
DESIGN AND IMPLEMENTATION OF A UNIFIED
COMMAND AND CONTROL ARCHITECTURE FOR
MULTIPLE COOPERATIVE UNMANNED VEHICLES

UTILIZING COMMERCIAL OFF THE SHELF
COMPONENTS

THESIS

Jeremy Gray, Civilian, Ctr

AFIT-ENV-MS-15-D-048

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENV-MS-15-D-048

DESIGN AND IMPLEMENTATION OF A UNIFIED COMMAND AND

CONTROL ARCHITECTURE FOR MULTIPLE COOPERATIVE UNMANNED

VEHICLES UTILIZING COMMERCIAL OFF THE SHELF COMPONENTS

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Jeremy Gray, Civilian, Ctr, B.S.

December 2015

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-15-D-048

DESIGN AND IMPLEMENTATION OF A UNIFIED COMMAND AND

CONTROL ARCHITECTURE FOR MULTIPLE COOPERATIVE UNMANNED

VEHICLES UTILIZING COMMERCIAL OFF THE SHELF COMPONENTS

THESIS

Jeremy Gray, Civilian, Ctr, B.S.

Committee Membership:

Dr. David Jaques, PhD
Chair

Dr. John Colombi, PhD
Member

Maj Brian Woolley, PhD
Member

AFIT-ENV-MS-15-D-048

Abstract

Small unmanned systems provide great military application utility due to their

portable and expendable design. These systems are, however, costly to develop, pro-

duce, and maintain, making it desirable to integrate available commercial off the shelf

(COTS) components. This research investigates the development of a modular unified

command and control (C2) architecture for heterogeneous and homogeneous vehicle

teams to accomplish formation flocking and communication relay scenarios through

the integration of COTS components. In this thesis, a vehicle agnostic architecture

was developed to be applied across different vehicle platforms, different vehicle combi-

nation, and different cooperative missions. COTS components consisting primarily of

open source hardware and software were integrated and tested based on the positional

accuracy, precision, and other qualitative measures. The resulting system successfully

demonstrated formation flocking in three of four vehicle combinations, with the forth

still demonstrating a leader follower relationship. The system achieved at best a mean

relative positional error of 0.99m, a standard deviation of 0.44m, and a distance root

mean square of 0.59m. The communication relay scenario was also demonstrated

with two vehicle combinations for both distance and physical obstructions breaking

the C2 link. This system demonstrated the desired capabilities and could easily be

adapted to accomplish others through the use of the flexible architecture.

iv

Acknowledgements

I would like to start off by thanking my research advisor Dr. David Jacques. He

not only provided the technical guidance and mentorship I needed to complete this

research, but also provided me this great opportunity to attend and work at AFIT.

I also want to thank Rick Patton for the technical expertise he provided me

throughout the development of my hardware, for flying all of my research platforms,

and most of all for being a tremendous mentor and friend throughout this process.

Finally and most importantly, I have to acknowledge and thank my fiancee. I

asked her to be my wife shortly after starting AFIT and am reminded daily why I

made that decision by her undying love, support, and patience. You have truly been

my rock throughout this process and without you none of this would be possible. I

love you and cannot wait to spend the rest of my life with you.

Jeremy Gray, Civilian, Ctr

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xiv

List of Abbreviations . xv

I. Introduction . 1

1.1 Introduction and Motivation . 1
1.2 Problem Statement . 3
1.3 Objective . 4
1.4 Investigative Questions and Methodology . 4
1.5 Scope . 5
1.6 Assumptions and Limitations . 5
1.7 Thesis Outline . 5

II. Literature Review . 7

2.1 Chapter Overview . 7
2.2 Unmanned Systems . 7
2.3 Cooperative Behavior Applications . 9

Formation Flight . 9
Communication Relay . 10
Search and Surveillance . 10

2.4 Command and Control Architectures . 11
2.5 State of Practice for COTS, OSH, and OSS . 14

Autopilot . 14
Communication . 17
Ground Control Station . 22

2.6 Chapter Summary . 23

III. Methodology . 24

3.1 Chapter Overview . 24
3.2 Command and Control Architecture Development 24

AV-1 . 25
Formation Flight Use Case and OV-1 . 26
Communication Relay Use Case and OV-1 . 27
Architecture Development Method . 29

vi

Page

3.3 Software Development Procedure . 29
3.4 Test and Verification Procedure . 30

Formation Flocking Verification, Relative Accuracy and
Precision Tests . 30

Communication Relay Verification, Relative Accuracy
and Precision Tests . 32

System Latency . 34
3.5 Chapter Summary . 35

IV. Architecture . 36

4.1 Chapter Overview . 36
4.2 Operational Activities . 36
4.3 System Elements and Functions . 42
4.4 Chapter Summary . 49

