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Abstract—This paper describe our approaches to real-time
filtering task in the TREC 2015 Microblog track, including
push notifications on a mobile phone task and periodic email
digest task. In the push notifications on a mobile phone task, we
apply a recommendation framework with rank algorithm and
dynamic threshold adjustment which utilizes both semantic
content and quality of a tweet. External information extracted
from Google search engine and word2vec model based on exist-
ing corpus are well incorporated to enhance the understanding
of a tweet’s or a profile’s interest. In the email digest task,
based on the candidate tweets retrieved from the first task,
we calculate the score of a tweet considering semantic features
and quality features, all the tweets classified into a topic are
ranked by our key word bool logistic model.

1. Introduction

Information retrieval and recommendation in online so-
cial network has attracted increasing attention with develop-
ment of social network services. To explore user’s interests
and boost retrieval and recommendation performance in
real-time environment, TREC first introduced real-time task
in 2011 [1], which is addressing a real-time adhoc search
task. The information a user wishes to see is represented by a
query, systems should respond to a query by providing a list
of relevant tweets ordered by time, starting from the query
is issued. In other words, systems should feed users with
the most recently and relevant tweets. The Microblog Track
in 2015 is a real-time filtering task, the goal of the real-
time filtering task is to explore technologies for monitoring
a stream of social media posts with respect to a user’s
interest profile. Different from a typical ad hoc query, there
is not an actual information need. Instead, the goal is for
a system to push interesting content to a user. The notion
of what’s interesting is considered in two concrete task
models, push notification on a mobile phone as Scenario
A and periodic email digest as Scenario B. In Scenario

A, content identified as interesting by a system based on
user’s interest profile might be shown to the user through
mobile phone notification. Under that circumstances, such
notifications should be triggered a relatively short time after
the content is generated. In Scenario B, content calculated
as interesting by a system based on user’s interest profile
might be aggregated into an email form that periodically
sent to a user. In that case, a user could read a longer story
about the contents.

In the Scenario A, we apply a recommendation frame-
work with rank algorithm and dynamic threshold adjust-
ment. Semantic features and quality features are extracted
to achieve good retrieval and recommendation performance
in social media. For semantic features, we utilize different
retrieval models, such as TFIDF, BM25, key word bool
logic model, to calculate the relevance score of a given
profile and a tweet. In order to enhance the performance
of semantic features and ease the shortcomings of bag-of-
words(BoW) model, we take advantage of word2vec model
[2] [3] [4] based on existing corpus, such as Wikipedia,
KnowItAll [5], Freebase [6], Probase [7]. In order to expand
semantic features of profiles, we also use Google search
engine to acquire external information. We use abstract text
of retrieval results to better understand the user’s interests.
For the quality features, we utilize several quality features
extract from a tweet, such as the user who post the tweet,
the number of repost, the number of comment, the number
of URL, the number of hashtags, the number of meaningful
words, the length of a tweet, etc. Topics for TREC 2013
Microblog track [8] are used for model training. With the
artificial labeled data, we obtain our quality model. Final-
ly, we combine semantic features and quality features to
evaluate a tweet comprehensively. According to dynamic
threshold adjustment, a tweet is decided to push or not by
our system.

The candidate tweets identified in Scenario A are used as
the input source of the task in Scenario B. We calculate the
score of a tweet considering semantic features and quality



features. The semantic features are used to classified a tweet
into a topic or drop it if it does not match any topics and the
tweet classified into a topic will get a semantic score. Then
quality features are utilized to evaluate the importance and
authority of a tweet. By the quality model we obtained, we
could get a quality score of a tweet. With a rank framework,
the tweets classified into a same topic can be ranked. The
top k tweets will be pushed to the user who are interested
in as a digest.

The remainder of the paper is organized as follows,
we first propose our approach for push notifications on a
mobile phone task in Section 2. In Section 3, we describe
our system for periodic email digest task in detail. Section
4 presents our experimental results and analysis. At last we
conclude our paper in Section 5.

2. Push Notification on a mobile phone Task

In this section, we first introduce our system architecture
for push notifications on a mobile phone task. Then, the
recommendation framework are demonstrated in detail. At
last, all the components of the system are presented.

