
CMU OAQA at TREC 2015 LiveQA:
Discovering the Right Answer with Clues

Di Wang and Eric Nyberg
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{diwang,ehn}@cs.cmu.edu

Abstract

In this paper, we present CMU’s automatic, web-based, real-time question an-
swering (QA) system that was evaluated in the TREC 2015 LiveQA Challenge.
This system answers real-user questions freshly submitted to the Yahoo! Answers
website that have not been previously answered by humans. Given the title and
body of the question, we generated multiple sets of keyword queries and retrieved
a collection of web pages based on those queries. Then we extracted answer can-
didates from web pages in the form of answer passages and their associated clue.
Finally, we combined both IR- and NLP-based relevance models to rank and select
answer candidates. In the TREC 2015 LiveQA evaluations, human assessors gave
our system an average score of 1.081 on a three-point scale, the highest average
score achieved by a system in the competition (the second-best score was .677,
and the average score was .465 for the 21 systems evaluated).

1 Introduction

LiveQA is an emerging TREC challenge for automatic, real-time, user-oriented question answering
(QA) systems. Real user questions are selected as inputs from a stream of newly submitted questions
on the Yahoo! Answers site 1, which have not yet received a human answer. As per the requirements
for this track, participants must deploy their systems as web services which provide answers to
questions in real time (within one minute). An additional requirement is that the answer text should
be no more than 1000 characters in length. System responses are judged by TREC assessors on a
4-level Likert scale.

Attempting to answer user-generated questions in real time is an exciting but difficult challenge. The
questions generated by real users are often ambiguous, ungrammatical and vary greatly in length,
topic(s) and language style(s). Unlike previous TREC QA tracks, there is no pre-defined question
type (factoid, list, or definition) associated with the question/answer pairs in the LiveQA challenge.
There is also no constraint on what the user may ask about, which implies that there is no pre-defined
answer type; much like the Jeopardy! challenge, we must deal with “lexical answer types” [1].

CMU’s Open Advancement of Question Answering (OAQA) group developed a real-time web-
based QA system for the LiveQA challenge in 2015. Since there is no official training corpus
associated with the challenge, our approach leveraged the vast amount of text data that is available
online, especially previously-answered questions from Yahoo! Answers. We also designed and im-
plemented a new data model and novel relevance ranking methods for LiveQA. During the official
run, our QA web service received one question per minute for 24 hours and provided answers within
one minute for 97.9% of the input questions. On a normalized three-point average score metric, the

1
https://answers.yahoo.com/

1



Figure 1: Architecture of the CMU-OAQA LiveQA system

CMUOAQA received a score of 1.081, which was the top score in the 2015 LiveQA evaluation (the
second-best average score was .677, and the average over all system runs was .467). In this paper,
we describe the OAQA LiveQA system in more detail.

2 Approach

As illustrated in Figure 1, the architecture of our system decomposes the solution into three major
processing phases:

1. Clue Retrieval. Given a question title and its full text description, we formulate search
engine queries and issue them to different search engines (Bing Web Search, Yahoo! An-
swers) in order to retrieve web pages related to the question.

2. Answer Ranking. Answer candidates (title/body/answer tuples that represent either con-
ceptional questions or answer texts) are extracted from web pages, and ranked based on a
relevance estimator. The most effective relevance estimator we found was a heuristically-
weighted combination of: a) optimized BM25 similarity scoring over the title and body
texts, and b) a recurrent neural network approach that estimates the relevance of a candi-
date answer text given a question text.

3. Answer Passage Tiling. Finally, a simple greedy algorithm is used to select a subset of
highest-ranked answer candidates; these are simply concatenated without further process-
ing in order to produce the final answer.

In the remainder of this section, we describe each phase and sub-component in greater detail.

2.1 Input

Each question q transmitted to a LiveQA web service consists of four parts: title q title, body
q body, category, and a unique question ID. Our system does not make use of the question category,
and only uses the question ID to filter out retrieved Yahoo! Answers pages with the same ID.

