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Abstract
Timely resolution of inflammation is critical for the restoration of homeostasis in injured or

infected tissue. Chronic inflammation is often characterized by a persistent increase in the

concentrations of inflammatory cells and molecular mediators, whose distinct amount and

timing characteristics offer an opportunity to identify effective therapeutic regulatory targets.

Here, we used our recently developed computational model of local inflammation to identify

potential targets for molecular interventions and to investigate the effects of individual and

combined inhibition of such targets. This was accomplished via the development and appli-

cation of computational strategies involving the simulation and analysis of thousands of

inflammatory scenarios. We found that modulation of macrophage influx and efflux is an

effective potential strategy to regulate the amount of inflammatory cells and molecular medi-

ators in both normal and chronic inflammatory scenarios. We identified three molecular

mediators − tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and the

chemokine CXCL8 − as potential molecular targets whose individual or combined inhibition

may robustly regulate both the amount and timing properties of the kinetic trajectories for

neutrophils and macrophages in chronic inflammation. Modulation of macrophage flux, as

well as of the abundance of TNF-α, TGF-β, and CXCL8, may improve the resolution of

chronic inflammation.

Author Summary

A recent approach to quantitatively characterize the timing and intensity of the inflamma-
tory response relies on the use of four quantities termed inflammation indices. The values
of the inflammation indices may reflect the differences between normal and pathological
inflammation, and may be used to gauge the effects of therapeutic interventions aimed to
control inflammation. Yet, the specific inflammatory mechanisms that can be targeted to
selectively control these indices remain unknown. Here, we developed and applied a
computational strategy to identify potential target mechanisms to regulate such indices.
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We used our recently developed model of local inflammation to simulate thousands of
inflammatory scenarios. We then subjected the corresponding inflammation index values
to sensitivity and correlation analysis. We found that the inflammation indices may be sig-
nificantly influenced by the macrophage influx and efflux rates, as well as by the degrada-
tion rates of three specific molecular mediators. These results suggested that the indices
can be effectively regulated by individual or combined inhibition of those molecular medi-
ators, which we confirmed by computational experiments. Taken together, our results
highlight possible targets of therapeutic intervention that can be used to control both the
timing and the intensity of the inflammatory response.

Introduction
Prolonged inflammation is a recognized contributor to a multitude of pathological conditions,
including cardiovascular, metabolic, and neurodegenerative diseases, as well as chronic injuries
[1, 2]. Timely resolution of inflammation is essential for tissue homeostasis. Inflammation res-
olution, previously believed to be a passive, self-regulatory process, is now known to be actively
modulated by several different classes of endogenous molecular mediators, such as anti-inflam-
matory cytokines and growth factors [interleukin-10 (IL-10) and transforming growth factor-β
(TGF-β)], oxygenated lipid mediators (lipoxins, resolvins, protectins, and maresins), and pro-
tease inhibitors [2–5]. Ongoing research efforts, including pharmacological animal model
research and clinical trials, are focused on novel pro-resolution therapies for a variety of
inflammatory conditions [6, 7]. There is a clear, documented need for new approaches to
develop resolution-centric therapeutic interventions [2] to supplement or replace the currently
used anti-inflammatory therapies, which are only modestly effective [8–10].

The concentrations of molecular and cellular components of the inflammatory process are
typically characterized by single-peak temporal trajectories reflecting a distinct period of acti-
vation followed by resolution [2, 5, 11, 12] (Fig 1). The quantitative properties of these trajecto-
ries vary as a result of differences in inflammatory conditions and scenarios. Recently, four
quantitative indices [namely, peak height (Cmax), activation time (Tact), resolution interval
(Ri), and resolution plateau (Rp)] (Fig 1) were introduced as informative measures to analyze
the quantitative patterns characterizing temporal inflammatory trajectories [1, 13]. For a given
molecular species or cell type, theCmax is defined as the maximum value of the corresponding
temporal trajectory. Tact is the time after inflammation initiation required for the temporal tra-
jectory to reach theCmax level. Ri is the time difference between Tact and the time it takes to
reach 50% ofCmax. Rp is the trajectory level at the end of the considered time period, expressed
as a percentage of theCmax value; it therefore reflects residual inflammation. Based on the
aspects of the temporal trajectories that they represent, the indices can be divided into amount
indices (Cmax and Rp) and timing indices (Tact and Ri) [14, 15]. Additionally, the area under
the curve (AUC) of a kinetic trajectory has been recently introduced as a metric to quantita-
tively assess cumulative tissue damage under various inflammatory scenarios [16].

Experimental studies have demonstrated the utility of the inflammation indices in distin-
guishing between the time courses for normal and pathological inflammation, as well as in
establishing the quantitative efficacy of external interventions [1, 3, 17]. For example, in a
mouse peritonitis model, it was shown that the macrophageCmax, Tact, Ri, and the neutrophil
Tact were noticeably higher (specifically, higher by 2-fold, 3-fold, 2-fold, and 12-fold, respec-
tively) in the chronic inflammatory scenario compared to the acute inflammatory scenario
[17]. In the same study, several drugs (specifically, ibuprofen, resolvin E1, a prostaglandin D2
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receptor 1 agonist, dexamethasone, rolipram, and azithromycin) were evaluated for their
inflammation resolution efficacy by quantifying their regulation of these inflammation indices
in the chronic inflammation scenario. Another peritonitis mouse model study investigated the
efficacy of drug-filled nanoparticles in inflammation resolution. The drug efficacy was estab-
lished based on its ability to reduce the neutrophilCmax and Tact by ~1.5-fold [3]. Yet, system-
atic experimental characterization of the patterns and mutual relationships for the
inflammation indices is challenging due to the immense diversity of possible inflammatory sce-
narios. This diversity hampers our understanding of the global control of the indices by specific
molecular mechanisms, and our understanding of the modulation of the indices by therapeutic
interventions. Computational modeling offers a possibility to complement experimental inves-
tigations and address this complex problem using an integrated approach.

Computational modeling can be used to “screen” thousands of inflammatory scenarios in a
systematic way and thereby guide the generation of focused, mechanistic, experimentally test-
able hypotheses [11, 16, 18–21]. Previous works have demonstrated the utility of mathematical
models in the study of inflammation in specific disease scenarios and in the identification of
crucial inflammatory mechanisms [11, 12, 16, 20–32]. For example, computational models
have been used to predict the efficacy of cytokine regulation therapies in chronic inflammatory
diseases [24, 27, 33]. However, quantitative characterization of the inflammatory response of
different cell types and molecular mediators in terms of indices, as well as a rigorous analysis of
their mechanistic determinants, have not been carried out in previous modeling efforts. In the
present study, we used our recently developed quantitative kinetic model of acute and chronic
inflammation in wounds to generate hypotheses regarding mechanistic control of the inflam-
mation indices [11]. Our model could capture the behavior of inflammatory cell type and
molecular mediator kinetics in acute and chronic inflammation initiated by both infection and
injury [17, 34, 35]. In our simulations, the chronic inflammatory scenarios were characterized
by higher concentrations (Cmax) and delayed resolution timing (Ri) for key inflammatory com-
ponents in comparison with acute inflammatory scenarios. Using this model, we identified
essential inflammation-driving mechanisms (specifically, macrophage influx and efflux rates)
and informative indicators (i.e., IL-6, TGF-β, and PDGF) of chronic inflammation. Our find-
ings regarding the mechanistic regulation of inflammation by macrophage fluxes are supported
by experimental studies where wound macrophage levels (regulated by macrophage fluxes)

Fig 1. Quantitative indices of a typical inflammatory response curve. The timing indices (Tact and Ri) and
the amount indices (Ψmax and Rp) are defined as follows.Ψmax: peak height for a model output variable
(molecular species or cell type); Tmax: time at which a model output variable reaches the peak height value;
Tact: time to reach peak height after inflammation initiation; T50: time for a model output variable to decay from
its peak height value to 50% of the peak height; Ri: difference between T50 and Tact; Rp: the value of a model
output variable at the right-most time point of the simulation, as a percentage of the peak height value.

doi:10.1371/journal.pcbi.1004460.g001

Determinants of Inflammation Timing and Intensity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004460 December 3, 2015 3 / 26



controlled the timing of wound healing [36–39] and the quality of wound scarring [40]. Fur-
thermore, our modeling predictions characterizing IL-6 as an informative indicator of patho-
logical inflammation are consistent with a recent clinical wound study [41]. Here, we use this
model to elucidate the functional relationships between specific molecular/cellular processes
and inflammation indices during normal and pathological inflammation.

