that bε∗ = F�x0. Note that property (B) implies the classical

null space property of order k. To see this, for any nonzero η ∈ N (F ) and T ⊆ [1 : d] with #T ≤ k, set
u := η and v := ηT − ηT c . Let S = [1 : m]. Then u ∈ N (FS) and v ∈ N (FSc). The hypothesis of (B) now
implies

2‖ηT ‖1 = ‖u + v‖1 < ‖u − v‖1 = 2‖ηT c‖1.

Consequently we must have xε∗ = x0 by Theorem 3.1. Now for any ε ∈ {−1, 1}m �= ±ε∗, if xε doesn’t exist
then we have nothing to prove. Assume it does exist. Set S∗ := {j : εj = ε∗

j}. Then318
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〈fj , xε〉 =
{

〈fj , x0〉 j ∈ S∗,
−〈fj , x0〉 j ∈ Sc

∗.

Set u := x0 − xε and v := x0 + xε. Clearly u ∈ N (FS∗) and v ∈ N (FSc
∗). Furthermore u+ v = 2x0 ∈ Rd

k. By
the hypothesis of (B) we must have

2‖x0‖1 = ‖u + v‖1 < ‖u − v‖1 = 2‖xε‖1.

This proves (A).
Next we prove (A) ⇒ (B). Assume (B) is false, namely, there exist nonzero u ∈ N (FS) and v ∈ N (FSc)

such that ‖u + v‖1 ≥ ‖u − v‖1 and u + v ∈ Rd
k. Now set

x0 := u + v ∈ Rd
k.

Clearly,
∣∣〈fj , x0〉

∣∣ =
∣∣〈fj , u + v〉

∣∣ =
∣∣〈fj , u − v〉

∣∣, j = 1, . . . ,m

since either 〈fj , u〉 = 0 or 〈fj , v〉 = 0. In other words, |F�x0| = |F�(u − v)|. Note that u − v �= −x0, for
otherwise we would have u = 0, a contradiction. It follows from the hypothesis of (A) that we must have

‖x0‖1 = ‖u + v‖1 < ‖u − v‖1.

This is a contradiction. �
Remark. Theorem 3.2 extends results for the null space property of order k in compressive sensing to phase
retrieval. It will be very interesting for constructing matrix A ∈ Rm×d with m � k log d satisfying (B) in
Theorem 3.2.

3.3. The null space property for the complex sparse phase retrieval

We now consider the complex case H = C. Throughout this subsection, we say that S = {S1, . . . , Sp},
p ≥ 2, is a partition of [1 : m] if

Sj ⊂ [1 : m],
p⋃

j=1
Sj = [1 : m] and Sj ∩ S� = ∅ for all j �= �.

To state conveniently, we set S := {c ∈ C : |c| = 1} and

Sm :=
{
(c1, . . . , cm) ∈ Cm : |cj | = 1, j ∈ [1 : m]

}
.

Then we have:

Theorem 3.3. Let F = {f1, f2, . . . , fm} be a set of vectors in Cd and F be the associated frame matrix. The
following properties are equivalent.

(A) For any x0 ∈ Cd
k we have

argmin
x̃∈Cd/∼

{
‖x‖1 :

∣∣F�x
∣∣ =

∣∣F�x0
∣∣} = x̃0, (3.3)319
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where |F�x| = [|〈f1, x〉|, . . . , |〈fm, x〉|]� and x̃0 denotes the equivalent class {cx0 : c ∈ S} in Cd/∼
containing x0.

(B) Suppose that S1, . . . , Sp is any partition of [1 : m] and that c1, . . . , cp ∈ S are any p pairwise distinct
complex numbers. If ηj ∈ N (FSj

) \ {0}, j ∈ [1 : m], satisfy

η1 − η�

c1 − c�
= η1 − ηj

c1 − cj
∈ Cd

k \ {0} for all �, j ∈ [2 : p], (3.4)

then

‖ηj − η�‖1 < ‖c�ηj − cjη�‖1,

for all j, � ∈ [1 : p] with j �= �.

Proof. We first show (B) ⇒ (A). Let b = [b1, . . . , bm]� := |F�x0| where x0 ∈ Cd
k. For a fixed ε ∈ Sm set

bε := [ε1b1, . . . , εmbm]�. We now consider the following minimization problem:

min ‖x‖1 s.t. F�x = bε. (3.5)

The solution to (3.5) is denoted as xε. We claim that for any ε ∈ Sm we must have

‖xε‖1 ≥ ‖x0‖1

if xε exists (it may not exist), and the equality holds if and only if x̃ε = x̃0.
To prove the claim let ε∗ ∈ Sm such that bε∗ = F�x0. Note that property (B) implies the classical

null space property of order k. To see this, take S1 = [1 : m], S2 = ∅, c1 = 1 and c2 = −1. Then (3.4)
is reduced to require that η1 − η2 ∈ Cd

k, i.e., η1 − η2 is k-sparse. Given T ⊂ [1 : d] with #T ≤ k and
η1 ∈ N (F ) = N (FS1), set

η2 := (η1)T c − (η1)T ∈ N (FS2) = Cd.

Then η1 − η2 ∈ Cd
k. The (B) implies that

2
∥∥(η1)T

∥∥
1 = ‖η1 − η2‖1 < ‖η1 + η2‖ = 2

∥∥(η1)T c

∥∥
1,

which implies the classical null space property.
Consequently we must have x̃ε∗ = x̃0 by Theorem 3.1. Now we consider an arbitrary ε ∈ Sm. If ε̃ = ε̃∗,

then x̃ε = x̃0. So, we only consider the case where ε̃ �= ε̃∗. If xε does not exist then we have nothing to
prove. Assume it does exist. Set c′

j := εj/ε
∗
j and η′

j := c′
jxε∗ − xε for 1 ≤ j ≤ m. We can use c′

j to define
an equivalence relation on [1 : m], namely j ∼ � if c′

j = c′
�. This equivalence relation leads to a partition

S = {S1, . . . , Sp} of [1 : m]. Now we set cj := c′
� where � ∈ Sj . Clearly all cj , 1 ≤ j ≤ p, are distinct and

unimodular.
Now set ηj := cjxε∗ − xε. Then we have

ηj ∈ N (FSj
) \ {0}, for all j ∈ [1 : p]

and

η1 − ηj

c1 − cj
= η1 − η�

c1 − c�
∈ Cd

k, for all j, � ∈ [2 : p].320
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By the hypothesis of (B) we must have

|cj − c�| · ‖x0‖1 = ‖ηj − η�‖1 < ‖c�ηj − cjη�‖1 = |cj − c�| · ‖xε‖1,

which implies that

‖x0‖1 < ‖xε‖1.

This proves (A).
We next prove (A) ⇒ (B). Assume (B) is false, namely, there exist nonzero ηj ∈ N (FSj

), j ∈ [1 : p]
satisfying (3.4) but

‖ηj0 − η�0‖1 ≥ ‖c�0ηj0 − cj0η�0‖1

for some distinct j0, �0 ∈ [1 : p]. Note that (3.4) implies that

ηj − η�

cj − c�
= ηm − ηn

cm − cn
∈ Cd

k \ {0}, (3.6)

for all j, �,m, n ∈ [1 : p] with j �= � and m �= n. Without loss of generality, we assume that j0 = 1, �0 = 2,
i.e.,

‖η1 − η2‖1 ≥ ‖c2η1 − c1η2‖1. (3.7)

Set

x0 := η1 − η2,

and (3.6) implies that x0 ∈ Cd
k \ {0}. We claim that

∣∣〈fj , x0〉
∣∣ =

∣∣〈fj , η1 − η2〉
∣∣ =

∣∣〈fj , c2η1 − c1η2〉
∣∣, for all j ∈ [1 : p]. (3.8)

Note that x0 is k-sparse. Combining (3.8), (3.7) and (3.3) now yields

cx0 = cη1 − cη2 = c2η1 − c1η2

for some c ∈ S. Consequently we obtain

(c − c2)η1 = (c − c1)η2,

which implies that

η2 = c − c2
c − c1

η1. (3.9)

Here, note that c /∈ {c1, c2}, for otherwise we will have either η1 = 0 or η2 = 0. Combining (3.4) and (3.9)
leads to

• η1 is k-sparse;
• for all j ∈ [2 : p], ηj and η1 are linear dependent and hence η1 ∈ N (FSj

).321
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And hence we have F�η1 = 0. By the hypothesis of (A) and η1 ∈ Cd
k we have η1 = 0. A contradiction.

We remain to prove (3.8). First, when j ∈ S1 ∪ S2, (3.8) holds, since either 〈fj , η1〉 = 0 or 〈fj , η2〉 = 0.
We consider the case where j ∈ S3. Set y0 := η1−η2

c1−c2
. Then (3.6) implies that

η1 − η3
c1 − c3

= η2 − η3
c2 − c3

= y0

and hence

η1 = (c1 − c3)y0 + η3,

η2 = (c2 − c3)y0 + η3.

Note that 〈fj , η3〉 = 0 with j ∈ S3. Then
∣∣〈fj , c2η1 − c1η2〉

∣∣ =
∣∣〈fj , c2(c1 − c3)y0 − c1(c2 − c3)y0

〉∣∣

=
∣∣〈fj , c3(c1 − c2)y0

〉∣∣ =
∣∣〈fj , η1 − η2〉

∣∣ =
∣∣〈fj , x0〉

∣∣.

Using a similar argument, we easily prove the claim for j ∈ S4, . . . , Sp. �
Remark. When p = 2, Eq. (3.4) is reduced to η1 − η2 ∈ Cd

k \ {0}. And hence, if take p = 2, the (B) in
Theorem 3.3 implies that

‖η1 − η2‖1 < ‖c2η1 − c1η2‖1

for all nonzero η1 ∈ N (FS1) and η2 ∈ N (FS2) satisfying η1 − η2 ∈ Cd
k \ {0} and all c1, c2 ∈ S with c1 �= c2.

Remark. In [21], Tillmann and Pfetsch investigated the computational complexity of the classical null space
property, and d’Aspremont and Ghaou also designed algorithms to test it [11]. It will be very interesting to
extend the result to the null space property introduced in Theorem 3.3 in the future research.

4. Null space property for general phase retrieval

Theorem 3.2 and Theorem 3.3 present the null space property for the phase retrievable on Rd
k and Cd

k,
respectively. In phase retrieval, one is also interested in the condition under which F is phase retrievable on
Rd or Cd. For the real case, such a condition is presented in [1]:

Theorem 4.1. (See [1].) Let F = {f1, f2, . . . , fm} be a set of vectors in Rd and F be the associated frame
matrix. The following properties are equivalent:

(A) F is phase retrievable on Rd;
(B) For every subset S ⊂ {1, . . . ,m}, either {fj}j∈S spans Rd or {fj}j∈Sc spans Rd.

We next consider the complex case. Motivated by Theorem 3.3, we can present the null space property
under which F is phase retrievable on Cd. It can be considered as an extension of Theorem 4.1:

Theorem 4.2. Let F = {f1, f2, . . . , fm} be a set of vectors in Cd and F be the associated frame matrix. The
following properties are equivalent:

(A) F is phase retrievable on Cd; 322
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(B) Suppose that S1, . . . , Sp is any partition of [1 : m] and that c1, . . . , cp ∈ S are any p pairwise distinct
complex numbers. There exists no ηj ∈ N (FSj

) \ {0}, j = 1, . . . , p, such that

η1 − η�

c1 − c�
= η1 − ηj

c1 − cj
�= 0 for all �, j ∈ [2 : p]. (4.1)

Proof. We first prove (A) ⇒ (B). Assume (B) is false, namely, there exist nonzero ηj ∈ N (FSj
), j ∈ [1 : p],

satisfying (4.1). Set

x0 := η1 − η2.

Using a similar method as the proof of (3.8), we obtain that
∣∣〈fj , x0〉

∣∣ =
∣∣〈fj , η1 − η2〉

∣∣ =
∣∣〈fj , c2η1 − c1η2〉

∣∣, for all j ∈ [1 : p].

Then, according to (A) and the definition of phase retrievable, we have

cx0 = cη1 − cη2 = c2η1 − c1η2

for some unimodular constant c ∈ S \ {c1, c2}, which implies that

η2 = c − c2
c − c1

η1. (4.2)

Combining (4.1) and (4.2), we obtain that, for all j ∈ [2 : p], ηj and η1 are linear dependent and hence
η1 ∈ N (FSj

). So, F�η1 = 0. Then (A) implies that η1 = 0, a contradiction.
We next show (B) ⇒ (A). Set b = [b1, . . . , bm]� := |F�x0| where x0 ∈ Cd \ {0}. For a fixed ε ∈ Sm set

bε := [ε1b1, . . . , εmbm]�. We now consider the solution to

F�x = bε. (4.3)

The solution to (4.3) is denoted as xε. We claim that if xε exists then x̃ε = x̃0, which implies (A). Recall
that x̃0 denotes the equivalent class {cx0 : c ∈ S} in Cd/∼ containing x0. To prove the claim let ε∗ ∈ Sm

such that bε∗ = F�x0. Then (B) implies that the rank of F is d. Consequently we must have xε∗ = x0.
Now we consider an arbitrary ε ∈ Sm. If ε̃ = ε̃∗, then x̃ε = x̃0. To this end, we only need prove that xε does
not exist if ε̃ �= ε̃∗. Assume xε does exist. Set c′

j := εj/ε
∗
j and η′

j := c′
jxε∗ − xε for 1 ≤ j ≤ m. We can use

c′
j to define an equivalence relation on [1 : m], namely j ∼ � if c′

j = c′
�. This equivalence relation leads to

a partition S = {S1, . . . , Sp} of [1 : m]. Now we set cj := c′
� where � ∈ Sj . Clearly all cj , 1 ≤ j ≤ p, are

distinct and unimodular. Now set ηj := cjxε∗ − xε. By definition for all 1 ≤ j ≤ p we have

ηj ∈ N (FSj
) \ {0}

and

η1 − ηj

c1 − cj
= η1 − η�

c1 − c�
�= 0 for all j, � ∈ [2 : p],

which contradicts with (B). And hence xε does not exist if ε̃ �= ε̃∗. This proves (A). �
Remark. When p = 2, Eq. (4.1) is reduced to η1 − η2 �= 0 which in turn implies that either N (FS1) = {0}
or N (FS2) = {0}. 323

DISTRIBUTION A: Distribution approved for public release.



544 Y. Wang, Z. Xu / Appl. Comput. Harmon. Anal. 37 (2014) 531–544

References

[1] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal. 20 (2006) 345–356.
[2] R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from magnitudes of frame coefficients, J. Fourier

Anal. Appl. 15 (4) (2009) 488–501.
[3] B.G. Bodmann, N. Hammen, Stable phase retrieval with low-redundancy frame, arXiv:1302.5487.
[4] E.J. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory 51 (2005) 4203–4215.
[5] E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete

frequency information, IEEE Trans. Inform. Theory 52 (2) (2006) 489–509.
[6] E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure

Appl. Math. 59 (8) (2006) 1207–1223.
[7] E. Candès, T. Strohmer, V. Voroninski, PhaseLift: exact and stable signal recovery from magnitude measurements via

convex programming, Comm. Pure Appl. Math. 66 (8) (2013) 1241–1274.
[8] E. Candès, Y. Eldar, T. Strohmer, V. Voroninski, Phase retrieval via matrix completion problem, SIAM J. Imaging Sci.

6 (1) (2013) 199–225.
[9] A. Cohen, W. Dahmen, R. DeVore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc. 22 (2009)

211–231.
[10] A. Conca, D. Edidin, M. Hering, C. Vinzant, Algebraic characterization of injectivity in phase retrieval, arXiv:1312.0158,

2013.
[11] Alexandre d’Aspremont, Laurent El Ghaoui, Testing the nullspace property using semidefinite programming, Math. Pro-

gram., Ser. B 127 (2011) 123–144.
[12] D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (4) (2006) 1289–1306.
[13] D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decompositions, IEEE Trans. Inform. Theory 47 (2001)

2845–2862.
[14] M. Elad, A.M. Bruckstein, A generalized uncertainty principle and sparse representation in pairs of bases, IEEE Trans.

Inform. Theory 48 (2002) 2558–2567.
[15] R. Gribonval, M. Nielsen, Sparse representations in unions of bases, IEEE Trans. Inform. Theory 49 (2003) 3320–3325.
[16] Xiaodong Li, V. Voroninski, Sparse signal recovery from quadratic measurements via convex programming, SIAM J. Math.

Anal. 45 (5) (2013) 3019–3033.
[17] M. Moravec, J. Romberg, R. Baraniuk, Compressive phase retrieval, in: Proceedings of SPIE, International Society for

Optics and Photonics, 2007.
[18] H. Ohlsson, Y.C. Eldar, On conditions for uniqueness in sparse phase retrieval, arXiv:1308.5447.
[19] A. Pinkus, On L1-Approximation, Cambridge Tracts in Math., vol. 93, Cambridge University Press, Cambridge, 1989.
[20] P. Schniter, S. Rangan, Compressive phase retrieval via generalized approximate message passing, in: Proceedings of

Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, Oct. 2012, 2012.
[21] Andreas M. Tillmann, Marc E. Pfetsch, The computational complexity of the restricted isometry property, the nullspace

property, and related concepts in compressed sensing, IEEE Trans. Inform. Theory 60 (2014) 1248–1259.
[22] Zai Yang, Cishen Zhang, Lihua Xie, Robust compressive phase retrieval via L1 minimization with application to image

reconstruction, arXiv:1302.0081.

324
DISTRIBUTION A: Distribution approved for public release.



Linear Algebra and its Applications 449 (2014) 475–499

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Phase retrieval from very few measurements

Matthew Fickus a, Dustin G. Mixon a,∗, Aaron A. Nelson a,
Yang Wang b

a Department of Mathematics and Statistics, Air Force Institute of Technology,
Wright–Patterson AFB, OH 45433, USA
b Department of Mathematics, Michigan State University, East Lansing,
MI 48824, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 September 2013
Accepted 4 February 2014
Available online 17 March 2014
Submitted by V. Mehrmann

MSC:
42C15
68Q17

Keywords:
Phase retrieval
Informationally complete
Unit norm tight frames
Computational complexity

In many applications, signals are measured according to a
linear process, but the phases of these measurements are often
unreliable or not available. To reconstruct the signal, one must
perform a process known as phase retrieval. This paper focuses
on completely determining signals with as few intensity
measurements as possible, and on efficient phase retrieval
algorithms from such measurements. For the case of complex
M -dimensional signals, we construct a measurement ensemble
of size 4M − 4 which yields injective intensity measurements;
this is conjectured to be the smallest such ensemble. For the
case of real signals, we devise a theory of “almost” injective
intensity measurements, and we characterize such ensembles.
Later, we show that phase retrieval from M + 1 almost
injective intensity measurements is NP-hard, indicating that
computationally efficient phase retrieval must come at the
price of measurement redundancy.

