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1. Introduction/Background 

Unmanned aircraft systems (UASs) are being used by the general public, industry, 
academia, and the government. One critical challenge is detecting UASs that may 
pose a possible threat. Small or obscured UASs may be the most difficult to detect. 
The audible signal from some UASs may be a cue for detection. For this 
application, it would be useful to recognize UAS audio sound signatures under 
different conditions. The ability to accurately retrieve the original signal from data 
with distortions due to the atmosphere may also aid in the detection process. For 
this project, a program to simulate distorted sound under any set of initial 
conditions was designed and implemented. 

Conditions that may affect sound propagation include the temperature gradient, the 
humidity of the air, the cloud cover, the wind speed and the direction, and the 
location of both the source and the receiver.1 Wind can carry sound longer distances 
if it moves in the same direction as the sound signal. The humidity of the air 
contributes to the elasticity of the air, which affects the speed of sound. Sound also 
travels faster through cool air, so at night sound travels farther closer to the ground 
as opposed to refracting up into the atmosphere.2 These modifying conditions affect 
the various frequencies in a sound signature differently and therefore each 
frequency in a sound signature will be modified differently for each set of 
environmental conditions. 

The Scanning Fast Field Program (SCAFFIP) was designed to receive various 
parameters as initial conditions and to predict the decibel attenuations on certain 
discrete frequencies. SCAFFIP matches the initial conditions to certain atmospheric 
profiles already in the database and uses that combination of data to generate a 
layer-by-layer description of the atmosphere. The atmospheric propagation effect 
at different distances is then generated as a matrix of decibel attenuations.3 

The experiment conducted for this project uses those discrete decibel predictions 
to produce the sound that would be heard at a distance under the input conditions 
and outputs that new sound using a graphic user interface (GUI). Data were also 
collected to test the simulation. The results from this work could be used to improve 
understanding of the effect of attenuation of certain frequencies on a sound 
signature that can be used to recognize distorted sounds of different UASs. Future 
applications could be developed to more accurately detect sounds that originate at 
long distances. 
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2. Experiment/Calculations 

2.1 Simulate Atmospheric Distortion 

To model the effects of the atmosphere on sound waveforms, a filter was 
constructed to mimic atmospheric sound attenuation. This filter was constructed 
based on the SCAFFIP. SCAFFIP considered information regarding the longitude 
and latitude of the location, the time of day, the estimated cloud cover, the day of 
the year, the wind speed and wind direction, the temperature, the relative humidity, 
the height of the source, and the height of the receiver. SCAFFIP also took in 
parameters defining the distances and the frequencies for calculating the 
attenuation. With that information, SCAFFIP then generated a matrix of decibel 
attenuations for specific frequencies at specific distances. 

The sound file was read into MATLAB as a vector quantity of amplitude versus 
time. That vector was analyzed using a Discrete Fourier Transform, which 
generated a new vector of amplitude versus frequency, allowing the sound to be 
analyzed in terms of frequency (see Appendix: dftFreq). The SCAFFIP-generated 
matrix was linearly interpolated to provide a decibel attenuation for every 
frequency present in the transformed sound file. Because SCAFFIP only predicted 
for lower frequency ranges, higher frequency ranges were approximated based on 
humidity and distance (see Appendix: Function dBVec). 

To maintain reversibility of the function, the phase and the magnitude of the 
transformed sound file were saved separately. The filter was applied to the 
magnitude of the sound, using the following relationship: 

 dB=20*log(value/ref), (1) 

where dB is the decibel attenuation; value is the new sound amplitude; and ref is 
the reference, or original sound amplitude. 

The relationship solved for the value gives the following: 

 value= ref*10^(dB/20). (2) 

The new magnitude of the transformed sound with the phase was obtained using 
Euler’s Formula: 

 |z| (cosϕ+ isinϕ) = amp, (3) 

where |z| was the magnitude after the filter was applied, ϕ was the phase, and amp 
was the new amplitude versus frequency vector. An inverse Fourier transform was 
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applied to the new amplitude to revert the sound signal back to amplitude versus 
time vector. This new amplitude versus time vector was the distorted sound (see 
Appendix: getDistortFFT and audioDistort). To reverse the distortion and recover 
an original sound file from collected data, the filter was inverted. To identify the 
distance between an original and a distorted sound file, the decibel attenuation at 
each discrete frequency that SCAFFIP calculated was evaluated using Eq. 1, and 
that profile was matched to a distance in SCAFFIP’s frequency versus distance 
matrix, minimizing the square of the error (see Appendix: findDistance). 

