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ABSTRACT 

In this work, we propose a highly scalable cluster-based 
hierarchical trust management protocol for wireless sensor 
networks to effectively deal with selfish or malicious nodes. 
Unlike prior work, we consider multidimensional trust attributes 
derived from communication and social networks to evaluate the 
overall trust of a sensor node. Our peer-to-peer trust evaluation 
method leverages the cluster-based hierarchical structure for 
efficient communications. We develop a probability model using 
stochastic Petri net techniques to analyze the performance of the 
proposed trust management protocol. We validate the protocol 
design by comparing subjective trust generated as a result of 
protocol execution against objective trust obtained from actual 
node status. We apply our hierarchical trust management protocol 
to trust-based geographical routing as an application. Our results 
demonstrate that trust-based geographic routing under identified 
design settings can approach the ideal performance level 
achievable by flooding-based routing in message delivery ratio 
and message delay without incurring substantial message 
overhead. Furthermore, it can significantly outperform traditional 
geographic routing protocols that do not use trust concept in 
selecting forwarding nodes in message delivery ratio over a wide 
range of design parameter settings. 
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1. INTRODUCTION 
A wireless sensor network (WSN) is usually composed of a large 
number of spatially distributed autonomous sensor nodes (SNs) to 
cooperatively monitor physical or environmental conditions, such 
as temperature, sound, vibration, pressure, motion or pollutants. A 
SN deployed in the WSN has the capability to read the sensed 
information and transmit or forward information to base stations 
or a sink node through multi-hop routing. While SNs have 
popularly used for various monitoring purposes such as wild 
animals, weather, or environments for battlefield surveillance, 
they also have severely restricted resources such as energy, 
memory, and computational power. Further, wireless 

environments give more design challenges due to inherently 
unreliable communications. A more serious issue is that nodes 
may be compromised and perform malicious attacks such as 
packet dropping or packet modifications to disrupt normal 
operations of a WSN wherein SNs usually perform unattended 
operations. A large number of SNs deployed in the WSN also 
require a scalable algorithm for highly reconfigurable 
communication operations. In this work, we consider a scalable 
hierarchical structure to deal with a large number of SNs with 
trust management mechanisms to identify selfish or malicious 
nodes for trust-based routing in WSNs. 

We propose a hierarchical trust management protocol for cluster-
based WSNs for efficient communications. Unlike prior work, we 
consider multidimensional trust attributes derived from 
communication and social networks to evaluate the overall trust of 
a sensor node (SN) for WSN applications wherein both social 
trust and QoS trust are important for mission execution. We apply 
our hierarchical trust management protocol to trust-based 
geographical routing as an application. Traditional geographic 
routing [5, 6] uses geographic location information to select the 
next forwarding node closest to the destination node, so that a 
message if delivered successfully may be delivered with the 
shortest delay. However, in the presence of selfish and malicious 
nodes, geographical routing may result in low message delivery 
ratio because the next forwarding node selected may be 
compromised or selfish, resulting in message losses. Unlike 
traditional geographical routing, trust-based geographical routing 
uses both trust and distance as criteria to select the most 
trustworthy neighbor nodes among those closest to the destination 
node for message forwarding so that a message may be delivered 
successfully with a high probability. The key design issues 
considered include trust formation (i.e., how a peer-to-peer trust 
value is formed), trust aggregation (i.e., how information is 
aggregated in parallel), and trust composition (i.e., what trust 
components are considered and their optimal weights) of the 
hierarchical trust management protocol and its application to trust-
based geographical routing. 

In the literature, trust has been used in WSNs for assessing the 
availability, reliability, or security property of a node (e.g., 
whether a node is malicious or not) based on past interaction 
experiences [1, 4, 7, 8, 10, 12]. Ganeriwal et al. [4] proposed a 
reputation-based framework for data integrity in WSNs. The 
proposed reputation system takes information collected by each 
node using a Watchdog mechanism (for direct monitoring and 
observations) to detect invalid data and uncooperative nodes. Yao 
et al. [12] proposed a parameterized and localized trust 
management scheme for WSN security, particularly for secure 
routing, where each node only maintains highly abstracted 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAC’11, March 21-25, 2011, TaiChung, Taiwan. 
Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00. 

