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Abstract—We consider waveform design for multiple-input,
multiple-output radar systems for the case where the signal, dur-
ing propagation, undergoes phase perturbations. We formulate
an iterative algorithm to obtain both waveform parameters and
the weights of the adaptive matched filter. An example of a clutter
and target model is provided to show how the optimal waveform
design improves the detection performance of a random-phase
radar compared to traditional waveforms.

I. INTRODUCTION

There has been much recent interest in waveform design for
multiple-input, multiple-output (MIMO) radars. For example,
the works in [1]–[3] find the optimal waveforms that maximize
the mutual information between the received signal and target
amplitude. When the resolution capability of the MIMO radar
system is of interest, the transmit waveform can be designed
to sharpen the radar ambiguity function [4], [5]. However, the
obtained waveform does not necessarily improve the accuracy
of target estimates; this, in turn, has motivated waveform
design to minimize the Cramer-Rao bound [6], [7].

In the context of target detection, the signal-to-interference-
plus-noise ratio (SINR) is a well accepted design metric [8]–
[11] for waveform design. In [8] the transmit waveform code
is assumed to be represented by an unknown code matrix
and the code design is formulated as an optimization problem
with several non-convex constraints. A robust technique, using
minimax optimization, was formulated in [9] for the case of
unknown target parameters, such as Doppler and time delay.
In [10], Friedlander optimizes the values of the discrete Fourier
transform of the transmitted signal to maximize SINR. Another
optimization framework based on SINR was proposed in [11]
where an iterative algorithm is used to estimate the optimal
waveform as well as the optimal receiver transfer function. A
common theme to all these SINR-maximization approaches is
the need for second order statistics.

To establish realistic second-order statistics, we consider the
example of a radar operating in a plasma medium. The medium
is assumed to contain plasma density inhomogeneities that
impart a randomization (denoted as scintillation) of the phase
in the spatial and temporal domains. The phase scintillation
manifests itself as an apparent angular and Doppler spreading
of the signal that can be characterized by a spatial-temporal
correlation function. This correlation function determines the
nature of the SINR and the resulting waveform and adaptive
filter optimization. A key feature of the plasma example is
that well-established fluid and electromagnetic properties of

the plasma can be used to determine the nature of the spatial-
temporal correlation function from first principles without the
need to adopt empirical models. Specifically, we consider a
class of plasma with high Reynolds number, which tends to
develop turbulence structure with a characteristic Kolmogorov
inverse-power law wavenumber spectrum.

This paper proposes a joint waveform optimization and
adaptive processing for a random-phase radar system. The sig-
nal model for our random-phase radar system is first discussed
and the SINR for the given structure is derived. Afterwards, an
iterative optimization algorithm is formulated to obtain both
the waveform and adaptive matched filter (AMF) weights. The
superiority of the new joint framework to traditional waveform
design is then justified by evaluating the detection performance
of the radar structure.

The rest of this summary is organized as follows. Section II
reviews the signal and clutter model. Based on these models,
the SINR is derived in Section III and the receive adaptive
weights and waveform are optimized. Section IV then presents
numerical results that illustrate the gains possible using wave-
form optimization. Finally, Section V concludes the paper.

II. SIGNAL MODEL

The radar system considered in this paper is configured
in monostatic mode with 𝑁𝑇 transmitters and 𝑁𝑅 receivers
that are closely-spaced in a two-dimensional space. For ease
of exposition, the transmitter and receiver are assumed to be
configured as uniform linear arrays aligned with the 𝑥-axis of
a Cartesian coordinate system, with inter-element spacings of
𝑑𝑇 and 𝑑𝑅, respectively.

The transmitted waveform by the 𝑚-th transmitter is given
by

u𝑚(𝑡) =

𝐼∑
𝑖=1

C𝑚𝑖𝑠(𝑡− 𝑖𝑇𝑟), (1)

where 𝐼 denotes the total number of pulses transmitted per
burst, 𝑇𝑟 is the pulse-repetition interval (PRI), C denotes the
transmitted code matrix that is being optimized and 𝑠(𝑡) is a
fixed unit energy “template” pulse emitted by each transmitter.

