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I Summary

This project focuses on large scale dynamic data driven applications systems (DDDAS, or In-
foSymbiotic systems) governed by partial differential equations (PDEs), e.g., arising in atmospheric
environments. Specifically, our main interests are data assimilation and the configuration of sensor
networks. Data assimilation is the process to dynamically integrate information from measure-
ments into models. In a variational approach the data assimilation problem is posed as an inverse
problem, where parameters are adjusted such that the model predictions best fit the measurements.
Sensor network configuration is the process of using model results to dynamically steer the mea-
surement process.

InfoSymbiotic applications are inherently subject to uncertainties associated with imperfect
models and with noisy data. There is an urgent need to quantify, and control, the effect of model
and data errors on the overall DDDAS results, and to fill the gap between the state-of-the-art mod-
eling techniques (capable of quantifying uncertainty in modeling results) and the computational
tools currently available for InfoSymbiotic applications.

During the first three years of this project (2012–2015) we started to address this need and
developed a rigorous framework for quantifying and reducing uncertainty in the context of InfoS-
ymbiotic systems [1, 2, 4, 6, 10, 11] (details are given in Section II).

DDDAS integrates computational simulations and physical measurements in a symbiotic feed-
back control system. Inverse problems in this framework use data from measurements along with a
numerical model to estimate the parameters or state of a physical system of interest. Uncertainties
in both measurements and the computational model lead to inaccurate estimates. We developed
a goal-oriented aposteriori error estimation methodology for the impact of different errors on the
variational solutions of inverse problems. In the goal-oriented approach we are interested in esti-
mating the impact of observation and model errors on the quantity of interest, i.e., on the aspect of
interest of the optimal solution.

The variational data assimilation problem optimizes the model states and parameters in order
to obtain predictions that fit best the measurements. In this project we solved the complementary
problem of optimizing the DDDAS process. The strategies used to collect and process the data are
considered to be parameters of the inference system, and are themselves improved via an additional
optimization process. Specifically, we seek to improve the parameters of the data assimilation
system. We have formulated the optimal configuration of the DDDAS system as the following
“optimization-constrained optimization problem??. Our algorithm is based on first and second
order adjoints, and on the solution of large linear systems. We also proposed efficient methods
for computing observation impact, including low-rank approximations of observation-to-analysis
sensitivities.

DDDAS variational inference in real time is hindered by costly forward and adjoint model
runs. We proposed a new parallel-in-time algorithm to speed up the solution process. The original
4D-Var problem is solved in the augmented Lagrangian framework. To expose time parallelism
the assimilation window is divided into several sub-intervals. This formulation allows to integrate
the forward and the adjoint models over different subintervals in parallel.

2
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The construction and validation of an adjoint model is an extremely labor-intensive process.
To address this challenge we proposed a derivative-free 4D-Var(-like) smoothing algorithm that
approximately solves DDDAS variational inference without the need to construct adjoint models.
Specifically, our TR-4D-EnKF algorithm uses a trust-region approach to optimize in ensemble
space.

Variational DDDAS inference solution does not include posterior uncertainty estimates. To
address this challenge we developed new nonlinear filtering and smoothing algorithms that sample
directly from the posterior PDF using a Hybrid Markov-Chain Monte Carlo (HMCMC) approach.
The sampling smoother is implemented efficiently using the same adjoint computational infras-
tructure used in 4D-Var.

Consistency of the reduced-order Karush-Kuhn-Tucker conditions with the full-order optimal-
ity conditions is a key ingredient for successful reduced order data assimilation problems. This
translates into accurate low-rank approximations of the both adjoint and forward models leading
to reduced bases constructed from the dominant eigenvectors of the correlation matrix of the ag-
gregated snapshots of full forward and the adjoint models. Our work underlines the importance of
incorporating the adjoint information into the construction of reduced order basis for performing
reduced order 4D-Var data assimilation.

II Results From the DDDAS Project AFOSR FA9550–12–1–0293–DEF (2012–
2015)

We summarize here the main results obtained during the first three years of this project, 2012–
2015. The research presented below was either fully or partially funded by this project.

II. 1 Mathematical framework
We work in a variational framework and regard the inference problem as an inverse problem,

as follows.

• The real (physical) system is described by a state xtrue (e.g., the spatio-temporal distribution
of wind velocities) and a vector of model parameters of interest θtrue (e.g., the fields at the
initial time). We do not know the real state or the real parameters, and our goal is to derive
information about θtrue from measurements of xtrue.

• The prior information encapsulates our current knowledge of the system. Usually the prior
information is contained in a background estimate of the state xb and the corresponding back-
ground error covariance matrix B.

