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Abstract

The project New Techniques in Time-Frequency Analysis: Adaptive Band, Ultra-Wide Band and Multi-Rate
Signal Processing led to the development of new techniques and theories in the analysis of signals. These
techniques and theories were extensions of known techniques – sampling, Fourier, Gabor and wavelet
analysis, and new approaches to analysis – using combinations of analysis, geometry, group theory, and
number theory. Every target item in the original statement of objectives was achieved, and
several new areas of research were open up. There were four main areas of study.

Techniques were developed to deal with classes of signals for which the known techniques have lim-
itations, e.g., adaptive frequency band (AFB) and ultra-wide band (UWB) signals. These signals are
of interest to Air Force communications systems, but the theory and techniques we have developed and
propose to continue developing fit in the context of expanding the general theory. Our techniques in-
volve signal segmentation, projection, expansion in bases, transform analysis, and multi-rate methods.
Adaptive frequency band (AFB) and ultra-wide band (UWB) systems require either rapidly changing or
very high sampling rates. Conventional analog-to-digital devices have non-adaptive and limited dynamic
range. We investigate AFB and UWB sampling via a basis projection method. The method decomposes
the signal into a basis over time segments via a continuous-time inner product operation and then sam-
ples the basis coefficients in parallel. The signal may then be reconstructed from the basis coefficients to
recover the signal in the time domain. We develop the procedure of this method, analyze various meth-
ods for signal segmentation and develop a procedure to preserve orthonormality between blocks. This
involves adapting an developing windowing systems for time-frequency analysis. We then demonstrate
the connection of these techniques with Gabor and wavelet analysis.

We also gave a technique for multi-rate sub-Nyquist sampling. This then allows for processing of
wider bandwidth signals at smaller bandwidth rates. These techniques are based on our work on multi-
channel deconvolution. The “tricks” for the multi-rate theory come from clever uses of number theory
and complex analysis.

We also developed a program of study connecting sampling theory with the geometry of the signal
and its domain. It is relatively easy to demonstrate this connection in Euclidean spaces, but one quickly
gets into open problems when the underlying space is not Euclidean. In Euclidean space, the minimal
sampling rate for Paley-Wiener functions on Rd, the Nyquist rate, is a function of the band-width. No
such rate has yet been determined for hyperbolic or spherical spaces. We look to develop a structure for
the tiling of frequency spaces in both Euclidean and non-Euclidean domains. In particular, we establish
Nyquist tiles and sampling groups in Euclidean geometry, and discuss the extension of these concepts to
hyperbolic and spherical geometry and general orientable surfaces.

We close by discussing our work in the analysis of point processes. We have developed a collection of
algorithms that analyze periodic phenomena generated by either a single or multiple generators. These
work even when the data is extremely sparse and noisy. The algorithms use number theory in novel ways
to extract the underlying period(s) by modifying the Euclidean algorithm to determine the period from
a sparse set of noisy measurements. We divide our analysis into two cases periodic processes created
by a single source, and those processes created by several sources. We wish to extract the fundamental
period of the generators, and, in the second case, to deinterleave the processes.
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New Techniques in Time-Frequency Analysis 2

1 Original Statement of Objectives

We have investigated and propose to continue investigating new techniques in the time-frequency analysis
of signals. The new techniques are developed to deal with classes of signals for which the known techniques
have limitations, e.g., adaptive frequency band (AFB) and ultra-wide band (UWB) signals. These signals
are of interest to Air Force communications systems, but the theory and techniques we have developed
and propose to continue developing fit in the context of expanding the general theory. Our techniques
involve signal segmentation, projection, expansion in bases, transform analysis and multi-rate methods.

Adaptive frequency band (AFB) and ultra-wide band (UWB) systems require either rapidly chang-
ing or very high sampling rates. Conventional analog-to-digital devices have non-adaptive and limited
dynamic range. We investigate AFB and UWB sampling via a basis projection method. The method
decomposes the signal into a basis over time segments via a continuous-time inner product operation
and then samples the basis coefficients in parallel. The signal may then be reconstructed from the basis
coefficients to recover the signal in the time domain. We develop the procedure of this method, analyze
various methods for signal segmentation and develop a procedure to preserve orthonormality between
blocks. We then demonstrate the connection of these techniques with Gabor and wavelet analysis. Items
for the basis projection method include:

• Develop the projection method for a variety of bases, tailored to different classes of input signals.
Target signals of interest to Air Force communications systems. Implement numerical models in
MATLAB. Propose projection systems for chip design.

• Implement Almost Orthogonality Theory (Cotlar, Knapp, Stein) to develop B-spline windowing
systems that are relatively easy to compute and almost orthogonal between blocks.

We also give a technique for multi-rate sub-Nyquist sampling. This then allows for processing of wider
bandwidth signals at smaller bandwidth rates. These techniques are based on our work on multi-channel
deconvolution. We give an application of these techniques to multi-rate signal streaming. In particular,
we will investigate:

• Develop a systematic approach to multi-rate theory in order to develop computable systems.

• Construct multi-rate systems for signals of interest to Air Force communications. Implement nu-
merical models in MATLAB.

We close by placing the theories in the context of standard analysis techniques. We also look into
underlying principles, in particular for sampling. We propose developing a unified approach to sampling
via “tiling groups.” This allows us to extend sampling into non-Euclidean geometries. In particular, we
outline how to develop sampling for hyperbolic and spherical geometries. Items include:

• Develop theory of “tiling groups.”

• Use the theory of “tiling groups” to develop sampling formulae for hyperbolic and spherical geome-
tries.

2 Projects Developed During the Grant

We developed new techniques and theories in the analysis of signals over the duration of the grant. These
techniques and theories were extensions of known techniques – sampling, Fourier, Gabor and wavelet
analysis, and new approaches to analysis – using combinations of analysis, geometry, group theory, and
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New Techniques in Time-Frequency Analysis 3

number theory. Every target item in the original statement of objectives was achieved, and
several new areas of research were open up. There were four main areas of study.

1.) Techniques were developed to deal with classes of signals for which the known techniques have limita-
tions, e.g., adaptive frequency band (AFB) and ultra-wide band (UWB) signals. These signals are of
interest to Air Force communications systems, but the theory and techniques we have developed and
propose to continue developing fit in the context of expanding the general theory. Our techniques
involve signal segmentation, projection, expansion in bases, transform analysis, and multi-rate meth-
ods. Adaptive frequency band (AFB) and ultra-wide band (UWB) systems require either rapidly
changing or very high sampling rates. Conventional analog-to-digital devices have non-adaptive and
limited dynamic range. We investigate AFB and UWB sampling via a basis projection method. We
refer to the technique as The Projection Method. The method decomposes the signal into a basis over
time segments via a continuous-time inner product operation and then samples the basis coefficients
in parallel. The signal may then be reconstructed from the basis coefficients to recover the signal
in the time domain. We develop the procedure of this method, analyze various methods for signal
segmentation and develop a procedure to preserve orthonormality between blocks. This involves
adapting an developing windowing systems for time-frequency analysis. We then demonstrate the
connection of these techniques with Gabor and wavelet analysis. This work is described in Section 4.

2.) We also gave a technique for multi-rate sub-Nyquist sampling. This then allows for processing of
wider bandwidth signals at smaller bandwidth rates. These techniques are based on our work on
multi-channel deconvolution. The “tricks” for the multi-rate theory come from clever uses of number
theory and complex analysis. This work is described in Section 5.

3.) We also developed a program of study connecting sampling theory with the geometry of the signal
and its domain. It is relatively easy to demonstrate this connection in Euclidean spaces, but one
quickly gets into open problems when the underlying space is not Euclidean. In Euclidean space,
the minimal sampling rate for Paley-Wiener functions on Rd, the Nyquist rate, is a function of the
band-width. No such rate has yet been determined for hyperbolic or spherical spaces. We look to
develop a structure for the tiling of frequency spaces in both Euclidean and non-Euclidean domains.
In particular, we establish Nyquist tiles and sampling groups in Euclidean geometry, and discuss the
extension of these concepts to hyperbolic and spherical geometry and general orientable surfaces.
This work is described in Section 6.

4.) We close by discussing our work in the analysis of point processes. This work, although not in the
original proposal, is very relevant to AFOSR interests. It was developed over the course of the grant.

We have developed a collection of algorithms that analyze periodic phenomena generated by either
a single or multiple generators. These work even when the data is extremely sparse and noisy. The
algorithms use number theory in novel ways to extract the underlying period(s) by modifying the
Euclidean algorithm to determine the period from a sparse set of noisy measurements. We divide
our analysis into two cases periodic processes created by a single source, and those processes created
by several sources. We wish to extract the fundamental period of the generators, and, in the second
case, to deinterleave the processes.

We first present very efficient algorithm for extracting the fundamental period from a set of sparse
and noisy observations of a single source periodic process. The procedure is computationally straight-
forward, stable with respect to noise and converges quickly. Its use is justified by a theorem which
shows that for a set of randomly chosen positive integers, the probability that they do not all share a
common prime factor approaches one quickly as the cardinality of the set increases. The proof of this
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New Techniques in Time-Frequency Analysis 4

theorem rests on a probabilistic interpretation of the Riemann zeta function. We then build upon
this procedure to deinterleave and then analyze data from multiple periodic processes. This relies
both on the probabilistic interpretation of the Riemann zeta function, the equidistribution theorem
of Weyl, and Wieners periodogram. This work is described in Section 7.

3 Introduction: Background and Notation

All functions considered in this report are absolutely and square integrable functions (f ∈ L1 ∩ L2),
unless noted otherwise. References for the material on harmonic analysis include Benedetto [Ben97],
Daubechies [Dau92] Dym and McKean [DM72], Grafakos [Gra14], Higgins [Hig96], Hömander [Hör90],
Levin [Lev96], Papoulis [Pap62, Pap77], Young [You80] and Zayed [Zay93]. Let f be a periodic, integrable
function on R, with period 2Φ, i.e., f ∈ L1(T2Φ). The Fourier coefficients of f , f̂ [n], are defined by
f̂ [n] = 1

2Φ

∫ Φ
−Φ f(t) exp(−iπnt/Φ) dt . If {f̂ [n]} is absolutely summable ({f̂ [n]} ∈ l1), then the Fourier

series of f is f(t) =
∑

n∈Z f̂ [n] exp(iπnt/Φ) . Let f be a function in L1. The Fourier transform of f

is defined as f̂(ω) =
∫

R f(t)e−2πitωdt for t ∈ R (time), ω ∈ R̂ (frequency). The inversion formula,

for f̂ ∈ L1(R̂), is f(t) = (f̂)
∨
(t) =

∫bR f̂(ω)e2πiωtdω. Formally, we can think of the transform and the
coefficient integral as analysis, and the inverse transform and series as synthesis. The choice to have 2π
in the exponent simplifies certain expressions, e.g., for f, g ∈ L1 ∩ L2(R), f̂ , ĝ ∈ L1 ∩ L2(R̂), we have
the Parseval – Plancherel equations – ‖f‖L2(R) = ‖f̂‖

L2(bR)
and 〈f, g〉 = 〈f̂ , ĝ〉 . We extend the transform

from L1 ∩ L2 to L2 via a density argument.
Classical sampling theory applies to square integrable band-limited functions. A function that is both

Ω bandlimited and L2 has several smoothness and growth properties given in the Paley-Weiner Theorem
(see, e.g., [DM72]). We define PWΩ = {f : f, f̂ ∈ L2, supp(f̂) ⊂ [−Ω,Ω]}. The Whittaker-Kotel’nikov-
Shannon (W-K-S) Sampling Theorem applies to functions in PWΩ.

