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Statement of Objectives 
A novel methodology was proposed for predicting concentration of each of the alloying elements 
in magnetic alloys so that the new alloys will have simultaneously maximized: 
- energy density (BHmax) 
- magnetic remanence (Br) 
- intrinsic coercivity (Hc) 
while minimizing the concentration of rare earth elements and other expensive elements. 
Computational effort on this project was to be performed at Florida International University. 
Experimental effort was to be contracted and performed at North Carolina State University. 
The proposed optimization method is based on combining NCSU’s experimentally obtained 
multiple properties of the magnetic alloys and FIU’s computational hybrid multi-objective 
constrained optimization algorithms augmented with modeFrontier optimization software, 
response hypersurface-based metamodels and a modified version of a method of Indirect 
Optimization based upon Self-Organization. These optimization algorithms allow for 
concentrations of a large number of alloying elements to be optimized so that several physical 
properties of the alloy are simultaneously either minimized or maximized, while satisfying a finite 
number of equality and inequality constraints. During the iterative computational design process 
at FIU, optimal chemical concentrations of a small set of new magnetic alloys will be periodically 
predicted. These optimized alloys will then be manufactured and experimentally evaluated for their 
multiple physical properties at NCSU in order to continuously verify the accuracy of the entire 
design methodology. This approach will result in a Pareto optimal set of chemical concentrations 
of alloying elements that will produce the best tradeoff magnetic alloy compositions. This design 
method enables significant minimization of the number of expensive and time-consuming 
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experimental evaluations. The proposed research will result in a robust, rigorous and affordable 
tool for the design optimization of magnetic alloys that use either minimum or none of the rare 
earth elements and that are unattainable by any other means in existence at the present time. 
 

Summary of Significant Results 
This work effectively demonstrated and confirmed the validity of a novel approach to design and 
optimization of rare-earth free magnetic materials for targeted properties by using various 
computational and statistical tools in combination with a relatively small number of experimental 
confirmations. The focus of research during this three-year effort was on multi-objective design 
optimization of proper concentrations of eight alloying elements constituting a broader family of 
AlNiCo type alloys that are known to retain their magnetic properties at elevated temperatures and 
that are valued for their strong anti-corrosive property, ductility and tensile strength. The objectives 
were to simultaneously maximize (in the Pareto-optimality sense) three of the most important 
magnetic properties of such alloys: magnetic energy density, magnetic coercivity and magnetic 
remanence. Initial compositions of candidate alloys were generated using a quasi-random 
sequence generation algorithm. These randomly generated alloy compositions were then 
manufactured and experimentally evaluated for the desired magnetic properties. Response surface 
methodology approach was used to develop meta-models to efficiently link chemistry of these 
alloys with values of their macroscopic properties. The most accurate meta-models were used for 
multi-objective optimization of desired properties by utilizing various evolutionary approaches. It 
was demonstrated that the proposed alloy design methodology is able to successfully and rapidly 
recover from the initial flaws resulting from random experimentation, which would have been 
impossible when using standard alloy design methods. 
Various statistical tools and pattern recognition techniques were used to determine patterns and 
correlations within the created dataset. Pareto-optimized candidate alloys were experimentally 
validated and used to improve the accuracy of the response surface generation. Multi-objective 
optimizers were then used on these response surfaces to find the next generation of Pareto-optimal 
alloys. Results over the cycles show significant experimentally verified improvement in the 
properties of these alloys. Specifically, the resulting Pareto-optimized alloy compositions rival 
macroscopic magnetic properties of commercial AlNiCo alloys, but have different chemical 
concentrations, thus, suggesting that optimization algorithms are capable of exploring yet 
unexplored domains of the design space. Sensitivity analysis also revealed that certain alloying 
elements have negligible influence on magnetic properties of the alloy and could be replaced by 
some of the affordable and readily available rare-earth elements. Finally, besides its robustness, 
versatility and computational efficiency, this magnetic alloy design methodology has an implicit 
continuous experimental verification built in and it requires minimal number of candidate alloys 
to be manufactured and tested, thus, making general alloy design affordable and fully verified. 
 

Background and Basics of Magnetism 
Rare Earth Element (REE) based magnets [1] have a very high magnetic energy density ((BH)max). 
This means that it is possible to synthesize smaller magnets while maintaining the superior 
magnetic properties. These magnets also have higher coercivity (Hc), making it difficult to 
demagnetize under external magnetic fields. Neodymium magnets are the strongest available 
magnets in this family. However, Nd-Fe-B (Neodymium-Iron-Boron) performs the best up to 150 
°C. From 150 °C to 350 °C, Sm-Co (Samarium-Cobalt) magnets are used. These magnets usually 
need a protective coating in order to prevent corrosion. REE-based magnetic materials are essential 
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in electric cars, in wind turbine electric generators, and any high-efficiency electric devices 
requiring magnetic fields. Hence, REEs are classified as strategic materials [2] determining which 
national economies will survive and prosper in the post-combustion-engine era. Most of the rare 
earth elements used for synthesizing these magnets are located in China and the Russian federation. 
Due to depleting resources and stringent trade rules from the suppliers, it is important to look at 
other options to synthesize these magnets [3]. 

AlNiCo magnets [4] are permanent magnetic alloys based on the Fe-Co-Ni-Al system without 
REEs. AlNiCo magnets have high Br values, comparable to REE magnets. AlNiCo magnets have 
lower Hc values and can be demagnetized in the presence of an external magnetic field. Low Hc 
can be helpful as these magnets can be easily magnetized to saturation. A high Br and low Hc value 
can be properly exploited to cast this magnet in complex shapes while magnetizing it in the 
production heat treatment stages. AlNiCo magnets possess excellent corrosion resistance and high-
temperature stability. These are the only magnets that are stable up to 800 °C (Curie temperature). 
Above-mentioned properties have been successfully exploited by researchers in the past and are a 
perfect choice for military and automotive sensor applications. Thus, any improvement in the 
existing properties of AlNiCo alloys will be helpful in covering the gap between the magnetic 
properties achieved by AlNiCo and REE based magnets. 

In the present research work, a novel approach is presented for creating computational tools for 
design and multi-objective optimization of permanent magnetic alloys. The proposed research 
combines a number of numerical design optimization algorithms with several concepts from 
artificial intelligence and experimentally evaluated desired properties of an affordable set of 
candidate alloys. These alloys were further screened by various statistical tools in order to 
determine any specific trend in the data. This information will be helpful to the research 
community in developing a material knowledge base for the design of new alloys for targeted 
properties. 

At present, researchers around the globe are working on designing magnetic alloys that will be 
able to cover the gap between the properties achieved by AlNiCo magnets and the rare-earth 
magnets, basically by adding a small amount of those rare-earth elements that are less critical in 
the sense of supply [5,6]. Sellmyer et al. [7] worked on a few rare-earth free alloys. Zhou et al. [8] 
manufactured a few commercial AlNiCo alloys to demonstrate the scope of improvement in this 
field. The difference between the theoretically calculated and the experimentally measured 
properties was quite large for both ((BH)max) and Hc. Thus, random experimentation may prove to 
be both expensive and time-consuming. 

Designing a new alloy system is a challenging task mainly due to a limited experimental database. 
In order to develop a reliable knowledge base [9] for design of new alloys, one needs to focus on 
determining various correlations (composition-property, property-property, and composition-
composition) from the available databases (simulated and experimental). This information can be 
coupled with the theoretical knowledge (atomistic and continuum based theories) to develop the 
knowledge base. Integrated Computational Materials Engineering (ICME) approach [10] and 
materials genome initiative highlighted the importance and growing application of computational 
tools in the design of new alloys. In recent years, various data-driven techniques combined with 
evolutionary approaches [11,12] have been successfully implemented in the direct alloy design. 
The alloy design optimization method presented in this document was developed by the Principal 
Investigator during the previous decade and applied to design optimization of H-type steels, Ni 
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based superalloys, Hf based bulk metallic glasses, Al based alloys and Ti based alloys [13-23]. It 
is capable of exploring new alloys with chemical concentrations outside of the initial experimental 
data set. Dulikravich also demonstrated an inverse alloy design method [24] where multiple 
macroscopic properties of an alloy family are specified. The corresponding ranges of 
concentrations of each of the alloying elements are then determined that will produce the specified 
magnitudes of macroscopic properties. Improving thermodynamic databases such as Thermocalc 
[25] for alloy development has also been pursued. Jha et al. [26,27] demonstrated the scope of use 
of these databases for designing Ni-based superalloy and Rettig et al. [28] performed a few 
experiments to confirm his findings. Data mining approaches such as Principal Component 
Analysis (PCA) and Partial Least Square (PLS) regression have also been successfully used in 
designing new alloys [29,30]. Additionally, various machine-learning algorithms have been used 
to address a vast range of problems in materials design [31,32]. These applications demonstrate 
the diversity and efficacy of application of computational tools for materials design. 

Mishima in Japan [4] first discovered AlNiCo magnets in 1931. Initially, it belonged to the Fe-Co-
Ni-Al quaternary system. Magnetic properties in these magnets were attributed to the presence of 
a two-phase system, α1 and α2, of Body Centered Cubic (BCC). It was later observed that separation 
of α1 and α2 phases is due to a metallurgical phenomenon popularly known as spinodal 
decomposition. Phase α1 is Fe-Co rich ferromagnetic phase and α2 is Ni-Al rich phase. Phases α1 
and α2 are stable up to 850 ºC that is just below the Curie temperature, which is about 860 ºC. 
Above 850 ºC, Face Centered Cubic (FCC) γ phase begins to appear and it was observed in a few 
samples [33]. Gamma phase must be avoided, as it is detrimental for magnetic properties. Various 
attempts (such as modification of heat treatment protocol and addition of various alloying 
elements) have been made to stabilize the magnetic α1 and α2 phases and simultaneously eliminate 
or reduce the amount of γ phase. In the past few decades, (especially after the discovery of 
powerful REE-based magnets in 1980’s), there has been limited research on AlNiCo magnets. 
Recent rise in prices of rare earth elements led to the search for rare-earth free magnets. In recent 
years, AlNiCo magnets are again a popular choice for research mainly due to their proven high-
temperature stability and related properties at an affordable cost [34]. 

Currently, AlNiCo alloys are not limited to quaternary systems and may contain eight or more 
elements [4,11,12,27,35]. In this work, we selected 8 elements namely Iron (Fe), Cobalt (Co), 
Nickel (Ni), Aluminum (Al), Titanium (Ti), Hafnium (Hf), Copper (Cu) and Niobium (Nb). 
Variable bounds of these elements have been tabulated in Table 1. From both experimental as well 
as the modeling point of view, it will be helpful to discuss the role of these alloying elements. This 
information can be utilized to select meta-model for targeted properties. This will be helpful in 
developing a knowledge base for discovery of new materials and/or improving properties of 
existing materials. 

As shown in Figure 1, magnetic energy density ((BH)max) is mathematically the area of the largest 
rectangle that can be inscribed in the second quadrant of B-H curve [36]. Since, Hc and Br are 
conflicting; one has to sacrifice on one of these properties to improve the other property. Therefore, 
in order to increase (BH)max, one needs to optimize Hc and Br. 
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Fig. 1   B-H curve: shows relation between Hc, Br and ((BH)max) [36]. 

 
It is helpful at this point to recall the basic symbolism and relations used in magnetism. 