Published by Elsevier Inc.

* Corresponding author.
E-mail address: dustin.mixon@afit.edu (D.G. Mixon).

http://dx.doi.org/10.1016/j.laa.2014.02.011
0024-3795/Published by Elsevier Inc.

325
DISTRIBUTION A: Distribution approved for public release.



476 M. Fickus et al. / Linear Algebra and its Applications 449 (2014) 475–499

1. Introduction

Given an ensemble Φ = {ϕn}N
n=1 of M -dimensional vectors (real or complex),

the phase retrieval problem is to recover a signal x from the intensity measurements
A(x) := {|〈x, ϕn〉|2}N

n=1. Note that for any scalar ω of unit modulus, A(ωx) = A(x),
and so the best one can hope to do is recover the set of signals {ωx: |ω| = 1}. Intensity
measurements arise in a number of applications in which phase is either unreliable or not
available, such as diffractive imaging [10,30,34,35] and optics [21,35,41]. For example, in
high-power coherent diffractive imaging, only the intensities of diffracted X-rays can be
recorded, and so to reconstruct material density profiles one must obtain the lost phase
information after the fact [10]. Intensity measurements also appear in quantum state
tomography when measuring a rank-1 quantum state using a positive operator-valued
measure (POVM) consisting of rank-1 elements [27,28,31]. In most of these applications
it is desirable to perform phase retrieval from as few measurements as possible, since in-
creasing N invariably makes the measurement process more expensive or time consuming.

Recently, there has been a lot of work on algorithmic phase retrieval. For example, by
viewing intensity measurements as Hilbert–Schmidt inner products between rank-1 oper-
ators [3,14], phase retrieval can be formulated as a low-rank matrix recovery problem [12,
18,23,39], and with this formulation phase retrieval is possible from N = O(M) intensity
measurements [13]. Another approach is to exploit the polarization identity along with
expander graphs to design a measurement ensemble and apply spectral methods to per-
form phase retrieval [1,6]. One can also formulate phase retrieval in terms of MaxCut,
and solvers for this formulation are equivalent to a popular solver (PhaseLift) for the
matrix recovery formulation [38,40]. While this recent work has focused on stable and
efficient phase retrieval from asymptotically few measurements (namely, N = O(M)),
the present paper focuses on injectivity and algorithmic efficiency with the absolute
minimum number of measurements.

In the next section, we construct an ensemble of N = 4M − 4 measurement vectors
in CM which yield injective intensity measurements. This is the second known injective
ensemble of this size (the first is due to Bodmann and Hammen [9]), and it is conjectured
to be the smallest-possible injective ensemble [5]. The same conjecture suggests that
4M −4 generic measurement vectors yield injectivity (that is, there exists a measure-zero
set of ensembles of 4M − 4 vectors such that every ensemble of 4M − 4 vectors outside
of this set yields injectivity). The following summarizes what is currently known about
the so-called “4M − 4 conjecture”:

• The conjecture holds for M = 2 and M = 2m + 1, m = 1, 2, 3, . . . [19] (cf. [5]).
• If N < 4M − 2α(M − 1) − 3, then A is not injective [31]; here, α(M − 1) � log2 M

denotes the number of 1’s in the binary expansion of M − 1.
• For each M � 2, there exists an ensemble Φ of N = 4M − 4 measurement vectors

such that A is injective [9] (see also Section 2 of this paper).
• If N � 4M − 4, then A is injective for generic Φ [19] (cf. [4]).
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Bodmann and Hammen [9] leverage the Dirichlet kernel and the Cayley map to prove
injectivity of their ensemble, but it is unclear whether phase retrieval is algorithmically
feasible from their ensemble. By contrast, for the ensemble in this paper, we use basic
ideas from harmonic analysis over cyclic groups to devise a corresponding phase retrieval
algorithm, and we demonstrate injectivity in Theorem 6 by proving that the algorithm
recovers any noiseless signal up to global phase.

In Section 3, we devise a theory of ensembles for which the corresponding intensity
measurements are “almost” injective, that is, A−1(A(x)) = {ωx: |ω| = 1} for almost
every x. In this section, we focus on the real case, meaning phase retrieval is up to a global
sign factor ω = ±1, and our approach is inspired by the characterization of injectivity in
the real case by Balan, Casazza and Edidin [4]. After characterizing almost injectivity in
the real case, we find a particularly satisfying sufficient condition for almost injectivity:
that Φ forms a unit norm tight frame with M and N relatively prime. Characterizing
almost injectivity in the complex case remains an open problem.

We conclude with Section 4, in which we consider algorithmic phase retrieval in the
real case from N = M +1 almost injective intensity measurements. Specifically, we show
that phase retrieval in this case is NP-hard by reduction from the subset sum problem.
The hardness of phase retrieval in this minimal case suggests a new problem for phase
retrieval: What is the smallest C for which there exists a family of ensembles of size
N = CM + o(M) such that phase retrieval can be performed in polynomial time?

2. 4M − 4 injective intensity measurements

In this section, we provide an ensemble of 4M − 4 measurement vectors which yield
injective intensity measurements for CM . The vectors in our ensemble are modulated
discrete cosine functions, and they are explicitly constructed at the end of this section.
We start here by motivating our construction, specifically by identifying the significance
of circular autocorrelation, which we define in (1) below.

Consider the P -dimensional complex vector space �(ZP ) := {u : Z → C: u[p + P ] =
u[p], ∀p ∈ Z}. The discrete Fourier basis in �(ZP ) is the sequence of P vectors {fq}q∈ZP

defined by fq[p] := e2πipq/P (the notation “q ∈ ZP ” is taken to mean a set of coset repre-
sentatives of Z with respect to the subgroup PZ). The discrete Fourier transform (DFT)
on ZP is F ∗ : �(ZP ) → �(ZP ), with corresponding inverse DFT (F ∗)−1 = 1

P F , defined by
(
F ∗u

)
[q] = 〈u, fq〉 =

∑

p∈ZP

u[p]e−2πipq/P

(Fv)[p] =
∑

q∈ZP

v[q]fq[p] =
∑

q∈ZP

v[q]e2πipq/P .

Now let T p : �(ZP ) → �(ZP ) be the translation operator (T pu)[p′] := u[p′ − p]. The
circular autocorrelation of u is then CirAut(u) ∈ �(ZP ), defined entrywise by

CirAut(u)[p] :=
〈
u, T pu

〉
=
∑

p′∈ZP

u
[
p′]u

[
p′ − p

]
. (1)
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Consider the DFT of a circular autocorrelation:
(
F ∗ CirAut(u)

)
[q] =

∑

p∈ZP

∑

p′∈ZP

u
[
p′]u

[
p′ − p

]
e−2πipq/P

=
∑

p′∈ZP

u
[
p′]e−2πip′q/P

( ∑

p∈ZP

u
[
p′ − p

]
e−2πi(p′−p)q/P

)

=
∑

p′∈ZP

u
[
p′]e−2πip′q/P

( ∑

p′′∈ZP

u
[
p′′]e−2πip′′q/P

)
=
∣∣〈u, fq〉

∣∣2. (2)

As such, if one has the intensity measurements {|〈u, fq〉|2}q∈ZP
, then one may compute

the circular autocorrelation CirAut(u) by applying the inverse DFT. In order to perform
phase retrieval from {|〈u, fq〉|2}q∈ZP

, it therefore suffices to determine u from CirAut(u).
This is the motivation for our approach in this section.

To see how to “invert” CirAut, let’s consider an example. Take x = (a, b, c) ∈ C3 and
consider the circular autocorrelation of x as a signal in �(Z3):

CirAut(x) =
(
|a|2 + |b|2 + |c|2, ac + ba + cb, ab + bc + ca

)
.

Notice that every entry of CirAut(x) is a nonlinear combination of the entries of x,
from which it is unclear how to compute the entries of x. To simplify the structure,
we pad x with zeros and enforce even symmetry; then the circular autocorrelation of
u := (2a, b, c, 0, 0, 0, 0, c, b) ∈ �(Z9) is

CirAut(u) =
(
4|a|2 + |b|2 + |c|2, 2 Re(2ab + bc), |b|2 + 4 Re(ac), 2 Re(bc), |c|2,

|c|2, 2 Re(bc), |b|2 + 4 Re(ac), 2 Re(2ab + bc)
)
. (3)

Although it still appears rather complicated, this circular autocorrelation actually lends
itself well to recovering the entries of x.

Before explaining this further, first note that 9 = 4(3) − 3, and we can generalize
our mapping x �→ u by sending vectors in CM to members of �(Z4M−3). To make this
clear, consider the reversal operator R : �(ZP ) → �(ZP ) defined by (Ru)[p] = u[−p]. Then
given a vector x ∈ CM , padding with zeros and enforcing even symmetry is equivalent to
embedding x in �(Z4M−3) by appending 3M −3 zeros to x and then taking u = x+Rx ∈
�(Z4M−3). (From this point forward we use x to represent both the original signal in CM

and the version of x embedded in �(Z4M−3) via zero-padding; the distinction will be
clear from context.) Computing x ∈ CM then reduces to determining the first M entries
of x ∈ �(Z4M−3) from CirAut(x+Rx). If x is completely real-valued, then this is indeed
possible. For instance, consider the circular autocorrelation (3). If the entries of x are all
real, then this becomes

CirAut(x + Rx) =
(
4a2 + b2 + c2, 4ab + 2bc, b2 + 4ac, 2bc, c2, c2, 2bc,

b2 + 4ac, 4ab + 2bc
)
.
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Since CirAut(x + Rx)[4] = c2, we simply take a square root to obtain c up to a sign.
Assuming c is nonzero, we then divide CirAut(x+Rx)[3] by 2c to determine b up to the
same sign. Then subtracting b2 from CirAut(x+Rx)[2] and dividing by 4c gives a up to
the same sign.

From this example, we see that the process of recovering the entries of x from
CirAut(x + Rx) is iterative, working backward through its first 2M − 2 entries. But
what happens if c is zero? Fortunately, our process doesn’t break: In this case, we have

CirAut(x + Rx) =
(
4a2 + b2, 4ab, b2, 0, 0, 0, 0, b2, 4ab

)
.

Thus, we need only start with CirAut(x + Rx)[2] to determine the remaining entries of
x up to a sign. This observation brings to light the important role of the last nonzero
entry of x in our iteration. The relationship between this coordinate and the entries of
CirAut(x + Rx) will become more rigorous later.

The above example illustrated how a real signal x is determined by CirAut(x + Rx).
A complex-valued signal, on the other hand, is not completely determined from
CirAut(x + Rx). Luckily, this can be fixed by introducing a second vector in �(Z4M−3)
obtained from x, and we will demonstrate this later, but for now we focus on x+Rx. To
this end, let’s first take a closer look at the entries of CirAut(x+Rx). Since this circular
autocorrelation has even symmetry by construction, we need only consider all entries of
CirAut(x + Rx) up to index 2M − 2. This leads to the following lemma:

Lemma 1. Let x denote an M -dimensional complex signal embedded in �(Z4M−3) such
that x[p] = 0 for all p = M, . . . , 4M − 4. Then CirAut(x + Rx)[p] = 2 Re〈x, T px〉 +
〈x,RT−px〉 for all p = 1, . . . , 2M − 2.

Proof. First note that by the definition of the circular autocorrelation in (1) we have

CirAut(x + Rx)[p] =
〈
x + Rx, T p(x + Rx)

〉
= 2 Re

〈
x, T px

〉
+
〈
x,RT−px

〉
+
〈
x,RT px

〉
.

Thus, to complete the proof it suffices to show that 〈x,RT px〉 = 0 for all p =
1, . . . , 2M − 2. Since x is only nonzero in its first M entries, we have

〈
x,RT px

〉
=

M−1∑

p′=0
x
[
p′](RT px

)[
p′] =

M−1∑

p′=0
x
[
p′](T px

)[
−p′] =

M−1∑

p′=0
x
[
p′]x

[
−p′ − p

]
,

where the summand is zero whenever −p′ − p /∈ [0,M − 1] modulo 4M − 3. This is
equivalent to having −p not lie in the Minkowski sum p′ + [0,M − 1], and since p′ ∈
[0,M − 1] we see that 〈x,RT px〉 = 0 for all p = 1, . . . , 2M − 2. �

As a consequence of Lemma 1, the following theorem expresses the entries of
CirAut(x + Rx) in terms of the entries of x:
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Theorem 2. Let x denote an M -dimensional complex signal embedded in �(Z4M−3) such
that x[p] = 0 for all p = M, . . . , 4M − 4. Then we have

CirAut(x + Rx)[p] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 Re
(

M−1∑

p′= p+1
2

x
[
p′](x

[
p′ − p

]
+ x
[
p − p′] )

)

if p is odd

2 Re
(

M−1∑

p′= p
2 +1

x
[
p′](x[p′ − p] + x

[
p − p′] )

)
+
∣∣∣∣x
[
p

2

]∣∣∣∣
2

if p is even

(4)

for all p = 1, . . . , 2M − 2.

Proof. We first use Lemma 1 to get

CirAut(x + Rx)[p] = 2 Re
〈
x, T px

〉
+
〈
x,RT−px

〉

= 2 Re
(

M−1∑

p′=0
x
[
p′]x

[
p′ − p

]
)

+
M−1∑

p′=0
x
[
p′]x

[
p − p′]

= 2 Re
(

M−1∑

p′=p

x
[
p′]x

[
p′ − p

]
)

+
min{p,M−1}∑

p′=max{p−(M−1),0}
x
[
p′]x

[
p − p′],

(5)

where the last equality takes into account that the first summand is nonzero only when
p′ − p ∈ [0,M − 1] and the second summand is nonzero only when p − p′ ∈ [0,M − 1],
i.e., when p′ ∈ [p, p + (M − 1)] and p′ ∈ [p − (M − 1), p], respectively. To continue, we
divide our analysis into cases.

For p = 1, . . . ,M − 1, (5) gives

CirAut(x + Rx)[p] = 2 Re
(

M−1∑

p′=p

x
[
p′]x

[
p′ − p

]
)

+
p∑

p′=0
x
[
p′]x

[
p − p′]. (6)

If p is odd we can then write

p∑

p′=0
x
[
p′]x

[
p − p′] =

p−1
2∑

p′=0
x
[
p′]x

[
p − p′]+

p∑

p′= p+1
2

x
[
p′]x

[
p − p′]

=
p∑

p′′= p+1
2

x
[
p − p′′]x

[
p′′]+

p∑

p′= p+1
2

x
[
p′]x

[
p − p′]

= 2 Re
(

p∑

p′= p+1
2

x
[
p′]x

[
p − p′]

)
, (7)
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while if p is even we similarly write
p∑

p′=0
x
[
p′]x

[
p − p′] = 2 Re

(
p∑

p′= p
2 +1

x
[
p′]x

[
p − p′]

)
+
∣∣∣∣x
[
p

2

]∣∣∣∣
2
. (8)

Substituting (7) and (8) into (6) then gives (4).
For the remaining case, p = M, . . . , 2M − 2 and (5) gives

CirAut(x + Rx)[p] =
M−1∑

p′=p−(M−1)

x
[
p′]x

[
p − p′]. (9)

Similar to the previous case, taking p to be odd yields

M−1∑

p′=p−(M−1)

x
[
p′]x

[
p − p′] = 2 Re

(
M−1∑

p′= p+1
2

x
[
p′]x

[
p − p′]

)
, (10)

while taking p to be even yields

M−1∑

p′=p−(M−1)

x
[
p′]x

[
p − p′] = 2 Re

(
M−1∑

p′= p
2 +1

x
[
p′]x

[
p − p′]

)
+
∣∣∣∣x
[
p

2

]∣∣∣∣
2
, (11)

and substituting (10) and (11) into (9) also gives (4). �
Notice (4) shows that each member of {CirAut(x + Rx)[p]}2M−2

p=1 can be written as a
combination of the first M entries of x, but only those at or beyond the �p

2	th index.
As such, the index of the last nonzero entry of x is closely related to that of the last
nonzero entry of {CirAut(x + Rx)[p]}2M−2

p=1 . This corresponds to our observation earlier
in the case of x ∈ R3 where the third coordinate was assumed to be zero. We identify
the relationship between the locations of these nonzero entries in the following lemma:

Lemma 3. Let x denote an M -dimensional complex signal embedded in �(Z4M−3) such
that x[p] = 0 for all p = M, . . . , 4M − 4. Then the last nonzero entry of {CirAut(x +
Rx)[p]}2M−2

p=0 has index p = 2q, where q is the index of the last nonzero entry of x.

Proof. If q � 1, then (4) gives that CirAut(x + Rx)[2q] = |x[q]|2 
= 0. Note that since
x[p′] = 0 for every p′ > q, (4) also gives that CirAut(x+Rx)[p] = 0 for every p > 2q. For
the remaining case where q = 0, (4) immediately gives that CirAut(x + Rx)[p] = 0 for
every p � 1. To show that CirAut(x+Rx)[0] 
= 0 in this case, we apply the definition of
circular autocorrelation (1):

CirAut(x + Rx)[0] = 〈x + Rx, x + Rx〉 = ‖x + Rx‖2 =
∣∣2x[0]

∣∣2 
= 0,

where the last equality uses the fact that x is only supported at 0 since q = 0. �
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As previously mentioned, we are unable to recover the entries of a complex signal
x solely from CirAut(x + Rx). One way to address this is to rotate the entries of x

in the complex plane and also take the circular autocorrelation of this modified signal.
If we rotate by an angle which is not an integer multiple of π, this will produce new
entries which are linearly independent from the corresponding entries of x when viewed
as vectors in the complex plane. As we will see, the problem of recovering the entries of
x then reduces to solving a linear system.

