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Statement of Objectives
A novel methodology was proposed for predicting concentration of each of the alloying elements
in magnetic alloys so that the new alloys will have simultaneously maximized:
- energy density (BHmax)
- magnetic remanence (Br)
- intrinsic coercivity (Hc)
while minimizing the concentration of rare earth elements and other expensive elements.
Computational effort on this project was to be performed at Florida International University.
Experimental effort was to be contracted and performed at North Carolina State University.
The proposed optimization method is based on combining NCSU’s experimentally obtained
multiple properties of the magnetic alloys and FIU’s computational hybrid multi-objective
constrained optimization algorithms augmented with modeFrontier optimization software,
response hypersurface-based metamodels and a modified version of a method of Indirect
Optimization based upon Self-Organization. These optimization algorithms allow for
concentrations of a large number of alloying elements to be optimized so that several physical
properties of the alloy are simultaneously either minimized or maximized, while satisfying a finite
number of equality and inequality constraints. During the iterative computational design process
at FIU, optimal chemical concentrations of a small set of new magnetic alloys will be periodically
predicted. These optimized alloys will then be manufactured and experimentally evaluated for their
multiple physical properties at NCSU in order to continuously verify the accuracy of the entire
design methodology. This approach will result in a Pareto optimal set of chemical concentrations
of alloying elements that will produce the best tradeoff magnetic alloy compositions. This design
method enables significant minimization of the number of expensive and time-consuming

DISTRIBUTION A: Distribution approved for public release.



experimental evaluations. The proposed research will result in a robust, rigorous and affordable
tool for the design optimization of magnetic alloys that use either minimum or none of the rare
earth elements and that are unattainable by any other means in existence at the present time.

Summary of Significant Results

This work effectively demonstrated and confirmed the validity of a novel approach to design and
optimization of rare-earth free magnetic materials for targeted properties by using various
computational and statistical tools in combination with a relatively small number of experimental
confirmations. The focus of research during this three-year effort was on multi-objective design
optimization of proper concentrations of eight alloying elements constituting a broader family of
AINiCo type alloys that are known to retain their magnetic properties at elevated temperatures and
that are valued for their strong anti-corrosive property, ductility and tensile strength. The objectives
were to simultaneously maximize (in the Pareto-optimality sense) three of the most important
magnetic properties of such alloys: magnetic energy density, magnetic coercivity and magnetic
remanence. Initial compositions of candidate alloys were generated using a quasi-random
sequence generation algorithm. These randomly generated alloy compositions were then
manufactured and experimentally evaluated for the desired magnetic properties. Response surface
methodology approach was used to develop meta-models to efficiently link chemistry of these
alloys with values of their macroscopic properties. The most accurate meta-models were used for
multi-objective optimization of desired properties by utilizing various evolutionary approaches. It
was demonstrated that the proposed alloy design methodology is able to successfully and rapidly
recover from the initial flaws resulting from random experimentation, which would have been
impossible when using standard alloy design methods.

Various statistical tools and pattern recognition techniques were used to determine patterns and
correlations within the created dataset. Pareto-optimized candidate alloys were experimentally
validated and used to improve the accuracy of the response surface generation. Multi-objective
optimizers were then used on these response surfaces to find the next generation of Pareto-optimal
alloys. Results over the cycles show significant experimentally verified improvement in the
properties of these alloys. Specifically, the resulting Pareto-optimized alloy compositions rival
macroscopic magnetic properties of commercial AINiCo alloys, but have different chemical
concentrations, thus, suggesting that optimization algorithms are capable of exploring yet
unexplored domains of the design space. Sensitivity analysis also revealed that certain alloying
elements have negligible influence on magnetic properties of the alloy and could be replaced by
some of the affordable and readily available rare-earth elements. Finally, besides its robustness,
versatility and computational efficiency, this magnetic alloy design methodology has an implicit
continuous experimental verification built in and it requires minimal number of candidate alloys
to be manufactured and tested, thus, making general alloy design affordable and fully verified.

