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Project Summary

Scope: The goal of this research was to develop a comprehensive, computationally tractable framework
for addressing a broad class of problems that entail extracting information very sparsely encoded in high
volume data streams. At its core was a unified vision, centered on the use of dynamical models as informa-
tion encapsulators, and blending elements from dynamical systems theory, semi-algebraic geometry, sparse
signal recovery and convex optimization. It included both theory development in an emerging new field
–compressive information extraction– and an investigation of implementation issues.

Relevance to the USAF mission: As emphasized in the Technology Horizons report, flexible, provably cor-
rect autonomy is a key enabler for maintaining the superiority and expanding the capabilities of the USAF
in the next two decades. Autonomous systems endowed with analysis and decision capabilities can collect
data, assess intention, and if necessary, take action, while at the same time substantially reducing the re-
quired manpower and cost, vis-a-vis existing unmanned vehicles. Arguably, a major road-block to realizing
this vision stems from the curse of dimensionality. Simply put, existing techniques are ill-equipped to deal
with the overwhelming volume of data that needs to be analyzed in real time. This is precisely the challenge
addressed by this research: development of a computationally tractable framework for robustly extracting
and processing actionable information sparsely encoded in very large data sets. The long term vision was
to lay the foundations for designing systems endowed with provably correct flexible autonomy, capable of
making decisions in-situ, with minimal human intervention.

Contributions to Basic Science: This research effort took the first steps towards developing a new frame-
work –compressive information extraction– that allows for robustly extracting and processing information
sparsely encoded in very large data sets. At its core is a new approach that exploits an hitherto unexplored
connection between information extraction and nonlinear identification. It advanced the state of the art in
control theory by developing a tractable framework for robust identification/model (invalidation) of switched
systems, a key component of a comprehensive control framework for hybrid systems. In addition, this re-
search generalized to a dynamic setting the existing compressive sensing framework, thus substantially ex-
tending its domain of application. Further, it unveiled deep connections between the problems addressed and
those arising in other branches of engineering and applied mathematics. Examples include the connection
between nonlinear dimensionality reduction methods and manifold discovery (both hallmarks of machine
learning) and nonlinear identification, and between rank minimization and dynamic data interpolation.

Benefits to the General Public: In addition to directly supporting the USAF mission, the results obtained
in this research effort have the potential to significantly benefit society. Systems endowed with activity
analysis capabilities can prevent crime, allow elderly people to continue living independently, give early
warning of serious medical conditions, for instance by detecting minute gait alterations preceding a stroke,
inspect aging civil infrastructures, and monitor and even coordinate responses to environmental threats to
minimize their effect. Initial steps have been taken to transition the technology developed under this grant
to TSA in order to enhance security at US airports. A prototype system has been installed at the Cleveland
airport, where it successfully detected security breaches unnoticed by humans.

DISTRIBUTION A: Distribution approved for public release



1 Motivation

The goal of this research was to develop a comprehensive, computationally tractable framework for address-
ing a broad class of problems that entail extracting information very sparsely encoded in high volume data
streams. It was based on a unified vision, centered on the use of dynamical models as information encapsula-
tors, that emphasized robustness and computational complexity issues. It included both theory development
in an emerging new field –compressive information extraction [7]– and an investigation of implementation
issues.

1.1 Transformative Impact and Relevance to the USAF Mission

As emphasized in the Technology Horizons report, flexible, provably correct autonomy is a key enabler
for maintaining the superiority and expanding the capabilities of the USAF in the next two decades: Au-
tonomous systems endowed with analysis and decision capabilities can collect data, assess intention, and
if necessary, take action, while at the same time substantially reducing the required manpower and cost,
vis-a-vis existing unmanned vehicles. Arguably, a major road-block to realizing this vision stems from the
curse of dimensionality, illustrated in Figure 1. Simply put, existing techniques are ill-equipped for analyz-
ing the “data avalanche” generated by the sensors, within the constraints imposed by the need for robust,
real time operation in dynamic, partially stochastic scenarios. This was precisely the issue addressed in this
project, by exploiting recent advances in robust dynamical systems, sparse signal recovery, semi-algebraic
geometry and optimization. The long term vision that motivated this project was to lay the foundations for
designing systems endowed with provably correct flexible autonomy, capable of making decisions in-situ,
without human intervention, while passing on to the next decision level only mission–relevant situational
abstractions.