Take any (4M −3)×(4M −3) diagonal modulation operator E whose diagonal entries
{ωk}4M−4

k=0 are of unit modulus satisfying ωjωk /∈ R for all j 
= k and consider the new
vector Ex ∈ �(Z4M−3). Then Theorem 2 gives

CirAut(Ex + REx)[p]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 Re
(

M−1∑

p′= p+1
2

ωp′x
[
p′](ωp′−px

[
p′ − p

]
+ ωp−p′x

[
p − p′] )

)

if p is odd

2 Re
(

M−1∑

p′= p
2 +1

ωp′x
[
p′](ωp′−px

[
p′ − p

]
+ ωp−p′x

[
p − p′] )

)
+
∣∣∣∣x
[
p

2

]∣∣∣∣
2

if p is even

(12)

for all p = 1, . . . , 2M − 2. We will see that (4) and (12) together allow us to solve for
the entries of x (up to a global phase factor) by working iteratively backward through
the entries of CirAut(x + Rx) and CirAut(Ex + REx). As alluded to earlier, each entry
index forms a linear system which can be solved using the following lemma:

Lemma 4. Let a, b ∈ C \ {0} and ω ∈ C \ R with |ω| = 1. Then

b = i

a Im(ω)
(
Re(ωab) − ω Re(ab)

)
. (13)

Proof. After some manipulation, we have

Re(ωab) − ω Re(ab) = Re(ω) Re(ab) − Im(ω) Im(ab) − ω Re(ab)

= −i Im(ω)
(
Re(ab) − i Im(ab)

)
= −iab Im(ω).

Rearranging then yields the desired result. �
We now use this lemma to describe how to recover x up to global phase. By Lemma 3,

the last nonzero entry of {CirAut(x + Rx)[p]}2M−2
p=0 has index p = 2q, where q indexes

the last nonzero entry of x. As such, we know that x[k] = 0 for every k > q, and
x[q] can be estimated up to a phase factor (x̂[q] = eiψx[q]) by taking the square root
of CirAut(x + Rx)[2q] = |x[q]|2 (we will verify this soon, but this corresponds to the
examples we have seen so far). Next, if we know Re(x[q]x[k]) and Re(ωqωkx[q]x[k]) for
some k < q, then we can use these to estimate x[k]:
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x̂[k] := i

x̂[q] Im(ωqωk)
(
Re
(
ωqωkx[q]x[k]

)
− ωqωk Re

(
x[q]x[k]

))
= eiψx[k], (14)

where the last equality follows from substituting a = x[q], b = x[k] and ω = ωqωk

into (13). Overall, once we know x[q] up to phase, then we can find x[k] relative to this
same phase for each k = 0, . . . , q−1, provided we know Re(x[q]x[k]) and Re(ωqωkx[q]x[k])
for these k’s. Thankfully, these values can be determined from the entries of CirAut(x+
Rx) and CirAut(Ex + REx):

Theorem 5. Let x denote an M -dimensional complex signal embedded in �(Z4M−3) such
that x[p] = 0 for all p = M, . . . , 4M − 4 and E be a (4M − 3) × (4M − 3) diagonal
modulation operator with diagonal entries {ωk}4M−4

k=0 satisfying |ωk| = 1 for all k =
0, . . . , 4M − 4 and ωjωk /∈ R for all j 
= k. Then x can be recovered up to a global phase
factor from CirAut(x + Rx) and CirAut(Ex + REx).

Proof. Letting q denote the index of the last nonzero entry of x, it suffices to estimate
{x[k]}q

k=0 up to a global phase factor. To this end, recall from Lemma 3 that the last
nonzero entry of {CirAut(x + Rx)[p]}2M−2

p=0 has index p = 2q. If q = 0, then we have
already seen that CirAut(x + Rx)[0] = 4|x[0]|2. Since there exists ψ ∈ [0, 2π) such
that x[0] = e−iψ|x[0]|, we may take x̂[0] := 1

2
√

CirAut(x + Rx)[0] = |x[0]| = eiψx[0].
Otherwise q ∈ [1,M − 1], and (4) gives

CirAut(x + Rx)[2q] =
∣∣x[q]

∣∣2 + 2 Re
(

M−1∑

p′=q+1
x
[
p′](x

[
p′ − 2q

]
+ x
[
2q − p′] )

)
=
∣∣x[q]

∣∣2.

Thus, taking x̂[q] :=
√

CirAut(x + Rx)[2q] = |x[q]| gives us x̂[q] = eiψx[q] for some
ψ ∈ [0, 2π).

In the case where q = 1, all that remains to determine is x̂[0], a calculation which
we save for the end of the proof. For now, suppose q � 2. Since we already know
x̂[q] = eiψx[q], we would like to determine x̂[k] for k = 1, . . . , q − 1. To this end, take
r ∈ [0, q − 2] and suppose we have x̂[k] = eiψx[k] for all k = q − r, . . . , q. If we can obtain
x̂[q − (r + 1)] up to the same phase from this information, then working iteratively from
r = 0 to r = q − 2 will give us x̂[k] up to global phase for all but the zeroth entry (which
we address later). Note when r is even, (4) gives

CirAut(x + Rx)
[
2q − (r + 1)

]

= 2 Re
(

q∑

p′=q− r
2

x
[
p′](x

[
p′ −

(
2q − (r + 1)

)]
+ x
[(

2q − (r + 1)
)

− p′] )
)

= 2 Re
(
x[q]x

[
q − (r + 1)

] )
+ 2

q−1∑

p′=q− r
2

Re
(
x
[
p′]x

[(
2q − (r + 1)

)
− p′] ),
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where the last equality follows from the observation that p′−(2q−(r+1)) � −q+(r+1) �
−1 over the range of the sum, meaning x[p′ − (2q − (r + 1))] = 0 throughout the sum.
Similarly when r is odd, (4) gives

CirAut(x + Rx)
[
2q − (r + 1)

]

= 2 Re
(
x[q]x

[
q − (r + 1)

] )

+ 2
q−1∑

p′=q− r−1
2

Re
(
x
[
p′]x

[(
2q − (r + 1)

)
− p′] )+

∣∣∣∣x
[
q − r + 1

2

]∣∣∣∣
2
.

In either case, we can isolate Re(x[q]x[q − (r + 1)]) to get an expression in terms of
CirAut(x + Rx)[2q − (r + 1)] and other terms of the form Re(x[k]x[k′]) or |x[k]|2 for
k, k′ ∈ [q − r, q − 1]. By the induction hypothesis, we have x̂[k] = eiψx[k] for k =
q − r, . . . , q − 1, and so we can use these estimates to determine these other terms:

Re
(
x̂[k]x̂

[
k′]) = Re

(
eiψx[k]eiψx

[
k′]) = Re

(
x[k]x

[
k′]),

∣∣x̂[k]
∣∣2 =

∣∣eiψx[k]
∣∣2 =

∣∣x[k]
∣∣2.

As such, we can use CirAut(x+Rx)[2q−(r+1)] along with the higher-indexed estimates
x̂[k] to determine Re(x[q]x[q − (r + 1)]). Similarly, we can use CirAut(Ex + REx)[2q −
(r + 1)] along with the higher-indexed estimates x̂[k] to determine
Re(ωqω(q−(r+1))x[q]x[q − (r + 1)]). We then plug these into (14), along with the es-
timate x̂[q] = eiψx[q] (which is also available by the induction hypothesis), to get
x̂[2q − (r + 1)] = eiψx[2q − (r + 1)].

At this point, we have determined {x[k]}q
k=1 up to a global phase factor whenever

q � 1, and so it remains to find x̂[0]. For this, note that when q is odd, (4) gives

CirAut(x + Rx)[q] = 4 Re
(
x[q]x[0]

)
+ 2

q−1∑

p′= q+1
2

Re
(
x
[
p′]x

[
q − p′] ),

while for even q, we have

CirAut(x + Rx)[q] = 4 Re
(
x[q]x[0]

)
+ 2

q−1∑

p′= q
2+1

Re
(
x
[
p′]x

[
q − p′] )+

∣∣∣∣x
[
q

2

]∣∣∣∣
2
.

As before, isolating Re(x[q]x[0]) in either case produces an expression in terms of
CirAut(x+Rx)[q] and other terms of the form Re(x[k]x[k′]) or |x[k]|2 for k, k′ ∈ [1, q−1].
These other terms can be calculated using the estimates {x̂[k]}q−1

k=1, and so we can also cal-
culate Re(x[q]x[0]) from CirAut(x+Rx)[q]. Similarly, we can calculate Re(ωqω0x[q]x[0])
from {x̂[k]}q−1

k=1 and CirAut(Ex + REx)[q], and plugging these into (14) along with x̂[q]
produces the estimate x̂[0] = eiψx[0]. �
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Theorem 5 establishes that it is possible to recover a signal x ∈ CM up to a global
phase factor from {CirAut(x+Rx)}2M−2

q=0 and {CirAut(Ex+REx)}2M−2
q=0 . We now return

to how these circular autocorrelations relate to intensity measurements. Recall from (2)
that the DFT of the circular autocorrelation is the modulus squared of the DFT of the
original signal: (F ∗ CirAut(u))[q] = |(F ∗u)[q]|2. Also note that the DFT commutes with
the reversal operator:

(
F ∗Ru

)
[q] =

∑

p∈ZP

u[−p]e−2πipq/P =
∑

p′∈ZP

u
[
p′]e−2πip′(−q)/P =

(
F ∗u

)
[−q] =

(
RF ∗u

)
[q].

With this, we can express CirAut(x + Rx) in terms of intensity measurements with a
particular ensemble:

(
F ∗ CirAut(x + Rx)

)
[q] =

∣∣(F ∗(x + Rx)
)
[q]
∣∣2

=
∣∣(F ∗x

)
[q] +

(
F ∗Rx

)
[q]
∣∣2 =

∣∣(F ∗x
)
[q] +

(
F ∗x

)
[−q]

∣∣2

=
∣∣〈x, fq + f−q〉

∣∣2.

Defining the qth discrete cosine function cq ∈ �(Z4M−3) by

cq[p] := 2 cos
(

2πpq
4M − 3

)
= e2πipq/(4M−3) + e−2πipq/(4M−3) = (fq + f−q)[p],

this means that (F ∗ CirAut(x + Rx))[q] = |〈x, cq〉|2 for all q ∈ Z4M−3. Similarly, if
we take the modulation matrix E to have diagonal entries ωk = e2πik/(2M−1) for all
k = 0, . . . , 4M − 4, we find

(
F ∗ CirAut(Ex + REx)

)
[q] =

∣∣〈Ex, cq〉
∣∣2 =

∣∣〈x,E∗cq

〉∣∣2.

Thus, coupling the DFT with Theorem 5 allows us to recover the signal x from 4M − 2
intensity measurements, namely with the ensemble {cq}2M−2

q=0 ∪ {E∗cq}2M−2
q=0 . Note that

since x ∈ �(Z4M−3) is actually a zero-padded version of x ∈ CM , we may view cq and
E∗cq as members of CM by discarding the entries indexed by p = M, . . . , 4M − 4.

Considering this section promised phase retrieval from only 4M − 4 intensity mea-
surements, we must somehow find a way to discard two of these 4M − 2 measurement
vectors. To do this, first note that

CirAut(Ex + REx)[0] = ‖Ex + REx‖2

=
∑

k∈Z4M−3

∣∣e2πik/(2M−1)x[k] + e2πi(−k)/(2M−1)x[−k]
∣∣2

=
−1∑

k=−(2M−2)

∣∣e2πi(−k)/(2M−1)x[−k]
∣∣2 +

∣∣2x[0]
∣∣2
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+
2M−2∑

k=1

∣∣e2πik/(2M−1)x[k]
∣∣2

= ‖x + Rx‖2

= CirAut(x + Rx)[0].

Moreover, we have

CirAut(Ex + REx)[2M − 2] =
∑

k∈Z4M−3

(Ex + REx)[k](Ex + REx)
[
k − (2M − 2)

]

= (Ex + REx)[M − 1](Ex + REx)
[
−(M − 1)

]

= (Ex + REx)[M − 1](Ex + REx)[M − 1],

where the last equality is by even symmetry. Since x is only supported on k = 0, . . . ,
M − 1, we then have

CirAut(Ex + REx)[2M − 2] =
∣∣(Ex + REx)[M − 1]

∣∣2

=
∣∣e2πi(M−1)/(2M−1)x[M − 1]

+ e−2πi(M−1)/(2M−1)x
[
−(M − 1)

]∣∣2

=
∣∣e2πi(M−1)/(2M−1)x[M − 1]

∣∣2 =
∣∣x[M − 1]

∣∣2

= CirAut(x + Rx)[2M − 2].

Furthermore, the even symmetry of the circular autocorrelation also gives

CirAut(Ex + REx)
[
−(2M − 2)

]
= CirAut(Ex + REx)[2M − 2]

= CirAut(x + Rx)[2M − 2]

= CirAut(x + Rx)
[
−(2M − 2)

]
.

These redundancies between CirAut(x + Rx) and CirAut(Ex + REx) indicate that we
might be able to remove measurement vectors from our ensemble while maintaining our
ability to perform phase retrieval. The following theorem confirms this suspicion:

Theorem 6. Let cq ∈ CM be the truncated discrete cosine function defined by cq[p] :=
2 cos( 2πpq

4M−3 ) for all p = 0, . . . ,M − 1, and let E be the M × M diagonal modu-
lation operator with diagonal entries ωk = e2πik/(2M−1) for all k = 0, . . . ,M − 1.
Then the intensity measurement mapping A : CM/T → R4M−4 defined by A(x) :=
{|〈x, cq〉|2}2M−2

q=0 ∪ {|〈x,E∗cq〉|2}2M−3
q=1 is injective.

Proof. Since Theorem 5 allows us to reconstruct any x ∈ CM up to a global phase factor
from the entries of CirAut(x + Rx) and CirAut(Ex + REx), it suffices to show that
the intensity measurements {|〈x, cq〉|2}2M−2

q=0 ∪{|〈x,E∗cq〉|2}2M−3
q=1 allow us to recover the
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entries of these circular autocorrelations. To this end, recall from (2) that these quantities
are related through the inverse DFT:

CirAut(x + Rx) =
(
F ∗)−1{∣∣〈x, cq〉

∣∣2}
q∈Z4M−3

,

CirAut(Ex + REx) =
(
F ∗)−1{∣∣〈x,E∗cq

〉∣∣2}
q∈Z4M−3

.

Since we have {|〈x, cq〉|2}2M−2
q=0 , we can exploit even symmetry to determine the rest of

{|〈x, cq〉|2}q∈Z4M−3 , and then apply the inverse DFT to get CirAut(x + Rx). Moreover,
by the previous discussion, we also obtain the 0, 2M − 2, and −(2M − 2) entries of
CirAut(Ex + REx) from the corresponding entries of CirAut(x + Rx). Organize this
information about CirAut(Ex + REx) into a vector w ∈ �(Z4M−3) whose 0, 2M − 2,
and −(2M − 2) entries come from CirAut(Ex + REx) and whose remaining entries are
populated by even symmetry from {|〈x,E∗cq〉|2}2M−3

q=1 . We can express w as a matrix-
vector product w = A{|〈x,E∗cq〉|2}q∈Z4M−3 , where A is the identity matrix with the 0,
2M − 2, and −(2M − 2) rows replaced by the corresponding rows of the inverse DFT
matrix. To complete the proof, it suffices to show that the matrix A is invertible, since
this would imply CirAut(Ex + REx) = (F ∗)−1A−1w.

Using the cofactor expansion, note that det(A) reduces to a determinant of a 3 × 3
submatrix of (F ∗)−1. Specifically, letting θ := 2π(2M − 2)2/(4M − 3) we have

det(A) = det

⎛
⎜⎝

⎡
⎢⎣

1 1 1
1 eiθ e−iθ

1 e−iθ eiθ

⎤
⎥⎦

⎞
⎟⎠ =

(
e2iθ − e−2iθ

)
−
(
eiθ − e−iθ

)
+
(
e−iθ − eiθ

)

=
(
eiθ + e−iθ − 2

)(
eiθ − e−iθ

)

= 4i
(
cos(θ) − 1

)
sin(θ),

and so A is invertible if and only if cos(θ) − 1 
= 0 and sin(θ) 
= 0. This equivalent to
having π not divide θ, and indeed, the ratio

θ

π
= 2(2M − 2)2

4M − 3 = 2M − 5
2 + 1

2(4M − 3)

is not an integer because M � 2. As such, A is invertible. �
We conclude this section by summarizing our measurement design and phase retrieval

procedure:

Measurement design

• Define the qth truncated discrete cosine function cq := {2 cos( 2πpq
4M−3 )}M−1

p=0
• Define the M × M diagonal matrix E with entries ωk := e2πik/(2M−1) for all k =

0, . . . ,M − 1
• Take Φ := {cq}2M−2

q=0 ∪ {E∗cq}2M−3
q=1
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Phase retrieval procedure

• Calculate {|〈x, cq〉|2}q∈Z4M−3 from {|〈x, cq〉|2}2M−2
q=0 by even extension

• Calculate CirAut(x + Rx) = (F ∗)−1{|〈x, cq〉|2}q∈Z4M−3

• Define w ∈ �(Z4M−3) so that its 0, 2M − 2, and −(2M − 2) entries are the corre-
sponding entries in CirAut(x+Rx) and its remaining entries are populated by even
symmetry from {|〈x,E∗cq〉|2}2M−3

q=1
• Define A to be the identity matrix with the 0, 2M −2, and −(2M −2) rows replaced

by the corresponding rows of the inverse DFT matrix (F ∗)−1

• Calculate CirAut(Ex + REx) = (F ∗)−1A−1w

• Recover x up to global phase from CirAut(x + Rx) and CirAut(Ex + REx) using
the process described in the proof of Theorem 5

3. Almost injectivity

While 4M+o(M) measurements are necessary and generically sufficient for injectivity
in the complex case, one can save a factor of 2 in the number of measurements by
slightly weakening the desired notion of injectivity [4,28]. To be explicit, we start with
the following definition:

Definition 7. Consider Φ = {ϕn}N
n=1 ⊆ RM . The intensity measurement mapping

A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2 is said to be almost injective
if A−1(A(x)) = {±x} for almost every x ∈ RM .

The above definition specifically treats the real case, but it can be similarly defined
for the complex case in the obvious way. For the complex case, it is known that 2M mea-
surements are necessary for almost injectivity [28], and that 2M generic measurements
suffice [4] (cf. [27]); this is the factor-of-2 savings mentioned above. For the real case, it is
also known how many measurements are necessary and generically sufficient for almost
injectivity: M + 1 [4]. Like the complex case, this is also a factor-of-2 savings from the
injectivity requirement: 2M − 1. This requirement for injectivity in the real case follows
from the following result from [4], which we prove here because the proof is short and
inspires the remainder of this section:

Theorem 8. Consider Φ = {ϕn}N
n=1 ⊆ RM and the intensity measurement mapping

A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Then A is injective if and only
if for every S ⊆ {1, . . . , N}, either {ϕn}n∈S or {ϕn}n∈Sc spans RM .