Theorem 1 (W-K-S Sampling Theorem) Let f ∈ PWΩ, sincT (t) = sin( π
T

t)

πt and δnT (t) = δ(t− nT ).

a.) If T ≤ 1/2Ω, then for all t ∈ R,

f(t) = T
∑
n∈Z

f(nT )
sin( π

T (t− nT ))
π(t− nT )

= T

([∑
n∈Z

δnT

]
f

)
∗ sinc

T
(t) .

b.) If T ≤ 1/2Ω and f(nT ) = 0 for all n ∈ Z, then f ≡ 0.

4 The Projection Method

Adaptive frequency band (AFB) and ultra-wide band (UWB) systems are of interest to the ASFOSR
signal processing community. They require either rapidly changing or very high sampling rates, and this
severely stresses classical sampling approaches. At UWB rates, conventional analog-to-digital devices
have limited dynamic range and exhibit undesired nonlinear effects such as timing jitter. Increased
sampling speed leads to less accurate devices that have lower precision in numerical representation. This
motivates alternative sampling schemes that use mixed-signal approaches, coupling analog processing
with parallel sampling, to provide improved sampling accuracy and parallel data streams amenable to
lower speed (parallel) digital computation. Developing a sampling theory for adaptive frequency band
and ultra-wide band systems is the motivation for the methods in this section of the report. Two of the
key items needed for this approach are quick and accurate computations of Fourier coefficients, which
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New Techniques in Time-Frequency Analysis 5

are computed in hardware and for which we have developed a fast scheme ([Cas12, CC15, Cas15]), and
effective adaptive windowing systems ([Cas12, CC15, Cas15]). Sampling schemes that work with inverse
operators and multi-rate schemes were developed in [CW94, Cas98, CS99a, CW01, Cas07].

We investigate AFB and UWB sampling via a basis projection method. The method was introduced
as a means of UWB parallel sampling and applied to UWB communications systems. The method first
decomposes the signal into a basis over time segments via a continuous-time inner product operation
and then samples the basis coefficients in parallel. The signal may then be reconstructed from the basis
coefficients to recover time domain samples, or further processing may be carried out in the new domain.
We address several issues associated with the basis-expansion and sampling procedure, including choice
of basis and segmentation of the signal. We develop a mathematical model of the procedure, using both
standard (sine, cosine) basis elements and general basis elements, and give this representation in both
the time and frequency domains. First, we consider ideal rectangular windowing of each segment, and
then develop a theory for overlapping windowed segments. Splines are used to analyze the degree of
smoothness in time and corresponding decay in frequency that occurs with overlapping windows. We
employ the theory of lapped orthogonal transforms to preserve the orthogonality of basis elements in
the overlapping regions. We compare the method with traditional sampling and close by applying the
procedure to binary signals. Proofs of all results and extensive error analysis of the projection method
can be found in Casey and Sadler [Cas12].

The theory of splines and some techniques from ordinary differential equations give us the tools to
cut up the time domain into perfectly aligned segments so that there is no loss of information. We want
the systems to be smooth, so as to provide control over decay in frequency, have variable cut-off functions
for flexibility in design, and adaptive, so as to adjust accordingly to changes in frequency. We also want
to develop our systems so that the orthogonality of bases in adjacent and possible overlapping blocks is
preserved.

Definition 1 (ON Window System) Let 0 < r � T . An ON Window System is a set of functions
{Wk(t)} such that for all k ∈ Z

(i.) supp(Wk(t)) ⊆ [kT − r, (k + 1)T + r] ,
(ii.) Wk(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,
(iii.) Wk((kT + T/2)− t) = Wk(t− (kT + T/2)) for t ∈ [0, T/2 + r] ,

(iv.)
∑

[Wk(t)]2 ≡ 1 ,

(v.) {[̂Wk]◦[n]} is absolutely summable, i.e. {[̂Wk]◦[n]} ∈ l1 .

Conditions (i.) and (ii.) are partition properties, in that they give an exact snapshot of the input
function f on [kT + r, (k + 1)T − r], with smooth roll-off at the edges. Condition (iii.) is needed to
preserve orthogonality between adjacent blocks. Condition (iv.) simplifies computations, and condition
(v.) is needed for the computation of Fourier coefficients.

Let {ϕj(t)} be an orthonormal basis for L2[−T/2, T/2]. Define

ϕ̃j(t) =


0 |t| ≥ T/2 + r

ϕj(t) |t| ≤ T/2
−ϕj(−T − t) −T/2− r < t < −T/2

ϕj(T − t) T/2 < t < T/2 + r .

We refer to {ϕ̃j(t)} as the folded basis elements. Let Tα be the translation operator, i.e., Tα[f ](t) =
f(t− α) . All of the basis elements are presented in the interval [T/2− r, T/2 + r] centered at the origin.
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New Techniques in Time-Frequency Analysis 6

Therefore, the operator T[(k)T+T/2] will place the basis in the interval [(k)T − r, (k + 1)T + r]. In the
following, WI(t) is the window centered at the origin, and ϕj is a basis element in that window. Let

{Ψk,j} = {T[(k)T+T/2][WI ϕ̃j ](t)} .

We denote this as {Ψk,j} = {Wkϕ̃j(t)}

Theorem 2 (The Orthogonality of Overlapping Blocks) The collection
{Ψk,j} = {Wkϕ̃j(t)} forms an orthonormal basis for L2(R).

Given characteristics of the class of input signals, the choice of basis functions used in the projection
method can be tailored to optimal representation of the signal or a desired characteristic in the signal.

Theorem 3 (Projection Formula for ON Windowing) Let {Wk(t)} be an ON Window System,
and let {Ψk,j} be an orthonormal basis that preserves orthogonality between adjacent windows. Let
f ∈ PWΩ and N = N(T,Ω) be such that 〈f,Ψk,n〉 = 0 for all n > N and all k. Then, f(t) ≈ fP(t),
where

fP(t) =
∑
k∈Z

[ N∑
n=−N

〈f,Ψk,n〉Ψk,n(t)
]

.

Given the flexibility of our windowing system, we can also formulate an adaptive projection system
for the ON Window Systems.

Theorem 4 (Adaptive Projection Formula for ON Windowing) Let f , f̂ ∈ L2(R) and f have
a variable but bounded band-limit Ω(t). Let τ(t) be an adaptive block of time. Let {Wk(t)} be an ON
Window System with window size τ(t) + 2r on the kth block, and let {Ψk,j} be an orthonormal basis
that preserves orthogonality between adjacent windows. Given τ(t), let Ω(t) = max {Ω(t) : t ∈ τ(t)}. Let
N(t) = N(τ(t),Ω(t)) be such that 〈f,Ψk,n〉 = 0. Then, f(t) ≈ fP(t), where

fP(t) =
∑
k∈Z

[ N(t)∑
n=−N(t)

〈f,Ψk,n〉Ψk,n(t)
]

.

4.1 Remarks on Applications

Despite extensive advances in integrated circuit design and fabrication processes, wideband problems
continue to hit barriers in sample and hold architectures and analog-to-digital conversion (ADC). ADC
signal-to-noise and distortion ratio, the effective number of resolution bits, declines with sampling rate
due to timing jitter, circuit imperfections, and electronic noise. ADC performance (speed and total
integrated noise) can be improved to some extent, e.g., by cooling and therefore lowering the system
temperature. However, the energy cost may be significant, and this presents a major hurdle for imple-
mentation in miniaturized devices. Digital circuitry has provided dramatically enhanced digital signal
processing operation speeds, but there has not been a corresponding dramatic energy capacity increase
in batteries to operate these circuits; there is no Moore’s Law for batteries or ADCs.

A growing number of applications face this challenge, such as miniature and hand-held devices for
communications, robotics, and micro aerial vehicles. Very wideband sensor bandwidths are desired for
dynamic spectrum access and cognitive radio, radar, and ultra-wideband systems. Multi-channel and
multi-sensor systems, array processing and beamforming, multi-spectral imaging, and vision systems
compound the issue. All of these rely on analog sensing and a digital interface, perhaps with feedback.
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This motivates mixed-signal circuit designs that tightly couple the analog and digital portions, and operate
with parallel reduced bandwidth paths to relax ADC requirements. The goal of such wideband integrated
circuit designs is to achieve good tradeoffs in dynamic range, bandwidth, and parallelization, while
maintaining low energy consumption. This requires a careful balance of analog and digital functionality.

From a signal processing perspective, we have approached this problem by implementing an appro-
priate signal decomposition in the analog portion that provides parallel outputs for integrated digital
conversion and processing. This naturally leads to an architecture with windowed time segmentation
and parallel analog basis expansion. In this part of the report, we viewed this from the sampling theory
perspective, including segmentation and window design, achieving orthogonality between segments, basis
expansion and choice of basis, signal filtering, and reconstruction. The approach we have developed is tai-
lored toward strong connections to circuit design considerations and applications. We look to generalize
the windowing systems to obtain computationally efficient approaches to time-frequency analysis.