2.2 Clue Retrieval

Given a question, firstly we formulate multiple queries, then send them to the search engines, thirdly
collect best matching web pages for each, and finally harvest a set of candidate answers for further
processing.

The input question q = hq title, q bodyi is converted to sets of keyword queries. In order to achieve
higher recall, we generate multiple sets of keywords from q title, q body, and the concatenation of
both. However, the inclusion of full q body text may result in very long queries, for which the search
engines do not return any result. Therefore we also generate keyword queries with only informative
noun phrases, bigrams, and unigrams. The different keyword queries are then sent to search engines
for web retrieval. We collect the snippets returned for each hit and also download the full text of the
web page for each hit.

Our system utilizes Bing’s web search API2 to retrieve answer candidates from the Web. Since
Shtok et al. [2] showed that a significant amount of the unresolved Yahoo! Answers questions can

2
https://datamarket.azure.com/dataset/bing/searchweb

2



be satisfactorily answered by reusing a best answer from the past, our system also uses the search
function on Yahoo! Answers to collect additional answer candidates.

Our goal here is to search the Internet and select passages of text, containing information rele-
vant to the question and indicating the presence of a candidate answer passage on the same page.
For this purpose, we build a general data structure called the answer clue (a clue), represented as
hc title, c bodyi. This formulation can be used to represent (and effectively combine) either the
title and body of a similar question on community QA (cQA) sites like Yahoo! Answers, or a doc-
ument title and search snippet extracted from a web page. Finally, we heuristically select answer
passage text a passage based on its relative position to a clue. Our algorithm favors passages using
heuristics like: a) the voted best answer on cQA sites, b) the first reply on Internet forums, and c)
paragraphs appearing in contexts which highly match the search snippet.

2.3 Answer Ranking

Each candidate answer a = ha clue, a passagei is weighted by estimating how well both the a clue

and a passage matches the question. The relevance ranking score between input question q and an
answer candidate a is then defined as:

S(q, a) = S

c

(q, a clue)⇥ (1 + w

p

⇥ S

0

p

(q, a passage))

where S

c

and S

0

p

are answer clue score and normalized answer passage scores respectively, and
w

p

is the weight factor to merge them. The original answer passage score S

p

is normalized by the
max and min values (Smax

p

and S

min

p

) in the collection of answer passage scores generated for the
current input question:

S

0

p

=
S

p

� S

min

p

S

max

p

� S

min

p

Question q and answer clue a clue both contain two fields: title and body. Intuitively the title field
is more concise and informative than the body field. The answer clue score S

c

is, then, computed as
weighted sum of retrieval scores of all text and title only text:

S

c

(q, a clue) = S

bm25(q title� q body, c title� c body) + w

t

⇥ S

bm25(q title, c title)

where w

t

(set to 1.0) is the weight to boost the title field matching score, and S

bm25 is the Okapi
BM25 [3] formula (with parameters K1 = 1.0 and B = 0.75). The idf and average document
length values that are required to compute BM25 were obtained by indexing the Yahoo! Answers
Comprehensive Questions and Answers dataset3, which contains around 4.4 million Yahoo! An-
swers questions and their answers.

To integrate the term proximity information in our relevance estimation, we also use the sequential
dependence variant of the Markov random field model [4] to formulate weighted queries to the
BM25 function. The weights for unigram, bigram, and proximity are 0.8, 0.1, and 0.1 respectively.
We also expanded unigram queries with synonyms from WordNet [5] when the query word had only
one sense in WordNet.

