
WaterlooClarke: TREC 2015 Microblog Track
Mustafa Abualsaud, Milad Ghaznavi, Daniel Recoskie, and Charles L. A. Clarke

School of Computer Science, University of Waterloo, ON, Canada
{m2abuals,eghaznav,dprecosk,claclark}@uwaterloo.ca

I. REAL TIME FILTERING TASK

The goal of the TREC 2015 Microblog Track is to develop a
real-time relevancy retrieval system that monitors a stream of
social media posts and recommends relevant posts according
to users’ interests [1]. In this track, the representative social
media is Twitter, and relevant posts are tweets with respect
to a user’s interest. A user’s interest is represented by an
interest profile containing a title, a description, and a narrative.
Relevant tweets are recommended to the user in two tasks,
push notification and periodic email digest.

A. Push Notification Task

The push notification task is meant to model a system that
notifies the user in real-time on his/her mobile phone as it
finds a relevant tweet. This notification, i.e. pushing a relevant
tweet, is triggered in less than 100 minutes after the tweet
creation time1. At most 10 tweets per day are pushed for each
interest profile.

B. Periodic Email Digest Task

The periodic email digest task aggregates a ranked-list of
up to 100 relevant tweets for each interest profile into an email
and sends it to the user at the end of every day.

II. TASKS EVALUATION

The developed systems listen to the Twitter sample stream2

for a period of 10 days and report the relevant tweets. All
reported tweets are evaluated by assessors on a four point
scale: redundant/spam/junk, not interesting, somewhat inter-
esting, and very interesting. Very interesting and somewhat
interesting tweets have a gain of 1 and 0.5, respectively.
The other two categories receive a gain of zero. Note that
only English tweets are considered. Moreover, redundancy is
determined by the clustering protocol from the tweet time-line
generation (TTG) task 2014 [7]. This protocol groups tweets
into semantic clusters. For a particular interest profile, only
one tweet from each cluster gets credit. Tasks are evaluated
as follows.

A. Evaluation of Push Notification Task

Pushed tweets for a particular day and interest profile are
scored based on two temporally-discounted gain measures:
Expected Latency-discounted Gain (ELG) [2] and Normalized
Cumulative Gain (NCG). ELG, defined in Eq. 1, is the primary
measure. In Eq. 1, n is the number of pushed tweets for

1Time when the tweet was tweeted by the user.
2https://dev.twitter.com/streaming/public

a particular day and interest profile. NCG is the secondary
metric and defined in Eq. 2. The maximum possible gain
is represented by Z. The gain term in both measures is
determined by an assessor. The delay term, which temporally
penalizes tweets, is measured in minutes and represents the
difference between the tweet creation time and the push time.
Note that if no interesting tweet exists for a day, pushing
no tweets gets the maximum score of one. The score of a
particular interest profile is the average of these daily scores
across all days in the evaluation period. Finally, the score of
the push notification task is the average of scores of all interest
profiles.

1

n

n∑
i=1

gain(i) ·max (0, 100− delay) (1)

1

Z

n∑
i=1

gain(i) ·max (0, 100− delay) (2)

B. Evaluation of Periodic Email Digest Task

The periodic email digest of a particular day for a given
interest profile is treated as a ranked list from which nDCG@k
[10] is computed. nDCG@k is defined in Eq. 3. Note that
IDCGk refers to the best possible DCGk. The number of
evaluated tweets k is determined by NIST. The score of an
interest profile is the average of the nDCG@k values across
all evaluation days. The score of the email digest task is the
average over all interest profiles.

nDCG@k =
DCGk

IDCGk
s.t. DCGk =

k∑
i=1

2gain(i) − 1

log2 (i+ 1)
(3)

III. DEVELOPED SYSTEMS

Fig. 1 depicts the outline of our systems. As presented,
the push notification (Fig. 1a) and the periodic email digest
(Fig. 1b) systems share three major components: Query Expan-
sion, Tweet Scoring, and Redundancy Checking. Both systems
first expand the query terms of each interest profile. The
expanded terms are then used to score the tweets. The push
notification system has an additional push strategy component
that decides whether and when a candidate tweet should be
pushed. Finally, both systems avoid recommending redundant
tweets by making use of a tweet similarity measure. Note that
the push notification system recommends tweets in real time,
whereas the periodic email digest system sends a daily email



Query 

Expansion
Expanded 

Terms

Tweet 

ScoringTweets
Push 

Strategy

Pushed 

Tweets

Redundancy 

Checking

Interest 

profiles

!"#$%&'

()%%*

(a) Push Notification System

Query 

Expansion
Expanded 

Terms

Tweet 

ScoringTweets

Email 

Digests

Redundancy 

Checking

Interest 

profiles

!"#$%&

'$()*+

(b) Periodic Email Digest System

Fig. 1: Developed Systems

digest. The individual components are described in more detail
as follows.