5 Multi-rate Sampling

A key step in solving the multichannel deconvolution problem involves solving an interpolation problem,
reconstructing functions (the deconvolvers) in a space of restricted growth (Ê ′) from discrete data (their
values on the zero sets of the convolvers). This gives solutions to the Bezout equation. This develop-
ment utilizes the zero sets of the µ̂i as different sampling rates. This connection between sampling and
multichannel deconvolution naturally leads to sampling schemes on properly chosen non-commensurate
lattices. Let {ri}mi=1 be a set such that ri/rj is poorly approximated by rationals for i 6= j, and let
R =

∑m
i=1 ri. Let

Λ =
m⋃

i=1

{
±k

2ri

}
k∈N

⋃
{0}

be a sampling grid, made up of a union of sampling grids with non-commensurate generators {ri}. Given
a R bandlimited function f , we can reconstruct f from samples of f taken on Λ. We refer to this as the
Multi-Rate Sampling Problem or MRSP. Our work on this can be found in [Cas16, CS00, CS99a, CS99b,
CW01].

Let t ∈ R, and let α be an irrational that is poorly approximated by rationals, e.g.,
√

2, or (1+
√

5)/2.
Let µ1(t) = χ

[−1,1](t) , µ2(t) = χ
[−α,α](t) model the impulse response of the channels of a two-channel

system. Then

µ̂1(ζ) =
sin(2πζ)

πζ
, µ̂2(ζ) =

sin(2παζ)
πζ

.

Since α is poorly approximated by rationals, {µi} is strongly coprime. Now let

Λ1 =
{
±n

2

}
, Λ2 =

{
±m

2α

}
,

for n, m ∈ N, and let Λ = Λ1 ∪ Λ2 . Note that the information contained in the original signal is
reconstructed by creating deconvolvers defined initially on Λ ∪ {0}. Order the elements of Λ, denoting
this as Λ = {λk}. Walnut (see [Cas16]) has shown the following.

Theorem 5 Let α be an irrational that is poorly approximated by rationals, and let f be a (1 + α)-band-
limited function. Then f is uniquely determined by {f(λk)} ∪ {f(0), f ′(0)} .

Note, for a (1 + α)-band-limited function, the Nyquist rate is 1/(2(1 + α)). However, our individual
sampling rates are 1/2 and 1/(2α). Both these rates are below Nyquist. The reconstruction of f from this
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lattice is achieved by using complex interpolation theory. These techniques go back to basic Lagrange
interpolation, and were developed for entire functions by various mathematicians, most notably B. Ya.
Levin [Lev96]. Let G(z) = sin(2πz) sin(2παz) . Then, G(z) is an entire function, which is almost periodic
on R, and has simple zeros on Λ, and a double zero at {0}.

Proposition 1 Let λk ∈ Λ and let

Hj(z) =
G(z)

G′(λj)(z − λj)
.

Then Hj(λk) = δjk .

At z = 0, we have to construct interpolating functions K1, K2 so that

K1(0) = 1 , K ′
1(0) = 0 , K2(0) = 0 , K ′

2(0) = 1 .

Using the Taylor expansion of G, we derive the following.

Proposition 2

K1(z) =
G(z)

(G′′(0)/2!)(z2)
=

G(z)
(4π2α)(z2)

, K2(z) =
G(z)

(G′′(0)/2!)(z)
=

G(z)
(4π2α)(z)

.

Combining these two propositions gives us the reconstruction formula.

Theorem 6 Let α be an irrational that is poorly approximated by rationals, and let f be a (1 + α)-band-
limited function. Let

Λ1 =
{
±k

2

}
, Λ2 =

{
±k

2α

}
,

for k ∈ N, and let Λ = {λk} = Λ1 ∪ Λ2 . Then f is uniquely determined by {f(λk)} ∪ {f(0), f ′(0)} .
Moreover, f can be approximated from its values on Λ ∪ {0} by the formula

f(t) ≈
∑
λk∈Λ

f(λk)
G(t)

G′(λk)(t− λk)

+ f(0)
G(t)

(4π2α)(t2)
+ f ′(0)

G(t)
(4π2α)(t)

,

where
G(t) = sin(2πt) · sin(2απt) .

Convergence is uniform convergence on compact subsets, and is shown in a manner similar to the
results for deconvolution. The proof is lengthy, and appears in [Cas16]. We need to point out two
items. First, the sampling grid is rigid. Perturbation of the grid results in a loss of information. Sec-
ond, that because sampling points in Λ can get arbitrarily close together (inf{|λm − λn|} = 0, and so
inf{

∏
k 6=j | sin(2πrkλ)| : λ ∈ Λj} = 0), the set of interpolating functions can not form a Riesz basis and

the interpolating formula can not converge in norm (see [Cas16]). In fact, the interpolating functions do
form a Bessel sequence, but do not form a frame and therefore do not form a Riesz basis. The problems
occur at points where the sampling points get close together. The interpolating function follows the orig-
inal function along exactly, except for a very subtle “ripple” at those points where the sampling points
get close together. The following stabilizes the construction. Let δ be given, 0 < δ < 1

4α . Let

Λδ = {λ ∈ Λ : dist(λ, Λ \ {λ}) < δ} .
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Elements in Λδ occur in pairs, with each pair containing one element from Λ1 =
{±k

2

}
and the other from

Λ2 =
{±k

2α

}
for k ∈ N. Let {λk} = Λ = Λ1 ∪ Λ2 = Λδ ∪ Λδ

′ . For

G(t) = sin(2πt) · sin(2παt), let Hλk
=

G(t)
G′(λk)(t− λk)

.

We can show that

Span
{

G(t)
G′(λk)(t− λk)

}
is dense in L2

(1+α) and that {
G(t)

G′(λk)(t− λk)

}
λk∈Λδ

′

is a Bessel sequence. Also, we can show that

G(t)
4παt

,
G(t)
4παt2

∈ Closure
(

Span
{

G(t)
G′(λk)(t− λk)

})
.

The points in Λδ can be treated as double points. For {λ1, λ2} ⊂ Λδ,

[f(λ1)Hλ1(t) + f(λ2)Hλ2(t)]

= f(λ1)Hλ1(t) + f ′(ξλ1)
[

G(t)(
G′(λ1)−G′(λ2)

2(λ1−λ2)

)
(t− λ1)(t− λ2)

]

+ R(λ1 − λ2)2 ,

where ξλ1 −→ λ1 and R(λ1 − λ2)2 −→ 0 as δ −→ 0. Finally, we can show that{
G(t)

(G′′(λk)/2!)(t− λk)2

}
λk∈Λδ

is a Bessel sequence.
The result generalizes. We can create sampling sets on ` lattices using a set of numbers {ri}`i=1 such

that (ri/rj) is poorly approximated by rationals for i 6= j. Again, if {pi}`−1
i=1 is a set of primes,

{1,
√

p1,
√

p1p2, . . . ,
√

p1p2 · · · p`−1}

is a set of numbers whose ratios are poorly approximated by rationals. Let Λk =
{
±n
2rk

}
for n ∈ N, and

let ⋃̀
k=1

Λk = Λ = {λk} .

We reconstruct on Λ ∪ {0}, letting

G(z) =
∏̀
k=1

sin(2πrkz)

and letting

Hm(z) =
G(z)

G′(λm)(z − λm)
.

DISTRIBUTION A: Distribution approved for public release.



New Techniques in Time-Frequency Analysis 10

Then Hm(λn) = δmn . The interpolating functions at the origin are a linear combination of

gj =
G(z)
(zj)

, j = 1, . . . , ` ,

chosen so that
K

(j−1)
k (0) = δkj , k, j = 1, . . . , ` .

As before, using Taylor series, we get

H
(j)
k (t) = 2nπn (n− k)!

(n− k − j)!
√

p1p2 · · · pntn−k−j

−2n+2πn+2

3!
(n− k + 2)!

(n− k − j + 2)!
√

p1p2 · · · pn

(1 +
n−1∑
i=1

pi)tn−k−j+2

+O(tn−k−j+4) .

We want

Kk(t) =
k∑

i=1

ciHi(t) so that K
(j−1)
k (0) = δkj , k, j = 1, . . . , ` .

Solving these relationships gives

Kk(t) =
k∑

i=1

ciHi(t)

=
∑d(n−k)/2e

m=0 (22π2

3! (1 +
∑n−1

i=1 pi))2mt2mG(t)
G(n)(0)

(n)! · (k − 1)! · tn−k+1
.

6 Sampling and Non-Euclidean Geometry

The study of non-Euclidean geometries is becoming increasingly relevant in signal processing. There
are numerous motivations for extending signal processing, and in particular, sampling theory, to non-
Euclidean spaces, and in particular, hyperbolic and spherical geometries. Hyperbolic space and its im-
portance in Electrical Impedance Tomography (EIT) [BCT96, Ber01] and Network Tomography [BGB06]
has been mentioned in several papers of Berenstein et. al. and some methods developed in papers of
Kuchment, e.g., [Kuc06]. Irregular sampling of band-limited functions by iteration in hyperbolic space
is possible, as shown by Feichtinger and Pesenson [FP04, FP05] and Christensen and Ólafsson [CÓ13].
Applications where data are defined inherently on the sphere are found in computer graphics, planetary
science, geophysics, quantum chemistry, and astrophysics [DH94, MW11]. In many of these applications,
a harmonic analysis of the data is insightful. For example, spherical harmonic analysis has been remark-
ably successful in cosmology, leading to the emergence of a standard cosmological model [CW98, MW11].

Our approach is to connect sampling theory with the geometry of the signal and its domain [CC16].
It is relatively easy to demonstrate this connection in Euclidean spaces, but one quickly gets into open
problems when the underlying space is not Euclidean. For Paley-Wiener functions on R the minimal
sampling rate, the Nyquist Rate, is a function of the band-width. The establishment of the exact Nyquist
rate in non-Euclidean spaces is an open problem. This rate is needed to develop regular sampling. We
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use two tools to work on the problem – the Beurling-Landau density and Voronoi cells. Using these tools,
we establish a relation in Euclidean domains, connecting Beurling-Landau density to sampling lattices
and hence dual lattice groups, and then use these dual lattices to define Voronoi cells, which become our
tiles in frequency. We then discuss how to extend this to non-Euclidean geometries.

Classical sampling theory applies to square integrable band-limited functions. A function that is both
Ω bandlimited and L2 has several smoothness and growth properties given in the Paley-Weiner Theorem
(see, e.g., [DM72]). We define PWΩ = {f : f, f̂ ∈ L2, supp(f̂) ⊂ [−Ω,Ω]}. The Whittaker-Kotel’nikov-
Shannon (W-K-S) Sampling Theorem applies to functions in PWΩ.

Theorem 7 (W-K-S Sampling Theorem) Let f ∈ PWΩ, sincT (t) = sin( π
T

t)

πt and δnT (t) = δ(t− nT ).

a.) If T ≤ 1/2Ω, then for all t ∈ R,

f(t) = T
∑
n∈Z

f(nT )
sin( π

T (t− nT ))
π(t− nT )

= T

([∑
n∈Z

δnT

]
f

)
∗ sinc

T
(t) .

b.) If T ≤ 1/2Ω and f(nT ) = 0 for all n ∈ Z, then f ≡ 0.