The goal of our study was to identify specific mechanistic determinants that can be targeted
to modulate the index values during abnormal (delayed) inflammation and drive them toward
a desired outcome. We used two complementary analyses (namely, sensitivity and correlation
analysis) and identified such targetable mechanisms for regulating the inflammatory indices in
the model. Furthermore, we wanted to test the effectiveness of cytokine inhibition as an inter-
vention strategy to regulate the inflammation indices. For this purpose, we extended the model
to represent cytokine inhibition kinetics for three cytokines (chosen based on our predictions
regarding targetable mechanisms). We used this extended model to study the efficacy of indi-
vidual/combined cytokine inhibition in the regulation of the inflammation indices for neutro-
phils and macrophages.

Our modeling results indicate that, for the majority of the model output variables represent-
ing inflammatory cell types and molecular mediators, the amount indicesCmax and Rp were
robustly regulated by the macrophage influx and efflux rate, respectively. In contrast, for the
timing indices (i.e., Tact and Ri), such a robust functional dependence on single model parame-
ters was not detected in the sensitivity analysis. Yet, the timing indices for the inflammatory
components were strongly correlated with the platelet degradation rate. Moreover, strong cor-
relations between the timing indices and certain mechanistic processes existed, but only under
specific inflammatory situations representing chronic inflammation. Our inflammatory media-
tor inhibition modeling suggested that during an abnormal (delayed) inflammatory response,
TNF-α and TGF-β inhibition strongly shifted the macrophageCmax and Rp indices toward
inflammation resolution, whereas CXCL8 inhibition regulated the neutrophil Ri and could
nearly restore this index to its normal (i.e., acute-inflammation) value. Notably, combined inhi-
bition of TNF-α and CXCL8 resulted in improved restoration of normal neutrophil dynamics
compared with the inhibition of these two targets acting independently. Comparisons with
available experimental data provided validation for our TNF-α inhibitor modeling results.

Results

Model Parameters Effecting Robust Regulation of Inflammation Indices
Identified via Sensitivity Analysis
To investigate the regulation of the inflammation indices via changes in the model parameters,
we performed a local sensitivity analysis for the model in 10,000 inflammatory scenarios (simu-
lations), as described in the Materials and Methods Section. We regarded the regulation of an
inflammation index (computed for a given model output variable) by a specific parameter as
robust, if the sensitivity sij (Eq 1, defined in the Materials and Methods Section) of the index
with respect to this parameter was the highest (or second highest, third highest, etc.) across all
parameters in themajority of the 10,000 simulations. In the figures and tables, for the sake of
brevity, we identify each of the model’s 69 parameters using its assigned number in the model
preceded by the prefix “P#.”We use these designations when referring to the figures and tables
in the text and, in addition, provide descriptive names for the parameters (see Table 1 for a full
list of the model parameters).

The amount indices,Cmax and Rp, for the majority of the model output variables were
robustly regulated by the parameters representing the rate of macrophage influx (P#7) into the
inflamed area and the rate of their efflux (P#10), respectively. Table 2 shows the first, second,
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Table 1. List of model output variables (abbreviations) andmodel parameters with their assigned numbers (P#) and descriptions of their function
[11].

Model output variables: Different cell types and molecular species

Nact Active neutrophils TGFβ Transforming growth factor-β

Napop Apoptotic neutrophils PDGF Platelet-derived growth factor

Mpro Pro-inflammatory macrophages IL1β Interleukin-1β

Manti Anti-inflammatory macrophages IL6 Interleukin-6

P Platelets MIP1α Macrophage inflammatory protein-1α

CXCL8 Chemokine CXCL8 MIP2 Macrophage inflammatory protein-2

IL12 Interleukin-12 IP10 Interferon-γ-induced protein 10

IL10 Interleukin-10 TNFα Tumor necrosis factor-α

Ntot Total neutrophils Mtot Total macrophages

P# Model parameter description

1 Platelet degradation rate

2 Rate of TGF-β release by platelets

3 Chemotactic migration of neutrophils to the wound site (TGF-β-dependent)

4 Rate of neutrophil apoptosis

5 Rate of apoptotic neutrophil phagocytosis by pro-inflammatory macrophages

6 Apoptotic neutrophil phagocytosis parameter

7 Chemotactic migration of pro-inflammatory macrophages to the wound site (TGF-β-dependent)

8 Rate of macrophage phenotype conversion

9 Macrophage phenotype conversion parameter

10 Rate of macrophage efflux by lymphatic system

11 Rate of TGF-β production by pro-inflammatory macrophages

12 Rate of TGF-β production by anti-inflammatory macrophages

13 TGF-β degradation rate

14 Rate of PDGF production by pro-inflammatory macrophages

15 Rate of PDGF production by anti-inflammatory macrophages (10% of kPDGF_pro)

16 PDGF degradation rate

17 Rate of TNF-α production by pro-inflammatory macrophages

18 Rate of TNF-α production by anti-inflammatory macrophages

19 TNF-α degradation rate

20 Rate of IL-1β production by pro-inflammatory macrophages

21 Rate of IL-1β production by anti-inflammatory macrophages

22 IL-1β degradation rate

23 Rate of IL-6 production by pro-inflammatory macrophages

24 Rate of IL-6 production by anti-inflammatory macrophages (10% of kIL6_pro)

25 IL-6 degradation rate

26 Rate of IL-10 production by pro-inflammatory macrophages

27 Rate of IL-10 production by anti-inflammatory macrophages

28 IL-10 degradation rate

29 Rate of CXCL8 production by pro-inflammatory macrophages

30 Rate of CXCL8 production by anti-inflammatory macrophages

31 CXCL8 degradation rate

32 Rate of IL-12 production by pro-inflammatory macrophages

33 IL-12 degradation rate

34 Rate of MIP-1α production by pro-inflammatory macrophages

35 Rate of MIP-1α production by anti-inflammatory macrophages

36 MIP-1α degradation rate

(Continued)
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and third most influential (based on the ranking of the corresponding sensitivities) model
parameters for the inflammation indices for six specific model output variables. These variables
(namely, TNF-α, IL-1β, IL-6, IL-10, total neutrophils, and total macrophages) are the ones that
typically demonstrate abnormal characteristics during pathological inflammation [17, 34, 36,
42]. By definition,Cmax and Rp characterize the inflammation intensity at its peak and during
its resolution (Fig 1). Therefore, these results are consistent with, and complement, our earlier
findings identifying macrophage influx (P#7) and efflux (P#10) rates as the main regulators of
kinetic trajectories during the initial and final phases of inflammation, respectively [11]. In
addition to the well-pronounced regulation by macrophage flux rates, our local sensitivity anal-
ysis identified the TNF-α degradation rate (P#19) and the neutrophil influx rate (P#3) as
robust regulators of theCmax for the TNF-α and the neutrophil (Ntot) model output variables,
respectively (Table 2).

In contrast to the robust regulation of the amount indices, no model variables had their tim-
ing indices (i.e., Tact and Ri) robustly regulated by a model parameter. Indeed, the largest sensi-
tivity values for Tact and Ri corresponded to different parameters depending on the specific
simulation (i.e., on the specific model parameter set). For all of the16 variables, the model
parameter effecting the strongest Tact regulation in the largest fraction of the 10,000 inflamma-
tory scenarios was the platelet degradation rate (P#1) (Table 2). Yet, this largest fraction

Table 1. (Continued)

Model output variables: Different cell types and molecular species

37 Rate of MIP-2 production by pro-inflammatory macrophages

38 Rate of MIP-2 production by anti-inflammatory macrophages

39 MIP-2 degradation rate

40 Rate of IP-10 production by pro-inflammatory macrophages

41 Rate of IP-10 production by anti-inflammatory macrophages

42 IP-10 degradation rate

43 Rate of TNF-α production by active neutrophils

44 Rate of IL-1β production by active neutrophils

45 Rate of IL-6 production by active neutrophils

46–48 Parameters of the feedback function f describing the inhibition of TNF-α by IL-10: f ¼ P46e
P47 IL10 þ P48

49–51 Parameters of the feedback function f describing the inhibition of IL-6 by IL-10: f ¼ P49e
P50 IL10 þ P51

52–54 Parameters of the feedback function f describing the inhibition of IL-1β by IL-10: f ¼ P52e
P53 IL10 þ P54

55–57 Parameters of the feedback function f describing the inhibition of TNF-α by TGF-β: f ¼ P55e
P56TGFb þ P57

58–60 Parameters of the feedback function f describing the inhibition of IL-1β by TGF-β: f ¼ P58e
P59TGFb þ P60

61–62 Parameters of the feedback function f describing the inhibition of IL-1β by IL-6:f ¼ P61

