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ABSTRACT: In today’s networks, individuals frequently face the problem of information overload. The amount
of information available for a decision is often much larger than a person can process to make an informed
decision. Past research has shown that individuals can differ significantly in how they use information in making
decisions. Individuals may differ in their willingness to seek and incorporate more information into their decision
making, some relying more on information at hand than simple heuristics. Individuals’ desire to reach a closure
quickly by making a decision may differ as well, depending on situational factors such as the level of inherent
ambiguity or uncertainty in the decision. These factors have not yet been studied deeply in the context of networked
information processing in terms of their impact on the timeliness and accuracy of decisions. In this paper, we address
this problem by introducing an agent-based model that incorporates four characteristics representing individual
differences: competence, engagement, decisiveness and reliance on neighbors’ opinions for corroboration. Based
on a novel way of modeling the degree of problem difficulty, we investigate the impact of individual differences in
networked decision making through comprehensive simulation experiments. Our simulation results show that being
more engaged with a task does not always improve team performance and can lead to information overload if it is
coupled with high information push activity. Similarly, heuristic decisions as a result of high decisiveness can be

useful in various problem settings and can be further improved by a small amount of corroboration.

1. Introduction

In today’s networks, individuals frequently face
the problem of information overload: the amount
of information available for a decision far ex-
ceeds the capacity of individuals to process informa-
tion. However, individuals also differ in their mo-
tivations for seeking and engaging with informa-
tion. Need-for-cognition (NC) [Cacioppo et al., 1982]
refers to an individual’s desire to seek relevant in-
formation and integrate evidence to reach a conclu-
sion. On the other hand, need-for-cognitive-closure
(NCC) [Webster and Kruglanski, 1994] indicates the
desire to arrive at a decision quickly to avoid
discomfort caused by ambiguity or uncertainty. It

has been shown that the individual differences in
NC and NCC play a significant role in informa-
tion sharing [Henningsen and Henningsen, 2004] and
the influence one may have over others in the net-
work [Marsden and Friedkin, 1993]. While agents mod-
els have incorporated the notion of bounded rational-
ity [Carley et al., 2009], the impact of individual differ-
ences especially in the NC and NCC scales on accuracy
and timeliness of decision making has not been studied
deeply in the literature.

In this paper, we introduce an agent-based model for
decision making in which individuals share facts with
each other and make decisions based on information
at hand in a networked environment. We manipulate



two significant aspects of the simulation: the character-
istics of individual agents based on the NC and NCC
scales and the overall problem difficulty. And then we
investigate how these factors impact both the timeliness
and the accuracy of decision making. The model pro-
posed in this paper expands on our prior agent-based
model [Chan et al., 2013], [Chan and Adali, 2012] with
three new measures of an individual’s differences:
engagement, corroboration threshold and decisiveness.
While engagement is related to NC scale, corroboration
threshold, and decisiveness are models of the different
components of the NCC scale. In addition, we use the
agent competence model from our prior work to arrive
at four interrelated individual difference parameters.
We conduct an agent-based simulation study in which
agents share information with the intention to make
an informed decision. We introduce a novel way of
modeling problem difficulty in terms of facts that contain
arguments in support of making a decision (pro) and
arguments against the same decision (con). Furthermore,
we consider information that is useless (i.e., noise) but
can cause confusion if interpreted as valuable due to
lack of expertise. Our simulation scenario allows agents
to make heuristic decisions when only little information
is available about the given task and more informed
decisions can be made upon receiving more of the
available information. By changing the distribution of
facts along with the two dimensions of type of evidence
(i.e., pro vs. con) and benefit (i.e., valuable vs. noise),
we manipulate the underlying difficulty of the problem.
The more difficult a problem is, the higher the risk of
making an incorrect decision with limited information
and in the presence of information processing errors.
Using this novel model, we study how individual dif-
ferences impact the timeliness and accuracy of decision
making. We demonstrate that being more engaged with
a task by processing and sending out information to
the network does not always improve team performance
and can lead to information overload. This type of
engagement results in noisy information being multiplied
in the network faster than the network’s ability to filter
it out. Similarly, higher decisiveness modeled as reliance
on smaller set of facts can be more robust to this type
of information overload in some situations. Interestingly,
corroboration coupled with high decisiveness results in
best performance overall, by making quick decisions and
then reducing the overall noise in the network quickly by
routing only information that supports a given decision.