The sphere S2 is compact, and its study requires different tools. Fourier analysis on S2 amounts
to the decomposition of L2(S2) into minimal subspaces invariant under all rotations in SO(3). Band-
limited functions on the sphere are spherical polynomials. Sampling on the sphere is how to sample a
band-limited function, an Nth degree spherical polynomial, at a finite number of locations, such that
all of the information content of the continuous function is captured. Since the frequency domain of a
function on the sphere is discrete, the spherical harmonic coefficients describe the continuous function
exactly. A sampling theorem thus describes how to exactly recover the spherical harmonic coefficients
of the continuous function from its samples. Developing sampling lattices leads to questions on how to
efficiently tile the sphere, a subject in its own right, e.g., Driscoll and Healy [DH94], Keiner, Kunis, and
Potts [KKP07], and McEwen and Wiaux [MW11].

The Nyquist rate allows us to develop an efficient tiling of frequency space. A tiling or a tessellation
of a flat surface is the covering of the plane or region in the plane using one or more geometric shapes,
called tiles, with no overlaps and no gaps. This generalizes to higher dimensions. We look to develop
Nyquist tiles and sampling groups for Euclidean, hyperbolic, and spherical spaces and general analytic
surfaces. We first assume that signals are single band and symmetric in frequency, i.e., that the transform
of the signal can be contained in a simply connected region centered at the origin. Symmetry can be
achieved by shifting, and multi-band signals can be addressed by the techniques in this report.

Consider sampling in R. Given f ∈ PWΩ choose T ≤ 1/(2Ω). For f ∈ L1([0, T )) the T-periodization of
f is (fT )◦(t) =

∑
n∈Z f(t−nT ) . We can then expand (fT )◦(t) in a Fourier series. The sequence of Fourier

coefficients of this T -periodic function are given by (̂fT )◦[n] = 1
T f̂
(
− n

T

)
. Then if the value of the Fourier

series of fT
◦ agrees with the value of fT

◦ at the origin, we get T
∑

n∈Z f(nT ) =
∑

n∈Z f̂(n/T )PSF1 .
Thus, the Poisson Summation Formula allows us to compute the Fourier series of (fT )◦ in terms of the
Fourier transform of f at equally spaced points. This extends to the Schwartz class of distributions as

̂∑
n∈Z δnT = 1

T

∑
n∈Z δn/T PSF2 . Then, for f ∈ PWΩ, if we sample at exactly Nyquist

f(t) =
1

2Ω

([∑
n∈Z

δ( 1
2Ω)

]
f

)
∗ sinc

( 1
2Ω)

(t)
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if and only if

f̂(ω) =

(∑
n∈Z

f̂(ω − 2nΩ)

)
· χ[−Ω,Ω)(ω) =

(∑
n∈Z

[
δ2nΩ

]
f̂

)
· χ[−Ω,Ω)(ω) .

The interval [−Ω,Ω) is simply connected and symmetric to the origin. It is spread by the group of
translations to form a tiling of frequency space – {[(k − 1)Ω, (k + 1)Ω)}. We refer to [−Ω, Ω) as a
sampling interval . Note, sampling intervals are “half open, half closed,” with length determined by the
Nyquist rate. The inverse transform of the characteristic functions of the tiles are sinc functions, which
form an orthonormal (o.n.) basis for PWΩ. Sampling is expressed in terms of this basis. We can now
define the following.

Definition 2 (Nyquist Tiles for f ∈ PWΩ) Let f be a non-trivial function in PWΩ. The Nyquist Tile
NT(f) for f is the sampling interval of minimal length in R̂ such that supp(f̂) ⊆ NT(f). A Nyquist Tiling
for f is the set of translates {NT(f)k}k∈Z of Nyquist tiles which tile R̂.

The Nyquist tile is transported by a group of motions to cover the transform domain.

Definition 3 (Sampling Group for f ∈ PWΩ) Let f ∈ PWΩ with Nyquist Tile NT(f). The Sampling
Group G(f) is a group of translations such that NT(f) tiles R̂.

We now extend these ideas to k-dimensional Euclidean space. Let T > 0 and let f(t) be a function
such that supp f ⊆ [0, T ]k. The T -periodization of f is [f ]◦(t) =

∑
n∈Zd f(t − nT ) . We can expand

a T -periodic function [f ]◦(t) in a Fourier series. Denote the lattice Λ = TZd, where T is the n × n
matrix with T on the main diagonal and zeroes elsewhere. The sequence of Fourier coefficients of this
periodic function on the lattice Λ = TZd are given by [̂f ]◦[n] = 1

T d f̂
(
− n

T

)
. We have

∑
n∈Zd f(t + nT ) =

1
T d

∑
n∈Zd f̂(n/T )e2πin·t/T . Therefore,

∑
n∈Zd f(nT ) = 1

T d

∑
n∈Zd f̂(n/T )PSF1 . We can write the Poisson

summation formula for an arbitrary lattice by a change of coordinates. Let A be an invertible d×d matrix,
Λ = AZd, and Λ⊥ = (AT )−1Zd be the dual lattice. Then∑

λ∈Λ

f(t + λ) =
∑
n∈Zd

(f ◦A)(A−1t + n) =
1

|detA|
∑
n∈Zd

f̂((AT )−1(n))e2πi(AT )−1(n)·t .

Note, |detA| = vol(Λ). This last expression can be expressed more directly as
∑

λ∈Λ f(t + λ) =
1

vol(Λ)

∑
β∈Λ⊥ f̂(β)e2πiβ·t . This extends again to the Schwartz class of distributions as∑̂

λ∈Λ δλ = 1
vol(Λ)

∑
β∈Λ⊥ δβ PSF2 .

The sampling formula again follows from computations and an application of (PSF2). We assume
a single band signal. Let Λ be a regular sampling lattice in Rd,and let Λ⊥ be the dual lattice in R̂d.
Then Λ has generating vectors {τ1, τ2, . . . , τd}, and the sampling lattice can be written as Λ = {λ :
λ = z1τ1 + z2τ2 + . . . + zdτd} for (z1, z2, . . . , zd) ∈ Zd. Let {Ω1,Ω2, . . . ,Ωd} be the generating vectors
for the dual lattice Λ⊥. The dual sampling lattice can be written as Λ⊥ = {λ⊥ : λ⊥ = z1Ω1 + z2Ω2 +
. . . + zdΩd} for (z1, z2, . . . , zd) ∈ Zd. The vectors {Ω1,Ω2, . . . ,Ωd} generate a parallelepiped. We want
to use this parallelepiped to create a tiling, and therefore we make the parallelepiped “half open, half
closed” as follows. If we shift the parallelepiped so that one vertex is at the origin, we include all of
the boundaries that contain the origin, and exclude the other boundaries. We denote this region as a
sampling parallelepiped ΩP . If the region ΩP is a hyper-rectangle, we get the familiar sampling formula

f(t) =
1

vol(Λ)

∑
n∈Zd

f(
n1

ω1
, . . . ,

nd

ωd
)
sin( π

ω1
(t− n1ω1))

π(t− n1ω1)
· . . . ·

sin( π
ωd

(t− ndωd))

π(t− ndωd)
.
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If, however, the sampling parallelepiped ΩP a general parallelepiped, we first have to compute the inverse
Fourier transform of χ

ΩP . Let S be the generalized sinc function S = 1
vol(Λ)

(χΩP )∨ . Then, the sampling

formula (see [Hig96]) becomes f(t) =
∑

λ∈Λ f(λ)S(t− λ) .

Definition 4 (Nyquist Tiles for f ∈ PWΩP ) Let

PWΩP = {f continuous : f ∈ L2(Rd), f̂ ∈ L2(R̂d), supp(f̂) ⊂ ΩP} ,

where {Ω1,Ω2, . . . ,Ωd} be the generating vectors for the dual lattice Λ⊥. Let f be a non-trivial function
in PWΩP . The Nyquist Tile NT(f) for f is the sampling parallelepiped of minimal area in R̂d centered at
the origin such that supp(f̂) ⊆ NT(f). A Nyquist Tiling is the set of translates {NT(f)k}k∈Zd of Nyquist
tiles which tile R̂d.

Definition 5 (Sampling Group for f ∈ PWΩP ) Let f ∈ PWΩP with Nyquist Tile NT(f). The Sam-
pling Group G is a symmetry group of translations such that NT(f) tiles R̂d.

A sequence Λ is separated or uniformly discrete if q = infk(λk+l − λk) > 0. The value q is referred to
as the separation constant of Λ. With a separated sequence Λ we associate a distribution function nΛ(t)
defined such that for a < b, nΛ(b)−nΛ(a) = card(Λ∩ (a, b]) , and normalized such that nΛ(0) = 0. There
is clearly a one-to-one correspondence between Λ and nΛ. A discrete set Λ is a set of sampling for PWΩ

if there exists a constant C such that ‖f‖22 ≤ C
∑

λk∈Λ |f(λk)|2 for every f ∈ PWΩ. The set Λ is called a
set of interpolation for PWΩ if for every square summable sequence {aλ}λ∈Λ, there is a solution f ∈ PWΩ

to f(λ) = aλ, λ ∈ Λ. Clearly, all complete interpolating sequences are separated. Landau showed that
if Λ is a sampling sequence for PWΩ, then there exists constants A and B, independent of a, b such that
nΛ(b)− nΛ(a) ≥ (b− a)−A log+(b− a)−B .

Definition 6 (Beurling-Landau Densities) The Beurling-Landau lower D− and upper D+ densities
are given by

D−(Λ) = lim infr→∞inft∈R
(nΛ(t + r))− nΛ(t)

r
, D+(Λ) = lim supr→∞supt∈R

(nΛ(t + r))− nΛ(t)
r

The densities are defined similarly in higher dimensions. Specifically, for the exact and stable re-
construction of a band-limited function f from its samples {f(λk) : λk ∈ Λ}, it is sufficient that the
Beurling-Landau lower density satisfies D−(Λ) > 1. A set fails to be a sampling set if D−(Λ) < 1. Con-
versely, if f is uniquely and stably determined by its samples on Λ, then D−(Λ) ≥ 1. Note, a sampling set
for which the reconstruction is stable in this sense is called a (stable) set of sampling. This terminology is
used to contrast a set of sampling with the weaker notion of a set of uniqueness. Λ is a set of uniqueness
for PWΩ if f |Λ = 0 implies that f = 0. Whereas a set of sampling for PWΩ has a density D−(Λ) ≥ 1,
there are sets of uniqueness with arbitrarily small density. We also have that if the Beurling-Landau
upper density satisfies D+(Λ) ≤ 1, then Λ is a set of interpolation.