( )MHB +µ= 0  magnetic flux density, kg A-1 s-2 

MBH −
µ

=
0

 magnetic field intensity in a magnetizable medium, A m-1 

Mm magnetization per unit volume due to rotation of charged particles, A m-1 
Mp intrinsic or natural magnetization per unit volume, A m-1 
M=Mm+Mp total magnetization per unit volume, A m-1 

0

0

µµ
µµµ

−
=m  magnetization magnetic permeability, kg m A-2 s-2 

µ  magnetic permeability coefficient, kg m A-2 s-2 
7

0 104 −×= πµ  magnetic permeability coefficient of vacuum, kg m A-2 s-2 

0r µµµ /=  relative magnetic permeability 
1r −= µχm  magnetic susceptibility 

The magnetization vector, M, and magnetic field vector, B, are often combined to form the 
magnetic field strength vector, H [37].  

)+(=( pm MH)MMHB oo μμ ++=   (1) 
 
Hence 
 

MBH −=
oμ

  (2) 
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For linear materials that do not contain ordered paramagnetic ions, magnetization, M, is typically 
related linearly to magnetic field strength, H, [38] in a similar way that polarization, P, is related 
to electric field, E.  
 

HM mχ=  (3) 
 
Combining Eq. 2 and Eq. 3 gives a popular relation 
 

( ) HHHB μμμχμ romo ==+= 1  (4) 
 
where rµ is the relative permeability of the media [39]. 
Ms is saturation magnetization, which is an important property for materials researchers to 
evaluate any magnet. 
Mr is remanence magnetization which is the magnetization when H = 0. 
Br is the remanence magnetic flux density, B, when H = 0, so Br = µο Mr 

 
The following text will provide the reader with a brief idea regarding the role of various alloying 
elements used in this research effort and its effect on Hc and Br [33]. 

Cobalt: It is a γ stabilizer. A solutionization anneal is needed to homogenize it to a single α phase. 
Cobalt increases coercivity and Curie temperature. 

Nickel: It is also a γ stabilizer. Hence, solutionization anneal temperature needs to be increased in 
order to homogenize it to a single α phase. Nickel increases Hc (less than Cobalt) while 
decreases Br. 

Aluminum: It is an α stabilizer. It will be helpful in reducing the solutionization anneal 
temperature. Aluminum is expected to affect Hc positively. 

Copper: It is an α stabilizer. Research shows that Copper affects Hc and Br positively and increases 
it. In AlNiCo 8 and AlNiCo 9 alloys, Cu precipitates out of the α2 phases into particles and is 
responsible for the magnetic separation between α1 and α2 phases. An increase in these phase 
separation leads to an increase in Hc. 

Titanium: It is an α stabilizer and one of the most reactive elements. It reacts with impurities such 
as C, S, and N and purifies the magnet by forming precipitates with these elements. It helps in 
grain refining but it is detrimental for columnar grain growth. S and Te additions can help in 
regaining grain growth capabilities. Majority of grains are aligned perpendicular to the chill 
plate due to columnar grain growth and large shape anisotropy can be achieved if spinodal 
decomposition occurs in this direction. Titanium increases Hc at the expense of Br [40]. 

Niobium: It is an α stabilizer. It forms precipitate with Carbon. Carbon is a strong γ stabilizer and 
needs to be eliminated. Like Ti, Nb also inhibits columnar grain growth. Nb increases Hc, at 
the expense of Br [41]. 

Hafnium: It is used for enhancing high-temperature properties. It precipitates at the grain boundary 
and helps in improving creep properties. Recent studies related to Co-Hf magnets [7], 
motivated us to use Hf in this work. 
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A Concept of Iterative Computational-Experimental Design of Magnetic Alloys 
A multi-dimensional random number generation algorithm [42] was used to distribute chemical 
concentrations of each of the alloying elements in the candidate alloys as uniformly as possible 
while maintaining the prescribed bounds on the minimum and maximum allowable values for the 
concentration of each of the alloying elements. The generated candidate alloy compositions were 
then examined for phase equilibria and associated magnetic properties using a thermodynamic 
database in the desired temperature range. These initial candidate alloys were manufactured, 
synthesized and tested for desired properties. Then, the experimentally obtained values of the 
properties were fitted with a multi-dimensional response surface. The desired properties were 
treated as objectives and were extremized simultaneously by utilizing a multi-objective 
optimization algorithm that optimized the concentrations of each of the alloying elements. This 
task was also performed by another conceptually different response surface and optimization 
algorithm for double-checking the results. A few of the best predicted Pareto optimal alloy 
compositions were then manufactured, synthesized and tested to evaluate their macroscopic 
properties. Several of these Pareto optimized alloys outperformed most of the candidate alloys on 
most of the objectives. This proves the efficacy of the combined meta-modeling and experimental  
 
In this alloy design optimization methodology, the user must specify the minimum and maximum 
expected concentrations of a finite number of the most important alloying elements. For example, 
if the number of such elements in an alloy is 8 (e.g., Fe, Co, Ni, Al, Ti, Hf, Cu, Nb) and the number 
of simultaneous objectives is 3 (e.g., maximize magnetic energy density (BH)max, magnetic 
remanence (Br) and magnetic intrinsic coercivity (Hc)), from experience with design optimization 
of Ni-base superalloys [16,18] and bulk metallic glasses [19-21] it is expected that an initial 
database of concentrations of approximately 80 alloys will need to be developed by utilizing 
Sobol’s algorithm [42] to semi-randomly distribute the chemical concentrations of these alloys. 
The use of Sobol’s algorithm is very helpful in distributing the initial concentrations in the best 
possible way so that the consequent multi-dimensional response surface fitting will be maximally 
accurate with the minimum number of available experimentally evaluated alloys. These 80 initial 
alloys must then be manufactured by casting them in an identical manner, thus avoiding variability 
in the manufacturing process. These casts should then be experimentally tested for the specified 
number of macroscopic properties (simultaneous objectives).  
 
This information is then used for building approximation functions (multi-dimensional response 
surfaces) [43], which will further be enriched by the optimization code using modified radial basis 
functions and multiple artificial neural networks. These approximation functions are then 
optimized using a multi-objective evolutionary optimization algorithm. In this work, three multi-
objective optimization algorithms were used: modeFrontier [44], IOSO [45] and MOHO [43]. At 
each optimization iteration, a multi-criterion optimization task with a specified number of Pareto 
front optimal points (for example, 10) needs to be solved. The results of this complex numerical 
optimization process will be chemical concentrations of the alloying elements in these 20 new 
alloys which the optimization algorithm predicted as belonging to the non-dominated Pareto 
optimal front, while accounting for a specified level of uncertainty of alloy casting and testing. 
Since the multi-dimensional response surfaces are fitted using a large number of points created by 
the artificial neural networks and the radial basis functions instead of exclusively experimental 
data, the initial accuracy of the fit of the response surface will be relatively low. Consequently, it 
could be expected that not all of the 10 new optimized alloys are actually superior to all of the 
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initial 80 alloys. To clarify this point, these 10 optimized alloys then need to be manufactured and 
experimentally evaluated for the multiple properties. This concludes the first design iteration. The 
second iteration starts by using all (80 + 10 = 90) experimentally evaluated alloys. The response 
surface building, enrichment, and optimization process is then repeated using these 90 data points 
with the same multiple objectives. Again, say, 10 new Pareto-optimal alloys are found by searching 
these improved response surfaces. These 10 newly Pareto-optimized alloys then need to be 
manufactured and experimentally tested to confirm that most of them are better than any of the 90 
alloys used in the second iteration of the design optimization process. The third iteration then starts 
with all accumulated experimentally tested alloys (80 + 10 + 10 = 100), repeats all optimization 
steps, and results in a new set of optimized alloys. The entire iterative process continues typically 
5-10 cycles until the Pareto front sufficiently converges.  
 
A sensitivity analysis of each of the alloying elements was also performed to determine which of 
the alloying elements contributes the least to the desired macroscopic properties of the alloy. These 
elements can then be replaced with other candidate alloying elements such as not-so-rare earth 
elements. 
 

Summary of Multi-Objective Optimization Concepts and Metamodels 
The multi-objective optimization extremizes simultaneously a vector of n objective functions 

 
Fi( X )          for i = 1, ... n (5) 
 

subject to a vector of m inequality constraints 
 
gj( X ) ≤  0           for j = 1, ... m (6) 
 

and a vector of k equality constraints 
 

hq( X ) = 0          for q = 1, ... k (7) 
 
where X  is a vector of design variables that need to be optimized so that a vector of objective 
functions is simultaneously extremized. 
 
In general, the solution of this problem is not unique, since each objective would like to attain its 
own extremum. With the introduction of the Pareto dominance concept [46] the possible solutions 
are divided in two subgroups: the dominated and the non-dominated. The solutions belonging to 
the second group are the "efficient" or the “best trade-off” solutions, that is, the ones for which it 
is not possible to improve any individual objective without deteriorating the values of at least some 
of the remaining objectives.  

 
Metamodels and Multidimensional Design Spaces 
In many optimization problems, evaluation of the objective function is extremely expensive and 
time-consuming. For example, optimizing chemical concentrations of each of the alloying 
elements in a multi-component alloy requires manufacturing each candidate alloy and evaluating 
its properties using classical experimental techniques. Even with the most efficient optimization 
algorithms, this means that often thousands of alloys having different chemical concentrations of 
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their constitutive elements would have to be manufactured and tested. This is understandably too 
expensive to be economically acceptable. 
 
Therefore, for problems where objective function evaluations are already expensive and where the 
number of design variables is large and thus requires many such objective functions evaluations, 
the only economically viable approach to optimization is to use cheap and accurate surrogate 
models (metamodel) instead of the actual high-fidelity methods for evaluation of the objective 
functions. Such low-fidelity surrogate models are known as response surfaces [43,47] which, in 
case of more than three dimensions, become high-dimensional hypersurfaces that need to be fitted 
through the available, often small, original set of high-fidelity values of the objective function. 
Once the response surface (hypersurface) is created using an appropriate analytic formulation, it 
is very efficient to search such a hypersurface for its minima given a set of values of design 
variables supporting such a response surface. 
 
One of the most popular mesh-free kernel approximation techniques is radial basis functions 
(RBFs). Initially, RBFs were developed for multivariate data and function interpolation. It was 
found that RBFs were able to construct an interpolation scheme with favorable properties such as 
high efficiency, good accuracy [47] and capability of dealing with scattered data, especially for 
higher-dimension problems. A convincing comparison [43] of a RFB-based-response surface 
method and several other popular methods demonstrated superiority of optimized RBF 
polynomial-based methods. 

 
A Step-by-Step Iterative Design of Magnetic Alloys 

We used a set of computational tools to develop a novel approach for design and optimization of 
high-temperature, high-intensity magnetic alloys. The steps involved in the proposed approach can 
be listed as follows: 

1. Initial dataset: From our own expertise and the open literature, we defined the variable 
bounds of eight alloying elements that are to be used for the manufacture of magnets. 
One of the best-known quasi-random number generators, Sobol’s algorithm [42], was 
used to generate chemical concentrations for an initial set of 80 candidate alloys. These 
alloys were screened on the basis of limited knowledge of phase equilibrium and 
magnetic properties from a commercial thermodynamic database, Factsage [48]. 