These effects were displayed in a GUI. The GUI was developed in MATLAB using 
the GUI guide tool. It used the audio of the distorted sound in addition to graphs of 
the waveform of the sound and plotted its frequency versus magnitude to display 
atmospheric effects on the sound file. 

2.2 Data Collection 

Sample distorted sounds were collected under known conditions to test the 
simulation. The environmental data collected included the longitude and the 
latitude of the location, the time of day, the estimated cloud cover, the day of the 
year, the wind speed and wind direction, the temperature, and the relative humidity. 
The geometric data collected included the height of the source and the height of the 
receiver. 

The longitude and the latitude were determined using a global positioning system 
(GPS) with an accuracy of one decimal place. The time of day was recorded with a 
digital 24-h clock to an accuracy of 1 h. The percentage of cloud cover was 
estimated by eye to the nearest multiple of 10. The wind speed was collected in 
miles per hour using an anemometer to an accuracy of 2 decimal places. The 
anemometer was used to determine the wind direction, and a compass was used to 
refine the measurement of the direction to an accuracy of a second. The temperature 
was collected in Celsius using a thermometer accurate to 2 decimal places. The 
relative humidity was collected using a hygrometer accurate to 2 decimal places. 

2.3 Gathering Sound 

The sound source, a 30-s sound clip, was set up at the start point. The sound source 
was recorded at an audio sample rate of 44 kHz with 2 channels at a bit rate of 
114 kbps. A straight line out from the sound source was marked using a piece of 
string. A distance of 5 m was measured out using a measuring tape. The sound was 
recorded at the source and at 5-m intervals to 60 m. 
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3. Results 

The GUI (Fig. 1) was developed to allow the user to upload a sound file in the *.wav 
format, to input atmospheric conditions, and to view characteristics of the original 
and distorted sound. For the program to function, the user must input the 
atmospheric conditions into SCAFFIP to generate the proper filter files, which will 
then be imported to the program.  

 

Fig. 1 Blank template of graphic user interface 

  

a. 
b. 
c. 

d. 

e. 

f. 

g. 

h. 
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3.1 Original Sound Display Functionalities 

The user selects a file to upload in the Select Sound File field (Fig. 1c) and can 
either type the path to the desired *.wav file or the user can use the browse button 
to find the path. The file to upload must be a *.wav file. 

The user then imports the sound file using the button labeled Import Sound File. 
This turns the path text black and makes sound playback for the original sound 
available. 

Three graphs are generated on the GUI as shown in Fig. 1f. The first graph gives 
the amplitude of the sound signal over time. The second graph shows the magnitude 
in the signal of each different frequency in Hertz, but only shows the lower 
frequencies. The third graph gives a logarithmically scaled view of the magnitudes 
of the different frequencies (Fig. 2.) 

 

Fig. 2 Original sound graphs. First graph (top) displays time vs. amplitude of the signal 
coordinates. The second (middle) displays the frequency vs. the magnitude of the signal. The 
third (bottom) displays the logarithm of the frequency vs. the magnitude of the signal. 

The user can pan, zoom, and acquire exact data points on any of the graphs using 
symbols on the toolbar (Fig. 1b).  
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3.2 Filter Display Functionalities 

The user inputs the filter information in the field labeled Atmospheric Conditions 
(Fig. 1e). The user should also run SCAFFIP under the desired conditions to create 
the necessary *.ptd files. 

The user can choose between 9 different ground conditions: New Fallen Snow, 
2-Layer Snow, Sugar Snow, Forest Floor, Grass Covered Pasture, Roadside Dirt, 
Packed Sandy Silt, Exposed/Rain-Packed Dirt, or Asphalt Covered. The user can 
also enter the relative humidity of the environment, information about the wind 
profile, the temperature, and the distance from the sound receiver to the sound 
source. The distance cannot exceed the range calculated by SCAFFIP, which is 
80 m. The user imports the filter generated by SCAFFIP using the import button. 
This will generate a graph of the decibel attenuations (example shown in Fig. 3) in 
the field labeled Filter Information (Fig. 1g). 