Background and Basics of Magnetism
Rare Earth Element (REE) based magnets [ 1] have a very high magnetic energy density ((BH)max).
This means that it is possible to synthesize smaller magnets while maintaining the superior
magnetic properties. These magnets also have higher coercivity (Hc), making it difficult to
demagnetize under external magnetic fields. Neodymium magnets are the strongest available
magnets in this family. However, Nd-Fe-B (Neodymium-Iron-Boron) performs the best up to 150
°C. From 150 °C to 350 °C, Sm-Co (Samarium-Cobalt) magnets are used. These magnets usually
need a protective coating in order to prevent corrosion. REE-based magnetic materials are essential
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in electric cars, in wind turbine electric generators, and any high-efficiency electric devices
requiring magnetic fields. Hence, REEs are classified as strategic materials [2] determining which
national economies will survive and prosper in the post-combustion-engine era. Most of the rare
earth elements used for synthesizing these magnets are located in China and the Russian federation.
Due to depleting resources and stringent trade rules from the suppliers, it is important to look at
other options to synthesize these magnets [3].

AINiCo magnets [4] are permanent magnetic alloys based on the Fe-Co-Ni-Al system without
REEs. AINiCo magnets have high B; values, comparable to REE magnets. AINiCo magnets have
lower Hc values and can be demagnetized in the presence of an external magnetic field. Low Hc
can be helpful as these magnets can be easily magnetized to saturation. A high B; and low H value
can be properly exploited to cast this magnet in complex shapes while magnetizing it in the
production heat treatment stages. AINiCo magnets possess excellent corrosion resistance and high-
temperature stability. These are the only magnets that are stable up to 800 °C (Curie temperature).
Above-mentioned properties have been successfully exploited by researchers in the past and are a
perfect choice for military and automotive sensor applications. Thus, any improvement in the
existing properties of AINiCo alloys will be helpful in covering the gap between the magnetic
properties achieved by AINiCo and REE based magnets.

In the present research work, a novel approach is presented for creating computational tools for
design and multi-objective optimization of permanent magnetic alloys. The proposed research
combines a number of numerical design optimization algorithms with several concepts from
artificial intelligence and experimentally evaluated desired properties of an affordable set of
candidate alloys. These alloys were further screened by various statistical tools in order to
determine any specific trend in the data. This information will be helpful to the research
community in developing a material knowledge base for the design of new alloys for targeted
properties.

At present, researchers around the globe are working on designing magnetic alloys that will be
able to cover the gap between the properties achieved by AINiCo magnets and the rare-earth
magnets, basically by adding a small amount of those rare-earth elements that are less critical in
the sense of supply [5,6]. Sellmyer et al. [7] worked on a few rare-earth free alloys. Zhou et al. [8]
manufactured a few commercial AINiCo alloys to demonstrate the scope of improvement in this
field. The difference between the theoretically calculated and the experimentally measured
properties was quite large for both ((BH)max) and Hc. Thus, random experimentation may prove to
be both expensive and time-consuming.

Designing a new alloy system is a challenging task mainly due to a limited experimental database.
In order to develop a reliable knowledge base [9] for design of new alloys, one needs to focus on
determining various correlations (composition-property, property-property, and composition-
composition) from the available databases (simulated and experimental). This information can be
coupled with the theoretical knowledge (atomistic and continuum based theories) to develop the
knowledge base. Integrated Computational Materials Engineering (ICME) approach [10] and
materials genome initiative highlighted the importance and growing application of computational
tools in the design of new alloys. In recent years, various data-driven techniques combined with
evolutionary approaches [11,12] have been successfully implemented in the direct alloy design.
The alloy design optimization method presented in this document was developed by the Principal
Investigator during the previous decade and applied to design optimization of H-type steels, Ni
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based superalloys, Hf based bulk metallic glasses, Al based alloys and Ti based alloys [13-23]. It
is capable of exploring new alloys with chemical concentrations outside of the initial experimental
data set. Dulikravich also demonstrated an inverse alloy design method [24] where multiple
macroscopic properties of an alloy family are specified. The corresponding ranges of
concentrations of each of the alloying elements are then determined that will produce the specified
magnitudes of macroscopic properties. Improving thermodynamic databases such as Thermocalc
[25] for alloy development has also been pursued. Jha et al. [26,27] demonstrated the scope of use
of these databases for designing Ni-based superalloy and Rettig et al. [28] performed a few
experiments to confirm his findings. Data mining approaches such as Principal Component
Analysis (PCA) and Partial Least Square (PLS) regression have also been successfully used in
designing new alloys [29,30]. Additionally, various machine-learning algorithms have been used
to address a vast range of problems in materials design [31,32]. These applications demonstrate
the diversity and efficacy of application of computational tools for materials design.

