UNDERWATER ACOUSTIC RADIATION OF AN ELASTIC RECTANGULAR PLATE COVERED BY A DECOUPLING COATING

System Number:
Patron Number:
Requester:

Notes: Paper #33 contained in Parent Sysnum #507203

Deliver to: DK
Underwater Acoustic Radiation of an Elastic Rectangular Plate Covered by a Decoupling Coating

Olivier Foin and Alain Berry
Groupe d'Acoustique de l'Université de Sherbrooke
Département de Génie Mécanique
Université de Sherbrooke
Sherbrooke, Québec (CANADA), J1K 2R1

and

Jeffrey Szabo
Defence Research establishment Atlantic

ABSTRACT

The reduction of the sound radiated by a finite structure immersed in water on one side is of concern in this paper. The purpose of this study is to investigate the decoupling effect of adding a compliant layer between a base structure and the fluid. The vibration response and the acoustic radiation of a baffled, elastic plate covered by a decoupling layer immersed in water is analyzed. The theoretical model uses the Love-Kirchhoff theory to describe the motion of the base plate whereas the locally reacting model is used for the behavior of the coating. A parametric study is performed in order to understand the decoupling mechanism and the noise reduction effect of such structures.

The locally reacting model assumes that the decoupling layer behaves like evenly distributed springs in the transverse direction. The unknowns of the problem (i.e. transverse displacement of the base plate and acoustic pressure in the fluid) are expanded with trigonometric functions that satisfy the simply supported boundary condition. The radiation impedances of the plate-fluid system are calculated using a numerical algorithm.
Scope

- Infinite rigid baffle
- Water
- Decoupling layer
- Simply supported base plate
- Vacuum

Semi-infinite heavy fluid

- Infinite rigid baffle
- Fluid loading
- Decoupling layer
- Elastic plate
- Vacuum

- Excitation
- Excitation
Motivations and Objectives

Motivations

- Amount of acoustic attenuation provided by decoupling treatment on ship structure in water?
- How to relate small scale laboratory experiments to full scale case?
- What «figure of merit» for acoustic characterization / ranking of decoupling materials?

Objectives

- Develop an exact model of Vibration / Sound Radiation into water from finite plate with decoupling layer
- Provide DREA with simple prediction tool to analyze decoupling treatments
- Suggest a global vibratory indicator to characterize acoustic performance of decoupling treatment, independently of substrate size
Theory: Structural Motion

semi-infinite heavy fluid

infinite rigid baffle

fluid loading

w_2

w_1

decoupling layer

vacuum

excitation

elastic plate

Assumptions

- Substrate: Pure bending (Love-Kirchhoff plate)
- Decoupling layer: Locally reacting, massless material (deformation in the transverse direction)
- Fluid loading of the structure

Equation of motion of the base plate

\[\bar{D} \nabla^4 \bar{w}_1(Q) - \rho \omega^2 \bar{w}_1(Q) = \bar{f}(Q) - \bar{P}(Q) \]
Theory: Structural Motion (...)

![Diagram of a system with a semi-infinite heavy fluid, an infinite rigid baffle, a decoupling layer, fluid loading, vacuum, and an elastic plate.](image)

- **Equation of motion of the decoupling layer**

 \[\bar{P}(Q) = Z_c (\bar{w}_2(Q) - \bar{w}_1(Q)) \]

 \(Z_c \): Impedance of the decoupling material

 \[Z_c = \frac{\bar{B}_c}{h_c} \]

 \(\bar{B}_c \): Complex bulk modulus of the decoupling layer

 \(\bar{B}_c = B_c (1 + jn_c) \)

 \(h_c \): Thickness of the decoupling layer
Theory: Fluid-Structure Coupling

- Helmholtz equation

\[\Delta \tilde{P}(M) + k_0^2 \tilde{P}(M) = 0 \]

- Continuity of the structural and acoustic normal accelerations on the outer surface of the decoupling material

\[\frac{\partial \tilde{P}(Q)}{\partial z} = \rho_0 \omega^2 \tilde{w}_2(Q) \]