The canonical case is when Ω = 2π and Λ = Z. Since {eint} in an o.n. basis for L2[−π, π], it follows
from Parseval that Λ is both a set of sampling and a set of interpolation. This scales by a change of
variable, and so Λ = 1

ΩZ is both a set of sampling and a set of interpolation for PW2πΩ. Moreover, general
lattices can be compared to the canonical results as follows. If Λ is a set of sampling for PW2πΩ, then
Λ is everywhere at least as dense as the lattice 1

ΩZ. If Λ is a set of interpolation for PW2πΩ, then Λ is
everywhere at least as sparse as the lattice 1

ΩZ.
This generalizes to Rd. Let ΩP be a hyper-rectangle with side lengths Ω. If we normalize the density

of Zd to be one, then the density of the canonical lattice for PW2πΩP is 1/(2π)d times the volume of the
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spectrum ΩP . Then, if Λ is a set of sampling for PW2πΩP , then Λ is everywhere at least as dense as the
lattice 1

Ωd Zd. If Λ is a set of interpolation for PW2πΩP , then Λ is everywhere at least as sparse as the
lattice 1

Ωd Zd.

6.1 Voronoi Cells for Euclidean Space

We use our sampling lattices to develop Voronoi cells corresponding to the sampling lattice. These cells
will be, in the Euclidean case, our Nyquist tiles.

Definition 7 (Voronoi Cells in R̂d) Let Λ̂ = {λ̂k ∈ R̂d : k ∈ N} be a discrete set in R̂d. Then, the
Voronoi cells {Φk}, the Voronoi partition VP(Λ̂), and partition norm ‖VP(Λ̂)‖ corresponding to this set
are defined as follows. Here, dist is the Euclidean distance.

1.) The Voronoi cells Φk = {ω ∈ R̂d : dist(ω, λ̂k) ≤ infj 6=k dist(ω, λ̂j)},

2.) The Voronoi partition VP(Λ̂) = {Φk ∈ R̂d}k∈Zd,

3.) The partition norm ‖VP(Λ̂)‖ = supk∈Zdsupω,ν∈Φk
dist(ω, ν).

Given f, f̂ ∈ L2(Rd) such that f ∈ PWΩP , if the signal is sampled on a lattice exactly at Nyquist,
we get a sampling grid Λ = {λk ∈ Rd}k∈Zd that is both a sampling set and a set of interpolation. The
Beurling-Landau lower density and the Beurling-Landau upper density are equal for Λ. The dual lattice
Λ⊥ in frequency space can be used to create Voronoi cells {Φk}, a Voronoi partition VP(Λ⊥), and partition
norm ‖VP(Λ⊥)‖. If we sample on a lattice exactly at Nyquist, each sample point will correspond to an
element in the dual lattice which is at the center of a Nyquist tile NT(f) for f . The set of Nyquist tiles
will cover R̂d. If, however, we develop the Voronoi cells {Φk} for Λ⊥, we get VP(Λ⊥) = {Φk ∈ R̂d}k∈Zd

such that for all k, Φk = {ω ∈ R̂d : dist(ω, λ⊥k ) ≤ infj 6=k dist(ω, λ⊥j )}. But this puts λ⊥k in the center of
the cell. Then, if we construct the Voronoi cell containing this point, we will get, up to the boundary,
the exact Nyquist tile corresponding to this point. Nyquist tiles are “half open, half closed.” If we shift
a Nyquist tile so that one vertex is at the origin, we include all of the boundaries that contain the origin,
and exclude the other boundaries. To get the exact correspondence between NT(f)k and Φk, we make
Φk “half open, half closed,” and denote it as Φ̃k. We denote the adjusted Voronoi partition as ṼP.

Theorem 8 (Nyquist Tiling for Euclidean Space) Let f be a non-trivial function in PWΩP , and
let Λ = {λk ∈ Rd}k∈Zd be the sampling grid which samples f exactly at Nyquist. Let Λ⊥ be the dual lattice
in frequency space. Then the adjusted Voronoi partition ṼP(Λ⊥) = {Φ̃k ∈ R̂d}k∈Zd equals the Nyquist
Tiling, i.e.,

{Φ̃k ∈ R̂d}k∈Zd = {NT(f)k}k∈Zd .

Moreover, the partition norm equals the volume of Λ⊥, i.e.,

‖ṼP(Λ⊥)‖ = supk∈Zdsup
ω,ν∈fΦk

dist(ω, ν) = vol(Λ⊥) ,

and the sampling group G is exactly the group of motions that preserve Λ⊥.

This connects, in the Euclidean case, sampling theory with the geometry of the signal and its domain.
Given a function f ∈ PWΩ, sampling of such a function is the process of tiling the frequency domain
by translated identical copies of the parallelepiped of minimal area, the Nyquist Tile, which contains
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the frequency support of f̂ . The relation between the geometry and sampling problem in the Euclidean
case is as follows: the set of the corresponding translations – the Sampling Group – forms a symmetry
group. The corresponding sampling set, which is simply the annihilator of the sampling group, is also a
symmetry group of translations on Rd. The set of copies of the Nyquist tile, obtained by applying the
sampling group, is the Nyquist Tiling .

The situation is considerably different when the underlying space is not Euclidean. We quickly get
into open problems. Theorem 8 gives an approach for solving the problem in non-Euclidean spaces. We
suggest using the two tools we just established – the Beurling-Landau density and Voronoi cells. Our
next section discusses the geometry of orientable surfaces. In particular, it provides insight into why a
focus on Euclidean, spherical, and especially, hyperbolic geometries is important.

6.2 Sampling in Hyperbolic Space

We begin by stating the Fourier transform, its inversion, and the Plancherel formula for hyperbolic space
[Hel00].

Let dz denote the area measure on the unit disc D = {z | |z| < 1, and let the measure dv be given by
then the SU(1, 1)-invariant measure on D is given by dv(z) = dz/(1− |z|2)2. For functions f ∈ L1(D, dv)
the Helgason-Fourier transform is defined as

f̂(λ, b) =
∫

D
f(z)e(−iλ+1)〈z,b〉 dv(z)

for λ > 0 and b ∈ T. Here 〈z, b〉 denotes the minimal hyperbolic distance from the origin to the
horocycle through z and a point b ∈ ∂D. The mapping f 7→ f̂ extends to an isometry L2(D, dv) →
L2(R+ × T, (2π)−1λ tanh(λπ/2)dλ db), i.e., the Plancherel formula becomes∫

D
|f(z)|2 dz

(1− |z|2)2
=

1
2π

∫
R+×T

|f̂(λ, b)|2λ tanh(λπ/2)dλ db.

Here db denotes the normalized measure on the circle T, such that
∫

T db = 1, and dλ is Lebesgue measure
on R. The Helgason-Fourier inversion formula is

f(z) =
1
2π

∫
R+

∫
T

f̂(λ, b)e(iλ+1)〈z,b〉λ tanh(λπ/2) dλ db .

A function f ∈ L2(D, dv) is called band-limited if its Helgason-Fourier transform f̂ is supported inside a
bounded subset [0, Ω] of R+. The collection of band-limited functions with band-limit inside a set [0, Ω]
will be denoted PWΩ = PWΩ(D). This definition of band-limit coincides with the definitions given in
[FP04] and [CÓ13] which both show that sampling is possible for band-limited functions. The Laplacian
on D is symmetric and given by

∆ = (1− x2 − y2)−2

(
∂2

∂x2
+

∂2

∂y2

)
,

and we note that
∆̂f(λ, b) = −(λ2 + 1)f̂(λ, b).

Therefore, if f ∈ PWΩ(D), we see that the following Bernstein inequality is satisfied ‖∆nf‖ ≤ (1 +
|Ω|2)n/2‖f‖.

In the following section we will describe sampling results for band-limited functions on hyperbolic
space, which, it must be stressed, do not deal with optimal densities.
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6.2.1 Sampling via Operator Theory in D

The work in [FP04] defines band-limits using the spectrum of the Laplacian on a manifold, while [CÓ13]
builds on representation theory which for the case at hand gives the explicit form of the Fourier transform
on D as defined above. We also refer to the paper [FP05] which provides the same results in the setting
of the upper half plane (which is bi-holomorphically equivalent to D). These papers build on Neumann
series for an operator based on sampling as well as the Bernstein inequality. The sampling operators have
previously been explored in [Grö91, Grö92].

According to Pesenson [Pes00] there is a natural number N such that for any sufficiently small r there
are points xj ∈ D for which B(xj , r/4) are disjoint, B(xj , r/2) cover D and 1 ≤

∑
j χB(xj ,r) ≤ N . Such a

collection of {xj} will be called an (r, N)-lattice.
Let φj be smooth non-negative functions which are supported in B(xj , r/2) and satisfy that

∑
j φj =

1D and define the operator Tf(x) = PΩ

(∑
j f(xj)φj(x)

)
, where PΩ is the orthogonal projection from

L2(D, dv) onto PWΩ(D). By decreasing r (and thus choosing xj closer) one can obtain the inequality
‖I − T‖ < 1, in which case T can be inverted by

T−1f =
∞∑

k=0

(I − T )kf.

For given samples we can calculate Tf and the Neumann series provides the recursion formula fn+1 =
fn + Tf − Tfn and then limn→∞ fn = f with norm convergence. The rate of convergence is determined
by the estimate ‖fn − f‖ ≤ ‖I − T‖n+1‖f‖.

The paper [FP05] further provides a necessary condition for the set {xi} to be a sampling set. They
find that there is a constant C which is determined by the geometry of D, such that if r < C−1(1 +
|Ω|2)k/2)−1 for any k > 1, then any (N, r)-lattice {xi} is a sampling set. The paper [CÓ13] obtains
similar results, but removes some restrictions on the functions φj . In particular the partitions of unity
do not need to be smooth and can actually be chosen as characteristic functions φj = χUj for a cover of
disjoint sets Uj contained in the balls B(xj , r/2). This is done by lifting the functions to the group of
isometries (which in this case is SU(1, 1)), and by estimating local oscillations using Sobolev norms for
left-invariant vector fields on this group.