(a) (b) (c) (d)
Figure 1: Examples of actionable information sparsely encoded in very large data streams. (a) Target tracking in
an urban canyon; (b) and (c) sample frames showing contextually abnormal events: onset of a tunnel fire and a
person entering through an exit; (d) Tracking multiple targets. In all cases decisions must be taken based on events
discernible only in a small fraction (less than O(10−6)) of a very large data record: the video sequences in (a)-(d) add
up to megabytes, yet the useful information (a change of behavior of a single target), is contained in just a few frames.

The main idea that drove this research was to recast the problem of sparse information extraction into
a hybrid systems identification/model (in)validation form. Briefly, in this approach, the observed data is
treated as the output of an underlying switched dynamical system, typically represented by a difference
inclusion, with jumps indicating the occurrence of events. The key observation is the fact that higher degrees
of spatio-temporal correlations in the data lead to lower complexity joint models, allowing for reformulating
the problem of information extraction into a dynamic sparsification form, which in turn can be reduced to a
convex semidefinite optimization problem.

A conceptual diagram illustrating these ideas is shown in Figure 2. Notably, merely postulating the
existence of a dynamically sparse underlying model led to efficient, scalable algorithms for information
extraction. For instance, in this context, data can be segmented by detecting changes in suitable model
invariants (such as complexity), a process that can be reduced to minimizing the rank of a matrix directly
constructed from the data. Similarly, interpolating missing data and determining whether two data streams
correspond to time traces of the phenomenon (for instance activity) reduces to a tractable semi-definite
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Sparse Signal Recovery: Sparse Information Recovery:
Strong prior Strong prior
Signal has a sparse representation: f(t) =∑

i ciψ(t) with only a few ci 6= 0.
Actionable information is generated by a low com-
plexity dynamical system

Signal recovery Information recovery
Sparsify the coefficients:

min ‖[c1, . . . , cn]‖o

subject to f(t) = y(t).

Sparsify the dynamics: minyrankH(y) with

H(y) =


y(1) y(2) . . . y(n)
y(2) y(3) . . . y(m+ 1)

...
...

. . .
...

y(m) y(m+ 1) . . . ym+n


Relax to Linear Programming

min ‖[c1, . . . , cn]‖1

subject to f(t) = y(t).

Relax to Semidefinite Programming

minTraceX(y) subject to L(y) � 0

Figure 2: Sparse dynamical information recovery versus sparse signal recovery.

optimization, even in cases where the data has no time overlap.

2 Description of the Research Performed and Summary of the Results

In this section we give a brief summary of the research performed under this grant and our findings. Details
can be found in the papers listed in the publications section, which can be downloaded from the Robust
Systems Lab website: http://robustystems.coe.neu.edu.

2.1 Basic Science.

In principle, embedding information extraction problems in the conceptual world of systems identifica-
tion makes available a rich, extremely powerful resource base, leading to computationally tractable, robust
solutions. However, successful application of the ideas outlined above hinged upon the development of
computationally tractable solutions to the following problems, open at the time that the project was started:

2.1.1 Robust identification of hybrid systems: As outlined before, the main idea that drove this research
was to treat the observed data as the output of an underlying switched dynamical system, with events in-
dicated by changes in invariants associated with each subsystem. In the initial phase of this research, we
assumed that the data record was generated by a piecewise affine model of the form1

f
(
pσ(t),

{
x(k),ηf (k)

}t+j
k=t−i

)
= 0 (1)

where f is an affine function, the parameter vector p(t) takes values from a finite set indexed by piecewise

1Note that this can be assumed without loss of generality, since piece wise affine models are universal approximators.