2. Related Work

There is a great deal of work on factors relating
to information sharing behavior in terms individual or

social motivations. In trust literature, the focus is on
understanding how individuals trust others as sources
of information for decision making [Fiske et al., 2007].
Often the competence of others and their reliability are
prominent factors. In information processing, individuals
also concentrate on factors that relate to the properties
of the information itself [Hilligoss and Rieh, 2008] that
signal whether a piece of information is likely to be
true based on heuristic factors such as the presentation
of the information and the confidence of the source.
In particular, the information consumer integrates these
multiple concerns to derive the credibility of the infor-
mation as well as the trust for the source depending
on the decision context [Adali, 2013]. If the information
consumer has sufficient cognitive resources and expertise
in the problem domain, they are more likely to process
information in an effortful manner and rely on their own
judgment. In other cases, they are more likely to rely on
the surface cues of the information itself or on the trust
for the sources. Some agent-based models have incorpo-
rated the trust aspect of information processing into net-
worked decision making situations [Chan et al., 2013],
[Thunholm et al., 2009]. In particular, the taNdem (A
Trust-based Agent framework for Networked DEcision
Making) agent simulation system [Chan et al., 2013] is
the first to explicitly model the competence and will-
ingness of agents as well as the trust beliefs for the
competence and willingness of other agents. However,
the taNdem does not consider the individual differences
of agents in information processing behavior as well as
the underlying difficulty of the problem being solved,
which is the focus of this paper. Other work has con-
centrated on the influence of opinion leaders and beliefs
of individuals in settings with agents with bounded
processing capacity [Carley et al., 2009]. In this paper,
we do not incorporate prior beliefs and social influence
to the model, but leave these to our future work.

An additional line of work considers an individual’s
information seeking behavior in an information pull
scenario. The main problem is to understand how in-
dividuals choose to query sources, what keywords they
use and which sources they select [Case, 2008]. Some
information models study how individuals’ understand-
ing of the problem domain evolve over time based on the
information they process [Pirolli and Fu, 2003]. They
use a brain activation model that shows how people
build a mental model of the problem space. On the other
hand, other models aim to understand how the under-
lying tasks, the awareness of existing information and
the outcomes of different information seeking actions
predict the future actions of individuals [Leckie, 2005],



[Wilson, 2005]. In this line of work, the models need
to balance situational factors, such as availability of
information, with personal factors such as the desire to
seek information [Ingwersen and Jarvelin, 2005].

Two types of individual differences play a significant
role in these information models: the need for cognition
(NC) [Cacioppo et al., 1982] and the need for cogni-
tive closure (NCC) [Webster and Kruglanski, 1994]. An
individual with high NC tends to engage more with
information, processing more and basing her decisions
on the gathered information [Cacioppo et al., 1982].
An individual with low NC tends to take a heuris-
tic approach in information processing and to make
decisions based on it such as fluency of informa-
tion (i.e., presentation of information). The NCC
scale [Webster and Kruglanski, 1994] deals with the de-
sire of an individual to quickly reach closure by mak-
ing a decision. An individual with high NCC tends
to make faster decisions while an individual with low
NCC can delay decisions. While these two measures are
correlated [Kossowska and Bar-Tal, 2013], NCC is more
complex integrating five different personality aspects:
preference for order, predictability, decisiveness, dis-
comfort with ambiguity and closed-mindedness. Hence,
delaying a decision may not necessarily be a result of
the desire to process more information as in NC, but
for a desire to resolve ambiguity of the underlying deci-
sion. Furthermore, it has been shown that the individual
components of the NCC scale remain the same across
multiple cultures [Mannetti et al., 2002].

Despite the importance of these two factors (NC and
NCCO) in determining how individuals process informa-
tion, there is little work in understanding how these
factors interact in networked decision making scenarios
in which teams often have to deal with information
overload. To the best of our knowledge, this paper is
the first to investigate their impact on networked teams.