6.2.2 Beurling density for Bergman spaces

In this section we describe a collection of celebrated sampling theorems for Bergman spaces on the unit
disc by [Sei93] and [Sch97]. Let H(D) be the space of holomorphic functions on D. Let 1 ≤ p < ∞
be given, and equip the unit disc D with normalized area measure dσ(z). We define the Bergman
space Ap(D) = Lp(D, dσ) ∩ H(D). This is a reproducing kernel Banach space with reproducing kernel
K(z, w) = 1

(1−wz)2
. By [Sei93] and [Sch97] sampling and interpolation sets for Ap(D) are characterized by

the upper and lower Beurling densities

D+(Z) = lim sup
r→1

sup
w∈D

D(φw(Z), r) , D−(Z) = lim inf
r→1

inf
w∈D

D(φw(Z), r) .

Here φw(z) = w−z
1−wz and D(Z, r) = (

∑
|zk|<r log |zk|)/(log(1 − r)). Let ρ(z, w) = |φw(z)| be the pseudo-

hyperbolic distance from z to w, then a sequence Z = {zi} is called uniformly discrete if there is a δ > 0
such that ρ(zi, zj) > δ for i 6= j.

Theorem 9 Let Λ be a set of distinct points in D.

DISTRIBUTION A: Distribution approved for public release.



New Techniques in Time-Frequency Analysis 17

1.) A sequence Λ is a set of sampling for Ap if and only if it is a finite union of uniformly discrete sets
and it contains a uniformly discrete subsequence Λ′ for which D−(Λ′) > 1/p.

2.) A sequence Λ is a set of interpolation for Ap if and only if it is uniformly discrete and D+(Λ) < 1/p.

This results show there can be no Nyquist density for the Bergman spaces, since the sampling sets
are always sharply separated from the interpolating sets. We note that the results of Seip and Schuster
are for a particular class of holomorphic functions, to which the band-limited functions PWΩ(D) do not
belong. It is an open question whether it is possible to establish a Nyquist density for band-limited
functions on D and to use this information to create regular lattices and dual lattices determined by the
size of the band-limit Ω.

6.2.3 Voronoi Cells and Beurling-Landau Density for D̂

We develop our model for hyperbolic space on the Poincaré disk D. The motions that preserve lengths
in hyperbolic geometry are Möbius-Blaschke maps. Geodesics are subarcs of paths that intersect ∂D at
right angles. Let Γ be a smooth path in the unit disk D. The hyperbolic length of Γ is LH(Γ) =

∫
Γ

2 |dz|
1−|z|2 .

Let α ∈ D, and let ϕθ,α = eiθ z−α
1−αz (a Möbius-Blaschke transformation of D onto D). Then ϕθ,α preserves

the hyperbolic length, i.e, LH(ϕθ,α(Γ)) = LH(Γ) . The hyperbolic distance ρ between two points z1, z2

in D is

ρ(z1, z2) = 2 arctanh
(
|z1 − z2|
|1− z2z1|

)
= log

1 + |z1−z2|
|1−z2z1|

1− |z1−z2|
|1−z2z1|

 .

The distance ρ will be used to determine distance for the sampling lattice Λ. Note that, because we
cannot establish the Beurling-Landau densities, we can not create regular lattices and dual lattices.

The Helgason-Fourier transform maps L2(D) to

L2(R+ × T ,
1
2π

λ tanh(λπ/2)dλ db) ,

which is isomorphic to the space of L2(T)-vector valued square integrable functions with measure λ tanh(λπ/2)dλ,
in short denoted by

L2(R+;L2(T), λ tanh(λπ/2)dλ) .

The negative Laplacian −∆ is positive with spectrum R+, and therefore we define Voronoi cells based on
a distance on R+. This distance is denoted dist, and it is an open question in which manner it is related
to the measure λ tanh(λπ/2) dλ. With an appropriate distance function dist, we can define the following.

Definition 8 (Voronoi Cells in D̂) Let Λ̂ = {λ̂k ∈ D̂ = R+ × T : k ∈ N}, be a discrete set in fre-
quency space. Then, the Voronoi cells {Φk}, the Voronoi partition VP(Λ̂), and partition norm ‖VP(Λ̂)‖
corresponding to this set are defined as follows.

1.) The Voronoi cells Φk = {ω ∈ D̂ : dist(ω, λ̂k) ≤ infj 6=k dist(ω, λ̂j)},

2.) The Voronoi partition VP(Λ̂) = {Φk ⊆ D̂}k∈Zd,

3.) The partition norm ‖VP(Λ̂)‖ = supk∈Zdsupω,ν∈Φk
dist(ω, ν).

A crucial step in answering the question of Nyquist density using Voronoi cells is to determine an
appropriate candidate for the distance on D̂.
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6.3 Sampling on the Sphere

One perspective of Fourier analysis is to think of it as a systematic use of symmetry to simplify and
understand linear operators. The unit sphere S2 admits the special orthogonal group of three variables,
SO(3) – proper rotations of R3 about the origin – as a transitive group of symmetries. Fourier analysis
on S2 amounts to the decomposition of L2(S2) into minimal subspaces invariant under all rotations in
SO(3). The rotations of the sphere induce operators on functions by rotating the graphs over S2. The
Hilbert space L2(S2) is defined with the usual inner product, using the rotation-invariant area element
µ. Background for this section can be found in Driscoll and Healy [DH94], Keiner, Kunis, and Potts
[KKP07], and McEwen and Wiaux [MW11].

Band-limited functions on the sphere are spherical polynomials. The corresponding sampling problem
is the computation of Fourier coefficients of a function from sampled values at scattered nodes. If we
consider the problem of reconstructing a spherical polynomial of degree N ∈ N from sample values, one
might set up a linear system of equations with M = (N + 1)2 interpolation constraints which has to
be solved for the unknown vector of Fourier coefficients f̂ ∈ C(N+1)2 . If the nodes for interpolation are
chosen such that the interpolation problem always has a unique solution, the sampling set is called a
fundamental system.

Let S2 = {x ∈ R3 : ‖x‖2 = 1} be the two-dimensional unit sphere embedded in R3. A point ρ ∈ S2 is
identified in spherical coordinates by η = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T , where the angles (θ, φ) are
the co-latitude and longitude of η. Topologically, S2 = C̃. Geodesics are great circles, and the geodesic
distance can be most directly written as dist(η, ξ) = arccos(η · ξ) . For η, ξ ∈ S2, ‖η − ξ‖22 = 2− 2(η · ξ).
The distance to the “north pole” n = (0, 0, 1)T of S2 is arccos(η · n) = θ.

The spherical harmonics Y n
k form an o.n. basis for L2(S2) We can define them as follows. The Legendre

polynomials Pk : [−1, 1] −→ R are generated by applying the Gram-Schmidt method to {xk}∞k=0. They
are given by the Rodrigues formula Pk(t) = 1/(2kk!)dk/dtk(t2 − 1)k. The associated Legendre functions
are defined by

Pn
k (t) =

√
(k − n)!
(k + n)!

(t2 − 1)
n
2

dn

dtn
Pk(t) .

The spherical harmonics Y n
k : S2 −→ C of degree k ∈ N∪ {0} and order n ∈ Z, |n| ≤ k, are the functions

Y n
k (η) = Y n

k (θ, φ) =
√

2k+1
4π P

|n|
k (cos(θ))einφ . We have that∫ 2π

0

∫ π

0
Y n

k (θ, φ)Y m
l (θ, φ) sin(θ) dθ dφ = δk,l · δm,n ,

i.e., Y n
k form an o.n. basis for L2(S2). We say that f is a spherical polynomial of degree N if f(θ, φ) =∑N

k=0

∑k
n=−k f̂n

k Y n
k . The space of spherical polynomials of degree at most N has dimension (N + 1)2.

The Fourier transform is the spherical Fourier matrix f(θ, φ) =
∑∞

k=0

∑k
n=−k f̂n

k Y n
k , with coefficients

given by f̂n
k =

∫
S2 fY n

k dµ . The dual space of L2(S2) is discrete. The inverse Fourier transform is the
construction of a spherical polynomial from the coefficients. The function f is N band-limited (N ∈ N)
if f̂n

k = 0 for k > N . Thus, f(θ, φ) =
∑N

k=0

∑k
n=−k f̂n

k Y n
k . For the problem of solving for a spherical

polynomial f of degree N from sample values, we are looking to solve for the unknown Fourier coefficients
{f̂n

k } = f̂ ∈ C(N+1)2 .
Let Λ = {λk}Mk=1 be a sampling set on S2. The mesh norm δΛ and the separation distance qΛ are

defined by δΛ = 2maxη∈S2mink=1,...,M dist(η, λk) , qΛ = minj 6=k dist(λj , λk) . A sampling set Λ is called δ
dense if for some 0 < δ ≤ 2π, δΛ ≤ δ, and called q separated if there exists 0 < q ≤ 2π such that qΛ ≥ q.
We assume that our sampling set is separated. Finally, a sampling set is called quasi-uniform if there
exist a constant C independent of the number on sample points M such that δΛ ≤ C qΛ.
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Sampling on the sphere is how to sample a band-limited function, an Nth degree spherical polynomial,
at a finite number of locations, such that all of the information content of the continuous function is
captured. Since the frequency domain of a function on the sphere is discrete, the spherical harmonic
coefficients describe the continuous function exactly. A sampling theorem thus describes how to exactly
recover the spherical harmonic coefficients of the continuous function from its samples. Given Λ, the
spherical Fourier transform matrix is Y = (Y n

k (λj))j=1,...,M ;k=0,...,N ;|n|≤k . Let YH denote its complex
conjugate transpose. The inverse Fourier transform matrix is the construction of a spherical polynomial
of degree N from given data points (λj , yj) ∈ S2 × C such that the identity f(λj) = yj is solved. This
is solving the linear system Yf̂ = y, y = (y1, y2, . . . , yM ) for the vector of Fourier coefficients f̂ = {f̂n

k }
of the spherical polynomial. Essentially, it is the inverse problem to f = Yf̂ , which corresponds to
evaluating a spherical polynomial on Λ.

The open question again is the establishment of the optimal Beurling-Landau densities. This leads to
questions about sphere tiling. The papers [KKP07] and [MW11] address the problem of finding optimal
sampling lattices.

6.4 General Analytic Surfaces

A surface is a generalization of Euclidean space. From the viewpoint of harmonic analysis, there is a
natural interest in both the theory and applications of the study of integrable and square integrable
functions on surfaces. Background material for this subsection can be found in Ahlfors [Ahl78, Ahl10],
Farkas and Kra [FK80], Forster [For81], Lee [Lee97], and Singer and Thorpe [ST67].

