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Fig. 1. A traditional active radar system with one target.

I. INTRODUCTION

Compressive sensing (CS) has received considerable attention. CS has shown great potential in

diverse fields, for example, high-resolution image processing, wireless communication, and radar

systems [1]–[6]. The central goal of CS is to reconstruct a signal using very few measurements

[7]. This report starts with a brief review of target detection, communication and CS theory for

different radar and wireless communication signals. And then the report focuses on different CS

applications and perfect signal reconstruction conditions.

II. ADAPTIVE COMPRESSED SENSING RADAR SETTINGS

A. Preliminary on Traditional Radar

We begin with an introduction to a traditional radar system. A simplified radar system is given

in Fig. 1. Such a system is one-dimensional, monostotic, single-pulse, and active radar. Suppose

a target located at range x is traveling with constant velocity υ and has reflection coefficient sxυ.

After the transmission of signal f(t), the receiver observes the reflected signal as

r(t) = sxυf(t− τx) exp(2πjωxυt) (1)

where τx is the round trip time of the signal, j =
√−1, and ωxυ is the Doppler shift. The target

information (x, υ) can be readily obtained from (τx, ωxυ), the pair of (time delay, Doppler shift),

of f(·). Here, an ideal case is considered without noise.
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Using a matched filter, the reflected signal r is correlated with a time-frequency shifted version

of the transmitted signal through

|Arf (τ, ω)| =
∣∣∣∣
∫
R

r(t)f ∗(t− τ) exp(2πjωt)

∣∣∣∣ = |sxυAf (τ − τx, ω − ωυ)| (2)

where Arf (·, ·) is so called the cross-ambiguity function of two functions f and r, and the super-

script ∗ denotes the conjugate operation. From (2), we can see the ambiguity surface of f centered

at the target’s location and scaled by its reflection coefficient |sxυ|. It is straightforward to extend

(2) to include multiple targets. However, when two or more targets are too close to each other

and have overlapping ambiguity functions, there are some uncertainties on the exact locations of

targets. Therefore, the range-velocity resolution between targets of classical radar is limited by the

radar uncertainty principle.

B. Fundamentals on CS and CS-Based Radar (CSR)

Under appropriate conditions, CSR can beat the traditional radar. We now consider K targets

with unknown range-velocities and corresponding reflection coefficients in an N ′ ×N grid plane.

If the number of targets K � N ′N and the transmitted signals are incoherent, we can use the CS

technique to recover such a sparse target scene.

A CSR has the following features:

1) Eliminating the need of matched filter at the receiver;

2) Requiring low sampling bandwidth for low information rate (other than the high Nyquist rate);

3) Providing higher resolution compared to the traditional radar.

Considering a target scene in an L×M range-Doppler plane in Fig. 2, we define the time delay

and Doppler shift matrices, respectively, as

Tl
L×N =

⎛
⎜⎜⎜⎝

0l×N

IN×N

0(L−N−l)×N

⎞
⎟⎟⎟⎠ (3)
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Fig. 2. The range-Doppler plane of the target scene that CSR measures is discretized into an L ×M grid. The target located on

the lth range and the mth Doppler bin is labeled.

and

Fm
L×L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω0
M 0 · · · 0

0 ω1
M

. . . ...
... . . . . . . 0

0 · · · 0 ωL−1
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m

(4)

where L and M denote the numbers of range and Doppler bins that CSR measures, respectively,

N is the length of transmission waveform vector, and ωM = exp(2πj/M) is the root of unity.

A basis dictionary H = (|h0,0| |h0,1| · · · |hL−1,M−1|) can be created by concatenating the received

signals where hl,m = Fm · Tl · s. Here, s denotes the transmission signal of length N . H contains

all the possible signal reflected from the target in any grid of the range-Doppler plane and is named
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as sparse representation matrix in the CS theory.