A. Data Model

Over 𝑁𝐵 range bins, the received signal can be represented
as a 𝑁𝑅𝐼×𝑁𝐵 matrix Y where each column is a length-𝑁𝑅𝐼
vector corresponding to a single range bin and is written as

y = t+ q+w, (2)
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where {t, q} denote the signal contributed by the target and
clutter, and w represents additive Gaussian noise with known
covariance matrix R𝑤.

Traditional models for the target generally assume a point
target with freespace line-of-sight (LOS) propagation; simi-
larly, clutter is modeled as a superposition of freespace LOS
propagation from an assortment of clutter sources, e.g., [12].
For simplicity, we consider a two-dimensional radar configu-
ration in the 𝑥𝑦 plane, with the radar signal ray path forming
an angle 𝜃 with respect to the 𝑥-axis.

In contrast to the freespace case, propagation in inhomo-
geneous media suffers from the effect of refractive index
fluctuations, leading to scintillations in the signal amplitude
and phase. We focus on the phase scintillation in this paper
as this effect is the dominant influence on the temporal
coherence (Doppler spread) and spatial coherence (angle-of-
arrival spread) of the radar signal. The phase of a signal at
a given point in time is equal to the integration of its spatial
rate of change over the ray path:

𝜙 =

∫ 𝑠1

𝑠0

𝑘(r) 𝑑𝑠, (3)

where 𝑘(r) is the radar signal wavenumber, 𝑑𝑠 is an element
of arc length, and (𝑠0, 𝑠1) are the ray path end points. If we
suppose there are no zero-order plasma density gradients in
our assumed two-dimensional plasma volume, then the rays
form straight lines that can be taken as radial with respect
to the radar in a system of polar coordinates (𝜌, 𝜃). Let us
consider a first-order Taylor series pertubation of 𝑘(r) with
respect to plasma density 𝑛, such that we can write the phase
perturbation as

𝜙1 =

∫ 𝜌1

𝜌0

𝑛1(r)
∂𝑘(r)

∂𝑛
𝑑𝜌, (4)

where 𝑛1 is the plasma density perturbation, and (𝜌0, 𝜌1) is the
interval of integration in the radial coordinate. The dispersion
relation for an unmagnetized plasma is given by

𝜔2 = 𝑐2𝑘2 +
𝑞2𝑒𝑛

𝜖0𝑚𝑒
, (5)

where 𝜔 is the carrier frequency, 𝑐 is the speed of light, 𝑞𝑒 is
the charge on an electron, 𝜖0 is the permittivity of free space,
and 𝑚𝑒 is the mass of an electron. Using the dispersion relation
to compute ∂𝑘(r)/∂𝑛, we arrive at

𝜙1 = −𝑟𝑒𝜆
∫ 𝜌1

𝜌0

𝑛1(r) 𝑑𝜌, (6)

where 𝑟𝑒 = 𝑞2𝑒/(4𝜋𝜖0𝑚𝑒𝑐
2) = 2.8× 10−15 m is the classical

electron radius, and 𝜆 is the radar wavelength in the plasma.
The spatial-temporal autocorrelation of 𝜙1 in the assumed two-
dimensional geometry is given by

𝑅𝜙1
(𝑋,𝑌, 𝑇 ) =

(𝑟𝑒𝜆)
2

∫ 𝜌1

𝜌0

∫ 𝜌1

𝜌0

𝑅𝑛1
(𝑋 + 𝑥− 𝑥′, 𝑌 + 𝑦 − 𝑦′, 𝑇 ) 𝑑𝜌 𝑑𝜌′. (7)

After Fourier transforms we have

𝑆𝜙1
(𝜅𝑥, 𝜅𝑦,Ω) = (𝑟𝑒𝜆)

2𝑆𝑛1
(𝜅𝑥, 𝜅𝑦,Ω)