1732



parameters to evaluate its neighbors. Aivaloglou and Gritzalis [1] 
proposed a hybrid trust and reputation management protocol for 
WSNs by combining certificate-based and behavior-based trust 
evaluations. However, [1, 4, 12] cited above only considered a 
node’s QoS property in trust evaluation based on a flat 
architecture. Shaikh et al. [10] proposed a group-based trust 
management scheme for clustered WSNs in which each SN 
performs peer evaluation based on direct observations or 
recommendations, and each cluster head (CH) evaluates other 
CHs as well as SNs under its own cluster. This work is similar 
with ours in that a hierarchical structure is employed for 
scalability. However, they only considered QoS metrics (i.e. the 
message delivery ratio in a time window) based on direct 
observations. Liu et al. [7] and Moraru et al. [8] also proposed 
trust management protocols and applied them to geographic 
routing in WSNs. However, no hierarchical trust management was 
considered for managing clustered WSNs. Also, their work 
evaluated trust based on QoS aspects of a SN only such as packet 
dropping and the degree of cooperativeness while our work 
considers both QoS and social trust for trust evaluation of a SN. 

2. SYSTEM MODEL 
We consider a cluster-based WSN consisting of multiple clusters, 
each with a cluster head (CH) and a number of SNs in the 
corresponding geographical area. The CH in each cluster may be 
selected based on an election protocol such as HEED [13]. A SN 
forwards its sensor reading to its CH through SNs in the same 
cluster and the CH then forwards the data to the base-station or 
the destination node (or sink node) through other CHs. Leveraging 
this two-level of hierarchy in the WSN, our trust management 
protocol is conducted using periodic peer-to-peer trust evaluation 
between two SNs and between two CHs. At the SN level, each SN 
is responsible to report its peer-to-peer trust evaluation results 
towards other SNs in the same cluster to its CH which applies 
statistical analysis and performs CH-to-SN trust evaluation 
towards all SNs in its cluster. 

Unlike prior work, we compose our trust metric by considering 
both social trust and QoS trust to take into account the effect of 
both aspects of trust on trustworthiness. Social trust may include 
friendship, honesty, privacy, similarity, betweenness centrality, 
and social ties (strengths) [3]. QoS trust may include competence, 
cooperation, reliability, task completion capability, etc. In this 
work, we adopt intimacy (for measuring social ties) and honesty 
(i.e., whether a node is compromised or not) to measure social 
trust derived from social networks. We choose energy (for 
measuring competence) and unselfishness (for measuring 
cooperativeness) to measure QoS trust derived from 
communication networks. The intimacy trust component reflects 
the relative degree of interaction experiences between two nodes. 
The honesty trust component indicates whether a node is 
compromised (being an inside attacker) or not based on intrusion 
detection capability in the system such as software-based code 
attestation [2]. Energy is one most important metric in WSNs 
since SNs are constrained in energy and we use energy as a QoS 
trust metric to measure if a SN is capable of performing its 
intended functionality. The unselfishness trust component reflects 
if a SN can cooperatively execute the intended protocol. 

Our trust management protocol can apply to any WSN consisting 
of heterogeneous SNs with vastly different initial energy levels 
and different degrees of maliciousness or selfishness. We consider 
a clustered WSN in which a SN may adjust its behavior 

dynamically according to its own operational state and 
environmental conditions. A SN is more likely to become selfish 
when it has low energy or when it has many unselfish neighbor 
nodes around. Further, a SN is more likely to become 
compromised when it has low energy (a node with high energy 
may perform better energy-consuming defenses against attackers) 
or when it has more compromised neighbors around. A 
compromised SN can perform various attacks such as message 
dropping, good-mouthing attacks (recommending a bad node as a 
good node), and bad-mouthing attacks (recommending a good 
node as a bad node). A CH consumes more energy than SNs. 
After a SN or CH is compromised, it may consume more energy 
to perform attacks. On the other hand, a selfish node consumes 
less energy than unselfish nodes as its selfish behavior is reflected 
by stopping sensing functions and arbitrarily dropping messages. 

3. HIERARCHICAL TRUST PROTOCOL 
Our hierarchical trust management protocol maintains two levels 
of trust: SN-level trust and CH-level trust. Each SN evaluates 
other SNs in the same cluster while each CH evaluates other CHs 
and SNs in its cluster. The peer-to-peer trust evaluation is 
periodically updated based on either direct observations or 
indirect observations. When two nodes are neighbors within radio 
range, they evaluate each other based on direct observations via 
snooping or overhearing. Each SN sends its trust evaluation 
results toward other SNs in the same cluster to its CH. Each CH 
performs trust evaluation toward all SNs within its cluster. 
Similarly, each CH sends its trust evaluation results toward other 
CHs in the WSN to a “CH commander” which may reside on the 
base station if one is available, or on a CH elected if a base station 
is not available. The CH commander performs trust evaluation 
toward all CHs in the system. The election protocol is outside of 
the scope of the paper.  