3. Agent-based Model

In the paper, we consider an agent-based model where
agents are connected to each other through an undirected
network which could model either a communication net-
work connectivity, a social network ties or organizational
role based relationships. Individuals communicate with
all their neighbors in the network at all simulation steps
to accomplish a task. We leave the impact of prior or
task specific trust which would lead to changing com-
munication partners throughout the simulation to future
work. Agents in the simulation exchange information to
help each other make a decision. Each unique piece of
information is called a factoid. In the information sharing
scenario we consider, a fixed number of factoids are

distributed to all the agents’ inbox in the beginning of
the simulation, and diffuse to other agents throughout
the simulation.

At each step of the simulation, each agent processes
some of the factoids from its inbox. For each factoid
they process, they make a determination on whether the
factoid contains valuable information or not. If the agent
thinks the factoid is valuable, it will first put this factoid
in its knowledge base and immediately send the factoid
to all its neighbors in the network. Agents will not send
the same factoid out more than once. However, an agent
may receive and process the same factoid multiple times
as it arrives from different neighbors as long as it is not
yet in its knowledge base. In other words, if the agent did
not think a fact was valuable the first time it has seen
it, it may do so upon receiving it multiple times. The
new factoids received from neighbors will accumulate
at the top of the inbox of each agent at the end of each
simulation step.

This simulation scenario is very similar to
ones proposed in prior work [Chan et al., 2013],
[Thunholm et al., 2009] with a few differences. First,
the fact that new information accumulates on top of
the inbox models the reality of many information push
scenarios such as micro-blogs or an inbox sorted by
recency. As another new addition, agents will make
decisions as soon as they think that they have processed
sufficient number of factoids. The decisions are based
on the amount of knowledge available in this model, but
not a time deadline. This choice allows us to investigate
how other simulation factors impact both the timeliness
and the correctness of decisions.

Once an agent makes a decision, it continues to
share factoids with other neighbors, but now it only
shares factoids that it thinks as valuable and supports
the current decision. This allows agents to influence
other agents’ decisions by selective sharing. Agents may
change their decisions as more facts become available in
the simulation. In our model, an agent’s behavior is only
influenced by the personal (nodal) characteristics, not
by edge characteristics like trust (e.g., trust relationships
with communication partners). We leave this aspect of
investigation for our future work.

3.1 Modeling of Decision Tasks

To enable the agents to make decisions, the factoids
corresponding to a task are divided into four types.

The benefit of factoids differs between valuable and
noise. A valuable factoid is evidence relevant to decision
making. A noisy factoid (or noise) is information that
should be disregarded completely in an ideal scenario.
However, agents may make errors in detecting usefulness



Algorithm 1 Agent Behavior

function AGENTBEHAVIOR(a)

Input: an agent a with engagement e, decisiveness d, competence ¢ and corroboration factor cf

pro_facts = 0, con_facts =0
for all facts f in a’s current knowledge do

if the fact has been sent by = neighbors where © >= cf then
pro_facts+ = x if the fact is pro decision, con_facts+ = x otherwise

end if
end for
if | f| >= max(1, (1 — d) * (1 + 22)) then

> x1 /29 max number of pro/con facts

Make a PRO decision if pro_facts > con_facts and CON decision otherwise

end if

for C' x e times do
Pick a factoid f from inbox of a
if f is not in a’s knowledge then

> (C is max capacity for all agents)

val is the correct value of f by probability ¢, reverse otherwise
If val = False but f is sent by >= cf neighbors, then val = True

if val then
add f to a’s knowledge

> a thinks f is valuable

if a has not made a decision or f agrees with a’s decision then
Put f on the top of the inbox of all a’s neighbors

end if
end if
end if
end for
end function

of the evidence and judge a valuable factoid as noise
(i.e., false positives), and a noisy factoid as valuable
(i.e., false negatives). These errors lead to using incorrect
information in decisions and increased noise in the
network.

The evidence of a factoid can be Pro or Con. Pro
factoids are arguments supporting a decision, and Con
factoids are arguments against the decision. Agents do
not make errors regarding the evidential value of a
factoid, whether a factoid is for or against a decision.
If a fact is Pro, it will always be known correctly as
Pro, or vice-versa.