Proof. We will prove both directions by obtaining the contrapositives.
(⇒) Assume there exists S ⊆ {1, . . . , N} such that neither {ϕn}n∈S nor {ϕn}n∈Sc

spans RM . This implies that there are nonzero vectors u, v ∈ RM such that 〈u, ϕn〉 = 0
for all n ∈ S and 〈v, ϕn〉 = 0 for all n ∈ Sc. For each n, we then have
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∣∣〈u ± v, ϕn〉
∣∣2 =

∣∣〈u, ϕn〉
∣∣2 ± 2〈u, ϕn〉〈v, ϕn〉 +

∣∣〈v, ϕn〉
∣∣2 =

∣∣〈u, ϕn〉
∣∣2 +

∣∣〈v, ϕn〉
∣∣2.

Since |〈u+ v, ϕn〉|2 = |〈u− v, ϕn〉|2 for every n, we have A(u+ v) = A(u− v). Moreover,
u and v are nonzero by assumption, and so u + v 
= ±(u − v).

(⇐) Assume that A is not injective. Then there exist vectors x, y ∈ RM such that
x 
= ±y and A(x) = A(y). Taking S := {n: 〈x, ϕn〉 = −〈y, ϕn〉}, we have 〈x+ y, ϕn〉 = 0
for every n ∈ S. Otherwise when n ∈ Sc, we have 〈x, ϕn〉 = 〈y, ϕn〉 and so 〈x−y, ϕn〉 = 0.
Furthermore, both x + y and x − y are nontrivial since x 
= ±y, and so neither {ϕn}n∈S

nor {ϕn}n∈Sc spans RM . �
Similar to the above result, in this section, we characterize ensembles of measurement

vectors which yield almost injective intensity measurements, and similar to the above
proof, the basic idea behind our analysis is to consider sums and differences of signals
with identical intensity measurements. Our characterization starts with the following
lemma:

Lemma 9. Consider Φ = {ϕn}N
n=1 ⊆ RM and the intensity measurement mapping

A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Then A is almost injective
if and only if almost every x ∈ RM is not in the Minkowski sum span(ΦS)⊥ \ {0} +
span(ΦSc)⊥ \{0} for all S ⊆ {1, . . . , N}. More precisely, A−1(A(x)) = {±x} if and only
if x /∈ span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0} for any S ⊆ {1, . . . , N}.

Proof. By the definition of the mapping A, for x, y ∈ RM we have A(x) = A(y) if and
only if |〈x, ϕn〉| = |〈y, ϕn〉| for all n ∈ {1, . . . , N}. This occurs precisely when there is a
subset S ⊆ {1, . . . , N} such that 〈x, ϕn〉 = −〈y, ϕn〉 for every n ∈ S and 〈x, ϕn〉 = 〈y, ϕn〉
for every n ∈ Sc. Thus, A−1(A(x)) = {±x} if and only if for every y 
= ±x and for every
S ⊆ {1, . . . , N}, either there exists an n ∈ S such that 〈x+ y, ϕn〉 
= 0 or an n ∈ Sc such
that 〈x − y, ϕn〉 
= 0. We claim that this occurs if and only if x is not in the Minkowski
sum span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0} for all S ⊆ {1, . . . , N}, which would complete
the proof. We verify the claim by seeking the contrapositive in each direction.

(⇒) Suppose x ∈ span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0}. Then there exist u ∈
span(ΦS)⊥ \ {0} and v ∈ span(ΦSc)⊥ \ {0} such that x = u + v. Taking y := u − v, we
see that x+ y = 2u ∈ span(ΦS)⊥ \ {0} and x− y = 2v ∈ span(ΦSc)⊥ \ {0}, which means
that there is no n ∈ S such that 〈x + y, ϕn〉 
= 0 nor n ∈ Sc such that 〈x − y, ϕn〉 
= 0.
Furthermore, u and v are nonzero, and so y 
= ±x.

(⇐) Suppose y 
= ±x and for every S ⊆ {1, . . . , N} there is no n ∈ S such that
〈x + y, ϕn〉 
= 0 nor n ∈ Sc such that 〈x − y, ϕn〉 
= 0. Then x + y ∈ span(ΦS)⊥ \ {0}
and x − y ∈ span(ΦSc)⊥ \ {0}. Since x = 1

2(x + y) + 1
2(x − y), we have that x ∈

span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0}. �
Theorem 10. Consider Φ = {ϕn}N

n=1 ⊆ RM and the intensity measurement mapping
A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Suppose Φ spans RM and each
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ϕn is nonzero. Then A is almost injective if and only if the Minkowski sum span(ΦS)⊥ +
span(ΦSc)⊥ is a proper subspace of RM for each nonempty proper subset S ⊆ {1, . . . , N}.

Note that the above result is not terribly surprising considering Lemma 9, as the
new condition involves a simpler Minkowski sum in exchange for additional (reasonable
and testable) assumptions on Φ. The proof of this theorem amounts to measuring the
difference between the two Minkowski sums:

Proof of Theorem 10. First note that the spanning assumption on Φ implies

span(ΦS)⊥ ∩ span(ΦSc)⊥ =
(
span(ΦS) + span(ΦSc)

)⊥ = span(Φ)⊥ = {0},

and so one can prove the following identity:

span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0}
=
(
span(ΦS)⊥ + span(ΦSc)⊥) \

(
span(ΦS)⊥ ∪ span(ΦSc)⊥). (15)

From Lemma 9 we know that A is almost injective if and only if almost every x ∈ RM is
not in the Minkowski sum span(ΦS)⊥ \{0}+span(ΦSc)⊥ \{0} for any S ⊆ {1, . . . , N}. In
other words, the Lebesgue measure (which we denote by Leb[·]) of this Minkowski sum is
zero for each S ⊆ {1, . . . , N}. By (15), this equivalently means that the Lebesgue measure
of (span(ΦS)⊥+span(ΦSc)⊥)\(span(ΦS)⊥∪span(ΦSc)⊥) is zero for each S ⊆ {1, . . . , N}.
Since Φ spans RM , this set is empty (and therefore has Lebesgue measure zero) when
S = ∅ or S = {1, . . . , N}. Also, since each ϕn is nonzero, we know that span(ΦS)⊥ and
span(ΦSc)⊥ are proper subspaces of RM whenever S is a nonempty proper subset of
{1, . . . , N}, and so in these cases both subspaces must have Lebesgue measure zero. As
such, we have that for every nonempty proper subset S ⊆ {1, . . . , N},

Leb
[(

span(ΦS)⊥ + span(ΦSc)⊥) \
(
span(ΦS)⊥ ∪ span(ΦSc)⊥)]

� Leb
[
span(ΦS)⊥ + span(ΦSc)⊥]− Leb

[
span(ΦS)⊥]− Leb

[
span(ΦSc)⊥]

= Leb
[
span(ΦS)⊥ + span(ΦSc)⊥]

� Leb
[(

span(ΦS)⊥ + span(ΦSc)⊥) \
(
span(ΦS)⊥ ∪ span(ΦSc)⊥)].

In summary, (span(ΦS)⊥ + span(ΦSc)⊥) \ (span(ΦS)⊥ ∪ span(ΦSc)⊥) having Lebesgue
measure zero for each S ⊆ {1, . . . , N} is equivalent to span(ΦS)⊥ + span(ΦSc)⊥ having
Lebesgue measure zero for each nonempty proper subset S ⊆ {1, . . . , N}, which in turn
is equivalent to the Minkowski sum span(ΦS)⊥ + span(ΦSc)⊥ being a proper subspace
of RM for each nonempty proper subset S ⊆ {1, . . . , N}, as desired. �

At this point, consider the following stronger restatement of Theorem 10: “Suppose
each ϕn is nonzero. Then A is almost injective if and only if Φ spans RM and the
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Minkowski sum span(ΦS)⊥ +span(ΦSc)⊥ is a proper subspace of RM for each nonempty
proper subset S ⊆ {1, . . . , N}.” Note that we can move the spanning assumption into
the condition because if Φ does not span, then we can decompose almost every x ∈ RM

as x = u + v such that u ∈ span(Φ) and v ∈ span(Φ)⊥ with v 
= 0, and defining
y := u − v then gives A(y) = A(x) despite the fact that y 
= ±x. As for the assumption
that the ϕn’s are nonzero, we note that having ϕn = 0 amounts to having the nth
entry of A(x) be zero for all x. As such, Φ yields almost injectivity precisely when the
nonzero members of Φ together yield almost injectivity. With this identification, the
stronger restatement of Theorem 10 above can be viewed as a complete characterization
of almost injectivity. Next, we will replace the Minkowski sum condition with a rather
elegant condition involving the ranks of ΦS and ΦSc :

Theorem 11. Consider Φ = {ϕn}N
n=1 ⊆ RM and the intensity measurement mapping

A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Suppose each ϕn is nonzero.
Then A is almost injective if and only if Φ spans RM and rankΦS + rankΦSc > M for
each nonempty proper subset S ⊆ {1, . . . , N}.

Proof. Considering the discussion after the proof of Theorem 10, it suffices to assume
that Φ spans RM . Furthermore, considering Theorem 10, it suffices to characterize when
dim(span(ΦS)⊥ +span(ΦSc)⊥) < M . By the inclusion–exclusion principle for subspaces,
we have

dim
(
span(ΦS)⊥ + span(ΦSc)⊥)

= dim
(
span(ΦS)⊥)+ dim

(
span(ΦSc)⊥)− dim

(
span(ΦS)⊥ ∩ span(ΦSc)⊥).

Since Φ is assumed to span RM , we also have that span(ΦS)⊥ ∩ span(ΦSc)⊥ = {0}, and
so

dim
(
span(ΦS)⊥ + span(ΦSc)⊥) =

(
M − dim

(
span(ΦS)

))
+
(
M − dim

(
span(ΦSc)

))
− 0

= 2M − rankΦS − rankΦSc .

As such, dim(span(ΦS)⊥+span(ΦSc)⊥) < M precisely when rankΦS+rankΦSc > M . �
At this point, we point out some interesting consequences of Theorem 11. First of all,

Φ cannot be almost injective if N < M + 1 since rankΦS + rankΦSc � |S| + |Sc| = N .
Also, in the case where N = M + 1, we note that Φ is almost injective precisely when Φ

is full spark, that is, every size-M subcollection is a spanning set (note this implies that
all of the ϕn’s are nonzero). In fact, every full spark Φ with N � M + 1 yields almost
injective intensity measurements, which in turn implies that a generic Φ yields almost
injectivity when N � M + 1 [4]. This is in direct analogy with injectivity in the real
case; here, injectivity requires N � 2M −1, injectivity with N = 2M −1 is equivalent to
being full spark, and being full spark suffices for injectivity whenever N � 2M − 1 [4].
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Another thing to check is that the condition for injectivity implies the condition for
almost injectivity (it does).

Having established that full spark ensembles of size N � M +1 yield almost injective
intensity measurements, we note that checking whether a matrix is full spark is NP-hard
in general [33]. Granted, there are a few explicit constructions of full spark ensembles
which can be used [2,36], but it would be nice to have a condition which is not com-
putationally difficult to test in general. We provide one such condition in the following
theorem, but first, we briefly review the requisite frame theory.

A frame is an ensemble Φ = {ϕn}N
n=1 ⊆ RM together with frame bounds 0 < A �

B < ∞ with the property that for every x ∈ RM ,

A‖x‖2 �
N∑

n=1

∣∣〈x, ϕn〉
∣∣2 � B‖x‖2.

When A = B, the frame is said to be tight, and such frames come with a painless
reconstruction formula:

x = 1
A

N∑

n=1
〈x, ϕn〉ϕn.

To be clear, the theory of frames originated in the context of infinite-dimensional Hilbert
spaces [22,24], and frames have since been studied in finite-dimensional settings, primar-
ily because this is the setting in which they are applied computationally. Of particular
interest are so-called unit norm tight frames (UNTFs), which are tight frames whose
frame elements have unit norm: ‖ϕn‖ = 1 for every n = 1, . . . , N . Such frames are
useful in applications; for example, if one encodes a signal x using frame coefficients
〈x, ϕn〉 and transmits these coefficients across a channel, then UNTFs are optimally ro-
bust to noise [29] and one erasure [17]. Intuitively, this optimality comes from the fact
that frame elements of a UNTF are particularly well-distributed in the unit sphere [7].
Another pleasant feature of UNTFs is that it is straightforward to test whether a given
frame is a UNTF: Letting Φ = [ϕ1 · · ·ϕN ] denote an M × N matrix whose columns
are the frame elements, then Φ is a UNTF precisely when each of the following occurs
simultaneously:

(i) the rows have equal norm
(ii) the rows are orthogonal
(iii) the columns have unit norm

(This is a direct consequence of the tight frame’s reconstruction formula and the fact that
a UNTF has unit-norm frame elements; furthermore, since the columns have unit norm,
it is not difficult to see that the rows will necessarily have norm

√
N/M .) In addition to

being able to test that an ensemble is a UNTF, various UNTFs can be constructed using
342
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spectral tetris [16] (though such frames necessarily have N � 2M), and every UNTF can
be constructed using the recent theory of eigensteps [11,26]. Now that UNTFs have been
properly introduced, we relate them to almost injectivity for phase retrieval:

Theorem 12. If M and N are relatively prime, then every unit norm tight frame Φ =
{ϕn}N

n=1 ⊆ RM yields almost injective intensity measurements.

Proof. Pick a nonempty proper subset S ⊆ {1, . . . , N}. By Theorem 11, it suffices to
show that rankΦS + rankΦSc > M , or equivalently, rankΦSΦ

∗
S + rankΦScΦ∗

Sc > M .
Note that since Φ is a unit norm tight frame, we also have

ΦSΦ∗
S + ΦScΦ∗

Sc = ΦΦ∗ = N

M
I,

and so ΦSΦ
∗
S and ΦScΦ∗

Sc are simultaneously diagonalizable, i.e., there exists a unitary
matrix U and diagonal matrices D1 and D2 such that

UD1U
∗ + UD2U

∗ = ΦSΦ
∗
S + ΦScΦ∗

Sc = N

M
I.

Conjugating by U∗, this then implies that D1 + D2 = N
M I. Let L1 ⊆ {1, . . . ,M} denote

the diagonal locations of the nonzero entries in D1, and L2 ⊆ {1, . . . ,M} similarly
for D2. To complete the proof, we need to show that |L1|+ |L2| > M (since |L1|+ |L2| =
rankΦSΦ

∗
S + rankΦScΦ∗

Sc). Note that L1 ∪ L2 
= {1, . . . ,M} would imply that D1 + D2
has at least one zero in its diagonal, contradicting the fact that D1 + D2 is a nonzero
multiple of the identity; as such, L1 ∪ L2 = {1, . . . ,M} and |L1| + |L2| � M . We claim
that this inequality is strict due to the assumption that M and N are relatively prime.
To see this, it suffices to show that L1 ∩ L2 is nonempty. Suppose to the contrary that
L1 and L2 are disjoint. Then since D1 + D2 = N

M I, every nonzero entry in D1 must be
N/M . Since S is a nonempty proper subset of {1, . . . , N}, this means that there exists
K ∈ (0,M) such that D1 has K entries which are N/M and M − K which are 0. Thus,

|S| = Tr
[
Φ∗

SΦS

]
= Tr

[
ΦSΦ

∗
S

]
= Tr

[
UD1U

∗] = Tr[D1] = K(N/M),

implying that N/M = |S|/K with K 
= M and |S| 
= N . Since this contradicts the
assumption that N/M is in lowest form, we have the desired result. �

In general, whether a UNTF Φ yields almost injective intensity measurements is deter-
mined by whether it is orthogonally partitionable: Φ is orthogonally partitionable if there
exists a partition S � Sc = {1, . . . , N} such that span(ΦS) is orthogonal to span(ΦSc).
Specifically, a UNTF yields almost injective intensity measurements precisely when it
is not orthogonally partitionable. Historically, this property of UNTFs has been pivotal
to the understanding of singularities in the algebraic variety of UNTFs [25], and it has
also played a key role in solutions to the Paulsen problem [8,15]. However, it is not
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Fig. 1. The simplex in R3. Pointing out of the page is the vector 1√
3 (1, 1, 1), while the other vectors are the

three permutations of 1√
3 (1, −1, −1). Together, these four vectors form a unit norm tight frame, and since

M = 3 and N = 4 are relatively prime, these yield almost injective intensity measurements in accordance
with Theorem 12. For this ensemble, the points x such that A−1(A(x)) �= {±x} are contained in the three
coordinate planes. Above, we depict the intersection between these planes and the unit sphere. According
to Theorem 14, performing phase retrieval with simplices such as this is NP-hard.

clear in general how to efficiently test for this property; this is why Theorem 12 is so
powerful.

4. The computational complexity of phase retrieval

The previous section characterized the real ensembles which yield almost injective
intensity measurements. The benefit of seeking almost injectivity instead of injectivity is
that we can get away with much smaller ensembles. For example, a full spark ensemble in
RM of size M +1 suffices for almost injectivity (see Fig. 1), while 2M − 1 measurements
are required for injectivity. In this section, we demonstrate that this savings in the
number of measurements can come at a substantial price in computational requirements
for phase retrieval. In particular, we consider the following problem:

Problem 13. Let F = {ΦM}∞
M=2 be a family of ensembles ΦM = {ϕM ;n}N(M)

n=1 ⊆ RM ,
where N(M) = poly(M). Then ConsistentIntensities[F ] is the following problem:
Given M � 2 and a rational sequence {bn}N(M)

n=1 , does there exist x ∈ RM such that
|〈x, ϕM ;n〉| = bn for every n = 1, . . . , N(M)?