These two levels of peer-to-peer trust evaluation process consider 
four different trust components as described earlier: intimacy, 
honesty, energy, and unselfishness. The trust value that node i 
evaluates towards node j at time t, ܶ(ݐ), is represented as a real 
number in the range of [0, 1] where 1 indicates complete trust, 0.5 
ignorance, and 0 distrust. ܶ(ݐ) is computed by: 

ܶ(ݐ) = ଵݓ ܶ௧௬(ݐ) + ଶݓ ܶ௦௧௬(ݐ)+ݓଷ ܶ௬(ݐ) + ସݓ ܶ௨௦௦௦௦(ݐ) 
(1) 

where w1, w2, w3, and w4 are weights associated with these four 
trust components with w1 + w2 + w3 + w4 = 1. 

3.1 Peer-to-Peer Trust Evaluation 
Here we describe how peer-to-peer trust evaluation is conducted, 
particularly between two SNs or two CHs. When a trustor (node i) 
evaluates a trustee (node j) at time t, it updates ܶ(ݐ) where X 
indicates a trust component as follows: 

ܶ(ݐ) = ۔ۖەۖ
ۓ (1 − (ߙ ܶ(ݐ − (ݐ∆ + ߙ ܶ,ௗ௧(ݐ),݂݅ ݅ and ݆ are neighbors;avg∈ே൛ߛ ܶ(ݐ − (ݐ∆ + (1 − (ߛ ܶ,(ݐ)ൟ .݁ݏ݅ݓݎℎ݁ݐ,  (2) 

In Equation 2, if node i is a 1-hop neighbor of node j, node i will 
use its direct observations ( ܶ,ௗ௧(ݐ)) and past experiences 

( ܶ(ݐ −  is a trust update interval) toward node j to ݐ∆ where (ݐ∆

update ܶ(ݐ). A parameter 0) ߙ ≤ ߙ ≤ 1) is used here to weight 
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these two contributions and to consider trust decay over time. A 
larger ߙ means that trust evaluation will rely more on direct 
observations. Here ܶ,ௗ௧(ݐ) indicates node i’s trust value 
toward node j based on direct observations accumulated over the 
time period [0,  possibly with a higher priority given to recent [ݐ
interaction experiences over the time period [ݐ − ,ݐ∆  Below we .[ݐ
describe how each trust component value ܶ,ௗ௧(ݐ) can be 
obtained based on direct observations: 

• ܶ௧௬,ௗ௧(ݐ):This measures the level of interaction 
experiences. It is computed by the number of interactions between 
nodes i and j over the maximum number of interactions between 
node i and any neighbor node over the time period [0,  .[ݐ
• ܶ௦௧௬,ௗ௧(ݐ): This refers to the belief of node i that node j 
is not compromised based on node i’s direct observations toward 
node j. It can be a binary quantity, 0 or 1, based on the result of 
IDS deployed on node i about whether or not node j is 
compromised at time t. 

• ܶ௬,ௗ௧(ݐ): This indicates the percentage of node j’s 
remaining energy that node i directly observes at time t. Node i 
can overhear or even monitor node j’s packet transmission 

activities over the time period [0,  .(ݐ)to estimate ܶ௬,ௗ௧ [ݐ
• ܶ௨௦௦௦௦,ௗ௧(ݐ):This provides the degree of 
unselfishness of node j as evaluated by node i based on direct 
observations over[0,  Node i can apply overhearing and.[ݐ
snooping techniques to detect selfishness behaviors and may give 
recent interaction experiences a higher priority over old 

experiences in estimating  ܶ௨௦௦௦௦,ௗ௧(ݐ). 
On the other hand, if node i is not a 1-hop neighbor of node j, 
node i will use its past experiences ( ܶ(ݐ −  and ((ݐ∆

recommendations ( ܶ,(ݐ) where k is a recommender) to 

update ܶ(ݐ). A parameter γ is used here to weight these two 
contributions and to consider trust decay over time as follows: ߛ = 11 + ߚ ܶ௦௧௬(ݐ) (3) 

Here we introduce another parameter ߚ ≥ 0 to specify the impact 
of “indirect recommendations” on ܶ(ݐ) such that the weight 
assigned to indirect recommendations is normalized to ߚ ܶ௦௧௬(ݐ) relative to 1 assigned to past experiences. 
Essentially, the contribution of recommended trust increases 
proportionally as either ܶ௦௧௬(ݐ) or ߚincreases. Instead of 

having a fixed weight ratio ܶ௦௧௬(ݐ) to 1 for the special case in 
which ߚ = 1, we allow the weight ratio to be adjusted by 
adjusting the value of ߚ and test its effect on protocol resiliency 
against malicious recommendation attacks such as good-mouthing 
and bad-mouthing attacks. Here, ܶ௦௧௬(ݐ) is node i’s honesty 
trust value toward node k as a recommender (for node i to judge if 
node k provides correct information). We note that node i can 
choose all its 1-hop neighbors( ܰ) as recommenders. The new 
trust value ܶ(ݐ) in this case would be the average of the 
combined trust values of past trust information and 
recommendations collected at time t. 

