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Abstract—In a military tactical network where a trust au-
thority (e.g., a commander) makes a decision during a mission,
assessing the trustworthiness of participating entities accurately is
critical to mission success. In this work, we propose a trust-based
reputation management scheme, called GlobalTrust, for minimiz-
ing false decisions on the reputation of nodes in the network. In
the proposed scheme, nodes may be compromised and provide
incorrect opinions to the trust authority, who conducts reputation
evaluation towards all nodes based on the provided opinions.
GlobalTrust achieves three goals: (1) maintaining a consistent
global view towards each node; (2) obtaining high resiliency
against various attack patterns; and (3) attaining highly accu-
rate reputation values of nodes. Through extensive simulations
comparing GlobalTrust with other existing schemes, we show
that GlobalTrust minimizes false decisions while maintaining
high resilience against various attack behaviors. Specifically,
under various attacks, GlobalTrust can achieve a highly accurate
consistent view on nodes’ reputations even when the number of
malicious nodes is up to 40% of all participating nodes.
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I. INTRODUCTION

Military tactical networks often face challenges in designing
security protocols because they require additional precautions
compared to civilian networks, including high hostility, dis-
tributed network characteristics, node subversion, and node
heterogeneity. The mixture of wired/wireless communication
mediums and high tempo operations cause rapid changes
in network topology and service requirements. Since com-
munities of interest (e.g., mission/task teams) are formed
dynamically, participating nodes may not have any pre-defined
trust relationships to each other. A tactical network may con-
sist of heterogeneous entities characterized by humans (e.g.,
soldiers), robots, or unmanned/manned vehicles equipped with
devices such as machines and/or sensors. In this work, we
use the terms a node and an entity interchangeably to repre-
sent heterogeneous entities (or nodes) above. Military tactical
networks typically have a hierarchical structure where a com-
mander makes critical decisions to control all other entities
in the network [1]. In this scenario, for the commander, it is
critical to perceive an accurate view towards other entities for
making right decisions. For example, when the commander
wants to form a temporary mission team, called a military
coalition, based on an acceptable trust level of nodes, the
accuracy of trust assessment towards each node significantly
impacts mission success.

One of the common applications using trust management
mechanisms is to identify malicious entities in order to protect
the network from attackers. The malicious entities may disrupt
system security goals by performing network attacks such as
loss of service availability (e.g., denial-of-service, packet drop-
ping), and/or loss of data integrity (e.g., good/bad mouthing,
message forgery/modification). In this work, we propose an
attack-resilient reputation management mechanism that can
accurately assess nodes’ trustworthiness in the presence of
highly hostile entities.

Trust or reputation management has been extensively stud-
ied in various domains [2]. In particular, many studies define
reputation as a global perception of a node’s trustworthiness
in a network, whereas trust indicates an individual node’s
perception of any other node’s trustworthiness based on its
direct observation. A desirable reputation management should
be able to provide the following features in the network:

• Consistency: provide a consistent view of the reputation
of a node based on the consensus of honest nodes.

• Resiliency: be resilient to common security threats.
• Accuracy: derive valid reputation values based on accu-

rate trust assessment.
Maintaining a consistent global view towards the node’s rep-
utation is challenging with uncertain or incomplete evidence
in hostile, distributed tactical network environments.

This work proposes a reputation system, the so called
GlobalTrust, for tactical networks for maximizing correct
decision-making by identifying malicious entities. GlobalTrust
has the following unique contributions: (1) it provides an
accurate, consistent view on the reputation of all nodes and
detects malicious nodes in the network; (2) it can effectively
deal with various attack behaviors; and (3) it outperforms the
existing reputation schemes (i.e., two schemes in PeerTrust
[3]) in terms of view consistency and resilience against various
attack behaviors.

II. RELATED WORK

Trust or reputation management (TRM) schemes have been
extensively studied in various domains. In the literature, the
term trust management has been often interchangeably used
with the term reputation management [4]. However, some
researchers discussed the difference between trust and reputa-
tion. In [2], [5], trust is defined as a node’s belief in trusting
a peer, a subjective view towards its peer, while reputation



means the perception about a node formed by other peers.
Thus, reputation can be estimated based on the aggregation of
peer nodes’ trust values.

Aberer and Despotovic [6] presented a trust-based reputa-
tion management scheme that is scalable for data manage-
ment without any centralized control, but without considering
collusive attacks. Kamvar et al. [7] proposed a distributed
and secure method for reputation management that effectively
identifies and isolates malicious nodes using the pre-trusted
authority. Xiong and Liu [3] proposed two reputation-based
trust models to evaluate a node’s reputation in a fully dis-
tributed manner: trust-value based credibility measure (TVM)
and personalized similarity measure (PSM). However, TVM
is vulnerable to collusion attacks while PSM generates dis-
crepancies in reputation about the same entity by different
evaluators.

