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Outline

• Motivation
• Monopropellant thrusters

– Diode Laser Absorption Spectroscopy (DLAS)
– Wavelength Modulation Spectroscopy (WMS) 

• Arcjets
• Hall thrusters/Ion engines

– Laser Induced Fluorescence (LIF)
– Time resolved LIF Methods

• Recent results from Time-Synchronized LIF
– Time-Sync Method
– BHT-600 Results

• Summary
• References
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Motivation

• Many satellite propulsion technologies were developed in the 1960s 
– Didn’t have the diagnostics to  fully understand how/why they worked
– Aging workforce causing us to lose knowledge of how the systems were 

made, recipes for materials,  trade secrets, etc.
– Now having to go back and characterize old systems to lay groundwork for 

advancements in technologies
• Tunable diode lasers developed in the 1960s

– Diagnostic techniques have been developed alongside propulsion 
technologies

– Simulation of space environment, rarefied gases – facility effects become 
important

– Laser diagnostics non intrusive, can survive harsh environments of 
combustion, plasmas

• New methods of laser diagnostics
– Provide insight into dynamics of thruster operation
– Are linked to thruster performance metrics
– Are critical to validating numerical simulations

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. xxx
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Monopropellant Thrusters

Operation
• Monopropellant flows over catalyst bed to 

initiate exothermic decomposition
• Propellant is expanded and accelerated out 

of a nozzle
• Developed in 60s, having to now go back 

and figure out how they work

Diagnostics
• Destructive testing the current standard

– Intrusive, post-test
– Cut open thruster to examine catalyst

• Diode Laser Absorption Spectroscopy
– Non-intrusive, in-situ measurements
– Temperature, species concentrations
– Wavelength Modulation Spectroscopy 

(WMS)
• Other methods such as FTIR, PLIF, 

emission spectroscopy on 
combustion/propellants, not on thrusters in 
operation

Aerojet MR-106
Propellant: Hydrazine

Thrust: 22 N       Isp: 235 sec 
DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXXX
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Diode Laser Absorption Spectroscopy

Beer-Lambert Law
Iν(L)= Iν0exp(-k νL)

Iν(L) Transmitted spectral intensity after    
traveling through a distance, L, 
through the medium [W/cm2s−1]

Iν0 Initial spectral intensity of the laser 
per unit frequency [W/cm2s−1] 

k ν Spectral absorption coefficient 
[cm-1]

• Ramp input to laser 
– Modulates intensity and wavelength 

(modulation frequency up to 1 MHz)
– Baseline fit + Beer-Lambert Law gives 

absorbance of spectral feature

• Species Identification
– k ν can be related to number densities, partial 

pressures to detect concentrations of 
combustion products such as NH3

– Presence of different species indicates catalyst 
health

• Temperature
– FWHM of transition indicates temperature (if no 

pressure broadening)
– Ratio of two nearby transition intensities 

indicates temperature (pressure independent) 
– Lowering temperature indicates degradation of 

catalyst

Diode
Laser

Detector

Hydrazine Thruster

NH3

Iν(L)Iν0

Ramp

t

I

L
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Wavelength Modulation 
Spectroscopy (WMS)

1f-normalized WMS-2f
• Diode laser modulated in wavelength and 

intensity via:
– Current injection at frequency = 1f
– Ramp voltage

• Detector output sent through two lock-in 
amplifiers

– Reference frequencies = 1f and 2f
– Comparison of 2f signal (“WMS-2f”) to model of 

absorption feature indicates temperature and gas 
concentration

 Improved sensitivity and noise-rejection over 
direct absorption (2 to 100x better SNR)

• 2f signal is related to the original absorption 
feature by a mathematical transform

– Hn
ν = nth Fourier component of modulated absorption 

coefficient (n=2 for WMS-2f)
– α(ν) = absorption coefficient (modeled by Gaussian, 

Lorentzian, Voigt)
– ν = mean modulation frequency

• Normalization of 2f signal by 1f signal 
eliminates effects of laser intensity drift, 
scattering, etc.

– S(T) = Linestrength at temperature = T
– xi = species concentration
– i0 = incident laser intensity
– φ = linseshape function (Gaussian, Lorentzian, 

Voigt)
– a = amplitude of frequency modulation
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Arcjets

Operation
• Electrothermal thruster 
• Heats a gaseous propellant 

(hydrazine, NH3, H2)via electrical arc 
• Propellant is expanded and 

accelerated out of a nozzle similar to 
chemical thrusters

Diagnostics
• Laser Induced Fluorescence

– Velocity, temperature measurements 
– Development of LIF techniques

• Hydrogen plasma

• Raman spectroscopy

Arc Column
Propellant

Anode

Constrictor

Cathode

Aerojet MR-510 Arcjet
Propellant: Hydrazine

Thrust: 250 mN Isp: 585 sec 
DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXXX
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Ion Engines & Hall Thrusters

Operation
Ion engines and Hall thrusters are 

electrostatic propulsion devices
• Ion Engines

– Propellant is ionized via electron 
bombardment and then accelerated by 
high voltage grids

– Thrust, Isp, Propellant: Xenon

• Hall thrusters
– Hall thrusters are gridless electrostatic 

thrusters
– Propellant ionized by electrons trapped 

in magnetic field
– Ions accelerated by an electric field 

between anode and electron cloud
– Thrust, Isp, Propellant: Xenon, Krypton

Diagnostics
– Laser Induced Fluorescence

• Velocity, temperature measurements
– Diode Laser Absorption Spectroscopy

• Metastable neutrals

E
+

-

+

ThrustNeutralizer

Propellant
+

+

+

Acceleration Grids
Ion Production

Region

-
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Laser Induced Fluorescence

• Laser beam tuned across 
electronic transition in Xe ions
– 5d[4]7/2−6p[3]5/2 at 834.72 nm 

• Ions spontaneously emit photons 
resulting in their relaxation from its 
excited state to a lower state 
(fluorescence)
– 6s[2]3/2 −6p[3]5/2 at 541.92 nm 

• Fluorescence excitation spectrum 
– Convolution of ion velocity 

distribution function (VDF), 
transition lineshape (inc. hfs, etc.) 