V. Results . 50

5.1 Chapter Overview . 50
5.2 Selected Hardware and Software . 50

Communication System . 50
Command and Control Software . 50
Autopilot . 51
Vehicles . 52

5.3 Command and Control Software Development . 55
5.4 Formation Flocking Test Results and Analysis . 59

UGS Following Multi-Rotor UAS . 60
Multi-Rotor UAS Following UGS . 68
Multi-Rotor UAS Following Multi-Rotor UAS . 84
Fixed Wing UAS Following Fixed Wing UAS . 98
Formation Flight Analysis . 108

5.5 Communication Relay Test Results and Analysis 111
Test Results and Analysis . 112

5.6 Latency Test Results and Analysis . 114
Results . 114
Analysis . 115

5.7 Chapter Summary . 116

VI. Conclusion . 117

6.1 Chapter Overview . 117
6.2 Conclusion of Research . 117
6.3 Recommended Future Work . 121

Bibliography . 124

vii

Page

Appendix . 127
A Appendix A: Formation Flocking Leader Vehicle Script 127
B Appendix B: Formation Flocking Follower Vehicle Script 131
C Appendix C: Multi-Vehicle Function Module, as Tested 135
D Appendix D: Communication Relay Remote Vehicle

Script . 137
E Appendix E: Communication Relay Relay Vehicle Script 139
F Appendix F: Multi-Vehicle Function Module With

Fixed Follower Pos Calculation . 142
G Appendix G: Traxxas EMAXX UGS Pixhawk

Parameters . 144
H Appendix H: X8 Multi-Rotor UAS Pixhawk Parameters 148
I Appendix I: Supper Sky Surfer UAS Pixhawk