Define θl,m as the complex scattering coefficient in the (l,m)th grid of the target scene, and the

corresponding coefficient vector is denoted as

(
θ0,0 θ0,1 · · · θL−1,M−1

)T

(5)

where the superscript T denotes the transpose operation. The task of a CSR is to discover/identify

the coefficients in the range-Doppler plane. The received signal reflected from the target scene can

be expressed as

r =
L−1∑
l=0

M−1∑
m=0

θl,mhl,m + n = Hθ + n (6)

where n is the additive Gaussian white noise (AWGN) vector of length L. The compressed signal

y can be written as

y = Φr = ΦH︸︷︷︸
Υ

θ +Φn (7)

where Φ is the P × L measurement matrix.

In adaptive CSR, both transmission waveforms s and measurement matrix Φ are treated as

variables which will be optimized and updated based on θ̃, the estimation of θ. Note that Υ = ΦH

is the equivalent dictionary for this proposed adaptive CSR. Complex Gram matrix G is applied to

represent the mutual coherence and it is defined as [8]

G = ΥHΥ (8)

where the superscript H denotes the conjugate transpose operation.

Variables s and Φ are optimized to make the resulting Gram matrix approximate a diagonal

matrix (the ideal case), i.e., G = Diag(g0,0, g0,1, · · · , gLM−1,LM−1). Algorithms are proposed for

the optimization by fixing s and/or Φ. With the changing of Υ, the target is to makes the realistic

Gram matrix G̃ as close to the ideal diagonal G as possible. This can increase the resolution of

CSR significantly. In Fig. 3 on the next page, a work flow chart is given where Ǧ is the estimation

of G̃.
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Fig. 3. Work flow chart for this adaptive CSR system.
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III. ANALOG-TO-INFORMATION IN CS

In this section, we first generalize CS system for continues-time (CT) signals, and then we

present some more possible applications in the field of CS.

A. Traditional Form of CS

We describe the traditional form of a CS system in discrete-time (DT) domain in this subsection.

CS deals with the problem of acquiring an N×1 discrete time signal vector f . To proceed, f should

be K-sparse in some N × N sparsity basis matrix Ψ in which each column is a basis vector ψi,

i.e., Ψ = [ψ1, · · · ,ψi, · · · ,ψN ]. If we represent

f = Ψx (9)

where f is K-sparse, meaning that only K � N expansion coefficients in x are non-zero. With Φ

denoting an M ×N sensing matrix, we have

y = Φf (10)

which represents the N -dimensional input signal encoded into an M -dimensional set of measure-

ments and M � N . Using (9) and (10), y can be rewritten as

y = Φf = ΦΨ︸︷︷︸
U=ΦΨ

x (11)

where y is an M × 1 vector, Φ is an M ×N matrix, Ψ is a N ×N matrix, and x is a N × 1 vector.

In the present form, CS is only applicable to DT signals. Below we extend the framework to CT

signals. In the literature, there exist a few kinds such conversion architectures. We will present an

architecture of such conversion from CT signal f(t) to DT signal f in the next section.

B. Analog-to-information: CS from CT to DT

We now generalized CS theory from the DT to CT domain. To develop CT domain CS, one will

need to define analog signal models for sparse signals and then construct an analog system which

is CS-compatible.
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Fig. 4. An analog-to-information CS architecture.

Assuming the analog signal f(t) can be represented through a finite number of parameters xi in

some continues basis ψi(t), i = 1, · · · , N , then f(t) can be decomposed as

f(t) =
N∑
i=1

xiψi(t), xi ∈ R. (12)

In the case that there are a small number of nonzero entries in x = [x1, x2, · · · , xN ]
T , again we

can say that the signal f(t) is sparse.

The next question: how one can convert CT signal f(t) to DT measurements ym (m = 1, · · · ,M )?

Figure 4 gives an architecture to solve above issue. In Fig. 4, Pc,m(t) denotes the mth distinct

chipping sequence which is a pseudo-random sequence of ±1s. The alternating frequency of the

chipping sequence must between values at or faster than the Nyquist frequency of the input signal.

That is, fcs is a much lower (compared to the Nyquist rate fs = 2fmax) sampling rate (e.g.,

fcs = fs/N ).