2. Manufacture and testing: These alloys were synthesized and tested for various properties 
of interest as shown in Table 3. 

3. Response surface generation: This data was used to link alloy composition to desired 
properties by developing response surfaces for those specific properties. A commercial 
optimization package, modeFRONTIER [44] was used for this purpose. Response 
surfaces were tested on various accuracy measures and the most accurate one was chosen 
for further study. Various approaches [43] were used to develop response surfaces. These 
include Radial basis functions (RBF), Kriging, Anisotropic Kriging, and Evolutionary 
Design. 

4. Multi-objective optimization: Response surfaces selected above were used to extremize 
the select macroscopic properties. It was observed that most of the optimization tasks 
yielded alloys with a similar chemical composition for a set of objectives. Hence, several 
optimization runs were performed to get a diverse pool of results. Various optimization 
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algorithms were used for this purpose. They include Non-dominated Sorting Genetic 
Algorithm II (NSGA2) [46], Multi-Objective Particle Swarm Optimization (MOPSO), 
Multi-Objective Simulated Annealing (MOSA) and FAST optimizer which uses 
response surface models (meta-models) to speed up the optimization process using search 
algorithms such as NSGA2, MOPSO, MOSA [44]. 

For the purpose of self-evaluation, this work was independently carried out at three different 
places using modified versions of these software packages: 

a. Commercial optimization package, Indirect Optimization based on Self-
Organization (IOSO) algorithm [45] was used because of its known robustness. 

b. Hybrid response surface [43,47] was used because of its robustness, accuracy and 
computational efficiency. Multi-objective optimization was performed by Non-
Dominated Sorting Genetic Algorithm (NSGA2) [46]. 

c. Surrogate model selection algorithm [43] was used because of its robustness and 
simplicity. 

Pareto-optimized predictions from the above optimization packages were merged. From this set, 
we selected a few alloys for further manufacture and testing. 

5. The work has been performed in cycles. Steps 2-5 were repeated until the improvements 
of multiple macroscopic properties of these magnetic alloys became negligible. 

6. Sensitivity analysis: Various statistical tools were used to determine composition-
property relations. This was done in order to find influential alloying elements for 
development of knowledge base. At the same time, the sensitivity analysis also helps in 
finding the least influential alloying elements that could be discarded to make way for 
introduction of affordable and readily available rare-earth elements. 

This work will help in developing a knowledge base that will be useful to the research community 
in designing new alloys. In data-driven material science, knowledge discovery [9] for designing 
new materials requires: 

a) Data: In this work, our database was a combination of experimentally verified data 
and Pareto-optimized predictions. 

b) Correlations: Various linear and nonlinear correlation, clustering, and a principal 
component analysis tools were used to discover various trends in the dataset. 

c) Theory: The above information can be coupled with theoretical knowledge to 
motivate the experimentalist to modifying standard manufacturer protocol for design 
of new alloys. 

 
Summary of Experimental Work Performed by a Sub-Contractor (NCSU) Team 

This project was to apply materials-by-design approach for magnetic materials without rare earths 
that iterates between computational optimization and experimental synthesis/property study, 
where computational multi-objective optimization drives experiments. AlNiCo alloys were chosen 
because of their low cost, acceptable permanent magnetic properties and especially the high 
temperature for applications (~400 0C). 
Standardized procedures used during experimental work and testing performed at NCSU were: 
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Raw materials and weighing (All raw materials were from Alfa Aesar®) 
 

Element Symbol Specification 

Iron Fe Iron granules, 1-2 mm (0.04-0.08 in), 99.98% (metals basis) 

Cobalt Co Cobalt pieces, 99.9+% (metals basis) 

Aluminum Al Aluminum slug, 1.98 mm (0.078 in) dia x 8.0 mm (0.315 in) 
length, 99.99% (metals basis) 

Nickel Ni Nickel slug, 3.175 mm (0.125in) dia x 3.175 mm (0.125in) length, 
99.98% (metals basis) + 50 mmX50 mm, Nickel foil, 0.1 mm 
(0.004 in) thick, 99.5% (metals basis) 

Titanium Ti Titanium granules, -15 mesh, 99.9% (metals basis excluding Na 
and K), 10g 

Copper Cu Copper shot, 0.8-2 mm (0.03-0.08 in), 99.5% (metals basis), 100 g 

Hafnium Hf Hafnium wire, 0.5 mm (0.02 in) dia, 99.95% (metals basis 
excluding Zr), Zr nominal 3%, 100 cm 

Niobium Nb Niobium wire, 0.5 mm (0.02 in) dia, 99.96% (metals basis 
excluding Ta), 100 cm 

  
According to the weight ratio of each element supplied by FIU, the mass of each element was 
calculated while the total mass for each sample was 5.1 gram. The reason for 5.1 grams was that 
the same mass was used to prepare ball-milling samples. Each alloying element was well stored 
and weighed out to within 0.001 grams in a glove box filled with high purity Argon (< 1 ppm 
oxygen). Each weighed sample was placed into glass vials within an Argon atmosphere. 
  
Casting 
Casting was performed with an arc melter. After weighing each of the eight elements, the sample 
was placed on copper hearth in the arc melter. The chamber of the arc melter was evacuated and 
refilled with argon three times to prevent oxidation. The chamber was refilled when the pressure 
reached 40 millitorr. After the third refill, the working pressure was set at 10 mmHg vacuum. The 
electric arc power was set to ~130 amps. If the sample was hard to melt after a few seconds, the 
power was increased to ~145 amps. With the power supply and water cooler on, the electric arc 
was started by making contact between the electrode tip and the tungsten pin. A small piece of 
titanium was melted first in order to react with any remaining oxygen. 
 
During the initial arc melting, the goal was to melt the sample and form a single piece of alloy. 
After five to ten seconds of arc melting, the sample was left to cool for approximately two minutes. 
Then, it was safe to refill the pressure to 1 atm and open the arc melter. When a single piece of 
alloy was formed, the sample was flipped and the process of evacuating three times and melting 
was repeated two more times which includes flipping the sample after each time being melted. 
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After flipping and melting twice, the hearth is tilted to an angle of approximately 45 degrees and 
the sample is moved to the far right of the copper hearth where there is a notch that allows the 
sample to be cast. At this angle, when the sample is melted, it will pour into the copper mold and 
form a seven millimeter diameter cylinder. After casting, the samples were re-weighed to account 
for any alterations from the treatments.  
 
Cutting 
The sample alloy melts solidified before reaching the bottom of the mold, causing each end of the 
solidified alloy cylinder to be rounded. This section of the sample was cut off by a diamond tipped 
blade. From the remaining cylinder, a three millimeter thick disc was cut (Fig. 2). These cylindrical 
samples are weighed and placed into new glass vials marked with their respective mass. 
 

Cut along these surfaces 

 
Remaining cylinder after 

cutting the head 
2mm thick circular disc 2 mm thick 

semicircular disc 
Fig. 2 Cutting the cast alloy rod 

 
Solutionizing treatment 
The solutionizing treatment was performed in a horizontal tube furnace. There was a 10 centimeter 
wide hot zone in the middle of the furnace. The samples were placed separately on Al2O3 plates 
and annealed for 30 minutes at 1250 0C in the hot zone with forming gas (98%Argon + 
2%Hydrogen) flowing. After annealing for 30 minutes, the plate with samples was pulled out with 
a metal bar and quenched into cold water. The time from pull out to quench was less than 5 seconds. 
Samples were then dried and cleaned before weighing to distinguish them and placed back into 
corresponding vials. 
 
Thermomagnetic treatment 
Thermomagnetic treatment was performed in a vertical furnace in the center of a superconducting 
magnet (Fig.3). Three thermocouples (#1, #2, and #3) were used for monitoring temperature.  
 
 
 
 
 
 
 
 
 
 

Fig.3 A schematic image of the facilities for the thermomagnetic treatment 
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Thermocouples #1 and #2 were fixed ~3 millimeter away from the samples, while #1 was used to 
gather data for the computer and #2 to control the furnace automatically to get the temperature we 
want; #3 was fixed between the metal shell and the ceramic core for the safety of the furnace.  
 
The samples were fixed with their long axis aligned with the magnetic field in the center of the 
magnet (Fig.4). The uniform zone of magnetic field was 36 cm from upper surface of the 
magnet, so the samples were fixed in that zone. When the samples were installed well, 
thermomagnetic treatment was initiated and was divided into 6 steps as follows: 

1) Ramp up the magnet to 3 T (2 hour) 
2) Heat up the furnace to 800 0C (35 min) 
3) Anneal the samples for 10 min at 800 0C in 3 T magnetic fields when the temperature is 

stable at 800 0C. (Total time is around 20 min, see Fig. 4) 
4) Cool down the furnace to lower than 200 0C (around 4 hour) 
5) Ramp down the magnet to 0 T (2 hour) 
6) Remove the sample 

    
Fig.4 Temperature vs time during thermomagnetic treatment 

 
5. SQUID test 
The magnetic results are tested with SQUID. The sample was mounted with GE7031 varnish at 
the designated spot in the brass sample holder. After drying 90 min with a drying gun, sample 
holder was installed into the chamber of SQUID and the test was started. The changing process of 
the magnetic field was from zero Tesla to 3T then to -3T and then back to 3T again. We obtained 
a magnetic hysteresis loop from this in which x axis is the moment and y axis is the field strength.  
 
6. Calculation 
We could only obtain Hc (Oe), Μr (emu), Μs (emu) in CGS unit system from the loop, so we 
needed to calculate and convert all results into SI unit system. 
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Results of the Combined Computational-Experimental Iterative Design 
Results of this mixed computational-experimental approach when designing and experimentally 
verifying candidate alloys, are presented in the next few figures and in Tables 1, 2 and 3 that 
provide details important to understand the numerical values used in this work. 

Table 1: Quantities to be simultaneously extremized using multi-objective optimization 
 Properties Units Objective 

1 Magnetic energy density ((BH)max) kg m-1 s-2 Maximize 
2 Magnetic coercivity (Hc) Oersted Maximize 
3 Magnetic remanence (Br) Tesla Maximize 
4 Saturation magnetization (Ms) Emu/g Maximize 
5 Remanence magnetization (Mr) Emu/g Maximize 
6 (BH)max/mass m-1 s-2 Maximize 
7 Magnetic permeability (µ) kg m A-2 s-2 Maximize 
8 Cost of raw material (cost) $/kg Minimize 
9 Intrinsic coercive field (jHc) A m-1 Maximize 
10 Density(ρ) Kg m-3 Minimize 

 
Table 2: Concentration bounds used for optimization of AlNiCo type alloys 

Alloys number 1-85 86-143 144-173 
Alloying elements Concentration bounds (wt. percent) 

Cobalt(Co) 24 - 40 24 - 38 22.8 - 39.9 
Nickel (Ni) 13 - 15 13 - 15 12.35 - 15.75 
Aluminum (Al) 7 - 9 7 - 12 6.65 - 12.6 
Titanium (Ti) 0.1 - 8 4 - 11 3.8 - 11.55 
Hafnium (Hf) 0.1 - 8 0.1 - 3 0.095 - 3.15 
Copper (Cu) 0 - 6 0 - 3 0.4 - 5 
Niobium (Nb) 0 - 2 0 - 1 0 - 1.5 
Iron (Fe) Balance to 100 percent 

 
Table 3: Design cycle and alloy number 

Cycle 
number 

Number of alloys 
designed 

Best alloy in 
the cycle 

1 1-80 #30 
2 81-85 #84 
3 86-90 #86 
4 91-110 #95 
5 111-120 #117 
6 120-138 #124 
7 139-143 #139 
8 144-150 #150 
9 150-160 #157 
10 160-165 #162 
11 166-173 #169 
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In this project, we have worked through 11 iterative cycles of design and optimization, each of 
them including its own experimental validation as follows. 