Parameters . 153

viii

List of Figures

Figure Page

1 DOD Unmanned Systems Roadmap UAS Categories [1]. 8

2 DOD Unmanned Systems Roadmap UGS Categories [1]. 9

3 Pixhawk Autopilot Control Architecture [17]. 16

4 Centralized Communication Network Architecture [18]. 18

5 Decentralized Ad Hoc Communication Network
Architecture [18]. 19

6 Decentralized Multi-Group Communication Network
Architecture [18]. 20

7 Decentralized Multi-Layer Communication Network
Architecture [18]. 21

8 OV-1: Formation Flight. 27

9 OV-1: Communication Relay. 28

10 Communication Relay Test Configuration. 33

11 Latency Stackup Test. 35

12 OV-5b: System Operational Activity Diagram. 38

13 OV-5b: Perform Cooperative Activity. 39

14 OV-5a: Operational Activity Decomposition Tree. 41

15 SV-1: System Interface Description. 44

16 SV-4: System Functionality Description. 45

17 SV-5a: System Function Traceability Matrix. 48

18 Traxxas E-Maxx UGS. 53

19 3DR X8 Multi-Rotor UAS. 54

20 Super Sky Surfer Fixed Wing UAS. 55

21 Follower Commanded Position Calculation Method. 57

ix

Figure Page

22 UGS Following Multi-Rotor UAS Test 1 Radial Position
Error. 61

23 UGS Following Multi-Rotor UAS Test 1 Forward-Right
Position Error. 61

24 UGS Following Multi-Rotor UAS Test 1 Vehicle Position. 62

25 UGS Following Multi-Rotor UAS Test 2 Radial Position
Error. 63

26 UGS Following Multi-Rotor UAS Test 2 Forward-Right
Position Error. 63

27 UGS Following Multi-Rotor UAS Test 2 Vehicle Position. 64

28 UGS Following Multi-Rotor UAS Test 3 Radial Position
Error. 65

29 UGS Following Multi-Rotor UAS Test 3 Forward-Right
Position Error. 65

30 UGS Following Multi-Rotor UAS Test 3 Vehicle Position. 66

31 Multi-Rotor UAS Following UGS Test 1 Radial Position
Error. 70

32 Multi-Rotor UAS Following UGS Test 1 Forward-Right
Position Error. 70

33 Multi-Rotor UAS Following UGS Test 1 Vehicle Position. 71

34 Multi-Rotor UAS Following UGS Test 2 Radial Position
Error. 72

35 Multi-Rotor UAS Following UGS Test 2 Forward-Right
Position Error. 72

36 Multi-Rotor UAS Following UGS Test 2 Vehicle Position. 73

37 Multi-Rotor UAS Following UGS Test 3 Radial Position
Error. 74

38 Multi-Rotor UAS Following UGS Test 3 Forward-Right
Position Error. 74

x

Figure Page

39 Multi-Rotor UAS Following UGS Test 3 Vehicle Position. 75

40 Multi-Rotor UAS Following UGS Test 4 Radial Position
Error. 76

41 Multi-Rotor UAS Following UGS Test 4 Forward-Right
Position Error. 76

42 Multi-Rotor UAS Following UGS Test 4 Vehicle Position. 77

43 Multi-Rotor UAS Following UGS Test 5 Radial Position
Error. 78

44 Multi-Rotor UAS Following UGS Test 5 Forward-Right
Position Error. 78

45 Multi-Rotor UAS Following UGS Test 5 Vehicle Position. 79

46 Multi-Rotor UAS Following UGS Test 6 Radial Position
Error. 80

47 Multi-Rotor UAS Following UGS Test 6 Forward-Right
Position Error. 81

48 Multi-Rotor UAS Following UGS Test 6 Vehicle Position. 81

49 Multi-Rotor UAS Following Multi-Rotor UAS Test 1
Radial Position Error. 85

50 Multi-Rotor UAS Following Multi-Rotor UAS Test 1
Forward-Right Position Error. 86

51 Multi-Rotor UAS Following Multi-Rotor UAS Test 1
Vehicle Position. 86

52 Multi-Rotor UAS Following Multi-Rotor UAS Test 2
Radial Position Error. 87

53 Multi-Rotor UAS Following Multi-Rotor UAS Test 2
Forward-Right Position Error. 88

54 Multi-Rotor UAS Following Multi-Rotor UAS Test 2
Vehicle Position. 88

55 Multi-Rotor UAS Following Multi-Rotor UAS Test 3
Radial Position Error. 89

xi

Figure Page

56 Multi-Rotor UAS Following Multi-Rotor UAS Test 3
Forward-Right Position Error. 90

57 Multi-Rotor UAS Following Multi-Rotor UAS Test 3
Vehicle Position. 90

58 Multi-Rotor UAS Following Multi-Rotor UAS Test 4
Radial Position Error. 91

59 Multi-Rotor UAS Following Multi-Rotor UAS Test 4
Forward-Right Position Error. 92

60 Multi-Rotor UAS Following Multi-Rotor UAS Test 4
Vehicle Position. 92

61 Multi-Rotor UAS Following Multi-Rotor UAS Test 5
Radial Position Error. 93

62 Multi-Rotor UAS Following Multi-Rotor UAS Test 5
Forward-Right Position Error. 94

63 Multi-Rotor UAS Following Multi-Rotor UAS Test 5
Vehicle Position. 94

64 Multi-Rotor UAS Following Multi-Rotor UAS Test 6
Radial Position Error. 95

65 Multi-Rotor UAS Following Multi-Rotor UAS Test 6