ðP61þIL6P62 Þ

63–64 Parameters of the feedback function f describing the inhibition of TNF-α by IL-6: f ¼ P63

ðP63þIL6P64 Þ

65–67 Parameters of the feedback function f describing the inhibition of IL-12 by TNF-α: f ¼ P65e
P66TNFa þ P67

68 Parameter of the feedback function f describing the upregulation of IL-6 by TGF-β: f ¼ P68TGFb
ð1þTGFbÞ

69 Parameter of the feedback function f describing the upregulation of IL-10 by TGF-β: f ¼ P69TGFb
ð1þP69TGFbÞ

The production rates are in units of ng�cell-1�h-1 and the degradation rates are in units of h-1. Parameters 46–69 are dimensionless parameters that

describe positive and negative regulatory feedback functions for the production rates of certain molecular mediators. The form of the feedback functions

was chosen by fitting different types of functions (e.g., linear, exponential, and polynomial) to experimental data and selecting the function that provided

the best fit. The values of each parameter, along with the respective references to experimental studies from which each parameter was derived, are

provided in Table S1 of [11].

doi:10.1371/journal.pcbi.1004460.t001
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(which we call the “robustness fraction”) was too small (~18–46%) to consider this regulation
robust. For the Ri, the parameter effecting the strongest regulation of this index in the largest
fraction of scenarios was macrophage efflux rate (P#10) for 10 out of the 16 model output vari-
ables. However, the corresponding robustness fraction for it was even smaller (~15–35%).
These results suggest that robust control of the timing indices may require a sophisticated strat-
egy involving simultaneous modulation of multiple inflammatory mechanisms.

Statistical Correlation between the Model Parameters and the
Inflammation Indices
To gain additional insights into the regulation of the inflammation indices, we calculated the
correlation coefficients (CCs) and the associated p-values between the inflammation indices of
each model output variable and each model parameter (see Materials and Methods). The CC
values ranged between −1 to +1 reflecting a negative or a positive index-parameter correlation,
respectively. The signs of the CCs for the four indices are shown in S2 Fig. Absolute index–
parameter correlations above 0.5 were considered strong [43, 44]. Among the correlations iden-
tified as strong, only correlations with p� 0.05 were considered statistically significant.

For the amount indices, we detected a strong positive correlation between inflammation
peak height (i.e.,Cmax) and macrophage influx rate (P#7) for 10 model output variables,
including macrophages, IL-6, and IL-10 (Fig 2a and 2b). Furthermore, we found a strong posi-
tive correlation between theCmax for neutrophils (Ntot) and neutrophil influx rate (P#3) (Fig
2a and 2b), which was consistent with our sensitivity analysis results (Table 2). This result

Table 2. Results of the model sensitivity analysis.

Sensitivity Activation time (Tact)

TNF-α IL-1β IL-6 IL-10 Ntot Mtot

Highest 1 (2,774) 1 (2,724) 1 (3,039) 1 (2,470) 1 (4,035) 1 (4,681)

2nd highest 13 (1,887) 13 (1,250) 13 (1,635) 13 (1,135) 13 (3,769) 13 (3,102)

3rd highest 2 (839) 22 (624) 2 (785) 2 (610) 2 (371) 2 (371)

Peak height (Ψmax)

TNF-α IL-1β IL-6 IL-10 Ntot Mtot

Highest 19 (6,081) 22 (3,560) 7 (7,725) 7 (6,948) 3 (9,766) 7 (8,960)

2nd highest 17 (2,846) 7 (3,243) 23 (1,282) 28 (1,783) 1 (66) 1 (342)

3rd highest 7 (404) 20 (1,842) 1 (284) 1 (355) 13 (35) 13 (233)

Resolution interval (Ri)

TNF-α IL-1β IL-6 IL-10 Ntot Mtot

Highest 10 (1,573) 10 (2,369) 1 (1,441) 10 (2,454) 1 (2,321) 10 (3,481)

2nd highest 1 (1,146) 1 (913) 10 (1,009) 1 (984) 13 (1,412) 1 (1,025)

3rd highest 7 (1,004) 13 (755) 13 (813) 13 (624) 7 (790) 13 (592)

Resolution plateau (Rp)

TNF-α IL-1β IL-6 IL-10 Ntot Mtot

Highest 10 (8,753) 10 (9,205) 10 (8,994) 10 (9,724) 7 (2,203) 10 (9,805)

2nd highest 1 (284) 1 (162) 1 (221) 13 (32) 5 (2,092) 1 (23)

3rd highest 7 (178) 13 (117) 13 (112) 1 (31) 10 (1,426) 13 (17)

In each cell, the entry without parentheses represents the assigned number (P#) of a particular model parameter, and the entry in parentheses represents

the number of simulations (out of the total 10,000 simulations) for which the sensitivity of the indicated inflammation index (corresponding to the indicated

model output variable) with respect to this parameter (see Eq 1) was the highest, 2nd highest, and 3rd highest across all 69 model parameters.

doi:10.1371/journal.pcbi.1004460.t002
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suggests that the inflammation indices for the neutrophil inflammatory response trajectory
may depend on the degradation rates of CXCL8 (P#31) and TGF-β (P#13), which are the two
main neutrophil chemoattractants in our model [11]. For the other amount index, i.e., Rp, only
one parameter [namely, macrophage efflux rate (P#10)] showed a strong (negative) correlation
with a large number (namely, 13) of model output variables (Fig 2c and 2d). These findings
were consistent with our sensitivity analysis results regarding theCmax and Rp regulation by
macrophage influx and efflux rates (Table 2).

For the timing indices, the correlation analysis highlighted a strong negative correlation
between TGF-β degradation rate (P#13) and the Tact of four model variables, including neutro-
phils (Ntot) and IL-6 (Fig 3a and 3b). Moreover, we detected a strong negative correlation
between the platelet degradation rate (P#1) and inflammation activation time (i.e., the Tact

index) for 9 model variables (Fig 3a and 3b). However, this relationship simply demonstrates
the connection between Tact and the strength and persistence of inflammation-initiating sti-
muli, reflected in our model by the presence of platelets in the wound. Additionally, the Ri for

Fig 2. Correlation analysis for the model parameters (P#) and the amount indices of the model output variables. The shades of grey represent the
absolute values of the correlation coefficients (CCs). Subplots a and c show raw absolute CC values forΨmax and Rp, respectively. Subplots b and d show
only the strong (i.e., CC� 0.5) index-parameter associations for subplots a and c, respectively. See Table 1 for a list of all model variables and parameters.

doi:10.1371/journal.pcbi.1004460.g002
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the majority of the model variables, including macrophages and IL-6 (results not shown),
exhibited a strong negative correlation with macrophage efflux rate (P#10), which could be
expected based on our sensitivity analysis results (Table 2). Yet, our correlation analysis did
not detect any other strong correlations for the timing indices.

The limited number of detected strong correlations prompted us to hypothesize that a larger
number of strong correlations between the timing indices and the model parameters could be
detected in a smaller set of simulations reflecting specific conditions, such as chronic inflam-
mation. To test this, we divided the 10,000 simulations into two subsets, “acute” and “chronic”
(see Materials and Methods). Then, for only the “chronic” subset, we performed the correlation
analysis between each of the timing indices (i.e., Tact and Ri) for the 16 model output variables
and the 69 model parameters. As hypothesized, in this analysis many model parameters
emerged as strongly correlated with Tact (18 parameters) and Ri (9 parameters), for different
model variables (Fig 3c and 3d, respectively). In subsequent analyses, we specifically focused

Fig 3. Correlation analysis for the model parameters (P#) and the timing indices of the model output variables. The shades of grey represent the
absolute values of the CCs. Subplot a shows the raw absolute CC values for Tact calculated using the full set of 10,000 simulations. Subplots b, c, and d
show only the strong (i.e., CC� 0.5) index-parameter associations for Tact in the full set of 10,000 simulations, Tact in the “chronic” (see Materials and
Methods) subset of simulations, and Ri in the “chronic” subset of simulations, respectively. See Table 1 for a list of all model variables and parameters.

doi:10.1371/journal.pcbi.1004460.g003
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on TGF-β and CXCL8 degradation rates (P#13 and P#31, respectively), because they were
strongly correlated with several key model outputs and those correlations were statistically sig-
nificant. In summary, the correlation analysis provided us with candidate mechanisms for
directly regulating both of the amount indices (via neutrophil influx rate and the macrophage
flux rates) and the timing indices (via the TGF-β and CXCL8 degradation rates) of the model
output variables.