Mishima in Japan [4] first discovered AINiCo magnets in 1931. Initially, it belonged to the Fe-Co-
Ni-Al quaternary system. Magnetic properties in these magnets were attributed to the presence of
a two-phase system, a1 and o2, of Body Centered Cubic (BCC). It was later observed that separation
of a1 and o> phases is due to a metallurgical phenomenon popularly known as spinodal
decomposition. Phase a; is Fe-Co rich ferromagnetic phase and o> is Ni-Al rich phase. Phases o1
and o are stable up to 850 °C that is just below the Curie temperature, which is about 860 °C.
Above 850 °C, Face Centered Cubic (FCC) y phase begins to appear and it was observed in a few
samples [33]. Gamma phase must be avoided, as it is detrimental for magnetic properties. Various
attempts (such as modification of heat treatment protocol and addition of various alloying
elements) have been made to stabilize the magnetic o and o phases and simultaneously eliminate
or reduce the amount of y phase. In the past few decades, (especially after the discovery of
powerful REE-based magnets in 1980’s), there has been limited research on AINiCo magnets.
Recent rise in prices of rare earth elements led to the search for rare-earth free magnets. In recent
years, AINiCo magnets are again a popular choice for research mainly due to their proven high-
temperature stability and related properties at an affordable cost [34].

Currently, AINiCo alloys are not limited to quaternary systems and may contain eight or more
elements [4,11,12,27,35]. In this work, we selected 8 elements namely Iron (Fe), Cobalt (Co),
Nickel (Ni), Aluminum (Al), Titanium (Ti), Hafthium (Hf), Copper (Cu) and Niobium (Nb).
Variable bounds of these elements have been tabulated in Table 1. From both experimental as well
as the modeling point of view, it will be helpful to discuss the role of these alloying elements. This
information can be utilized to select meta-model for targeted properties. This will be helpful in
developing a knowledge base for discovery of new materials and/or improving properties of
existing materials.

As shown in Figure 1, magnetic energy density ((BH)max) is mathematically the area of the largest
rectangle that can be inscribed in the second quadrant of B-H curve [36]. Since, Hc and B; are
conflicting; one has to sacrifice on one of these properties to improve the other property. Therefore,
in order to increase (BH)max, one needs to optimize Hc and B;.
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It is helpful at this point to recall the basic symbolism and relations used in magnetism.
B=uy(H+M) magnetic flux density, kg A s

H= g—1\_’[ magnetic field intensity in a magnetizable medium, A m!

Ho
M magnetization per unit volume due to rotation of charged particles, A m’!
M, intrinsic or natural magnetization per unit volume, A m!
M=M,+M, total magnetization per unit volume, A m’!
i, = thl magnetization magnetic permeability, kg m A2 s

H=Hy

U magnetic permeability coefficient, kg m A? s

Mo =4 x 107 magnetic permeability coefficient of vacuum, kg m A2 s

M=/ relative magnetic permeability

X =M, —1 magnetic susceptibility

The magnetization vector, M, and magnetic field vector, B, are often combined to form the
magnetic field strength vector, H [37].

B:,uO(H+Mm+Mp)=,uO(H+M) (1)
Hence
H:E—M 2)
Ko
6
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For linear materials that do not contain ordered paramagnetic ions, magnetization, M, is typically
related linearly to magnetic field strength, H, [38] in a similar way that polarization, P, is related
to electric field, E.

M=y H (3)
Combining Eq. 2 and Eq. 3 gives a popular relation
B:ﬂ0(1+xm)H:ﬂoﬂrH:ﬂH (4)

where s, is the relative permeability of the media [39].

M is saturation magnetization, which is an important property for materials researchers to
evaluate any magnet.

M, is remanence magnetization which is the magnetization when H = 0.

B, is the remanence magnetic flux density, B, when H = 0, so Br = uo M,

The following text will provide the reader with a brief idea regarding the role of various alloying
elements used in this research effort and its effect on Hc and B; [33].

Cobalt: It is a y stabilizer. A solutionization anneal is needed to homogenize it to a single o phase.
Cobalt increases coercivity and Curie temperature.

Nickel: It is also a y stabilizer. Hence, solutionization anneal temperature needs to be increased in
order to homogenize it to a single a phase. Nickel increases Hc (less than Cobalt) while
decreases Br.

Aluminum: It is an o stabilizer. It will be helpful in reducing the solutionization anneal
temperature. Aluminum is expected to affect Hc positively.