Forward-Right Position Error. 96

66 Multi-Rotor UAS Following Multi-Rotor UAS Test 6
Vehicle Position. 96

67 Fixed Wing UAS Following Fixed Wing UAS Test 1
Radial Position Error. 100

68 Fixed Wing UAS Following Fixed Wing UAS Test 1
Forward-Right Position Error. 100

69 Fixed Wing UAS Following Fixed Wing UAS Test 1
Vehicle Position. 101

70 Fixed Wing UAS Following Fixed Wing UAS Test 2
Radial Position Error. 102

xii

Figure Page

71 Fixed Wing UAS Following Fixed Wing UAS Test 2
Forward-Right Position Error. 102

72 Fixed Wing UAS Following Fixed Wing UAS Test 2
Vehicle Position. 103

73 Fixed Wing UAS Following Fixed Wing UAS Test 3
Radial Position Error. 104

74 Fixed Wing UAS Following Fixed Wing UAS Test 3
Forward-Right Position Error. 104

75 Fixed Wing UAS Following Fixed Wing UAS Test 3
Vehicle Position. 105

76 Fixed Wing UAS Following Fixed Wing UAS Test 3
Vehicle Position NW Corner. 107

77 Formation Flocking Test Results Summary. 109

78 Multi-Rotor UAS Relaying to UGS Radial Position
Error. 113

79 Multi-Rotor UAS Relaying to UGS Vehicle Position. 114

xiii

List of Tables

Table Page

1 AV-1: System Overview and Summary Information 25

2 Formation Flocking Test Matrix . 32

3 Communication Relay Test Matrix . 34

4 Vehicle Agnostic Activity Descriptions for Each Type of
Vehicle . 42

5 System Function Descriptions . 46

6 UGS Following Multi-Rotor UAS Test Parameter Matrix 60

7 UGS Following Multi-Rotor UAS Test Results . 67

8 Multi-Rotor UAS Following UGS Test Parameter Matrix 69

9 Multi-Rotor UAS Following UGS Test Results . 82

10 Multi-Rotor UAS Following Multi-Rotor UAS Test
Parameter Matrix . 84

11 Multi-Rotor UAS Following Multi-Rotor UAS Test
Results . 97

12 Fixed Wing UAS Following Fixed Wing UAS Test
Parameter Matrix . 99

13 Fixed Wing UAS Following Fixed Wing UAS Test
Results . 106

14 Latency Test Results . 115

xiv

List of Abbreviations

Abbreviation Page

C2 Command and Control . 1

DOD Department of Defense . 2

OSH Open Source Hardware . 2

OSS Open Source Software . 2

COTS Commercial Off the Shelf . 2

UAV Unmanned Aerial Vehicle . 2

GPS Global Positioning System . 5

UAS Unmanned Aerial Systems . 7

UGS Unmanned Ground Systems . 7

ISR Information, Surveillance, and Recognizance 7

SUAS Small Unmanned Aerial Systems . 7

GCS Ground Control Station . 10

PCB printed circuit board . 11

MAVLink Micro Air Vehicle Link . 15

MANET Mobile Ad Hoc Networks . 21

VANET Vehicle Ad Hoc Networks . 21

FANET Flying Ad Hoc Networks . 21

GUI Graphical User Interface . 22

DODAF DOD Architecture Framework . 24

OV-5a Operational Activity Decomposition Tree . 29

OV-5b Operational Activity Model . 29

SV-4 System Functionality Description . 29

xv

Abbreviation Page

SV-1 Systems Interface Description . 29

SV-5a Operational Activity to System Function
Traceability Matrix . 29

DRMS Distance Error Root Mean Square . 30

xvi

DESIGN AND IMPLEMENTATION OF A UNIFIED COMMAND AND

CONTROL ARCHITECTURE FOR MULTIPLE COOPERATIVE UNMANNED

VEHICLES UTILIZING COMMERCIAL OFF THE SHELF COMPONENTS

I. Introduction

1.1 Introduction and Motivation

In recent years, ongoing conflicts in South West Asia have revealed the utility of

unmanned vehicle systems to accomplish a myriad of different missions. Due to this

realization, there is a growing desire and need to execute previously manned missions

with unmanned vehicles. The missions reserved for these unmanned agents are gen-

erally too dull, dirty, dangerous, or difficult for onboard human pilots to complete.

Additionally, the use of Small Unmanned Vehicles allows for a low cost, portable, and

expendable solution for a number of different missions. These systems not only aid

in the execution of missions previously fulfilled by humans, but can now accomplish

more complicated tasks with a greater level of efficiency and effectiveness. Moving for-

ward from their current capabilities, the Department of Defense states that currently

fielded systems must be expanded to ”achieve the levels of effectiveness, efficiency,

affordability, commonality, interoperability, integration, and other key parameters

needed to meet future operational requirements,” while minimizing the overall cost

of acquiring and maintaining the system [1].