× ∫ 𝜌1

𝜌0

∫ 𝜌1

𝜌0
𝑒𝑖(𝜅𝑥 cos 𝜃+𝜅𝑦 sin 𝜃)(𝜌−𝜌′) 𝑑𝜌 𝑑𝜌′

= 2𝜋𝐿(𝑟𝑒𝜆)
2𝛿(𝜅𝑥 cos 𝜃 + 𝜅𝑦 sin 𝜃)𝑆𝑛1

(𝜅𝑥, 𝜅𝑦,Ω), (8)

where 𝐿 = 𝜌1 − 𝜌0 is the path length, and it is observed that
the Dirac delta function assures that 𝜅𝑦 = −𝜅𝑥 cot 𝜃. For a
two-dimensional turbulent plasma, the Kolmogorov turbulence
spectrum has a 𝜅−8/3 dependence, which we approximate as
𝜅−3:

𝑆𝑛1
(𝜅𝑥, 𝜅𝑦,Ω) =

4𝜋2𝜅0
〈
𝑛2
1

〉
𝛿(Ω)

(𝜅20 + 𝜅2𝑥 + 𝜅2𝑦)
3/2

, (9)

where 𝜅0 is the inverse scale length of the largest turbulent
eddies and we have assumed no temporal structure. The
spectrum is normalized as follows:〈

𝑛2
1

〉
=

1

(2𝜋)3

∫∫∫
𝑆𝑛1

(𝜅𝑥, 𝜅𝑦,Ω) 𝑑𝜅𝑥 𝑑𝜅𝑦 𝑑Ω. (10)

If the plasma is drifting, then temporal structure is created by
the movement of spatial structure past a point in space, namely

𝑆𝑛1
(𝜅𝑥, 𝜅𝑦,Ω) =

4𝜋2𝜅0
〈
𝑛2
1

〉
𝛿(Ω− 𝜅𝑥𝑣𝑑𝑥 − 𝜅𝑦𝑣𝑑𝑦)

(𝜅20 + 𝜅2𝑥 + 𝜅2𝑦)
3/2

. (11)

By inserting this expression for 𝑆𝑛1
(𝜅𝑥, 𝜅𝑦,Ω) into (8) and

recalling that 𝜅𝑦 = −𝜅𝑥 cot 𝜃, we can integrate out the 𝜅𝑦
coordinate so that the phase spectrum becomes

𝑆𝜙1
(𝜅𝑥,Ω) =

8𝜋3𝜅0𝐿 csc 𝜃(𝑟𝑒𝜆)
2
〈
𝑛2
1

〉
𝛿 (Ω− 𝜅𝑥(𝑣𝑑𝑥 − 𝑣𝑑𝑦 cot 𝜃))

(𝜅20 + 𝜅2𝑥 csc
2 𝜃)3/2

.(12)

Given the phase spectrum in (12), the data cube is then
crated by forming a two-dimensional sensor-pulse phase signal
at each range bin by filtering white noise through 𝐻 =
IFFT (

√
𝑆𝜙1

). The resulting data cube is then convolved with
the ambiguity function of the transmitted signal.

B. Target Contribution

The target is assumed to lie in a single far-field range bin
and that it can be modeled as a point source with amplitude
𝛼𝑡. Further, the target is located at an azimuth angle 𝜃𝑡 with
respect to the receive array and Doppler frequency Ω𝑡. In this
application, the key difference from previous approaches is
that the propagation through plasma media generates random-
phase perturbations in the signal contributed by the target at
the receiver. These perturbations must be accounted for in the
design of the transmit waveform and adaptive receiver.

Let 𝜙𝑡
𝑖𝑛 represent the random phase perturbation at the 𝑛-th

(of 𝑁𝑅) receiver and the 𝑖-th (of 𝐼) pulse. Based on the target
model in Section II-A, after matched filtering to the transmit
pulse, the (𝑖𝑛)-th entry of t can be written as:

t𝑖𝑛 = 𝛼𝑡

𝑁𝑇∑
𝑚=1

C𝑚𝑖𝑒
𝑗𝜙𝑡

𝑖𝑛𝑒𝑗2𝜋Ω𝑡𝑖𝑇𝑟𝑒𝑗2𝜋𝑓𝑠(𝛾𝑚+𝑛), (13)

where 𝛾 = 𝑑𝑇 /𝑑𝑅, 𝑓𝑠 = 𝑑𝑅 cos(𝜃𝑡)/𝜆 is the spatial frequency,
and 𝑇𝑟 is the Pulse Repetition Interval (PRI).
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For convenience, we define the following matrices and
vectors:

∙ the length-𝐼𝑁𝑇 vector c = VEC(C) and (𝑁𝑅𝐼𝑁𝑇 ) ×
(𝑁𝑅𝐼𝑁𝑇 ) augmented transmit code matrix as Č =
𝐼𝑁𝑅

⊗C;
∙ the Doppler vector aΩ as the length-𝐼 vector [aΩ]𝑖 =

exp(𝑗2𝜋𝑖Ω𝑡𝑇𝑟). Further, define the 𝐼×𝐼 diagonal matrix
AΩ = diag(aΩ);

∙ based on these definitions, define two forms of a spatial-
temporal matrix

Θ = a𝑅 ⊗AΩ ⊗ a𝑇 , (14)

Θ̌ = 𝑑𝑖𝑎𝑔(a𝑅)⊗AΩ ⊗ (a𝑇 )
′, (15)

with a𝑇 and a𝑅 being the transmit and receive steering
vectors, respectively.

∙ finally, define length-𝐼𝑁𝑅 vector p𝑡 such that [p𝑡]𝑖+𝑛𝐼 =
𝜙𝑡
𝑖𝑛, the vectorized form of the phase perturbations and

the 𝐼𝑁𝑅 × 𝐼𝑁𝑅 diagonal phase perturbation matrix P𝑡

as [P𝑡]𝑖𝑛 = diag(p𝑡).
Based on these definitions, the target-generated signal in (13)
can be re-written in the two following forms:

t = 𝛼𝑡Θ̌Čp𝑡, (16)

t = 𝛼𝑡P𝑡Θc. (17)

C. Clutter Contribution

As seen in Section II-A, the clutter model is similar to
the target model with multiple clutter rays contributing to the
overall signal. Using (12), we know that the clutter-generated
phase perturbations are both spatially and temporally corre-
lated. Inspired by the signal model proposed for the target,
the clutter-contributed signal can be also written as

q =

𝑁𝜃∑
𝑣=1

Θ̌𝑞(𝜃𝑣)Čp𝑞(𝜃𝑣), (18)

where 𝑁𝜃 denotes the number of azimuth paths over which
the clutter signal is received, and Θ̌𝑞(𝜃𝑣) = diag(a𝑅(𝜃𝑣)) ⊗
AΩ,𝑞(𝜃𝑣)⊗(a𝑇 (𝜃𝑣))

′ and p𝑞(𝜃𝑣) defined similarly to the cor-
responding terms for the target signal but for clutter azimuth
angle 𝜃𝑣 . Similarly, we have AΩ,𝑞(𝜃𝑣) = exp(𝑗2𝜋𝑖Ω(𝜃𝑣)𝑇𝑟)
where Ω(𝜃𝑣) denotes the mean Doppler shift of the clutter
patch at azimuth angle 𝜃𝑣.

We assume that different azimuth angles contribute phase
perturbations that are statistically independent. Specifically,
given 𝜙𝑞

𝑖𝑗(𝜃𝑣) and 𝜙𝑞
𝑖′𝑗′(𝜃𝑣) as the perturbations generated

by the 𝑣-th and 𝑣′-th path, respectively, 𝐸{𝜙𝑞
𝑖𝑗(𝜃𝑣)(𝜙

𝑞) ∗𝑖′𝑗′
(𝜃𝑣′)} = 0, ∀𝑣 ∕= 𝑣′. Based on this assumption, we focus for
now on a single ray path at azimuth angle 𝜃. Define, for an
array along the x-axis, the spatial-temporal correlation of the
phase perturbation as

𝑅(Δ𝑥,Δ𝑡) = 𝐸 {𝜙(𝑥, 𝑡)𝜙∗(𝑥+Δ𝑥, 𝑡+Δ𝑡)} , (19)

where Δ𝑥 and Δ𝑡 are the spatial and temporal lag, respec-
tively, and 𝐸{⋅} denotes expectation. The phase autocorrela-
tion matrix R𝑝 is a (𝑁𝑅𝐼)×(𝑁𝑅𝐼) matrix whose (𝑖+𝑛𝐼), (𝑖′+
𝑛′𝐼)-th entry is as R𝑝

(𝑖+𝑛𝐼)(𝑖′+𝑛′𝐼) = 𝑅(∣𝑛−𝑛′∣𝑑𝑅, ∣𝑖−𝑖′∣𝑇𝑟).