The goal of model parameter randomization in our 10,000 simulations was to account for
possible biological variability in inflammation scenarios [11]. While wider variation ranges for
the parameters may allow for a fuller representation of this variability, such random, simulta-
neous, uncorrelated variations may also introduce excess noise that could mask the biologically
relevant patterns we want to detect. An informative analysis should therefore utilize parameter
ranges sufficiently wide to represent variation and yet narrow enough to define the vicinity of
our carefully chosen default parameter set, which had been derived directly from experimental
data and represented the expected “typical” injury-triggered inflammation scenario [11]. To
assess the impact of large parameter deviations, we performed the sensitivity and correlation
analysis for an additional set of 40,000 simulations. In these simulations, the parameters were
randomly and uniformly sampled from a 9-fold range (i.e., 3-fold down and 3-fold up) around
the default parameter values. In the sensitivity analysis, the introduction of these larger param-
eter deviations reduced by 5–30% (results not shown) the robustness of theCmax regulation by
macrophage influx rate for the six different outputs shown in Table 2. Similarly, the robustness
of the Rp regulation by macrophage efflux rate was reduced by 1–14% (results not shown) in
comparison with the results shown in Table 2. However, in the correlation analysis, the major
trends [i.e., the strong correlation between theCmax and macrophage influx rate and the strong
correlation between the Rp and macrophage efflux rate] were preserved, while other strong cor-
relations (Figs 2 and 3) were not detected in the case of large parameter deviations (S3 Fig).
Thus, it appears that some of the detected biological patterns are particularly strong in the few-
fold vicinity of our default parameter set, which reflects their dependence on specific type of
inflammatory scenario.

Partial Restoration of the Normal Values of the Inflammation Indices in
Chronic Inflammation by Model Parameter Modulation
The results of our sensitivity and correlation analyses (Table 2 and Figs 2 and 3) suggested that
specific inflammation indices of the model variables can be considerably impacted by the fol-
lowing five model parameters: macrophage influx and efflux rates and the TNF-α, CXCL8, and
TGF-β degradation rates. We therefore wanted to investigate whether modulation of these
parameters during chronic inflammation could result in (at least, partial) restoration of the
normal (i.e., acute-inflammation) values of the respective inflammation indices. We addressed
this question for all of the five parameters except macrophage influx rate, because we used its
modulation to induce chronic inflammation in the model (see caption for Fig 4). Using the
same protocol as implemented in our previous modeling study (see Figure 5 in [11]), we simu-
lated a chronic inflammatory scenario (Fig 4a and 4b, red line). Here, we specifically focused
on the kinetic trajectories for neutrophils and macrophages, because their kinetic behavior is
well studied and is known to be disrupted during delayed (or chronic) inflammation [34, 45].

To investigate the regulation of neutrophil and macrophage inflammatory trajectories, we
repeated the chronic inflammation simulations upon modifying the values of the parameters
mentioned above, as follows. In the chronic inflammation simulation for neutrophil regulation,
we implemented two distinct parameter modification strategies. In one strategy, we increased
the CXCL8 degradation rate, which caused the Ri for the neutrophils to decrease (Fig 4a, solid
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black line and green values in the table) compared to the chronic scenario with no modification
(Fig 4a, red line). In the other strategy, we increased the TGF-β degradation rate, which caused
both Tact andCmax for the neutrophils to decrease (Fig 4a, dashed black line, green values in
the table) compared to the chronic scenario with no modification (Fig 4a, red line).

Similarly, for macrophage regulation, we introduced two distinct parameter modification
strategies into the chronic inflammation simulation. In the first strategy, we increased the
TNF-α degradation rate, which caused theCmax for the macrophage variable to decrease (Fig
4b, solid black line and green values in the table) compared to the chronic scenario with no
modification (Fig 4b, red line). In the second strategy, we increased the macrophage efflux rate,
which caused the Tact, Ri, and Rp for the macrophage variable to decrease (Fig 4b, dashed black
line and green values in the table) compared to the chronic scenario with no modification (Fig
4b, red line). The observed decrease in the inflammation index values suggested that the con-
sidered parameter modifications can partially restore acute inflammatory kinetics, i.e., can
bring the inflammation index values for a chronic inflammatory scenario closer to those for an
acute inflammatory scenario.

Fig 4. Inflammation index regulation by modifying the model parameters identified in the sensitivity and correlation analyses. Shown are the
normalized total neutrophil (a) and total macrophage (b) concentrations during chronic (solid red) inflammation. We simulated chronic inflammation by
increasing the macrophage influx rate parameter by 5 fold, a strategy we employed in our previous model [11]. These curves appeared in our previous model
results (see Figure 5 in [11]) and are reproduced here for comparison purposes. Neutrophil restoration modifications included increasing the CXCL8
degradation rate by 5 fold (solid black), increasing the TGF-β degradation rate by 15 fold (dashed black), and increasing TNF-α inhibition by TGF-β by 5 fold
(dotted black). Macrophage restoration modifications comprised increasing the TNF-α degradation rate by 20 fold (black solid), increasing the macrophage
efflux rate by 2 fold (dashed black), and increasing IL-10 production rate by 5 fold (dotted black). These parameter-specific fold changes were chosen so as
to reduce the respective parameter-specific target inflammation indices by at least ~10% during a chronic inflammatory scenario (the target indices are
defined in the description of the six parameter modification strategies in the Results Section). All the model-predicted values were normalized to the
respective maximum values from the chronic inflammation simulations. The tables in the figure show the quantitative index values calculated from the
respective simulated kinetic trajectories.

doi:10.1371/journal.pcbi.1004460.g004

Determinants of Inflammation Timing and Intensity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004460 December 3, 2015 11 / 26



The analyses described above were supplemented with modulation of other parameters.
This was done to illustrate that not all model parameters exhibiting strong correlations with
certain model variables could effectively regulate their indices. For example, the IL-10 produc-
tion rate parameter (P#26) was strongly and negatively correlated with the macrophage Tact

(Fig 3c), and the parameter for TNF-α inhibition by TGF-β (P#55) had a strong and negative
correlation with the neutrophil (Ntot) Ri (Fig 3d). However, increasing those two parameters
did not result in a significant modulation of the respective neutrophil or macrophage indices
(Fig 4a and 4b, dotted lines). The model parameters that effected weak inflammatory index reg-
ulation or exhibited low-confidence correlations with the inflammatory indices were not
selected for further analysis.

Regulation of the Inflammation Indices by Inflammatory Mediator
Inhibition: Modeling Predictions and Validation
Because the TGF-β, CXCL8, and TNF-α degradation rates represent inherent biochemical
properties of the respective molecular mediators, they cannot be easily changed in vivo. We
therefore wanted to test whether a mechanistically distinct process, such as cytokine inhibition,
could be used to obtain functionally similar outcomes. For this purpose, we extended our
model [11] to include the kinetics of inhibitors for TGF-β, CXCL8, and TNF-α and performed
inhibition kinetics simulations for chronic inflammatory scenarios (Figs 5 and 6 and S1). We
derived the values for the association (kon) and dissociation (koff) rate constants (Eq 2, defined
in the Materials and Methods Section) for each mediator inhibitor from literature data (S1
Table). In our simulations, CXCL8 inhibition primarily regulated inflammation timing (specif-
ically, the Ri index for the neutrophil variable; Figs 5a and 6a, black lines), whereas TNF-α and
TGF-β inhibition primarily regulated inflammation intensity (specifically, theCmax and Rp

indices for both neutrophil and macrophage variables) (Figs 5b and 5e and 6b and 6e; S1a and
S1d Figs, black lines).

For each inhibitor, we performed simulations for three different inhibitor concentrations.
We used inhibitor concentrations of 10 nM, 100 nM, and 500 nM for both the TNF-α and
CXCL8 inhibitors. For the TGF-β inhibitor, we used the concentrations of 1 nM, 20 nM, and
200 nM. We found that the inhibitors for different targets are most effective within concentra-
tion ranges that can be vastly different (Figs 5 and S1). Indeed, the CXCL8 and TNF-α inhibi-
tors were most effective in restoring (at least, partially) their target indices when the inhibitors
were added at concentrations�100 nM (Fig 5a, 5b and 5e), while TGF-β inhibition was effec-
tive for inhibitor concentrations in the range ~1–10 nM (S1 Fig). These results attest to the effi-
cacy of the simple strategy involving the inhibitor addition at time 0.