3.2 CH-to-SN Trust Evaluation 
Each SN reports its trust evaluation toward other SNs in the same 
cluster to its CH. The CH then applies statistical analysis 

principles to ܶ(ݐ) values received to perform CH-to-SN trust 
evaluation towards node j. Further, the CH can also leverage ܶ(ݐ) values received to detect if there is any outlier as an 
evidence of good-mouthing or bad-mouthing attacks. Based on 
the resulting CH-to-SN trust evaluation result toward node j, the 
CH determines whether node j needs to be excluded from sensor 
reading and routing duties.  

4. PERFORMANCE MODEL 
We develop a probability model based on stochastic Petri nets 
(SPN) [9] techniques to describe the behavior of each SN or CH 
in a WSN. It provides a basis for obtaining global status of nodes 
in the system, thereby allowing us to derive objective trust against 
which subjective trust obtained as a result of executing our 
hierarchical trust management protocol can be checked and 
validated. We use SPN as our analytical tool due to its capability 
to represent a large number of states for complex systems where 
an underlying model is a semi-Markov or Markov model. Further, 
we develop novel iterative hierarchical modeling techniques to 
avoid state explosion problems and to yield efficient solutions. 
Figure 1 shows the SPN model that describes the behavior of a SN 
(or a CH). We consider a heterogeneous WSN consisting of N 
SNs uniformly distributed in an M by M square-shaped 
operational area. Each SN is attached to a CH based on its 
location and so the system will have NCH clusters with NCH CHs. 
CHs and SNs have radio range of R and r respectively. The trust 
update interval is ∆ݐ. Nodes are stationary after the initial 
deployment. 

Below we explain how we construct the SPN model for describing 
the behaviors of a single node and how we compose a 
performance model for the entire WSN using a number of such 
SPN models (one for each node in the system). 

 
Figure 1: SPN Model for a Sensor Node or a Cluster Head. 

• Energy: Place Energy indicates the remaining energy level of 
the node. The initial number of tokens in place Energy is set to ܧ௧. A token will be released from place Energy when transition 
T_ENERGY is triggered. The rate of transition T_ENERGY 
indicates the energy consumption rate. A CH consumes more 
energy than a SN. The energy consumption rate is also affected by 
a node’s state. It is lower when a node becomes selfish. It is 
higher when a node is compromised because it takes energy to 
perform attacks. We denote ∆ாି௦௦, ∆ாିு and ∆ாି௦ௗ as the energy consumption rates per ∆ݐ time for a 
normal SN, a normal CH, and a compromised node, respectively, 
which can be obtained by analyzing historical data with ∆ாି௦௦ <  ∆ாିு < ∆ாି௦ௗ. Thus, the energy 
consumption rates for a selfish SN and a selfish CH are ߩ∆ாି௦௦ and  ߩ∆ாିு per ∆ݐ time unit, respectively, where ߩ 
is the rate of the energy consumption of a selfish node. 

• Selfishness: We model the selfish behavior of a node as follows: 
A node may become selfish to save energy. A selfish node may 
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stop reading data and drop packets it receives. An unselfish node 
may decide whether it will be selfish or not upon every time 
interval ௦ܶ according to its remaining energy and the number of 
unselfish neighbors. A selfish node can be redeemed as unselfish 
based on trust evaluation performed in every trust update interval 
 We model these behaviors by putting a token into place SN .(ݐ∆)
when transition T_SELFISH is triggered and removing the token 
from place SN when transition T_REDEMP is triggered. A token 
in place SN thus indicates that the node is selfish. A node’s selfish 
probability is modeled by: 

௦ܲ௦ = 12 ൭ܧ௦௨ௗܧ௧ + ܰ௨௦௦
ܰ ൱ (4) 

where ܧ௦௨ௗ is energy consumed and ܧ௧ is the node’s 
initial energy level. Thus ܧ௦௨ௗ/ܧ௧ represents the 

percentage of energy consumed. ܰ௨௦௦/ ܰ is the 

percentage of unselfish neighbors where ܰ௨௦௦ is the number 

of unselfish neighbors and ܰ is the total number of 
neighbors. A node’s selfish probability tends to be lower when a 
node has more energy and higher when the node has more 
unselfish neighbors as there are sufficient unselfish neighbors 
around to take care of sensor tasks. Thus, the rates of transitions 
T_SELFISH and T_REDEMP are given by ௦ܲ௦/ ௦ܶ and (1 − ௦ܲ௦)/∆ݐ respectively. We assume all nodes are unselfish 
initially with no token in place SN. 

