
QU at TREC-2015: Building Real-Time Systems

for Tweet Filtering and Question Answering

Reem Suwaileh, Maram Hasanain, Marwan Torki, Tamer Elsayed

Computer Science and Engineering Department
Qatar University

Doha, Qatar
{reem.suwaileh,maram.hasanain,mtorki,telsayed}@qu.edu.qa

ABSTRACT
This paper presents our participation in the microblog and
LiveQA tracks in TREC-2015. Both tracks required build-
ing a “real-time” system that monitors a data stream and
responds to users’ information needs in real-time.

For the microblog track, given a set of users’ interest pro-
files, we developed two online filtering systems that recom-
mend “relevant” and “novel” tweets from a tweet stream for
each profile. Both systems simulate real scenarios: filtered
tweets are sent as push notifications on a mobile phone or as
a periodic email digest. We study the e↵ect of using a static
versus dynamic relevance thresholds to control the relevancy
of filtered output to interest profiles. We also experiment
with di↵erent profile expansion strategies that account for
potential topic drift. Our results show that the baseline run
of the push notifications scenario that uses a static threshold
with light profile expansion achieved the best results. Simi-
larly, in the email digest scenario, the baseline run that used
a shorter representation of the interest profiles without any
expansion was the best run.

For the LiveQA track, the system was required to answer a
stream of around 1000 real-time questions from Yahoo! An-
swers. We adopted a very simple approach that searched an
archived Yahoo! Answers QA dataset for similar questions
to the asked ones and retrieved back their answers.

1. INTRODUCTION
Twitter has rapidly developed over the past years and be-

come a massive information sharing network. It gained a
reputation for carrying the heartbeat of the world by allow-
ing users to continuously post and read tweets about cur-
rent events and news. With a huge flood of tweets shared
daily, users are overwhelmed by the amount of data they
need to follow in order to track a certain event or a topic.
Automatically-satisfying the user interest in following a cer-
tain topic over a non-stop stream of tweets is challenging as
it requires a real-time system that filters relevant and novel
tweets from a rapidly flowing stream. Moreover, the filter-
ing system is required to address problems originating from
the nature of tweets such as their limited number of charac-
ters; with maximum 140 characters per tweet, and their con-
versational and temporal characteristics. The shortness of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

TREC ‘15 Gaithersburg, Maryland, USA

tweets causes a challenge known as sparsity and the change
of the topic over time stems another dominant challenge
called drifting challenge.

There have been several studies for applying online fil-
tering on Twitter stream that attempts to overcome these
challenges e.g [1, 3]. The first study adapted the state-of-
the-art news filtering technique that uses Incremental Roc-
chio classifier to continuously update the tracked topics on
the tweets stream [1]. The proposed adaptation encounter
the sparsity problem by expanding the userâĂŹs profile with
relevant and recent terms to enrich the interest representa-
tion. However, along with this solution, the possibility of
topic drift arises especially that the tweets’ stream is hastily
developing and the topic representation should keep-up with
that. Thus, in addition to investigating an event detection
approach to detect the topic drift in the tweet stream, an
attempt to balance the contribution of the long-term and
short-term interest to the interest profile was applied. The
adaptation was evaluated using TREC Microblog track 2012
and it showed the e↵ectiveness of this adaptation, but not
to the extend achieved in news filtering. Another study ex-
perimented di↵erent smoothing models to integrate a back-
ground and a foreground language models (LM) that rep-
resent the tracked topics in the stream. Both LMs were
trained per-topic using hashtags from Twitter stream [3].
The background language model represents the topic track-
ing on the continuous stream for about one month where the
foreground language model represents the recently captured
changes on the topic from the same stream. The approach
was examined over ten topics and approved that it performs
well in the filtering task.

In this work, we propose tweet filtering systems that at-
tempts to handle these challenges for both scenarios in the
TREC-2015 microblog track: push notifications on a mo-
bile phone and a periodic email digest. The problem, our
approach and evaluation results are further discussed in Sec-
tion 2.

As with Twitter, social question answering (sQA) sys-
tems are increasingly gaining importance and attracting mil-
lions of users to post and answer questions. Yahoo! An-
swers1 is by far one of the largest sQA platforms. Questions
and answers on such platforms share some characteristics
with tweets in terms of being conversational and often very
socially-oriented.