 

Fig. 3 Decibel attenuations of each frequency that are predicted for the given atmospheric 
conditions 

3.3 Distort Sound 

The Distort Sound button generates the 3 graphs on the right side of the GUI 
(Fig. 1h). These 3 are the same types of graphs as the graphs generated for the 
original sound file and are presented for comparison. Sound playback for the 
distorted sound is now available in the field labeled Sound Playback (Fig. 1d). 

The user can play, pause, or stop whatever sound is selected using the Play, Pause, 
and Stop buttons (Fig. 1d). 

The blue box labeled Sound Status will indicate the current state of the sound 
selected (Fig. 1d). No Sound indicates no sound has been uploaded yet. Done 
indicates the sound has finished uploading or playing and is ready to play from the 
beginning. Pause indicates playback has been paused and will resume from the last 
played moment. Play indicates playback will either start from the beginning or 
resume from the last played moment. 
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3.4 Save Functions 

Different parts of the GUI can be saved using the Save menu (Fig. 1a). The entire 
GUI display can be saved as a JPEG or as a PDF. The user can choose the save 
location and name the file. Each individual graph can be saved as a PDF that can 
be infinitely zoomed to retain quality of data. The new distorted sound can be saved 
as a *.wav file to a user-defined location. Information about the distance from 
source and the ground type will be appended to the name of the sound file. 

For ease of use, the user can also set the start path for various functions. SCAFFIP 
Data Files determines where SCAFFIP looks for the data files. Read Sound Files 
sets the start directory for loading sounds. Save Sound Files sets the start directory 
for saving sound files. Save Graphs sets the start directory for saving any JPEGs or 
PDFs of the GUI. 

3.5 Undistort Function 

Using the Function menu (Fig. 1a), the user can switch between distorting and 
undistorting a sound. Using the Distort functionality, the user uploads a sound file 
and then can hear the sound under certain conditions. With the Undistort 
functionality, the user uploads a sound file that was taken under nonideal conditions 
and can undo the atmospheric distortion to retrieve the undistorted sound file. 

3.6 Distance Function 

The distance function needed additional work, the program predicted results that 
were outside an acceptable range and returned values that were not a number. This 
function was therefore left out of the final product. 

3.7 Testing the Program: Gathering Sound 

Sound files were recorded at 5-m intervals up to 60 m away from the sound source. 
The atmospheric conditions at the time of collection are listed in Table 1 and the 
ground conditions are listed in Table 2. These parameters were inputs used by the 
SCAFFIP program to calculate the sound files.
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Table 1 Atmospheric conditions 

Variable Value 
Longitude 39 
Latitude 77.2 

Time 2100 hours 
% Cloud cover 60% 

Date 7/24/2014 
Windspeed (mph) 0 

Wind direction (knots) 0 
Temperature (°C) 20 

Humidity (%) 80% 

 

Table 2 Ground conditions 

Variable Value 
Source height (m) 0.5 

Receiver height (m) 1 
Ground type Grass-covered pasture 

 
The collected sound files were compared with the predictions by calculating the 
correlation coefficient between the Fourier transform of the collected and predicted 
signals. This would demonstrate how accurate the decibel attenuations of each 
frequency and distance that was measured. 

The r values (Table 3) were relatively high for smaller distances and decreased as 
distances increased. At 10 m, the r value was 0.79 while at 60 m the r value was 
only 0.44. Additionally, because there were so many individual amplitude 
measurements made, the probability of these correlation values occurring by chance 
was practically zero. This shows that whatever caused the difference between the 
calculated and the actual distorted sound frequencies must have been a systematic 
difference and not due to random chance. However, to a human ear, the sound 
volumes are so low at distances greater than 20 m that the differences in frequency 
are not noticeable.
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Table 3 Correlation between frequencies of predicted and actual distorted sounds 

Distance 
(m) 

r  
(Correlation 
coefficient) 