From Fig. 4, ym can be obtained as a result of modulation, convolution and sampling (at rate of
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fm) operations. Therefore, we can write ym in the following equation

ym =

∫ ∞

−∞
f(τ)pc(τ)h(t− τ)dτ |t=fcs . (13)

Substituting the analog signal f(t) into (12), we have

ym =
N∑
i=1

xi

∫ ∞

−∞
ψi(τ)pc(τ)h(fcs − τ)dτ. (14)

We define the M ×N matrix U = ΦΨ. The matrix U can be determined from the expression of

ym. It is clear that we can separate out the expression for each element um,i ∈ U for the mth row

and ith column as

um,i =

∫ ∞

−∞
ψi(τ)pc,m(τ)h(fcs − τ)dτ. (15)

Through the analog-to-information process, rather than measuring and sampling f(t) directly,

we acquire M � N linear projections by y = Φf = ΦΨx. We comment that the minimal number

M of measurements required to recover the signal is bounded by

M ≥ Cμ2(Φ,Ψ)K log2N (16)

where C denotes a small known constant (empirically∼ 2 to 2.5), N is the dimension of the signal

to be reconstructed, and μ(·, ·) represents the measurement of the coherence between Φ and Ψ and

it defined as

μ(Φ,Ψ) = max
1≤i≤N,1≤k≤M

|〈φk,ψi〉|. (17)

Here, μ2(Φ,Ψ) can range from 1 to N . The smaller μ(Φ,Ψ) is, the fewer number of measure-

ments is required to reconstruct the signal. Note that K represents the sparsity of the signal, and

M is proportional to the required number of measurements.

When y and U are known, we have a common and practical approach to find the sparse solution

to the following convex optimization problem [3]:

x̂ = argminx∈Rn‖x‖1 subject to y = Ux. (18)
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where ‖ · ‖1 denotes the l1-norm. The recovered signal is f̂ = Ψx∗ with x∗ being the optimal

solution to (18).

We comment that there are many different approaches in finding the solution to the undetermined

CS system described by y = Ux = ΦΨx. One common algorithm to solve the minimization

problem in (18) is basis pursuit (BP). Since this algorithm has been shown to have a tractable

complexity [3], [15], it is widely used in practice.

C. Applications of CS

CS theory asserts that one can recover certain signals from far fewer samples or measurements

than traditional methods at Nyquist rate. In this section, some possible applications of CS is briefly

summarized.

A) Data compression. When the sparse basis Ψ is unknown or impractical to implement at data

compression stage, one can apply a randomly designed Φ as a universal encoding strategy. Note

that Ψ is required only at the recovery sate of f . This encoding strategy is particularly useful for

distributed data source coding such as sensor networks [16], [5].

B) Channel coding. When the data is sparsity, CS theory can be used for channel coding, e.g,

error-correcting code (ECC). Such a coding system model can be described as [6]

yc = Afc + e (19)

where fc is an input vector, yc is corrupted measurement, A is a (coding) matrix, and e denotes

some unknown error. Based on the sparsity property, with proper designing of A, one may decode

fc from measurement yc.

C) Inverse problem. Related discussion is omitted in this report. More details can be found in

[9] and [10].

D) Data acquisition. When high rate or huge amount of N DT samples is difficult, sub-Nyquist

rate samples are desired in designing physical sampling devices [11].
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E) A/I. It can be considered as a specific application in data acquisition. As described in Section

III-B, A/I is to measure and compress high bandwidth CT signal (K-sparse) to DT signal (with a

small number of measurements).

IV. THROUGH WALL IMAGING RADAR

A. Preliminary on Through-Wall Imaging

Urban radar has become a keen research topic in recent years because of the urgent needs of

urban warfare, counterterrorism, calamity rescue, etc. Through-wall imaging (TWI) radar systems

can provide high range and cross-range solutions by using ultra-wideband (UWB) signals and

antenna arrays with large apertures, respectively.