Zhou and Hwang [8] introduced a reputation system using
power-law feedback provided by power nodes to aggregate
reputation values in order to build a robust P2P system. Bella
et al. [9] proposed a reputation management scheme that
enables a node to exchange and update other nodes’ reputation
values in mobile ad hoc networks (MANETs). Arboit et al.
[10] introduced a computational reputation model considering
accusations against nodes in MANETs. However, [9], [10]
do not deal with a false recommendation attack that often
significantly deters accurate reputation assessment. Some other
existing reputation management schemes [11]–[14] evaluate
reputation of a node subjectively based on the evaluator’s
direct observation, ultimately leading to inconsistent global
reputation view.

Quorum-based attack detection mechanisms has been exten-
sively studied based on k-out-of-n threshold signatures [15],
[16]. The key idea behind this is to determine the threshold
k+1 as an upper bound of negative votes to diagnose a node
as compromised. However, it is not trivial to obtain a sufficient
number of votes under highly dynamic network environments.
In addition, this work did not consider any collusive attack.
Later, [17], [18] proposed mutual revocation based decision
making schemes using the k-means clustering algorithm for
trust management. The k-means-based judgment scheme, how-
ever, is vulnerable to a conflicting recommendation attack.

III. PRELIMINARIES

A. Problem Statement and Challenges

We assume each node in a tactical network is pre-installed
with a monitoring mechanism [19] characterized by detection
error probability ε. This enables a node to directly observe its
neighboring nodes’ behavior. With this monitoring capability,
each node can derive Local Trust Opinions (LTOs) about its
neighboring nodes based on direct observations. For example,
LTOw,u is node w’s trust opinion towards node u based on
direct observations. If node w has not encountered with node
u, there will be no LTO. Let pw,u and nw,u be the total number
of positive events and total number of negative events that node
w observed about node u, over the period of encountering

time. The LTO of node w towards node u during this time
period, LTOw,u, is calculated as:

LTOw, u =
pw, u

pw, u + nw, u
(1)

LTOw,u is a real number scaled in [0, 1]. Note that if the total
number of observed events, pw,u + nw,u, is 0 (i.e., no direct
observation), LTOw,u will be set as a null value. These LTOs
form an LTO matrix where each entry LTOi,j is the LTO of
node i towards node j. The following is a simple example of
an LTO matrix with six nodes in the network, where the fourth
and sixth nodes are malicious nodes giving false (dishonest)
LTOs. Here empty entries indicate null values.

LTO =


0.82 1 0 0.26

0.93 0.88 0.20
0.96 0 0.93
0.05 0 0 0 1

0.89 0.18 0.23
0 0 0.07 1 0

 (2)

We define the density of an LTO matrix, denoted as d, as
the proportion of non-null LTOs (i.e., real values) in the matrix
and calculate d as follows:

d =
|{(i, j) : LTOi, j ̸= null}|

N(N − 1)
(3)

where N is the number of nodes. Besides, every LTO is time-
stamped to keep track of its freshness. Every node may store
its LTOs using, for example, in-network storage technology
with multiple copies to mitigate the potential data loss in a
distributed network environment. That is, LTOs are stored and
fetched in a distributed hash table (DHT) like P-Grid [6].

Given an LTO matrix for a given time period, our goal is to
develop a reputation management scheme that can provide the
network authority (e.g., a commander) with the capability of
consistent and accurate assessment on the reputation of every
node. That is, the proposed scheme aims to meet the following
key requirements: (1) providing a consistent reputation value
towards a node based on a LTO matrix; and (2) minimizing the
inaccuracy of reputation evaluation introduced by intentionally
injected false LTOs and imperfect monitoring error. To achieve
these goals, we face two major challenges:

• No pre-trusted LTOs: The nodes which provide LTOs
are not pre-trusted, so their LTOs cannot be trusted. In
other words, the commander node cannot directly use
these LTOs to derive reputation values for nodes.

• Incomplete/Sparse LTO matrix: The LTO matrix may
be incomplete and even sparse due to the lack of obser-
vations or malicious nodes suppressing their LTO reports
during an evaluation period.

B. Networw Model and Assumptions

GlobalTrust is a very generic framework, as long as it has
an LTO matrix as the input. The LTO matrix can be generated
from any group where members rate each other. Hence, Glob-
alTrust can be applied to the context of MANETs, peer-to-
peer networks, Internet, or social networks. For concreteness,
we assume that the targeted environment is a tactical network
consisting of multiple mobile nodes communicating through



multiple hops. For secure communication, each node is pre-
loaded with a public/private key pair or pairwise shared keys.

In our work, a network is allowed to be hierarchical in
that nodes may have different ranks in the structure. Node k’s
hierarchical rank, HRk, represents the importance of its role
in the network. For instance, it is a very common scenario in
a tactical network where entities with different ranks, such as
a commander and his/her members, collaborate in a common
mission.

In the considered military scenario, we allow a trusted
authority (TA), such as a commander node, to be online peri-
odically or as needed to collect evidence to assess reputation
of other nodes and make trust decisions. None of the regular
nodes is pre-trusted. We note that if in certain scenarios, when
a single TA involves a security, safety, and/or performance
concern, standard protocols [20] can be hold to distribute such
a trust role into multiple regular nodes in the network, leading
to reaching a consensus on the trustworthiness of all nodes.
Such extensions are orthogonal to the reputation management
algorithm in GlobalTrust.