• The reality is described by a computer model that captures our knowledge about the physical
laws that govern the evolution of the system:

xk+1 =Mk,k+1 (xk) , k = 0, 1, · · · , N − 1 , (1)

whereMk,k+1 represents the model solution operator that propagates the state xk at tk to the

3
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state xk+1 at tk+1.

• The sensor network provides observations of some aspects of the real state. Observations are
noisy snapshots of reality available at discrete time instances tk, k = 1, · · · , N . The model
state is related to observations by the following relation:

yk = H (xk)− εobsk , εobsk = εrepresentativenessk + εmeasurement
k . (2)

The observation operator H maps the model state space onto the observation space. The ob-
servation error term

(
εobsk

)
accounts for both measurement and representativeness errors. Mea-

surement errors are due to imperfect sensors. The representativeness errors are due to the
inaccuracies of the mathematical and numerical approximations inherent to the model.

The inference problem. To simplify ideas consider (without loss of generality) that the model
parameters are the initial conditions, θ = x0. The inference (data assimilation) problem is formal-
ized as a model-constrained optimization problem:

xa
0 = arg min

x0

J (x0) subject to (1), (3a)

J (x0) =
1

2

∥∥x0 − xb
0

∥∥2
B−1

0 (u)
+

1

2

N∑
k=1

‖Hk (xk,u)− yk‖2R−1
k (u) . (3b)

The first term of the sum (3b) quantifies the departure of the solution x0 from the background
state xb

0 at the initial time t0. The second term measures the mismatch between the forecast tra-
jectory (model solutions xk) and observations yk at all times t{`} in the assimilation window. The
weighting matrices B0 and Rk need to be predefined, and their quality influences the accuracy of
the resulting analysis. The vector u represents the parameters of the DDDAS system, e.g., sensor
locations and weights attributed to various data points.

Weak constraint 4D-Var avoids the assumption of a perfect model [16], implicit in the tradi-
tional strong constraint formulation (3), at the expense of solving a larger optimization problem.
The state xk at tk is allowed to differ from the model prediction Mk−1,k(xk−1). The weak con-
straint 4D-Var estimates of the states x = [x0, . . . ,xN ] are the unconstrained minimizer of the
following cost function:

min J w (x) =
1

2

∥∥x0−xb
0

∥∥2
B−1

0
+

1

2

N∑
k=1

∥∥H(xk)−yk

∥∥2
R−1

k

+
1

2

N∑
k=1

∥∥xk−Mk−1,k(xk−1)
∥∥2
Q−1

k

. (4)

The last term in the cost function (4) corresponds to the contribution of model error to changing
the analysis. The model is not imposed exactly; rather, it is treated as a weak constraint (i.e., the
differences xk−Mk−1,k(xk−1) are penalized in the cost function). The control variables in (4) can
be not only the model states xk at each time step, but also the model biases βk [16].

The dynamic configuration of the observation network problem. The inverse problem is
posed as a PDE-constrained nonlinear optimization problem, where model states and parameters

4
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are tuned in order to obtain predictions that fit best the measurements. The complementary prob-
lem is to optimize the strategies used to collect and process the data, such as to improve the perfor-
mance of the inversion. Formally, dynamic configuration of the observation network is achieved
by improving the parameters u of the system (3b), as explained in [4]. We discuss this in detail in
Section II. 3.

II. 2 A-posteriori error estimates for the solution of variational inverse prob-
lems

DDDAS integrates computational simulations and physical measurements in a symbiotic feed-
back control system. Inverse problems in this framework use data from measurements along with a
numerical model to estimate the parameters or state of a physical system of interest. Uncertainties
in both measurements and the computational model lead to inaccurate estimates.

Specifically, in practice the evolution of the physical system is described by an imperfect model

x̂k+1 =Mk,k+1(x̂k) + ∆x̂k+1(x̂k), k = 0, 1, . . . , N − 1 ., (5)

where ∆x̂k+1(x̂k, θ) represents the (additive) model error at time tk+1. The observations collected
by the sensors are also imperfect and contain data errors ∆yk. In practice one solves a perturbed
inverse problem of the form:

x̂a
0 = arg min

x0∈Rn

Ĵ (x0) subject to (5), (6a)

Ĵ (x0) =
1

2

∥∥x0 − xb
0

∥∥2
B−1

0 (u)
+

1

2

N∑
k=1

‖Hk (x̂k,u)− yk −∆yk‖2R−1
k (u) . (6b)

In [10, 11] we developed a goal-oriented aposteriori error estimation methodology for the im-
pact of different errors on the variational solutions of inverse problems. Consider a quantity of
interest (QoI) defined by a scalar functional E : Rm → R that measures a certain aspect of the the
optimal solution value

QoI = E (xa
0) . (7)

In the goal-oriented approach we are interested in estimating the impact of observation and model
errors on the QoI, i.e., on the aspect of interest of the optimal solution. The error in the QoIis

∆E = E(x̂a
0)− E (xa

0) (8)

where xa
0 and x̂a

0 are the solutions of the ideal inverse problem (3) and of the perturbed inverse
problem (6), respectively.