Copper: It is an a stabilizer. Research shows that Copper affects Hc and Br positively and increases
it. In AINiCo 8 and AINiCo 9 alloys, Cu precipitates out of the a2 phases into particles and is
responsible for the magnetic separation between al and a2 phases. An increase in these phase
separation leads to an increase in Hc.

Titanium: It is an o stabilizer and one of the most reactive elements. It reacts with impurities such
as C, S, and N and purifies the magnet by forming precipitates with these elements. It helps in
grain refining but it is detrimental for columnar grain growth. S and Te additions can help in
regaining grain growth capabilities. Majority of grains are aligned perpendicular to the chill
plate due to columnar grain growth and large shape anisotropy can be achieved if spinodal
decomposition occurs in this direction. Titanium increases Hc at the expense of Br [40].

Niobium: It is an a stabilizer. It forms precipitate with Carbon. Carbon is a strong vy stabilizer and
needs to be eliminated. Like Ti, Nb also inhibits columnar grain growth. Nb increases Hc, at
the expense of Br [41].

Hafnium: It is used for enhancing high-temperature properties. It precipitates at the grain boundary
and helps in improving creep properties. Recent studies related to Co-Hf magnets [7],
motivated us to use Hf in this work.
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A Concept of Iterative Computational-Experimental Design of Magnetic Alloys
A multi-dimensional random number generation algorithm [42] was used to distribute chemical
concentrations of each of the alloying elements in the candidate alloys as uniformly as possible
while maintaining the prescribed bounds on the minimum and maximum allowable values for the
concentration of each of the alloying elements. The generated candidate alloy compositions were
then examined for phase equilibria and associated magnetic properties using a thermodynamic
database in the desired temperature range. These initial candidate alloys were manufactured,
synthesized and tested for desired properties. Then, the experimentally obtained values of the
properties were fitted with a multi-dimensional response surface. The desired properties were
treated as objectives and were extremized simultaneously by utilizing a multi-objective
optimization algorithm that optimized the concentrations of each of the alloying elements. This
task was also performed by another conceptually different response surface and optimization
algorithm for double-checking the results. A few of the best predicted Pareto optimal alloy
compositions were then manufactured, synthesized and tested to evaluate their macroscopic
properties. Several of these Pareto optimized alloys outperformed most of the candidate alloys on
most of the objectives. This proves the efficacy of the combined meta-modeling and experimental

In this alloy design optimization methodology, the user must specify the minimum and maximum
expected concentrations of a finite number of the most important alloying elements. For example,
if the number of such elements in an alloy is 8 (e.g., Fe, Co, Ni, Al, Ti, Hf, Cu, Nb) and the number
of simultaneous objectives is 3 (e.g., maximize magnetic energy density (BH)max, magnetic
remanence (Br) and magnetic intrinsic coercivity (Hc)), from experience with design optimization
of Ni-base superalloys [16,18] and bulk metallic glasses [19-21] it is expected that an initial
database of concentrations of approximately 80 alloys will need to be developed by utilizing
Sobol’s algorithm [42] to semi-randomly distribute the chemical concentrations of these alloys.
The use of Sobol’s algorithm is very helpful in distributing the initial concentrations in the best
possible way so that the consequent multi-dimensional response surface fitting will be maximally
accurate with the minimum number of available experimentally evaluated alloys. These 80 initial
alloys must then be manufactured by casting them in an identical manner, thus avoiding variability
in the manufacturing process. These casts should then be experimentally tested for the specified
number of macroscopic properties (simultaneous objectives).