A node may behave honestly, or may be compromised and
perform various types of attacks. Now we describe various
types of attack behaviors considered in this work below. We
assume that honest nodes are a majority in the network, not
allowing the Byzantine Failure condition due to too many
malicious entities in the network. we demonstrate the impact
of the ratio of malicious nodes on decision accuracy in Section
V-C. As a measure of reputation, we consider the degree of
compliance with a given network protocol (i.e., not performing
network attacks and reporting honest LTOs compared against
those of majority entities) by an entity.

C. Adversary Model

A malicious node (aka a compromised node or attacker) is
defined as a node not complying with a given network protocol
by either denying requested services or providing false LTOs.
We model the degree of an attacker’s misbehavior with attack
intensity, α, ranged in [0, 1]. With this attack intensity, we can
model a random attack behavior where an attacker performs an
attack with probability α while exhibiting honest behavior with
probability (1− α). Malicious nodes may collude to promote
their reputations via good mouthing attacks while demoting
honest nodes’ reputations via bad mouthing attacks. Malicious
nodes may provide false LTOs that are opposite to their actual
observations. In this work, we consider the following attack
behaviors:

• Naı̈ve Malicious Attack (NMA): A compromised node
may provide improper services, not complying with a
given network service protocol. However, it does not lie
in reporting its LTOs.

• Collusive Rumor Attack (CRA): In addition to pro-
viding improper services, malicious nodes collude to
report false LTOs (i.e., good/bad mouthing attacks) for
disrupting accurate trust or reputation assessment.

• Non-collusive Rumor Attack (NRA): Without colluding
with other malicious nodes, a malicious node can report

a false LTO that is opposite to the observed evidence. For
example, if an LTO is evaluated as p, the malicious node
may report 1− p for the LTO.

• Malicious Spy Attack (MSA): Some malicious nodes
misbehave while other malicious nodes, called malicious
spies, behave normally by providing proper services.
These malicious nodes may collude and form a attacker
community to perform good/bad mouthing attacks by
reporting false LTOs, in order to subvert the entire trust
and reputation system [21].

• Conflicting Behavior Attack (CBA): Malicious nodes
can behave inconsistently to different parties. This attack
aims to disseminate conflicting (or inconsistent) LTOs.
For example, they may misbehave only to a subset of
honest nodes (referred to as target nodes) to intensify
the LTO discrepancy between targeted and non-targeted
honest nodes. This attack may reduce the overall attack
intensity due to the nature of intermittent misbehavior.

IV. GLOBALTRUST

A. Overview

With a commander node taking the role of TA, GlobalTrust
is deployed on TA to evaluate the global reputations of all
nodes. Whenever TA comes online, it collects all LTOs with
timestamps during the last offline interval. In this section, we
discuss how to evaluate global reputation values of all nodes
by aggregating both true and false LTOs, without any prior
knowledge of which LTOs are true or false.
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Fig. 1: Workflow of GlobalTrust

Assuming that honest nodes are a majority in the network,
they are expected to form a consistent view on other nodes
even in the presence of conflicting evidence. We call the view
that node i has towards node j a subjective reputation (SR); it
is computed by TA based on both the LTOi,j and the LTOs
that other nodes have over node j. Section IV-B will detail
how to compute the subjective reputation. We use a machine
learning technique, called hierarchical clustering, to identify
a minimum dominating set of nodes as a trusted quorum
based on the similarity among their subjective views. Then we
evaluate the reputation of a node by converging the subjective
reputations of nodes in the quorum. Based on the computed
reputation value of each node, TA judges the trustworthiness
status of each node according to three reputation statuses:



honest, malicious or unknown. Fig. 1 summarizes the key
processes of the GlobalTrust.

B. Subjective Reputation Evaluation
In our model, each node can compute LTOs only for other

nodes it has directly interacted with, not for remote nodes
because no direct evidence is available. However, TA can
evaluate all nodes based on the LTOs provided by all nodes in
the network. With the LTO matrix, TA will first calculate the
subjective reputations (SR) of each node based on subjective
trust values, LTOs, provided by all nodes in the network. Let
SRw, u denote the reputation of node u evaluated by TA as
it could have been subjectively assessed by node w. In the
evaluation, node w trusts its own LTO. We use a weighted
average to compute SRw, u :

SRw, u =
∑
j∈Su

LTOj, u · HRj · Sim(w, j)∑
j∈Su

HRj · Sim(w, j)
(4)

where Su is the set of nodes that have non-null LTOs over
node u (including w if w has one), LTOj, u is the LTO
of node j over node u, HRj is node j’s hierarchical rank,
and Sim(w, j) is the similarity between LTOs reported by
node w and node j. The rationale behind the formula is as
follows. From node w’s viewpoint, to evaluate the reputation
of another node u, besides its own direct observation (if any),
the LTOs over node u reported by other nodes can be taken
into consideration too. Node w weighs other nodes’ LTOj, u

values based on the similarity between its own view and node
j’s view. That is, it weighs more the opinions from others
with more similar views to its own. The similarity of LTOs
between node w and node j is measured based on a cosine
function with the input of their LTO vectors:

Sim(w, j) = max(cos(LTO′
w, LTO′

j), 0). (5)
Here we adopt a cosine function to capture the similarity of
two LTOs represented by two vectors. The cosine similarity
result is ranged in [−1, 1], where −1 refers to complete
dissimilarity in the two opinions, 1 complete similarity, and 0
ignorance (uncertainty), indicating orthogonal opinions. Be-
fore computing the cosine similarity of two vectors, the LTOs
in both vectors are linearly mapped to the scale of [−1, 1],
re-scaled from the original scale in [0, 1]. The re-scaled LTO
vector is denoted as LTO′. Note that if there is no common
set between two vectors, the cosine similarity value is set to
0. Further, the similarity result is adjusted to 0 if the cosine
similarity value of the two vectors is negative, which excludes
evidence provided by untrusted nodes due to the dissimilarity.
SRw, u is evaluated by:

SRw,u =



if
∑

j∈Su
HRj · Sim(w, j) ̸= 0,∑

j∈Su
LTOj, u · HRj ·Sim(w, j)∑

j∈Su
HRj ·Sim(w, j)

else if Su ̸= ∅,∑
j∈Su

LTOj,u · HRj∑
j∈Su

HRj

else
null

(6)

When
∑

j∈Su
HRj · Sim(w, j) = 0 (i.e., the denominator in

Equation 4), this indicates that node w does not have directly

observed evidence towards u, nor did any other nodes with
whom node w shares positive similarity. In this case, we
average the existing LTOs on node u with the HR of each
recommender as the weight for SRw, u, if any. If none of the
nodes in the network has LTOs on node u (i.e., Su = ∅), we
set it to a null. Note that if Su = ∅, SRw, u is null for any
w.

C. Assessment of Trusted Quorum

After computing the SR for each pair of nodes, TA generates
a SR matrix. The SR tuple in node w’s view is denoted as
vector SRw = (SRw,1, · · · ,SRw,N ). There are N SR tuples
in total. Our next step is to identify a subset of the SR tuples
as TA’s trusted quorum. Intuitively, SR tuples from honest
nodes tend to be similar and hence form a cluster, while
those from malicious nodes may form another cluster or are
irregularly distributed subject to specific false recommendation
attack patterns. We call a cluster dominating if the number of
nodes in the cluster exceeds the half of a network size. We
aim to find the minimum dominating cluster to represent the
trusted quorum. The reasons are two folds: the dominating
size guarantees that the SR tuples in malicious nodes’ views
cannot form such a big cluster while the minimum requirement
contributes to excluding inaccurate SR tuples, due to false
reported LTOs and imperfect direct observations, as much
as possible. We use the agglomerative hierarchical clustering
technique to build a hierarchy of clusters based on all the SRs
and find a minimum dominating cluster.

1 5 7 9 10

5,7

9,10

5,7,9,10

1,5,7,9,10

Fig. 2: An example of hierarchical clustering dendrogram

Fig. 2 is a simple example of hierarchical clustering den-
drogram. In this method, each node starts with its own cluster,
and the pairs of clusters with the nearest distance are merged
continuously until only one cluster remains. Eventually it
forms a hierarchical clustering tree. Here, the distance of two
values a and b, denoted as dist(a, b), is |a − b|, and the
distance of two clusters A and B is defined as max{dist(a, b) :
a ∈ A, b ∈ B}. Fig. 2 describes the example procedures of
hierarchical clustering denrogram as follows: (1) the cluster
{9} and the cluster {10} are merged since their distance of
1 is the smallest; (2) the cluster {5} and the cluster {7}
are merged because the current smallest distance is 2; (3)
the cluster {5, 7} and the cluster {9, 10} are combined since
the smallest distance becomes 5 after that; (4) the cluster
{5, 7, 9, 10} merges with the cluster {1} to complete the
hierarchical clustering.

Applying this method, we categorize N SR tuples into a
hierarchical clustering tree by assigning each SR tuple into
a leaf node. In our case, the distance between any two SR



tuples is their Euclidean distance and the distance between
two clusters follows the same definition above. Therefore,
the minimum dominating cluster, denoted as D, is the first
cluster formed in the agglomerative clustering whose size is
over N/2. This cluster D becomes TA’s trusted quorum. To
compute the agglomerative clustering, we use the nearest-
neighbor chain algorithm [22]. The overall time and space
complexity for the nearest nearest-neighbor chain algorithm is
O(N2) and O(N), respectively, where N is the number of
nodes in the network.

D. Global Reputation Evaluation

We compute the global reputation of each node considering
two aspects of reputation: behavioral reputation (BR) and
credibility reputation (CR). Node u’s behavioral reputation,
BRu, reflecting how other nodes view node u’s network
behavior, is computed by averaging the SR tuples in D:

BRu =

{
unknown if Su = ∅∑

w∈D SRw, u

|D| otherwise
(7)

Su is the set of nodes that have LTOs over node u, SRw, u is
the SR of node u in node w’s opinion. When no LTOs towards
node u are available in the network (i.e., Su = ∅), BRu is
set to unknown. In the case, SRw, u must be null for any w,
as mentioned previously.