To calculate the relevance score S

p

between question and answer passage, we employ a recurrent
neural network based approach [6, 7] that uses a multilayer stacked bidirectional Long-Short Term
Memory (BLSTM) network to sequentially read words from question and answer passages, and
then output their relevance scores. Figure 2 illustrates how we use the stacked BLSTM to model the
answer passage ranking and selection problem. The words of input sentences were first converted
to vector representations learned from the RNN-based language modeling tool word2vec [8]. In
order to differentiate q title and a passage sentences, we inserted a special symbol, <S>, after the
question sequence. Then, the question and answer sentence word vectors are sequentially read by
BLSTM from both directions. In this way, the contextual information across words in both question
and answer sentences is modeled by employing temporal recurrence in BLSTM.

We used the same experiment settings described by Wang and Nyberg [6] to train this model, except
that the training dataset was switched to a random subset of 100k questions from the Yahoo! Answers
Comprehensive QA dataset. In order to adapt this dataset for model training, we follow the same data

3
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

3



Figure 2: Answer passage ranking model based on stacked BLSTM

preparation procedure described by Surdeanu et al. [9] to generate negative labels by retrieving other
answer passages from the collection. However, since the generated labels contain false negatives,
the model may potentially learn low weights for instances with false negative training labels and
decrease overall performance. To avoid this we set the combination weight w

p

= 0.1 for this year’s
evaluation, and plan to re-train the model and tune w

p

in the future using the questions and labeled
responses from this year’s LiveQA evaluation.

2.4 Answer Passage Tiling

Given a ranked list of answer passages, the system must produce an optimal text that answers the
question. Good answers vary in length from short to long, and may contain a short reference to a
specific entity or factoid, or a long narrative explanation; in general, the ideal answer length varies
with the user’s information need (as expressed by the question). This year, we simply assumed that
longer answers are preferred.

If the top-scoring answer passage was longer than 500 characters, then the first 1000 characters
(LiveQA length constraint) are directly returned as the final answer text. If not, we applied an answer
tiling algorithm, which assembles longer answer texts out of shorter answer passages. The algorithm
proceeds greedily from the top-scoring answer passages to all subsequent candidates whose ranking
score is higher than 90% of the highest score (top decile). Additional answer passages are appended
to the final answer text, with a prefix to indicate the start of each new answer passage; e.g. “Opinion
2:” for the second passage, and so on. The tiling algorithm terminates when the length of the
generated answer passage is greater than 50% of the maximum allowable length (1000 characters).

3 Development Set Analysis

The LiveQA organizers provided a sample of 1000 Yahoo! Answers question IDs (QIDs), which we
used as a development set for pre-evaluation analysis. Specifically, we used each question’s title text
as an input query, and then collected outputs from the Yahoo! Answers default “Search Answer”
function. In particular, a list of returned QIDs was collected via “Relevance” search (instead of
“Newest”, “Most Answers”, or “Fewest Answers” search). The first 100 search results for each
query were collected 4 and automatically labeled 5 by comparing their source question IDs with
input question IDs.

In order to validate our system’s performance with this dataset, we processed the same query set
with our retrieval and ranking modules, and returned a ranked list of question IDs. MRR (Mean
Reciprocal Rank) and P@1 (Precision at one) were then used as evaluation metrics (calculated using
the official trec eval evaluation scripts).

4This dataset is available at https://github.com/yuvalpinter/LiveQAServerDemo/tree/
master/data/1k-ya-search-results

5Note that the generated labels will also contain false negatives.

4



Set Recall P@1 MRR

Yahoo! Answers default search 0.8464 0.5873 0.6434
Clue Retrieval + Answer Ranking 0.9100 0.8950 0.9008

Table 1: Results on development dataset

Run ID Avg score
(0-3)

Success@ Precision@
1+ 2+ 3+ 4+ 2+ 3+ 4+

CMU-OAQA 1.081 0.979 0.532 0.359 0.190 0.543 0.367 0.195
Avg of all runs 0.465 0.925 0.262 0.146 0.060 0.284 0.159 0.065

Table 2: Official TREC 2015 LiveQA track evaluation results.