1. Cycle 1 (Alloys 1-80): Initial alloy compositions were predicted by Sobol’s algorithm 
[42] and the initial set of 80 elements was chosen for manufacture and testing. Thereafter, 
we proceeded further with design and optimization with the goal of improved results. 

2. Cycle 2 (Alloys 81-85): One of the predicted alloys (alloy 84) outperformed the initial 
set of alloys as well as the other Pareto-optimized predictions. This demonstrates the 
efficacy of the current approach and we moved forward with the objective of further 
improvements. The variable bounds were updated. New bounds (for alloy 86-90) are 
listed in Table 3. 

3. Cycle 3 (Alloys 86-90): Alloy 86 was the best candidate in this set. Measured properties 
of the new set (alloy 86-90) were in the vicinity of the previous pool of alloys. One of 
the reasons for this can be non-uniform distribution of alloying elements in the variable 
space. Since, there was no significant improvement; next set of alloys were predicted by 
Sobol’s algorithm so as to provide additional support points in the variable space for 
development of response surfaces with improved accuracy. 

4. Cycle 4 (Alloys 91-110): Alloy 95 was the best performer in this group. Our approach of 
providing more support points for the response surfaces proved helpful in the 
improvement of properties. Alloy 95 had an Hc of 980 Oe (against 750 Oe for the 
previous best alloy 84).  

5. Cycle 5 (Alloys 111-120): Alloy 117 is the best alloy in this dataset in terms of 
((BH)max). There was a significant improvement in the properties of the new alloys. 
Alloy 111 and 114 had an Hc of 1050 Oe while alloy 117 reported 1000 Oe (against 980 
Oe for the previous best alloy 95). 

6. Cycle 6 (Alloys 121-138): Alloy 124 was the best performer in this group. There was a 
significant improvement in both ((BH)max) and Hc.  

7. Cycle 7 (Alloys 139-143): Alloy 139 was the best performer in this group. Its properties 
were in the vicinity of alloy 124. Since, there was no significant improvement in the 
desired properties; we halted the design and optimization process to perform a sensitivity 
analysis of the variables and associated properties. 

Cycles 8-11 (Alloys 144-173): In these cycles, variable bounds were relaxed by 5 percent while 
the methodology remained the same. 

8. Cycle 8 (Alloys 144-150): Alloys predicted by modeFRONTIER. Marginal improvement 
in Hc was observed, but there was no significant improvement in other properties. 

9. Cycle 9 (Alloys 151-160): Alloys predicted by Surrogate Model (SM) selection 
algorithm. There was no significant improvement in any of the properties. 

10. Cycle 10 (Alloys 161-165): Alloys predicted by modeFRONTIER. Marginal 
improvement in Hc. However, no significant improvement in other properties. 

11. Cycle 11 (Alloys 166-173): Alloys predicted by Hybrid response surface and 
modeFRONTIER. Marginal improvement in Hc was observed, but there was still no 
significant improvement in other properties. 
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This project had two main periods. For the first period (2013-2014), Florida International 
University (FIU) supplied an initial database of 80 alloys and NCSU synthesized & characterized 
these initial 80 alloys and reported the magnetic properties to FIU for composition optimization. 
For the second period (2014-2015), FIU used these results and subsequent results to identify 100 
new alloy compositions, which were synthesized & characterized by NCSU. All of 180 alloys 
(compositions are in the Appendix A) were produced with the standardized procedures.  
 
Using FIU’s multi-objective optimization and statistical tools, the new stoichiometries were 
identified with high Hc and (BH)max. During the first period, max Hc = 600 Oe and max (BH)max = 
0.5 MGOe, while the second period (using standardized processing only) max Hc = 1100 – 1180 
Oe (5 different compositions) and max (BH)max = 1.5 MGOe, demonstrating that this iterative 
combined experimental/computational alloy design approach is effective.  
 
Figures 5, 6 and 7 show the comparison between various approaches for a set of properties. Note 
that (x) symbols were experimental results for the initial 80 alloys having their concentrations of 
alloying elements obtained by using a quasi-random sequence generator [42]. Diamond symbols 
show experimental results for the set of Pareto-optimized alloys predicted by the IOSO optimizer 
based on a response surface created with the initial random 80 alloys. 
 
It can be observed that the alloys predicted by meta-modeling and optimization dominate the ones 
predicted by Sobol’s algorithm [42]. One can observe significant improvement over the cycles. 
Experimentally verified Hc values are at comparable to those in commercial AlNiCo alloys [8]. 
We expect improvement in (BH)max and Br values in the next few cycles. At this point, we have a 
significant amount of experimentally verified data. Hence, we felt the need to perform a sensitivity 
analysis of the response surfaces and look for patterns in the dataset. 
 

 
Fig. 5 Magnetic energy density (BH)max vs. magnetic coercivity (Hc); comparison of solutions 

by various approaches 
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Fig. 6 Magnetic energy density (BH)max vs. magnetic remanence (Br): comparison of solutions 

by various approaches 
 

 
Fig. 7 Magnetic remanence (Br) vs. magnetic coercivity (Hc): comparison of solutions by 

various approaches. 
 
The magnetic properties are driven by microstructure shape anisotropy and spinodal 
decomposition that forms a fine modulated microstructure on nano-scale, which varies from alloy 

DISTRIBUTION A: Distribution approved for public release.



19  

to alloy. Typical samples were characterized by NCSU from micro-scale to nano-scale and finally 
to atomic scale. Some important characterizing results are shown below.  
 
Scanning electron microscope (SEM) images in Fig.8 show the clear difference in morphology 
and white phase between center and outer areas. Table 4 is the energy-dispersive X-ray 
spectroscopy (EDS) results of distribution of elements in these areas with different contrast in 
AlNiCo alloy. The “white” areas are Fe-deficient and Hf and Nb rich so Hf and Nb diffuse to the 
center area during the thermomagnetic treatment in micro-scale. 

Fig.8 Scanning electron microscope (SEM) images viewing along the transverse orientation (// 
the magnetic field): (a) 100x, (b) 500x. 

 
Table 4: Energy-dispersive X-ray spectroscopy (EDS) of distribution of elements in the areas 

with different contrast 
Name Fe Co Ni Al Ti Hf Cu Nb C O 

Targeted 
composition 

32.35 36.85 13.54 7.2 4.11 2.06 2.93 0.93 0 0 

Sample “net”  
(Fig.1 (a)) 

32.09 35.64 11.99 8.76 5.21 0.04 2.56 1.32 1.54 0.86 

Point 1(Fig.1 (b)) 32.5 35.45 14.32 9.67 4.3 0 3.32 0.44 0 0 
Point 2(Fig.1 (b)) 23.88 34.79 14.99 6.85 4.78 7.95 3.77 2.96 0.03 0 
Point 3(Fig.1 (b)) 25.78 34.49 14.43 8.88 4.92 5.89 3.42 2.17 0.03 0 

 
Figure 9 is transmission electron microscopy (TEM) images along transverse (parallel to the 
magnetic field) and longitudinal (perpendicular to the magnetic field) orientations. Along the [001] 
direction, the feature of AlNiCo is observed: α1 phases (light square, hard magnetic phase, mainly 
Fe and Co), α2 phases (dark matrix, soft magnetic phase, mainly Ni and Al) and Cu bridges (red 
arrow); along the [010] direction, needle like α1 is observed.  
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Fig. 9 Transmission Electron Microscopy (TEM) images along (a) transverse (parallel to the 
magnetic field) and (b) longitudinal (perpendicular to the magnetic field) orientations 
 
Figure 10 is the atomic scale characterization that high-resolution high angle annular dark field 
(HAADF) images in [001], [011] and [111] directions. The structure of α2 in this alloy should be 
L21. The position of Al and (Fe, Ti) atoms are set on either the (0, 0, 0) or (1⁄2, 0, 0) sites, 
respectively; Al has a relatively small atomic number, so in the [001] direction, the dark (Al atoms) 
and light (Fe or Ti atoms) spots are alternately observed. In the [011], the rows only fill with Al 
atoms will become unclear in the column of Al, Fe and Ni. In the [111], no obvious difference of 
contrast is observed because Al only occupies ¼ sites.   
 

 
Fig.10 High-resolution high Angle Annular Dark Field (HAADF) images of (a) α1 (light corner) 
and α2 (dark center) in [001]; (b) α1 (light right) and α2 (dark left) in [011]; (c) α1 or α2 in [111]. 
 
Some good results were obtained with thorough research on the Cu-rich bridges of the AlNiCo 
alloys after the thermomagnetic treatment. A manuscript will be submitted soon to a journal. These 
results are important to develop the fundamental understanding of spinodal decomposition and 
structure-composition-magnetic behavior relationships in AlNiCo alloys.  
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α α
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α
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αα
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Results of Statistical Methods Used to Find Trends and Chemistry-Properties Relations 
This was done in order to determine the composition-property relationship. Another purpose was 
to find various trends and patterns within the dataset. Initially, Pearson’s linear correlation method 
was used, which is applicable to linear problems only. It was followed by various approaches to 
determining non-linear trends within a dataset [31]. 

Single Variable Response (SVR) 
This is a methodology that is often applied for qualitative analysis of the training results obtained 
from Evolutionary Neural Network [49] and Bi-Objective Genetic Programming [50,26]. In SVR, 
a trend is created by generating values between zero and one on a time scale. The trend line is 
irregular. Specifically, there are regions of constant values, sharp increases, and sharp decreases 
in the line. This has been referred to as an input signal in the following text. For SVR testing, the 
input signal (a trend of variation) was used for one of the variables while the other variables were 
kept constant at an average value. The various responses were tabulated in Table 5 for each of the 
models. For the responses, the following terminologies were used: 

Dir: This means that the model output increases by increasing the value of an input signal and 
decreases by decreasing the input value. 

Inv: This means that a particular variable increase will cause the property value to decrease and 
vice versa. 

Nil: This means that the model was unable to find any correlation between that particular variable 
and the model output. 

Mix: This means that the model has a different response for a different set of data of any particular 
variable. 

Since, the dataset is quite noisy, the responses were mixed (Table 5). However, a few important 
findings can be listed as follows: 

1)  Copper shows a direct response for Hc and Br. Thus, response surface predictions are of 
comparable accuracy with available results in the open literature. 

2)  Hafnium shows a direct response for Hcand Br. Further experiments/ data analysis are needed 
before reaching a conclusion regarding the effect of Hf on Hc and Br as it has not been 
previously used in AlNiCo alloys. 

3)  Nickel shows response for (BH)max. 
These findings are promising as they mimic the findings from the literature. Hence, meta-modeling 
can prove to be an asset for developing alloys in the future. In order to proceed further, we need to 
evaluate our findings by other data-mining techniques. 
 