5 0.787 
10 0.7948 
15 0.6925 
20 0.7056 
25 0.647 
30 0.5787 
35 0.5956 
40 0.6064 
45 0.4654 
50 0.5058 
55 0.4677 
60 0.4393 

 
The results of the attempt to calculate distance are listed in Table 4. The predictions 
appear extremely close for 5, 20, 30, and 40 m but are very far off for the other 
distances. For the distances whose calculated distance is listed as NaN (not enough 
numbers), the difference in frequencies were great enough that the projected 
distance was greater than 80 m and therefore outside of the matrix generated by the 
SCAFFIP. Because so many of the data could not generate numeric values, the 
function could not be completed as designed and was left out of this version of the 
program. 

Table 4 Calculated distance compared with actual distance 

Actual distance 
(m) 

Calculated distance 
(m) 

5 6.6436 
10 48.6233 
15 59.6017 
20 22.9499 
25 NaN 
30 29.8868 
35 NaN 
40 45.3063 
45 8.5006 
50 NaN 
55 NaN 
60 NaN 
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4. Conclusion 

The GUI was able to display a filter that could be used to allow the user to gain a 
better understanding of the atmospheric effects of sound propagation. The save 
functions also allow the user to compare individual data points later, as well as 
overall graphs, which makes the GUI useful for future research on sound distortion 
of specific files. The initial results reflect the expectation that sound will travel 
faster at night, indicating sound degradation will occur slower. 

Several challenges remain in the simulation. Errors in the correlation values may 
be in the data collection or in the program. In the program, it is possible that the 
linear interpolation between points on the matrix was not an adequate 
approximation, which led to the error between the predicted and observed sounds. 
It is also possible that when data were collected, the effect of wind on the 
microphone caused static and other noises that introduced other signals to the 
original, meaning that it was not directly comparable to the original. As the distance 
increased, other noises would be more prominent in the recording and would lead 
to a decrease in correlation between the collected and predicted frequencies, which 
reflects the decreasing trend demonstrated in Table 3. The distance function could 
not accurately match a sound profile to its distance. This is a related problem to the 
lack of correlation between the predicted and collected data. It was difficult for the 
program to identify which distance profile best fit the input sound because there 
was not a very high similarity between the predicted and the actual signals. These 
issues can be addressed as work continues on the simulation. 
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Appendix. Distort Function Code, Listed by Functions in 
Alphabetical Order  

                                                 
 This appendix appears in its original form, without editorial change. 
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function newSound=audioDistort(imptSound, fs, freq, 
dB, axes1, axes2, axes3, humid, purpose,dBaxes) 

 
[~,col]=size(imptSound); 

 
[dftaudio, freqVec]= dftFreq(imptSound, 
fs); %do the fft transformation 
newdB=dBVec(freqVec,dB,freq,humid, purpose); %get the 
decibel 
attenaution matrix 
%plot(dBaxes,freqVec,newdB); %plot the filter on the 
axes passed in 

 
dftNewLeft=getDistortFFT(newdB,dftaudio,1); 
%distort the left side 
newSoundLeft=(real(ifft(dftNewLeft))); %get the 
signal for the left 

 
if(col==2) 

dftNewRight=getDistortFFT(newdB,dftaudio,2); 
%distort the right side 

newSoundRight=(real(ifft(dftNewRight))); %get 
the signal for the right 

newSound=[newSoundLeft newSoundRight]; 
%concatenate the two sides 

together 
else 

newSound=newSoundLeft; 
end 

 
graphAudioInfo(newSound,fs,axes1,axes2,axes3); 
-- 
 
 
 
function dBVec=dBVec(freqVec,dB,freq,humid,purpose) 
%freqVec is the vector with frequencies to match the 
sound file 
%dB is the read in dB attenuations 
%freq is the read in corresponding frequencies 
%humid is the humidity of the air 
%purpose is either -1 or 1 and indictes whether the 
sound is to be 
%distorted or undistorted 

 
%plot attempt using 
interp1 function 
if(purpose==-1) 
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dBVec=purpose*interp1(freq,dB,freqVec,'linear',0.1
); 

 
elseif(purpose==1) 