In this section, we will evaluate the computational complexity of Consistent-
Intensities[F ] for a large class of families of small ensembles F , but first, we briefly re-
view the main concepts involved. Complexity theory is chiefly concerned with complexity
classes, which are sets of problems that share certain computational requirements, such
as time or space. For example, the complexity class P is the set of problems which can
be solved in an amount of time that is bounded by some polynomial of the bit-length
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of the input. As another example, NP contains all problems for which an affirmative an-
swer comes with a certificate that can be verified in polynomial time; note that P ⊆ NP
since for every problem A ∈ P, one may ignore the certificate and find the affirmative
answer in polynomial time. One key tool that is used to evaluate the complexity of a
problem is called polynomial-time reduction. This is a polynomial-time algorithm that
solves a problem A by exploiting an oracle which solves another problem B, indicating
that solving A is no harder than solving B (up to polynomial factors in time); if such a
reduction exists, we write A � B. For example, any efficient phase retrieval procedure
for F can be used as a subroutine to solve ConsistentIntensities[F ], indicating that
phase retrieval for F is at least as hard as ConsistentIntensities[F ]. A problem B is
called NP-hard if B � A for every problem A ∈ NP. Note that since � is transitive, it
suffices to show that B � C for some NP-hard problem C. Finally, a problem B is called
NP-complete if B ∈ NP is NP-hard; intuitively, NP-complete problems are the hardest
of problems in NP. It is an open problem whether P = NP, but inequality is widely be-
lieved [20]; note that under this assumption, NP-hard problems have no computationally
efficient solution. This provides a proper context for the main result of this section:

Theorem 14. Let F = {ΦM}∞
M=2 be a family of full spark ensembles ΦM =

{ϕM ;n}M+1
n=1 ⊆ RM with rational entries that can be computed in polynomial time. Then

ConsistentIntensities[F ] is NP-complete.

Note that since the ensembles ΦM are full spark, the existence of a solution to the
phase retrieval problem |〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M + 1 implies unique-
ness by Theorem 11. Before proving this theorem, we first relate it to a previous
hardness result from [37]. Specifically, this result can be restated using the termi-
nology in this paper as follows: There exists a family F = {ΦM}∞

M=2 of ensembles
ΦM = {ϕM ;n}2M

n=1 ⊆ CM , each of which yielding almost injective intensity measure-
ments, such that ConsistentIntensities[F ] is NP-complete. Interestingly, these are
the smallest possible almost injective ensembles in the complex case, and we suspect
that the result can be strengthened to the obvious analogy of Theorem 14:

Conjecture 15. Let F = {ΦM}∞
M=2 be a family of ensembles ΦM = {ϕM ;n}2M

n=1 ⊆ CM

which yield almost injective intensity measurements and have complex rational en-
tries that can be computed in polynomial time. Then ConsistentIntensities[F ] is
NP-complete.

To prove Theorem 14, we devise a polynomial-time reduction from the following prob-
lem which is well-known to be NP-complete [32]:

Problem 16 (SubsetSum). Given a finite collection of integers A and an integer z, does
there exist a subset S ⊆ A such that

∑
a∈S a = z?
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Proof of Theorem 14. We first show that ConsistentIntensities[F ] is in NP. Note
that if there exists an x ∈ RM such that |〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M + 1,
then x will have all rational entries. Indeed, v := Φ∗

Mx has all rational entries, being a
signed version of {bn}M+1

n=1 , and so x = (ΦMΦ∗
M )−1ΦMv is also rational. Thus, we can

view x as a certificate of finite bit-length, and for each n = 1, . . . ,M + 1, we know that
|〈x, ϕM ;n〉| = bn can be verified in time which is polynomial in this bit-length, as desired.

Now we show that ConsistentIntensities[F ] is NP-hard by reduction from Sub-
setSum. To this end, take a finite collection of integers A and an integer z. Set M := |A|
and label the members of A as {am}M

m=1. Let Ψ denote the M×M matrix whose columns
are the first M members of ΦM . Since ΦM is full spark, Ψ is invertible and Ψ−1ΦM has
the form [I w], where w has all nonzero entries; indeed, if the mth entry of w were zero,
then ΦM \ {ϕM ;m} would not span, violating full spark. Now define

bn :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣
an

wn

∣∣∣∣ if n = 1, . . . ,M
∣∣∣∣∣2z −

M∑

m=1
am

∣∣∣∣∣ if n = M + 1.
(16)

We claim that an oracle for ConsistentIntensities[F ] would return “yes” from the
inputs M and {bn}M+1

n=1 defined above if and only if there exists a subset S ⊆ A such
that

∑
a∈S a = z, which would complete the reduction.

To prove our claim, we start with (⇒): Suppose there exists x ∈ RM such that
|〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M +1. Then y := Ψ∗x satisfies |〈y, Ψ−1ϕM ;n〉| = bn

for every n = 1, . . . ,M + 1. Since Ψ−1ΦM = [I w], then by (16), the entries of y satisfy

|ym| =
∣∣∣∣
am

wm

∣∣∣∣ ∀m = 1, . . . ,M,

∣∣∣∣∣
M∑

m=1
ymwm

∣∣∣∣∣ =
∣∣∣∣∣2z −

M∑

m=1
am

∣∣∣∣∣.

By the first equation above, there exists a sequence {εm}M
m=1 of ±1’s such that ym =

εmam/wm for every m = 1, . . . ,M , and so the second equation above gives
∣∣∣∣∣2z −

M∑

m=1
am

∣∣∣∣∣ =
∣∣∣∣∣

M∑

m=1
ymwm

∣∣∣∣∣ =
∣∣∣∣∣

M∑

m=1
εmam

∣∣∣∣∣

=
∣∣∣∣∣

M∑

m=1
εm=1

am −
M∑

m=1
εm=−1

am

∣∣∣∣∣ =
∣∣∣∣∣2

M∑

m=1
εm=1

am −
M∑

m=1
am

∣∣∣∣∣.

Removing the absolute values, this means the left-hand side above is equal to the right-
hand side, up to a sign factor. At this point, isolating z reveals that z =

∑
m∈S am,

where S is either {m: εm = 1} or {m: εm = −1}, depending on the sign factor.
For (⇐), suppose there is a subset S ⊆ {1, . . . ,M} such that z =

∑
m∈S am. Define

εm := 1 when m ∈ S and εm := −1 when m /∈ S. Then
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DISTRIBUTION A: Distribution approved for public release.



M. Fickus et al. / Linear Algebra and its Applications 449 (2014) 475–499 497

∣∣∣∣∣
M∑

m=1
εmam

∣∣∣∣∣ =
∣∣∣∣∣

M∑

m=1
εm=1

am −
M∑

m=1
εm=−1

am

∣∣∣∣∣ =
∣∣∣∣∣2

M∑

m=1
εm=1

am −
M∑

m=1
am

∣∣∣∣∣ =
∣∣∣2z −

M∑

m=1
am

∣∣∣∣∣.

By the analysis from the (⇒) direction, taking ym := εmam/wm for each m = 1, . . . ,M
then ensures that |〈y, Ψ−1ϕM ;n〉| = bn for every n = 1, . . . ,M + 1, which in turn ensures
that x := (Ψ∗)−1y satisfies |〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M + 1. �

Based on Theorem 14, there is no polynomial-time algorithm to perform phase re-
trieval for minimal almost injective ensembles, assuming P 
= NP. On the other hand,
there exist ensembles of size 2M − 1 for which phase retrieval is particularly efficient.
For example, letting δM ;m ∈ RM denote the mth identity basis element, consider the
ensemble ΦM := {δM ;m}M

m=1 ∪{δM ;1+δM ;m}M
m=2; then one can reconstruct (up to global

phase) any x whose first entry is nonzero by first taking x̂[1] := |〈x, δM ;1〉|, and then
taking

x̂[m] := 1
2x̂[1]

(∣∣〈x, δM ;1 + δM ;m〉
∣∣2 −

∣∣〈x, δM ;1〉
∣∣2 −

∣∣〈x, δM ;m〉
∣∣2) ∀m = 2, . . . ,M.

Intuitively, we expect a redundancy threshold that determines whether phase retrieval
can be efficient, and this suggests the following open problem: What is the smallest C

for which there exists a family of ensembles of size N = CM + o(M) such that phase
retrieval can be performed in polynomial time?
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We present a new deterministic algorithm for the sparse Fourier transform problem,
in which we seek to identify k � N significant Fourier coefficients from a signal of
bandwidth N . Previous deterministic algorithms exhibit quadratic runtime scaling, while
our algorithm scales linearly with k in the average case. Underlying our algorithm are
a few simple observations relating the Fourier coefficients of time-shifted samples to
unshifted samples of the input function. This allows us to detect when aliasing between
two or more frequencies has occurred, as well as to determine the value of unaliased

frequencies. We show that empirically our algorithm is orders of magnitude faster than
competing algorithms.

Keywords: Fourier algorithm.

1. Introduction

The Fast Fourier Transform (FFT) is arguably the most ubiquitous numerical algo-

rithm in scientific computing. In addition to being named one of the “Top Ten

Algorithms” of the past century [Dongarra and Sullivan (2000)], the FFT is a crit-

ical tool in myriad applications, ranging from signal processing to computational

PDE and machine learning. At the time of its introduction, it represented a major

leap forward in the size of problems that could be solved on available hardware,

as it reduces the runtime complexity of computing the Discrete Fourier Transform

(DFT) of a length-N array from O(N2) to O(N logN).

‖Y. Wang was supported in part by NSF-DMS awards 0813750 and 1043034.
∗∗A. Christlieb was supported in part by NSF-DMS-FRG award 0652833.
††Corresponding author.
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Any algorithm which computes all N Fourier coefficients has a runtime

complexity of Ω(N), since it takes that much time merely to report the output.

However, in many applications it is known that the DFT of the signal of interest

is highly sparse — that is, only a small number of coefficients are non-zero. In this

case, it is possible to break the Ω(N) barrier by asking only for the largest k terms

in the signal’s DFT. When k � N existing algorithms can significantly outper-

form even highly optimized FFT implementations [Iwen et al. (2007); Iwen (2010);

Hassanieh et al. (2012b)].

1.1. Related work

The first works to implicitly address the sparse approximate DFT problem appeared

in the theoretical computer science literature in the early 1990s. In Linial et al.

[1993], a variant of the Fourier transform for Boolean functions was shown to have

applications for learnability. A polynomial-time algorithm to find large coefficients

in this basis was given in Kushilevitz and Mansour [1993], while the interpolation

of sparse polynomials over finite fields was considered in Mansour [1995]. It was

later realized [Gilbert et al. (2005)] that this last algorithm could be considered as

an approximate DFT for the special case when N is a power of two.

In the past 10 or so years, a number of algorithms have appeared which directly

address the problem of computing sparse approximate Fourier transforms. When

comparing the results in the literature, care must be taken to identify the class

of signals over which a specific algorithm is to perform, as well as to identify the

error bounds of a given method. Different algorithms have been devised in different

research communities, and so have varying assumptions on the underlying signals

as well as different levels of acceptable error.

The first result with sub-linear runtime and sampling requirements appeared

in Gilbert et al. [2002]. They give a poly(k, logN, log(1/δ), 1/ε) time algorithm for

finding, with probability 1− δ, an approximation ŷ of the DFT of the input x̂ that

is nearly optimal, in the sense that ‖x̂− ŷ‖22 ≤ (1+ ε)‖x̂− x̂opt‖22, where x̂opt is the

best k-term approximation to x̂. Here, the exponent of k in the runtime is two, so

the algorithm is quadratic in the sparsity. Moreover, the algorithm is non-adaptive

in the sense that the samples used are independent of the input x. This algorithm

was modified in Gilbert et al. [2005] to bring the dependence on k down to lin-

ear.a This was accomplished mainly by replacing uniform random variables (used

to sample the input) by random arithmetic progressions, which allowed the use of

non-equispaced FFTs to sample from intermediate representations and to estimate

the coefficients in near-linear time. The increased overhead of this procedure, how-

ever, limited the range of k for which the algorithm outperformed a standard FFT

implementation [Iwen et al. (2007)].

aSee Gilbert et al. [2008] for a “user-friendly” description of the improved algorithm.
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Around the same time, a similar algorithm was developed in the context of

list decoding for proving hard-core predicates for one-way functions [Akavia et al.

(2003)]. This can be considered an extension of Kushilevitz and Mansour [1993],

and like Gilbert et al. [2002, 2005] is a randomized algorithm. Since the goal in

this work was to give a polynomial-time algorithm for list decoding, no effort was

made to optimize the dependence on k; it stands at k11/2, considerably higher

than Gilbert et al. [2002, 2005]. The randomness in this algorithm is used only to

construct a sample set on which norms are estimated, and in Akavia [2010] this set is

replaced with a deterministic construction. This construction is based on the notion

of ε-approximating the uniform distribution over arithmetic progressions, and relies

on existing constructions of ε-biased sets of small size [Katz (1989); Ajtai et al.

(1990)]. Depending on the size of the ε-biased sets used, the sampling and runtime

complexities are O(k4 logcN) and O(k6 logc N), respectively, for some c > 4.b

In the series of works [Iwen (2008, 2010, 2012)], a different deterministic algo-

rithm for sparse Fourier approximation was given that relies on the combinatorial

properties of aliasing, or collisions among frequencies in sub-sampled DFTs. By tak-

ing enough short DFTs of co-prime lengths, and employing the Chinese Remainder

Theorem (CRT) to reconstruct energetic frequencies from their residues modulo

these sample lengths, the author is able to prove sampling and runtime bounds of

O(k2 log4 N). The error bound is of the form ‖x̂− ŷ‖2 ≤ ‖x̂− x̂opt‖2 + k−1/2‖x̂−
x̂opt‖1; it has been shown that the stronger “�2-�2” guarantee of Gilbert et al. [2005]

cannot hold for a sub-linear, deterministic algorithm [Cohen et al. (2009)]. More-

over, the range of k for which this algorithm is faster than the FFT is smaller in

practice than that of Gilbert et al. [2005].

Most recently, the authors of Hassanieh et al. [2012b] presented a random-

ized algorithm that extends by an order of magnitude the range of sparsity for

which it is faster than the FFT. This is accomplished by removing the itera-

tive aspect from Gilbert et al. [2005] by using more efficient filters, which are

nearly flat within the passband and which decay exponentially outside. In con-

trast, the box-car filters used in Gilbert et al. [2005] have a frequency response

which oscillates and decays like |ω|−1. In addition, the identification of significant

frequencies is done by direct estimation after hashing into a large number of bins

rather than the binary search technique of Gilbert et al. [2005]. These changes

give a runtime bound of O(logN
√
Nk logN) and a somewhat stronger error bound

‖x̂ − ŷ‖2∞ ≤ εk−1‖x̂ − x̂opt‖22 + δ‖x̂‖21 with probability 1− 1/N , where ε > 0 and

δ = N−O(1) is a precision parameter.

bSpecifically, the runtime is O(k2 · log N · |S|), where S is the set of samples read by the algorithm.

This set takes the form S =
S�logN�

�=1 A − B�, where A has ε-discrepancy on rank 2 Bohr sets,
B� ε-approximates the uniform distribution on [0, 2� − 1] ∩ Z, and A − B� is the difference set.
Using constructions from Katz [1989] one has |A| = O(ε−1 log4 N), |B�| = O(ε−3 log4 N); setting
ε = Θ(k−1) and noting that | S

A−B�| = O(
P |A−B�|) and |A−B�| = O(|A||B�|) [see, e.g. Tao

and Vu (2006)] one obtains the stated sampling and runtime complexities.
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These existing algorithms generally take one of two approaches to the sparse

Fourier transform problem. In Gilbert et al. [2002], Akavia et al. [2003], Gilbert

et al. [2005] and Hassanieh et al. [2012b], the spectrum of the input is ran-

domly permuted and then run through a low-pass filter to isolate and iden-

tify frequencies which carry a large fraction of the signal’s energy. This leads

to randomized algorithms that fail on a non-negligible set of possible inputs.

On the other hand, Iwen [2010] takes advantage of the combinatorial proper-

ties of aliasing in order to identify the significant frequencies. This leads to a

deterministic algorithm with higher runtime and sampling requirements than the

randomized algorithms mentioned. Both of these randomized and deterministic

approaches have drawbacks. Randomized algorithms are not suitable for failure-

intolerant applications, while the process used to reconstruct significant frequen-

cies in Iwen [2010] relies on the CRT, which is highly unstable to errors in the

residues. While there do exist algorithms for “noisy Chinese Remaindering” [Gol-

dreich et al. (2000); Boneh (2002); Shparlinski and Steinfeld (2004)] these have thus

far not found application to the sparse DFT problem, and we leave this as future

work.

As this paper was being prepared, the authors became aware of an indepen-

dent work using very similar methods for frequency estimation in the noiseless

case [Hassanieh et al. (2012a)]. Both methods consider the phase difference between

Fourier samples to extract frequency information, but are based on different tech-

niques for binning significant frequencies. The authors of Hassanieh et al. [2012a]

use random dilations and efficient filters of Hassanieh et al. [2012b], whereas we

use different sample lengths in the spirit of Iwen [2010]. We believe both contri-

butions are of interest, and reinforce the notion that exploiting phase information

is critical for developing fast, robust algorithms for the sparse Fourier transform

problem.

1.2. Relationship to compressed sensing

The term “compressed sensing” refers to a new paradigm in signal processing which

seeks to recover a compressible signal from a number of linear measurements roughly

proportional to its information content, rather than its nominal dimension. While

this paper does not make explicit use of the results or algorithms of compressed

sensing, there are parallels in the approaches used. The purpose of this section is

to clarify the relationship between the two.

All algorithms for the sparse Fourier transform problem take a small number of

samples of the input x, either at random or in a deterministic fashion. These samples

are then processed in a highly non-linear, algorithm-dependent manner to produce

a k-term Fourier representation of x – that is, a list {(ω̃�, ã�)}k�=1 of significant

frequency/coefficient pairs. In other words, these algorithms approximately solve

the severely underdetermined system RF ∗x̂ = Rx, where R is the restriction to

the samples used by the algorithm, F ∗ is the adjoint of the N ×N discrete Fourier
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matrix with entries

Fjk =
1√
N

e−2πijk/N , 0 ≤ j, k < N (1)

and x̂ is the DFT of x.

In Candès et al. [2006], Candès, Romberg, and Tao considered the dual prob-

lem — that of recovering a given signal from highly incomplete Fourier measure-

ments. Specifically, suppose that a signal x of length N is the superposition of k

spikes at times t = τj :

x[t] =
k∑

j=1

x[τj ]δ(t− τj). (2)

The authors show that, with high probability, x can be recovered exactly from a

randomly chosen set Ω of m frequencies from the DFT of x, provided

m ≥ Ck logN (3)

for some constant C whose value depends on the desired probability of success.

This can be viewed as the severely underdetermined linear system dual to the

system described above: RFx = Rx̂. The recovery algorithm in this case is the �1
minimization

g∗ = argmin ‖g‖1 subject to ĝ(ω) = f̂(ω) for all ω ∈ Ω. (4)

The idea of using �1 minimization to recover sparse vectors has been stud-

ied extensively in a number of research communities, including seismic imaging

[Santosa and Symes (1986)], image processing [Rudin et al. (1992)], and signal pro-

cessing [Chen et al. (1998)], where it is commonly referred to as basis pursuit. The

theoretical foundations of �1 approximation are treated in depth in the monograph

[Pinkus (1989)].