To validate our modeling predictions regarding TNF-α inhibition, we compared our simu-
lations with the experimental data generated for H1N1 virus-induced lung inflammation regu-
lated by the TNF-α inhibitor etanercept [46]. These data characterized three scenarios: 1)
control (i.e., no infection and, therefore, no inflammation), 2) inflammation with infection
without added TNF-α inhibitor, and 3) inflammation with infection and with added 200 nM
TNF-α inhibitor. From these data, we calculated the ratios of the total neutrophil and macro-
phage concentrations for the inflammation scenario without the TNF-α inhibitor to the corre-
sponding concentrations for the inflammation scenario with added TNF-α inhibitor. We
compared these ratios with the respective ratios calculated from our model simulation of
injury-induced chronic inflammation. There was a reasonable agreement between the simula-
tion-derived and experiment-derived ratios (Table 3). Note that, in our analysis, we did not
attempt to model the nonzero neutrophil and macrophage concentrations detected for the
experimental control scenarios, because in our model, which represents extravascular space,
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the concentrations of neutrophils and macrophages in the absence of inflammation are zero. In
contrast, the control experiments measured the cell concentrations in entire lung lobes, which
included cells present in the vasculature, resulting in nonzero neutrophil and macrophage con-
centrations even in the absence of inflammation. We chose this particular experimental study
for the validation because TNF-α is a key pro-inflammatory cytokine that is secreted by inflam-
matory cells in most inflammatory scenarios, and whose expression and regulatory functions
are largely independent of the specific inflammation-inducing stimuli (e.g., viral load, LPS
[47], and wounding [39]). Thus, despite the difference in the inflammation-inducing stimulus
between the experimental study and our modeling study (viral loading in lungs vs. injury,

Fig 5. Total neutrophil and total macrophage concentrations for inflammatory mediator inhibition by different inhibitor concentrations.Green and
red lines represent model predictions for acute and chronic inflammation, respectively. We simulated chronic inflammation by increasing the initial platelet
concentration by 100 fold, increasing the macrophage influx rate parameter by 1.5 fold, and simultaneously decreasing the platelet degradation rate
parameter by 1.5 fold. We chose to increase the macrophage flux rate and decrease the platelet degradation rate because these rates were identified as
robust regulators of theΨmax and Tact indices for many inflammatory cellular and molecular components, as seen in our sensitivity and correlation analysis
results (Table 2 and Figs 2 and 3). Moreover, the role of macrophage influx rate as a chronic inflammation driver has been shown in our previous
computational analysis [11]. Experimental studies indicate that a relatively higher inflammation-inducing stimulus often results in chronic inflammation [17,
34]. Thus, we chose to modify the initial platelet concentration, which reflects injury severity in our model. The fold increase/decrease in these parameters
was chosen based on the ability of the parametric changes to simulate the experimentally determined inflammatory trajectories from [34]. Black lines
represent model predictions for different inhibitor concentrations for the respective mediators. Each inhibitor concentration was added at the time of
inflammation initiation (t = 0) during chronic inflammation. a and d: Normalized neutrophil and macrophage concentrations during CXCL8 inhibition for
inhibitor concentrations of 10 nM (dotted black), 100 nM (dashed black), and 500 nM (solid black). b and e: Normalized neutrophil and macrophage
concentrations during TNF-α inhibition for inhibitor concentrations of 10 nM (dotted black), 100 nM (dashed black), and 500 nM (solid black). c and f:
Normalized neutrophil and macrophage concentration during combined inhibition of both CXCL8 and TNF-α, with each inhibitor concentration set to 200 nM
(solid black). Also shown are the normalized neutrophil and macrophage concentrations for individual inhibition of CXCL8 (dotted black) and TNF-α (dashed
black), with the respective inhibitor concentrations equal to 200 nM. All model-predicted values were normalized to the respective maximum values from the
chronic inflammation simulations.

doi:10.1371/journal.pcbi.1004460.g005
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Fig 6. Total neutrophil and total macrophage concentrations for inflammatory mediator inhibition at different time points.Green and red lines
represent model predictions for acute and chronic inflammation, respectively. We simulated chronic inflammation by increasing the initial platelet
concentration by 100 fold, increasing the macrophage influx rate parameter by 1.5 fold, and simultaneously decreasing the platelet degradation rate
parameter by 1.5 fold. In all the subplots, the time points of inhibitor addition (represented by the black lines) are as follows: dotted, 24 h; dashed, 48 h; and
solid, 72 h. Shown are normalized neutrophil (a-c) and normalized macrophage (d-f) kinetics for CXCL8, TNF-α, and combined CXCL8 + TNF-α inhibition.
The concentration of each of the considered inhibitors was equal to 200 nM. All model-predicted values were normalized to the respective maximum values
from the chronic inflammation simulations. In our simulations, the 72 h time point was chosen for mediator inhibitor addition based on an experimental study
that evaluated the efficacy of several pro-resolution drugs in a mouse peritoneal infection model [17]. Furthermore, we chose the 24 h and 48 h time points for
mediator inhibitor addition because they represent the times at which the neutrophil and macrophage concentrations peak, respectively, in our acute
inflammation simulation [11].

doi:10.1371/journal.pcbi.1004460.g006

Table 3. Experimentally observed andmodel-simulated total neutrophil and total macrophage con-
centration ratios for day 2 and day 4 of the inflammatory response.

Day Experimental data Model simulation

Total neutrophils

Day 2 2.1 1.3

Day 4 1.4 1.2

Total macrophages

Day 2 1.3 1.3

Day 4 1.3 1.4

Numbers in the table represent the ratio of the respective inflammatory cell concentration for the

inflammation scenario without TNF-α inhibitor to the corresponding concentration for the inflammation

scenario with TNF-α inhibitor added.

doi:10.1371/journal.pcbi.1004460.t003
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respectively), the reasonable agreement of the neutrophil and macrophage kinetics between the
two studies suggests that our model adequately captured TNF-α inhibition.

To test whether the timing of inhibitor administration can impact the index restoration out-
comes, we performed simulations in which the inhibitors were added at three different time
points (i.e., 24, 48, and 72 h) during chronic inflammation. We chose 24 h as the earliest inter-
vention time point because neutrophils are the first blood leukocytes to arrive at the inflamma-
tion site, and 24 h approximately corresponds to the neutrophil peak time for acute
inflammatory response [35, 48]. Macrophages peak at 48 h, which motivated our choice of the
second intervention time. For all the simulations, the added CXCL8 and TNF-α inhibitor con-
centrations equaled 200 nM (selected based on the observed effective range>100 nM, Fig 5a, 5b
and 5e). In the case of CXCL8, the inhibitor added at 24 h was more effective in reducing the Ri

for the neutrophil variable than the inhibitor added at other time points (Fig 6a, dotted black
line). For TNF-α, the inhibitor added at 24 h provided a more complete restoration of theCmax

for both neutrophils and macrophages to its acute-inflammation value than the TNF-α inhibitor
added at later time points (Fig 6b and 6e, dotted black lines).

A nearly identical effect on the neutrophil Ri and macrophageCmax was observed when
the CXCL8 and TNF-α inhibitors, respectively, were added at 48 h (Fig 6a and 6e, dashed
black lines nearly overlapped the dotted black lines). Mediator addition at 72 h showed the
least degree of restoration in the neutrophil Ri and macrophageCmax among the three inhibi-
tor addition times analyzed (Fig 6a and 6e, black solid lines). However, this observed effect of
mediator inhibition on the inflammation indices was not monotonic. Specifically, when the
CXCL8 and TNF-α inhibitors were added at 36 h (results not shown), the degree of restora-
tion in the neutrophil Ri and macrophageCmax values, respectively, was less than that when
the mediator inhibitors were added at the 48 h time point. Experimental data from cytokine
inhibition studies [49, 50] support the possibility of this type of non-monotonic behavior,
which may be due to the complex nonlinear functional dependencies at work in the system.
In summary, the CXCL8 and TNF-α inhibitors were characterized by similar optimal-effi-
ciency concentration ranges and preferred administration timing regimens, but distinct pref-
erentially regulated inflammation indices. Among the three time points considered, mediator
inhibition was most effective when introduced during peak neutrophil response (i.e., at 24 h).
For TGF-β, however, the inhibition outcomes were more complicated (see S1 Fig and S1
Text).