2.1. System Overview

It is a real-time job in this year’s Microblog track that
teams listen to the twitter stream [9] via official common
API. In this section, we briefly discuss the architecture of
our system, which is shown in Figure.1. As depicted in
the figure, we can see our system mainly contains four
components as follow,

1) Feature Extraction Component, which extract
features from twitter stream based on TREC-API1

and profiles provided by the official. Before feature
extracting, data preprocessing and data filtering is
implemented to get rid of unnecessary data. For
twitter stream, we extract semantic features and
social attributes. For profiles, we extract key words
as our basic features.

2) Feature Representation Component, which rep-
resents and expands semantic features by several
techniques. Information of a tweet and profiles are
enriched by this component.

3) Candidate Generation Component, which classi-
fies tweets to the optimal profile based on semantic
features and quality features by a key word bool
logic model.

4) Scoring and Pushing Component, which ranks
tweets candidates in different profiles with the final
score and makes threshold adjustment based on
historical data over time.

1. https://github.com/lintool/twitter-tools

Figure 1. System Architecture Framework

2.2. Feature Extraction Component

Twitter stream we listen to is during the evaluation time
according to the official2, and it lasts ten days. After ob-
taining twitter stream, we adopt preprocessing and filtering
to reduce the tweets we need to process. The preprocessing
and filtering utilized on tweet stream are as follow,

• Non-English Filtering, we abandoned the non-
English tweets by a language detector with infinity
gram, named ldig [10]. This tool kit is a prototype
for short message service with 99.1% accuracy for
17 languages3. By the way, we also use a method
based on encoding set of characters to process tweets
consist of both English characters and non-English
characters. We only keep the tweet in which English
characters is the vast majority with a threshold value.

• Redundant Retweet Elimination, we only keep one
tweet and eliminate other tweets retweeted the same
tweet by the retweet id information according to
official requirements.

Then semantic features and social attributes are extracted
from tweets. For semantic features, we selected nouns and
verbs in tweet text. So semantic features of a tweet is
represented as Equation.1,

T = {t
1

, t

2

, ..., t

n

} (1)

T represents a tweet and t

i

stands for a key word in tweet
text. The social attributes are extracted from structured data

2. https://github.com/lintool/twitter-tools/wiki/TREC-2015-Track-
Guidelines

3. https://github.com/shuyo/ldig



in a tweet. A tweet is structured as JSON format, it is
convenient to get social attributes we need, such as the user
who post the tweet, the number of repost, the number of
comment, the number of URL, the number of hashtags, the
number of meaningful words, the length of a tweet, etc.

For profiles, we extract the nouns and verbs from title,
desc and narr field. We use a key word bool logic model
to express the information of a profile as follow,

P = {tid : xxx, keyword : {0 : p

1

||p
2

, 1 : p

3

&&p

4

}} (2)

P represents a profile, tid stands for a topic id of a profile.
The keyword field contains two fields, 0 for words that
unnecessary but could increase the semantic score and 1
for words that need to be included. Symbol || means or
logic and symbol && stands for and logic. So it means p

3

and p

4

need to be included and p

1

or p
2

is optional for the
profile of which topic id is xxx. In this section, we extract
the features and store them by format.

2.3. Feature Representation Component

After extracting the semantic features, we need to rep-
resent those features in a proper format so that it is conve-
nient to calculate the relevance between tweets and profiles.
For profiles, the key words extract from the files offered
by the official is not enough to improve the performance
because short text retrieval suffers severely from vocabulary
mismatch problem. Terms overlapping between profiles and
tweets are relatively small. Semantic expansion methods can
be leveraged to enhance the retrieval performance. In this
section, we introduce several semantic expansion methods
to boost the performance.

There are two kinds of semantic expansion methods,
knowledge repository based and search engine based. For
profiles, we use Google search engine API to expand infor-
mation about the profiles. The title field is used as a query
for searching and the abstract text information of top 50
retrieval results are collected for each profile. Abstract text
is treated as a document, each document contains several
terms. After gathering all the documents, we use TFIDF
algorithm to calculate TFIDF value of each term for all the
profiles. The top k terms of each profiles are added to key
word table in Equation.2 to expand the information.