To begin, we present a brief description of a conventional TWI radar system. We first pose some

assumptions:

1. A target consists of (at least) one point of scatters, and the reflection coefficient of each scatter

is a (complex) constant;

2. In the range of resolution, human bodies are replaced by point targets.

To model the TWI system, a stepped-frequency scheme is considered. Suppose the stepped

signal ∈ [fL, fH ] has N narrow band signals with carrier frequencies

fn = fL + nΔf, n = 1, · · · , N (20)

where fL is the starting frequency, fH is the highest frequency, and Δf = (fH − fL)/(N − 1) is

the frequency step.

Figure 5 shows the scene with the wall for the point target P(xp, yp) and the m-th antenna pair

(Tx, Rx). Suppose that the wall thickness d and the relative permittivity of the wall are known.

Under the two assumptions and the stepped-frequency scheme, the received signal of frequency

fn at the receiver position of the mth antenna pair can be represented through complex envelope
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Fig. 5. A geometry scene with the wall for one target.

(after normalizing by the transmitted signal) as

z[m,n] =
P−1∑
p=0

σp exp(−j2πfnτpm) (21)

where σp is the reflection coefficient of the pth target, P is the number of targets in the scene, m

and n represent the spatial index for m = 0, ...,M − 1 and frequency index for n = 0, ..., N − 1,

respectively, and τpm is the round-trip propagation delay between the m-th antenna pair and the

p-th target. The round-trip propagation delay can be calculated through

τpm =
Rm,1 +Rm,2

c
+

Lm,1 + Lm,2

v
(22)

where Rm,1 and Rm,2 are the respective distances between the pth target and the refraction points

A and B, c denotes the velocity of light, and v = c/
√
εr is the velocity inside the wall with εr

denoting the relative permittivity of the wall.
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We comment that the coordinates of the refraction points A and B can be obtained as

Xm,1 = xtm +
d(xp − xtm)√
εr(yp + d)

(23)

and

Xm,2 = xrm +
d(xp − xrm)√
εr(yp + d)

. (24)

In the conventional TWI, the image can be recovered through delay-and-sum beamforming (DS-

BF). Thus, an image pixel s[k, l] located at (xk, yl) is recovered by the following DSBF process:

s[k, l] =
1

MN

M−1∑
m=0

N−1∑
n=0

z[m,n] exp(j2πfnτpm) (25)

where k = 0, 1, · · · , K − 1 and l = 0, 1, · · · , L − 1. In (25), K and L are the numbers of pixels

in the image. Multiple-signal classification subspace method can be used to facilitate the image

reconstruction [4].

B. Compressed Sensing in TWI Radar

In TWI radar, if the number of targets is very small compared to the number of pixels in the

imagine, i.e., P � KL, we may use the CS technique to recover such a sparse target scene.

a) Formulating a dictionary Ψ for TWI Radar Data: First of all, we define two long vector

in the X − Y plane and frequency-spatial plane as

s = [s11, s21, · · · , sK1, s12, · · · , sK2, · · · , sKL]
T
KL×1 (26)

and

z = [z11, z21, · · · , sM1, s12, · · · , sM2, · · · , sMN ]
T
MN×1 (27)

where KL determines the resolution, s is a weighted indicator vector, i.e., the kl index is nonzero

if a target is located at position [k, l]. Here, zmn represents the data set z[m,n].

Thus, z can be expressed as

z = Ψs (28)
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where Ψ is a MN ×KL matrix with Ψ = [ψ1,ψ2, · · · ,ψi, · · · ,ψKL]. The uth column of ψi is

(ψi)u = exp(−j2πfaτi,u) (29)

where

τi,u =

√
(xq − xb1)2 + y2e +

√
(xq − xb2)2 + y2e

c
+

√
εr(

√
(xb1 − xtb)2 + d2 +

√
(xb2 − xrb)2 + d2)

c

(30)

where a = imodN , b = 
i/M�, q = jmodK, and e = 
j/L�. Here, 
·� denotes the floor

function, fa = fL+aΔf , and Xb1 and Xb2 can be found via (23) and (24). Note that (xtb,−d) and

(xrb, 0) are coordinates of the bth antenna pair. Therefore, once the size of detect range and radar

parameters are specified, the dictionary Ψ can be constructed through (29).

b) Designing of Basis Φ: In CS based TWI radar system, Ψ is the conversion matrix, while

Φ is the data acquisition matrix. Rather than sampling z[m,n] (or the MN × 1 vector z), we

measure the linear projection of z onto a set of basis Φ as

yJ×1 = Φz = ΦJ×MNΨMN×KLsKL×1. (31)

A proper selection of Φ is needed to minimize the mutual coherence between Φ and Ψ. There are

two possible selections of Φ are presented.