One method of expanding the capabilities of these systems is to integrate multi-

ple unmanned vehicles under a unified Command and Control (C2) architecture to

cooperatively execute a common set of missions. Integrating multiple heterogeneous

1

or homogeneous vehicles allows for an increased number of sensors distributed across

the team, allowing the team to survey a larger area and collect data faster than a lone

agent. Also, with the sensors being distributed across multiple agents, the system

can more easily handle the loss of sensors, allowing it to be more robust. Finally,

with increasing levels of autonomy a single operator should be able to monitor and

control more vehicles, allowing them to accomplish more complex tasks with much

greater ease than multiple single vehicle pilots. Examples of such tasks include close

formation flight with other aircraft, relaying communication around obstacles and

across long distances, and surveying or searching a long perimeter or a large area

for a target of interest. Due to the added data management and processing require-

ments, C2 architectures do have a much higher level of complexity than single vehicle

architectures. Additionally, the weight, size, and power limitations of the vehicle can

constrain the location of the data processing.

Coinciding with the increased use of unmanned vehicles by the Department of

Defense (DOD), a rise in their use by the civilian population has also been seen.

Civilians use these unmanned vehicles with varying levels of autonomy for different

applications including those related to agriculture, videography, and hobbyist activi-

ties. These communities have driven a rapid evolution of different Open Source Hard-

ware (OSH), Open Source Software (OSS), and Commercial Off the Shelf (COTS)

products, which are utilized to achieve increased levels of autonomy and capabilities.

These civilian technologies are even being utilized successfully by minimally funded

war fighters of other nations as a means of collecting intelligence in the battle the-

ater [2]. Though the cited case neutrally affects the United Sates, the availability

of these technologies does introduce the possibility of someone using them for the

wrong purpose at home or abroad. These scenarios range from invading someone’s

privacy using a camera mounted to a Unmanned Aerial Vehicle (UAV), to using an

2

aircraft to carry a dangerous payload, which could all be accomplished autonomously

from a distance or while the perpetrator escapes. Due to these facts, it is critical

that the capabilities of the technology be fully understood by the DOD to aid in

the mitigation of these types of attacks. An additional need for understanding the

capabilities of these technologies is to reduce the cost of acquiring and maintaining

unmanned system through the integration of OSS, OSH, and COTS. The integration

of these components can minimize the design work required to develop systems and

reduce the amount of sensitive material contained in the system, allowing it to be

more expendable if lost or captured.

This research focuses on the development and implementation of a C2 architecture

for heterogeneous and homogeneous teams of multiple cooperative unmanned vehicles

through the utilization of COTS products. Additionally, to aid in the mitigation of

attacks at home or abroad, this research further investigates the capabilities COTS

products can provide unmanned systems. The remainder of this chapter is an overview

of the problem to be solved, the objectives of the research, the limitations and scope

of the research, and the key assumptions made.

1.2 Problem Statement

Existing multi agent systems composed of purely COTS components do not ef-

fectively control the team to accomplish specific missions. Data latency, command

authority, and other factors hinder the system’s abilities. Additionally, it is desir-

able that COTS components be utilized due to the development, manufacturing, and

maintenance of proprietary components and software for new systems which is a time

consuming and costly processes. These systems must also allow for interoperable in-

terfaces to allow for exchangeable component and software modules to increase the

systems overall flexibility and utility.

3

1.3 Objective

The objective of this research is to develop a multi-agent C2 architecture for

cooperative heterogeneous and homogeneous unmanned vehicles through the imple-

mentation of COTS components, OSH, and OSS. Furthermore, it is desired that the

impact of this implementation be characterized to understand the capabilities of the

system.

1.4 Investigative Questions and Methodology

The questions this research attempts to answer and an overview of the methods

to answer these questions are outlined below.

• What are the desired missions to be accomplished by cooperative multi-agent

systems? A literary review of desired missions for multi-agent cooperative un-

manned systems will be accomplished.

• What is the structure and limitations of existing C2 architectures for cooper-

ative unmanned vehicles? A literary review of previously developed C2 archi-

tectures for cooperative unmanned vehicles will be accomplished to determine

their structure and limitations.

• What are the mission-specific qualitative and quantitative measures for the

system? Performance measures are established to determine the system’s ability

to accomplish each mission.