This information is then used for building approximation functions (multi-dimensional response
surfaces) [43], which will further be enriched by the optimization code using modified radial basis
functions and multiple artificial neural networks. These approximation functions are then
optimized using a multi-objective evolutionary optimization algorithm. In this work, three multi-
objective optimization algorithms were used: modeFrontier [44], IOSO [45] and MOHO [43]. At
each optimization iteration, a multi-criterion optimization task with a specified number of Pareto
front optimal points (for example, 10) needs to be solved. The results of this complex numerical
optimization process will be chemical concentrations of the alloying elements in these 20 new
alloys which the optimization algorithm predicted as belonging to the non-dominated Pareto
optimal front, while accounting for a specified level of uncertainty of alloy casting and testing.
Since the multi-dimensional response surfaces are fitted using a large number of points created by
the artificial neural networks and the radial basis functions instead of exclusively experimental
data, the initial accuracy of the fit of the response surface will be relatively low. Consequently, it
could be expected that not all of the 10 new optimized alloys are actually superior to all of the
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initial 80 alloys. To clarify this point, these 10 optimized alloys then need to be manufactured and
experimentally evaluated for the multiple properties. This concludes the first design iteration. The
second iteration starts by using all (80 + 10 = 90) experimentally evaluated alloys. The response
surface building, enrichment, and optimization process is then repeated using these 90 data points
with the same multiple objectives. Again, say, 10 new Pareto-optimal alloys are found by searching
these improved response surfaces. These 10 newly Pareto-optimized alloys then need to be
manufactured and experimentally tested to confirm that most of them are better than any of the 90
alloys used in the second iteration of the design optimization process. The third iteration then starts
with all accumulated experimentally tested alloys (80 + 10 + 10 = 100), repeats all optimization
steps, and results in a new set of optimized alloys. The entire iterative process continues typically
5-10 cycles until the Pareto front sufficiently converges.

A sensitivity analysis of each of the alloying elements was also performed to determine which of
the alloying elements contributes the least to the desired macroscopic properties of the alloy. These
elements can then be replaced with other candidate alloying elements such as not-so-rare earth
elements.

Summary of Multi-Objective Optimization Concepts and Metamodels
The multi-objective optimization extremizes simultaneously a vector of n objective functions

Fi(X) fori=1,..n )
subject to a vector of m inequality constraints

gi(x)<0 forj=1,..m (6)
and a vector of k equality constraints

hy(X)=0 forq=1,..k (7

where X is a vector of design variables that need to be optimized so that a vector of objective
functions is simultaneously extremized.

In general, the solution of this problem is not unique, since each objective would like to attain its
own extremum. With the introduction of the Pareto dominance concept [46] the possible solutions
are divided in two subgroups: the dominated and the non-dominated. The solutions belonging to
the second group are the "efficient" or the “best trade-off” solutions, that is, the ones for which it
is not possible to improve any individual objective without deteriorating the values of at least some
of the remaining objectives.

Metamodels and Multidimensional Design Spaces

In many optimization problems, evaluation of the objective function is extremely expensive and
time-consuming. For example, optimizing chemical concentrations of each of the alloying
elements in a multi-component alloy requires manufacturing each candidate alloy and evaluating
its properties using classical experimental techniques. Even with the most efficient optimization
algorithms, this means that often thousands of alloys having different chemical concentrations of
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their constitutive elements would have to be manufactured and tested. This is understandably too
expensive to be economically acceptable.

Therefore, for problems where objective function evaluations are already expensive and where the
number of design variables is large and thus requires many such objective functions evaluations,
the only economically viable approach to optimization is to use cheap and accurate surrogate
models (metamodel) instead of the actual high-fidelity methods for evaluation of the objective
functions. Such low-fidelity surrogate models are known as response surfaces [43,47] which, in
case of more than three dimensions, become high-dimensional hypersurfaces that need to be fitted
through the available, often small, original set of high-fidelity values of the objective function.
Once the response surface (hypersurface) is created using an appropriate analytic formulation, it
is very efficient to search such a hypersurface for its minima given a set of values of design
variables supporting such a response surface.

One of the most popular mesh-free kernel approximation techniques is radial basis functions
(RBFs). Initially, RBFs were developed for multivariate data and function interpolation. It was
found that RBFs were able to construct an interpolation scheme with favorable properties such as
high efficiency, good accuracy [47] and capability of dealing with scattered data, especially for
higher-dimension problems. A convincing comparison [43] of a RFB-based-response surface
method and several other popular methods demonstrated superiority of optimized RBF
polynomial-based methods.

A Step-by-Step Iterative Design of Magnetic Alloys
We used a set of computational tools to develop a novel approach for design and optimization of
high-temperature, high-intensity magnetic alloys. The steps involved in the proposed approach can
be listed as follows:
1. Initial dataset: From our own expertise and the open literature, we defined the variable
bounds of eight alloying elements that are to be used for the manufacture of magnets.
One of the best-known quasi-random number generators, Sobol’s algorithm [42], was
used to generate chemical concentrations for an initial set of 80 candidate alloys. These
alloys were screened on the basis of limited knowledge of phase equilibrium and
magnetic properties from a commercial thermodynamic database, Factsage [48].