In the past few years, QA as a research problem has re-
ceived significant attention, however, building e↵ective au-

1https://answers.yahoo.com/

tomatic QA is impeded by a lack of suitable datasets to
train these systems. Automatic QA is even more challeng-
ing when the focus goes beyond seeking short answers to
factoid questions, to questions that require reasoning, ex-
planations, etc. The datasets used in such previous systems
are either too small to train a good system or not exten-
sive to involve multiple domains [5]. However, the existence
of large social question answering websites, such as Yahoo!
Answers specifically, makes the development of automated
answering systems more interesting due to the scale of the
available datasets. But the amount of questions posted on
such platforms is not usually matched by the number of
answers provided; many questions are left unanswered and
many are repeated. Automatically answering questions in
such cases is a useful feature users of these sQA can benefit
from which intrigues a need for designing automatic sQA
systems. This is in fact the problem we tackle as part of the
LiveQA track in TREC-2015. We discuss our approach and
evaluation results for the LiveQA track in Section 3.

2. REAL-TIME TWEET FILTERING
Tweet filtering is the reverse of ad-hoc tweet search, where

a user provides an information need at a certain point in
time, and the filtering system is expected to filter relevant
tweets to the information need from a stream of tweets
posted after the query time.

Tweet filtering was first introduced in the microblog track
in TREC-2012 [4]. The task ran on a simulated stream of
tweets from a collection of 16M tweets [4] that was crawled
prior to the running of the task. Di↵erently, the microblog
track in TREC-2015 ran a real-time tweet filtering task that
worked on a real stream of tweets in a 10-day evaluation pe-
riod. Moreover, the 2015 task has two modes: 1) a scenario
that pushes few filtered tweets as push notifications on a
mobile phone to the user, and 2) a scenario where a periodic
email digest of a 10-times larger set of top relevant tweets
to the topic is sent to user [2].

In both scenarios, the filtering system is expected to send
a set of novel (i.e., non-redundant) and relevant (i.e., on-
topic) tweets every day.

In this task, an interest profile that is composed of a title,
description, and narrative is used as a representation of the
user information need (or topic). The title is short, having
few keywords to represent the topic, the description is a one
sentence statement of the information need of the user, and
the narrative is a full paragraph describing that information
need.

2.1 Approach
In this section, we first present the main approach of our

solution for both scenarios, and then discuss further details
that are specific to each of them. Figure 1 shows a high-level
overview of the core filtering system on which we build the
systems for the two scenarios.

2.1.1 Core System Design

Cold Start and Preprocessing: Following the track guide-
lines, we only consider English tweets for filtering. The fil-
tering system filters English tweets using an open-source lan-
guage detection tool2. After that, it performs simple prepro-
cessing on tweets and profiles including stemming, stopwords

2https://code.google.com/p/language-detection/

English filtering

Pre-processing

Tweet stream

Relevance Filtering

Novelty Filtering
Already Pushed

tweets

Indexing

Profiles

Relevant and
Novel tweets

statistics

Tweet Selection

Figure 1: An Overview of the core real-time tweet
filtering system

removal, and URL removal. The system represent tweets
and profiles as vectors of terms weighted using inverse doc-
ument frequency (idf)-based term weighting. Term weights
are computed using the equation below:

idf(term) = log
N � df(term) + 0.75

df(term) + 0.75
(1)

Where N is the total number of tweets in the collection
of tweets from which the system is extracting term statis-
tics and df(term) is the document frequency of the term.
As the equation shows, term weights are computed using a
history of past tweets which is naturally not available when
the system first starts. To solve this “cold start” problem,
the system is initialized with an index3 of a 3-day stream
of tweets preceding the beginning of the evaluation period.
Additionally, the system periodically indexes the incoming
tweets during the evaluation period.
Relevance and Novelty: For both scenarios, we used the
following approach for filtering based on tweet relevance and
novelty. Given an interest profile for a topic, the filtering
system processes the incoming stream one tweet at a time.
For each tweet, a relevance score to each interest profile is
computed using Cosine similarity. A tweet with a similarity
score above a relevance threshold ⌧r is considered relevant to
the topic. However, the relevant tweet is not pushed to the
user unless its novelty score is less than a novelty threshold
⌧n. Given a list of filtered tweets that were sent to user over