A. Query Expansion

As mentioned earlier, each interest profile contains a title,
description, and narrative. The titles are between one and eight
words long. The descriptions are single sentences which briefly
describe the topic. The narratives are paragraphs that contain
more detail about the topic. Our system makes use of the title
only, and discards the description and the narrative.

We begin by performing query expansion on the title using
pseudo relevance feedback [8]. Stop words are removed and
the remaining terms are passed to Twitter’s search API3.
Twitter’s search API returns a list of tweets from the previous
week where each tweet must contain the exact query terms.
We treat the returned tweets as relevant to the interest profile.
If we receive fewer than 100 tweets from the initial search,
we make use of the Whoosh4 library to generate syntactic
variations of the original title in order to perform additional
searches. We then calculate term frequencies, qi, based on the
returned tweets as follows:

qi =
ni

n
(4)

where ni is the number of tweets containing term i and n is the
total number of tweets. We discard stop words and any term
that occurs in less than three tweets. We then calculate the
prior frequencies, pi, of each term in the same manner as qi,
but using a corpus of previously collected tweets. Our corpus
was collected over approximately seven days from the Twitter
sample stream. We then score each term by the following
formula.

score(i) = qi log
qi
pi

(5)

The top five terms are chosen as expanded terms. In the case
where the Twitter search API does not return an adequate
number of tweets, we make use of the Google Custom Search
API5. We use the interest profile title as a query and consider
the top 50 results as relevant. We use the snippets of each
returned result as our documents, and rank terms in the same
manner as above.

3https://dev.twitter.com/rest/public/search
4https://bitbucket.org/mchaput/whoosh/wiki/Home
5https://developers.google.com/custom-search/

B. Tweet Scoring

In order to rank tweets we developed two scoring functions
which determine tweet relevancy. Consider interest profile p
and tweet t. The scoring functions assign a score to the tweet
as follows:

s(p, t) =
∑

k∈Tp∩Tt

w(k, p) (6)

where Tp is the set of terms in the title together with the
expanded terms from profile p, and Tt is the set of terms in
tweet t. The function w assigns a weight to each term. Our
first scoring function, sequal, sets w(k, p) = 1 if the term k
is in either the title or expanded terms of profile p and is
zero otherwise. Our second scoring function, sweighted, sets
w(k, p) = 1 if term k is in the expanded terms of profile p. If
term k is in the title of profile p, then w(k, p) = 15

n where n
is the number of terms in the title.

C. Redundancy Checking

To avoid redundancy, we define the Normalized Similarity
Measure (NSM) for two tweets. NSM is a real number in
[0, 1]. A value of zero means no similarity, whereas a value
of one means equivalence. The following procedure computes
the NSM of two tweets t1, t2:

1) Extract URLs in t1, t2
2) If there is an identical URL, return 1.0
3) Remove URLs and Twitter usernames from t1, t2
4) Tokenize and stem t1, t2 and store the terms in T1, T2

5) Remove stemmed stop words from T1, T2

6) Return Number of identical terms in T1,T2

max (Length of T1,Length of T2)

Before pushing for each interest profile, we measure simi-
larity of the candidate tweet to the already pushed tweets using
NSM. If any of measured NSMs is higher than the threshold of
0.45, we assume that the candidate tweet is redundant, and we
do not push it. We used the value of 0.45 based on empirical
studies on candidate tweets suggested by our system.

D. Push Strategy

In the case of the push notification task, our system must
not only decide what tweets are relevant enough to push, but
also determine when to push them. Since there is a time delay
penalty for pushing tweets, we must be able to identify high
quality tweets shortly after we receive them from the stream.
We address this issue by considering the secretary problem [6]
and the hiring problem [9]. The secretary problem is defined



as follows: we receive a stream of job applicants and interview
them in the order of appearance. The goal is to to hire the best
applicant (or best k applicants), but we have a constraint that
we must hire an individual directly after we interview them. In
the hiring problem there is no limit to the number of applicants
hired, and the goal is to balance the trade-off between rate
of hiring and quality of hired applicants. A push strategy
has to consider challenges of both the secretary problem and
hiring problem, namely selecting the top k ≤ 10 applicants
with highest qualities and hiring in a reasonable rate with the
minimum delay penalty.