2. Manufacture and testing: These alloys were synthesized and tested for various properties
of interest as shown in Table 3.

3. Response surface generation: This data was used to link alloy composition to desired
properties by developing response surfaces for those specific properties. A commercial
optimization package, modeFRONTIER [44] was used for this purpose. Response
surfaces were tested on various accuracy measures and the most accurate one was chosen
for further study. Various approaches [43] were used to develop response surfaces. These
include Radial basis functions (RBF), Kriging, Anisotropic Kriging, and Evolutionary
Design.

4. Multi-objective optimization: Response surfaces selected above were used to extremize
the select macroscopic properties. It was observed that most of the optimization tasks
yielded alloys with a similar chemical composition for a set of objectives. Hence, several
optimization runs were performed to get a diverse pool of results. Various optimization
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algorithms were used for this purpose. They include Non-dominated Sorting Genetic
Algorithm IT (NSGAZ2) [46], Multi-Objective Particle Swarm Optimization (MOPSO),
Multi-Objective Simulated Annealing (MOSA) and FAST optimizer which uses
response surface models (meta-models) to speed up the optimization process using search
algorithms such as NSGA2, MOPSO, MOSA [44].

For the purpose of self-evaluation, this work was independently carried out at three different
places using modified versions of these software packages:

a. Commercial optimization package, Indirect Optimization based on Self-
Organization (I0SO) algorithm [45] was used because of its known robustness.

b. Hybrid response surface [43,47] was used because of its robustness, accuracy and
computational efficiency. Multi-objective optimization was performed by Non-
Dominated Sorting Genetic Algorithm (NSGA2) [46].

c. Surrogate model selection algorithm [43] was used because of its robustness and
simplicity.

Pareto-optimized predictions from the above optimization packages were merged. From this set,
we selected a few alloys for further manufacture and testing.

5. The work has been performed in cycles. Steps 2-5 were repeated until the improvements
of multiple macroscopic properties of these magnetic alloys became negligible.

6. Sensitivity analysis: Various statistical tools were used to determine composition-
property relations. This was done in order to find influential alloying elements for
development of knowledge base. At the same time, the sensitivity analysis also helps in
finding the least influential alloying elements that could be discarded to make way for
introduction of affordable and readily available rare-earth elements.

This work will help in developing a knowledge base that will be useful to the research community
in designing new alloys. In data-driven material science, knowledge discovery [9] for designing
new materials requires:

a) Data: In this work, our database was a combination of experimentally verified data
and Pareto-optimized predictions.

b) Correlations: Various linear and nonlinear correlation, clustering, and a principal
component analysis tools were used to discover various trends in the dataset.

c) Theory: The above information can be coupled with theoretical knowledge to
motivate the experimentalist to modifying standard manufacturer protocol for design
of new alloys.

Summary of Experimental Work Performed by a Sub-Contractor (NCSU) Team
This project was to apply materials-by-design approach for magnetic materials without rare earths
that iterates between computational optimization and experimental synthesis/property study,
where computational multi-objective optimization drives experiments. AINiCo alloys were chosen
because of their low cost, acceptable permanent magnetic properties and especially the high
temperature for applications (~400 °C).
Standardized procedures used during experimental work and testing performed at NCSU were:
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Raw materials and weighing (All raw materials were from Alfa Aesar®)

Element | Symbol Specification
Iron Fe Iron granules, 1-2 mm (0.04-0.08 in), 99.98% (metals basis)
Cobalt Co Cobalt pieces, 99.9+% (metals basis)

Aluminum Al Aluminum slug, 1.98 mm (0.078 in) dia x 8.0 mm (0.315 in)
length, 99.99% (metals basis)

Nickel Ni Nickel slug, 3.175 mm (0.125in) dia x 3.175 mm (0.125in) length,
99.98% (metals basis) + 50 mmX50 mm, Nickel foil, 0.1 mm
(0.004 in) thick, 99.5% (metals basis)

Titanium Ti Titanium granules, -15 mesh, 99.9% (metals basis excluding Na
and K), 10g
Copper Cu Copper shot, 0.8-2 mm (0.03-0.08 in), 99.5% (metals basis), 100 g

Hafnium Hf Hafnium wire, 0.5 mm (0.02 in) dia, 99.95% (metals basis
excluding Zr), Zr nominal 3%, 100 cm

Niobium Nb Niobium wire, 0.5 mm (0.02 in) dia, 99.96% (metals basis
excluding Ta), 100 cm

According to the weight ratio of each element supplied by FIU, the mass of each element was
calculated while the total mass for each sample was 5.1 gram. The reason for 5.1 grams was that
the same mass was used to prepare ball-milling samples. Each alloying element was well stored
and weighed out to within 0.001 grams in a glove box filled with high purity Argon (< 1 ppm
oxygen). Each weighed sample was placed into glass vials within an Argon atmosphere.