Node u’s credibility reputation, denoted as CRu, indicates
how trustworthy u’s reported LTOs (i.e., LTOu) are. It is
estimated based on the difference between u’s reported LTOs
and BRs of the nodes that node u has reported LTOs over.
This implies that if the behavioral reputation of a node j is
evaluated to be good, node u also has a very positive LTO
over j, meaning u’s LTO is more credible. The credibility of
node u’s LTOS, CRu, is estimated by:

CRu =

unknown if LTOu = null

1−
√∑

j∈{LTOu,j ̸=null}(LTOu,j−BRj)2

|{j|LTOu,j ̸=null}| otherwise

Note that when node u does not report any LTOs (i.e.,
LTOu = null), unknown is assigned to CRu. In this case,
its global reputation is solely computed based on its behavior.

Finally, TA computes the global reputation of node u by:

GRu =


γBRu + (1− γ)CRu if both known
unknown if both unknown
CRu if only BRu = unknown
BRu if only CRu = unknown

(8)

Here γ ∈ [0, 1] is used to normalize the global reputation
values.

After TA computes global reputation (GR) values of all
nodes, it can judge the trustworthiness of each node u as one
of three statuses: malicious, honest, or unknown by:

Decision(u) =


unknown if GRu = unknown
honest if GRu ≥ θ

malicious if GRu < θ

(9)

where θ is a decision threshold selected from the range in
[0, 1] that may be adjusted to minimize detection errors (we
will examine the impact of θ in our simulation experiments).

E. Security Analysis

For security analysis, let us first consider the case that
a malicious node behaves consistently to other nodes (i.e.,
NMA, CRA, NRA and MSA attacks). In this case, honest
nodes have high consistent views (LTOs) on every malicious
node as well as on every honest node, meaning high similarity
of LTOs between two honest nodes. On the other hand, the
similarity of LTOs between an honest node and a malicious
node depends on how faithfully the malicious node reported its
LTOs. The more faithfully, the higher the similarity. Therefore,
by converging the LTOs with their similarity as weight, SRw,u

is highly accurate to reflect node u’s behavioral reputation
when node w is honest. That is, SR tuples in honest nodes’
views are highly consistent and accurate. Note that for a
malicious node w, SRw,u could be inaccurate if node w reports
false LTOs, or accurate if node reports LTOs honestly to
actually contribute to reputation aggregation. By leveraging
hierarchical clustering, the consistent and accurate SR tuples
with a minimum dominating size will form a trusted quorum
to eventually evaluate the behavioral reputations of all nodes
accurately, which can effectively identify malicious nodes in
the attacks including NMA, CRA and NRA. With the help of
accurate behavioral reputation, the scheme can accurately eval-
uate the credibility reputation of nodes and hence effectively
identify malicious spies in MSA.

There is a case that malicious nodes behave inconsistently
to different honest nodes (i.e., CBA). Even in this case, since
honest nodes have high consistent views on honest nodes
consisting of a majority of the nodes in the network, they
are more likely to form the trusted quorum even if malicious
nodes may exhibits inconsistent network / reporting behavior.
Note that if malicious nodes report their honest LTOs, they are
likely to be involved into the trusted quorum and contribute
to accurate reputation assessment. This, thus, enables their
credibility reputations (CR) to maintain high. However, their
behavioral reputations (BRs) will be low, which causes their
overall global reputations lower than those of honest nodes.
In this sense, our scheme is resilient against malicious nodes
performing CBA and accordingly can effectively identify
honest and malicious nodes, except the case with the following
two cases: (1) when the ratio of malicious nodes is very close
to 50% (see Section V-C for the analysis); and (2) the LTO
matrix is too sparse, leading to the case the LTOs of malicious
nodes form the majority in the LTO matrix.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate GlobalTrust through extensive simulations us-
ing C. The network model uses a set of human-mobility
traces from CRAWDAD [23]. In collection of the datasets,
all participants were equipped with Global Positioning System
(GPS) receivers to log their positions per 30 seconds. We use
the dataset by KAIST (Korea Advanced Institute of Science
and Technology) which uses mobility traces of 92 nodes. The
nodes of a simulated network is split into two types of nodes,



Model Behavior Recommendation
NMA misbehaving with prob. α honestly reporting LTOs
NRA misbehaving with prob. α reporting opposite LTOs, 1− α

CRA misbehaving with prob. α reporting LTOs of 1 to malicious nodes
and LTOs of 0 to honest nodes

MSA half malicious nodes misbehaving with prob. α; reporting LTOs of 1 to malicious nodes
the other half malicious nodes behaving honestly and LTOs of 0 to honest nodes

CBA misbehaving with prob. α to half honest nodes; reporting LTOs of 1 to malicious nodes
behaving honestly to the other half honest nodes and LTOs of 0 to honest nodes

TABLE I: Malicious attack patterns
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Fig. 3: Decision error vs. α
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honest or malicious nodes. The numbers of malicious and
honest nodes are denoted as m and h, respectively. The ratio
of malicious nodes is denoted as k (= m

m+h ) and its default
value is set to 0.3. Each node is assumed to have an equal
hierarchical rank, except TA, taking the role of a higher rank
commander.