Because the neutrophil is the primary microbicidal cell type that produces powerful cyto-
toxic molecules that can potentially destroy the surrounding healthy tissue, (at least partial)
restoration of the “normal” (i.e., acute-inflammation) timing and intensity of the neutrophil
surge is essential for the resolution of chronic inflammation [51]. Based on the preferential reg-
ulatory action of individual CXCL8 and TNF-α inhibitors on the total neutrophil Ri andCmax,
respectively (Fig 5a and 5b), we hypothesized that simultaneous inhibition of these two media-
tors in chronic inflammation might induce simultaneous restoration of the normal values for
both of these indices. We tested this hypothesis by simulating the effect of adding both CXCL8
and TNF-α inhibitors at time 0. Each of the two inhibitors was added at a concentration of 200
nM. As hypothesized, the combined inhibition resulted in simultaneous restoration of both the
Ri andCmax of the total neutrophil trajectory in a chronic inflammation simulation (Fig 5c,
solid black line). Similarly to the action of the CXCL8 inhibitor (Fig 6a), the combined inhibi-
tion of CXCL8 and TNF-α was most effective at 24 h (Fig 6c and 6f, dotted black lines). These
results suggest that “cocktails” of therapeutic agents with different targets may provide strate-
gies of improved efficacy for simultaneous control of both timing and intensity of inflamma-
tion after wounding.
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Discussion
Timely resolution of inflammation following an injury, infection, or disease is essential for the
maintenance of healthy tissue [2, 52]. Despite ongoing research and development efforts, cur-
rent anti-inflammatory therapies are only modestly effective and have significant negative side
effects [9, 53, 54]. This work was motivated by the need to identify molecular mechanisms that
could serve as targets for intervention strategies intended to modulate chronic inflammatory
responses. Chronic inflammation may have distinct phenotypic manifestations depending on
the inflammatory condition, e.g., increased apoptotic neutrophil levels in diabetic ulcers [36],
or increased levels and prolonged presence of classically activated macrophages in ischemic
wounds [45], or prolonged oscillations in the levels of inflammatory cells and cytokines [55].
Here, we focused on chronic inflammation characterized by heightened levels and/or delayed
resolution timing for kinetic trajectories describing accumulation and depletion of the inflam-
matory cell types and molecular mediators in comparison with acute inflammation [2]. In our
simulations (both acute and chronic), the kinetic trajectories of all the inflammatory compo-
nents return to their baseline levels following a peak triggered by inflammation initiation. We
used our computational model of injury-initiated local inflammatory response [11] to identify
the mechanistic factors regulating the four inflammation indices, i.e.,Cmax, Rp, Tact, and Ri

(Fig 1), which were recently introduced as quantitative markers of the levels and timing of the
inflammation time course [1, 3, 13, 17].

Our sensitivity analysis elucidated the effects of parameter changes on the inflammation
indices. For the majority of the model output variables, the amount indices (i.e.,Cmax and Rp)
were robustly regulated by macrophage influx (P#7) and efflux (P#10) rates, respectively, in the
10,000 performed simulations (Table 2). Because macrophages are major cytokine-producing
cells at the site of inflammation [39], identification of the macrophage flux rates as critical
inflammation intensity control mechanisms is, perhaps, not surprising. However, the kinetics
of each cytokine are additionally affected by a large number of factors, such as its individual
production and degradation rates, feedback parameters, cell phenotype conversion rates, etc.
In view of this diversity, identification of the macrophage flux rates as the only robust modula-
tors for almost all model variables is an unexpected result. Interestingly, these results are sup-
ported by experimental studies involving direct macrophage manipulation [36, 37, 39, 40]. For
example, elevated macrophage abundance was shown to cause wound fibrosis [40] and delayed
wound healing [38]. Moreover, reducing the levels of functional macrophages in wounds can
severely delay the wound healing time in mouse models [36, 37, 39].

The macrophage flux rates, being strong regulators of the intensity inflammation indices,
(Table 2 and Fig 2), are in fact the primary targets of certain recently emerged pro-resolution
molecular mediators, such as lipoxins and resolvins [4]. By perturbing the recruitment mecha-
nisms of neutrophils and macrophages in our model (Fig 4), we were able to reproduce the
experimentally observed effects of exogenous delivery of resolvins and lipoxins in models of
murine peritonitis (Fig 4, black lines and green values in the tables), e.g., a reduction in the total
neutrophilCmax and Tact (see Table II in [1]), and a reduction in the total macrophageCmax

(see Figure 5 in [17]). While these experiments addressed only a handful of specific inflamma-
tory scenarios, the robustness of the inflammation index regulation by the macrophage flux
parameters, detected in our sensitivity analysis (Table 2), attests to the general nature of this reg-
ulation type. It should be noted, however, that the macrophage influx rate parameter (P#7) in
our model is a lumped parameter representing macrophage chemotaxis stimulated by any com-
bination of four distinct macrophage chemoattractants (specifically, TGF-β, PDGF, TNF-α, and
MIP-1α) (see Table 1 in [11]). Likewise, the neutrophil influx rate parameter (P#3), which
robustly regulates the total neutrophilCmax (Table 2), characterizes the chemotaxis of active
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neutrophils stimulated by any combination of TGF-β and CXCL8. Thus, the sensitivity analysis
alone [which identified P#7 and P#3 as influential parameters (Table 2)] was not sufficient for
obtaining deeper insights into the specific mechanistic factors regulating the macrophage and
neutrophil influx rates. This was accomplished in our parameter/output correlation analysis.

The correlation analysis explored the effects of simultaneous, random parameter variations
within specified limits. The analysis identified a number of functional associations between
model parameters and inflammation indices (Figs 2 and 3). Consistently with the sensitivity
analysis results, macrophage influx and efflux rates were strongly correlated withCmax and Rp

of model outputs (Fig 2). However, in contrast to the sensitivity analysis results, where the tim-
ing indices (i.e., Tact and Ri) did not display robust regulation by any of the kinetic model
parameters across the 10,000 simulations, a strong negative correlation was observed between
the platelet degradation rate and the Tact of the majority of output variables (Fig 3a and 3b).
This correlation may simply reflect that the presence of platelets in the wound area is the only
inflammation-initiating stimulus in our model. While other mediator-releasing cells (e.g.,
endothelial cells, resident macrophages, mast cells, etc. [56]) may contribute to the inflamma-
tory response, this simplifying modeling assumption is in accord with the prominent roles
played by platelets in initiating wound healing [57, 58]. Of the many platelet-secreted molecu-
lar mediators facilitating inflammation initiation [57], we only modeled the most potent neu-
trophil and macrophage chemoattractant, i.e., TGF-β [59, 60]. The results of this choice are
evident from the strong correlations between the TGF-β degradation rate and key inflamma-
tory components, such as total neutrophils, pro-inflammatory macrophages, and IL-6 (Fig 3b).

Overall, Ri was the least sensitive of all the inflammation indices and had a limited response
to the parameter variations applied, which was consistent with its experimentally detected
insensitivity [1]. Notably, for a subset of simulated scenarios reflecting chronic inflammation,
certain parameters (e.g., TGF-β and CXCL8 degradation rates) exhibited a strong correlation
with the Tact and Ri values for many model output variables, including key outputs such as total
neutrophils, TNF-α, and IL-6 (Fig 3c and 3d). Thus, our correlation analysis identified relation-
ships between specific inflammation indices and the specific molecular components regulating
the macrophage (TGF-β, Fig 3c) and neutrophil (TGF-β and CXCL8, Fig 3c and 3d) influx.

We extended our model to describe inflammatory mediator inhibition kinetics in order to
mechanistically represent the regulatory effects of inhibiting TNF-α, CXCL8, and TGF-β (Figs
5 and 6; S1 Fig, black lines). Mediator inhibition could provide a pharmacologically feasible
strategy to mimic the functional effects of the modulation of the neutrophil and macrophage
flux mechanisms, as well as of the modulation of TNF-α, CXCL8, and TGF-β degradation
rates, which we identified as robust regulators of specific inflammatory indices. In our simula-
tions, individual and combined mediator inhibition demonstrated the potential for signifi-
cantly improved restoration of acute-scenario kinetics for specific cell types in certain injury-
initiated chronic inflammatory scenarios (Figs 5 and 6). Interestingly, the molecular mediators
TGF-β and CXCL8, which were identified as strong regulators of the timing indices Tact and Ri

(Fig 3), successfully regulated the amount indicesCmax and Rp of neutrophils and macrophages
(Figs 5 and S1). This suggests that CXCL8 and TGF-βmay be the primary contributors to the
neutrophil and macrophage abundance in the wound, respectively. Yet, the detected neutrophil
Cmax regulation by TNF-α inhibition (Fig 5) was surprising because, unlike CXCL8, TNF-α is
not a chemoattractant for neutrophils. TNF-α has been reported to be pro-apoptotic to neutro-
phils in specific concentration ranges [61]. It is conceivable that the non-linear feedback effects
present in our model allowed us to capture this indirect effect of the neutrophilCmax regula-
tion by TNF-α.