Casting

Casting was performed with an arc melter. After weighing each of the eight elements, the sample
was placed on copper hearth in the arc melter. The chamber of the arc melter was evacuated and
refilled with argon three times to prevent oxidation. The chamber was refilled when the pressure
reached 40 millitorr. After the third refill, the working pressure was set at 10 mmHg vacuum. The
electric arc power was set to ~130 amps. If the sample was hard to melt after a few seconds, the
power was increased to ~145 amps. With the power supply and water cooler on, the electric arc
was started by making contact between the electrode tip and the tungsten pin. A small piece of
titanium was melted first in order to react with any remaining oxygen.

During the initial arc melting, the goal was to melt the sample and form a single piece of alloy.
After five to ten seconds of arc melting, the sample was left to cool for approximately two minutes.
Then, it was safe to refill the pressure to 1 atm and open the arc melter. When a single piece of
alloy was formed, the sample was flipped and the process of evacuating three times and melting
was repeated two more times which includes flipping the sample after each time being melted.
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After flipping and melting twice, the hearth is tilted to an angle of approximately 45 degrees and
the sample is moved to the far right of the copper hearth where there is a notch that allows the
sample to be cast. At this angle, when the sample is melted, it will pour into the copper mold and
form a seven millimeter diameter cylinder. After casting, the samples were re-weighed to account
for any alterations from the treatments.

Cutting

The sample alloy melts solidified before reaching the bottom of the mold, causing each end of the
solidified alloy cylinder to be rounded. This section of the sample was cut off by a diamond tipped
blade. From the remaining cylinder, a three millimeter thick disc was cut (Fig. 2). These cylindrical
samples are weighed and placed into new glass vials marked with their respective mass.

Cut along these surfaces

7mm
2mm TH 2 A i
)
) 1 )
Remaining cylinder after 2mm thick circular disc 2 mm thick
cutting the head semicircular disc

Fig. 2 Cutting the cast alloy rod

Solutionizing treatment

The solutionizing treatment was performed in a horizontal tube furnace. There was a 10 centimeter
wide hot zone in the middle of the furnace. The samples were placed separately on AlbO3 plates
and annealed for 30 minutes at 1250 °C in the hot zone with forming gas (98%Argon +
2%Hydrogen) flowing. After annealing for 30 minutes, the plate with samples was pulled out with
a metal bar and quenched into cold water. The time from pull out to quench was less than 5 seconds.
Samples were then dried and cleaned before weighing to distinguish them and placed back into
corresponding vials.

Thermomagnetic treatment
Thermomagnetic treatment was performed in a vertical furnace in the center of a superconducting
magnet (Fig.3). Three thermocouples (#1, #2, and #3) were used for monitoring temperature.

o

Furnace Sample

Sample holder
with 8 sites

36 cm

|+ —[n=sr

|

Fig.3 A schematic image of the facilities for the thermomagnetic treatment
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Thermocouples #1 and #2 were fixed ~3 millimeter away from the samples, while #1 was used to
gather data for the computer and #2 to control the furnace automatically to get the temperature we
want; #3 was fixed between the metal shell and the ceramic core for the safety of the furnace.

The samples were fixed with their long axis aligned with the magnetic field in the center of the
magnet (Fig.4). The uniform zone of magnetic field was 36 cm from upper surface of the
magnet, so the samples were fixed in that zone. When the samples were installed well,
thermomagnetic treatment was initiated and was divided into 6 steps as follows:

1) Ramp up the magnet to 3 T (2 hour)

2) Heat up the furnace to 800 °C (35 min)

3) Anneal the samples for 10 min at 800 °C in 3 T magnetic fields when the temperature is

stable at 800 °C. (Total time is around 20 min, see Fig. 4)

4) Cool down the furnace to lower than 200 °C (around 4 hour)

5) Ramp down the magnet to 0 T (2 hour)