• How well does this system perform using these performance measures? Tests are

completed to determine the system’s ability to meet each baseline requirement

• What are the effects on system performance due to the utilization of COTS,

OSH, and OSS? The system performance is reviewed to determine how the use

of COTS may have affected the system performance.

4

1.5 Scope

This research will be limited to the modification of existing Small Unmanned

Vehicle architectures and hardware which are currently used for academic research.

The types of vehicles used will be limited to ground rovers, multi rotors, and fixed wing

vehicles, with no use of any form of aquatic vehicles. Additionally, all components

utilized for this research will be COTS components, OSS, or OSH. This research

will only focus on the C2 of cooperative unmanned vehicles and not the interaction

between manned and unmanned vehicles. However, there will be a safety pilot in

the loop at all times to ensure the safety of test team and any observers. Finally,

the missions to be accomplished by the architecture will be limited to the missions

outlined in the next chapter.

1.6 Assumptions and Limitations

For this research, it is assumed that the Global Positioning System (GPS) will

always be available to determine the location of the unmanned vehicles and other

navigation techniques not utilizing GPS will not be utilized. All testing of hardware

and software will be conducted with trained safety pilots. Test using planes or multi-

rotors will be conducted at Atterbury Army Base and ground vehicle tests will be

conducted on the Wright Patterson Air Force Base grounds. Testing will not be

conducted during rainy or windy conditions.

1.7 Thesis Outline

In the next Chapter, a review of previous research and other works is accomplished

to examine the existing foundational knowledge on the subject of cooperative C2

architectures for multiple vehicles. Chapter 3 outlines the methods of developing the

5

required C2 architecture through the integration of COTS components and the testing

to be accomplished. Chapter 4 discusses the resulting architecture that is developed

to perform the desired scenarios. Chapter 5 discusses the results of integrating these

components through tests to measure the performance of the system. Finally, Chapter

6 reviews the entirety of this research, discusses conclusions drawn from the research

accomplished, and recommends further work to be accomplished.

6

II. Literature Review

2.1 Chapter Overview

This section is an overview of previous work, theory, and technical information

pertaining to the implementation of COTS, OSS, and OSH in C2 architectures for

teams of unmanned vehicles.

2.2 Unmanned Systems

Unmanned Aerial Systems (UAS) and Unmanned Ground Systems (UGS) are

systems that include the components and personnel required to control an unmanned

vehicle to perform specific missions. These vehicles are used for a number of different

missions, consisting mainly of Information, Surveillance, and Recognizance (ISR)

and strike missions. The goal of using these systems is to reduce the probability of

harm to humans in dull, dirty, or dangerous environments. Small Unmanned Aerial

Systems (SUAS) sub categories of UAS, displayed in Figure 1, are limited mainly to

ISR missions and are grouped according to weight, achievable altitude, and speed.

UGS are grouped by capability, as displayed in Figure 2, including ISR and force

protection tasks such as bomb defusing and detonation. The portability and low cost

associated with small unmanned systems allows for deployment by ground troops

with less worry of losing expensive equipment. These systems are operated remotely

by a human usually with limited levels of autonomy, only relying on higher levels of

autonomous behavior for extreme circumstances such as a loss of communication link.

The DOD is, however, investigating the addition of levels of autonomy to decrease

the cost of operating the system and decrease the workload of the pilots [1].

7

Figure 1. DOD Unmanned Systems Roadmap UAS Categories [1].

8

Figure 2. DOD Unmanned Systems Roadmap UGS Categories [1].

2.3 Cooperative Behavior Applications

Cooperative C2 architectures allow teams of unmanned vehicles to accomplish

tasks more efficiently and effectively than individual vehicles, or even tasks which

individual vehicles cannot accomplish alone. This section reviews common missions

cooperative teams of vehicles are desired to accomplish.

Formation Flight.

The first tasks is formation flight, which can be utilized for autonomous air to

air refueling or to utilize the leader’s jet stream to reduce the amount of drag on the

follower and thus reduce fuel usage. The goal of the required C2 architecture is to

minimize the error between the desired position and current position of the follower

relative to the leader. One of the difficulties accomplishing this task with a team

9

of fixed wing aircraft is reducing this error while flying in the turbulent flow of the

wingtip vortexes. Also, this capability requires a higher controller command frequency

as the desired span between vehicles decreases, limiting the ability to use processing

at the Ground Control Station (GCS) and requiring more processing onboard [3, 4],

Communication Relay.