The networking traffic is simulated based on packet for-
warding behavior. Every node randomly requests one of its
neighboring nodes to forward a packet as a relay for 100
times per minute, where the one-hop wireless radio range is
250 meters. For honest nodes, they cooperate in forwarding
packets with probability (1−e) = 0.95 and drop packets with
probability e = 0.05. Honest nodes are supposed to provide
LTOs of other nodes based on their direct observations. After
a node forwards a packet to a neighbor node, it would monitor
the neighbor’s behavior on packet forwarding. Packet forward-
ing is regarded as positive behavior while packet dropping
is counted as negative behavior. We consider the inherent
detection error probability in the monitoring mechanism with
ε = 0.05, providing falsely observed report towards the ob-
served events (e.g., reporting opposite results). We summarize
attackers’ behavior pattern discussed in Section III-C in Table
I. Note that α is the probability that a malicious node drops
a packet and α = 0.5 as the default.

TA computes the reputation of each node every 30 minutes.
Based on TA’s online interval and mobility traces, we observe
that on average a node encounters with 39% of all nodes as
a 1-hop neighbor. The LTOs submitted in the previous offline
time frame (i.e., the last 30 minutes) are collected to estimate
global reputations and make decisions about nodes’ statuses
(i.e., honest, malicious, or unknown). The coefficient γ is set
to 0.7 to weigh the behavioral reputation (BR) higher than
the credibility reputation (CR) because malicious behavior

is able to cause direct attacks to the network performance
(e.g., throughput), whereas false LTOs may be filtered out by
GlobalTrust and hence introduce less negative impacts on the
network. We set the decision threshold, θ = 0.8, to determine
whether a node is malicious or honest. The simulation is run
1000 for each scenario for the results shown here.

B. Performance Metrics

TA Decision
Malicious Honest

Ground Truth Malicious true positive (TP) false negative (FN)
Honest false positive (FP) true negative (TN)

TABLE II: Detection types

In this work, we consider detection errors (i.e., FPs and
FNs) on trust decisions evaluated by TA as performance
metrics. We show all possible decision cases in Table II.
For the nodes classified as unknown, this is the case when
they neither provide any recommendation nor interact with
any other nodes, regarded as inactive in the network. We do
not consider them for our performance analysis. For an active
node, four outcomes are possible, as in Table II. We mainly use
both false positive (FP) and false negative (FN) probabilities
as our performance metrics to indicate judgment (decision) er-
rors. Besides, we use receiver operating characteristics (ROC)
analysis as a performance metric, indicating correct detection
probability.

C. Comprehensive Evaluation

This subsection gives a comprehensive evaluation of deci-
sion errors with respect to three factors: probability of attack
intensity (α), ratio of malicious nodes (k), and malicious
attack patterns. Finally, we show how the selection of decision
threshold (θ) affects the decision accuracy.
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Fig. 6: ROC curve by varying θ
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Fig. 7: Comparison with KMS-JS
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(a) RMS error vs. k under NRA
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(b) RMS error vs. k under CRA
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(c) RMS error vs. k under MSA
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Fig. 8: Comparison with PeerTrust in accuracy

Fig. 3 illustrates how the decision errors vary as attack
intensity, α, increases. We observe that the maximum FP is less
than 0.03 over the entire range of α except for CBA. Under
NMA, the FP is close to zero because of no false (dishonest)
recommendations. Under CBA, the FP increases slightly up
to 0.07 when α increases. This is because the increasing α
can increase the dissimilarity between honest nodes’ LTOs and
malicious nodes’ LTOs, which ultimately affects the subjective
reputation evaluation. However, the negative impact is small
because the similarity of honest nodes’ LTOs over honest
nodes ensures the credibility of LTOs.

Fig. 3 also shows that the observed FN is close to 0,
except the case of NMA with α < 0.3 showing a significant
number of malicious nodes is falsely identified as honest.
With small α, malicious nodes under NMA do not exhibit
misbehavior much, accordingly leading to high FN. Under
all other attacks, malicious nodes’ global reputations are
downgraded due to their misbehavior and false LTOs, leading
to the situation that most of them are classified as malicious
even with low α. Besides the spies in MSA are well identified
even if they show consistent honest behaviors. Therefore,
considering credibility reputation (CR) in deriving the overall
global reputation significantly helps identify malicious nodes
showing inconsistent behavior such as intermittent reporting
of false recommendations.

Fig. 4 reveals how the increasing ratio of malicious nodes,
k, degrades the decision errors. The FP increases but stays
below 0.1 under all types of attacks with k < 0.4. When k
increases up to 0.5, the FP increases rapidly and stays around

0.7 at the end. This is because the trusted quorum derived
from the hierarchical clustering may include more malicious
nodes than honest nodes when malicious nodes become a
majority of the network. We also observe that CBA is more
detrimental than NRA, CRA and MSA when k increases.
For attacks such as NRA, CRA and MSA, a higher k means
more malicious nodes in the trusted quorum. However, when
malicious nodes perform the CBA attack, a higher k not only
increases the degree of malicious activities, but also affects
the subjective reputation evaluation by honest nodes, because
the CBA attackers generate more conflicting LTOs.