Table 5: Single variable response (SVR) for various macroscopic properties of AlNiCo type alloys 

Objective 
No. Properties Variable response 

Fe Co Ni Al Ti Hf Cu Nb 

1 Magnetic energy 
density ((BH)max) Nil Nil Mix Nil Nil Nil Nil Nil 

2 Magnetic coercivity 
(Hc) Mix Mix Mix Inv Mix Dir Dir Mix 

3 Magnetic remanence 
(Br) Mix Mix Mix Inv Mix Dir Dir Inv 

4 Saturation 
magnetization (Ms) Dir Inv Dir Mix Inv Dir Mix Mix 
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5 Remanence 
magnetization (Mr) Nil Nil Nil Nil Nil Nil Nil Nil 

6 (BH)max/mass Nil Nil Nil Nil Nil Nil Nil Nil 

7 Magnetic permeability 
(µ) Mix Mix Mix Mix Inv Mix Mix Mix 

8 Cost of raw material 
(cost) Inv Inv Inv Dir Dir Dir Inv Dir 

9 Intrinsic coercive field 
(jHc) Mix Mix Mix Inv Inv Mix Dir Mix 

10 Density(ρ) Mix Dir Mix Inv Inv Mix Mix Dir 
 

Principal Component Analysis (PCA) 
Principal component analysis can be classified as an unsupervised machine-learning algorithm 
[31,32]. It was performed in order to determine correlations between variables and various 
properties by reducing the dimensionality of the dataset without losing much information. PCA 
uses an orthogonal transformation to convert a set of usually correlated variables (or properties) 
into a set of values of linearly uncorrelated variables known as Principal Components (PCs). 
Hence, each PC is a linear combination of all the original descriptors (variables and properties). 
The first principal component (PC1) accounts for maximum variance in the dataset, followed by 
PC2 and so on [9,44]. Thus, it is possible to visualize a high dimensional dataset by choosing first 
two or three principal components [31,32]. It is also used for identifying patterns in data, as 
patterns may be hard to find in high-dimensional data sets. 

PCA analysis was conducted separately for design variables (alloying elements) and targeted 
properties. For design variables, all the eight elements were included for PCA analysis. We have 
8 design variables, thus there will be maximum of 8 PCs. 

For targeted properties, it can be observed that apart from (BH)max/mass, all other properties were 
measured independently. (BH)max/mass was thus removed from further analysis to reduce 
complexity of the problem. We are left with 9 targeted properties, thus, there will be a maximum 
of 9 principal components. Prior to PCA analysis, three important terms need to be discussed for 
better understanding of the analysis results: 

a) Scree plot: It is a plot between Eigen values and component number. It is an important 
parameter used to select the number of components required to represent the complete 
dataset. Usually, components with eigenvalues above one (1) are chosen for further 
analysis. It can be seen from the figures in the later part that the scree plot usually flattens 
below eigenvalue 1. This means that the later components do not have any significant effect 
on the dataset. Since each successive component accounts for comparatively less variance, 
the least influential components can be ignored from further analysis. 

b) Eigenvalues: are the variances of the principal components.  Principal components analysis 
was conducted on the correlation matrix. Here, the variables were standardized, so that 
each variable has a variance of one, and the total variance is equal to the number of 
variables used in the analysis. Thus, there will be eight PC for elements and nine PC for 
properties. The first component will always account for the most variance (and hence will 
have the highest eigenvalue). Next, components will account for as much of the left over 
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variance as they can. Hence, each successive component will account for comparatively 
less variance (hence less eigenvalues) than the one preceding it.  

c) Component plot: After the required number of components are chosen, these components 
are plotted against each other, while the original variables (or properties) are plotted on this 
reduced space. Orientation of a certain variable (or property) on the reduced space 
determines its contribution towards a certain PC. That is, if the variable is positioned along 
PC1 on the 0-line perpendicular to PC2, this variable will have maximum influence on PC1 
and minimum influence on PC2. This will be better explained with the corresponding 
figures in the latter part of the text. 

In the component plot, the alloys are clustered by K-means clustering method to classify the alloys 
into different clusters. Alloys that belong to the same cluster have the same symbol. A few of the 
best alloys mentioned in Table 5 are plotted in these figures. In these figures, variables (elements) 
are plotted as arrows. Arrows represent the relative contribution of the original variables to the 
variability along the PCs. In these figures, the longer the arrows, the stronger are their 
contributions. Additionally, an arrow orthogonal to a certain PC has null effect on that PC, while 
an arrow that is collinear to a certain PC contributes only to that certain PC. 

We classified the dataset into four sets and performed the PC analysis on individual sets in order 
to extract information from one set and then cross-check it with the findings of other sets. In all of 
these cases, PC1, PC2, and PC3 were able to capture most of the variance of the dataset. Dataset 
was classified as follows: 
a) Experimental: Alloys #1-80 

b) Optimization: Alloys # 81-173 
c) Data categorized based on Multi-Criterion Decision Making (MCDM): 40 alloys were 

selected. 
d) Whole dataset: Alloys # 1-173. 

We used a popular statistical software, IBM SPSS [51], and Multivariate Data Analysis (MVA) 
node in optimization package modeFRONTIER [44] for this work. 

a) Experimental: Alloys 1-80 
These 80 alloys represent the initial set of compositions predicted by Sobol’s semi-random 
sequence generation algorithm [42]. Hence, we did not perform PCA on the elements. Various 
properties were analyzed and reported below. Scree plots were created in order to determine the 
number of effective principal components required to represent the whole dataset. It was found 
that two PCs are able to extract most of the information from the dataset. Figure 13 shows the scree 
plot for the properties, while Figure 14 shows the orientation of various properties in the PC space.  
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Fig. 11 Scree plot for PC analysis:  
Two PC components were chosen 

Fig. 12 Orientation of various properties       
in the PCA space 

 
Figure 12 shows that (BH)max, jHc, Hc, Mr and Br have maximum effect on PC1 while cost and Ms 
has maximum effect on PC2. Density and µ have similar effects on both PC. It can be seen that Hc 
and jHc coincide at the same spot thus Hc and jHc seems to be dependent on each other. It makes 
sense, as one is the inverse of the other. Similarly, Mr and Br can be clustered together and µ and 
density can be taken as another cluster. This means that properties that form a cluster may affect, 
or may be dependent on, each other. Analysis of other datasets will further clarify these findings. 

b) Optimization: Alloys 81-173 
In this data, we went for PC analysis for the elements. From scree plot in Figure 13, it was found 
that three PCs are able to extract most of the information from the dataset. Figure 13 shows the 
scree plot for the elements while Figure 14 shows the position of various elements in the PC space. 

 
 

Figure 13 Scree plot for PC analysis: Three 
PC components were chosen 

Figure 14 Orientation of various elements in 
the PC space 
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In Fig. 14, one can observe that elements have mixed effect on the three selected PCs. Since various 
optimizers and Sobol’s algorithm have predicted these alloys composition, it seems to be properly 
distributed in the variable space. Hence, such a relation can be expected.  
 
Upon close observation, it can be seen that Cu and Hf are close enough to form a cluster. This 
means that Cu and Hf may affect the properties of the alloy in a similar way. From SVR analysis, 
both Cu and Hf showed a direct response for Hc and Br. Hf usually precipitates at the grain 
boundaries and enhances high temperature properties. However, it has been rarely used in AlNiCo 
alloys; hence, this finding can be helpful for the experimentalist to proceed forward for Hf addition 
in AlNiCo alloys. This must be analyzed further in other datasets before moving for microstructure 
analysis. Ni and Al can also be clustered together and seems to have similar effect. This can be 
supported from the literature, as there exists Ni-Al rich phase in these alloys. 
 

 
Fig. 15 Scree plot for PC analysis: Three PC components were chosen 

 

 
Fig. 16 Orientation of various properties in the PC space 
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It was found that three PCs are able to extract most of the information from the dataset. Figure 15 
shows the scree plot for the elements, while Figure 16 shows the position of various properties in 
the PC space. In Fig.16, Hc and jHc are clustered together. It can be seen that Br, Mr, and (BH)max 
can be clustered as well. Br and Mr were clustered in the previous analysis. Hence, these properties 
may be correlated (or dependent) on each other. 
 
c) Data categorized based on Multi-Criterion Decision Making (MCDM): 40 alloys were selected. 
Due to software limitations, we focused on optimizing (BH)max, Hc and Br only. We left the other 
properties of interest though they are quite important for the magnet. In this part, we selected 40 
alloys based on objectives defined in Table 1. We used MCDM methodology to select these alloys.  
 

 
Fig. 17 Scree plot for PC analysis: Three PC components were chosen 

 

 
Fig. 18 Orientation of various elements in the PC space 

 
Based on eigenvalues, three PCs were chosen (Figure 17). Figure 18 shows the orientation of 
various elements on the PC space. Figure 18 supports our finding from the previous set regarding 
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Copper and Hafnium. In this set too, Cu and Hf can be clustered together. Similarly, Ni and Al can 
be clustered together.  
 
Figure 19 shows scree plot for various properties, while Figure 20 shows the orientation of these 
properties in the PC space. In Fig. 20, Mr and Br can be clustered and hence these properties may 
be dependent on each other. (BH)max does not seem to be part of the cluster anymore, but is close 
to it. Finally, we can proceed towards analyzing the whole dataset. 
 

 
Fig. 19 Scree plot for PC analysis: Three PC components were chosen 

 

 
Fig. 20 Orientation of various properties in the PC space 
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c) Whole dataset: Alloys 1-173. 

Here, the complete dataset was used for analysis. Figure 21 shows the plot for various elements. 
Based on eigenvalues, three PCs are able to extract most of the information from the dataset.  
 

 
Fig. 21 Scree plot for PC analysis: Three PC components were chosen 

 
Figure 22 shows the orientation of various elements in the PC space. Cu and Hf can be clustered 
together (Fig. 22). In PC1 vs. PC2 (top corner), Ti can also be clustered along with Cu and Hf. Ni 
and Al can be clustered together. Hence, we have sufficient information from the above analysis 
to move forward towards microstructure analysis.  
 

 
Fig. 22 Orientation of various elements in the PC space 

 
Figure 23 shows the scree plot for various properties. Based on eigenvalues, two PC’s can extract 
most of the information from the dataset. Figure 24 shows the orientation of various elements in 
the PC space. In Fig.24, it can be observed that (BH)max, Br, µ, Hc, jHc and Mr contributes strongly 
on PC1, while Ms and density strongly contributes towards PC2. (BH)max, Br, and Mr can be 
clustered together. These findings are in line with the previous observations.  

 

DISTRIBUTION A: Distribution approved for public release.



29  

 
Fig. 23 Scree plot for PC analysis: 
Two PC components were chosen 

Fig. 24 Orientation of various properties 
in the PC space 

 
Hence, we can proceed further and look towards the orientation of various alloys on the PC space 
along with the alloying elements. Here, the alloys were plotted on the PC space along with the 
elements. Here, the element’s contribution towards a certain PC is related to the length and 
orientation of the arrow corresponding to that particular PC. Cluster analysis was performed by K-
means clustering (Kaufman approach). Davies-Bouldin index (D-B index), is a measure of quality 
of clustering and it is used for determining the appropriate number of clusters into which the dataset 
can be divided. D-B index is the sum ratio of internal variance of each cluster with inter-cluster 
distance. In partitive clustering, one prefers small internal variance of each cluster along with high 
inter-cluster distances. Thus, D-B- index needs to be minimized. That is, number of clusters 
corresponding to lowest D-B index is applied on the dataset. Based on D-B index, the data set was 
divided into 8 clusters. Alloys belonging to different clusters were denoted by different symbols 
in Fig. 25 which used 173 alloys that were actually manufactured and experimentally evaluated. 
A few alloys were marked in order to avoid overlapping and give clear understanding. These alloys 
are from the best alloys ranked based on (BH)max values (as mentioned in Table 3).  
 