2
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constant function σ(t) and where ηf (t) represents bounded noise. In this context, the information is encap-
sulated in the parameter vector p. For instance, events are indicated by changes in p(t) (an identification
problem). Similarly, two time series can be considered to have been generated by the same process if they
can be explained by the same p (e.g. a model (in)validation problem). While both, identification and model
(in)validation of switched affine systems are known to be NP-hard problems, as part of this research we have
developed tractable relaxations, with optimality certificates, for two practically relevant cases:

Identification with minimum number of switches: This scenario arises for instance in fault detection, where
the goal is to minimize the number of false alarms, and in segmentation problems in image processing
and computer vision, where it is often desirable to maximize the size of regions (roughly equivalent to
minimizing the number of boundaries). Formally, this problem can be stated as: Given input/output data
{ut, yt}Tt0 over the interval [t0;T ], and a priori information consisting of a convex set membership noise
descriptionN and bounds nu ≥ nc and ny ≥ na on the order of the regressors, find a switched affine model
of the form:

yt =

na∑
i=1

ai(σt)y(t−i) +

nc∑
i=1

ci(σt)u(t−i) + ηt (2)

where u, y and η denote the input, output and noise, respectively, that explains the experimental data with the
minimum number of switches. The main result of this portion of the research [2] showed that, by defining
the sequence of first order differences δt

.
= pt − p(t+1), identification with minimum number of switches

can be reduced to the following sparsification problem:

minpt ‖pt − p(t+1)‖0
subject to yt − rTt pt ∈ N ∀t

(3)

Notably, as we showed in [2], when the noise is characterized in terms of its `∞ norm, that is N =
{η : ‖η‖∞ ≤ ε}, then an exact solution can be found by solving a sequence of Linear Programming prob-
lems. This is one of the very few sparsification problems where exact recovery is guaranteed, without the
need for additional conditions on the data, such as decoherence.

Identification with bounded number of subsystems. In this case, the problem can be formally stated as:
Given input/output data over the interval [t0;T ], a bound on the `∞ norm of the noise (i.e. ‖η‖∞ ≤ ε) find
a switched ARX model of the form (2), with no more than s subsystems, that interpolates the experimental
data. Although in principle this problem is NP-hard, in the noise free case (i.e. ηt = 0 ∀t), it can be
reduced to finding the null space of a suitable constructed matrix, followed by polynomial differentiation.
The starting point to accomplish this is to rewrite (2) as

b(σt)
T rt = 0 (4)

where rt =
[
−yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nc

]T and b(σt) =
[
1, a1(σt), . . . , ana(σt), c1(σt), . . .

]T ,
denote the regressor and (unknown) coefficients vectors at time t, respectively. The idea behind the Gener-
alized Principal Component Analysis (GPCA) method is to decouple the identification of model parameters
from the identification of the switching sequence by noting that (4) holds for some σt if and only if

ps(r) = Πs
i=1(b

T
i rt) = cTs νs(rt) = 0 (5)

holds for all t independent of which of the s submodels is active at time t, where bi ∈ Rna+nc+1 and
νs(.), denote the parameter vector corresponding to the ith submodel and the Veronese map of degree s,
respectively. Collecting all data into a matrix form leads to:

Vscs
.
=

νs(rto)T

...
νs(rT )T

 (6)

3
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Hence, one can solve for a vector cs in the null space of Vs to find the coefficients of the multivariate
polynomial ps(r). Unfortunately, this approach breaks down in the presence of noise, since (5) no longer
holds. Rather, we have the following (noisy) equivalent

ps(r̃t)
.
=

s∏
i=1

(bTi r̃t) = cTs νs(r̃t) = 0 (7)

where r̃t = [−yt + ηt, yt−1, . . . , ut−1, . . . , ut−nc ]
T , and its associated “noisy” data matrix Vs(r,η)

.
=

Vs(r̃). The main difficulty here is that finding the coefficients of the polynomial p(r̃) requires now finding
both an admissible noise sequence ηo and a vector co such that

Vs(r̃
o)co = 0 (8)

Since Vs(r̃) is now a matrix polynomial function of the unknown noise sequence ηt, this is a computa-
tionally very challenging problem. Nevertheless, as we showed in [32], the use of polynomial optimization
allows for transforming (8) to a rank minimization problem of the form

Ṽs(rt,m
(t))co = 0

subject to M(m) � 0 and L(m) � 0
(9)

where all the matrices involved are affine in the optimization variables m. At this point, a tractable convex
relaxation can be obtained by using the nuclear norm as a surrogate for rank, leading to a convex semi-
definite program that can be solved using widely available tools (see [24, 32] for details).