Another task requiring a cooperative C2 architecture is the relaying of communi-

cation links. The goal of this task is to provide a communication link from the GCS

through a relaying agent to a remote agent which has a physical object obstructing

their communication link or an obstruction due to distance from the desired point

[5]. Also, this task allows a team of unmanned vehicles to collect and transmit data

from remote sensors which are not networked with the data’s desired destination [6].

Such tasks can require the team have the ability to obtain knowledge of the other

members positions to avoid mid air collisions, but do not require as high of a refresh

rate as formation flight.

Search and Surveillance.

The final task that is improved by or requires a cooperative C2 architecture is the

cooperative persistent wide area surveillance problem. These applications include the

persistent surveillance of an object with an obstructed viewing area (like a building’s

front door) and the surveillance of a long boarder, perimeter, or large area of inter-

est which cannot be surveyed with a single sensor or agent. The benefit of utilizing

multiple vehicles for these applications is it distributes the workload across the vehi-

cles. Again, these tasks can require the team have the ability to obtain knowledge

about other members locations to avoid mid air collisions and the ability to relay data

through other vehicles in a network. Finally, it is an added benefit if the vehicles have

10

the ability to search intelligently, using information about where other vehicles have

recently searched [7].

2.4 Command and Control Architectures

Cooperative C2 architectures have been successfully implemented on a number

of different research projects. One implementation for the use by the NAVY is the

Low-Cost UAV Swarming Technology (LOCUST) which was developed by the Office

of Naval Research. This system utilizes a team of Coyote UAVs, which are launched

from a tube array based launcher. Each UAV can communicate within the group and

the system as a whole has demonstrated the ability to achieve close formation flight

with up to nine vehicles [8].

Other implementations of formation flight through cooperative C2 architectures

have been demonstrated using the Phastball UAV test bed, which include a team of

custom SUAS. This test bed UAV is outfitted with a custom printed circuit board

(PCB) autopilot with a GPS rated for 1.5m RMS, a 50Hz mechanical gyroscope, and

4 redundant IMUs which are over sampled to increase the resolution from 14 bit to

18 bit. This platform was used in a flight validation for a multi-UAV framework and

wing wake encounter algorithms. This framework includes a linear quadratic inner

loop controller algorithm which provides the desired trajectories. The flight tests

were conducted using virtual and physical leaders. During testing, this configura-

tion achieved a mean distance errors of 3.43m with a standard deviation less than

2m for straight portions of the flight path. The mean distance error increased to

approximately 10m with a standard deviation of 3m during turning maneuvers [3].

Another implementation of a cooperative C2 architecture demonstrated by the

Aerospace Controls Laboratory at the Massachusetts Institute of Technology utilized

a flexible test bed architecture which was designed for research in the field of controls.

11

Each UAV contains a Piccolo autopilot, which controls the vehicle’s stabilization inner

loop controls and waypoint navigation outer loop controls. Each autopilot contains

a GPS with position errors of ± 2m and a transceiver to communicate with another

mated transceiver at a dedicated GCS for each UAV. The GCS allows for outer loop

commands to be sent to the autopilot and processing of formation flight algorithms

to determine these commands. Due to the off board processing, the update rate

of commands from the ground station to the vehicle is 1Hz. The demonstration of

formation flight utilized fixed flight paths for both vehicles, varying their speeds to

reduce the positional error between the UAVs to a 25m by 25m square around the

desired position [9].

As displayed by Kingston et al. [10], COTS can also be implemented for other

capabilities such as perimeter surveillance. This demonstration utilized a Kestrel

Autopilot to validate a perimeter surveillance algorithm which allows for growth of

the perimeter and the addition and subtraction of team members on a decentralized

C2 network. The need for a decentralized C2 network is required because the size

of the perimeter could lead the vehicle out of range of the communication link. It is

proposed that the vehicle will collect data while patrolling, and dump the information

once it is within range. In application, the system was able to survey the perimeter

cooperatively, however it is not clearly stated nor does the autopilots utilized lead to

conclusion that the vehicles were operated on a decentralized network.