 
 

Fig. 25 Orientation of various elements in the PC space 
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From Fig. 25, one can observe that, Cu, Hf, Nb, and Fe contributes more towards PC1, of which 
Fe has the highest contribution. Ni and Al contribute more on PC2. Ti and Co has similar effect 
on both PC1 and PC2. Length and orientation of arrow are similar for Cu and Hf. Hence, Cu and 
Hf may affect the properties of alloy in the same manner. Similarly, length and orientation of 
arrows corresponding to Ni and Al suggests that these elements will affect the properties in the 
same way. One can observe that the marked alloys are clustered in a very small region while 
inferior alloys cover a majority of the PC space. Hence, if a certain alloy composition is near these 
top alloys in the PC space, then they can be given a chance over others during the selection of 
alloys for experimental validation. 
 
Niobium has the lowest contribution towards PC1 while it is almost orthogonal to PC2. Hence, if 
we want to remove an element for rare-earth addition, we can reject Nb and manufacture a few 
alloys without it. 
 
Thereafter, we used the dataset of 40 alloys selected by MCDM and did PC analysis on it. It was 
followed by cluster analysis on the dataset by K-means clustering (Kaufman approach) method. 
Based on D-B index, the data set was divided into 5 clusters. Alloys belonging to different clusters 
are denoted by different symbols.  
 
In Fig. 26, one can see that the orientation of the arrows has been altered. This is expected as these 
alloys were selected by MCDM, and hence this reduced set will have different variance. A few 
alloys have been marked in Fig. 25 and Fig. 26. It can be observed that superior alloys are clustered 
together as alloys near these marked alloys were candidates that were part of the next set of alloys 
with superior properties. Hence, this method can be used for screening of the alloys prior to 
manufacture. 

 

 
Fig. 26 Orientation of various elements in the PC space 

 
In this set too, arrows corresponding to Cu and Hf overlap each other, which confirms our previous 
findings. Arrows corresponding to Ni and Al are oriented together as observed before. Nb is almost 
orthogonal to PC2 and, hence, has minimal effect on it. Nb is collinear to PC1, but length of arrow 
is smallest for Nb along PC1. His means that Nb will have least contribution. Therefore, one can 
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think of removing Nb from the next set of alloys and have it substituted with a rare-earth element. 
One peculiar finding is that Co and Ti are oriented together. This needs further investigation. 
Hierarchical Cluster Analysis (HCA) 
Clustering analysis is usually performed to find a pattern in a dataset. A cluster consists of data 
points which are similar to the other data points within the same cluster, while dissimilar to data 
points in the other clusters. In most cases, the similarity criterion is the Euclidian distance between 
the data points. In HCA, clustering begins with each data point within a cluster [9], [44]. These 
clusters are iteratively merged to form larger ones and finally merged into one large cluster. In this 
work, clustering was performed by Ward’s approach while there are several other alternatives to 
this method [44,51]. The final result is a tree like structure referred to as “dendrogram”, which 
shows the way the clusters are related. The user can specify a distance or number of clusters to 
view the dataset in disjoint groups. In this way, the user can eliminate a cluster that does not serve 
any purpose as per his expertise. 
 
In this case, we used multivariate data analysis (MVA) node in optimization package: 
modeFRONTIER [44] and another statistical software known as IBM SPSS [51] for HCA analysis. 
The alloys were clustered on the basis of targeted properties. Dendrogram was cut in a manner so 
that it results in a total of 9 clusters (Cluster 0 to Cluster 8) as denoted by the numbers in the 
dendrogram plot. Figure 27 shows the dendrogram plot obtained from HCA analysis. Cluster 8 
and cluster 7 were merged as one when analyzed by Ward’s approach. Clustering parameters and 
the number of alloys included in each cluster have been tabulated in Table 6. 

 
Fig. 27: Dendrogram plot from HCA analysis. 
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Clusters are classified by the following measures [44]. 
1. Internal similarity (ISim): It reflects the compactness of the k-th cluster. It must be higher. 
2. External similarity (ESim): It reflects the uniqueness of k-th cluster. It must be lower. 
3. Descriptive variables: These are the most significant variables that help in identifying 

cluster elements that are similar to one another. 
4. Discriminating variables: These are the most significant variables that help in identifying 

cluster elements that are dissimilar to other clusters. 
 

Table 6: Clustering parameters in HCA analysis 
Cluster Number Cluster Size ISim ESim Best alloys 

0 24 2.5 1.1 175,115 
1 4 1.5 0.6 84, 86, 124, 139 
2 3 1.5 0.7 145, 146, 147 
3 18 3.2 0.8 117, 126, 128 
4 8 4.5 1.3   
5 74 4.6 1.0   
6 6 1.7 1.0   
7 40 2.1 1.3   

 

From Table 6, we can see that cluster 1, cluster 2 and cluster 3 have higher Isim, while a lower 
Esim when compared to other clusters. Cluster 1 and cluster 3 contain top 10 alloys based on 
(BH)max value, while alloys in cluster 2 possess high Hc.  
 
HCA analysis can be used to cross-check the findings of SVR analysis mentioned above in the 
text. The following text includes cluster scatter plots for various elements versus (BH)max, Hc and 
Br followed by relevant information extracted from them. In the following figures, confidence 
level for both the confidence interval and confidence ellipse is 0.9. These figures can be helpful in 
determining the variable bounds for targeted properties. 
 

         
Fig. 28 Clusters scatter: (BH)max vs Al 

concentration 
Fig. 29 Cluster scatter: Hc vs Cu 

concentration 
 
In Fig. 28, for cluster 1, (BH)max increases with decrease in aluminum content in the range 6-10 
wt. percent. Other clusters have mixed response for variation of aluminum. 
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It can be seen from Fig. 29 that Hc increases with an increase in Cu content in cluster 1 and cluster 
3, while Hc, decreases with increasing Cu content in cluster 2 in a narrow composition range. 
Overall, copper affects Hc positively, and this is know from the literature as well as SVR analysis. 
 
From Fig. 30, it is difficult to determine the role of Cu addition on Br. From literature as well as 
SVR analysis, Cu tends to affect Br positively. Hence, this needs further investigation. 
 
Fig. 31 shows scatter plot for (BH)max vs. copper for various clusters. This behavior was expected 
as Br and Hc are conflicting (see Figures 30 and 31). It is difficult to determine the role of Cu 
addition from (BH)max vs. Cu plot. 
 

    
Fig. 30 Cluster scatter: Br vs Cu 

concentration 
Fig. 31 Cluster scatter: (BH)max vs Cu 

concentration 
 
From Fig. 32, one can observe that in cluster 2 and cluster 7, Hc tends to increase with an increase 
in Ti content. 
 
From Fig. 33, it can be seen that in order to increase (BH)max, one needs to stay in a narrow 
concentration range for Fe. 
Nickel showed a weak response for (BH)max in SVR analysis. Hence, we plotted scatter plots for 
Ni vs. (BH)max.  
 

    
Fig 32 Cluster scatter: Hc vs Ti 

concentration 
Fig. 33 Cluster scatter: (BH)max vs Fe 

concentration 
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From Fig. 34, it can be observed that in cluster 1, (BH)max increases with decrease in Ni content. 
This can also be observed in cluster 2. 
 

    
Fig. 34 Cluster scatter: (BH)max vs Ni 

concentration 
Fig. 35 Cluster scatter: Hc vs Nb 

concentration 
 
One can also use these plots for discarding a few alloying elements in order to make way for REE 
addition. We plotted scatter plots for niobium vs. (BH)max, Hc and Br with this objective in mind.  
 

    
Fig. 36 Cluster scatter: Br vs Nb 

concentration 
Fig. 37 Cluster scatter: (BH)max vs Nb 

concentration 
 
From Figs. 35, 36 and 37, one can see that Nb is almost neutral to Hc and Br. This was also observed 
in SVR analysis. Additionally, Nb has the same effect as Ti. Hence, one can think of manufacturing 
a few samples without Nb or replacing Nb with an affordable REE. 

 
Thermodynamic Analysis 

In this research, we have been using 8 alloying elements. Hence, it will be helpful for the 
experimentalists to have some information regarding the stability of critical phases during 
manufacture and designing heat treatment protocols. In this work, we studied phase stability of a 
few AlNiCo type alloys from 0°C to 1200°C using Factsage software [48]. The resulting diagrams 
are based on equilibrium calculation, hence the final experimental results may be different. 
However, these diagrams can be used as a guideline for the experimentalists when selecting alloys 
prior to manufacture [25,44]. 
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From Fig. 38, it can be observed that alloy 124 is thermodynamically stable up to 800°C, while in 
alloys 84, 86 and 126 transformation (BCC-FCC) starts at a lower temperature. Hence, the 
experimentalists can design a heat treatment protocol so they can avoid transformations that will 
have a detrimental effect on the magnetic properties. We extended this analysis by modifying the 
composition of alloy 124. We added Mn in various amounts and plotted the critical phases. 
 
From Fig. 39, it can be seen that these additions had detrimental effect and BCC-FCC 
transformation starting well below 800°C. Consequently, at this point we can say that AlNiCo type 
alloys should not have any Mn and B addition. 
 

(a) 84  (b) 86  

(c) 124  (d) 126  
 

Fig. 38 Phase distribution diagrams for alloy (a) 84, (b) 86, (c) 124 and (d) 126. 
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(a) 0.5 gm Mn added to alloy 124 
 

(b) 1.0 gm Mn added to alloy 124  

(c) 0.5 gm Mn added to alloy 124 and Nb   (d) 1.0 gm Mn and 0.5 g B added to alloy 1 
 

Fig. 39 Phase distribution diagram obtained after modifying composition of alloy 124 (a) 0.5 gm 
Mn added to alloy 124, (b) 1.0 gm Mn added to alloy 124, (c) 0.5 gm Mn added to alloy 124 and 

Nb removed, and (d) 1.0 gm Mn and 0.5 gm of B added to alloy 124. 
 

Discussion 
Figures 5, 6 and 7 show the scatter plots among magnetic energy density, magnetic coercivity, and 
magnetic remanence. Top 10 alloys are marked in these figures. In these figures as well as Table 
6, alloys have been ranked on the basis of (BH)max values. At present, the best alloy is alloy number 
124. From Figures 5, 6 and 7 one can observe that the Pareto-optimized alloys (modeFRONTIER 
and IOSO) dominate the initial 80 candidate alloys randomly predicted by Sobol’s algorithm. One 
can observe from the figures that we were able to improve upon Hc without compromising on Br. 
 