Note that the clutter contribution in (18) is a nonlinear
function of the phase and, therefore, further analysis is needed
to obtain the autocorrelation matrix of received signals. We
use the fact that the phase perturbations 𝜙𝑞

𝑖𝑛 is as a two-
dimensional Gaussian random process.

Lemma 1. Let 𝑧𝑖𝑛 = [p𝑞]𝑖+𝑛𝐼 = exp(𝑗𝜙𝑞
𝑖𝑛) represent

the clutter phase term in (18). The clutter phase auto-
correlation matrix is a (𝐼𝑁𝑅) × (𝐼𝑁𝑅) matrix R𝜙 =
𝐸
{
(p𝑞 − 𝐸{p𝑞)}(p𝑞 − 𝐸{p𝑞})†

}
with

R𝜙
(𝑖+𝑛𝐼)(𝑖′+𝑛′𝐼) =

𝐸 {(𝑧𝑖𝑛 − 𝑧𝑖𝑛)(𝑧
∗
𝑖′𝑛′ − 𝑧∗𝑖′𝑛′)} = 𝐸 {𝑧𝑖𝑛𝑧∗𝑖′𝑛′} − 𝑧𝑖𝑛𝑧∗𝑖′𝑛′

= exp
(−𝜎2

𝑞

) (
exp

(
𝜎2
(𝑖𝑛)(𝑖′𝑛′)

)
− 1

)
, (20)

where 𝑧 = 𝐸{𝑧}), 𝜎2
𝑞 is the clutter variance, and 𝜎2

(𝑖𝑛)(𝑖′𝑛′) =
R𝑝(∣𝑛− 𝑛′∣𝑑𝑅, ∣𝑖− 𝑖′∣𝑇𝑟).

The autocorrelation matrix of the clutter signal given in (18)
for a clutter ray from azimuth angle 𝜃 can be then written as

R𝑞(𝜃) = Φ(𝜃)R𝜙(Φ(𝜃))†, (21)

with Φ(𝜃) = Θ̌𝑞(𝜃)Č.
Finally, for the more practical case that the clutter is re-

ceived over 𝑁𝜃 > 1 rays and using the statistical independence
of different rays, we have

R𝑞 =

𝑁𝜃∑
𝑣=1

R𝑞(𝜃𝑣), (22)

where each individual R𝑞(𝜃𝑣) is given by (21).

III. JOINT OPTIMIZATION OF

SIGNAL-TO-INTERFERENCE-PLUS-NOISE RATIO

At the receive array the signals received within each range
bin are adaptively combined to maximize the SINR. Detection
or localization decisions are then made on the filter output.
Denoting as h the length-𝑁𝑅𝐼 vector of adaptive weights, the
SINR is given by

SINR =
𝐸
{∣h†t∣2}

𝐸 {∣h†q∣2}+ 𝐸 {∣h†w∣2} . (23)

Note that the target and, importantly, clutter signals, t and q,
are functions of the transmit code vector c. We are interested
in jointly designing the unknown adaptive filter weight vector
h and transmit signal c under a constraint on the total trans-
mitted power. This optimization problem can be formulated as
follows:

{c𝑜,h𝑜} argmaxh,c SINR,
such that ∣∣c∣∣2 ≤ 1.

(24)

The cost function in (24) is nonlinear and non-convex with
respect to the joint optimization variables [c† h†]†. Globally
optimal solutions are, therefore, impossible to come by and
here we propose an iterative approach in which the linear
weight vectors h and input signal vector c are obtained
individually.
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A. Optimization of Adaptive Weights

In optimizing for the adaptive weights, we assume the
transmit waveform, defined by c, is fixed. For convenience, the
formulation in (16) is used to optimize the adaptive weights
h. The SINR can be then written as follows:

SINR =
∣𝛼𝑡∣2h†𝝆𝑐,𝑡h

h†𝝆𝑐,𝑞,𝑤h
, (25)

where the subscripts 𝑡 and 𝑞 refer to the target and interfer-
ence (clutter and noise) respectively, and 𝜌𝑐,𝑡 and 𝜌𝑐,𝑞,𝑤 are
two known matrices that are functions of target and clutter
parameters. Here,

𝝆𝑐,𝑡 = Θ̌𝑡ČR𝜙
𝑡 (Č)†(Θ̌𝑡)

†, (26)

𝝆𝑐,𝑞,𝑤 = R𝑐 +R𝑤

=

𝑁𝜃∑
𝑣=1

Θ̌𝑞(𝜃𝑣)ČR𝜙
𝑞 (𝜃𝑣)(Č)†(Θ̌𝑞)

†(𝜃𝑣) +R𝑤, (27)

where Θ̌𝑞(𝜃𝑣) and R𝜙
𝑞 (𝜃𝑣) are calculated using (15) and (20),

respectively, for each clutter azimuth angle 𝜃𝑣 . In addition,
R𝑤 denotes the covariance matrix of the additive noise.

The optimal weight vector (h𝑜), for a given transmit code
c, can be then found by maximizing the cost function in (25).

A more stable approach is to use the Cholesky factorization
of 𝝆𝑐,𝑞,𝑤. Defining L𝑐,𝑞,𝑤 as the Cholesky factor of 𝝆𝑐,𝑞,𝑤

where 𝝆𝑐,𝑞,𝑤 = L𝑐,𝑞,𝑤(L𝑐,𝑞,𝑤)
†, the following lemma presents

a framework for finding the optimal solution of the liner
weights:

Lemma 2. The optimal solution of the problem in (25) is:

h𝑜 =
[
L−1
𝑐,𝑞,𝑤

]† 𝒫 (
[L𝑐,𝑞,𝑤]

−1
𝝆𝑐,𝑡

[
L−1
𝑐,𝑞,𝑤

]†)
, (28)

where 𝒫(A) corresponds to the principal component of matrix
A.

B. Waveform Optimization

The second step within the iterative algorithm reverses this
to find the optimal waveform given the adaptive weights h. In
this case, using the alternate signal model in (17), the SINR
can be written as

SINR = ∣𝛼𝑡∣2 c†Ωℎ,𝑡c

c†Ωℎ,𝑐c+ (h)
†
R𝑤h

. (29)

where Ωℎ,𝑡 and Ωℎ,𝑐 are known-structure matrices function
of target and clutter parameters, respectively. The waveform
design can be now reformulated as the following optimization
problem:

{c𝑜} = argmaxc SINR,
such that = ∣∣c∣∣2 ≤ 1.

(30)

It was shown in [11] that, within a scale factor, the above op-
timization problem leads to the same solution as the following
unconstrained SINR-maximization

{c𝑜} = argmax
c

c†Ωℎ,𝑡c

c†Ωℎ,𝑐c+ (h)†R𝑤h.c†c
. (31)

If c𝑜∗ is a solution obtained for this unconstrained problem, the
final solution is c𝑜 = c𝑜∗/∣∣c𝑜∗∣∣.

The cost function in (31) can be simplified into the follow-
ing form:

SINR = ∣𝛼𝑡∣2 c†Ωℎ,𝑡c

c†Ωℎ,𝑐,𝑤c
, (32)

with Ωℎ,𝑐,𝑤 = Ωℎ,𝑐+(h)†R𝑤hI𝑁𝑅𝐼 and solution obtained in
a manner similar to the optimization problem for the known-
waveform case. Define Vℎ,𝑐,𝑤 as the Cholesky factor of
Ωℎ,𝑐,𝑤. Now, using lemma 2 the optimal waveform is found
as follows:

c𝑜∗ =
[
V−1

ℎ,𝑐,𝑤

]†
𝒫
(
[Vℎ,𝑐,𝑤]

−1
Ωℎ,𝑡

[
V−1

ℎ,𝑐,𝑤

]†)
. (33)

The final waveform is then obtained by normalizing the
solution obtained.