2.1.2 Extensions to missing data. In most practical scenarios only partial data is available, due for instance
to occlusion or limited sensing/transmitting capabilities. In these situations, it is of interest to estimate
the missing data, for instance in order to perform data association (e.g. stitch tracklets), or to uncover
correlations mediated by the missing elements. We have shown that this interpolation can be reduced to
a rank minimization problem, which in turn (due to its Hankel structure) can be efficiently solved using
convex relaxations. These theoretical results enabled the development of a new class of algorithms, based
upon polynomial optimization, capable of handling both time and frequency domain constraints, as well as
constraints on the order of the interpolant [5].

2.1.3 Robust Identification of Hammerstein/Wiener Systems. In the context of information extraction,
this problem arises naturally as a way of handling the extreme high volume of data involved. Note that
this high volume is counterbalanced by a high degree of spatio-temporal correlations: for instance, pixels
in a video sequence do not evolve independently. This feature can be exploited to substantially reduce
the dimensionality of the problem by embedding the raw data in low dimensional manifolds. Since the
projections to/from these manifolds can be modeled as memoryless (possibly, time varying) nonlinearities,
this approach leads, locally, to the Hammerstein/Wiener system identification problem illustrated in Fig. 3.
Motivated by polynomial kernel embeddings, in order to solve the problem, the given temporal data {yt},
was embedded, via a nonlinear projection ξt = Π(yt) in manifolds where its evolution could be (locally)
explained by a linear model of the form: ξk =

∑na
i=1 aiξk−i + ηk, where ηk accounted for approximation

error. Next, to each embedded time series, we associated a Hankel matrix of the form:

Hξ
.
=


ξ0 ξ1 · · · ξm
ξ1 ξ2 · · · ξm+1
...

...
. . .

...
ξn ξn+1 · · · ξm+n
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Figure 3: Left: Manifold embedding as a nonlinear identification: Here Πi(.) and Πo(.) are memoryless nonlineari-
ties, (u ∈ Rnu , y ∈ Rny ) and (e ∈ Rne , ξ ∈ Rnξ), with nu � ne and ny � nξ represent the (high dimensional) raw
data and its projection on the low dimensional manifold, respectively, and the piecewise linear dynamics G(.) governs
the evolution of data on the manifold. Center: 3 dimensional manifold obtained applying our approach to the KTH
boxing sequence shown in the right. Note that the outlier has minimal influence on the manifold structure.

Since the the vector w .
= {a1, . . . , ana} satisfies Hξw = 0, it follows that the dynamic data is completely

characterized by the null space of its associated Hankel matrix. Inspired by maximum margin classification
algorithms and the result above, we developed a maximum margin dynamics-based classification algorithm
that worked with the null spaces of Hankel matrices [15]. Given two sets of training data {y+t } and {y−t }
corresponding to nominal and anomalous scenarios, we jointly sought for embeddings ξ+t , ξ

−
t and a vector

w such that minimizes γ subject to ‖Hξ+w‖22 ≤ γ and ‖Hξ−w‖22 > 1 + γ. Intuitively, we sought a vector
w such that (i) it approximately lied in the null space of the Hankel matrices of all the positive examples
dynamic sequences, and (ii) it maximized the margin between the residue ‖Hξ+w‖22 for the nominal and
anomalous sequences. Defining the Kernel (or Gram) matrix by its submatrices

Ki,j =


ξjξj ξjξj+1 · · · ξjξj+c
ξj+1ξj ξj+1ξj+1 · · · ξj+1ξj+c

...
...

. . .
...

ξj+cξj ξj+cξj+1 · · · ξj+cξj+c


and noting that Gi = HT

i Hi =
∑T−c+1

j=1 Ki,j , allowed to reduce the problem outlined above to (see [15] for
details):

minK,w,γ
1
2 ||w||

2
2 + Cγ − λTrace(K)

subject to: wTGiw ≤ γ ,∀Gi ∈ G+

wTGiw + γ ≥ 1 ,∀Gi ∈ G−
Gi =

∑T−c+1
j=1 Ki,j

K � 0, γ ≥ 0
(1− ε)||yi − yj ||2 ≤ kii + kjj − 2kij ≤ (1 + ε)||yi − yj ||2

(10)

where the last constraint approximately enforced preservation of the local spatial geometry and where the
additional term −λTrace(K) in the objective sought to favor lower dimensional embeddings. The semi-
algebraic problem was solved by using recent results in sparse polynomial optimization, that exploited its
inherent sparsity to substantially reduce the computational burden [15].