In SVR, only Ni showed some weak/mixed response for (BH)max. Hence, there is scope for 
improvement in the accuracy of the response surface algorithm. Copper was found to show a direct 
correlation with Hc and Br. In this case, response surface predictions are at par with the literature. 
Hafnium shows positive correlation with Hc and Br, which is promising, but needs further 
evaluation. 
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PC analysis proved to be helpful in reducing the dimensionality of the data set for visualization. 
PC analysis points towards a correlation between elements Cu-Hf and Ni-Al. Ni-Al rich phase is 
known in AlNiCo alloys and its effect on magnetic properties is supported by data from the 
literature. Hf has been rarely used in AlNiCo alloys and hence its similarity with Cu can be 
exploited to improve the magnetic properties. Hf enhances high temperature properties, hence the 
new magnets are supposed to have superior magnetic properties at elevated temperatures.  
 
Special emphasis was on using a variety of data mining/pattern recognition statistical algorithms 
to elucidate relationships among different alloying elements and each of the desired magnetic 
properties of the alloys. Sensitivity analysis of the variation of concentrations of each of the 
alloying elements was performed revealing that some of the alloying elements have practically 
negligible influence on the three magnetic properties of the AlNiCo type alloys, while a few of the 
alloying elements cause significant changes in the macroscopic magnetic properties of such alloys.  
 
From Figures 25 and 26, one can see that Nb has the lowest influence on PC1, although it is 
collinear to it. Niobium is almost orthogonal to PC2 and hence, it will have least contribution on 
it. This suggests that if one needs to exclude an element from further analysis, one can think of 
excluding Nb and manufacture a few samples without it. These findings are quite helpful in 
development of knowledge base for design of new materials. At the same time, it has the potential 
to save time and money otherwise invested in random experimentation.  
 
PC analysis can be used as a tool to screen alloys predicted by various optimizers prior to 
manufacture. Alloys that are near to the previous best alloys in the PC space can be preferred for 
manufacture over the others for improved results. 
 
At present, ab-initio based calculations, as well as Calphad [52] approach, are effective for limited 
systems (alloys having maximum 3-4 elements), and cannot handle eight alloying elements. Use 
of statistical tools will be helpful in determining the most influential alloying elements. This will 
be helpful in theoretical validation of the above findings. Additionally, one can work on finding 
the most stable phases needed for enhanced performance of these alloys by focusing on the most 
influential elements.  
 

Recommendations for Future Research 
Based on the obtained experimental verifications of the properties of the optimized magnetic 
alloys, it can be concluded that further efforts with optimization of chemical concentrations of the 
currently used alloying elements would not result in further improvements in magnetic properties.  
 
However, research is highly recommended for determining which of the alloying elements could 
be replaced with small amounts of readily available, affordable rare earth elements so that (BH) 
max and Hc and Br could be significantly increased and maintained at higher temperatures. 
 
The most promising direction for further research on developing new high performance magnetic 
alloys is optimization of parameters defining thermal treatment and magnetic treatment protocols. 
That is, optimizing temperature-time curve and applied magnetization field strength-time curve. 
To prove this point, tempering at 650 0C x 4 hrs + 600 0C x 6 hrs + 550 0C x 16 hrs, was added 
besides the standardized procedures. With this new procedure, Hc increased from 1100 Oe to 1350 
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Oe and (BH)max increased from 5600 J/m3 to 6900 J/m3 proving the importance and need for 
simultaneously optimizing chemistry and thermal treatment protocol. 
 
The accuracy and robustness of the entire computational effort can be further improved by 
developing response surfaces that maintain high accuracy even outside the available experimental 
data set. The present alloy development time is approximately one year and it is significantly less 
than current alloy development cycle of about 10 years. 
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Appendix A: The chemical compositions of 180 alloys that were manufactured and tested 

 X1 X2 X3 X4 X5 X6 X7 X8 
Alloy number Concentrations (percent) 
 Fe Co Ni Al Ti Hf Cu Nb 

1 48.7325 27.7207 14.0393 8.1985 0.2553 0.3941 0.0403 0.6194 
2 46.2891 30.2861 13.1307 7.0275 1.3609 1.0282 0.5350 0.3424 
3 36.1599 39.7725 13.2535 8.0599 0.7813 1.7003 0.0392 0.2333 
4 41.4348 35.9678 13.1705 7.8148 0.3531 0.3927 0.1417 0.7245 
5 34.3442 39.9990 13.6666 8.5062 0.1526 0.2230 1.1378 1.9706 
6 47.6602 28.8599 14.1400 7.3723 0.3293 1.1736 0.0482 0.4167 
7 43.1247 33.5122 13.0233 7.2595 0.4585 0.3230 1.9041 0.3947 
8 49.5202 27.3384 13.2598 7.6967 0.9725 0.6519 0.0958 0.4648 
9 45.4991 31.8735 13.1968 7.7978 0.5424 0.3452 0.6861 0.0590 