Principle of Selection I: Each row has only one nonzero element, being equals to one, in the

MN elements. An example of such a selection is shown in Fig. 2. In this case, both spatial and

frequency points are randomly selected, and this may lead to relative complex implementation in

hardware of the TWI radar.

Principle of Selection II: As shown in Fig. 3, one first randomly picks R points out of M

antenna pairs, then randomly selects T out of N frequency bins for all picked R positions of radar

antennas. This approach is easier to implement in the TWI radar.
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Fig. 6. Data acquisition algorithm for the TWI radar based on CS (Selection I).

Fig. 7. Data acquisition algorithm for the TWI radar based on CS (Selection II).
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C. TWI Detection with CS

Under the aforementioned assumptions, the target space indicator s vector can be recovered from

J ≥ Cμ2(Φ,Ψ)(log(KL/P ))P measurements. Using the convex optimization approach, we can

find s by solving an l1-norm minimization problem

s = argmin||s||l1 subject to y = ΦΨs. (32)

Since the dictionary Ψ, measurement y, and the indicator s are complex, to facilitate the processing

of (32), one can make some conversions as follows.

Define Θ = ΦΨ. y can be rewritten as

y = Θs = �{y}+ j
{y} (33)

where �{y} = �{Θ}�{s} − 
{Θ}
{s} and 
{y} = �{Θ}
{s}+ 
{Θ}�{s}.
Thus, eqn. (32) becomes

Î = argmin||Ĩ||l1 subject to ỹ = ΓĨ (34)

where ỹ = [�{y}T
{y}T ]T2J×1, Ĩ = [�{s}T
{s}T ]T2KL×1 and

Γ =

⎛
⎝ �{Θ} −
{Θ}

{Θ} �{Θ}

⎞
⎠ (35)

which is a 2J × 2KL matrix. We comment that as soon as Î is reconstructed, one can readily

obtain s.

D. Discussion

Based on our study, we find that the topics on a CSR system can be summarized as

1) Application and setting;

2) Formulation in the context of CS: involving “reduced measurement + reduced DSP complex-

ity” or “reduced DSP complexity” only;
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3) Design of the matrix Φ;

4) Reconstruction of signal or target position (via convex optimization);

5) Impacts from noise and inaccurate (modified) matrix Ψ̃.

V. A GENERAL MODEL OF CS USING UWB

A. Preliminary on UWB

UWB is one of the major breakthroughs in area of wireless communications. As UWB signal is

highly sparse in the time domain, it is natural to introduce CS in the design of UWB systems.

Typical UWB systems have the following features:

1. The devices have low power consumption [12];

2. Signals with short pulse width (on the order of nanoseconds).

Based on the second feature, one can find that the corresponding Nyquist rate could be on the

order of GHz. Analog-to-digital converters (ADCs) working at such high frequencies would be

expensive. Two methods are proposed to reduce the sampling frequency. One way is to use an

array of samplers with different time offsets to realize a serial sampling; however, the hardware cost

will increase with the increasing of the number of samplers. The other way is that, in commercial

applications, UWB receivers may ignore the details of UWB signals, i.e., detecting only the signal

energy and realizing the on-off keying (OOK) modulation. In this case, timing information from

the peak of a UWB signal is lost and can degrade the locationing precision.