2.1.4 Model (In)Validation: Consider now the problem of establishing whether a noisy input/ouput se-
quence could have been generated by a given model of the form (2), possibly subject to model uncertainty.
Classically, model (in)validation has been used as an intermediate step following identification and prior to
use the identified models for control synthesis. Interestingly, as we established in the course of this research,
the same ideas can be used in the context of information extraction to identify contextually abnormal se-
quences (see section 2.2.3). Formally, the problem of interest can be stated as establishing whether a noisy
input/ouput sequence could have been generated by a given model of the form:

yt =
∑na

i=1 ai(σt)yt−i +
∑nc

i=1 ci(σt)ut−i
ỹt = yt + ηt, σt ∈ {1, . . . , s}, ‖ηt‖∞ ≤ ε

(11)

5
DISTRIBUTION A: Distribution approved for public release



where ỹt denotes the measured output corrupted by the noise ηt. As in the identification case, this problem
is known to be generically NP-hard, due to the presence of noise and the fact that the mode variable σt
is not directly measurable. Cases where σt takes only a small number of discrete values (for instance a
system switching between two known modes), can be handled by simply considering all possible switching
sequences. Clearly, due to its combinatorial nature, this approach becomes infeasible for cases involving
relatively small number of subsystems. On the other hand, this combinatorial complexity can be avoided by
appealing to semi-algebraic geometry tools. To this effect, begin by noting that, (11) holds if and only if:

pr(ηt:t−nc)
.
=

s∏
i=1

[gt,i(ηt:t−nc)]
2 = 0 (12)

where:

gt,i(ηt:t−nc)
.
= a1(i)(ỹt−1 − ηt−1) + . . .+ ana(i)(ỹt−na − ηt−na)− (ỹt − ηt) + c1(i)ut−1

+ . . .+ cnc(i)ut−nc

(13)

Similarly, the norm constraint on the noise sequence ηt is equivalent to the polynomial constraint ht(ηt)
.
=

ε2 − η2t ≥ 0. Hence, there exists noise and switching sequences such that (12) holds if and only if the
semi-algebraic set

T (η)
.
= {η | ft(ηt) ≥ 0 ∀ t ∈ [to, T ] and pt(ηt:t−na) = 0 ∀t ∈ [na, T ]} . (14)

is not empty. Thus, an (in)validation certificate can be obtained by considering the following optimization
problem:

o∗ = minη
∑T

t=na
pt(ηt:t−na)

s.t. ft(ηt) ≥ 0 ∀t ∈ [0, T ]
(15)

Note that o∗ > 0 ⇐⇒ T ′(η) = ∅. While computing o∗ requires solving a computationally challenging
polynomial optimization problem, a convergent sequence of lower bounds can be obtained using recent
results from semi-algebraic optimization, leading to a sequence of problems of the form:

d∗N = minm
∑T

t=na
lt(mt−na:t)

s.t.
MN (mt−na:t) � 0 ∀t ∈ [na, T ]
LN (ftmt−na:t) � 0 ∀t ∈ [na + 1, T ]

(16)

where lt is a linear functional of the optimization variables m and where MN and LN are matrices affine in
these variables. Hence, these problems can be efficiently solved by using commonly available semi-definite
optimization solvers. It is worth emphasizing that this reformulation allows for exploiting the inherently
sparse structure of the problem, resulting in substantial computational complexity reduction [11,28].

2.1.5 Robust estimation under `∞ bounded disturbances. Traditional noise models often do not capture
key features of the problems of interest here. As a simple example, noise in images should be bounded.
While in principle this feature can be captured using truncated distributions, the resulting problems are
computationally hard. To circumvent this difficulty we developed a new framework for robust estimation
in the presence of unknown-but-bounded noise. Using a concept similar to superstability led to robust
filters that can be synthesized by simply solving a linear programming problem [1]. A salient feature of this
framework is that it explicitly allows for trading off filter complexity against worst-case estimation error. We
have also extended this framework to the more challenging case where the mode variable is not accessible
to the filter and shown that the resulting problem can be recast into a (polynomial) sparsification form and