We have shown in [10, 11] that the error in the QoI is approximated to first order by the sum

5
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of contributions of errors in the forward model, adjoint model, and optimality equation:

∆E ≈ ∆Eest = ∆Efwd + ∆Eadj + ∆Eopt. (9)

Moreover, the contributions of errors are

∆Efwd =
∑N

k=1 ν
T
k ·∆x̂k , (10a)

∆Eadj = −
∑N

k=0 µ
T
k ·
(
HT

kR
−1
k ∆yk

)
+
∑N−1

k=0 µ
T
k · (∆x̂k+1)

T
xk
λ̂k+1 , (10b)

∆Eopt = −ζT (∆x̂1)
T
x0
λ̂1. (10c)

We see that data errors contribute to the error in adjoint model. The forward model errors contribute
to errors in both the forward and the adjoint equations. The “impact factors” ζ ∈ Rm, µk ∈ Rn for
k = 0, . . . , N , and νk ∈ Rn for k = 0, . . . , N are calculated by the following algorithm:

Linear system:
(
∇2

x0,x0
j
)
· ζ = ∇x0E ; (11a)

Tangent linear model: µ0 = −ζ ; µk+1 = Mk,k+1 µk, k = 0, . . . , N − 1 ; (11b)

Second order adjoint: νN = HT
NR

−1
N HN µN , (11c)

νk = MT
k,k+1 νk+1 + (MT

k,k+1 λk+1)
T
xk
µk

+ HT
kR
−1
k Hk µk , k = N − 1, . . . , 0.

We applied this methodology to real scenarios. Figure 1 illustrates a data assimilation calcu-
lation carried out using the Weather Research and Forecast Model (WRF-VAR). The errors in the
meridional wind component observation from GEOAMV and their impact on the QoIare shown.

II. 3 Dynamic configuration of sensor networks via optimization of DDDAS
parameters

The variational data assimilation problem (3) optimizes the model states and parameters in
order to obtain predictions that fit best the measurements.

In our work [4] we solve the complementary problem of optimizing the DDDAS process. The
strategies used to collect and process the data are considered to be parameters of the inference
system, and are themselves improved via an additional optimization process. Specifically, we seek
to improve the parameters u of the data assimilation system (3b).

We measure the quality of the inverse solution (3) by the discrepancy between the model fore-
cast (initialized from the analysis xa

0) and a set of high-quality verification data yverif
v collected at

verification time tv. This discrepancy can be measured by the quadratic “verification” cost function

Ψ(u) = Ψ
(
xa
v(u)

)
=

1

2

∥∥Hv(x
a
v(u))− yverif

v

∥∥2
Cv

. (12)

The function Ψ depends directly on xa
0(u), and indirectly on the system parameters u.

6
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(a) Optimal initial V (meridional component of the wind
field) at ground level (V component of xa

0).
(b) Data errors in GEOAMV observations (∆yk).

(c) Data error impact factors (scaled µk). (d) Contribution of data errors to error in analysis
QoI(µT

kH
T
kR

−1
k ∆yk).

Figure 1: Our aposteriori error estimator [10, 11] applied to a real scenario: data assimilation with WRFDA.
The assimilation window is from 18:00@04/27/2011 to 00:00@04/28/2011. The simulation domain covers
the continental U.S. with a horizontal grid resolution of 60Km. We consider the meridional wind component
(V ) observations taken by the geostationary satellite GEOAMV (geostationary atmospheric motion vector).
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In [4] we have formulated the optimal configuration of the DDDAS system as the following
“optimization-constrained optimization problem”

uopt = arg min
u

Ψ
(
xa
v

)
subject to

{
xa
0 = arg minx0 J

(
x0,u

)
,

xa
v =Mt0→tv(xa

0) .
(13)

Our algorithm to solve (13) is based on first and second order adjoints, and on the solution of
large linear systems. In [5, 6] we proposed efficient methods for computing observation impact,
including low-rank approximations of observation-to-analysis sensitivities.

Figure 2 illustrates the application of our methodology to detect faulty sensors. They are not
not visible from the inference solution, but are detectable via our sensitivity to data approach.
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clear structure.

0 10 20 30 40
0

5

10

15

20

25

30

35

40  

 
−50

−40

−30

−20

−10

0

(c) Sensitivity to observations
field clearly identifies the loca-
tions of the two faulty sensors.

Figure 2: The observation impact methodology to identify possibly faulty sensors. From [6].