Other sampling schemes and recovery algorithms have been studied for the

compressed sensing problem. For example, in Rauhut [2007], �1 minimization is used

with points sampled randomly from a continuous distribution, while in Xu [2011] a

deterministic sampling scheme is analyzed with reconstruction through Orthogonal

Matching Pursuit (OMP). Other works which analyze the performance of OMP in

the compressed sensing setting include Tropp and Gilbert [2007] and Kunis and

Rauhut [2008].

Sparse Fourier approximation and compressed sensing are therefore broadly sim-

ilar in both their goals (sparse approximation of signals) and methods (in particular,

the use of randomization.) There are, however, substantial differences between the

two, which we now enumerate.

(1) Sampling requirements. The compressed sensing model requires measurement

matrices to satisfy the Restricted Isometry Property, which has been shown

to hold with high probability for random Gaussian, Bernoulli, and Fourier

ensembles. Sparse Fourier algorithms, on the other hand, generally require more
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structure in their sampling sets. This is obviously true for the deterministic algo-

rithms, and also for some of the randomized versions — in particular, [Gilbert

et al. (2005)] requires samples that lie on arithmetic progressions.

(2) Reconstruction costs. As mentioned above, the reconstruction of the target

signal in the compressed sensing model is achieved by a convex optimization

problem (which can be recast as a linear program). This is expected to incur

a computational costs of O(N3) for a signal of length N . Most sparse Fourier

transform algorithms have time complexity that is polylogarithmic in N , and

so are exponentially faster.

(3) Allocation of resources. The balance between the two previous items is the

major point of distinction. Indeed, we view the comparison of the two paradigms

as an “apples-to-oranges” scenario: In the seismic imaging environment (where

practitioners have recently implemented compressed sensing methods [Lin and

Herrmann (2007); Demanet and Peyré (2011)]), high acquisition costs make

long processing times on the back end more palatable. Sparse Fourier transform

algorithms, however, were developed with data streaming applications in mind.

In this area, low signal acquisition costs and enormous problem sizes necessitate

fast algorithms with sparing use of memory resources.

1.3. New results

In this paper we describe a simple, deterministic algorithm that avoids reconstruc-

tion with the CRT. We are thus able to avoid two pitfalls associated with exist-

ing algorithms. Our method relies on sampling the signal in the time domain at

slightly shifted points, and thus it assumes access to an underlying continuous-

time signal. The shifted time samples allow us to determine the value of significant

frequencies in sub-sampled FFTs and also indicate when two or more frequen-

cies have been aliased in such a sub-sampled FFT. These two key facts allow us

to significantly reduce (by up to two orders of magnitude) the average-case sam-

pling and runtime complexity of the sparse FFT over a certain class of random

signals. Our worst-case bounds improve by a constant factor those of prior deter-

ministic algorithms. We present both adaptive and non-adaptive versions of our

algorithms. If the application allows samples to be acquired adaptively (that is,

dependent on previous samples), we are able to improve further on our average-case

bounds.

The remainder of this paper is organized as follows. In Sec. 2, we introduce

notation and prove the technical lemmas underlying our algorithms. In Sec. 3, we

introduce randomized and deterministic versions of our algorithm. In Sec. 4, we

prove that our algorithm has average-case runtime and sampling complexities of

Θ(k log(k)) and Θ(k), respectively. In Sec. 5, we present the results of an empirical

evaluation of our algorithm and compare its runtime and sampling requirements to

competing algorithms. Finally in Sec. 6, we provide some concluding remarks and

discuss ongoing work to appear in the future.
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2. Mathematical Background

2.1. Preliminaries

Throughout this work we shall be concerned with frequency-sparse band-limited

signals S : [0, 1)→ C of the form

S(t) =

k∑

j=1

aje
2πiωjt, (5)

where ωj ∈ [−N/2, N/2) ∩ Z, aj ∈ C, and k � N . The Fourier series of S is given

by

Ŝ(ω) =

∫ 1

0

S(t)e−2πiωtdt, ω ∈ Z, (6)

so that for signals of the form (5) we have Ŝ(ωj) = aj and Ŝ(ω) = 0 for all other

ω ∈ [−N/2, N/2) ∩ Z. Given any finite sequence S = (s0, s1, . . . , sp−1) of length p

we define its DFT by

Ŝ[h] =

p−1∑

j=0

sje
2πijh

p =

p−1∑

j=0

S[j]W jh
p , (7)

where h = 0, 1, . . . , p − 1, S[j] := sj and Wp := e−
2πi
p is the primitive pth root of

unity. The FFT allows the computation of Ŝ in O(p log p) steps.

We apply the DFT to discrete samples of S(t) to compute the Fourier coefficients

aj of S(t). For an integer p and real ε > 0 we form discrete arrays of samples of S

of length p via

Sp[j] = S

(
j

p

)
, Sp,ε[j] = S

(
j

p
+ ε

)
, j = 0, 1, . . . , p− 1.

Now assume that all ωj (mod p), 1 ≤ j ≤ k are distinct. It is a simple derivation

to obtain

Ŝp[h] =

{
paj h ≡ ωj (mod p)

0 otherwise.

By examining the peaks of Ŝp[h] we will be able to determine {ωj (mod p) : 1 ≤
j ≤ k}. Previous approaches applied the CRT to reconstruct {ωj} by taking a

suitable number of p’s, which must overcome the problem of registrations to match

up each ωj whenever a new p is used [see, e.g. Iwen (2010, 2012)]. Our algorithm

takes a different approach using the shifted sub-samples. Note that

Ŝp,ε[h] =

{
paje

2πiεωj h ≡ ωj (mod p)

0 otherwise.
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It follows that in this setting, for h ≡ ωj (mod p) we have
bSp,ε[h]
bSp[h]

= e2πiεωj . Hence

2πεωj ≡ Arg

(
Ŝp,ε[h]

Ŝp[h]

)
(mod 2π), (8)

where Arg(z) denotes the phase angle of the complex number z in [−π, π). Assume

that we take |ε| ≤ 1
N . Then ωj is completely determined by (8) as there will be no

wrap-around aliasing, and

ωj =
1

2πε
Arg

(
Ŝp,ε[h]

Ŝp[h]

)
. (9)

In fact, more generally, if we have an estimate of ωj, say |ωj | < L
2 , then by taking

|ε| ≤ 1
L the same reconstruction formula (9) holds. Note that even though the

denominator of (9) contains a very small number ε, it can be verified through

Taylor expansion that the numerator is of the same order, so that the ratio is well-

behaved in the noiseless case, at least for ω sufficiently far from ±π. The observation
that by taking slightly shifted samples will allow us to identify frequencies in S(t)

underlies the algorithms which follow, and the bulk of this paper analyzes various

aspects of the proposed algorithms, such as efficiency and robustness.

One of the problems is that when p < N , it is possible that two or more

distinct frequencies will have the same remainder modulo p. In this case, we say

the frequencies are aliased or collide (mod p). In general, for h ∈ {0, . . . , p−1} and
the given signal S(t) let I(S, h; p) := {j : ωj ≡ h (mod p)}. Then we have

Ŝp[h] =
∑

ω≡h (mod p)

Ŝ(ω) = p
∑

j∈I(S,h;p)

aj . (10)

When aliasing occurs reconstruction via (9) is no longer valid. The aliasing phe-

nomenon presents a serious challenge for any method with sub-linear sampling

complexity. In the next section, we develop a simple test to determine whether or

not aliasing has occurred in a p-length DFT, which then allows us to effectively

overcome this challenge and develop provably correct sub-linear algorithms.

2.2. Technical lemmas

To effectively apply the sub-sampling idea in a Fourier algorithm, one must first

overcome the aliasing challenge. Using shifted sub-samples gives us a simple yet

extremely effective criterion to determine whether or not aliasing has occurred at a

given location in a p-length DFT without resorting to complicated combinatorial

techniques. Observe that complementing (10) we have

Ŝp,ε[h] = p
∑

j∈I(S,h;p)

aje
2πiεωj . (11)
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It follows that

|Ŝp,ε[h]|2 − |Ŝp[h]|2 = p2
∑

j,l∈I(S,h;p)

ajale
2πiε(ωj−ωl) − p2

∣∣∣∣∣∣
∑

j∈I(S,h;p)

aj

∣∣∣∣∣∣

2

. (12)

Lemma 1. Let p > 1 and h ∈ {0, 1, . . . , p− 1}. Assume that q = |I(S, h; p)| > 1,

i.e. ωj ≡ h (mod p) for more than one j in S(t). Then we have the following:

(A) Let ε > 0 and E := {ωj − ωm : j,m ∈ I(S, h; p)}. Suppose that all elements of

εE are distinct (mod 1). Then |Ŝp,mε[h]| 
= |Ŝp[h]| for some 1 ≤ m ≤ q2 − q.

(B) For almost all ε > 0 we have |Ŝp,ε[h]| 
= |Ŝp[h]|.

Proof. The proof of part (B) is immediate from (12). Observe that f(ε) :=

|Ŝp,ε[h]|2−|Ŝp[h]|2 is trigonometric polynomial in ε, and it is not identically 0 given

that q = |I(S, h; p)| > 1. Thus, it has at most finitely many zeros for ε ∈ [0, 1), and

hence (B) is clearly true.

We resort to the Vandermonde matrix to prove part (A). For simplicity we

write f(t) =
∑

α∈E cαe
2πiαt. Set rα := e2πiαε where ε satisfies the hypothesis of

the lemma, which implies that all rj are distinct. Assume the claim of part (A) is

false. Then we have f(mε) = 0 for all 0 ≤ m ≤ q2 − q. Here, f(0) = 0 is automatic

because Sp,0 = Sp. Thus we have
∑

α∈E

cαr
m
α = 0, m = 0, 1, . . . , q2 − q. (13)

But the cardinality of E is at most q2 − q + 1, which means that there are at most

q2 − q + 1 terms in the sum in (13). Because all rα are distinct the matrix [rmα ] is

a non-singular Vandermonde matrix, and for (13) to hold all cα must be zero. This

is clearly not the case, and a contradiction.

Remark. Any irrational ε or ε = a
b with a, b coprime and b ≥ 2N will satisfy the

hypothesis of part (A) of Lemma 1. It is also easy to show that in the special case

where all coefficients aj are real and |I(S, h; p)| = 2, we have |Ŝp,ε[h]| 
= |Ŝp[h]| for
any ε = a

b with a, b coprime and b ≥ N .

Lemma 1 allows us to determine whether aliasing has occurred by whether

|Ŝp,ε[h]|/|Ŝp[h]| = 1 for a few values of ε. It offers both a deterministic (part (B))

and a random (part (A)) procedure to identify aliasing in the sub-sampled DFTs.

In practice, we need to set a tolerance τ in order to accept or reject frequencies

according to the criterion
∣∣∣∣∣
|Ŝp,ε[h]|
|Ŝp[h]|

− 1

∣∣∣∣∣ ≤ τ. (14)

We typically choose ε = 1/cN for some small constant c ≥ 2, which would satisfy

the hypothesis of part (A) of Lemma 1. A tolerance on the order of p/N works well

in general, which is what we use in our experiments in Sec. 5 below.
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In our algorithms, we will take a number of sub-sampled DFTs of an input signal

S(t) of the form (5), whose lengths we denote p�. Lemma 1 allows us to determine

whether or not two or more frequencies are aliased, so that we only add the non-

aliased term to our representation. Since it is unlikely that two or more frequencies

are aliased modulo two different sampling rates, using a different p� in a subsequent

iteration lets us quickly discover all frequencies present in S(t). Lemma 2 gives a

worst-case bound on the number of p�’s required by our deterministic algorithm

to identify all k frequencies in a given Fourier-sparse signal. It is similar to Iwen

[2010, Lemma 1], but with a smaller constant. In its proof we use the CRT, which

we quote here for completeness [see, e.g. Niven et al. (1991)].

Theorem 1 (Chinese Remainder Theorem). Any integer n is uniquely spec-

ified modulo N by its remainders modulo m pairwise relatively prime numbers p�,

provided
∏m

�=1 p� ≥ N.

Lemma 2. Let M > 1. It suffices to take 1 + (k − 1)�logM N� pairwise relatively

prime p�’s with p� ≥M to ensure that each frequency ωj is isolated (i.e. not aliased)

(mod p�) for at least one �.

Proof. Assume otherwise, namely that given p� for � = 1, 2, . . . , L with L >

k�logM N� there exists some ωj such that ωj is aliased (mod p�). By the Pigeon

Hole Principle there exists at least one ωm 
= ωj such that ωj − ωm ≡ 0 (mod p�)

at least q times, where q > �logM N�. Without loss of generality we assume that

ωj − ωm ≡ 0 (mod p�) for � = 1, 2, . . . , q. Now by the fact that p� ≥M , we have

q∏

�=1

p� ≥M q ≥ N.

By the CRT we would then have ωj ≡ ωm (mod N), a contradiction.

We remark that the algorithm in Iwen [2010] requires taking 1 + 2k logk N co-

prime sample lengths, since that algorithm requires each ω to be isolated in at

least half of the DFTs of length p�. This requirement stems from the fact that that

algorithm cannot distinguish between aliased and non-aliased frequencies in a given

sub-sampled DFT. Our worst-case bound is approximately a factor of two better,

though in practice our algorithms never use all those sample lengths on random

input. The fact that we can tell which frequencies are “good” for a given p� allows

us to construct our Fourier representation one term at a time, and quit when we

have achieved a prescribed stopping criterion.

3. Algorithms

Both of our algorithms proceed along a similar course; in fact they differ only in

the choice of the sample lengths p�. We assume that we are given access to the

continuous-time signal S(t) whose Fourier coefficients we would like to determine,

and further that we can sample from S at arbitrary points t in unit time. This is an
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appropriate model for analog signals, but not for discrete ones. In the discrete case,

one could interpolate between given samples to approximate the required S-values,

though we have not implemented or analyzed this case. (The same assumptions

hold for the algorithms in Iwen [2010], while those in Gilbert et al. [2002, 2005]

and Hassanieh et al. [2012b] are formulated purely in the discrete realm.) In this

paper, mainly limit ourselves to the noiseless case. Though this is a highly unre-

alistic assumption, it permits a simple description of the underlying algorithm. In

Sec. 3.3, we discuss some of the problems associated with noisy signals and give

a minor modification of our algorithm for low-level noise. A second manuscript in

preparation addresses the issue of noise specifically, with more significant modifica-

tions to the algorithms described below.

3.1. Non-adaptive

Our algorithms start by choosing a sample length p1 such that p1 ≥ ck for some

constant c > 1. For a fixed ε ≤ 1/N , we then compute Ŝp and Ŝp,ε, sort the results

by magnitude, and compute frequencies ω via (9) for the k largest coefficients in

absolute value. We then check whether or not each of those frequencies is aliased

via (10), and if it is not, we add it to our list. The coefficient is given by the unshifted

sample value Ŝp[h] at that frequency. After this, we combine terms with the same

frequency and prune small coefficients from the list. We then iterate until a stopping

criterion is reached. In the empirical study described in Sec. 5, we stopped when

the number of distinct frequencies in our list equalled the desired sparsity.

Our deterministic algorithm chooses p� to be the �th prime greater than ck. This

ensures that all samples lengths are co-prime, at the expense of taking slightly more

samples than necessary. By Lemma 2, 1+(k−1)�logck N� such p�s suffice to isolate

every ω at least once. This gives us worst-case sampling and runtime complexity on

the same order as Iwen [2010], though the results in Sec. 5 indicate that on average

we significantly outperform those pessimistic bounds.

Our Las Vegas algorithm chooses p� uniformly at random from the interval

[c1k, c2k] for constants 1 < c1 < c2. In this case we cannot make a worst-case guar-

antee on the number of iterations needed by the algorithm to converge. However,

the results in Sec. 5 indicate that the Las Vegas version performs similarly to the

deterministic version on the class of signals tested.

3.2. Adaptive

The algorithms can also be implemented in an adaptive fashion, by which we mean

that the size of the current representation is taken into account in subsequent

iterations. In particular, if R is our current representation, we let k∗ = k− |R| and
choose the next p� with respect to k∗ instead of k. Moreover, before taking DFTs,

we subtract off the contribution from the current representation, so that effort is

not expended re-identifying portions of the spectrum already discovered. This idea

is similar to that in Gilbert et al. [2002, 2005], though in our empirical studies
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the evaluation of the representation is done directly, rather than as an unequally-

spaced FFT. This gives our algorithms asymptotically slower runtime, but the effect

is negligible for the values of k studied in Sec. 5. A formal description appears below

in Algorithm 1.

Algorithm 1. Phaseshift

Input: function pointer S, integers c1, c2, k,N , real ε

Output: R, a sparse representation for Ŝ

R← ∅, ε0 ← 0, ε1 ← ε, �← 1

while |R| < k do

5: k∗ ← k − |R| {or k if non-adaptive}
p� ← first prime ≥ c1k

∗

{or Uniform(c1k
∗, c2k∗) if Las Vegas}

for m = 0 to 1 do

for j = 0 to �− 1 do

S�,m[j]← S

(
j

p�
+ εm

)

10: Srep[j]←
∑

(ω,cω)∈R

cωe
2πiω(j/p�+εm)

{omit if non-adaptive}
end for

Ŝ�,m ← FFT(S�,m − Srep)

Ŝ
sort

�,m ← Sort(Ŝ�,m)

for j = 1 to k∗ do

15: ωj,� ←
1

2πε
Arg


 Ŝ

sort

�,1 [j]

Ŝ
sort

�,0 [j]




end for

end for

for j = 1 to k∗ do

if

∣∣∣∣∣∣

∣∣∣Ŝ
sort

�,0 [j]
∣∣∣

∣∣∣Ŝsort

�,1 [j]
∣∣∣
− 1

∣∣∣∣∣∣
<

p�
N

then

20: R← R ∪
{(

ωj,�, Ŝ�,0[ωj,�]
)}

end if

end for

collect terms in R with same ω

prune small coefficients from R

25: �← �+ 1

end while
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3.3. Modifications in the presence of noise

In the noiseless versions of the algorithms described in this paper, a test for aliasing

is implemented by considering the ratio of magnitudes of shifted and unshifted

peaks. When the samples are corrupted by noise, there will be two challenges. The

first challenge is that the reconstruction of frequencies from shifts will be corrupted

by noise. The second challenge is that there will be variations among the magnitudes

even for non-aliased terms, so a higher threshold that depends on the size of the

noise must be set. When this threshold is too large it affects the ability to distinguish

aliased terms as there will be an increased number of false negatives. On the other

hand, lower thresholds that reduce false negatives will lead to an increased number

of false positives.