Due to the vocabulary mismatch problem, vector model
is utilized to process the semantic features. The word2vec
technique is used to vectorization for the key words and
gensim4 tool is used in this paper. The training corpus we
used is acquired from wikipedia English corpus. A word2vec
knowledge base are trained by gensim tool using wikipedia
English corpus. Tweets and Profiles can be represented by
word2vec knowledge base as follow,

T

vec

= (t

1

, t

2

, ..., t

n

)

T (3)

4. http://radimrehurek.com/gensim/index.html

In Equation.3, n is the dimensions in gensim tool, generally
set to 200 or 400. The profiles can be demonstrated as a
matrix as follow,

P

mat

=

2

64

p

11

· · · p

1n

... . . .
...

p

m1

· · · p

mn

3

75 (4)

In Equation.4, n is same as in Equation.3 and m stands for
the number of profiles. A row (p

i1

, ..., p

in

) in the matrix
stands for the normalized center vector of a profile by all the
key words. After the procedure above, the semantic features
of tweets and profiles are well represented.

2.4. Candidate Generation Component

In this section, we classify tweets into the most rele-
vant profile or drop it directly if it does not match any
profile and generate candidates based on semantic features
in section 2.3. Firstly semantic features are utilized based
on Equation.3 and Equation.4 as follow,

C =

2

64
c

1

...
c

m

3

75 = P

mat

· T
vec

(5)

Then, the profile which has the maximum value and the
terms in tweet satisfy the bool logic in Equation.2 will be
choose as candidate. The semantic score c

i

is recorded si-
multaneously. We used two kinds semantic score to evaluate
the relevance between tweets and profiles as follow,

• TFIDF Score, which calculates the cosine similarity
between a tweet and a profile in vector space model
with TFIDF weight of terms. Vector space model is
a model which represents a document as a vector.
Tweets and profiles can be expressed as vectors,

~

T = (t
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, t

2
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n

) (6)

~

P = (p

1

, p
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n

) (7)

The TFIDF method use term weight and cosine
similarity metric to evaluate the relevance between
a tweet and a profile. Cosine similarity metric is
defined as follow,

Sim =

~

T · ~P
||~T || · ||~P ||

(8)

• BM25 Score, which utilizes the Okapi BM25
weighting function to measure the semantic rele-
vance between a tweet and a profile. Okapi BM25
model is a bag of words model that rank documents
based on the query terms appearing in each doc-
uments. The similarity between a document and a
query is defined as Equation.9, where D represents
a document, Q stands for a query. f(q

i

, D) is q

i

’s
term frequency in document D, |D| is the length
of the document D in words, avgdl is the average



document length of all the documents to process and
k

1

and b is adjustable parameters.

Sim =

X

qi2Q

IDF (q
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) · f(q

i

, D) · (k
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+ 1)

f(q
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, D) + k

1

· (1� b+ b · |D|
avgdl

)

(9)
Social attributes extracted in section 2.1 are used to

train quality model. We label a tweet with a score from
0 to 1 artificially based on its quality. If the tweet provides
more information and written more elaborately, it will get
higher quality score. The model we use is logistic regression
model in machine learning tool weka5. Then, the semantic
score and quality score are utilized to evaluate the relevance
and quality of a tweet for a certain profile. Based on the
assumption that users prefer those tweets related to the
profile and popular in social media, we consider social
attributes as follow,

• User follower Count(FollowerCnt), which repre-
sents the number of followers of the user who post
the tweet. The user whose followers count is high
would be a famous user in social media and will
post high quality tweet with a large probability.

• User status Count(StatusCnt), which represents the
number of status of the user who post the tweet. The
status count indicates the vitality of a user in social
media. A energetic user will post higher quality
tweet than others.

• Retweet Count(RetweetCnt), which represents the
times a tweet is retweeted. The larger retweet count
is, the more popular a tweet is in social media.

• Retweet Level(RetweetLvl), we use logarithm to
measure retweet count to retweet level.

• Collect Count(CollectCnt), which represents the
number of people who like it. People can collect
a tweet or star a tweet if the tweet is attractive.