6
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solved using results from semi-algebraic geometry [13]. In addition, we explored a new information-based
complexity framework that combines the properties of traditional worst case and probabilistic estimation
approaches, leading to a substantial reduction in the conservatism of the former, while retaining its ability
to provide bounds on worst case errors [8,9,27]. Finally, we have developed computationally tractable
algorithms for synthesizing optimal filters subject to sparsity constraint on the information flow, and for
optimal sensor selection. The main result of [19] showed that, surprisingly, the first problem is convex,
while in [16] we showed that while the second problem in non-convex, tractable convex relaxations with
optimality guarantees can be obtained using tools from semi-algebraic geometry.

2.2 Application: Detecting Contextually Abnormal Events:

We applied the theoretical framework described in section 2.1 to a problem at the core of flexible autonomy:
detecting contextually abnormal activities. Solving this problem in realistic, potentially adversarial environ-
ments required the ability to (i) perform persistent tracking, (ii) detect significant events, and (iii) recognize
activities from noisy, fragmented data records. As briefly outlined below, the framework developed in this
research indeed leads to robust, computationally tractable solutions to these problems.

Figure 4: Using a Hammerstein/Wiener system to achieve sustained tracking in the presence of appearance changes.
The left and right portions of each frame show the actual and predicted target appearance, with their correlation
displayed in the top left corner.

Figure 5: Using dynamics to track targets with similar appearance

2.2.1 Tracking via Robust Nonlinear Operator Embeddings. The ability to persistently track and disam-
biguate is a key enabler for flexible autonomy. However, this process is far from trivial in urban environ-
ments due to occlusion and target appearance changes, compounded by the (potential) existence of multiple
targets with similar appearance. In the context of this research, we overcame these barriers by using our
identification framework to map the data (in this case image features) to points on low dimensional mani-
folds where dynamics are locally linear time invariant, effectively decoupling appearance (embedded in the
manifold structure) from intrinsic dynamics. The resulting models were used to reconstruct missing data,
predict future target positions and disambiguate targets. The potential of this approach is illustrated in Fig-
ure 4, where it was used to achieve sustained tracking in the presence of extreme appearance changes, due
to a target U-turn. In addition, exploiting the dynamical information allowed for sustained tracking under
substantial occlusion [6], and for disambiguating multiple targets with similar appearances, such as those
shown in Fig. 5 [18].

7
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Figure 6: . Fast event detection. The jump in the rank
of the Hankel matrix indicates a change in dynamics as the
suspect of a 2010 bombing attack in New York City stops
to remove his sweater.

2.2.2 Dynamic data segmentation and event de-
tection. These problems can be embedded in the
proposed identification framework by simply not-
ing that events correspond to mode changes in the
underlying dynamical system and thus can be de-
tected by monitoring changes in invariants associ-
ated with individual models. The simplest such in-
variant is model order, since, intuitively, models as-
sociated with homogeneous data, e.g. a single ac-
tivity, have far lower complexity than those jointly
explaining multiple datasets. Boundaries are thus
characterized by an increase in model complexity,
and can be detected by performing a sequence of SVDs of empirical Hankel matrices. An example of the
potential of this approach to detect activity changes from real video feeds is shown in Fig. 6.

Figure 7: Anomalous behavior detection as a
switched (in)validation problem. The activity
database consists of models of two activities,
“walk” and “wait”. The top sequence (walk–
wait–walk) is not (in)validated since both activ-
ities are in the database. The bottom sequence
(walk-jump) is flagged as abnormal since it can-
not be generated by switching amongst models in
the database.