3The index is created and updated using Apache Lucene
4.5.0 (https://lucene.apache.org/)

previous days, the system computes the similarity between
the incoming tweet and each of the tweets in that list using
a modified version of Jaccard similarity. If the similarity
of the tweet to any of the tweets in the list exceeds the
novelty threshold ⌧n, then the system considers the tweet as
redundant and elects not to send it to user. Otherwise, the
tweet is considered both relevant and novel, and thus the
system flags it to be sent to the user.
Profile Expansion: Since topics are tracked over a period
of time, the system periodically updates the topic represen-
tation to reflect the topic development over that period. To
achieve that, the system performs profile expansion using
pseudo relevance feedback; expansion terms are extracted
from pseudo relevant tweets filtered before the expansion
time. The expanded profile vector is computed using the
following equation:

~q

0
= ~q + �(~e) (2)

Where ~q

0
is the expanded profile vector, ~q is the initial pro-

file vector created when the system first starts and ~e is the
vector of expansion terms extracted from the pseudo rele-
vant tweets for each profile independently. Common terms
between the extracted expansion terms and the profile title
terms are eliminated before creating ~e. Parameter � is used
to control the contribution of expansion terms to the final
profile vector.

2.1.2 Scenario A: Push Notifications

This scenario simulates a situation where updates about
a topic are sent as mobile notifications to the user. The
task requires pushing a maximum of 10 tweets per day not
to overload the user with notifications. The main challenge
in pushing such small number of tweets is that the system
has very few opportunities to push high quality tweets to
the user. To ensure pushing high quality tweets, the system
should consider how fresh the tweets are in addition to how
relevant and novel they are. In this context, the freshness of
tweets is measured as the elapsed time between the tweet’s
creation time (the time when tweet appears in the stream)
and the time it was pushed to the user.
Profile Representation: We represent the initial interest
profile as a vector of terms ~q modeled as follows:

~q = ~

title+ ↵(~

desc+ ~narr) (3)

Where ~

title, ~

desc and ~narr are the vectors of the title, de-
scription, and narrative of the profile respectively. The title
is given higher weight since it contains the most concise and
relevant description of the topic while the description and
narrative contribution to the topic is controlled by the pa-
rameter ↵ (< 1). Since narrative and description are much
longer than the title and might share terms, we further con-
trol their contribution to the topic vector by selecting top k

weighted terms of the resulting vector (~

desc + ~narr) to be
added to the final topic vector.
Selecting Tweets to Push: Following all interest profiles
in parallel, the system monitors the tweet stream and filters
tweets based on their similarity and novelty. Over time, the
system maintains a list of relevant and novel tweets for each
profile and only pushes a tweet from that list periodically
with a time period of length � or when the size of the list
exceeds a limit l.

After scoring all tweets in that list using equation 4 below,
the system pushes the top-scoring tweet to the user. The
computed tweet score considers how relevant it is to the
profile and how fresh as well.

S(t) = Sr(t) ⇤
100� (CurT ime� time(t))

100
(4)

Sr(t) is the relevance score of tweet t computed using cosine
similarity between a profile and the tweet, CurT ime is the
current system time, and time(t) is the tweet creation time.
Threshold Updates: We experiment with using both static
and dynamic relevance threshold settings. In the static
threshold mode, the relevance threshold ⌧r is set before the
system starts and it does not change during the evaluation
period. As for the dynamic threshold mode, the system
starts with an initial threshold for each interest profile pi

and updates per-profile relevance threshold ⌧r periodically.
To update the threshold, the system maintains the number
of tweets found relevant per profile in the last period. If the
profile pi gets no relevant tweets in the past time period,
then the relevance threshold ⌧r is decreased by 0.025 with
a lower bound of 0.5. Otherwise, the threshold is increased
using the following equation:

⌧

0
ri = ⌧ri +min(

Rpi

100
, 0.15) (5)

Where ⌧ri is the current threshold of profile pi, ⌧
0
ri is the

updated threshold of that profile and Rpi is the number of
relevant tweets filtered for profile pi within a time period tT .
The threshold upper bound is set to 0.95.