– Shape (broadening/shift) dominated 
by Doppler effect:

834.72 nm
541.92 nm

5d[4]7/2

6p[3]5/2

6s[2]3/2

Xe+

Non-resonant fluorescence scheme

1212 ν
c
Vδν 

~T
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• Measurement of time-averaged velocity 
vectors
– Non-intrusive measurements in channel 

and near field plume
– High spatial resolution (~1mm)
– High spectral resolution can resolve 

multiple velocity populations
– Temporal resolution eliminated by need 

for long integration times (>100 ms)

• Necessary to develop time-resolved LIF 
velocity measurements
– Resolve oscillatory behavior of thrusters
– Inform M&S for S/C interactions

• CW diode lasers required to take time 
resolved LIF measurements
– Typical linewidth of pulsed laser is larger 

than desired

– CW Diode Laser:  < 300 kHz
– Pulsed Nd:Yag Dye Laser:  > 1.5 GHz 
– Doppler width of transition: < 2 GHz 

Laser Induced Fluorescence 
Velocimetry

Lineshape of the 834.68 nm Xe transition compared to widths 
of a pulsed  laser and a CW laser. Hyperfine structure (HFS) 

shown as reference.
DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXXX
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Experimental Apparatus

• New Focus Vortex TLB-6917 tunable diode laser 
used to seed a TA-7600 VAMP tapered amplifier
– 60 mW output power
– Xenon ion (Xe II) transition at 834.72 nm probed 

(5d[4]7/2−6p[3]5/2)
– Non-resonant fluorescence collected at 541.92 nm 

(6s[2]3/2 −6p[3]5/2)

• Stationary xenon neutral (Xe I) reference
– 9.03 GHz distant 6p’[3/2]1–8s’[3/2]1

• Parallelized sample-hold method of time-
synchronization
– 6 time points taken simultaneously

 9x improvement in data acquisition efficiency
 Better signal-to-noise
 Faster data acquisition

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXXXX
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Time-Synchronized Laser Induced 
Fluorescence

6. Repeat for t1, t2, 
etc. 

Fluorescence 
excitation lineshape

for t0

Lineshapes for t0, t1, t2

1. Take simultaneous measurements of AC discharge current, emission + 
fluorescence

t1
t0

t22. AC current from 
the discharge is 
fed into a 
comparator to find 
zero point 
crossings 
(reference point 
for time = t0)

3. Raw emission + fluorescence 
trace and comparator signal 
sent into sample-hold circuit 
(samples at t0 trigger, holds 
value)

4. Sample-hold repeats at 
t0  points along entire 
scan

5. Pass sample-held 
signal through   lock-
in amplifier

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXXX
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BHT-600 Specifications

• BHT-600
– 600 W annular Hall thruster 
– Manufactured by Busek Co.

• Tested in Chamber 6 at AFRL
– Background pressure 1.2x10-5 Torr

Nominal Operating Conditions

a) Schematic of BHT-600 b) BHT-600 Operating on Xenon

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. 
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Velocity and Intensity Trends

• Peak lineshape intensity
– In phase with current
– Intensity increases w/ growth of 

ion population

• Most probable ion velocity
– 90º phase lag relative to current
– Max velocity after point of peak 

ionization

 Breathing mode cycle

Most probable ion velocity and peak lineshape intensities 
for IVDFs measured along centerline of discharge channel 
(R = 28 mm, Z=-2 mm )

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXX
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velocity distribution function matches well with 
measured time-averaged velocity distribution
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Channel IVDFs

• Minimal radial variations in channel

• Z = -8 mm (near anode)
– Slight negative velocity
– Gradient-driven field reversal

• Z = -6 mm
– Accelerating potential begins
– Broader IVDFs

• Z = -4 mm
– Significant broadening of IVDFs
– Large temporal variations (5-13 km/s)
– Spatial extent of propellant ionization and 

local potential drop fluctuate

• Z = -2 mm, Z = 0 mm
– IVDFs narrow 
– More even acceleration in time

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. 
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Near-Field Plume Measurements

• Time-sync axial IVDFs obtained 
throughout near-field plume

• Secondary ion velocity population
– Appears near centerline of thruster
– Low velocity dominates at current 

minimum
– Primarily caused by geometric effects
– Other causes:

• Charge exchange collisions w/ neutrals
• Residual ionization downstream of main 

potential drop

• Upcoming radial IVDF measurements
– Elucidate fluctuations in plume 

divergence
– Ion velocity vectors compared to 

numerical models in HPHall, emission 
data

Axial ion velocity distributions vs. time at 
Z = 15 mm, R = 0 mm.

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. XXX
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Summary

• Laser diagnostic techniques have been developed alongside 
propulsion technologies

• Allow us to better understand propulsion technologies that were 
previously ‘black boxes’

• In-situ, time-resolved diagnostics are becoming more important for 
understanding spacecraft interactions, pushing towards predictive 
modeling & simulation efforts

DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No. 
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Thank You!

Dr. Bill Hargus – Air Force Research Laboratory

Chris Young, Dr. Andrea Lucca-Fabris,                                        
Prof. Mark Cappelli – Stanford University

Amanda Makowiecki , Torrey Hayden,                                         
Prof. Greg Rieker – U. of Colorado, Boulder