 
%calculate 
slope for each 
bin 
tempdB=dB(2:end
); %offset dB 
deltadB=tempdB-dB(1:end-1); %calculate 

difference in dB betweem bins 
tempFreq=freq(2:end); %offset freq 
deltaFreq=tempFreq-freq(1:end-1); %calculate 

difference in freq between bins 

slopeMat=deltadB./deltaFreq; 
 

%calculate the 
number of bins 
binNum=length(f
req)-1; 

 
%initialize all the expanded matrices for 
frequency, dB and slope expFreq=[]; 
expdB=[]; 
expSlope=[]; 
%expand dB and freq to match the 
size of freqVec for k=1:binNum 
%run once for each bin 

binLength=getFreqIndex(freq(k+1),freqVec)- 
getFreqIndex(freq(k),freqVec); %calculate the 
length of the current bin 

expFreq=[expFreq, 
repmat(freq(k),binLength,1)']; %expand 
frequency to the length of the bin 

expdB=[expdB, repmat(dB(k),binLength,1)']; 
%expand dB to the 

length of the bin 
expSlope=[expSlope, repmat(slopeMat(k), 
binLength, 1)']; 

%expand slope to the 
length of the bin 
end 

 
%set the variables to their 
expanded selves dB=expdB; 
freq=expFreq; 
slopeMat=expSlope; 
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%cut freqVec to appropriate 
length so it matches 
truncFreqVec=freqVec(1:length(dB
)); 

 
%calculate dB for each 
frequency value 
dBVec=(truncFreqVec-
freq).*slopeMat+dB; 
%} 

%extrapolate dB decrease so it covers the whole 

audio file 

freq=[1000,1600,2000,2500,3150,4000,5000,6300,8000,10

000,12500,16000,2 
0000,25000,31500,40000,50000,63000,80000,100000]'; 

shumidity=[10,20,30,40,50,60,70,80,90]; 
%attenuations for various frequencies and 
humidities dbAtten=-1*[array of values]; 

wantedHumid=str2double(humid); %get the 
humidity column for the passed on humidity 

diffLength=length(freqVec)-length(dBVec); 
%length that new freq matrix needs to be 

wantedFreq=linspace(truncFreqVec(end),freqVec(end)
,diffLength); 

%generate the freq matrix for the higher dB 
attenuations 

 
extrapAtt=interp2(humidity,freq,dbAtten,wantedHumid,wa
ntedFreq,'linear 
')';%interpolate to get the actual dB values and 
invert so it matches dimensions 

dBVec=[dBVec extrapAtt]*purpose; 
disp('I am doing this based on humidity'); 

end 
-- 
 
 
 
%does a fast fourier transform on a given audio 
and returns the fft and the 
%vector of correlating frequency values in Hertz 
function [dftaudio, freq]= dftFreq(audio, fs) 
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%calculate basic spacing of the audio 
file deltaT=1/fs; %defines the time 
in between each sample 
N=length(audio); %number of smaples 
t=(0:1:N-1)*deltaT; %vector enumerating 
each time index periodT=N*deltaT; %time 
it takes to complete a period 
deltaF=1/(periodT); %spacing on the 
frequency scale 
freq=(0:1:N-1)*deltaF; %vector enumerating each 
frequency index 

 
%do the 
Fourier 
transform 
dftaudio=(f
ft(audio)); 
-- 
%given dB attenuation and the fft of an audio 
clip, return the modified 
%audio fft 
-- 
 
 
 
findDistance 

 

%read in SCAFFIP files 
proptabPath=uigetdir('C:\Users\raglin_guest
2\Documents\Data Collection\proptab 
files\Grass Jul 24','Select SCAFFP Data 
Files');%get the folder containing the 
SCAFFIP proptab files 
[dB, freq, range]=readProptabData(proptabPath); %get 
back the matrix 