The first challenge can be addressed effectively through a combination of using

larger pj’s, multiple shifts and a multiscale unwrapping. The idea of using larger

pj ’s is rather straightforward yet effective. For any given pj the DFT detects the

location of the frequencies modulo pj rather accurately even with substantial noise.

Furthermore, the reconstructed frequencies will still tend to cluster around the

true value. Suppose, that we sample the signal and compute DFTs of length pj on

these samples. The locations of the peaks in these short DFTs tell us the accurate

value of ω mod pj for each unaliased frequency ω appearing in the signal. Writing

ω = apj + b with a, b ∈ Z, we now know b and must determine a.

With a small amount of noise the reconstructed frequencies ω̃ using (9) will

be close to the true ω. We can thus round ω̃ to the nearest integer of the form

apj + b, which will recover the true frequency ω as long as |ω̃ − ω| < pj/2. For

high noise levels, it is possible that the ω̃ will deviate by more than pj/2 from ω,

so that the value for a given by rounding will be incorrect. By choosing larger pj
(i.e. increasing the parameter c1) one can alleviate the problem somewhat, provided

that the noise level is not too high. When the noise level is so high that taking a

large pj is no longer economical, a potential solution is to take multiple shifts and

employ a multiscale unwrapping technique. We are still at the preliminary stage in

our study of these new techniques, but early results are very encouraging.

The second challenge poses a bigger problem, but again it can be addressed in

several ways. The multiscale unwrapping method will repeatedly check for alias-

ing at each stage, which makes it highly unlikely that an aliased frequency will

pass through all the tests. Even in the unlikely even that it does, our algorithm

allows false positives. Since each mode is subtracted from the original signal in our

algorithm, a false positive frequency will lead to an extra mode in the new signal.

As the process continues it will be extracted and cancel out the false frequency

extracted earlier.

4. Average-Case Analysis

In this section, we prove that the average-case runtime and sampling complexity

of our algorithm are Θ(k log k) and Θ(k), respectively. This is shown over a class
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of random signals described in Sec. 4.2. Before giving this result on the expected

runtime and sampling complexity, in Sec. 4.1 estimate the costs of a single iteration

of the while loop in Algorithm 1, lines 5–25. We then describe in Sec. 4.2, the

random signal model over which we prove our average-case bounds. In Sec. 4.3, we

prove that the expected number of iterations of the while loop is constant, and in

Sec. 4.4, we use this result to prove our average-case bounds.

4.1. While loop runtime and sampling complexity

The computational cost of the while loop in Algorithm 1, lines 5–25 is dominated

by three operations. The first is the evaluation of the current representation R

of k − k∗ terms at the O(k∗) points j/p� in line 10. In our implementation, we

simply calculated this directly, looping over both the sample points and the terms

in the representation. The complexity of this implementation is O(p�(k − k∗)) =

O(k∗(k − k∗)) = O(k2), and while non-equispaced FFT [Dutt and Rokhlin (1993);

Anderson and Dahleh (1996)] yield an asymptotically faster runtime of O(k log(k)),

they also incur large overhead costs. For the values of k considered in this paper, the

direct evaluation seems to have little effect on the overall runtime. The other two

dominant computational tasks in the inner loop are the FFTs of O(k) samples and

the subsequent sorting of these DFT coefficients. It is well-known that both of these

operations can be done in time Θ(k log(k)) [Cormen et al. (2001)]. Thus the inner

loop has overall time complexity Θ(k log(k)), assuming the use of non-equispaced

FFTs.

4.2. Random signal model

For both the average-case analysis and for the empirical evaluation described in

Sec. 5, we considered test signals with uniformly random phase over the bandwidth

and coefficients chosen uniformly from the complex unit circle. In other words, given

k and N , we choose k frequencies ωj uniformly at random (without replacement)

from [−N/2, N/2) ∩ Z. The corresponding Fourier coefficients aj are of the form

e2πiθj , where θj is drawn uniformly from [0, 1). The signal is then given by

S(t) =

k∑

j=1

aje
2πiωjt. (15)

This is the standard signal model considered in previous empirical evaluations of

sub-linear Fourier algorithms [Iwen et al. (2007); Iwen (2010); Hassanieh et al.

(2012b)].

4.3. Markov analysis of collisions

In order to analyze the expected runtime and sampling complexity of our algo-

rithms, we must estimate the expected number of collisions among frequencies
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modulo the sample lengths used by the algorithms. Recall that in the noiseless

case, our algorithms are able to detect when a collision between two or more fre-

quencies has occurred, and for those that are not aliased we are able to calculate

the value of the frequency. Thus we seek to estimate the expected fraction of fre-

quencies that are aliased modulo a given sample length p, since this determines

how many passes the algorithm makes. In this section, we derive bounds on the

expected value of this quantity and discuss how the stopping criteria used in the

algorithm affect its average-case performance.

In the random signal model considered in Sec. 5, we assume the k frequencies are

uniformly distributed over the bandwidth [−N/2, N/2), and so the residues ω mod p

are also uniformly distributed over [0, p− 1]. Our problem then becomes a classical

occupancy problem: The number of collisions among the frequencies is equivalent

to the number of multiple-occupancy bins when k balls are thrown uniformly at

random into p bins. Define Xm to be the number of single-occupancy bins after m

balls are thrown, Ym to be the number of multiple-occupancy bins after m balls are

thrown, and Zm to be the number of zero-occupancy bins after m balls are thrown.

Since p is constant, we have the trivial relationship Zm = p−Xm−Ym, so it suffices

to consider only the pair (Xm, Ym). When the (m+1)st ball is thrown, we have the

following possibilities:

• it lands in an unoccupied bucket, with probability Zm/p = 1− (Xm + Ym)/p;

• it lands in a single-occupancy bucket, with probability Xm/p;

• it lands in a multiple-occupancy bucket, with probability Ym/p.

In the first case, we have Xm+1 = Xm + 1, Ym+1 = Ym; in the second case, we

have Xm+1 = Xm − 1, Ym+1 = Ym + 1; and in the third case, we have Xm+1 =

Xm, Ym+1 = Ym. Conditioning on the values of Xm, Ym we have

E

([
Xm+1

Ym+1

] ∣∣∣∣∣

[
Xm

Ym

])
=

[
1− 2/p −1/p
1/p 1

][
Xm

Ym

]
+

[
1

0

]
, (16)

so that the system forms a Markov chain. By recursively conditioning on the values

of Xm−1, Ym−1, we can calculate the expected values of Xk, Yk for any k > 0 using

the initial condition X1 = 1, Y1 = 0. Denoting by A the matrix in the right-hand

side of Eq. (16), we have

E

([
Xk

Yk

])
=

k−1∑

m=0

(
Am

[
1

0

])
=

(
k−1∑

m=0

Am

)[
1

0

]
. (17)

Since ρ(A) = 1 − 1/p < 1, where ρ is the spectral radius, the geometric matrix

series can be written

k−1∑

m=0

Am = (I −A)−1(I −Ak). (18)
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After some linear algebra, we obtain

E

([
Xk

Yk

])
=




k

(
1− 1

p

)k−1

p

(
1−

(
1− 1

p

)k
)
− k

(
1− 1

p

)k−1



. (19)

Since Zk = p−Xk − Yk, we have E(Zk) = p(1− 1/p)k.

In our algorithms, we choose p = ck for some small integer c. Using this and

the approximation (1 + x
n )

n ≈ ex, we have

E

([
Xk

Yk

])
≈
[

ke−1/c

ck(1− e−1/c)− ke−1/c

]
. (20)

This gives a non-linear equation for the expected number of collisions among k

frequencies as a function of the parameter c. Newton’s method can then be used to

determine the value c required to ensure a desired fraction of the frequencies are

not aliased. For example, to ensure that 90% of frequencies are isolated on average,

it suffices to take c = 5; this value for the parameter c had already been found to

give good performance in our empirical evaluation of the algorithms.

4.4. Average-case runtime and sampling complexity

In this section, we will use a probabilistic recurrence relation due to Karp [Karp

(1994); Dubhashi and Panconesi (2009)] to give average-case performance bounds

and concentration results for the case when the algorithm is halted after identifying

k or more terms. In particular, we use the following theorem for recurrences of the

form

T (k) = a(k) + T (H(k)), (21)

where T (k) denotes the time required to solve an instance of size k, a(k) is the

amount of work done on a problem of size k, and 0 ≤ H(k) ≤ k is a random

variable denoting the size of the subproblem generated by the algorithm.

Theorem 2. [Karp (1994, Theorem 1.2)] Suppose a(k) is non-decreasing,

continuous, and strictly increasing on {x : a(x) > 0}, and that E[H(k)] ≤ m(k) for

a non-decreasing continuous function m(k) such that m(k)/k is also non-decreasing.

Denote by u(k) the solution to the deterministic recurrence

u(k) = a(k) + u(m(k)). (22)

Then for k > 0 and t ∈ N,

P[T (k) > u(k) + ta(k)] ≤
(
m(k)

k

)t

. (23)
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Our algorithm does work a(k) = Θ(k log(k)) on input of size k and generates a

subproblem whose average size is m(k) = k/10. (Recall from Sec. 4.3 that with the

parameter c = 5, on average over 90% of the frequencies were not aliased modulo

p = O(ck).) The associated deterministic recurrence is then

u(k) = Θ(k log(k)) + u(k/10), (24)

whose solution is u(k) = Θ(k log(k)) [see, e.g. Cormen et al. (2001)]. A straightfor-

ward application of Theorem 2 yields the following

Theorem 3 (Runtime bound). Let T (k) denote the runtime of Algorithm 1 on

a random signal drawn from the class in Sec. 4.2. Then E[T (k)] = Θ(k log(k)) and

P[T (k) > Θ(k log(k)) + tk log(k)] ≤ 10−t. (25)

The sampling complexity S(k) can be handled in an analogous manner, since

in this case a(k) = Θ(k) and m(k) = k/10 as before. The associated deterministic

recurrence becomes

u(k) = Θ(k) + u(k/10), (26)

whose solution is u(k) = Θ(k). Applying Theorem 2 again we have the following

Theorem 4 (Sampling bound). Let S(k) denote the number of samples used by

Algorithm 1 on a random signal drawn from the class in Sec. 4.2. Then E[S(k)] =
Θ(k) and

P[S(k) > Θ(k) + tk] ≤ 10−t. (27)

5. Empirical Evaluation

In this section, we describe the results of an empirical evaluation of the adaptive

deterministic and Las Vegas variants of the Phaseshift algorithm described above.

Both algorithms were implemented in C++ using FFTW 3.0 [Frigo and Johnson

(2005)] for the FFTs, using FFTW ESTIMATE plans since the sample lengths are

not known in advance for the Las Vegas variant. For comparison, we also ran the

same tests on the four variants of GFFT as well as on AAFFT and FFTW itself.

The FFTW runs utilized the FFTW PATIENT plans with wisdom enabled, and so

are highly optimized. The experiments were run on a single core of an Intel Xeon

E5620 CPU with a clock speed of 2.4 GHz and 24 GB of RAM, running SUSE

Linux with kernel 2.6.16.60-0.81.2-smp for x86 64. All code was compiled with the

Intel compiler using the -fast optimization. As in Iwen [2012], timing is reported

in CPU ticks using the cycle.h file included with the source code for FFTW.

In the following sections, we refer to our algorithm as “Phaseshift”, since by

taking shifted time samples of the input signal we also shift the phase of the

Fourier coefficients. To keep the plots readable, we only show data for the adaptive,
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deterministic variant of our algorithm; the other variants perform similarly the

algorithms of Iwen [2012] are denoted GFFT-XY, where X ∈ {D,R} and Y ∈ {F,S}.
The D/R stands for deterministic or randomized, while the F/S stands for fast or

slow. The fast variants use more samples but less runtime while the slow variants

use fewer samples but more runtime. In the plots below, we always show the GFFT

variant with the most favorable sampling or runtime complexity. Finally, AAFFT

denotes the algorithm of Gilbert et al. [2005]. The implementations tested are sum-

marized in Table 1 along with the average-case sampling and runtime complexities,

and the associated references.

5.1. Setup

Each data point in Figs. 1–2 is the average of 100 independent trials of the associated

algorithm for the given values of the bandwidth N and the sparsity k. The lower and

upper bars associated with each data point represent the minimum and maximum

number of samples or runtime of the algorithm over the 100 test functions. The

Table 1. Implementations used in the empirical evaluation.

Algorithm R/D Samples Runtime Reference

PS-Det D k k log k Section 4
PS-LV R k k log k Section 4
GFFT-DF D k2 log4 N k2 log4 N [Iwen (2012)]
GFFT-DS D k2 log2 N Nk log2 N [Iwen (2012)]
GFFT-RF R k log4 N k log5 N [Iwen (2012)]
GFFT-RS R k log2 N N log N [Iwen (2012)]
AAFFT R k logc N k logc N [Gilbert et al. (2005)]
FFTW D N N log N [Frigo and Johnson (2005)]

10
0

10
1

10
2

10
3

10
4

10
1

10
3

10
5

10
7

Sparsity K

S
am

pl
es

Samples for Fixed Bandwidth N = 222

(a)

Fig. 1. (Color online) (a) Sampling complexity with fixed bandwidth N = 222 for PS-Det (blue
solid line), GFFT-RS (red solid line), AAFFT (black dashed line), and FFTW (magenta dashed

line). (b) Runtime complexity with fixed bandwidth N = 222 for PS-Det (blue solid line), GFFT-
RF (red solid line), AAFFT (black dashed line), and FFTW (magenta dashed line).
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Fig. 1. (Continued)
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Fig. 2. (Color online) (a) Sampling complexity with fixed sparsity k = 60 for PS-Det (blue solid
line), GFFT-RS (red solid line), AAFFT (black dashed line), and FFTW (magenta dashed line).
(b) Runtime complexity with fixed sparsity k = 60 for PS-Det (blue solid line), GFFT-RF (red
solid line), AAFFT (black dashed line), and FFTW (magenta dashed line).
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values of k tested were 2, 4, 8, . . . , 4096, while the values of N were 217, 218, . . . , 226.

For larger values of k, the slow GFFT variants and AAFFT took too long to com-

plete on our hardware, so we only present partial data for these algorithms. Never-

theless, the trend seen in the plots below continues for higher values of the sparsity.

The test signals were generated according to the signal model described in Sec. 4.2.

The Phaseshift and deterministic GFFT variants will always recover such signals

exactly. The randomized GFFT variants are Monte Carlo algorithms, and so, when

they succeed, will also recover the signal exactly. AAFFT, on the other hand, is

an approximation algorithm which will fail on a non-negligible set of input signals.

However, for the runs depicted in Figs. 1–2, AAFFT always produced an answer

with �2 error less than 10−4. The randomized GFFT variants failed a total of 7 times

out of 2,200 test signals, a relatively small amount that can be reduced by parameter

tuning. For the Phaseshift variants, we chose the parameters c1 = 5, c2 = 10, and

took the shift ε to be 1/2N . Finally, for the randomized GFFT variants, we chose

the Monte Carlo parameter to be 1.2.

5.2. Sampling complexity

In Fig. 1(a), we compare the average number of samples of the input signal S

required by each algorithm when the bandwidth N fixed at 222. The sparsity of

the test signal is varied from 2 to 4096 by powers of two. We can see that the

Phaseshift variants require over an order of magnitude fewer samples than GFFT-

RS, the GFFT variant with the lowest sampling requirements. Both Phaseshift

variants also require over an order of magnitude fewer samples than AAFFT. The

comparison with the deterministic GFFT variants is even starker; Phaseshift-Det

requires two orders of magnitude fewer samples than GFFT-DS (not shown), and

four orders of magnitude fewer samples than GFFT-DF (not shown).

In Fig. 2(a), we compare the average number of samples of the input signal S

required by each algorithm when the sparsity k is fixed at 60. The bandwidth N

was varied from 217–226 by powers of two. Using powers of two for the bandwidth

allows the best performance for both FFTW and AAFFT, though this fact is more

relevant for the runtime comparisons in the following section. We can see that the

Phaseshift variants require many fewer samples than all four GFFT variants as well

as AAFFT and FFTW, for all values of N tested. The Phaseshift variants exhibit

almost no dependence on the bandwidth for all values of N , a feature not shared

by the other deterministic algorithms. We note here that in future work we plan to

replace the 1/2N shift by two or more larger shifts with co-prime denominators to

obtain an equivalent shift, as in Wang and Zhou [1998]. This should lead to more

robustness at high values of N .

5.3. Runtime complexity

In Fig. 1(b), we compare the average runtime of each algorithm over 100 test signals

when the bandwidth N is fixed at 222. The range of sparsity k considered is the
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same as in Sec. 5.2. For all values of k the Phaseshift variants are faster than GFFT-

RF (the fastest GFFT variant) and AAFFT by more than an order of magnitude.

When compared to GFFT-RS (not shown), GFFT-DS (not shown), and FFTW,

the difference in runtime is closer to three orders of magnitude.

In Fig. 2(b), we compare the average runtime of each algorithm over 100 test

signals when the sparsity k is fixed at 60. The range of bandwidth considered is the

same as in Sec. 5.2. The Phaseshift variants are the only algorithms that outperform

FFTW for all values of N tested. The other implementations tested only become

competitive with the standard FFT for N � 220, while ours are faster even for

modest N .

5.4. Noisy case

We report here on a preliminary study of the performance of the deterministic

algorithm in the presence of noise. Our noisy signals were of the same form as in

the previous section, but with complex white gaussian noise of standard deviation

σ added to each measurement. As described in Sec. 3.3, the simplest way to deal

with low-level noise is to simply round the reconstructed frequencies to the nearest

integer of the form apj + b, where b ≡ ω mod pj is the location of the peak in a

length-pj DFT. This modification doesn’t change the runtime or sampling complex-

ity significantly, so in this section we focus on the error in the approximation as a

function of the noise level σ and the parameter c1.

In the existing literature on the sparse Fourier transform, the �2 norm is most

often used to assess the quality of approximation. There are many reasons for this

choice, with the two most convincing perhaps being the completeness of the com-

plex exponentials with respect to the �2 norm and Parseval’s theorem. For certain

applications, however, this choice of norm is inappropriate. For example, in wide-

band spectral estimation and radar applications, one is interested in identifying a

set of frequency intervals containing active Fourier modes. In this case, an estimate

ω̃ of the true frequency ω with |ω̃−ω| � N is useful, but unless ω̃ = ω the �2 met-

ric will report an O(1) error. Furthermore, when considering non-periodic signals

(equivalently, non-integer ω’s) the same precision problem appears when using the

�2 metric.