- Acoustic pressure in the fluid: Rayleigh integral

\[\tilde{P}(Q) = -\omega^2 \rho_0 \iint_{s} \tilde{w}_2(M) G(M, Q) \, ds_M \]

Green's function \(G(M, Q) \):

\[G(M, Q) = \frac{e^{-jk_0R}}{2\pi R} \]

\(R \): distance between point \(M \) and \(Q \)
Theory: Coupled Elastoacoustic System

- **Elastoacoustic unknowns**

 \(\tilde{w}_1 \): Transverse displacement of the base plate

 \(\tilde{w}_2 \): Transverse displacement of the outer surface of the decoupling layer

 \(\tilde{P} \): Surface acoustic pressure in the fluid

- **Eliminating \(\tilde{w}_2 \) using equation of motion of decoupling layer**

 \[
 \tilde{P}(Q) = Z_c (\tilde{w}_2(Q) - \tilde{w}_1(Q))
 \]

- **Expanding \(\tilde{w}_1(Q) \) and \(\tilde{P}(Q) \) over in-vacuo modes of the substrate plate**

 \[
 \begin{align*}
 \tilde{w}_1(Q) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \tilde{a}_{mn} w_{mn}(Q) \\
 \tilde{P}(Q) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \tilde{b}_{mn} w_{mn}(Q)
 \end{align*}
 \]

 where \(w_{mn}(Q) = \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) \)
THEORY: COUPLED ELASTOACOUSTIC SYSTEM (....)

- **Elastoacoustic system in matrix form**

\[
\begin{bmatrix}
[A] & [B] \\
[C] & [D]
\end{bmatrix}
\begin{bmatrix}
\tilde{a}_{mn} \\
\tilde{b}_{mn}
\end{bmatrix}
= \begin{bmatrix}
\tilde{f}_{mn} \\
0
\end{bmatrix}
\]

\[
[A] = \begin{bmatrix}
\ddots & \frac{ab}{4} \\
\frac{ab}{4} & \ddots
\end{bmatrix} \text{ (diagonal matrix)},
\]

\[
[B] = \begin{bmatrix}
\frac{ab}{4} & \ddots \\
\ddots & \ddots
\end{bmatrix} \text{ (diagonal matrix)},
\]

\[
[C] = \begin{bmatrix}
-j\omega Z_{mnpq}
\end{bmatrix} \text{ (full, symmetric matrix)},
\]

\[
[D] = \begin{bmatrix}
-j\omega \frac{1}{Z_c} Z_{mnpq} + \frac{ab}{4}
\end{bmatrix} \text{ (full, symmetric matrix)}.
\]

- **Intermodal radiation impedance coefficients**

\[
Z_{mnpq} = j\rho_0 \omega \iint_{s} \iint_{s} w_{pq}(Q)G(Q,M)w_{mn}(M)dsQdsM
\]

Numerical calculation of the radiation impedance coefficients: Sandman method
THEORY II: VIBRO-ACOUSTIC INDICATORS

- **Mean square velocity of the base plate**

\[
\langle V_1 \rangle^2 = \frac{\omega^2}{2s} \int_s \tilde{w}_1(Q)\tilde{w}_1^*(Q) dS_Q = \frac{\omega^2}{8} \sum_{m=1}^{N} \sum_{n=1}^{N} |\tilde{a}_{mn}|^2
\]

- **Mean square velocity of the outer surface of the decoupling layer**

\[
\langle V_2 \rangle^2 = \frac{\omega^2}{2s} \int_s \tilde{w}_2(Q)\tilde{w}_2^*(Q) dS_Q = \frac{\omega^2}{8} \sum_{m=1}^{N} \sum_{n=1}^{N} \left| \frac{\tilde{b}_{mn}}{Z_c} + \tilde{\alpha}_{mn} \right|^2
\]

- **Radiated sound power in the heavy fluid**

\[
W = \frac{1}{2} \text{Re} \left[\int_s \tilde{P}(Q)(-j\omega)\tilde{w}_2^*(Q) dS_Q \right]
\]