B. Mathematic Model of UWB

Considering a wireless multi-path channel, the channel response can be expressed as

h(t) =

L−1∑
l=0

hlδ(t− τl) (36)

where L is the total number of paths, δ(·) denotes the impulse function, hl is the channel gain of

the lth path, and τl is the delay in path l.
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C. Compression of UWB

One considers N + L − 1 transmitted sequences and we denote the corresponding symbol by

s= (s1, s2, · · · , sN , · · · , sN+L−1). Thus, the sampled output r[nk] at time nk can be written as

r[nk] =
L−1∑
l=0

hl[nk]s[nk − l] (37)

where hl[nk] is the lth complex channel filter tap at time nk. Assuming that the channel taps do not

vary over N symbol times, the received symbol reduces to

r[nk] =
L−1∑
l=0

hls[nk − l] (38)

where s[nk] = 0 for nk < 1. To analyze the UWB channel, we transform the frequency-selective

channel into flat fading channels. As a result, the received signal can be written as

r = Hs (39)

where r is the received signal vector after sampling and H denotes a N × N + L − 1 equivalent

channel matrix which is given as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 · · · hL−1 · · · h1

h1 h0 · · · · · · h2

h2 h1 h0 · · · h3

...
...

...
...

hL−1 · · · h1 h0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

It is noted that (39) is a standard format of CS. However, the matrix H may not satisfy the condi-

tions for CS signal reconstruction because it is completely determined by the channel. As a result,

we need to add additional compression procedure for the UWB signal. Such a compression can be

done at either receiver or transmitter side. Details are given in the following subsections.
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c) Receiver Side Compression: Receiver side compression for UWB signal can be imple-

mented based on distributed amplifier (DA) [13]. The basic operation is letting the received UWB

signal pass through a microchip circuit, along which the signal is added to predetermined weights

and then sampled.

DA, also called transverse filter, consists of multiple repeated taps, each containing a section of

microchip input and output transmission lines, and then gain cells. Such an architecture for DA is

given in Fig. 8. Thus, the output of a DA at time t is

y(t) =

N∑
k=1

akx(t− kτ) (41)

where N is the number of taps in a DA, ak’s are attenuation coefficients of different gain cells,

which can be set randomly, x is the input signal, and τ is the fixed time delay of each section of

transmission line. We comment that the attenuation coefficients and time delay can be predeter-

mined from hardware design. DA is suitable for UWB signal as the characteristic impedance of

a transmission line changes very little over several GHz, and the time delays can easily achieve a

time scale of 50 ps or less without changing the DA structure.

Based on the proposed DA structure, as shown in Fig. 8, the received UWB signal is put into

the compressor with M DAs, each of which has N gain cells, and then sampled by M ADCs. For

simplicity, here we ignore the noise. Then the output of the ith ADC is given by

yi =
N∑
k=1

φikxk (42)

where xk = x(xTs − kτ) with Ts denoting the sampling period of ADC and φik is the coefficient

of the kth gain cell of the ith DA.

Let us define x= (x1, x2, · · · , xN)
T and y= (y1, y2, · · · , yM)T . Then we can obtain the linear

compression equation as

y = Φr (43)
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Fig. 8. An illustration of the DA-based receiver structure.

where the measurement matrix Φ is given by

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

...
... . . . ...

φM1 φM2 · · · φMN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

With proper design of DA, one can make (43) suitable for CS signal processing.

d) Transmitter Side Compression: Alternatively, we can modify the transmitter to accom-

modate CS technique. One approach with the functionality of signal mixing is illustrated in Fig.

9.

In such a structure, the UWB impulses are generated according to the bit sequence and then pass

through a finite impulse response (FIR) filter. The filter output is then sent out through the wireless

channel and reaches the receiver. Suppose that the UWB pulse, together with the silent period, is

denoted by an N -vector s in the discrete time domain. Then, the received signal at the receiver is

given by

y0 = f ∗ h ∗ s (45)
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Fig. 9. An illustration of the UWB transmitter structure with signal mixing.