The detected difference in regulation robustness between the timing and amount inflamma-
tion indices appears to be an intrinsic property of the inflammation regulation system.
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Interestingly, a regulation dichotomy between timing and amount properties of the output
kinetics has been detected for other systems in molecular biology. For example, in bacterial sig-
nal transduction systems, the amount characteristics of the response curves are primarily
defined by the numerical values of the systems’ kinetic parameters, whereas the response tim-
ing properties are determined largely by the systems’ architecture and are less sensitive to
parameter variation [14]. Therefore, a lack of robust patterns characterizing the control of
response timing via kinetic parameter modulation might be a common property of biological
control systems.

Traditional anti-inflammatory therapies, such as nonsteroidal anti-inflammatory drugs tar-
geting the production of prostaglandins [10], have focused on the inhibition of pro-inflamma-
tory pathways. More recently, administration of pro-resolution molecular agents, such as
lipoxins and resolvins, has shown promise in promoting inflammation resolution and is now a
topic of active research [4, 62]. Direct inhibition of inflammatory mediators is another thera-
peutic strategy that has seen moderate success for specific inflammatory conditions. For exam-
ple, TNF-α inhibition and IL-1β inhibition have been successful as therapies for rheumatoid
arthritis (RA) [8, 9] and chronic inflammatory pathologies associated with cancer [63], respec-
tively. Previously published reports suggest that single mediator inhibition strategies are useful
predominantly in chronic inflammation scenarios driven by specific mediators and/or when
only one inflammation system component is affected, e.g., in the neutrophil overload condition
[36]. Our results are consistent with these findings and suggest that the observed therapeutic
effects can be explained by preferential regulation of a given inflammation index by a specific
mediator. Indeed, TGF-β and TNF-α inhibition regulate the total neutrophil and total macro-
phage Tact andCmax (Figs 4a and 4b and 5b and 5e and 6b and 6e and S1a and S1d), while
CXCL8 inhibition generally regulates the total neutrophil Ri (Figs 5a and 6a).

The generality of our approach suggests that TNF-α inhibition could potentially be used
(alone or in combination with other mediator inhibitors) for a variety of inflammatory condi-
tions characterized by elevated neutrophil and macrophage levels, such as traumatic injuries
[64, 65]. TGF-β regulation has largely been studied for its role in fibrosis during the later stages
of wound healing [66, 67]. Our results show that TGF-β inhibition might have a role in pro-
moting the resolution of the crucial inflammatory stage of wound healing. In fact, recent clini-
cal trials have begun evaluating the efficacy of TGF-β inhibition for various inflammatory
pathologies, such as cancer [68]. CXCL8 inhibition has until now been speculated to have a
role in inflammatory airway diseases, such as chronic obstructive pulmonary disease [69] and
severe asthma [53]. Our results indicate a potential role for CXCL8 inhibition in timely neutro-
phil resolution during injury-initiated inflammation that warrants further experimental inves-
tigation. For pathological situations affecting several components of the inflammation process,
the use of combination mediator therapy has been recently proposed and is being tested in clin-
ical trials for rheumatoid arthritis [54]. Encouragingly, our simulations showed that a com-
bined intervention targeting both TNF-α and CXCL8 in a chronic inflammatory scenario
reduced bothCmax and Ri for the total neutrophil concentration and thereby restored the near-
“normal” (in comparison with the acute inflammatory scenario) total neutrophil kinetic trajec-
tory (Figs 5c and 6c). Overall, our modeling results suggest that individual and combined medi-
ator inhibition approaches may be applicable during trauma-induced chronic inflammation, in
addition to the inflammatory conditions for which they are currently indicated or being tested.
Our model may be used to test the efficacy of different intervention strategies, involving com-
bined administration of inhibitors for TNF-α, TGF-β, and CXCL8, and to possibly determine
the intervention timing. The use of robust control methodologies with our model might facili-
tate the design of improved parameter selection strategies to simulate chronic inflammation
and to optimize drug administration regimens [70].
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The main limitations of our approach arise from the computational nature of our study and
from the assumptions made during the computational model development [11]. First, in our
sensitivity analysis, we only examined the effects of parameter variations in the vicinity of the
default parameter set. Larger (e.g., several‐fold) parameter changes, which could represent a
higher degree of dysregulation or severity of inflammation, were not examined. Nevertheless,
local sensitivity analysis is an established research methodology that allowed us to generate
model results consistent with experimental data (Table 2) [11, 19, 71–74]. While this method-
ology is not designed to investigate simultaneous variations in several parameters, simulta-
neous parameter variation was a part of our correlation analysis strategy. Moreover, the effects
of simultaneous parameter variations can be understood using global sensitivity analysis, as
was recently done for a model of acute inflammation [16]. Second, our model contained a sim-
plified representation of the interaction between inhibitors and their targets. Specifically, we
did not include the individual degradation/removal kinetics for the inhibitors, which reflects
the assumption that the inhibitors are present at the inflammation site at nearly constant total
concentrations. While this assumption may be only an approximation to the in vivo situation,
it allowed us to focus our inhibition analysis specifically on the inhibitor-target interactions
(rather than potentially complex inhibitor pharmacokinetics). Besides, an increase in the num-
ber of modeled components and their interactions would have caused an increase in the num-
ber of unknowns, thereby introducing additional uncertainty, which we wanted to avoid at this
stage of the inhibitor modeling. Finally, our model did not explicitly represent the action of the
recently emerged lipid mediators of inflammation resolution, such as lipoxins and resolvins [1,
17]. Yet, our modeling approach allowed us to implicitly represent their effects by modifying
their suggested target mechanisms (see Figure 8 and Table II in [1]).

With the recognition of inflammation as the key contributor to several pathologies, new
approaches are needed to identify mechanistic regulators of pathological inflammation. A
promising methodology is based on the analysis of the inflammation indices that quantitatively
characterize the shapes of inflammation trajectories. Our study shows the applicability of sys-
tems biology approaches to identify mechanistic regulators of the inflammation indices. More-
over, computational models can provide a non-invasive and cost-effective framework for
testing the efficacy of potential therapeutic strategy aimed to improve inflammation resolution.
Computational analyses employing robust control strategies can guide the development of
focused, hypotheses-driven experimental and clinical studies by reducing the ambiguity in the
timing and strength of therapeutic interventions.

Materials and Methods

Computational Model and Simulations
To simulate the inflammatory response, we used our recently developed quantitative model of
acute and chronic local inflammation in a wound [11]. The model reflects initiation of inflam-
mation by the platelets present at the site of injury; the platelets release TGF-β, whose gradient
attracts inflammatory cells that interact and release soluble inflammatory mediators. The mod-
el’s variables describe the kinetics of 5 types of inflammatory cells (namely, active and apoptotic
neutrophils, pro- and anti-inflammatory macrophages, and platelets) and 11 molecular media-
tors [namely, TNF-α, interleukin(IL)-1β, IL-6, IL-12, IL-10, CXCL8, TGF-β, platelet derived
growth factor (PDGF), macrophage inflammatory protein-1α and 2 (MIP-1α, MIP-2), and
interferon gamma-induced protein 10 (IP-10)]. We chose to model these components because
they are widely regarded as essential cell types and molecular mediators involved in an innate
immune response to injury [48, 75]. In our analysis, we did not include inflammatory molecu-
lar mediators produced by cells of adaptive immunity (e.g., IL-4 and IFN-γ) that are reported
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to affect innate immune components, such as macrophages [40]. For modeling tractability, we
reduced the wide spectrum of possible wound macrophage phenotypes [34, 40] to just two:
pro-inflammatory (similar to the “classically activated,” or M1, phenotype induced in vitro by
IFN-γ and bacterial LPS) and anti-inflammatory (similar to the “alternatively activated,” or
M2, phenotype induced in vitro by IL-4 and IL-13) phenotypes. The essential mechanisms (i.e.,
chemotaxis and phenotype conversion of inflammatory cells, cellular apoptosis, and molecular
mediator production/degradation and positive/negative feedback effects) that govern the kinet-
ics of the inflammatory response are represented via 69 model parameters (Table 1). The
model describes extracellular signaling between different cell types and cytokines. Intracellular
processes, such as transcription, translation, and export of proteins, are not represented mecha-
nistically and are instead described implicitly via the model’s rate parameters.