- **Radiation efficiency in the heavy fluid**

\[
\sigma = \frac{W}{\rho_0 c_0 s \langle V_2 \rangle^2}
\]
Simplified Theory for Large Decoupling

Assumptions

- Fluid loading is neglected in the equation of motion of the base plate.
- The displacement of the outer surface of the decoupling layer can be neglected in comparison to the motion of the base plate:

\[
\left| \bar{\tilde{w}}_2(Q) \right| \ll \left| \bar{\tilde{w}}_1(Q) \right|
\]

\[
\begin{align*}
\bar{\tilde{w}}_1(Q) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \tilde{a}_{mn} w_{mn}(Q) \\
\bar{\tilde{w}}_2(Q) &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \tilde{c}_{mn} w_{mn}(Q)
\end{align*}
\]

\[
\begin{bmatrix} [A] & [0] \end{bmatrix} \begin{bmatrix} \tilde{a}_{mn} \\ \tilde{c}_{mn} \end{bmatrix} = \begin{bmatrix} f_{mn} \\ 0 \end{bmatrix}
\]

\[
[A] = \begin{bmatrix} \rho \frac{a b}{4} \left(\omega_n^2 (1 + j \eta) - \omega^2 \right) \end{bmatrix} \quad \text{(diagonal matrix)}
\]

\[
[E] = \begin{bmatrix} -\frac{a b}{4} Z_c \end{bmatrix} \quad \text{(diagonal matrix)}
\]

\[
[F] = \begin{bmatrix} -j \omega Z_{mpq} \end{bmatrix} \quad \text{(full, symmetric matrix)}
\]

575
Numerical Results: Low Decoupling

Bulk modulus of the decoupling layer: \(B_c = 10^8 \) Pa

- **Characteristics**

<table>
<thead>
<tr>
<th></th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Thickness (mm)</th>
<th>Density (kg/m³)</th>
<th>Young/bulk modulus (Pa)</th>
<th>Loss factor</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base plate</td>
<td>0.6</td>
<td>0.6</td>
<td>9</td>
<td>7850</td>
<td>2.1 \times 10^{11}</td>
<td>0.005</td>
<td>0.3</td>
</tr>
<tr>
<td>Decpl. layer</td>
<td>0.6</td>
<td>0.6</td>
<td>10</td>
<td>-</td>
<td>(10^8)</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Excitation: Point force applied at \(x_0 = y_0 = 0.06 \) m from a corner of the plate

- **Mean square velocity**

![Graph showing mean square velocity vs. frequency](image)

- \(<V_1>^2\)
- \(<V_2>^2\)
Bulk modulus of the decoupling layer: $B_c = 10^6 \text{ Pa}$

Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Thickness (mm)</th>
<th>Density (kg/m³)</th>
<th>Young/bulk modulus (Pa)</th>
<th>Loss factor</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base plate</td>
<td>0.6</td>
<td>0.6</td>
<td>9</td>
<td>7850</td>
<td>2.1×10^{11}</td>
<td>0.005</td>
<td>0.3</td>
</tr>
<tr>
<td>Decpl. layer</td>
<td>0.6</td>
<td>0.6</td>
<td>10</td>
<td>-</td>
<td>10^6</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Excitation: Point force applied at $x_0 = y_0 = 0.06 \text{ m}$ from a corner of the plate

Mean square velocity

![Mean square velocity](image-url)
Numerical Results: Comparison with Sandman

Bulk modulus of the decoupling layer: \(B_c = 10^6 \) Pa

- **Characteristics**

<table>
<thead>
<tr>
<th></th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Thickness (mm)</th>
<th>Density (kg/m(^3))</th>
<th>Young/bulk modulus (Pa)</th>
<th>Loss factor</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base plate</td>
<td>0.6</td>
<td>0.6</td>
<td>9</td>
<td>7850</td>
<td>2.1 \times 10^{11}</td>
<td>0.005</td>
<td>0.3</td>
</tr>
<tr>
<td>Decpl. layer</td>
<td>0.6</td>
<td>0.6</td>
<td>10</td>
<td>-</td>
<td>10^6</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Excitation: Point force applied at \(x_0 = y_0 = 0.06 \) m from a corner of the plate