• Word Count(WordCnt), which calculates the num-
ber of words in a tweet without stop words. Gen-
erally, informative and high quality tweets may be
longer than others.

• Character Count(CharCnt), which calculates the
number of characters of a tweet without stop words.

• Short Url Count(UrlCnt), which represents the
number of short url count of a tweet. Informative
tweet and news will give a short url at the end of a
tweet in general.

2.5. Scoring and Pushing Component

By the semantic features and social attributes, we got
two score, the semantic score c

i

in Equation.5 and the
quality score q

i

. Both value of them are from 0 to 1. The
finally score we measured for a tweet to a profile is as
follow, where s

i

stands for the final score.

s

i

= c

i

· q
i

(10)

5. http://www.cs.waikato.ac.nz/ml/weka/

When a candidate is added to the pushing queue, it is ranked
by the final score s

i

. If a tweet is relevant and important
to a profile, it is necessary to push it to the users who
are interested in. But there is a limit in Scenario A that
ten tweets could be pushed to a profile at most in one day
and the gain will decrease over time. So it is a constraint
satisfaction problem we need to handle. We used a dynamic
threshold adjustment to make sure there are enough tweets
for a profile and each tweet with a high score during one day.
With a recently historical data of the tweets for a profile, we
can get the highest final score s

max

. We make a piecewise
function for the threshold as Equation.11,

threshold =

⇢
(0.9� d) · s

max

d < 0.4

0.5 · s
max

d � 0.4

(11)

where d stands for decay value and d = c · floor(t/2). c is
decay coefficient which we set to 0.05 in our system, t is the
hour in a day from 0 to 24. If a tweet’s final score s

i

exceed
the threshold at that time, it will be pushed immediately.

As described above, the live push algorithm based on
semantic features and social attributes are summarized in
Algorithm.1, the program won’t stop until R is full for each
profile with 10 tweets or Ts is exhausted in a day. threshold
will automatically adjust over time.

Algorithm 1 Live Push Algorithm
Require:

Twitter stream Ts = {ts
1

, ts

2

, ..., ts

k

}
Profile document set P = {P

1

, P

2

, ..., P

m

}
Ensure:

Retrieval Set R = {R
1

, R

2

, ..., R

m

} for each profile P

i

is full or Ts = ;
1: P

mat

= matrix(P )
2: while R is not full and time is not up do
3: T

i

= pop(Ts)

4: preprocess(t
i

)
5: T

vec

= vectorization(t
i

)
6: C = P

mat

· T
vec

7: c

j

= max(C)

8: s

j

= c

j

· q
j

9: if s
j

> threshold then
10: R

j

= R

j

[ ts

i

11: end if
12: end while

3. Periodic Email Digest Task

In periodic email digest task, we need to collect a batch
of up to top 100 interesting tweets for each profile during
one day and deliver those information to the particular
profile after the day ends. It is expected that the system
will complete that mission in a relatively short amount of
time. The system framework used in scenario B is same
as in scenario A as Figure.1 , except threshold adjustment
component. All the tweets are classified into one profile or
drop it if it does not match any profile, then the candidates



are ranked by final score s based on semantic features and
social attributes.

To supply diverse information for a particular profile,
we utilized two kinds of techniques to eliminate redundant
tweets.

• Redundancy Removal based on Id, which utilized
the tweet’s id to identify a tweet. If a tweet is
original, we record the id of original tweet. If it is
a tweet reposting another tweet, we record the id of
the reposted tweet’s id. It could decrease the tweet
reposting a popular tweet.

• Simhash [11] [12], which is a popular method to
handle web page redundancy. It turns a document
into a fingerprint, called simhash code. The closer
hamming distances between two documents is, the
more similar they are. The simhash code is calculat-
ed as follow,

Sim

code

= sign(

X
n

i=1

w

i

· c
i

) (12)

where w

i

is the weight of term i and c

i

is the hash
code of term i, sign is symbol function that make
positive to 1 and negative to 0 for every bit in the
code.