C. Overall Joint Optimization Algorithm

The overall optimization algorithm is as follows:

1) Given the phase PSD for the clutter and target, calculate
the autocorrelation matrices R𝜙

𝑡 and R𝜙
𝑞 (𝜃𝑣) where 𝑣 =

1, ⋅ ⋅ ⋅ , 𝑁𝜃 and 𝑁𝜃 denotes the number of clutter rays.
2) Based on the target and clutter parameters, compute the

spatial-temporal matrices Θ𝑡, Θ̌𝑡, Θ𝑞(𝜃𝑣) and Θ̌𝑞(𝜃𝑣).
3) Initialize matrices 𝝆𝑐,𝑡 = Θ̌𝑡ČR𝜙

𝑡 (Č)†(Θ̌𝑡)
† and

𝝆𝑐,𝑞,𝑤 =
∑𝑁𝜃

𝑣=1 Θ̌𝑞(𝜃𝑣)ČR𝜙
𝑞 (𝜃𝑣)(Č)†(Θ̌𝑞)

†(𝜃𝑣) +R𝑤.
4) Find the Cholesky factor of 𝝆𝑐,𝑞,𝑤 as L𝑐,𝑞,𝑤.
5) Calculate the optimal filter weight using (33) by h𝑜 =[

L−1
𝑐,𝑞,𝑤

]† 𝒫 (
[L𝑐,𝑞,𝑤]

−1
𝝆𝑐,𝑡

[
L−1
𝑐,𝑞,𝑤

]†)
.

6) Form the new matrix H𝑜 = diag(h𝑜).
7) Initialize new matrices Ωℎ,𝑡 = Θ†

𝑡H
𝑜R𝜙

𝑡 (H
𝑜)†Θ𝑡

and Ωℎ,𝑐,𝑤 =
∑𝑁𝜃

𝑣=1 Θ
†
𝑞(𝜃𝑣)H

𝑜R𝜙
𝑞 (𝜃𝑣)(H

𝑜)†Θ𝑞(𝜃𝑣) +
(h𝑜)†R𝑤h

𝑜I𝑁𝑅𝐼 .
8) Let Vℎ,𝑐,𝑤 represent the Cholesky factor of Ωℎ,𝑐,𝑤.
9) Using (33), set

c𝑜∗ =
[
V−1

ℎ,𝑐,𝑤

]†
𝒫
(
[Vℎ,𝑐,𝑤]

−1
Ωℎ,𝑡

[
V−1

ℎ,𝑐,𝑤

]†)
as the

optimal solution for the modified optimization problem.
10) Calculate c𝑜 = c𝑜∗/∣∣c𝑜∗∣∣ as the optimal waveform.
11) Repeat steps 2)-10) until convergence, defined as a

negligible change in the resulting SINR.

IV. NUMERICAL RESULTS

We consider a scenario with a single target at an azimuth
of 70∘and Doppler of 1/6 of the pulse repetition frequency.
There are 4 transmit antennas and 4 receive antennas, placed at
half-wavelength spacing. The waveform consists of a coherent
burst of 𝐼 = 36 pulses. In simulating and modeling distributed
clutter, an azimuth angle step of 𝛿𝜃𝑞 = 1∘ is used. We use
the clutter-to-noise Ratio (CNR) to characterize the power of
the incoming clutter in the receiver. The additive noise is a
circularly symmetric complex Gaussian random variable with
unit variance.

The performance of the waveform design framework, and
the benefits of waveform design, is now evaluated by analysing

978-1-4799-2035-8/14/$31.00 ©2014 Crown



0 10 20 30 40 50 60 70 80 90
−120

−100

−80

−60

−40

−20

0

20

θ

B
ea

m
 P

at
te

rn
 (

dB
)

θ
t
 = 70, CNR = 50 (dB)

 

 
θ̃c = 30

30 ≤ θ̃c ≤ 40

30 ≤ θ̃c ≤ 50

Fig. 1. The beampattern of the optimal waveform for the single-ray clutter
and two different distributed clutter cases.

the beampattern of the optimal code. Figure 1 shows the
performance of the joint waveform-receiver adaptive process
in the practical case of distributed clutter. The figure plots
the adapted beampattern for a single clutter ray (𝜃𝑞 = 30∘)
and two cases of distributed clutter (30∘ ≤ 𝜃𝑞 ≤ 40∘ and
30∘ ≤ 𝜃𝑞 ≤ 50∘). As before, the target is at 𝜃𝑡 = 70∘. Clearly,
the algorithm is able to adapt to the clutter by placing broad
null in the required angular region. The penalty for placing a
broad null is also evident in the reduced gain on the target.