• Honesty: A node becomes compromised when transition 
T_COMPRO fires and a token is put in place CN. The rate to 
T_COMPRO is modeled by: 

ߣ = ି௧ߣ ൭ ܧ௧ܧ + ܰ௦ௗ
ܰ௧௬ ൱ (5) 

where ߣି௧ is the initial node compromising rate which can be 
obtained by first-order approximation based on historical data 
about the targeted network environments. ܧ௧ and ܧ 
indicate a node’s initial energy and remaining energy, 

respectively. ܰ௦ௗand ܰ௧௬  are the numbers of 
compromised and healthy (not compromised) nodes in the 

neighborhood. ܰ௦ௗ/ ܰ௧௬  refers to the ratio of the 
number of compromised 1-hop neighbors to the number of 
healthy 1-hop neighbors. Equation 5 models that a node is more 
likely to be compromised when it has low energy to perform 
energy-consuming defense mechanisms, and when there are more 
1-hop neighboring compromised nodes around it due to their 
collusive attacks. We model the IDS behavior through transition 
T_IDS. A compromised node can be caught by IDS with the rate (1 − ܲ)/ ூܶௌ for transition T_IDS where ܲ is the IDS false 
negative probability and ூܶௌ is the IDS detection interval. When 
a compromised node is caught by IDS, a token will move to place 
DCN. In addition, we model false positives generated by the IDS 
(i.e., diagnosing a good node as a bad node) by associating a rate 
of ܲ/ ூܶௌ with transition T_IDS which is enabled only when the 
node is not compromised, that is, when there is no token in place 
CN. Note that all nodes are healthy, i.e., not compromised, 
initially. 

The overall performance model for describing the behaviors of a 
WSN consists of N SPN subnet models one for each SN, and NCH 
SPN subnet models one for each CH, with vastly different energy 
consumption, selfish/redemption and compromise rates. Below we 

describe how one could leverage SPN outputs to obtain subjective 
trust and objective trust values for performance evaluation of our 
hierarchical trust management protocol. 

4.1 Subjective Trust Evaluation 

Table 1: Instantaneous Subjective Trust  (࢚)࢚ࢉࢋ࢘ࢊ,ࢄࢀ  for 
Component X  based on Direct Observations. 

Item Value Condition (of node j) 

ܶ௧௬,ௗ௧(ݐ) 
a / c If mark(SN) = 1 AND mark(CN) = 0 
b / c If mark(CN) = 1 
1 Otherwise 

ܶ௦௧௬,ௗ௧(ݐ) 
1 If mark(DCN) = 0 
0 Otherwise ܶ௬,ௗ௧(ݐ) mark(Energy)/Einit none 

ܶ௨௦௦௦௦,ௗ௧(ݐ) 1 If mark(SN) = 0 
0 Otherwise 

Recall that under our proposed trust management protocol, node i 
will subjectively assess its trust toward node j, ܶ(ݐ), based on its 
direct observations and indirect recommendations obtained toward 
node j according to Equations 1 and 2. In particular, node i will 
apply monitoring, snooping and overhearing techniques to watch 
node j (a 1-hop neighbor to node i) closely to 
compute ܶ,ௗ௧(ݐ) based on direct observations over the time 

period [0,  computed by node i will (ݐ)As a result,  ܶ,ௗ௧ .[ݐ
fairly accurately reflect actual status of node j at time t. 
Leveraging the SPN model developed which provides actual 
status of each node dynamically, we can easily obtain this 
instantaneous subjective trust  ܶ,ௗ௧(ݐ) of node i toward node 
j in component X at time t as listed in Table 1. In particular, ܶ௦௧௬,ௗ௧(ݐ), ܶ௬,ௗ௧(ݐ), and ܶ௨௦௦௦௦,ௗ௧(ݐ), 
can be easily computed by simply checking the status of node j at 

time t in node j’s SPN model; ܶ௧௬,ௗ௧(ݐ) is computed 
based on interaction experiences for packet forwarding events. 
We consider four types of interactions, given that node i is the 
initiating node: (1) Requesting: Node i broadcasts a packet 
delivery request to its 1-hop neighbors; (2) Reply: Nodes that are 
closer to the destination node than node i will reply to node i; (3) 
Selection: Node i selects up to L nodes with the highest trust 
values to forward the packet; (4) Overhearing: Node i overhears if 
the packet has been forwarded. 