For these reasons, we propose measuring the approximation error of sparse

Fourier transform problems with the Earth Mover Distance (EMD) [Rubner et al.

(2000)]. Originally developed in the context of content-based image retrieval, EMD

measures the minimum cost that must be paid (with a user-specified cost func-

tion) to transform one distribution of points into another. EMD can be calculated

efficiently as the solution of a linear program corresponding to a certain flow mini-

mization problem. In our situation, we consider the cost to move a set of estimated

Fourier modes and coefficients {(ω̃j, ceωj
)}ek

j=1 to the true values {(ωi, cωj )}kj=1 under

the cost function

d1((ω, cω), (ω̃, ceω);N)
def
=
|ω − ω̃|

N
+ |cω − ceω|. (28)
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Fig. 3. EMD(1) error as a function of the noise level σ for various choices of the parameter c1.
The sparsity and bandwidth are fixed at k = 64, N = 222, respectively.

This choice of cost function strikes a balance between the fidelity of the frequency

estimate (as a fraction of the bandwidth) and that of the coefficient estimate. We

denote the EMD using d1 for the cost function by EMD(1) below.

In Fig. 3, we report the average EMD(1) error over 100 test signals as a function

of the input noise level σ, for various choices of the parameter c1. In this experiment,

the sparsity and bandwidth are fixed at k = 64 and N = 222, respectively. As

expected, the error decreases as c1 increases, since the rounding procedure described

in Sec. 3.3 is more likely to result in the true frequency. Moreover, the error increases

linearly with the noise level, indicating the procedure’s robustness in the presence

of noise.

We remark that in the noiseless case the choice c1 = 5 was found to be suf-

ficient, while Fig. 3 indicates that the much larger value c1 ≈ 256 is necessary

for good approximation in the EMD(1) metric. The larger sample lengths imply an

increase in both the runtime and sampling complexity, and indicate that the round-

ing procedure of Sec. 3.3 should be complemented by other modifications. This is

the purpose of a second manuscript under preparation, in which we combine the

rounding procedure with the use of larger shifts εj in a multiscale approach to

frequency estimation.

6. Conclusion

In this paper, we have presented a deterministic and Las Vegas algorithm for the

sparse Fourier transform problem that empirically outperform existing algorithms

in average-case sampling and runtime complexity. While our worst-case bounds

do not improve the asymptotic complexity, we are able to extend by an order of

magnitude the range of sparsity for which our algorithm is faster than FFTW in

the average case. The improved performance of our algorithm can be attributed
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to two major factors: adaptivity and ability to detect aliasing. In particular, we

are able to extract more information from a small number of function samples by

considering the phase of the DFT coefficients in addition to their magnitudes. This

represents a significant improvement over the current state of the art for the sparse

Fourier transform problem.

We have developed a multiresolution approach to handle the noisy case, in which

we learn the value of a frequency from most to least significant bit by increasing

the size of the shift ε. Finally, we are exploring the extension of these methods to

handle non-integer frequencies, which would represent the first such result in the

sparse Fourier transform context.
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MPI–OpenMP algorithms for the parallel
space–time solution of Time Dependent PDEs

Ronald D. Haynes1 and Benjamin W. Ong2

1 Introduction

Modern high performance computers offer hundreds of thousands of processors that
can be leveraged, in parallel, to compute numerical solutions to time dependent par-
tial differential equations (PDEs). For grid-based solutions to these PDEs, domain
decomposition (DD) is often employed to add spatial parallelism [19].

Parallelism in the time variable is more difficult to exploit due to the inherent
causality. Recently, researchers have explored this issue as a means to improve the
scalability of existing parallel spatial solvers applied to time dependent problems.
There are several general approaches to combine temporal parallelism with spatial
parallelism. Waveform relaxation [15] is an example of a “parallel across the prob-
lem” method. The “parallel across the time domain” approaches include the parareal
method [11, 17, 16]. The parareal method decomposes a time domain into smaller
temporal subdomains and alternates between applying a coarse (relatively fast) se-
quential solver to compute an approximate (not very accurate) solution, and apply-
ing a fine (expensive) solver on each temporal subdomain in parallel. Alternatively,
one can consider “parallel across the step” methods. Examples of such approaches
include the computation of intermediate Runge–Kutta stage values in parallel [18],
and Revisionist Integral Deferred Correction (RIDC) methods, which are the family
of parallel time integrators considered in this paper. Parallel across the step meth-
ods allow for “small scale” parallelism in time. Specifically, we will show that if a
DD implementation scales to Nx processors, a RIDC-DD parallelism will scale to
Nt × Nx processors, where Nt < 12 in practice. This contrasts with parallel across
the time domain approaches, which can potentially utilize Nt ≫ 12.

This paper discusses the implementation details and profiling results of the par-
allel space–time RIDC-DD algorithm described in [5]. Two hybrid OpenMP – MPI
frameworks are discussed: (i) a more traditional fork-join approach of combining
threads before doing MPI communications, and (ii) a threaded MPI communications
framework. The latter framework is highly desirable because existing (spatially par-
allel) legacy software can be easily integrated with the parallel time integrator. Nu-
merical experiments measure the communication overhead of both frameworks, and
demonstrate that the fork-join approach scales well in space and time. Our results
indicate that one should strongly consider temporal parallelization for the solution
of time dependent PDEs.

1 Memorial University of Newfoundland, St. John’s, Newfoundland, Canada e-mail: rhaynes@
mun.ca ·2 Michigan State University, Institute for Cyber-Enabled Research, East Lansing, MI,
USA e-mail: ongbw@msu.edu
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2 Review

This paper is interested in parallel space-time solutions to the linear heat equation.
We describe the application of our method to the linear heat equation in one spatial
dimension x ∈ [0,1] and t ∈ [0,T ],

ut = uxx, u(t,0) = g0(t), u(t,1) = g1(t), u(0,x) = u0(x). (1)

The actual numerical results in §4 are presented for the 2D heat equation.

2.1 RIDC

RIDC methods [6, 7] are a family of parallel time integrators that can be broadly
classified as predictor corrector algorithms [10, 2]. The basic idea is to simultane-
ously compute solutions to the PDE of interest and associated error PDEs using a
low-order time integrator. We first review the derivation of the error equation.

Suppose v(t,x) is an approximate solution to (1), and u(t,x) is the (unknown)
exact solution. The error in the approximate solution is e(t,x) = u(t,x)− v(t,x). We
define the residual as ε(t,x) = vt(t,x)− vxx(t,x). Then the time derivative of the
error satisfies et = ut − vt = uxx − (vxx + ε). The integral form of the error equation,

[
e+

∫ t

0
ε(τ,x)dτ

]

t
= (v+ e)xx − vxx, (2)

can then be solved for e(t,x) using the initial condition e(0,x) = 0. The correction
e(t,x) is combined with the approximate solution v(t,x) to form an improved so-
lution. This improved solution can be fed back in to the error equation (2) and the
process repeated until a sufficiently accurate solution is obtained. It has been shown
that each application of the error equation improves the order of the overall method,
provided the integral is approximated with sufficient accuracy using quadrature [8].

We introduce some notation to identify the sequence of corrected approxima-
tions. Denote v[p](t,x) as the approximate solution which has error e[p](t,x), which
is obtained by solving

[
e[p]+

∫ t

0
ε [p](τ,x)dτ

]

t
= (v[p]+ e[p])xx − v[p]xx , (3)

where v[0](t,x) denotes the initial approximate solution obtained by solving the
physical PDE (1) using a low-order integrator. In general, the error from the pth
correction equation is used to construct the (p+ 1)st approximation, v[p+1](t,x) =
v[p](t,x)+ e[p](t,x). Hence, equation (3) can be expressed as

[
v[p+1]−

∫ t

0
v[p]xx (τ,x)dτ

]

t
= v[p+1]

xx − v[p]xx . (4)
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We compute a low-order prediction, v[0],n+1, for the solution of (1) at time tn+1
using a first-order backward Euler discretization (in time):

v[0],n+1 − ∆ t v[0],n+1
xx = v[0],n, v[0],n+1(a) = g0(tn+1), v[0],n+1(b) = g1(tn+1), (5)

with v[0],0(x) = u0(x). With some algebra, a first-order backward Euler discretization
of equation (4) gives the update, v[p+1],n+1, as

v[p+1],n+1 − ∆ t v[p+1],n+1
xx = v[p+1],n − ∆ t v[p],n+1

xx +

∫ tn+1

tn
v[p]xx (τ,x)dτ, (6)

with v[p+1],n+1(a) = g0(tn+1) and v[p+1],n+1(b) = g1(tn+1). The integral in equa-
tion (6) is approximated using a sufficiently high-order quadrature rule [8].

Parallelism in time is possible because the PDE of interest (1) and the error
PDEs (4) can be solved simultaneously, after initial startup costs. The idea is to fill
out the memory footprint, which is needed so that the integral in equation (6) can be
approximated by high-order quadrature, before marching solutions to (5) and (6) in
a pipe–line fashion. See Figure 1 for a graphical example, and [6] for more details.

b b

b b b

b b b b

b

bc

bc

bc

bc

Original PDE for v[0](t, x)

Error PDE for v[1](t, x)

Error PDE for v[2](t, x)

Error PDE for v[3](t, x)

1st correction

2nd correction

3rd correction

tn−3 tn−2 tn−1 tn tn+1. . . . . .

Fig. 1 The black dots represent the memory footprint that must be stored before the white dots can
be computed in a pipe. In this figure, v[0],n+2(x), v[1],n+1(x), v[2],n(x) and v[3],n−1(x) are computed
simultaneously.

2.2 RIDC–DD

The RIDC–DD algorithm solves the predictor (5) and corrections (6) using DD al-
gorithms in space. The key observation is that (5) and (6) are both elliptic PDEs of
the form (1 − ∆ t ∂xx)z = f (x). The function f (x) is known from the solution at the
previous time step and previously computed lower-order approximations. DD algo-
rithms for solving elliptic PDEs are well known [3, 4]. The general idea is to replace
the PDE by a coupled system of PDEs over some partitioning of the spatial domain
using overlapping or non–overlapping subdomains. The coupling is provided by
necessary transmission conditions at the subdomain boundaries. These transmission
conditions are chosen to ensure the DD algorithm converges and to optimize the con-
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vergence rate. In [5], as a proof of principle, (5-6) are solved using a classical par-
allel Schwarz algorithm, with overlapping subdomains and Dirichlet transmission
conditions. Optimized RIDC–DD variants are possible using an optimized Schwarz
DD method [13, 12, 9], to solve (5-6). The solution from the previous time step can
be used as initial subdomain solutions at the interfaces. We will use RIDCp–DD to
refer to a pth-order solution obtained using p−1 RIDC corrections in time and DD
in space.

3 Implementation Details

We view the parallel time integrator reviewed in §2.1 as a simple yet powerful tool to
add further scalability to a legacy MPI or modern MPI–CUDA code, while improv-
ing the accuracy of numerical solution. The RIDC integrators benefit from access to
shared memory because solving the correction PDE (6) requires both the solution
from the previous time step and previously computed lower-order subdomain solu-
tion. Consequently, we propose two MPI-OpenMP hybrid implementations which
map well to multi-core, multi-node compute resources. In the upcoming MPI 3.0
standard [1], shared memory access within the MPI library will provide alternative
implementations.

Implementation #1: The RIDC-DD algorithm can be implemented using a tra-
ditional fork join approach, as illustrated in Program 1. After boundary information
is exchanged, each MPI task spawns OpenMP threads to perform the linear solve.
The threads are merged back together before MPI communication is used to check
for convergence. The drawback to this fork-join implementation, is that the parallel
space-time algorithm becomes tightly integrated, making it difficult to leverage an
existing spatially parallel DD implementation.

1. MPI Initialization
2. ...
3. for each time step
4. for each Schwarz iteration
5. MPI Comm (exchange boundary info)
6. OMP Parallel for each prediction/correction
7. linear solve
8. end parallel
9. MPI Comm (check for convergence)
10. end
11. end
12. ...
13. MPI Finalize

Program 1: RIDC-DD implementation using a fork-join approach. The time parallelism occurs
within each Schwarz iteration, requiring a tight integration with an existing spatially parallel DD
implementation.
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Implementation #2: To leverage an existing spatially parallel DD implemen-
tation, a non-traditional hybrid approach must be considered. By changing the or-
der of the loops, the Schwarz iterations for the prediction and the correction loops
can be evaluated independently of each other. This is realized by spawning indi-
vidual OpenMP threads to solve the prediction and correction loops on each sub-
domain; the Schwarz iterations for the prediction/correction step run independently
of each other until convergence. This implementation (Program 2) has several con-
sequences: (i) a thread safe version of MPI supporting MPI THREAD MULTIPLE
is required. (ii) In addition, we required a thread-safe, thread-independent ver-
sion of MPI BARRIER, MPI BROADCAST and MPI GATHER. To achieve this, we
wrote our own wrapper library using the thread safe MPI SEND, MPI RECV and
MPI SENDRECV provided by (i).

1. MPI Initialization
2. ...
3. for each time step
4. OMP Parallel for each prediction/correction level
5. for each Schwarz iteration
6. MPI Comm (exchange boundary info)
7. linear solve
8. MPI Comm (check for convergence)
9. end
10. end parallel
11. end
12. ...
13. MPI Finalize

Program 2: RIDC-DD implementation using a non-traditional hybrid approach. Notice that lines
5-9 are the Schwarz iterations that one would find in an existing spatially parallel DD implementa-
tion. Hence, provided the DD implementation is thread-safe, one could wrap the time paralleliza-
tion around an existing parallel DD implementation.

4 Numerical Experiments

We show first that RIDC-DD methods converge with the designed orders in space
and time. Then, we profile communication costs using TAU [14]. Finally, we show
strong scaling studies for the RIDC-DD algorithm. We compute solutions to the
heat equation in R2, where centered finite differences are used to approximate the
second derivative operator. Errors are computed using the known analytic solution.
The computations are performed at the High Performance Computing Cenrer at
Michigan State University, where nodes (consisting of two quad core Intel Westmere
processors) are interconnected using infiniband and a high speed Lustre file system.
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6 Ronald D. Haynes and Benjamin W. Ong

4.1 Convergence Studies and Profile Analysis

In Figure 2, the convergence plots show that our classical Schwarz RIDC-DD al-
gorithm converges as expected in space and time. In general, one would balance
the orders of the errors in space and time appropriately for efficiency. Here we pick
RIDC4 since it mapped well to our available four core sockets and to demonstrate
the scalability of our algorithm in time. We could, of course, used a fourth order
method in space. The Schwarz iterations are iterated until a tolerance of 10−12

is reached for the predictors and correctors (which explains why the error in the
fourth-order approximation levels out as the time step becomes small).

10
−4

10
−3

10
−210

−15

10
−10

10
−5

10
0

dt

|| 
e|

| ∞

 

 

slope = 1

slope = 4

Prediction
1 Correction
2 Corrections
3 Corrections

(a) Time Convergence (b) Space Convergence

Fig. 2 (a) Classical Schwarz RIDCp-DD algorithms, p = 1,2,3,4, converge to the reference so-
lution with the designed orders of accuracy. Here ∆x is fixed while ∆t is varied. (b) Second-order
convergence in space is demonstrated for the fourth-order RIDC-DD algorithm. Here, ∆t is fixed
while ∆x is varied.

The communication costs for our two implementations of RIDC4-DD are pro-
filed using TAU [14]. We see in Figure 3, communication costs are minimal for
implementation #1, and scales nicely as the number of nodes is increased, but the
communication cost is significant for implementation #2. In Figure 3(a,c), the do-
main is discretized into 180 × 180 grid nodes, which are split into a 3 × 3 config-
uration of subdomains. In Figure 3(b,d), the domain is discretized into 360 × 360
grid nodes, which are split into a 6×6 configuration of subdomains. This keeps the
number of grid points per subdomain constant so that the computation time for the
matrix factorization and linear solve are the same.

4.2 Characterizing Parallel Performance

Due to the better communication profile, we use framework #1 for our experiments.
We fix ∆x = 1

180 , ∆y = 1
180 , ∆ t = 1

1000 , and TOL=10−12 (the Schwarz iteration tol-
erance). We consider three configurations of subdomains: 2×2, 4×4 and 6×6. For
each configuration we illustrate the speedup and efficiency due to the time paral-
lelism in Figure 4. We choose to fix the ratio between the overlap and subdomain
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(a) Implementation #1
3×3 domain

(b) Implementation #1
6×6 domain

(c) Implementation #2
3×3 domain

(d) Implementation #2
6×6 domain

Fig. 3 Profile of the RIDC4-DD algorithm using both implementations. Overhead and communi-
cation costs are reasonable for implementation #1, but are high for implementation #2.

size to ensure the number of unknowns on each subdomain scales appropriately as
the number of subdomains is increased.
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Fig. 4 Scaling study (in time) for a
RIDC4-DD algorithm.

In Figure 4 we show three curves corre-
sponding to a 2 × 2, 4 × 4 and a 6 × 6 config-
uration of subdomains. For each configuration
we compute a fourth order solution in time us-
ing 1,2 and 4 threads. The 6 × 6 configuration
of subdomains with 4 threads uses a total of 144
cores. We plot the efficiency (with respect to the
one thread run) as a function of the number of
threads. Speedup is evident as temporal paral-
lelization is improved, however, efficiency de-
creases as the number of subdomains increases.

5 Conclusions

This paper has presented the implementation details and first reported profiling re-
sults for a newly proposed space–time parallel algorithm for time dependent PDEs.
The RIDC–DD method combines traditional domain decomposition in space with
a new family of deferred correction methods designed to allow parallelism in time.
Two possible implementations are described and profiled. The first, a traditional hy-
brid OpenMP–MPI implementation, requires potentially difficult modifications of
an existing parallel spatial solver. Numerical experiments verify that the algorithm
achieves its designed order of accuracy and scales well. The second strategy al-
lows a relatively easy reuse of an existing parallel spatial solver by using OpenMP
to spawn threads for the simultaneous prediction and correction steps. This non–
traditional hybrid use of OpenMP and MPI currently requires writing of custom
thread–safe and thread–independent MPI routines. Profile analysis shows that our
non-traditional use of OpenMP–MPI suffers from higher communication costs than
the standard use of OpenMP-MPI. An inspection of the prediction and correction
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equations indicates that optimized Schwarz variants of the algorithm are possible
and will enjoy nice load balancing. This work is ongoing.
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