The ability to place a null in direction of the clutter
improves detection performance. We now compare the detec-
tion performances of the waveform optimization and fixed-
waveform schemes. In each case, assuming Gaussian signals,
the probability of detection (𝑃𝐷) is related to probability of
false alarm (𝑃𝑓𝑎) as

𝑃𝐷 = 1− 𝐹𝜒2
2

(
𝐹−1
𝜒2
2
(1− 𝑃𝑓𝑎)

1 + SINR

)
, (34)

where 𝐹𝜒2
2
(⋅) denotes the 𝜒2 Cumulative Distribution Function

(CDF) with two degrees of freedom.
Figure 2 plots the radar receiver operative characteristic

(ROC) curve, comparing the performance of the optimized
waveform with that of using a Hadamard code. The clutter
is distributed over the span of 30∘ ≤ 𝜃𝑞 ≤ 50∘. Again,
both schemes use adaptivity on receive and the improvements
are due to optimizing the transmit waveform. The huge im-
provements in detection performance are evident, especially
at the lower probabilities of false alarm. For example, for
𝑃𝑓𝑎 = 10−6, the optimal waveform provides a detection rate
of 96.5% while the Hadamard code only provides a 58.5%
detection rate.

Figure 3 plots the detection probabilities as a function of
target amplitude (𝛼), again comparing the performance of the
optimal waveform and Hadamard code. For comparison, the
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Fig. 2. ROC curves for optimal waveform and Hadamard code designs.
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Fig. 3. Probability of detection versus target amplitude for optimal waveform
and Hadamard code designs.

detection curves were obtained for two cases; one with single-
ray clutter assumption and the other with distributed clutter
where 30∘ ≤ 𝜃𝑞 ≤ 50∘. In both cases, the CNR is set to 50dB.
The improved detection performance is again clear, especially
in the case of distributed clutter. The figure also illustrates the
performance penalty in nulling distributed clutter. The results
in Fig. 3 show that using a fixed transmission code is more
sensitive to the structure of the clutter whereas optimizing the
waveform makes the detection performance more robust. As
expected, at very high, likely impractically high, SNR levels
the performance gap is eliminated.

Our final set of results focus on how the optimal waveform
design improves Doppler frequency estimates as compared
to non-optimal waveforms. In this example, the transmitters
send 𝐼 = 36 pulses per coherent pulse interval leading to
36 Doppler resolution cells. Doppler data are now generated
for the optimal waveform, Hadamard code and random code.
Assuming CNR = 30dB, 𝛼 = 14dB and the distributed clutter
case with 30∘ ≤ 𝜃𝑞 ≤ 50∘, Figure 4 plots the received
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power in different Doppler cells for all three transmission
schemes. The improved Doppler discrimination using the
optimal waveform is clear. The Doppler power spectrum for
the optimal waveform has a clear peak at the target Doppler
frequency (Ω𝑡 = PRF/6). Although the Hadamard code also
shows maximum power around the same Doppler cell that was
caught by the optimal waveform, its power is still 4dB lower
than the maximum power achieved by the optimal code. The
Hadamard code also leads to spurious Doppler peaks. Finally,
unlike two aforementioned schemes, the random code fails
to detect the true Doppler frequency as the maximum power
occurs at incorrect Doppler frequencies.
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Fig. 4. The received power in different Doppler cells for the optimal
waveform, Hadamard code and random signal.

V. CONCLUSIONS

This paper has proposed a technique for the joint design of
the waveforms and adaptive processor in a radar system. Using
the model for the phase perturbations to derive related signal
and clutter models, the transmitted waveform and matched-
filter weights are optimized to maximize the output SINR of
the system. Importantly, and unlike some previous approaches,
the impact of the transmitted waveform is accounted for in
modeling the clutter. Finally, we present simulation results
to illustrate the performance gains of the optimal waveform
design over other non-optimal waveform techniques.
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