In practice, node i will keep track of its interaction experiences 

with node j to compute ܶ௧௬,ௗ௧(ݐ). Let the average 
numbers of interactions of node i with a selfish node, a 
compromised node and a normal node be a, b and c, respectively. 

Then the instantaneous subjective trust ܶ௧௬,ௗ௧(ݐ) of node 
i toward node j based on direct observations will be a/c, b/c, or 
c/c, respectively, depending on if node j is a selfish node, a 
compromised node, or a normal node. The values of a, b, c are 
computed dynamically. Below we predict their values from node 
i’s perspective for the case in which a selfish node drops 50% of 
packets and a compromised node drops 100% of packets. On the 
one hand, if node i requests a neighbor to forward a packet then 
(1) the expected number of interactions between node i and a 
selfish node j is 25%×50%×3 because there will be three 
interactions (reply, selection, and overhearing) only if the selfish 
node is in a quadrant closer to the destination node (with 25% 
probability) and does not drop the packet (with 50% probability); 
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(2) the expected number of interactions between node i and a 
compromised node j is 0 because a compromised node discards all 
requests from node i; and (3) the expected number of interactions 
between node i and a normal node j is 25%×3 because there will 
be three interactions only if that node is in a quadrant closer to the 
destination node (with 25% probability). On the other hand, if 
node i receives a request from node j to forward a packet, the 
expected number of interactions will be 25%×2 because from 
node i’s perspective there will be two interactions (reply and 
selection) only if node i is in the quadrant closer to the target 
node. Summarizing above, we can predict: ܽ = 25% × 50% × 3 +  25% × 2; ܾ = 0 + 25% × 2; ܿ = 25% × 3 +  25% × 2. 

(6) 

Once  ܶ,ௗ௧(ݐ)is computed, note i will compute  ܶ(ݐ) based 
on Equation 2 and subsequently compute ܶ(ݐ) based on 
Equation 1.  

4.2 Objective Trust Evaluation 
To validate subjective trust evaluation, we compute objective trust 
based on actual status as provided by the SPN model output. The 
objective trust value of node j, ܶ,(ݐ), is also a weighted linear 
combination of four trust component values: 

ܶ,(ݐ) = ଵݓ ܶ,௧௬(ݐ) + ଶݓ ܶ,௦௧௬(ݐ)                  +ݓଷ ܶ,௬(ݐ) + ସݓ ܶ,௨௦௦௦௦(ݐ) 
(7) 

where ܶ,௧௬(ݐ), ܶ,௦௧௬(ݐ), ܶ,௬(ݐ), and ܶ,௨௦௦௦௦(ݐ) can be obtained directly from the SPN model 
output reflecting node j’s actual status at time t. 

5. TRUST EVALUATION RESULTS 

Table 2: Default Parameter Values Used. 

Param Value Param Value Param Value 
M 900m  R 150m r 50m 
N 900 NCH 81 Δt 10min. 
α 0.5 β 0.5 1/λc-init [4,18]hrs 

ΔE-sensor 10min. ΔE-CH 20min. ΔE-compromised 30min. 
ρ  1/3 TIDS  10min.  Pfp,Pfn 0.5%  
Ts [10,60]min. w1, w2,w3, w4 0.25 
Einit [18,24]hrs for SNs, [36,48]hrs for CHs. 

In this section, we show numerical results obtained through 
model-based evaluation as described in Section 4. Table 2 lists 
default parameters used. We consider a WSN with 900 SNs (and 
81 CHs) evenly spread out in a 900m×900m operational area 
based on uniform distribution. We set radio range R=150m and 
r=50m. The initial energy lifetime of a SN varies from 18hrs to 
24hrs while the CHs have much higher initial energy lifetime 
ranging from 36hrs to 48hrs. The WSN is assumed to be deployed 
in a hostile environment with the node’s average compromising 
interval in the range of 4hrs to 18hrs. We consider the worst case 
of good-mouthing (providing the highest trust value of 1 for a 
malicious node) and bad-mouthing attacks (providing the lowest 
trust value of 0 against a good node).  Further, we use Pfp = Pfn = 
0.5% which deems acceptable [2]. Below we present CH-to-SN 
trust evaluation results for a SN arbitrarily chosen based on peer-
to-peer trust evaluation results reported by other SNs in the same 
cluster, and compare them against objective trust evaluated based 
on the SN’s actual status. We vary parameter values to reflect 

changes to the environmental and operational condition and test 
their effects on subjective vs. objective trust values obtained. The 
node is a good node at time t=0 and then becomes a bad node 
based on its compromise rate.  