 
%Import the clean sound 

[FileName,PathName]=uigetfile({'*.wav';'*.au'},'S
elect Clean Sound 
File','C:\Users\raglin_guest2\Documents\MATLAB\Te
st Sounds\Voice Record Pro\'); 
pathName=strcat(Path
Name,FileName); 
[cleanSound,fs]=wavr
ead(pathName); 

 
for k=5:5:60 
%Import the disorted sound 
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%[FileName,PathName]=uigetfile({'*.wav';'*.au'},'Selec
t Distorted 
Sound 
File','C:\Users\raglin_guest2\Documents\MATLAB\Test 
Sounds\Voice 
Record Pro\'); 
PathName='C:\Users\raglin_guest2\Documents\MATLAB\Test 
Sounds\Voice 
Record Pro\'; 
FileName=strcat(num2str(k),'m.wav'); 
pathName=strcat(PathName,FileName); 
[distortSound,~]=wavread(pathName); 

 
 
%find dB attenuation between the distorted and 
clean files cleanDistance=.5; %the distance at 
which the clean measurement was taken 
[useAtten,dBAtten,dftFreq]=getdBAtten(cleanSound,disto
rtSound, fs); 
%obtain the attenuations for corresponding frequencies 

 
attens=interp1(freq,dB',400); %find the dB 
attenuations for a frequency of 400 
%attens=median(dB'); 
distance=interp1(attens',range,useAtten); %get the 
distance for the found attenuation 

 
disp([num2str(k),': ',num2str(distance),'m away.']); 
%display results end 

 
-- 
 
 
 
function newAmp=getDistortFFT(dBMat, fftAudio, 
channel) 

dBMat=dBMat'; %reshape the dBMatrix to the 

right dimensions 

fftAudio=(fftAudio(:,channel)); %take one 

side of the audio 
phaseComp=angle(fftAudio); %get the phase of the 
audio (so that it can later be recombined with the 
magnitude 

 
%convert dB attenuation into amplitude change 
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%use dB=20*log(value/ref) and solve for value 
%use fftAudio for ref and dBMat for dB 
fftAudio=(fftAudio(1:length(dBMat))); 
phaseComp=phaseComp(1:length(dBMat)); 
fftAudio=abs(fftAudio); 
newMag=dBMat/20; 
newMag=10.^newMag; 
newMag=newMag.*fftAudio; 

%newAmp=newMag.*cos(phaseComp)+1i*sin(phaseComp);%com
bine new magitude and phase to get complex numbers 
newAmp=newMag.* exp(1i*phaseComp); 
-- 
 
 
 
function index=getFreqIndex(getFreq,freqVec) 
deltaF=freqVec(2)-freqVec(1); 
index=round(getFreq/deltaF); 
-- 
 
 
 
%graphs freqency vs magntiude and puts it into given 
plots 

 
function graphAudioInfo(audio,fs, axes1, axes2, axes3) 

 
%clip=audio(1:length(audio)); %select part 
of the audio file clip=audio; 
%clip=audio(1:length(audio))/10; %decrease volume by a 
factor of 10 

 
%calculate basic spacing of the audio 
file deltaT=1/fs; %defines the time 
in between each sample 
N=length(clip); %number of smaples 
t=(0:1:N-1)*deltaT; %vector enumerating 
each time index periodT=N*deltaT; %time 
it takes to complete a period 
deltaF=1/(periodT); %spacing on the 
frequency scale 
freq=(0:1:N-1)*deltaF; %vector enumerating each 
frequency index 

 
%do the Fourier transform 
dftclip=fft(clip); 
dftclip=dftclip/length(dftclip); 
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%plot the raw sound as 
time vs amplitude 
plot(axes1,t,real(clip)); 
title('Time vs Amplitude'); xlabel('Time (sec)'); 
ylabel('Amplitude'); 

 
%plot a linear freq vs magnitude graph for 
part of the data dispLength=10000; %length 
for freq vs magnitude linear graph 
freqDisp=freq(1:dispLength); %shorten 
frequency scale 
messDisp=dftclip(1:dispLength); %shorten 
data plot(axes2,freqDisp,abs(messDisp)); 
%plot freq vs magnitude 
%plot(freqDisp,abs(real(messDisp))); %plot 
freq vs magnitude title('Linear Freq vs. 
Magnitude');xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 