These problems closely model the scenario of the push
notification task. As such, we make use of the following
strategy for the secretary problem [3]:

1) Observe and rank the first bne c applicants.
2) Set T to be the top k applicants, sorted by rank.
3) When a new applicant is observed and they are ranked

higher than the lowest applicant in T , hire the applicant
and remove the lowest applicant in T .

4) Repeat step 3 until k applicants are hired or there are
no more applicants.

This algorithm is easily adapted to our task. In our case k =
10, that is, we wish to push up to ten tweets per interest profile.
We then push any tweet if it scores higher than the lowest
ranking tweet in T . This means our strategy will not incur any
time delay penalties since we push tweets immediately after
scoring them. Note that the algorithm will not consider any
tweets in the first bne c fraction of tweets. This is undesirable
because we may miss out on high quality tweets that occur
within this window. To solve this problem we modify step one
of the algorithm. Instead of observing the first bne c tweets each
day, we determine T from the top k tweets from the previous
day.

Lastly, we only push tweets if they are over a threshold
score. For sequal we set the threshold to three. For sweighted

we set the threshold to 15
n where n is the number of terms in

the profile title. These thresholds were determined empirically
by evaluating our system on a set of test interest profiles that
we created.

IV. RUNS

We submitted two runs for both the push notification and
periodic email digest tasks. We describe them below.

A. Push Notifications

Both runs make use of the algorithm described earlier.
However, they each differ in the scoring function that is
employed.
• UWCMBP1 makes use of sequal
• UWCMBP2 makes use of sweighted

B. Periodic Email Digest

Each run of the periodic email digest task returns the top
100 tweets per day as determined by the scoring functions
mentioned earlier. Similarly to the push notification runs,
• UWCMBE1 makes use of sequal

• UWCMBE2 makes use of sweighted

V. FUTURE WORKS

There are opportunities in improving the scoring functions,
extending the redundancy checker, and exploring different
push strategies. Our scoring functions make use of the text
of each tweet. However, there are other pieces of data in each
tweet, such as user data, hash-tags, embedded URLs, and Geo-
locations. The scoring functions can probably be improved
by incorporating some of this meta-data. Furthermore, our
systems employs score thresholds that were determined em-
pirically. These thresholds could be estimated more accurately
by examining a larger collection of tweets over a longer period
of time.

We believe that our push strategy is a novel application of
the secretary and hiring problems. There are other more com-
plex strategies considered in the literature [4], [5]. Applying
these strategies to the push notification task is an interesting
avenue for future research.

Lastly, our system treats each interest profile equally. In
future, the scoring functions and push strategies can be cus-
tomized per interest profile basis. For example, if we encounter
an interest profile that has many relevant tweets per day, a
higher score threshold can be set to be more conservative and
recommend top tweets.

REFERENCES

[1] Real-time filtering task guidelines. https://github.com/lintool/
twitter-tools/wiki/TREC-2015-Track-Guidelines.

[2] Javed Aslam and Tetsuya Sakai. Trec 2013 temporal summarization.
[3] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Klein-

berg. Online auctions and generalized secretary problems. ACM
SIGecom Exchanges, 7(2):7, 2008.

[4] F Thomas Bruss and Guy Louchard. Finding the κ best out of n rankable
objects. a consecutive thresholds algorithm. 2013.

[5] Michael Dinitz. Recent advances on the matroid secretary problem.
SIGACT News, 44(2):126–142, June 2013.

[6] PR Freeman. The secretary problem and its extensions: A review. In-
ternational Statistical Review/Revue Internationale de Statistique, pages
189–206, 1983.

[7] Jimmy Lin, Miles Efron, Yulu Wang, and Garrick Sherman. Overview
of the trec-2013 microblog track (notebook draft).

[8] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al.
Introduction to information retrieval, volume 1. Cambridge university
press Cambridge, 2008.

[9] RJ Vanderbei. The optimal choice of a subset of a population.
Mathematics of Operations Research, 5(4):481–486, 1980.

[10] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Tie-Yan Liu, and Wei
Chen. A theoretical analysis of ndcg type ranking measures. arXiv
preprint arXiv:1304.6480, 2013.

https://github.com/lintool/twitter-tools/wiki/TREC-2015-Track-Guidelines
https://github.com/lintool/twitter-tools/wiki/TREC-2015-Track-Guidelines