Figure 2 compares subjective trust (using equal weight with 
w1:w2:w3:w4=0.25:0.25:0.25:0.25) vs. objective trust obtained, 
with α varying over a wide range (using a larger α indicates that 
subjective trust evaluation relies more on direct observations 
compared with past experiences). We fix β to 0.5 to isolate out its 
effect. We observe that subjective trust initially approaches 
objective trust as more recent direct observations are used. 
However, we also observe a crossover time point (for α ≥ 0.5) 
after which subjective trust is lower than objective trust. This 
implies that when sufficiently large amount of direct information 
is used for trust evaluation, subjective trust tends to be 
underestimated but does not cause any risk by over-trusting a 
trustee. 

 
Figure 2: Effect of α on Trust Evaluation. 

 

Figure 3: Effect of β on Trust Evaluation. 

Figure 3 shows the effect of β on subjective trust. A higher β 
value indicates that subjective trust evaluation relies more on 
indirect recommendations provided by the recommenders 
compared with past experiences. We vary β from 0.1 to 8.0 to 
cover a wide range of possible values with α fixed at 0.5 to isolate 
out its effect. One can see that the subjective trust value 
approaches the objective trust value as β increases, but 
underestimates the trust value once a cross-over time point is 
reached particularly for β > 1. 

Figures 2 and 3 show that α = 0.5 and β = 0.5 yield subjective 
trust values very close to objective trust values with the mean 
square error percentage less than 1%. The choice of the best α and 
β values depends on the given set of parameter values as those 
listed in Table 2 characterizing the environmental and operational 
conditions. The model-based analysis methodology developed in 
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the paper allows the best combination of α and β values to be 
determined. Overall, we observe a close correlation between 
subjective trust evaluation and objective trust evaluation, thus 
supporting our claim that subjective trust obtained as a result of 
executing our proposed hierarchical trust management protocol 
approaches true objective trust. 

6. APPLICATION: TRUST-BASED 
GEOGRAPHIC ROUTING 
We apply the proposed hierarchical trust management protocol to 
trust-based geographic routing as an application. In geographic 
routing, a node disseminates a message to a maximum of L 
neighbors closest to the destination node (or the sink node). In 
trust-based geographical routing, node i forwards a message to a 
maximum of L neighbors not only closest to the destination node 
but also with the highest trust values ܶ(ݐ). We conduct a 
performance analysis to compare our trust-based geographical 
routing protocol with baseline routing protocols, namely, 
flooding-based [11] and traditional geographic routing. In 
flooding-based routing, a node floods a message to all its 
neighbors until a copy of the packet reaches the destination node. 
It yields the highest message delivery ratio and the lowest 
message delay at the expense of the highest message overhead. 

Recall that for all routing protocols, the source SN first forwards a 
message to its CH (through multiple hops if necessary). Then, the 
CH forwards the message to the sink node through other CHs. 
Without loss of generality, we normalize the average delay for 
forwarding a message between two neighboring SNs to τ. The 
average delay between two neighboring CHs is normalized to 2τ. 
We collect data for delivering 1000 messages, each with a source 
sensor and a sink node randomly selected. We consider two cases: 
L=1 and L=2 for both trust-based geographic routing and 
geographic routing. We use the optimal set of (α, β)=(0.5, 0.5) 
identified in Section 5 to ensure subjective trust is close to 
objective trust. We also use parameter values as listed in Table 2 
for characterizing environmental and operational conditions. In 
the comparative analysis, we vary the degree of selfish or 
compromised nodes from 0% to 90%. Note that 30% of 
compromised or selfish nodes means that 30% of nodes are 
compromised or selfish in the system without a fixed ratio being 
used for these two types of nodes. 

Figure 4 shows the message delivery ratio under various routing 
protocols. Our trust-based geographic routing protocol (L=1 or 
L=2) outperforms traditional geographic routing (L=1 or L=2) and 
approaches flooding-based routing, especially as the percentage of 
compromised or selfish nodes increases. The delivery ratio for all 
three routing protocols drops below 0.1 when the percentage of 
compromised or selfish nodes is higher than 80%. We observe 
that even the message delivery ratio of our trust-based geographic 
routing without redundancy (L=1) is higher than that of the 
geographic routing with redundancy (L=2) when the percentage 
of compromised or selfish nodes is higher than 40%. We attribute 
this to the ability of trust-based geographic routing being able to 
successfully avoid forwarding messages to untrustworthy nodes 
based on ܶ(ݐ) values obtained from our hierarchical trust 
management protocol. 