The ground truth of a fact is either Pro Valuable (PV),
Pro Noise (PN), Con Valuable (CV) and Con Noise
(CN). Each decision task is supported by a number of
factoids of different types. We will use the representation
[V : (x1/22), N : (y1/y2)] to represent the number of
facts with ground truth PV (z1) and CV (x2), and PN
(y1) and CN (y2). The correct decision for the agent
should be Pro if 1 > x5 and Con, otherwise.

As agents are bounded, they do not have access to all
the facts and to the ground truth for the facts. Without
global view based on perfect knowledge, all the agents

make decisions based on their own knowledge base at
a given point in time which contains the factoids they
perceive valuable. We represent the knowledge base of
an agent at some point ¢ in the simulation with [(z1/22)]
where z; is the number of Pro factoids and z, is the
number of Con factoids the agent has processed and
perceives as valuable at time ¢ (including those identified
in error). An agent will make a Pro decision if 21 > 25
and a Con decision otherwise.

The distribution of factoids along the four dimensions
represents the inherent difficulty of a decision. Suppose
we have [V : (50/25), N : (10/10)]. This is an easy
decision because there is overwhelming evidence in
support of the decision and very little noise. Even if
an agent has a small subset of the factoids available, it
is very likely that it will have a higher number of Pro
factoids than Con factoids, resulting in a correct decision.
This is true even if the agent does not correctly identify
the value of some subset of factoids. In this case, waiting
to process more factoids is not likely to improve the
decision accuracy.

A more difficult decision setting could be given by
[V : (50/25), N : (10/100)]. As there is more noise



than valuable factoids, the agents must not misidentify
valuable information and filter it out. Also, they must
not make errors regarding the many Con noise factoids
and use them as valid evidence against the decision. In
short, even a small tendency to make errors can result
in incorrect final decisions due to multiplied noise in the
network and loss of valuable information.

To summarize, there is a big risk of making a wrong
decision if 1 > x9 but yo >> y; and y» >> x1. In
other words, if there is a lot of Con noise (y2) compared
to pro valuable facts, then even a small percentage of
error can lead to incorrect decisions. Note that if yo >>
x1 and y2 = y;, the risk is reduced because agents now
can make equal mistakes for both Con and Pro noise.
Even though the decisions are more random, the risk of
errors is reduced.

3.2 Modeling Agent Characteristics

The behavior of each agent is a function of its personal
characteristics modeled by four distinct parameters: com-
petence (c), engagement (e), corroboration factor (cf),
and decisiveness (d). We can manipulate the character-
istics of all the agents in the simulation, or a subset of
them. Each agent is cognitively limited, they can process
at most C' factoids in a single simulation step and can
only make decisions based on the information available.

Competence (c) models the task specific expertise of
an agent (between 0 and 1). An agent with a competence
value of ¢ will correctly identify the benefit of a fact
(valuable or noise) with probability c. When ¢ = 1, the
agent will always identify a fact correctly. The evidence
type is always correctly processed, regardless of the
competence level.

Engagement (e) models the level of engagement of
an agent with the decision making task (between O and
1). An agent with engagement e will process C' X e
facts from its inbox at each simulation step, with e = 1
representing full engagement. Engagement controls how
much information is incorporated into decisions and
models NC.

Corroboration factor (cf) models an agent’s reliance
on the corroboration of facts by others for decision
making (integer value 1 or higher). This parameter has an
effect both in processing of facts and in decision time.
When processing a fact with ¢f > 1, the agent will
find a factoid valuable if it is sent by at least cf agents
at decision time regardless of its own opinion. When
cf = 1, the agent only relies on its own evaluation of
the factoid. High cf values can be a reliable signal of
the benefit of facts when agents have a competence of
0.5 or higher, but it may take many simulation steps for
an agent to observe a high cf value.

Decisiveness (d) models how many facts the agent
needs to have seen (regardless of their perceived benefit)
before making a decision (between 0 and 1). An agent
with decisiveness of d will need to have seen at least
(z1 4 z2) x (1 — d) factoids before making a decision.
A decisiveness of 0.2 means that the agent must have
seen at least 80% of the (z1 + x2) factoids. Hence, low
decisiveness threshold means that agents need to see a
lot of facts and will make decisions more slowly.