We assume our surfaces are connected and orientable. Therefore, we can choose a coordinate system
so that differential forms are positive [ST67]. We consider Riemann surfaces, but our discussion carries
through to connected and orientable Riemannian manifolds of dimension two [Lee97]. Riemann surfaces
allow us to discuss the Uniformization Theorem, which gives that all orientable surfaces inherit their
intrinsic geometry from their universal coverings. There are only three universal covers – the plane C
(Euclidean geometry), the Riemann sphere C̃ (spherical geometry), and the hyperbolic disk D (hyperbolic
geometry).

Given connected Riemann surface S and its universal covering space S̃, S is isomorphic to S̃/G,
where the group G is isomorphic to the fundamental group of S, π1(S) (see [For81], Section 5). The
corresponding universal covering is simply the quotient map which sends every point of S̃ to its orbit
under G. Thus, the fundamental group of S determines its universal cover. Moreover, the universal
covering is indeed the “biggest” smooth unlimited covering of a connected Riemann surface, in the sense
that all other unramified unlimited covering space of a Riemann surface can be covered unlimitedly and
without ramification by the universal covering of this surface.

The Uniformization Theorem allows us to classify all universal covers of all Riemann surfaces. This
in turn allows us to understand the geometry of every Riemann surface.

Theorem 10 (The Uniformization Theorem) Let S be a Riemann surface.

1.) Every surface admits a Riemannian metric of constant Gaussian curvature κ.

2.) Every simply connected Riemann surface is conformally equivalent to one of the following:

a.) C – Euclidean Geometry – κ = 0 – with isometries
〈{

eiθz + α

}
, ◦
〉

, θ ∈ [0, 2π) ,

b.) C̃ – Spherical Geometry – κ = 1 – with isometries
〈{

αz+β

−βz+α

}
, ◦
〉

, |α|2 + |β|2 = 1 ,
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c.) D – Hyperbolic Geometry – κ = −1 – with isometries
〈{

eiθ z−α
1−αz

}
, ◦
〉

, |α| < 1, θ ∈ [0, 2π) .

Given connected Riemann surface S and its universal covering space S̃, S is isomorphic to S̃/G,
where the group G is isomorphic to the fundamental group of S, π1(S) (see [For81], Section 5). The
corresponding universal covering is simply the quotient map which sends every point of S̃ to its orbit under
G. Forster [For81] (Section 27) gives the consequences of the Uniformization Theorem very succinctly.
The only covering surface of Riemann sphere C̃ is itself, with the covering map being the identity. The
plane C is the universal covering space of itself, the once punctured plane C \ {z0} (with covering map
exp(z − z0)), and all tori C/Γ, where Γ is a parallelogram generated by z 7−→ z + nγ1 + mγ2 , n, m ∈ Z
and γ1, γ2 are two fixed complex numbers linearly independent over R. The universal covering space of
every other Riemann surface is the hyperbolic disk D. Therefore, the establishment of exact the Beurling-
Landau densities for functions in Paley-Wiener spaces in spherical and especially hyperbolic geometries
will allow the development of sampling schemes on arbitrary Riemann surfaces.

6.5 The Kunze-Stein phenomenon

In this subsection we will point out that for some amenable subgroups of semi-simple Lie groups, the
continuity of convolution operators follows from the famous Kunze-Stein phenomenon [KS60, Cow78,
Cow08]. This work is joint with Jens Christensen [CCO15].

Let G be a semi-simple, connected and non-compact group with Haar measure dx, then

Theorem 11 (Cowling) Suppose that 1 ≤ r ≤ ∞, 1/r + 1/r′ = 1 and f ∈ Lr(G). Then the mapping
g 7→ g ∗ f is bounded from Lp(G) to Lq(G) provided that one of the following conditions hold:

1. if r = 1 and 1 ≤ p = q ≤ ∞

2. if 1 < r ≤ 2,q ≥ r, p ≤ r′, 0 ≤ 1/p− 1/q ≤ 1/r′ and (p, q) 6= (r, r) and (p, q) 6= (r′, r′).

3. if 2 < r <∞, q ≥ r, p ≤ r′, 0 ≤ 1/p− 1/q ≤ 1/r′ and (p, q) 6= (r, r′)

4. if r =∞,p = 1 and q =∞.

We will only focus on the second condition with p = q, in which case the condition simplifies to: Lp ∗Lr ⊆
Lp if 1 < r < 2 and r < p < r/(r − 1).

Since G is semi-simple there is a compact subgroup K, an abelian subgroup A and a nilpotent subgroup
N such that A × N ×K 3 (a, n, k) 7→ ank ∈ G is a diffeomorphism and with proper normalizations of
Haar measures ∫

G
f(x) dx =

∫
K

∫
A

∫
N

f(ank) da dn dk.

If f is a K-right invariant function on G, then it can be identified with a function f̃ on S = AN and∫
G

f(x) dx =
∫

S
f̃(s) ds =

∫
A

∫
N

f(an) da dn.

If f is K-bi-invariant and g is K-right-invariant, then the convolution of the functions g̃ and f̃ on S = AN
can be written as a convolution of the corresponding functions on G: g̃ ∗ f̃ = g ∗ f .

From the Kunze-Stein phenomenon we can now obtain continuity of convolution operators on the
amenable (subgroup) S = AN . This is the second contribution of this paper:
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Theorem 12 Assume that f̃ is a function on S = AN and that there is a K-bi-invariant function h on
G for which |f̃(s)| ≤ h(s) for all s ∈ S. If h is in Lr(G) for some r ∈ (1, 2) then g̃ 7→ g̃ ∗ f̃ is continuous
on Lp(S) if r < p < r/(r − 1).

Example 1 This example shows that when G = SU(n, 1) convolution by a certain non-L1(G) function is
continuous on Lp(G). This is related to the Bergman projection, and we will follow this path to settling
open questions surrounding atomic decompositions and the Bergman projection on unbounded symmetric
domains [CR80, BBGR04].

Any x ∈ G can be written as a matrix

x =
(

a b
ct d

)
where a is an n× n-matrix, b, c ∈ Cn and d ∈ C.

The (multivalued) function
f(x) = 1/dσ,

corresponds to a single-valued function f̃ when restricted to the simply connected subgroup S. If we
define h(x) = |f(x)|, then h is K-bi-invariant and |f̃(s)| ≤ h(s). Also, the function h is in Lr(G) for
r > 2n/σ, and therefore convolution by f̃ is continuous on Lp(S) when 2n/σ < p < 2n/(2n − σ) and
n < σ ≤ 2n. Note, that if n = 1 this is exactly the statement from Example ??, since SL(2, R) and
SU(1, 1) are isomorphic. Also, if σ > 2n, then h is in L1(G) and the continuity of the convolution
operator is immediate. One interesting aspect of deriving these convolution continuities on SU(n, 1) is
their relation to the Bergman projection on the unit ball in Cn. In particular they can be used (when
applied to weighted Lp(S)-spaces) to prove the following classical theorem [Zhu05, Thm. 2.10]

Theorem 13 Fix two real parameters a and b and define the integral operator S by

Sf(z) = (1− |z|2)a

∫
Bn

(1− |w|2)b

|1− 〈z, w〉|n+1+a+b
f(w) dv(w),

where dv is the volume measure on the unit ball Bn in Cn and 〈z, w〉 = z1w1 + · · · + znwn. Then, for t
real and 1 ≤ p <∞, S is bounded on Lp

t (Bn) if and only if −pa < t + 1 < p(b + 1).

We are currently working out the details of this argument and will publish it in a forthcoming paper.

7 Analysis of Point Processes

The analysis of periodic processes is an important area of signal analysis. A probabilistic view of the
Riemann zeta function, algorithms on generalizations of Euclidean domains, and variations on equidis-
tribution theory have led to algorithms for several classes of problems in periodic parameter estimation.
These algorithms are general and very efficient, and can be applied to the analysis of periodic processes
with a single generator and the deinterleaving and analysis of processes with multiple generators.

We divide our analysis into two cases periodic processes created by a single source, and those processes
created by several sources. We wish to extract the fundamental period of the generators, and, in the
second case, to deinterleave the processes. We first present very efficient algorithm for extracting the
fundamental period from a set of sparse and noisy observations of a single source periodic process. The
procedure is computationally straightforward, stable with respect to noise and converges quickly. Its use
is justified by a theorem which shows that for a set of randomly chosen positive integers, the probability
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that they do not all share a common prime factor approaches one quickly as the cardinality of the set
increases. The proof of this theorem rests on a probabilistic interpretation of the Riemann zeta function.
We then build upon this procedure to deinterleave and then analyze data from multiple periodic processes.
This relies both on the probabilistic interpretation of the Riemann zeta function, the equidistribution
theorem of Weyl, and Wieners periodogram.

7.1 Single Generator: The MEA Algorithm

We have developed a collection of algorithms that analyze periodic phenomena generated by a single
generator. These work even when the data is extremely sparse and noisy. The algorithms use number
theory in novel ways to extract the underlying period by modifying the Euclidean algorithm to determine
the period from a sparse set of noisy measurements [CS13, SC00, SC98, SC96, Cas97, CS96, CS96]. The
elements of the set are the noisy occurrence times of a periodic event with (perhaps very many) missing
measurements. The proposed algorithms are computationally straightforward and converge quickly. A
robust version is developed that is stable despite the presence of arbitrary outliers. The Euclidean
algorithm approach is justified by a theorem which shows that, for a set of randomly chosen positive
integers, the probability that they do not all share a common prime factor approaches one quickly as the
cardinality of the set increases. The theorem is in essence a probabilistic interpretation of the Riemann
Zeta Function. In the noise-free case this implies convergence with only ten data samples, independent of
the percentage of missing measurements. In the case of noisy data simulation results show, for example,
good estimation of the period from one hundred data samples with fifty percent of the measurements
missing and twenty five percent of the data samples being arbitrary outliers.