2.1.3 Scenario B: Periodic E-mail Digest

This scenario simulates a filtering system that daily sends
a list of m relevant and non-redundant tweets from the tweet
stream to the user given an interest profile. Initial profiles
are represented in the vector space by the weighted title
terms:

~q = ~

title (6)

Composing E-mail Digest: After the end of each day in
the evaluation period, the system issues all profiles as queries
against an Apache Lucene search engine that searches the
system’s tweets index. The search engine uses query-likelihood
with Dirichlet smoothing to retrieve a ranked list of the most
relevant 2m tweets for each profile. Given this list for each
query, the system extracts top m novel tweets and sends
them to the user as an email digest. The novelty score of a
tweet is computed by its similarity to all tweets previously
sent to the user. If the similarity exceeded novelty thresh-
old ⌧n, the tweet is treated as redundant and then discarded,
otherwise the tweets is added to the email digest to be sent.
Profile Expansion: The main focus in this scenario is to
explore di↵erent sources of expansion terms for a profile.
The baseline run does not perform expansion, but the re-
maining runs use di↵erent sources of expansion. In addition
to extracting the top pseudo relevant tweets returned by
searching the index as equation 2, the other expansion ap-
proach also uses the top weighted terms from description and
narrative fields of the interest profile. In both approaches of
expansion, the pseudo relevant tweets are extracted after fil-
tering out tweets that exceeds the novelty threshold ⌧n, the
terms of the novel tweets are ranked and the top t weighted

ones are added to the profile vector as follows:

~

q

0 = ~q + ↵(~

desc+ ~narr) + �~e (7)

Where the ~

desc and ~narr are the terms vector of the de-
scription and narrative fields of the interest profile respec-
tively and their contribution to the profile is controlled by
↵ parameter. Additionally, any common terms between the
extracted terms and the initial profile terms are eliminated.

2.2 Experimental Evaluation

2.2.1 Evaluation Measures

The push notification scenario is evaluated using two main
measures: the primary measure which is expected latency-
discounted gain (ELG) and the normalized cumulative gain
(nCG) [2]. Measures can be computed as follows:

ELG =
1
Rt

X
Gain(ti) (8)

nCG =
1
Z

X
Gain(ti) (9)

where Gain(ti) is 0 if the tweet is not relevant, a spam or
junk, or 0.5 if the tweet is somewhat interesting, otherwise,
it is set to 1. The gain of a tweet is reduced using the
following time latency penalty:

latency = max(0,
100� delay

100
) (10)

where delay is the di↵erence in minutes between tweet cre-
ation time and tweet push time.

As for the e-mail digest scenario, the e-mail digest is eval-
uated as a ranked-list of tweets. The evaluation measure
used in this task is the normalized discounted cumulative
gain (NDCG) computed at length k of this list.

For all evaluation measures in all scenarios, the score of a
topic is the average of the measure values over all days and
a score of a run is the average of that across all topics.

2.2.2 Submitted Runs

In each day of the evaluation period, the filtering system of
scenario A pushes a maximum of n = 10 tweets to the user.
Where the in the email digest scenario, the system sends
an email digest with a list of m = 100 tweets. This section
describes our submitted runs for both scenarios. Table 2.2.2
shows the di↵erent configuration settings is each run.
Scenario A:

• QUBaseline: is a baseline that uses a static relevance
threshold ⌧r when comparing a tweet to a profile. The
system in this run represents the interest profile by ti-
tle, narrative and description. The parameter ↵ = 0.2
controls the influence of the terms extracted from both
description and narrative fields in profile representa-
tion, and 8 terms from these two fields are finally added
to the profile. The profile is periodically expanded us-
ing a maximum of 4 expansion terms extracted from
pseudo relevant tweets with � = 0.2.

• QUDyn: this run has a similar configuration to QUBase-
line, except that the relevance threshold is updated
dynamically for each profile.

• QUDynExp: this run is similar to QUDynm, but
the number of expansion terms extracted from pseudo
relevant tweets is set to 12. The system selects 10
expansion terms from narrative and description fields
to include in profile representation and uses � = ↵ =
0.3.

Table 2 shows the results for the push notification scenario.
The score of a run is computed as an average score of all
profiles over all days. It can be clearly seen that the baseline
run outperforms the other runs.

Table 2: Results for runs of the tweet push notifica-
tion scenario

Run ELG nCG
QUBaseline 0.2750 0.2347
QUDyn 0.1850 0.1762
QUDynExp 0.1848 0.1763

Scenario B:

• QUBaselineB: is the baseline run where the system
filters tweets using the initial profiles representation
shown in equation 6.

• QUExpB: in this run, the system extracts the ex-
pansion terms from the top pseudo relevant tweets re-
turned by searching the index where these terms do
not overlap with the profile’s title terms.