- **Mean square velocity ratio**: \(10 \log(\langle V_1 \rangle^2/\langle V_2 \rangle^2) \)

![Graph showing Sandman high and low frequency approximations with proposed model comparison.](image-url)
Bulk modulus of the decoupling layer: \(B_c = 10^6 \text{ Pa} \)

- **Characteristics**

<table>
<thead>
<tr>
<th></th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Thickness (mm)</th>
<th>Density (kg/m(^3))</th>
<th>Young/bulk modulus (Pa)</th>
<th>Loss factor</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base plate</td>
<td>0.6</td>
<td>0.6</td>
<td>9</td>
<td>7850</td>
<td>(2.1 \times 10^{11})</td>
<td>0.005</td>
<td>0.3</td>
</tr>
<tr>
<td>Dectl. layer</td>
<td>0.6</td>
<td>0.6</td>
<td>10</td>
<td>-</td>
<td>(10^6)</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Excitation: Point force applied at \(x_0 = y_0 = 0.06 \text{ m} \) from a corner of the plate

- **Radiation efficiency**

![Graph showing radiation efficiency with and without coating.](image-url)
NUMERICAL RESULTS: RADIATED SOUND POWER

Acoustic efficiency of a decoupling layer

Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Thickness (mm)</th>
<th>Density (kg/m3)</th>
<th>Young/bulk modulus (Pa)</th>
<th>Loss factor</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base plate</td>
<td>0.6</td>
<td>0.6</td>
<td>9</td>
<td>7850</td>
<td>2.1×10^{11}</td>
<td>0.005</td>
<td>0.3</td>
</tr>
<tr>
<td>Decpl. layer</td>
<td>0.6</td>
<td>0.6</td>
<td>10</td>
<td>-</td>
<td>10^6</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Excitation: Point force applied at $x_0 = y_0 = 0.06$ m from a corner of the plate

Radiated sound power

![Graph showing radiated sound power with and without coating](image)
Numerical Results:

Velocity Ratio vs. Acoustic Insertion Loss

- Looking for a simple vibratory indicator representative of acoustic performance of decoupling treatments

- Comparison of the mean square velocity ratio $10\log(<V_1>^2/<V_2>^2)$ and the acoustic insertion loss

![Graph showing the comparison of mean square velocity ratio and acoustic insertion loss with different values of B_c.]

The mean square velocity ratio $10\log(<V_1>^2/<V_2>^2)$ is an appropriate measure of the acoustic performance of a decoupling treatment.
Numerical Results: Effect of Substrate Size

- **Is the proposed decoupling indicator dependent on substrate size?** (cf. small-scale laboratory characterization)

- **Comparing the mean square velocity ratio and acoustic insertion loss for 2 plate x- and y-dimensions**

Characteristics

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Density (kg/m³)</th>
<th>Young/bulk modulus (Pa)</th>
<th>Loss factor</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base plate</td>
<td>9</td>
<td>2.1×10¹¹</td>
<td>0.005</td>
<td>0.3</td>
</tr>
<tr>
<td>Decpl. layer</td>
<td>10</td>
<td>-</td>
<td>10⁷</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph showing level (dB) vs. frequency (Hz) for different substrate dimensions]
Conclusions

- A model for Vibration / Sound Radiation into water from baffled, rectangular, S-S Love-Kirchhoff plate covered by compliant, locally-reacting, massless decoupling layer

- Simplified theory when decoupling effect is large (low impedance / high frequency)

- The ratio $10\log(<V_1^2>/<V_2^2>)$ of average vibration velocity of substrate to average vibration velocity at layer's free surface:

 - is a smooth, non-modal indicator approximately independent of substrate dimensions

 - is representative of the acoustic insertion loss provided by the decoupling treatment

- Perspectives:

 - theory of elasticity to account for flexural, shear and extensional strain of decoupling layer

 - Experimental validations