When k is below 0.4, the FN increases with k under MSA,
CRA and CBA and it reaches 0.06 at its maximum under
CBA whereas it is almost zero under NMA and NRA. For
higher k > 0.4, the FN increases as quickly as the FP
increases because the trusted quorum tends to include more
malicious nodes. Again, CBA impacts more detrimentally than
CRA and MSA over a wider range of k. This is because
malicious nodes performing the CBA can obtain high trust
values in behavior reputation (BR) while still performing
attacks, compared to malicious nodes performing CRA and
MSA. Overall GlobalTrust is fairly resilient to the attacks
considered above when k < 0.4.

Fig. 5 shows how the density of an LTO matrix, d, affects
the decision errors. The result shows that both FP and FN stay
low and they fluctuate a little bit as the density of an LTO
matrix, d, increases under all other attacks considered. Hence,
GlobalTrust is adaptive to a wide range of LTO density, d, as
low as 20%.



Fig. 6 visualizes how GlobalTrust performs w.r.t. θ using
the ROC metric. We consider three collusion attacks including
CRA, MSA and CBA. The y-axis is the TP probability,
referring to the probability of correctly detecting malicious
nodes, while the x-axis denotes the FP, meaning the probability
of detecting a good node as bad. The value labeled with each
point is the decision threshold, θ. The observed general trend
is that the TP probability increases with θ and FP (< 0.05).
In Fig. 6, to ensure that ROC (detection probability) is above
0.7, θ should be as low as 0.4, 0.4 and 0.6 under CRA,
MSA and CBA, respectively. Similar to our observation in
previous results, malicious nodes performing CBA have higher
reputation values than those performing CRA and MSA.

When the threshold, θ, increases from 0.7 to 0.8 under
MSA, ROC significantly increases by 0.13 between these two
thresholds. This implies that sufficiently high θ is required to
maximize ROC. We observe that θ = 0.8 is optimal under the
given condition because this ensures the smallest fluctuation
of FP and FN, 0.05, under the considered attacks.

D. Comparative Performance Analysis

This subsection presents two performance comparison stud-
ies: (1) GlobalTrust vs. k-means clustering-based judgment
scheme [17]; and (2) GlobalTrust vs. two existing reputation
methods (i.e., TVM and PSM) in PeerTrust [3].

1) GlobalTrust vs. K-Means Clustering-Based Judgment:
Reidt et al. [17] introduced a k-means clustering-based judg-
ment scheme (KMS-JS) on a trust overlay network. In KMS-
JS, TA collects all LTOs to form LTO matrix O, in which
oi, j represents the LTO of node i about node j. All N × N
entries are assumed to be full after a sufficiently long time
elapsed, where N is the number of nodes in the network.
The LTOs over node j are placed in its column vector of
the matrix O, oj = (o1,j , . . . , oN,j). The values in column
vectors of honest nodes tend to be close to each other and
thus can often be clustered together. The judgment system
uses a N − 1 dimensional hyper-plane to maximally separate
two clusters based on nodes’ column vectors, and the larger
cluster is categorized as honest. Unfortunately, the decision
made may not be true, showing severe security vulnerability
due to conflicting recommendation attacks. For example, a
collusive community divides all honest nodes (i.e., nodes
out of the community) into two groups equally, denoted as
G1 and G2; collusive malicious nodes provide highest LTOs
about themselves and honest nodes in G1, while they provide
lowest LTOs about honest nodes in G2; also, malicious nodes
control their attack intensity α in a proper level. This attack
pattern tends to maximize the difference between vectors oj

of two different honest groups and minimize the difference
between malicious nodes and nodes in G1. Under this attack,
the judgment system may cluster malicious nodes and nodes
G1 into the honest class while nodes in G2 are clustered into
the malicious class. Fig. 7 shows how detection error (FP and
FN) varies with respect to α, when the ratio of malicious nodes
k is 0.3. Fig. 7 shows that KMS-JS performs very poorly with
FN close to 1 and FP close to 0.5 for α < 0.9. In contrast,

GlobalTrust performs significantly better than KMS-JS, with
both FN and FP less than 0.1 in most cases when α > 0.1.

TBRM Cons. NMA NRA CRA MSA CBA
CORE [24] Yes

√ √
• • •

EigenTrust [7] Yes
√ √

⋆ • ⋆
SORI [12] No

√ √
• • •

Robust [11] No
√ √ √

⋆ •
PSM [3] No

√ √ √
⋆

√

PowerTrust [8] Yes
√ √ √

⋆
√

GlobalTrust Yes
√ √ √ √ √

√
: resilient; ⋆: partially vulnerable; •: vulnerable

TABLE III: Comparison between our GlobalTrust and existing
TBRM schemes w.r.t. consistency and resilience