Figure 3 illustrates how the optimization-constrained optimization process can dynamically
adjust the data covariances (weights) and the can define optimal sensor network configurations.
Both procedures lead to considerable decrease of forecast error (12), and therefore to sconsiderably
improved performance of the DDDAS system.

II. 4 Parallel-in-time algorithm for fast variational DDDAS inference
DDDAS variational inference in real time is hindered by costly forward and adjoint model

runs. In [12] we proposed a new parallel-in-time algorithm to speed up the solution process. The
concept is illustrated in Figure 4a.

The original 4D-Var problem in (3a) is solved in the augmented Lagrangian framework [9,
Section 17.3]. To expose time parallelism the assimilation window is divided into N sub-intervals,
namely,

[t0, tN ] = [t0, t1] ∪ . . . ∪ [tN−1, tN ]. (14)

The optimization variables are the forward model and adjoint model states at the interval bound-
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shows a considerably improved per-
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solving (13).
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(f) Decrease of forecast error (12) ≡
improved DDDAS performance.

Figure 3: Optimization of DDDAS parameters for a two dimensional shallow water system. From [4].
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aries x = [x0, · · · , xN ] and λ = [λ0, · · · , λN ], respectively. Solution continuity equations across
interval boundaries are added as constraints. This formulation allows to integrate the forward and
the adjoint models over different subintervals in parallel. The optimization proceeds in cycles of
inner and outer iterations and updates alternatively x and λ variables. The augmented Lagrangian
approach leads to a different formulation of the variational data assimilation problem than weakly
constrained 4D-Var.

Results from applying parallel-in-time 4D-var data assimilation to the shallow water on the
sphere model is illustrated in Figure 4b. A speedup factor of two is obtained by a combination of
parallel and traditional approaches. Note that this factor of two is obtained on top of the parallel
speedup due to traditional spatial domain decomposition parallelization applied to forward and
adjoint models [13].

Challenge: inference in real time hindered by costly 
forward and adjoint model runs.  
Solution: New parallel-in-time 4D-Var algorithm 

ICCS 2015, Reykjavik, Iceland. 

High%resolu,on.non%linear.forecast.
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[Rao and Sandu, submitted, 2014] (a) Concept: the parallel-in-time solution of 4D-Var data
assimilation problem.

Data assimilation with the shallow water on the 
sphere model: 2x overall speed-up 

ICCS 2015, Reykjavik, Iceland. 
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Figure 4: Parallel-in-time 4D-Var applied to 2D shallow water equations [12].

II. 5 Adjoint-free variational inference
The construction and validation of an adjoint model is an extremely labor-intensive process. To

address this challenge in [8] we proposed a derivative-free 4D-Var(-like) smoothing algorithm that
approximately solves DDDAS variational inference without the need to construct adjoint models.
Specifically, our TR-4D-EnKF algorithm uses a trust-region approach to optimize in ensemble
space.

II. 6 Hamiltonian Monte-Carlo sampling filter and smoother
Variational DDDAS inference solution does not include posterior uncertainty estimates. To

address this challenge we developed new nonlinear filtering [2] and smoothing [1] algorithms that
sample directly from the posterior PDF using a Hybrid Markov-Chain Monte Carlo (HMCMC)

10



approach. The sampling smoother is implemented efficiently using the same adjoint computational
infrastructure used in 4D-Var.

II. 7 Optimization with reduced order model surrogates
Consistency of the reduced-order Karush-Kuhn-Tucker conditions with the full-order optimal-

ity conditions is a key ingredient for successful reduced order data assimilation problems. This
translates into accurate low-rank approximations of the both adjoint and forward models (see [14])
leading to reduced bases constructed from the dominant eigenvectors of the correlation matrix of
the aggregated snapshots of full forward and the adjoint models.

Our recent work [14, 15] underlines the importance of incorporating the adjoint information
into the construction of reduced order basis for performing reduced order 4D-Var data assimilation
(see red versus blue lines in Figure 5b). The new shallow water ROM data assimilation system pro-
vides analyses similar to those produced by the full resolution data assimilation system in one tenth
of the computational time (see black versus blue lines in Figure 5b). Another order of magnitude
in savings is expected with three dimensional models.

(a) Concept: the proposed solution of 4D-Var data assim-
ilation problem uses ROMs as surrogates in an inner op-
timization loop.
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(b) Cost function decrease for 4D-Var applied to 2D shal-
low water equations [15]. It is essential to incorporate
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Figure 5: Reduced order 4D-Var applied to 2D shallow water equations [15]. Optimization based on tra-
ditional reduced order models - constructed from the forward solution snapshots - is inaccurate (red line).
However, reduced order analysis (blue line) is as accurate as the full model one (green line) when adjoint
information is incorporated in the reduced bases. The reduced order analysis is ten times faster than the full
order one.
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