Agents make a decision after meeting the decisiveness
threshold. At this point, they base their decision on
the facts in their knowledge base that have passed the
corroboration threshold. In essence, agents can change
their mind in two ways. First, a factoid they perceived
as noise may eventually be put in their knowledge base
if it is seen cf times. Secondly, a factoid that was
considered valuable may eventually be disregarded at
decision time if it has not met the cf threshold. Once
an agent makes a decision, they send only facts that
support their decision. Both corroboration factor and
decisiveness model various aspects of the NCC scale.

The details of the agent actions and its dependence on
the given agent characteristics are given in Algorithm 1.

4. Experimental Setup

Given the model described in Section 3, we run a
number of experiments to understand the impact of dif-
ferent factors in team performance. We use the following
performance metrics to evaluate our model:

Correct decisions: total number of agents (out of 20)
making a correct decision at the end of the simulation.

Accuracy: percentage of decisions that are correct at
the end of the simulation with accuracy of 1 representing
100% of correct decisions. In our settings, the PRO
decision is always the correct decision without loss of
generality.

We create a Watts-Strogatz network with 20 agents,
each node connected to 3 neighbors with a 0.2 prob-
ability of rewriting edges. Then, we seed all the
agents with the factoids from the problem space: P =
[(z1/x2), (y1/y2)] where (x1/x2) are the number of
valuable pro/con factoids, and (y;/y2) are the noise
pro/con factoids. Each factoid is sent to 3 agents ran-
domly selected in all our experiments. We run each
experiment for 10,000 steps and repeat 100 times. In
all our tests, the maximum amount of information that
can be processed by an agent at a single simulation step
is 100 (i.e. C = 100).

4.1 Engagement

We first study the impact of engagement. We set
the corroboration factor (cf) to 1, forcing agents to
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Fig. 1: The impact of engagement and decisiveness on
final decision accuracy with different competence values.

only consider their own judgments of factoids’ benefit.
Intuitively, if an agent is engaged with an activity, they
are expected to incorporate more information and make
better decisions. To study this hypothesis, we construct 4
different experimental problem settings, given the same
total number of facts as shown below.

Scenario | x1 x2 Y1 Y2
Sc. 1 50 40 75 75

Sc. 2 50 40 50 100
Sc. 3 50 40 100 50
Sc. 4 50 40 O 150

We run two sets of experiments with low (0.6) and
high (0.7) competence as shown in Figure 1. In many
scenarios, higher engagement actually reduces the de-
cision accuracy. The reason is that whenever an agent
determines that a factoid is valuable erroneously, it

copies the factoid to all its neighbors. Hence, noise is
multiplied quickly. As a result, if each agent processes
a lot of information at once and ends up sending out a
lot of noise, the overall noise in the network is suddenly
multiplied. Let us now consider a different extreme case.
Suppose a single factoid is processed by each agent
at each time step. For a noise factoid to be sent from
agent 1 to 2, and then 2 to 3, both agents 1 and 2
have to make consecutive errors (by probability 0.3
each). As long as the overall competence of agents
is above 0.5, noise is slowly eliminated in network
processing. We have illustrated this effect in our previous
work [Adal1 et al., ress].

Given these two competing factors, the problem space
is crucial in determining which one is going to be more
dominant. In scenario 4 with a considerable amount of
misleading noise (150 CN factoids), even small errors
lead to a large amount of noise being multiplied in the
network and agents spend all their time filtering this
information out. By increasing engagement, filtering is
delayed and the overall team effectiveness is reduced. In
scenario 2, we see that agents with high decisiveness are
impacted negatively from this problem. As information
is passed through the network, the agent needs to wait
to make a decision, letting the filtering process take
place to reduce noise. However, in scenarios 1 and 3,
where the noise tends to provide evidence for the correct
decision, high engagement allows good decisions to be
made quickly and frequently.

Overall, we can observe increased engagement only
helps accuracy in the situations without high quantities
of misleading noise. In situations where engagement can
cause information overload, lower decisiveness is more
beneficial.