10 41.4315 36.1577 13.1008 7.1119 0.2970 0.5491 0.6396 0.7125 
11 29.2160 39.9995 14.9999 7.2552 4.1303 4.1105 0.2053 0.0833 
12 45.8854 31.0237 13.1220 7.8935 0.7933 0.5915 0.1292 0.5615 
13 51.4362 24.9612 14.1142 7.4326 0.3304 0.1286 0.9495 0.6474 
14 38.9533 38.1936 13.3947 7.3020 1.2282 0.5500 0.2823 0.0959 
15 46.6094 29.7747 13.3072 7.6165 1.4804 0.3441 0.2350 0.6327 
16 44.9419 32.4719 13.2674 7.2901 0.4803 0.6093 0.6298 0.3092 
17 41.0125 36.9446 13.2054 7.2037 1.0339 0.3026 0.0834 0.2140 
18 39.4787 37.2195 13.3815 7.0086 0.2303 1.4124 0.2619 1.0071 
19 42.9125 33.9304 13.3415 7.5056 1.4223 0.3902 0.4055 0.0921 
20 48.5265 28.3152 13.3661 7.3394 0.4145 1.0276 0.0371 0.9737 
21 52.5361 24.8503 13.1772 7.1582 0.8446 0.3506 0.5805 0.5025 
22 42.1357 35.1814 13.0271 7.9691 0.5963 0.1428 0.7215 0.2260 
23 37.9445 39.6541 13.4612 7.5253 0.1623 0.8236 0.1781 0.2509 
24 46.7045 29.4490 13.1929 7.4621 0.7747 0.1515 1.9381 0.3273 
25 35.8737 39.8669 13.0830 7.8805 0.3523 1.4379 1.0431 0.4626 
26 42.7426 34.0626 13.7422 7.5586 0.7946 0.7035 0.2161 0.1797 
27 49.1088 27.5118 13.0650 8.5767 0.3838 0.3390 0.1707 0.8443 
28 52.5778 24.2325 14.1043 7.6306 0.4774 0.5386 0.1626 0.2761 
29 44.9535 32.4562 13.2306 8.2626 0.1316 0.5555 0.0297 0.3803 
30 47.0941 29.4327 13.8957 7.1327 0.4904 0.4976 0.5248 0.9320 
31 47.5144 29.0460 13.2858 7.3207 1.3332 0.3838 0.8544 0.2616 
32 35.3972 39.9835 13.1686 7.2191 0.3149 0.7850 2.0966 1.0350 
33 45.0088 31.8912 14.1595 7.4270 0.1748 0.4014 0.6495 0.2878 
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34 49.2065 27.4264 14.3446 7.0749 0.6088 1.0823 0.0680 0.1887 
35 44.2343 33.2760 13.9864 7.2397 0.4323 0.1748 0.3089 0.3476 
36 47.6505 28.9049 13.2242 7.9931 0.4496 1.4883 0.1171 0.1723 
37 39.1697 37.8112 13.5484 7.2627 0.8662 0.7322 0.4803 0.1293 
38 38.5661 39.0641 13.0734 7.1822 0.2042 1.2573 0.0691 0.5836 
39 36.6916 39.6696 13.0368 8.5587 0.5726 0.3836 0.6565 0.4307 
40 46.1031 30.4723 13.1831 7.4783 0.5138 0.6256 0.1943 1.4295 
41 35.4775 39.9215 13.5019 8.4017 0.6816 0.2611 0.1460 1.6087 
42 39.8271 37.0863 13.6299 7.4209 0.1296 0.9761 0.2984 0.6318 
43 43.0087 33.6215 13.8198 7.0854 0.6831 0.4225 0.5137 0.8452 
44 45.5297 31.2406 14.0217 7.2727 0.9117 0.1573 0.0809 0.7854 
45 42.6312 35.2279 13.1725 7.1224 0.2072 0.3362 0.9492 0.3534 
46 46.3754 30.8822 13.5414 7.7311 0.3702 0.7518 0.2512 0.0968 
47 39.5371 38.0009 13.4167 7.1883 0.1380 0.1474 0.4356 1.1360 
48 45.9401 31.0712 13.2106 7.0154 0.2576 0.3827 1.2002 0.9222 
49 45.1891 31.4657 13.5998 7.4378 1.5286 0.5004 0.0269 0.2518 
50 40.6930 36.1425 13.4012 8.0854 0.4461 0.6185 0.0192 0.5942 
51 51.9264 25.2440 13.7225 7.4653 0.3034 0.6841 0.5612 0.0932 
52 47.7037 29.7167 13.7815 7.0370 0.7335 0.2540 0.3429 0.4306 
53 37.3318 39.6132 14.4244 7.1525 0.5397 0.8799 0.0331 0.0256 
54 39.9593 36.8983 13.1182 7.8259 0.5069 0.1103 1.2475 0.3337 
55 25.7095 39.9999 14.0001 8.9440 5.0548 3.1384 1.5492 1.6042 
56 45.0877 32.3223 13.7122 7.3225 0.9449 0.3447 0.1901 0.0754 
57 50.8326 25.7559 13.0974 8.3054 0.2487 0.7131 0.1506 0.8962 
58 40.3220 36.8575 13.7762 7.1755 0.3914 0.6553 0.4055 0.4168 
59 46.6644 30.6451 13.1922 7.1394 0.3072 1.8470 0.1372 0.0676 
60 37.8433 39.5513 13.5164 7.6198 0.7547 0.1034 0.5005 0.1105 
61 41.0032 35.6275 13.1261 8.3344 1.4095 0.2008 0.2800 0.0185 
62 46.5526 30.8736 13.3219 7.2685 0.4895 0.2452 1.0960 0.1528 
63 43.6681 33.3785 13.4448 8.1756 0.6134 0.4472 0.1046 0.1678 
64 41.6868 35.6136 13.3149 7.1313 0.1789 0.6588 0.3508 1.0649 
65 43.8697 33.0091 13.2780 7.6478 0.2449 1.5792 0.0531 0.3182 
66 52.3517 24.1653 13.9459 7.0970 0.8158 0.8232 0.4398 0.3612 
67 44.0016 32.9305 13.2165 7.0389 1.3363 0.4126 0.8153 0.2483 
68 44.6086 32.5438 13.6056 7.4768 0.2003 0.5920 0.3949 0.5779 
69 47.0044 30.1629 14.3100 7.1641 0.4675 0.2342 0.1466 0.5103 
70 34.3054 39.9988 13.1000 7.2862 0.7490 1.8196 1.7843 0.9566 
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71 42.9968 34.1815 13.4022 7.4399 0.6820 0.1662 1.0618 0.0697 
72 38.7243 38.6541 13.0862 7.0585 0.1246 0.7236 1.2215 0.4071 
73 37.0351 39.9846 13.0098 7.0391 1.4901 0.1936 0.4215 0.8262 
74 51.3183 26.2600 13.0325 7.8655 0.5286 0.7289 0.0268 0.2395 
75 36.2859 39.8889 13.8035 7.1209 0.4843 1.9189 0.2099 0.2879 
76 44.1377 33.7082 13.1405 7.0509 0.2803 0.9984 0.1677 0.5163 
77 52.8601 25.0788 13.2923 7.4367 0.6446 0.2701 0.1218 0.2956 
78 35.7951 39.9616 14.0921 7.8361 0.2396 0.1659 0.2243 1.6853 
79 37.2232 39.4340 14.7026 7.0913 0.1363 0.2916 0.2680 0.8530 
80 39.9487 36.8422 13.7258 8.1467 0.2279 0.5858 0.2541 0.2688 
81 29.7440 39.7627 14.4601 8.9994 0.5707 2.8016 2.3394 1.3221 
82 39.6668 35.0850 13.0256 8.1331 0.8769 0.6107 2.5888 0.0131 
83 42.1118 30.9983 13.7041 8.4617 1.9713 0.4794 1.5261 0.7473 
84 32.4409 35.7158 13.8133 8.7424 4.6165 2.6559 1.3867 0.6286 
85 47.0940 29.4330 13.8960 7.1330 0.4900 0.4976 0.5248 0.9328 
86 31.9210 36.5730 13.8240 8.5740 4.7620 2.5363 1.1804 0.6295 
87 31.8760 36.4750 13.8730 8.5730 4.7400 2.5858 1.2364 0.6402 
88 45.2740 29.4050 13.6490 7.0000 4.0000 0.1015 0.5694 0.0003 
89 39.6700 32.1040 14.3790 7.0000 4.0000 1.6334 0.7165 0.4973 
90 33.0210 35.1330 14.9790 9.7830 5.0260 0.9693 0.9813 0.1084 
91 38.7266 28.4688 13.6563 8.3281 6.7344 1.8672 1.8281 0.3906 
92 30.8205 32.4727 13.3164 10.6426 8.2793 2.3713 1.4824 0.6816 
93 29.4022 37.0332 14.6738 10.6279 5.6885 0.1028 1.9834 0.4521 
94 30.3679 35.4707 13.9863 7.0342 9.4072 2.7310 0.5771 0.4209 
95 32.3595 36.8574 13.5449 7.2002 4.1162 2.0683 2.9385 0.9307 
96 35.9806 28.3418 13.4668 10.9111 9.8584 0.3690 0.6182 0.4697 
97 35.9051 28.0146 13.7334 8.8823 7.2368 2.8032 2.4683 0.9692 
98 37.8364 28.6396 13.8584 9.8198 5.9243 2.2594 1.1558 0.4067 
99 33.4307 33.1904 13.8701 10.3765 6.9771 1.0077 0.9155 0.2056 
100 33.4609 30.3877 14.7939 8.4771 7.7632 1.9677 2.6938 0.4292 
101 32.0125 32.4189 14.8877 11.0552 5.2476 2.9193 0.6782 0.7886 
102 36.8406 31.4814 13.0752 11.5239 4.1538 0.4724 2.0845 0.3823 
103 38.5908 31.4229 13.2900 9.6782 5.2339 0.8746 0.7896 0.1069 
104 35.2111 32.2041 13.7588 10.0688 6.4370 0.5574 1.6802 0.0601 
105 40.7634 28.6885 14.3682 7.9204 5.6167 0.8519 1.3286 0.5366 
106 31.1751 37.8267 13.1401 10.7000 4.0940 2.5363 0.4475 0.0432 
107 40.8464 29.4917 13.3345 9.9358 4.7742 0.9319 0.1326 0.6501 
108 24.0687 37.8901 13.7954 11.9084 7.4265 1.7362 2.5583 0.5681 
109 34.1474 31.5034 13.9321 9.9651 5.9636 1.7192 1.9548 0.7419 
110 41.0275 28.1831 13.8931 7.5627 7.0847 0.3032 1.5681 0.3474 
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111 32.3595 36.8574 13.5449 7.2002 4.1176 2.0683 2.9385 0.9307 
112 32.4349 35.7235 13.8130 8.7408 4.6193 2.6544 1.3845 0.6286 
113 32.4409 35.7158 13.8133 8.7424 4.6169 2.6260 1.3867 0.6286 
114 32.3333 36.8574 13.5449 7.2052 4.1162 2.0683 2.9385 0.9307 
115 31.4554 38.0000 13.3020 7.0000 4.2426 3.0000 3.0000 0.0000 
116 40.7793 28.2932 13.0288 7.3842 4.0449 3.0000 2.9945 0.4751 
117 35.2810 33.8728 13.0000 7.0000 4.0000 2.9640 2.8821 1.0000 
118 34.5512 34.9514 13.3825 7.0000 4.1149 3.0000 3.0000 0.0000 
119 39.7243 30.2015 13.0742 7.0000 4.0000 3.0000 3.0000 0.0000 
120 42.0311 28.0000 13.1323 7.0000 4.0000 2.8696 2.9670 0.0000 
121 32.4409 35.7158 13.8133 8.7424 4.6165 2.6559 1.3867 0.6286 
122 31.9210 36.5730 13.8240 8.5740 4.7620 2.5363 1.1804 0.6295 
123 35.2810 33.8728 13.0000 7.0000 4.0000 2.9640 2.8821 1.0000 
124 32.3342 36.8574 13.5449 7.2055 4.1255 2.0683 2.9385 0.9307 
125 28.5910 37.9233 13.4081 7.0033 6.4618 2.9598 2.6544 0.9982 
126 29.9279 37.9150 13.0021 7.0721 5.7514 2.3725 2.9594 0.9996 
127 29.9425 36.5839 13.1237 7.3165 6.0832 2.9797 2.9990 0.9714 
128 31.1017 38.0000 13.0000 7.0002 5.1187 2.7819 2.9970 0.0005 
129 30.0204 30.5200 14.0720 8.3281 10.8906 2.6920 2.6800 0.7969 
130 34.2118 30.8125 13.5625 7.4700 10.2400 0.7344 2.2500 0.7188 
131 26.0756 34.7188 13.7812 11.9219 10.6719 1.9000 0.2900 0.6406 
132 26.6587 37.3750 13.1250 9.5400 10.3500 1.0063 1.0880 0.8570 
133 31.4226 28.1562 14.5938 11.5500 8.7031 2.4109 2.4290 0.7344 
134 27.7454 33.9375 14.9375 8.7188 10.3438 2.1650 2.0320 0.1200 
135 29.6004 35.9688 13.0312 8.7969 8.9600 1.4141 1.7130 0.5156 
136 30.3885 35.6562 14.0938 8.0156 9.1100 0.2359 2.0156 0.4844 
137 32.5155 34.5625 14.3125 7.2700 7.4300 1.0969 2.7188 0.0938 
138 27.3796 35.0900 14.7370 9.9700 8.8000 2.7734 0.8906 0.3594 
139 32.3350 36.8880 13.5450 7.2060 4.1260 2.0680 2.9390 0.9310 
140 32.4500 35.6950 13.8120 8.7420 4.6170 2.6580 1.3890 0.6280 
141 32.4280 35.7130 13.8370 8.7420 4.5020 2.6560 1.3790 0.6810 
142 32.4410 35.7050 13.8130 8.7430 4.6170 2.6580 1.3900 0.6290 
143 31.7370 37.0130 13.4240 7.1940 4.8200 2.0820 2.9200 0.8920 
144 28.2190 34.8110 13.7950 9.7780 5.4420 3.3010 4.2190 0.4050 
145 24.2910 36.9620 14.3290 7.4060 7.9230 4.2880 4.4480 0.2900 
146 36.3370 28.7810 14.0470 9.5530 4.8600 1.1830 4.4760 0.8610 
147 26.9150 33.4680 13.8480 6.6160 9.9050 4.3280 3.7710 1.0760 
148 29.8490 38.2560 13.1750 7.4220 4.5260 2.6930 4.1030 0.0230 
149 40.4470 29.0050 13.0340 6.0000 4.0430 2.6800 3.9240 0.8480 
150 32.3560 30.9440 14.0790 6.3440 8.5030 2.1660 4.1920 1.3520 
151 32.1215 37.5812 13.7635 7.2151 4.0000 1.8435 2.7685 0.7067 
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152 32.0610 37.6190 13.6990 7.1500 4.0000 1.8820 2.7970 0.7920 
153 32.1670 37.2670 13.5507 7.1680 4.2390 1.8762 2.8935 0.8387 
154 32.3501 37.8487 13.8615 7.2665 4.0285 1.8566 2.7882 0.0000 
155 32.3170 37.9193 13.8084 7.2071 4.0319 1.8970 2.8193 0.0000 
156 34.0000 35.0000 15.0000 7.0000 5.0000 0.0000 4.0000 0.0000 
157 29.0000 38.0000 14.0000 8.0000 8.0000 0.0000 3.0000 0.0000 
158 35.5000 35.4000 13.1000 7.0000 5.0000 0.0000 3.2000 0.5000 
159 49.9000 24.3000 14.0000 8.2000 0.0000 0.0000 2.3000 1.0000 
160 30.0000 40.1000 13.0000 7.1000 6.5000 0.0000 3.0000 0.0000 
161 31.9700 36.9350 13.5390 7.2370 4.2440 2.0640 2.9440 0.9360 
162 33.3460 34.8990 13.0440 6.8430 5.3360 2.5760 3.4760 0.4800 
163 29.2020 36.6050 15.3500 6.7780 5.8560 1.8980 3.4430 0.8680 
164 31.1230 36.3650 13.0670 6.6370 5.4720 2.9420 3.4820 0.9110 
165 30.5780 36.9230 13.0240 6.9540 5.2520 2.9070 3.4180 0.9440 
166 29.9918 37.8933 13.0104 7.0837 5.7168 2.3338 2.9561 1.0113 
167 33.9403 33.9776 13.9462 6.7076 5.8259 2.5400 2.4587 0.5954 
168 32.3063 36.8503 13.5243 7.2180 4.1481 2.0814 2.9326 0.9467 
169 32.2000 36.8000 13.6000 7.5000 4.1000 2.1000 2.8000 0.9000 
170 32.2000 36.0000 13.6000 7.3000 4.2000 2.7000 3.1000 0.9000 
171 28.3258 42.9837 11.6459 6.0053 5.2089 3.0903 2.5562 0.1828 
172 27.2778 43.7572 11.5374 5.8714 5.6947 2.9807 2.5757 0.3011 
173 28.5000 42.6932 11.5513 5.4903 5.7343 3.2785 2.5040 0.2468 
174 33.5636 39.8291 12.6399 6.7627 4.1389 0.5997 1.7601 0.7234 
175 33.3008 39.5205 12.7374 6.6623 4.2653 0.5627 1.8941 1.1064 
176 33.0645 39.5244 12.6955 6.9787 5.1602 0.5141 1.8038 0.2878 
177 33.1785 39.3977 12.5992 6.6029 4.5547 0.8510 1.7121 1.1311 
178 32.7714 39.4603 12.6742 6.9077 5.0429 0.6910 1.9384 0.5110 
179 33.1529 39.4522 12.6622 6.7129 4.5150 0.5629 1.8533 1.1082 
180 32.3350 36.8880 13.5450 7.2060 4.1260 2.0680 2.9390 0.9310 
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