where f is the discrete time impulse response of the FIR filter at the transmitter and ∗ denotes the

convolution operation. Due to the limitation of sampling rate, the vector y0 may not be obtained

directly. After downsampling to M uniform measurements, the signal after sampling is now given

by

y = Φt ∗ x (46)

where we ignore the quantization error, for simplicity of analysis. The measurement matrix for

transmitter compression is determined by

y(n) =
B−1∑
j=0

x (n
N/M�+ j) (f ∗ h)(B − j) (47)
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where B is the dispersion of the composite filter f ∗ h. The matrix Φt is a quasi-Toeplitz matrix

in which the non-zero elements are located within a strip and each column has B elements. Thus,

with designing of larger B, the measurement matrix can be filled with more non-zero elements and

this make y more dispersed in the time domain. More details of this approach can be found in [14].

D. Reconstruction of UWB

In UWB system, the UWB impulse arrive in a block manner. Hence, in the unknown vector r, the

non-zero elements are grouped in blocks, it is impossible to have the non-zero elements distributed

in arbitrary locations of x. Traditional BP or OMP do not consider this prior information. Hence,

by using block reconstruction, one can improve the receiver performance.

e) Block Property: One can exploit the block property of UWB signals. For simplicity, we

ignore the noise in this discussion. One can define the block sparsity by rewriting the unknown

received vector r as

x =
(
x1,x2,x3, · · · ,x�N

d
�
)
. (48)

Each subvector xz is called a block. Except the last one, each xz has d elements. Here, one

introduces the block sparsity definition: if at most k blocks have non-zero elements, we say that

the vector x is block k-sparse.

f) l1 and l2 combined optimization, L-OPT: Define Z = �N
d
�, we denote the mixed l1/l2-

norm as

‖x‖2,Z =
Z∑

z=1

‖xz‖2 (49)

where ‖ · ‖ denotes the l2 norm. The L-OPT minimizes a combination of l1- and l2-norm of the

unknown vector x through

min
x

Z∑
z=1

‖xz‖2 s.t. y = Φr. (50)

We comment that: when d = 1, one minimizes l2-norm of x; when d = N , one minimizes l1-norm

of x. For a general value of d, one minimizes something between l1-norm and l2-norm.
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g) Condition of Perfect Reconstruction: A matrix A is said to satisfy the block restricted

isometric property (RIP) condition if there exist parameters δk such that, for every vector c that is

block k-sparse, such that

(1− δk)‖c‖22 ≤ ‖Ac‖22 ≤ (1 + δk)‖c‖22. (51)

This condition can be used to evaluate the matrix A in CS-based UWB system design.

VI. CS PERFECT SIGNAL RECONSTRUCTION

Clearly, two basic conditions are required for a CS system. Theoretical analysis of CS requires

signal sparsity. In addition, RIP or incoherence condition on sensing matrix is desired for reliable

signal recovery [17].

To facilitate the description of incoherence conditions, we rewrite the CS signal model as

y = Φx = ΦΨ︸︷︷︸
Θ

s = Θs (52)

where Φ is the measurement matrix, Ψ is the basis matrix, Θ = ΦΨ denotes the sensing matrix,

and vector s is K-sparse.

A. Conditions on RIP

Let us define RIP. Suppose that there exists a constant δ such that, for every K-sparse vector vK

(1− δ)‖vK‖22 ≤ ‖ΘvK‖22 ≤ (1 + δ)‖vK‖22. (53)

To continue, we define the minimum of all constants δ satisfying (53) as the isometry constant δK .

In [19], Davenport and Wakin showed (in 2010) that for

δK <
1

3
√
K

(54)
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if RIP is satisfied, the orthogonal matching pursuit (OMP) algorithm is guaranteed to recover s

exactly from the l1-norm minimization problem. Later in 2012, Wang and Shim loosened the

inequity condition in (54) to [20]

δK <
1√

K + 1
. (55)

B. Conditions on Mutual Coherence

The mutual coherence of a sensing matrix Θ is defined as

μ(Θ) = max
i 	=j

| < θi,θj > | (56)

where θi and θj are two properly normalized column vectors of Θ.