Finally, we can verify this finding by looking at the
timing of decisions as shown in Figure 2 (a). Each of
the four scenarios was run with a competence of 0.7.
Higher engagement results in faster but lower accuracy
initial decisions. Initial decisions guide the remaining
network traffic, resulting in faster convergence to similar
decisions for the other nodes. The only case in which this
is not true is in Scenario 4 with a lower number of facts
and an easier problem scenario.

4.2 Corroboration Factor

In this section, we consider the impact of the cor-
roboration factor in final decision accuracy. For these
experiments, we set engagement to 0.8 and consider the
two scenarios shown below.

Scenario ‘ T Ta Y1 Y2 Competence
Easy 50 40 10 100 0.8
Difficult | 50 40 50 100 0.6



Correct Decisions
g

[— En=02 - En=05 - En=0.8 [— En=02

- En=0.5

- En=0.8 . Cf=4

Time (steps)

(Sc. 1)

0 15 20 25 30 35 40 45 0 0 15 20 25
Time (Steps)

(Sc. 2)

30 35 40 45 10 15 20 25 30 35 40 45

Correct Decisions

[— En=02 -~ En=05 - En=08 - [— En=02

- En=0.5 -+ En=0.8

- Cf=2 - Ci=4

10 15 20 25 30 35 40 45 0 10 15 20
Time (Steps)

(Sc. 3)

25
Time (Steps)

(Sc. 4)
(a) Impact of engagement in different scenarios with competence 0.7.

30 35 40 45 10 15 20 25 30 35 40 45
Time (Steps)

D=0.8
(b) Impact of corroboration on the
difficult scenarios with different de-
cisiveness values.

Fig. 2: Impact of engagement (a) and corroboration (b) on the number of correct decisions in different scenarios

Agents’ increased reliance on corroboration improves
accuracy in two ways. First, in low competence cases, the
agent’s own opinion alone is too noisy and considering
facts corroborated by others helps improve accuracy
significantly as it is unlikely for noise to be highly
corroborated when competence is above 0.5. Hence in
the easy scenario with a competence of 0.8, the improve-
ment due to corroboration is small despite the slightly
higher imbalance in the noise. The second effect is
due to decisiveness. Higher decisiveness requires fewer
factoids, leading to faster decisions. After a decision,
agents route only factoids that support their decisions
and reduce the overall traffic in the network. High deci-
siveness with a small amount of corroboration leads to
optimal results by increasing accuracy of early decisions
and improving overall performance of the network. This
quick convergence for high decisiveness (0.8) can be
seen in Figure 2 (b). The final decision accuracy is shown
in Figure 3. We first note that corroboration improves
decision accuracy significantly but there is no significant
improvement above a factor of 2 in our problem setting
(in which each factor is sent out to 3 agents in the
beginning). There is already a significant network effect
in filtering noise. Furthermore, the odds of receiving the

information 4 times is negligible in our network as each
agent is connected to 3 others on average.

5. Conclusions

In this paper, we introduced an agent model for
studying the impact of the need for cognition and need
for closure individual difference scales on networked
decision making. The proposed model models agents
with various characteristics: the competence in distin-
guishing between noise and valuable information, the
decisiveness in terms of being able to make decisions
based on few factoids, relying on corroboration to reduce
ambiguity and engagement to process multiple facts at
each time. We modeled the degree of problem difficulty
in a novel way that allows us to study the impact of these
differences in realistic information sharing scenarios.
Our simulation experiments show that when agents are
low in competence, the dependence on corroboration
is high. High decisiveness is not always desirable as
agents may miss out relevant information while making
their decision. Reliance on corroboration with high de-
cisiveness results in an optimal scenario, leading to fast
heuristic decision making with high accuracy through
corroboration. Higher engagement resulting in higher
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Fig. 3: The impact of corroboration in easy (top) and
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information processed and sent to the network is not
always desirable, reducing the ability of the network to
reduce noise through information dissemination paths.
This effect is likely to be more intense in denser com-
munication networks. In our future work, we plan to
investigate the effects of different network structures, a
subset of agents with different characteristics on overall
network performance as well as other aspects of the NC
and NCC scales such as the desire to stick with one’s
decisions and open-mindedness on network and team
performance.
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