Our daily retrieval algorithm can be described as
Algorithm.2

Algorithm 2 Daily Retrieval Algorithm
Require:

Twitter retrieval set Tr = {Tr
1

, T r

2

, ..., T r

m

} based
on scenario A

Ensure:
Daily retrieval Set Dr = {Dr

1

, Dr

2

, ..., Dr

m

}
1: for Tr

i

2 Tr do
2: while |Dr

i

|  N and Tr

i

6= ; do
3: t

max

= max(Tr

i

)

4: Tr

i

= Tr

i

� t

max

5: if t
max

not in Dr

i

then
6: Dr

i

= Dr

i

[ t

max

7: end if
8: end while
9: end for

where Tr is daily candidates for m profiles acquired
in scenario A. For each profile, we iteratively get the most
interesting tweet from candidate set and drop the redundant
tweet. At last, we get the daily retrieval set Dr.

4. Result and Analysis

The evaluation of TREC 2015 Microblog track lasts 10
days from Monday, July 20, 2015, 00:00:00 UTC to July
29, 2015, 23:59:59 UTC. It consists of 225 interest profiles,
which the participants will be responsible for tracking.
During the evaluation time, participants will listen to tweet
stream continuously and deal with every tweet. After the
evaluation period, based on post hoc analysis, NIST will

TABLE 1. RESULTS IN SCENARIO A

ELG nCG
SNACSA 0.3086 0.3349

SNACS LA 0.2863 0.2974
summaryA 0.4623 0.4846

TABLE 2. RESULTS IN SCENARIO B

nDCG
SNACS 0.3345

SNACS LB 0.3670
summaryB 0.5014

select a set of approximately 50 topics that will actually be
assessed.

There are some metrics to evaluate the performance of
a system. In scenario A, the first metric is expected latency-
discounted gain (ELG) from the temporal summarization
track, the ELG score is depicted as Equation.13

ELG = (1/ |Tr|) ·
X

i

gain(Tr

i

) (13)

where Tr is the returned tweet sets, gain() is the score func-
tion for a tweet. Not interesting, spam/junk tweets receive a
gain of 0, somewhat interesting tweets receive a gain of 0.5,
very interesting tweets receive a gain of 1.0. In addition, a
latency penalty is applied to all tweets, the latency penalty is
computed as max (0, (100� delay) /100), where the delay
is the time elapsed(in minutes, rounded down) between
the tweet creation time and the putative time the tweet is
delivered. The secondary metric is normalized cumulative
gain (nCG), which is depicted as Equation.14

nCG = (1/Z) ·
X

i

gain(Tr

i

) (14)

where Z is the maximum possible gain (given the 10 tweets
per day limit).

In scenario B, for each topic, the list of tweets returned
per day will be treated as a ranked list and from this nD-
CG@k will be computed. The score of a topic is the average
of the nDCG@k scores across all days in the evaluation
period. The score of the run is the average over all topics.

The results our system get is listed in Table.1 and
Table.2,

SNACSA and SNACS are the results pair that only
use the words in tweets to generate profiles in Equation.2.
SNACS LA and SNACS LB are the results pair that
using search engines to expand to generate profiles. The
summaryA and summaryB is the average score of the
highest score of every topics. Non-expand algorithm gets
higher ELG and nCG, however expand algorithm gets higher
nDCG.

Figure.2 is the ELG vs. nCG pair of participants’ runs,
Figure.3 is the ELG distribution in different topics, Figure.4
is the nCG distribution in different topics and Figure.5 is the
nDCG distribution in different topics. We can see our system
is close to the max results in summaryA and summaryB



among most topics, our algorithm is verified to be effective
and efficient.

Figure 2. ELG vs. nCG

Figure 3. ELG distribution in different topics

5. Conclusion

In this paper, we present our system architecture frame-
work and algorithms for TREC 2015 Microblog track. In
the push notification on a mobile phone task, we apply a
recommendation framework with rank algorithm and dy-
namic threshold adjustment which utilize not only semantic
features but also social attributes in social media. In periodic
email digest task, we calculate the score of a tweet consider-
ing semantic features and quality features, then we rank the
tweets take the redundance into consideration. Experimental
results show our effectiveness and efficiency of our system
in both tasks.

Figure 4. nCG distribution in different topics

Figure 5. nDCG distribution in different topics
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