• QUFullExpB: this run is similar to QUExpB but it
also expands the profile using top weighted terms ob-
tained from the description and narrative fields of the
profile. The number of top terms taken from both
sources is controlled by ↵ = 0.3 and � = 0.2 parame-
ters in order to balance their influence. Additionally,
the maximum number of terms in the expanded profile
is set to be � 20 terms.

The performance of all runs is somewhat similar, however,
the baseline run has a slightly better performance. We fur-
ther investigated the poor performance of runs in scenario B
and discovered a bug in our system that we think is behind
the bad results. We fixed this issue in the system post-
TREC submission and re-ran the system. Table 3 shows the
NDCG results of submitted runs and the post-submission
results for the runs of this scenario.

Table 3: NDCG results of the e-mail digest scenario
Run submitted runs post-TREC
QUBaselineB 0.1288 0.2251
QUExpB 0.1180 0.1954
QUFullExpB 0.1196 0.1811

3. LIVEQA
The LiveQA task is introduced this year for the first time

in TREC. In this track, systems are supposed to return an-
swers to real-time questions originating from real users via a
live question stream. The language for the track is English
for both questions and answers.

Several restrictions are applied to the track to make it
more challenging. First restriction is the maximum allowed

Table 1: Summary of submitted runs for the two scenarios
Scenario Run Dynamic ⌧r? Base ⌧r Expansion? # Pseudo tweets # Expansion terms

Mobile Push Notification
QUBaseline 5 0.6 X 20 4
QUDyn X 0.8 X 20 4
QUDynExp X 0.8 X 20 12

Periodic Email Digest
QUBaselineB 5 - 5 - -
QUExpB 5 - X 5 3
QUFullExpB 5 - X 10 10

response time, which is set to be one minute only. Second
is the maximum answer length, which is set to just 1000
characters. Third is the limit on returned answers by the
system, which is set to be the top retrieved ranked answer
by the system.

The approach we followed for this task was to implement
a simple system, which can be considered as a baseline for
our future work on that problem/track for next year(s). The
intuition behind that approach is also simple; since the ex-
pected questions are as of same type asked on Yahoo! An-
swers, we chose to use only Yahoo! Answers as the source
of retrieving answers.

3.1 System Pipeline
We describe the pipeline for question answering as follows:

1. Build/get access to an archive of questions and
corresponding answers. In this step, we use the
question answers dataset provided by [5].

2. Index the archived the question answer dataset.
In this step we use Lucene 4.7.04 with stop words re-
moval. The objective here is to search the questions
answers dataset for similar questions in real time.

3. Retrieve potential answers. For a newly-asked
question, we search the pre-built index to find simi-
lar question(s). Answers for similar questions are re-
trieved and considered as potential answers for the
asked question.

4. Limiting the answer size. In some cases, the size of
the potential answer exceeds the 1000-character limit
set by TREC LiveQA task. Therefore, we limit the
number of characters to 1000 character at maximum.
We truncate those answers by returning the first k sen-
tences whose total size is less than 1000 character.

5. Rank the potential answers.

We used a heuristic based on some of the features de-
fined in [5]:

• Overall Match(AM):Number of non-stop ques-
tion terms matched in the complete answer.

• Answer Span(AS): The largest distance (in words)
between two non-stop question words in the an-
swer.

• Same Word Sequence(WS): The number of
non-stop question words that are recognized in
the same order in the answer.

4https://lucene.apache.org/

We score every possible answer ai with respect to a
question q as follows:

score(q, ai) = AM(q, ai)+WS(q, ai)�AS(q, ai) (11)

Finally, we return only the answer ai with the highest
score as our retrieved answer.

3.2 Evaluation

3.2.1 Evaluation Measures

The evaluation for TREC LiveQA track is based on 1087
questions. These 1087 questions were judged and scored
using 4-level scale:

• 4: Excellent – a significant amount of useful informa-
tion, fully answers the question.