Our model reflects experimentally observed acute and chronic inflammatory response
kinetics initiated by injury or infection (see Figures 3 and 5 in [11]). While the kinetic trajecto-
ries of the model’s output variables in our simulations had qualitatively similar shapes during
both acute and chronic inflammation, the chronic inflammatory scenarios were characterized
by higher concentrations (Cmax) and delayed resolution timing (Ri) for neutrophils, macro-
phages, and pro-inflammatory mediators (e.g., TNF-α, IL-1β, and IL-6) in comparison with
acute inflammatory scenarios, which is consistent with experimental reports of chronic inflam-
mation [17, 34, 36, 45]. The model is a coupled system of 15 ordinary differential equations
and one delay differential equation (DDE). The DDE in the model is used to describe the che-
motaxis of pro-inflammatory macrophages. Indeed, there exists a ~12 h delay between the
arrival of the macrophage precursors (i.e., monocytes) at the wound site and their differentia-
tion into pro-inflammatory macrophages [12], which is accounted for in the model by using
the DDE. Each of our simulations reflected a 20-day period after inflammation initiation. We
performed all computations in the software suite MATLAB R2012a (MathWorks, Natick, MA)
and solved the model equations using the MATLAB solver DDE23 with default tolerance lev-
els. The MATLAB files used to simulate the results reported in this article and a document pro-
viding details on how run the code are provided as S1 Code and S1 Text, respectively.

Computing Kinetic Trajectories and Inflammation Indices
For each model output variable representing a molecular species or cell type (with two excep-
tions), we calculated the four inflammation indices defined in the Introduction (Fig 1). We did
not calculate the indices for the model variables representing the platelet and TGF-β concentra-
tions, because their kinetic trajectories do not have the same characteristic single-peak shape as
the trajectories for other model variables. We additionally considered, and computed the
inflammation indices for, two variables representing the total concentrations of neutrophils
(Ntot) and macrophages (Mtot). We computed these variables directly from the model output
variables representing two distinct neutrophil and two distinct macrophage phenotypes. We
thus analyzed 16 model variables in total. In the article text, we sometimes refer to the total
neutrophil and total macrophage model variables simply as neutrophils and macrophages,
respectively. First, we calculated temporal trajectories and the inflammation indices for the
model’s default parameter set, which represents an acute inflammatory scenario [11]. Then,
applying a previously described Latin hypercube sampling approach [71], we generated 10,000
random 69-parameter sets, in which each individual parameter was sampled independently
from an interval permitting up to twofold deviations (up or down) from the parameter’s default
value. We used the MATLAB function LHSDESIGN to perform this sampling. The parameter
sets were intended to represent the natural variability in the inflammatory scenarios occurring
under different circumstances or in different individuals. In the existing literature, there is no
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consensus regarding the criteria for selecting the parameter randomization sample size to
ensure sufficient coverage of the possible kinetic scenarios. It is recommended that this sample
size be increased until no significant further changes in the main analysis results are detected
[76]. Following this strategy, we arrived at the parameter randomization sample size equal to
10,000 parameter sets. For the considered model variables, we calculated the inflammation
indices from the temporal trajectories generated for each of these 10,000 parameter sets. We
refer to these trajectories as 10,000 simulations.

Local Sensitivity Analysis
We calculated logarithmic local sensitivities, sij, for each inflammation index of every model
output variable with respect to every model parameter according to the standard definition
(see, e.g., [11, 73]):

sij ¼ @logXi=@logpj ¼ ðdXi=XiÞ=ðdpj=pjÞ; ð1Þ

where Xi is a given inflammation index (Tact,Cmax, Ri, or Rp) for the model’s ith variable (of
the 16 output variables) and pj is the model’s jth parameter (of the model’s 69 parameters). To
obtain numeric approximations of the derivatives in Eq 1, each parameter was individually per-
turbed by ±1% of its value, and the derivative was approximated using the second-order central
finite difference formula. We restricted our attention to local sensitivities because local sensitiv-
ity analysis is a powerful tool that has been successfully used to identify critical mechanisms
and intervention points in a variety of biological systems [11, 19, 72–74]. We performed a local
sensitivity analysis for the default parameter set, as well as for each of the 10,000 simulations
with random parameter sets. For each considered parameter set, each model variable, and each
inflammation index, we sorted the absolute sensitivity values in descending order to determine
the top three most influential parameters for that variable’s index.

Correlation Analysis
Using the MATLAB function CORR, we calculated Spearman’s rank correlation coefficients
(CCs) between each of the 69 model parameters and each of the four inflammation indices, for
each of the 16 model variables. For these calculations, we used the model parameter values and
the inflammation index values from the 10,000 simulations with randomized parameters
described above. Moreover, based on the calculated Ri values for the neutrophil and macro-
phage variables, we introduced a criterion for dividing the 10,000 simulations into two subsets.
One of the subsets contained simulations representing acute inflammation, and the other one
contained simulations representing chronic inflammation. To create these subsets, we first cal-
culated 20,000 ratios by dividing the Ri values for neutrophils and macrophages in each of the
10,000 simulations by the respective Ri values calculated using the default parameter set. Sec-
ond, we used a cutoff value (equal to 2) to identify the simulations (out of 10,000) for which
both the neutrophil and macrophage ratios were above the cutoff. The criterion for choosing
the cutoff value was based on experimental studies, in which the Ri was increased by ~2-fold in
abnormal inflammatory scenarios [12, 17]. The simulations separated based on this criterion
were regarded as reflecting chronic inflammation. We then re-calculated the CCs between the
model parameters and model output timing indices (i.e., Tact and Ri) using only the chronic
inflammation simulations. This was done to identify any significant correlations that may exist
for a specific chronic inflammation condition and were not detected when all 10,000 inflamma-
tion scenarios (simulations) were considered. A description of the algorithm for the separation
of the simulation subsets is provided in S1 Text.
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Inflammatory Mediator Inhibition Modeling
Wemodeled inflammatory mediator inhibition by adding two new differential equations to
the original model for each modeled inhibitor. The equations represented the volumetric con-
centration of the inhibited mediator and its respective mediator-inhibitor complexes. We used
mass action kinetics to model the individual reactions between the inhibitors and their target
mediators according to the following reaction scheme (which reflects inflammatory mediator
sequestration that prevents the mediator’s participation in normal signaling):

I þ C  
koff

!kon IC ð2Þ

where C denotes a mediator, I represents an inhibitor, and IC denotes the mediator–inhibitor
complex. For any given inhibitor, kon and koff denote the values for the association and dissocia-
tion rate constants, respectively. Using our model extended in this way, we performed simula-
tions to predict the effects of mediator inhibition at different inhibition concentrations and the
addition of inhibitors at different time points after inflammation initiation. In these analyses,
the inhibitors were added only in chronic inflammation simulations, and only one mediator
was inhibited in each simulation, unless stated otherwise. A detailed description of the compu-
tational implementation of inflammatory mediator inhibition is provided in the Supplemental
Material (S1 Text).

Supporting Information
S1 Table. Association (kon) and dissociation (koff) rate constants for the inhibitors of tumor
necrosis factor α (TNF-α), transforming growth factor β (TGF-β), and the chemokine
CXCL8.
(PDF)

S1 Fig. Neutrophil and macrophage concentrations in the case of TGF-β inhibition by dif-
ferent inhibitor concentrations added at different time points. Green and red lines represent
computational predictions for acute and chronic inflammation, respectively. In all the subplots,
the times of inhibitor addition (represented by the black lines) are as follows: dotted, 24h;
dashed, 48h; and solid, 72h. Shown are normalized neutrophil (a-c) and normalized macro-
phage (d-f) kinetics for TGF-β inhibitor concentrations of 1 nM (a and d), 20 nM (b and e),
and 200 nM (c and f). All the model-predicted values were normalized to the respective maxi-
mum values from the chronic inflammation simulations.
(TIF)

S2 Fig. Sign of calculated correlation coefficients. Black and white colors represent positive
and negative signs of the correlation coefficients (CCs), respectively. Subplots a and c show the
CC sign for Tact and Ri, respectively. Subplots b and d show the CC sign forCmax and Rp,
respectively. The x-axis shows the model parameters designated by number (P#) (see Table 1
for a list of all model variables and parameters).
(TIF)

S3 Fig. Correlation analysis for the model parameters and the inflammation indices of the
model output variables. Black and white colors represent the index-parameter correlation coef-
ficient (CC) values�0.5 and<0.5, respectively, for Tact (a),Cmax (b), and Rp (c). The CCs were
calculated by performing the correlation analysis on 40,000 simulations, where the parameter
values in each simulation were randomly selected from a 9-fold variation rage (i.e., 3-fold down,
3-fold up) around the default parameter values. The x-axis shows the model parameters
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designated by number (P#) (see Table 1 for a list of all model variables and parameters).
(TIF)

S1 Text. Supplemental results and methods.
(PDF)

S2 Text. MATLAB code user manual.
(PDF)

S1 Code. MATLAB code.
(ZIP)
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