Figure 5 shows the average delay for those messages that are 
successfully delivered under various routing protocols. Flooding-
based routing has the best performance since it can always find 
the shortest path to reach the destination sink node through 

flooding. Geographic routing (L=1 or L=2) has almost the same 
performance with flooding-based routing due to its greedy nature 
for selecting nodes closest to the destination sink node for 
message forwarding. Trust-based geographic routing with L=1 has 
the highest delay but with L=2 approaches the performance of 
flooding-based routing and geographic routing. The average delay 
of all routing protocols drops as the percentage of compromised or 
selfish nodes increases. Further, the average delay of all routing 
protocols is below 3τ when the percentage of compromised or 
selfish nodes is higher than 80% since the message can be 
successfully delivered only if the source sensor and the sink node 
are close to each other. 

 
Figure 4: Message Delivery Ratio. 

 
Figure 5: Message Delay. 

 
Figure 6: Message Delay with Source Sensor and Sink Node at 

a Distance Away. 

Figure 6 shows the average delay for those messages that are 
successfully delivered for a special case in which the source SN 
and the sink node are at least a distance (700m) away. We create 
this case to ensure there are sufficient intermediate nodes on any 
path to reach the sink node. Compared with Figure 5, we observe 
(a) trust-based geographic routing with L=2 again approaches 
flooding-based routing, especially as the percentage of 
compromised or selfish nodes increases; (b) traditional geographic 
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routing with L=1 fails to deliver any message when the percentage 
of compromised or selfish nodes is higher than 50% because there 
is no short route to reach the destination node over a long 
distance, while trust-based geographical routing with L=1 can still 
deliver messages; (c) the message delivery delay increases as the 
percentage of compromised or selfish nodes increases due to more 
messages being dropped by selfish or malicious nodes resided on 
shorter routes. 

 
Figure 7: Message Overhead. 

Figures 4-6 above suggest that trust-based geographical routing 
with L=2 can achieve ideal performance in message delivery ratio 
and message delay. Below we study the message overhead issues. 
Figure 7 shows the message overhead in terms of the number of 
message copies propagated before the destination sink node 
receives one copy. Both geographic routing and trust-based 
geographic routing perform significantly better than flooding-
based routing. Trust-based geographical routing incurs more 
message overhead than traditional geographical routing because 
the path selected by trust-based geographical routing is often the 
most trustworthy path, not necessarily the shortest path. 
Nevertheless, we observe that the overhead increase of trust-based 
geographical routing over traditional geographical routing is small 
compared with that of flooding-based routing over traditional 
geographical routing. The system thus can effectively trade off 
message overhead for message delivery ratio and message delay. 
Finally, we observe that the number of message copies propagated 
for all three routing protocols is close to 3 when the percentage of 
compromised or selfish nodes is higher than 80%. The reason is 
that the message can be successfully delivered only when the 
source node and the sink node are close to each other. Otherwise, 
there is a high probability that compromised and selfish nodes 
reside on a long route will drop the message copies received. 

Overall Figures 4-7 demonstrate that our trust-based geographic 
routing protocol with L=2 can significantly improve the delivery 
ratio and message delay (close to those of flooding-based routing) 
in the presence of compromised or selfish nodes, without 
sacrificing too much message overhead. Here we note that the 
system can effectively trade off message overhead (energy 
consumption) for high delivery ratio and low message delay by 
adjusting the level of redundancy (L). As L increases the 
performance of our trust-based geographical routing protocol in 
delivery ratio and message delay will approach that of flooding-
based routing.  

7. CONCLUSION 
In this paper, we proposed a hierarchical trust management 
protocol for cluster-based wireless sensor networks, considering 
two aspects of trustworthiness, namely, social trust and QoS trust. 

We developed a probability model utilizing stochastic Petri nets 
techniques to quantitatively analyze the protocol performance, and 
validated subjective trust against objective trust obtained based on 
actual node status. We applied our hierarchical trust management 
protocol to trust-based geographic routing and demonstrated that 
our trust-based geographic routing performs close to the ideal 
performance of flooding-based routing in delivery ratio and 
message delay without sacrificing much in message overhead 
compared with traditional geographic routing protocols which 
does not use trust. 
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