• 3: Good – partially answers the question

• 2: Fair – marginally useful information

• 1: Bad – contains no useful information for the ques-
tion

• -2: the answer is unreadable (only 15 answers from all
runs were judged as unreadable)

Based on the four levels labeling, the evaluation measures
adopted by TREC are:

• avg-score(0-3) – average“quality” score over all queries

• succ@i+ – number of questions with i+ score (i = 1..4)
divided by number of all questions

• prec@i+ – number of questions with i+ score (i = 2..4)
divided by number of answered only questions

3.2.2 Results

We present our results as reported by TREC in table 4.
The first column names the evaluation measure, the second
column shows our reported results, and third column shows
the average results over all submitted runs of the di↵erent
participating teams in the track. We show in table 5 the
breakdown of the labels given to our system. We compare
our breakdown to the average reports over the participating
systems in the track. These percentages are calculated using
the reported succ@i+ measures.

3.2.3 Discussion

The behavior of our system was fairly expected, as we
did not incorporate more sophisticated steps in the body of
our pipeline. Several enhancements can be applied in many
parts of the system. For example, the system we presented
uses only Yahoo! Answers; this is a limiting choice since
there are more sources like Google web search, Wikipedia,
and Quora that can be leveraged as well. Also, the ranking

Table 4: QU-Results for LiveQA task compared to
the average of the submitted runs.

Evaluation Measure QU Track Average
avg score (0-3) 0.256 0.465

succ@1+ 0.995 0.925
succ@2+ 0.163 0.262
succ@3+ 0.070 0.146
succ@4+ 0.023 0.060
prec@2+ 0.164 0.284
prec@3+ 0.070 0.159
prec@4+ 0.023 0.065

Table 5: Labels of QU run for LiveQA task com-
pared to the average of the submitted runs.

Label QU Track Average
Excellent(4) 2.3% 6%
Good(3) 4.7% 8.6%
Fair(2) 9.3% 11.6%

Bad/Unrecognized(1& -2) 83.7% 73.8%

function is just a heuristic. We can use a more principled
way to rank the answers using a learning to rank approach.
Adding enhancements to the basic system we presented here
might improve the performance in the future runs of the
LiveQA track.

4. CONCLUSION
In this work we presented the real-time systems devel-

oped for the Microblog and LiveQA Tracks at TREC-2015.
The main focus of our tweet filtering systems was to exper-
iment with di↵erent relevance threshold modes: static and
dynamic thresholds. In addition, we performed expansion
of interest profiles to enrich the profile representation while
giving the profile’s title the largest influence in order to avoid
drifting from the original topic. The expansion was applied
in both push notification and email digest scenarios. The
results show that the runs with static thresholds and light
or no expansion in both scenarios outperform the other runs
on all evaluation measures. For our future work, we plan
to deeply investigate the reasons behind the relatively poor
performance of scenario B by running more experiments.
Additionally, we plan to experiment with re-ranking the re-
sults returned by the Lucene search engine using cosine sim-
ilarity in order to maintain consistency with the relevance
similarity method used in scenario A.

For Live QA track, we implemented a very simple system
for the question-answering task; for a given posted question,
we retrieved answers to questions that are similar to the
asked question but were posted in the past; we then rank
those answers using a heuristic approach and return one
within the limit of 1000 characters imposed by the track.
The system can be considered as a baseline for our future
work with many possible directions for improvements that
include enriching the sources of the answers and incorporat-
ing a more principled way for ranking answers.

5. ACKNOWLEDGMENTS
This work was made possible by NPRP grant# NPRP 6-

1377-1-257 and NPRP grant# NPRP 7-1313-1-245 from the

Qatar National Research Fund (a member of Qatar Foun-
dation). The statements made herein are solely the respon-
sibility of the authors.

6. REFERENCES
[1] M. Albakour, C. Macdonald, I. Ounis, et al. On

sparsity and drift for e↵ective real-time filtering in
microblogs. In Proceedings of the 22nd ACM

international conference on Conference on information

& knowledge management, pages 419–428. ACM, 2013.
[2] J. Lin. Trec 2015 track guidelines.

https://github.com/lintool/twitter-tools/wiki/

TREC-2015-Track-Guidelines.
[3] J. Lin, R. Snow, and W. Morgan. Smoothing

techniques for adaptive online language models: topic
tracking in tweet streams. In Proceedings of the 17th

ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 422–429. ACM, 2011.
[4] I. Soboro↵, I. Ounis, J. Lin, and I. Soboro↵. Overview

of the trec-2012 microblog track. In Proceedings of

TREC, volume 2012, 2012.
[5] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning

to Rank Answers on Large Online QA Collections. In
ACL, pages 719–727, 2008.