2) GlobalTrust vs. Existing Reputation Schemes: Here we
compare GlobalTrust with the existing reputation schemes [3],
[7], [8], [11], [12], [24] based on two criteria: consistency and
resilience, shown in Table III. In Fig. 8, we compare Glob-
alTrust with two reputation techniques used in PeerTrust [3],
trust value based credibility measure (TVM) and personalized
similarity measure (PSM), with respect to the accuracy of trust
assessment.
Consistency: For fully distributed tactical networks, reputation
evaluation is normally performed either in a distributed, coop-
erative way [7] or in an independent, uncooperative way [3].
In the former case, the evaluated reputation of a node must be
consistent through the network. In the latter case, the evaluated
reputation towards a node may be inconsistent in the network
if an evaluator differentiates direct observations from indirect
observations in deriving reputation values. Table III shows if
existing reputation schemes have considered view consistency.
Resilience: We compare GlobalTrust with existing reputation
schemes w.r.t. their resilience to the types of attacks in
Table III. CORE and SORI do not deal with collusion attacks
such as CRA, MSA and CBA. EigenTrust is able to resist
CRA to some extent with the help of pre-trusted nodes;
however, for those nodes that the pre-trusted nodes have not
had a chance to interact or observe (i.e., high uncertainty),
the reputation evaluation would be highly distorted. Besides,
MSA is an attack that can effectively defeat EigenTrust based
on two reasons: (1) EigenTrust has no way to identify spies
since their reputations are overestimated with high reputation
values; and (2) false recommendations provided by spies are
regarded as trustworthy information because the spy nodes do
not show other abnormal behavior except passing false rec-
ommendations. EigenTrust may be vulnerable to CBA when
pre-trusted nodes may be cheated by malicious nodes showing
inconsistent behavior. Robust, PSM and PowerTrust devise
trust models to effectively filter out false recommendations by
collusion attacks; however, they do not consider credibility of
recommendations for reputation evaluation and hence cannot
identify spies in MSA. Robust is vulnerable to CBA with
a malicious node showing inconsistent behavior because of
the lack of capability to detect them by honest nodes. Since
GlobalTrust can filter out false recommendations using the
subjective reputation of nodes based on the identified trust
quorum. In addition, GlobalTrust uses credibility reputation



(CR) to consider credible recommendations that can help
correctly measure global reputation, ultimately leading to
effectively identifying spies in MSA.
Accuracy: In Fig. 8, we compare GlobalTrust with PeerTrust
[3] w.r.t. accuracy of trust assessment. We choose PeerTrust
for the comparison because PeerTrust and GlobalTrust adopt
the same definition of behavior reputation. The two evaluation
models, TVM and PSM, in PeerTrust are devised based on
different strategies to estimate recommendation credibility.
TVM is known as vulnerable to collusion attacks while PSM
is well designed to resist CRA. All parameters are set equally
for these schemes in our simulation for fair comparison, as
shown in Section V.

For PSM model, a honest node is randomly assigned as the
evaluator to compute reputation-based trust values of all nodes.
The evaluator’s LTOs are pre-trusted in PSM when estimating
the credibility of others’ recommendations. We compare these
three reputation evaluation methods (TVM, PSM and Global-
Trust) w.r.t. judgment accuracy under NRA, CRA, MSA and
CBA. We use the root-mean-square (RMS) of the behavioral
reputations of all nodes and the actual likelihood that all
nodes behave honestly to measure reputation evaluation errors.
That is, we compare the behavioral reputations (BRs) in
GlobalTrust with the reputation-based trust values in TVM and
PSM since all of these values estimate the actual probability
that all nodes behave honestly.

The actual behavioral reputation towards a malicious node’s
behavior is 1− α under NRA and CRA, 1 for spy and 1− α
for non-spy under MSA, and 1 − α

2 under CBA. The actual
reputation of an honest node’s behavior is 1. Fig. 8 shows the
results comparing GlobalTrust, TVM and PSM. We mainly
observe the following trends:(1) TVM is severely vulnerable to
collusion attacks including CRA, MSA and CBA as the RMS
error has exceeded 0.4 when the ratio of malicious nodes, k,
reaches 0.4; (2) GlobalTrust has about 0.25 to 0.4 lower RMS
evaluation errors than PSM when k reaches 0.4 for each attack;
and (3) PSM performs well, being resilient against NRA
and CRA since the increased span of the RMS error is not
significantly large (around 0.1) when k varies from 0.05 to 0.4.
In contrast to PSM, GlobalTrust performs well in interpreting
the behavioral reputation of a node under all these attacks as
the maximum RMS error increases approximately up to 0.05.
The results prove that emphGlobalTrust outperforms TVM and
PSM in terms of the accuracy of trust assessment.

VI. CONCLUSION

In this paper, we proposed a trust-based reputation scheme,
called GlobalTrust, to accurately evaluate the reputation of
nodes reflecting both the behavioral trustworthiness and rec-
ommendation credibility in a tactical network environment,
where malicious entities exists while no pre-trusted nodes
are assumed except a commander node. Through extensive
simulation experiments, we compared GlobalTrust with other
existing schemes and showed that GlobalTrust outperforms
existing counterparts in terms of being highly resilient against
various types of attacks, maintaining high view consistency

throughout the network, and generating low reputation judg-
ment errors.
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