6) Remove the sample

Temperature
900 _ t=10 t=20 —— Linear Fit of Sheet1 Temperature

Equation y=a+tbx
Weight No Weighting

fffffff
Pearson’s 1 -0.99908
Adj. R-Square 099816

Value Standard Error
Temperaure  Intercept 925.86671 0.224
Slope -6.01884 0.00572

Temperaturs

Temperature (C)
©~
3
1 )

+—
0 50 100 180 200 250 300 350 400

Time (Min)

Fig.4 Temperature vs time during thermomagnetic treatment

5. SQUID test

The magnetic results are tested with SQUID. The sample was mounted with GE7031 varnish at
the designated spot in the brass sample holder. After drying 90 min with a drying gun, sample
holder was installed into the chamber of SQUID and the test was started. The changing process of
the magnetic field was from zero Tesla to 3T then to -3T and then back to 3T again. We obtained
a magnetic hysteresis loop from this in which x axis is the moment and y axis is the field strength.

6. Calculation
We could only obtain He (Oe), Mr (emu), Ms (emu) in CGS unit system from the loop, so we
needed to calculate and convert all results into SI unit system.
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Results of the Combined Computational-Experimental Iterative Design
Results of this mixed computational-experimental approach when designing and experimentally
verifying candidate alloys, are presented in the next few figures and in Tables 1, 2 and 3 that
provide details important to understand the numerical values used in this work.

Table 1: Quantities to be simultaneously extremized using multi-objective optimization

Properties Units Objective
1 | Magnetic energy density ((BH)max) kg m' s Maximize
2 | Magnetic coercivity (Hc) Oersted Maximize
3 Magnetic remanence (B;) Tesla Maximize
4 Saturation magnetization (Ms) Emu/g Maximize
5 Remanence magnetization (M;) Emu/g Maximize
6 | (BH)max/mass m! s Maximize
7 | Magnetic permeability (u) kg m A?s? | Maximize
8 Cost of raw material (cost) $/kg Minimize
9 Intrinsic coercive field (jH.) Am’! Maximize
10 | Density(p) Kg m? Minimize

Table 2: Concentration bounds used for optimization of AINiCo type alloys

Alloys number 1-85 | 86-143 |  144-173
Alloying elements | Concentration bounds (wt. percent)

Cobalt(Co) 24-40 |[24-38 |22.8-39.9
Nickel (Ni) 13-15 | 13-15 | 12.35-15.75
Aluminum (Al) 7-9 7-12 |6.65-12.6
Titanium (T1) 0.1-8 |4-11 |3.8-11.55
Hafnium (Hf) 0.1-8 ]0.1-3 [0.095-3.15
Copper (Cu) 0-6 0-3 0.4-5
Niobium (Nb) 0-2 0-1 0-1.5
Iron (Fe) Balance to 100 percent

Table 3: Design cycle and alloy number

Cycle Number of alloys | Best alloy in
number designed the cycle
1 1-80 #30
2 81-85 #84
3 86-90 #86
4 91-110 #95
5 111-120 #117
6 120-138 #124
7 139-143 #139
8 144-150 #150
9 150-160 #157
10 160-165 #162
11 166-173 #169
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In this project, we have worked through 11 iterative cycles of design and optimization, each of
them including its own experimental validation as follows.

1.

Cycle 1 (Alloys 1-80): Initial alloy compositions were predicted by Sobol’s algorithm
[42] and the initial set of 80 elements was chosen for manufacture and testing. Thereafter,
we proceeded further with design and optimization with the goal of improved results.

Cycle 2 (Alloys 81-85): One of the predicted alloys (alloy 84) outperformed the initial
set of alloys as well as the other Pareto-optimized predictions. This demonstrates the
efficacy of the current approach and we moved forward with the objective of further
improvements. The variable bounds were updated. New bounds (for alloy 86-90) are
listed in Table 3.

Cycle 3 (Alloys 86-90): Alloy 86 was the best candidate in this set. Measured properties
of the new set (alloy 86-90) were in the vicinity of the previous pool of alloys. One of
the reasons for this can be non-uniform distribution of alloying elements in the variable
space. Since, there was no significant improvement; next set of alloys were predicted by
Sobol’s algorithm so as to provide additional support points in the variable space for
development of response surfaces with improved accuracy.

Cycle 4 (Alloys 91-110): Alloy 95 was the best performer in this group. Our approach of
providing more support points for the response surfaces proved helpful in the
improvement of properties. Alloy 95 had an Hc¢ of 980 Oe (aga