2.2.3 Activity Recognition and Anomaly Detection: The
vision driving the application domains considered in this
proposal is that of autonomous systems endowed with
the capability to recognize anomalous behavior. We pro-
pose to embed this problem into our identification/model
(in)validation framework as follows. The starting point is to
consider activities as second-order stationary stochastic pro-
cesses. Thus, each activity can be considered as the output
of a time-invariant dynamical system. Further, by projecting
the raw data into suitable manifolds allows for decoupling
the effect of “nuisance” factors (such as view-point or ap-
pearance changes) from the intrinsic dynamics of the activity
under consideration. Then, given a sequence of frames from
a single unknown activity, recognition can be accomplished
by interrogating a database of known activity models to es-
tablish whether it contains an element (and an associated un-
certainty description) compatible with the observed data. A
difficulty here is that a single activity can consist of the concatenation of several sub-activities of various
lengths. For instance a “normal” activity could consist of walking for two minutes, standing for one, and
then resuming walking. However, this is precisely the situation addressed by the proposed switched model
(in)validation framework described in Section 2.1.4. Advantages of this (in)validation based approach over
existing ones include the ability to fully exploit dynamic information, handle data streams that do not over-
lap in time and directly eliminate the effect of nuisance factors. These advantages are illustrated in Fig. 7
using a simple example involving two known activities.

2.2.4 Finding Causal Interactions in Video Data. In many scenarios, seemingly benign individual actions
can indeed aggregate to potential threats. An example of these situations are flash mobs. Thus, as part of
this research we applied our identification framework to the problem of detecting causally interacting indi-
viduals. The main idea, illustrated in Fig. 8 is to recast the problem into a sparse dynamical graphical model
identification form. In this context, each node corresponds to the observed motion of a given target, and
each link indicates the presence of a causal correlation. As we showed in [17], this approach led to a block-
sparsification problem that can be efficiently solved using a modified Group-Lasso type approach, capable
of handling missing data and outliers (due for instance to occlusion and mis-identified correspondences).

8
DISTRIBUTION A: Distribution approved for public release



Figure 8: Finding causal interactions as a graph identification problem. Left: Representation of this
sequence as a graph, where each node represents the time series associated with the position of each player
and the links are vector regressive models. Causal interactions exist when one of the time series can be
explained as a combination of past values of the others. Right: Application of these ideas to the problem of
finding causally interacting players in a basketball game.

Moreover, this approach also identified time instants where the interactions between agents changed, thus
providing event detection capabilities. Efficient computational methods were developed by combining this
idea with the parsimonious model identification framework developed in [4, 20,29].

2.3 Personnel Supported During the Duration of the Grant

Mario Sznaier Dennis Picard Trustee Professor of ECE, Northeastern University (PI)
Octavia Camps Professor of ECE, Northeastern University (Co-PI)
Burak Yilmaz Ph.D. student, graduated, 2014
Yongfang Cheng, PhD. student, expected graduation date, May 2015
Jose Lopez Ph.D. student, expected graduation date, May 2015
Yin Wang Ph.D. student, expected graduation date, May 2015

2.4 Honors and Awards Received

• Mario Sznaier was awarded a Distinguished Member Award by the IEEE Control Systems Society
(less than 100 people have received this award since the society was created)

• Mario Sznaier delivered plenary talks at the 2012 IFAC Symposium on Robust Control Design, 2012
IFAC Symposium on System Identification, the 2012 Mediterranean Control Conference, the 2013
RPIC, the 2015 Symposium on Data Science and Systems Complexity, and the 2015 Geometric and
Numerical Foundations of Movement; and a Semi-Plenary lecture at the 2012 IEEE Conference on
Decision and Control.

• Octavia Camps was a keynote speaker at the 2014 IEEE International Conference on Distributed
Smart Cameras.
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2.5 Transitions

The theoretical framework developed under this grant was used to develop a “contra-flow” detector to sup-
port TSA agents by alerting them to potential attempts to breach secure areas. This technology was tested at
the Cleveland Hopkins International Airport for over a year, were it screened on average 50,000 passengers
per week. This technology was showcased to the Hon. Janet Napolitano (US secretary of Homeland Secu-
rity, November 2012), Mr. John S. Pistole (TSA administrator and former FBI Deputy Director, June 2013)
and the Hon. Theresa May (U.K. Home Secretary, Sept. 2014). It was also covered in a N.Y. Times article
that appeared on May 8, 2015.

Figure 9: Left: security breach detection technology being demonstrated to the Hon. J. Napolitano, Home-
land Security Secretary. Right: technology demo for Mr. J. Pistole, TSA Administrator and former FBI
Deputy Director.

Figure 10: Security breach detection technology deployed at the Cleveland Hopkins international airport.

2.6 Disclaimer

The views and conclusions contained in this report are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFOSR or the
U.S. Government.
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