Lemma 1

If the following condition is satisfied

K < 0.5

[
1 +

1

μ(Θ)

]
(57)

OMP algorithm is guaranteed to find s exactly from the l1-norm minimization problem. Note

that the condition in Lemma 1 is a sufficient and necessary condition. Its necessity can be shown

by slightly relaxing the condition (K = 0.5 [1 + 1/μ(Θ)]), which leads to imperfect recovery.

Detailed proofs can be found in [21].

Sometimes, perfect recovery may be hard. Thus, one can ask for recovery with high probability.

Such a condition is given as follows [23].

Lemma 2

Given μ(Θ) = 1/
√
M , suppose a k-sparse vector s follows K ≤ M/(16 log(M/ε)) for some

sufficient small ε. For a CS system, basis pursuit (BP) algorithm will recover s with probability

greater than 1− 2ε2 −K−ϑ for some ϑ ≥ 1 s.t.
√

ϑ logM/ log(M/ε) ≤ c where c is an absolute

constant.
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C. Study of the Coherence Condition

Suppose we have a CS based high resolution radar system. The received signal can be formu-

lated in the CS matrix format as

y = Φx = ΦΨ︸︷︷︸
Θ

s = Θs (58)

where Φ is a Mm × N measurement matrix, Ψ is a N ×ML basis matrix, Θ = ΦΨ denotes a

Mm ×ML sensing matrix, and vector s is K-sparse.

The mutual coherence of a sensing matrix Θ is defined as

μ(Θ) = max
i 	=j

| < θi,θj > | (59)

where θi and θj are two properly normalized column vectors of Θ. One of our target is to find the

CDF of μ(Θ) for a given CS system (fixed Ψ).

We have an Mt ×Mr MIMO CS system setup, which can be extended to an electronic surveil-

lance multiple-receiver at a later time. By discretizing the range-Doppler plane into M × L grids,

we are able to write the elements of Ψ as

ψuv =
Mt∑
l=1

Wl(uTs) exp(−j2πfcτlq(xv)) exp(j2πf
v
lq(uTs − τlq(xv))) (60)

where Wl(·) is the received signal waveform, τlq(·) denotes the time delay of target reflected signal

from the lth transmitter to qth receiver for a specific grid, and flq is the Doppler frequency shift

corresponding to the grid.

Based on the CS model, we derive the CDF of mutual coherence. We can rewrite it as the

maximum of |gij| = |θHi θj|.
Case I: If we assume the elements of Φ are independently drawn from the random sequence

“{±1}”, it can be shown that

|gij| = Mm|Ψi
HIΨj|. (61)

From (61), we conclude that mutual coherence will not be affected by Φ matrix and depend on Ψ

matrix, i.e., the system parameter.
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Case II: If we assume the elements of Φ are independently drawn from a zero-mean gaussian

distribution, the direct derivation for the target CDF can be difficult as gij’s are dependent com-

plex random variables (RVs). For simplicity, we consider two elements g12 and g13 for analytical

analysis purpose. Through a pre-whitening process (detailed steps omitted here), we have

|g̃12| = |T11g12 + T12g13| (62)

and

|g̃13| = |T21g12 + T22g13|. (63)

Thus, |g̃12| and |g̃13| are found to be independent Rician RVs.

If |g̃12| and |g̃13| are i. n. i.d. RVs, the CDF and PDF of max{|g̃12|, |g̃13|} are respectively given

by ∏
i=1,j=1,2

Fg̃ij(g̃) (64)

and
2∑

j=1

fg̃1j(g̃)
2∏

k=1,k 	=j

Fg̃1k(g̃). (65)

We would like to determine a reasonable tight bounding for the CDF of max{|gij|}, which can

be used as a metric to assess the recovery performance of a CS system. We also target to find the

minimum number of samples required for a perfect recovery through our studies. Such a parameter

can be useful in determining the required power and speed of signal processing unit.

In addition, coherence between Φ and Ψ may be investigated to provide more insights into the

low coherence condition for high-resolution CS systems. For the CS system discussed, we will

explore the CS system with more realistic conditions, for instance, the additive noise/interference,

in the future work.
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