Table 1 summarizes our preliminary experimental results on the Yahoo! Answers question retrieval
and ranking task. Although good performance on this dataset does not necessarily correlate to good
performance on the LiveQA 2015 challenge, it does demonstrate the necessity of developing non-
trivial candidate retrieval and answer ranking methods for any LiveQA-related task.

4 Official Evaluation Results

In this year’s LiveQA evaluation, 1,087 questions (out of 1,340 submitted questions) were judged
and scored using a 4-level Likert scale:

• 4: Excellent: “a significant amount of useful information, fully answers the question”
• 3: Good: “partially answers the question”
• 2: Fair: “marginally useful information”
• 1: Bad: “contains no useful information for the question”
• -2: “the answer is unreadable (only 15 answers from all runs)”

The evaluation measures used are:

• avg-score (0-3): “average score over all queries (transferring 1-4 level scores to 0-3, hence
comparing 1-level score with no-answer score, also considering -2-level score as 0)”

• succ@i+: “number of questions with i+ score (i=1..4) divided by number of all questions”
• prec@i+: “number of questions with i+ score (i=2..4) divided by number of answered only

questions”

Table 2 summarizes the results of our system run and average scores from all submitted runs. We
believe the overall performance of our system to be encouraging, as it suggests that our system can
provide a useful answer (fair, good, or excellent) for more than 53% of questions.

5 Conclusion and Future Work

This paper presented the overall system architecture and individual phases and components for our
LiveQA 2015 system6. Although this system performed significantly better than average for the
21 systems evaluated, the low absolute evaluation values indicate that there is still much room for
improvement. One promising future direction is to utilize the scored answer passages from this
year’s evaluation to train supervised models for keyword generation, answer passage extraction
and answer passage ranking. We can also extend the current pipeline by incorporating an answer
confidence estimation to detect and prune low-quality final answers. Another potentially interesting
challenge is to develop scalable evaluation methods that approximate the TREC assessor judgments

6
https://github.com/oaqa/LiveQA

5



in a more efficient and cost-effective way (through the use of crowd-sourcing), making it possible
to develop much larger labeled datasets for supervised learning. We also intend to focus on more
sophisticated models for answer tiling which a) combine answer passage relevance, uniqueness, and
conciseness to select final answers, and b) consider post-processing of selected answer passages to
make final answers more concise and readable.

Acknowledgments

This research was supported in part by the InMind Intelligent Agents project funded through a
generous gift from Yahoo!. We would also like to thank Dan Pelleg, David Carmel, and Eugene
Agichten for insightful discussions.

References
[1] Adam Lally, John M. Prager, Michael C. McCord, Branimir Boguraev, Siddharth Patwardhan,

James Fan, Paul Fodor, and Jennifer Chu-Carroll. Question analysis: How watson reads a clue.
IBM Journal of Research and Development, 56(3):2, 2012.

[2] Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan Szpektor. Learning from the past: Answer-
ing new questions with past answers. In Proceedings of the 21st International Conference on

World Wide Web, pages 759–768, 2012.
[3] Stephen E. Robertson and Steve Walker. On relevance weights with little relevance informa-

tion. In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 16–24, 1997.
[4] Donald Metzler and W. Bruce Croft. A markov random field model for term dependencies. In

SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 472–479, 2005.
[5] George A. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38

(11):39–41, 1995.
[6] Di Wang and Eric Nyberg. A long short-term memory model for answer sentence selection in

question answering. In Annual Meeting of the Association for Computational Linguistics, pages
707–712, 2015.

[7] Di Wang and Eric Nyberg. A recurrent neural network based answer ranking model for web
question answering. In SIGIR Workshop on Web Question Answering: Beyond Factoids, 2015.

[8] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in Neural Information

Processing Systems 26, pages 3111–3119, 2013.
[9] Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. Learning to rank answers to

non-factoid questions from web collections. Computational Linguistics, 37(2):351–383, 2011.

6