 
%plot a semilog x graph of freq vs 
magnitude for all data if 20000/deltaF<=N 

freqEnd=20000/deltaF; %index on the frequency 
vector for 20000 Hz else 

freqEnd=N; %go to the highest frequency 
end 
freqStart=20/deltaF; %index on the frequency 
vector for 20 Hz 
graphFreq=freq(freqStart:freqEnd); 
graphdft=abs(dftclip(1:freqEnd-
freqStart+1)); 
%graphdft=abs(real(dftclip(1:freqEnd-freqStart+1))); 
semilogx(axes3,graphFreq,graphdft); 

title('Semilogx Freq vs. Magnitude'); 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 

 
end 
-- 
 
 
 
function 
[dB,freq]=importFilter(dBaxes,dist,folderPath,purpose) 

 
dist=str2double(dist); 
[dB, freq]=readProptabData(dist,folderPath); %read in 
the data from 
SCAFFIP output 
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%plot the decibel attenuation 
plot(dBaxes,freq,dB*purpose); 
title('dB Attenuation');xlabel('Frequency 
(Hz)');ylabel('dB'); 
-- 
 
 
 
function [t, freqAxis, ampAxis]= plotAmpFreq(handles, 
audio, fs) 
%calculate basic spacing of the audio file 
deltaT=1/fs; %defines the time in between each 
sample N=length(audio); %number of smaples 
t=(0:1:N-1)*deltaT; %vector enumerating 
each time index periodT=N*deltaT; %time 
it takes to complete a period 
deltaF=1/(periodT); %spacing on the 
frequency scale 
freq=(0:1:N-1)*deltaF; %vector enumerating each 
frequency index 

 
%do the Fourier transform 
dftaudio=fft(audio); 

 
%plot a semilog x graph of freq vs magnitude for all 
data 

 
 
if 20000/deltaF<=N 

freqEnd=20000/deltaF; %index on the frequency 
vector for 20000 Hz else 

freqEnd=N; %go to the highest frequency 
end 
freqStart=20/deltaF; %index on the frequency vector 
for 20 Hz 

 
 
freqAxis=freq(freqStart:freqEnd); 
ampAxis=abs(dftaudio(1:freqEnd-freqStart+1)); 

 
end 

 
-- 
 
 
 
function [dB, freq]=readProptabData(dist,folderPath) 
%filePath=uigetdir; 
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%[fileName,filePath,index]=uigetfile 
 
fileSpecsName='proptab.pth'; 
fileDataName='proptab.ptd'; 
%% import spec document for SCAFFIP output 

fileSpecsPath=strcat(folderPath,fileSpecsName); 
%specify path to the spec file 
specID=fopen(fileSpecsPath); %open the file 
formatSpec='%s'; %read as a string 
fileSpecs=textscan(specID,formatSpec,'delimiter','
\n'); %read specs line by line into a cell of 
strings 
fclose(specID);%close the file 

 
row=str2num(fileSpecs{1}{12})+1; %get the number of 
rows in the data file 
column=str2num(fileSpecs{1}{14})+1; %get number of 
columns in the data 
file 
%% import data document into dataMatrix 
fileDataPath=strcat(folderPath,fileDataName); 
%specify path to the data file 
dataID=fopen(fileDataPath); %open the 
file formatData='%f'; %read as floats 
fileData=textscan(dataID,formatData); %read data 
number by number into a cell containing a one 
dimensional float array 
fclose(dataID); %close file 

 
dataMatrix=fileData{1}; %get element out of 
cell; it's a one dimensional float array 
dataMatrix=reshape(dataMatrix,column,row)'; %reshape 
matrix into 2 
dimensional matrix of correct dimensions 
%% 
stepRange=dataMatrix(3,1)-dataMatrix(2,1); 
%dist=50; 
getRow=round(dist/stepRange+1); 
%get desired part of data Matrix; first and last rows 
%dBMatrix=dataMatrix(1:row-1:row,:); 
freq=dataMatrix(1,:); 
%dB=dataMatrix(row,:); 
dB=dataMatrix(getRow,:); 
dB(1)=0; 
-- 
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Function 
writeDistortedSound(sound,fs,fileName,dist,ground) 
ground(ground==' ') = '_'; fileName=fileName(1:end-
4); 
newName=strcat(fileName,'_',dist,'m_',ground,'.wav'
); wavwrite(sound,fs,newName); 
msgbox(strcat('Successfully saved to: ',newName)); 
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