We then use these algorithms in the analysis of periodic pulse trains, getting an estimate of the
underlying period [CS13, SC00, SC98, SC96, Cas97, CS96, CS96]. This estimate, while not maximum
likelihood, is used as initialization in a three-step algorithm that achieves the Cramer-Rao bound for
moderate noise levels, as shown by comparing Monte Carlo results with the Cramer-Rao bounds. An
approach using multiple independent data records is also developed that overcomes high levels of con-
tamination. The data sets arises in radar pulse repetition interval (PRI) analysis, in bit synchronization
in communications, in biomedical applications, and other scenarios. We assume our data is a finite set of
real numbers S = {sj}nj=1 , with sj = kjτ + φ + ηj , where τ (the period) is a fixed positive real number,
the kj ’s are non-repeating positive integers, φ (the phase) is a real random variable uniformly distributed
over the interval [0, τ), and the ηj ’s are zero-mean independent identically distributed (iid) error terms.
We assume that the ηj ’s have a symmetric probability density function (pdf), and that |ηj | < τ

2 for all
j. We develop an algorithm for isolating the period of the process from this set, which we shall assume
is (perhaps very) sparse. In the noise-free case our basic algorithm, given below, is equivalent to the Eu-
clidean algorithm and converges with very high probability given only n = 10 data samples, independent
of the number of missing measurements. We assume that the original data set is in descending order,
i.e., sj ≥ sj+1. Let τ̂ denote the value the algorithm gives for τ , and let “←−” denote replacement, e.g.,
“a←− b” means that the value of the variable a is to be replaced by the current value of the variable b.

The Modified Euclidean Algorithm (MEA)

Initialize: Set iter = 0.
1.) [Adjoin 0 after first iteration.] If iter > 0, then S ←− S ∪ {0}.
2.) [Form the new set with elements (sj − sj+1).] Set sj ←− (sj − sj+1).
3.) Sort the elements in descending order.
4.) [Eliminate noise.] If 0 ≤ sj ≤ η0, then S ←− S \ {sj}.
5.) The algorithm terminates if S has only one element s1. Declare τ̂ = s1. If not, then set
iter←− (iter + 1). Go to (1.).
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Here, 0 < η0 < τ is a noise threshold. Noise-free simulation examples demonstrate successful estimation
of τ for n = 10 with 99.99% of the possible measurements missing. In fact, with only 10 data samples, it
is possible to have the percentage of missing measurements arbitrarily close to 100%. There is, of course,
a cost, in that the number of iterations the algorithm needs to converge increases with the percentage of
missing measurements. In the presence of noise and false data (outliers), there is a tradeoff between the
number of data samples, the amount of noise, and the percentage of outliers. The algorithm will perform
well given low noise for n = 10, but will degrade as noise is increased. However, given more data, it
is possible to reduce noise effects and speed up convergence by binning the data, and averaging across
bins. Binning can be effectively implemented by using an adaptive threshhold with a gradient operator,
allowing convergence in a single iteration in many cases. Simulation results show, for example, good
estimation of the period from one hundred data samples with fifty percent of the measurements missing
and twenty five percent of the data samples being arbitrary outliers [CS13, CS96].

Our algorithm is based on several theoretical results, which we now present. First, we can modify
the basic Euclidean algorithm, allowing a reformulation using subtraction rather than division, because
gcd(τk1, . . . , τkn) = τ gcd((k1−k2), . . . , (kn−1−kn), kn) . We then show that our procedure almost surely
converges to the period by proving the following result. The Riemann Zeta Function is defined on the
complex half space {z ∈ C : <(z) > 1} by ζ(z) =

∑∞
n=1 n−z . Euler demonstrated the connection of

ζ with number theory by showing that ζ(z) =
∏∞

j=1
1

1−(pj)−z , <(z) > 1 , where P = {p1, p2, p3, . . .} =
{2, 3, 5, . . .} is the set of all prime numbers. In the following, we let P{·} denote probability, card{·} denote
the cardinality of the set {·}, and let {1, . . . , `}n denote the sublattice of positive integers in Rn with
coordinates c such that 1 ≤ c ≤ `. Therefore, Nn(`) = card{(k1, . . . , kn) ∈ {1, . . . , `}n : gcd(k1, . . . , kn) =
1} is the number of relatively prime elements in {1, . . . , `}n.

Theorem 14 ([CS13, CS96]) For n ≥ 2, we have that lim`→∞
Nn(`)

`n = [ζ(n)]−1 . Therefore, given
n (n ≥ 2) randomly chosen positive integers {k1, . . . , kn}, P{gcd(k1, . . . , kn) = 1} = [ζ(n)]−1 . Also,
limn→∞[ζ(n)]−1 = 1 , converging to 1 from below faster than (1− 21−n).

Thus, as n grows it quickly becomes very likely that n randomly selected integers have a gcd of 1. This
fact, together with Proposition 1, make estimation of τ via our algorithm possible.

The parameter estimation techniques given above lead to an effective method for periodic pulse
interval analysis (see [CS13, SC00, SC98, SC96, Cas97, CS96, CS96]). We assume time is highly resolved
and ignore any time quantization error. We are primarily concerned with a single periodic pulse train
with (perhaps very many) missing observations that may be contaminated with outliers. Our data model
for this case, in terms of the arrival times tj , is given as above, with the additional assumption that
ηj is zero-mean additive white Gaussian noise. Outliers are included as arbitrary arrival times. The
problem, again, is to recover the period τ and possibly the phase φ. With Gaussian noise the minimum
variance unbiased estimates for this linear regression problem take a least-squares form. However, this
requires knowledge of the kj ’s. We therefore have developed a multi-step procedure that proceeds by (i)
estimating τ directly, (ii) estimating the kj ’s, and (iii) refining the estimate of τ using the estimated kj ’s
in the least-squares solution.

7.2 Multiple Generators: The EQUIMEA Algorithm

We close by discussing our work on deinterleaving. Our data model is the union of M copies of our previous
datasets, each with different periods or “generators” Γ = {τi}, kij ’s and phases. Let τ = maxi{τi}. Then
our data is S =

⋃M
i=1{φi + kijτi + ηij}ni

j=1 , where ni is the number of elements from the ith generator,
{kij} is a linearly increasing sequence of natural numbers with missing observations, φi is a random
variable uniformly distributed in [0, τi), and the ηij ’s are zero-mean iid Gaussian with standard deviation
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3σij < τ/2. We think of the data as events from M periodic processes, and represent it, after reindexing,
as S = {αl}Nl=1. We difference as in the MEA, but we compute all of the differences. We repeat this
m times, and saving the elements from each iteration. We form a union of all of these data elements.
The relative primeness of data generated by one generator will “fill in” the missing elements for that
generator, whereas the data from two different generators will become “Weyl flat.” The number of times
m that this process is applied will be determined experimentally. Assuming only minimal knowledge of
the range of {τi}, namely bounds TL, TU such that 0 < TL ≤ τi ≤ TU , we phase wrap the data by the
mapping Φρ(αl) =

〈
αl
ρ

〉
= αl

ρ −
⌊

αl
ρ

⌋
, where ρ ∈ [TL, TU ], and b·c is the floor function. Thus 〈·〉 is the

fractional part, and so Φρ(αl) ∈ [0, 1).

Definition 9 A sequence of real random variables {xj} ⊂ [0, 1) is essentially uniformly distributed in
the sense of Weyl if given a, b, 0 ≤ a < b < 1, 1

ncard{1 ≤ j ≤ n : xj ∈ [a, b]} −→ (b − a) as n −→ ∞
almost surely.

Weyl’s Theorem is presented in [DM72]. For our variation, we assume that for each i, {kij} is a linearly
increasing infinite sequence of natural numbers with missing observations such that kij −→∞ as j −→∞.
We must make this assumption because the result is only approximately true for a finite length sequence.

Theorem 15 For almost every choice of ρ (in the sense of Lebesgue measure) Φρ(αl) is essentially
uniformly distributed in the sense of Weyl.

Moreover, the set of ρ’s for which this is not true are rational multiples of {τi}. Therefore, except for those
values, Φρ(αij) is essentially uniformly distributed in [0, 1). Moreover, the values at which Φρ(αij) = 0
almost surely are ρ ∈ {τi/n : n ∈ N}. These values of ρ cluster at zero, but spread out for lower
values of n. We phase wrap the data by computing modulus of the spectrum, i.e., compute |Siter(τ)| =
|
∑N

j=1 e(2πis(j)/τ)| . The values of |Siter(τ)| will have peaks at the periods τj and their harmonics (τj)/k.
The “noise-like” behavior of Φρ(αl) for a.e. ρ leads to a “flat” range for S for ρ 6∈ {τi/n : n ∈ N}. In turn,
this gives the following. Let i0 denote the index of the most prolific generator. We then isolate the data
generated by τi0 by convolution with a pulse train of width τi0 , and subtract it out of ∆0. We then repeat
the process, terminating when ∆0 equals the empty set. We refer to this at the EQIMEA algorithm.

The EQUIMEA Algorithm – Multiple Periods

Initialize: Sort the elements of S in descending order. Form the new set with elements (sl − sl+1). Set
sl ←− (sl − sl+1). (Note, this eliminates the phase ϕ.) Set iter = 1, i = 1, and Error. Go to 1.)
1.) [Adjoin 0 after first iteration.] Siter ←− S ∪ {0}.
2.)[Sort.] Sort the elements of Siter in descending order.
3.)[Compute all differences.] Set Siter =

⋃
(sj − sk) with sj > sk.

4.) [Eliminate zero(s).] If sj = 0, then Siter ←− Siter \ {sj}.
5.)[Adjoin previous iteration.] Form Siter ←− Siter ∪ Siter−1.
6.)][Compute spectrum.] Compute |Siter(τ)| = |

∑N
j=1 e(2πis(j)/τ)| .

7.)[Threshold.] Choose the largest peak. Label it as τiter

8.) If |τiter − τiter−1| < Error . Declare τ̂i = τiter. If not, iter←− (iter + 1). Go to 1.).
9.) Given τi, frequency notch |Siter(τ)| for τ̂i/m, m ∈ N. Let i←− i + 1.
10.)[Compute spectrum.] Compute |Siter(τ)| = |

∑N
j=1 e(2πis(j)/τ)| .

11.)[Threshold.] Choose the largest peak. Label it as τi+1. Algorithm terminates when there are no
peaks. Else, go to 9.).
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Figure 1: Three Periods – OriginalData

We now demonstrate the algorithm. The original data had three underlying periods – 1, (1 +
√

5)/2,
√

7,
with 90% of the information randomly removed, and 10% jitter noise.
Here is the |Siter| after two iterations.

Figure 2: EQUIMEA – Three Periods – Iter2 – Spectrum

There are several research items that need to be addressed. First, we need to explore applications
of both algorithms to general point processes. The second is to combine this approach with a localized
time-frequency to explore signal separation algorithms. We plan on looking at waveform signatures in,
e.g., EEG data (using wavelets), and see the application of the combination of time-frequency analysis
with these point process algorithms to the deinterleaving and analysis.
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[CÓ13] Jens Gerlach Christensen and Gestur Ólafsson. Sampling in spaces of bandlimited functions on
commutative spaces. In Excursions in harmonic analysis. Volume 1, Appl. Numer. Harmon.
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