This research directly follows an investigation into the effects implementing differ-

ent configurations of low cost OSH and OSS for a cooperative C2 architecture. The

latency and relative positional accuracy of each configuration were measured to deter-

mine the performance of that particular configuration. The first set of configurations

tested utilized Mission Planner as the GCS, while varying the sub-application utilized

to control multiple vehicles. The sub-applications used are the beta swarm applica-

12

tion and python scripting application. The python scripting application required the

use of multiple instances of Mission Planner, either on the same or different GCS lap-

tops with a hardwired eithernet connection to pass information between. The swarm

application has limited capabilities due to its use of fixed formation movements rel-

ative to north as opposed to being relative to the heading of the lead vehicle. The

python scripting on the other hand allows for greater flexibility in the formation of

the vehicles and allows for added levels of autonomy. The results of these tests showed

that the built in beta swarming application was the least latent with an update rate

of approximately 0.4Hz. It was also found that operating both vehicles from the same

ground station produced a higher latency than from individual ground stations, with

the highest refresh rate being 0.3Hz and 0.2Hz respectively [11].

Additional work at AFIT includes the CUSS architecture, which was developed as

a solution for cooperative surveillance of stationary and moving targets, along with

a solution for the wide area search problem [7]. The architecture incorporated the

Kestrel autopilot and the Virtual Cockpit GCS, which allows for control of multiple

vehicles from a single application. Four BATCAM UAVs were successfully flown

and provided simultaneous video feeds to survey the area. Another architecture

developed at AFIT was the OWL architecture, which was a solution for relaying a

communication link from the ground station to a remote vehicle that is out of range

of the link [5]. To achieve a signal pass through capability on the relay vehicle, the

link was passed through separate transceivers on the relay vehicle, which were each

mated with the GCS and the remote vehicle transceivers. This does not allow for

variation in the number of links due to the increased number of transceivers required

and algorithms required to handle the data management.

As shown through previous work, the ability to C2 a team or teams of homoge-

neous vehicles exists. However, as the processing capability migrates away from the

13

airframe to a central processing location, the system’s ability to handle close interac-

tions with other agents degrades. Due to the latency of transmission between agents,

a similar reaction occurs as the communication network transitions from an ad hoc

network to a centralized network. However, the effects of this migration away from

onboard processing and ad hoc networks are less noticeable during operations when

agents are more highly distributed in space. From this review, it is found that the

use of COTS, OSS, and OSH can and have been used to achieve homogeneous C2

architectures, with the consequence being a lower measure of capability compared to

a system composed of proprietary components.

2.5 State of Practice for COTS, OSH, and OSS

COTS, OSS, and OSH allow for a quick, easy, and cheap solution for countless

problems, with the majority of the time, effort, and cost being associated with the

integration of components with one another or existing proprietary systems. For the

application of unmanned vehicles, the integration of multiple sensors is required to

achieve a more accurate and percise navigation solution verses a standalone sensor.

With the recent expansion in availibility of OSH and OSS for small unmanned ve-

hicles, components are readily available and come pre-integrated with the required

sensors or in a modular form allowing for the addition of sensors to achieve the de-

sired capabilities. This section reviews the available COTS, OSS, and OSH required

to attain a cooperative unmanned vehicle C2 architecture.

Autopilot.

The autopilot is an on board control mechanism which contains the inner and

outer loop controlers required to perform stabilized flight and preprogramed missions.

The major difference between different brands of COTS autopilots is the availability

14

of information on the autopilot design. Autopilots such as the Pixhawk [12] and

Ardupilot [13] are developed with open source chipsets where other autopilots, such as

Pickelo [14] and Kestral [15], are developed with custom or non-specified chipsets, or

for specific GCS software. The trend for open source and some proprietary autopilots

is to exclusively use the Micro Air Vehicle Link (MAVLink) protocol, which is a

message marshalling library of commands and responses specifically for small air

vehicles [16]. The use of this common communication protocol allows for variations in

the GCS software used, as long as that GCS software communicates using MAVLink.

Also, open source autopilots utilize modular sensors such as GPS, compass, and

airspeed sensors through common ports, allowing for easy integration of required

sensors to achieve a more accurate navigation solution.

Due to their intended use for different RC vehicle platforms, open source autopilots

utilize similar architectures. The Pixhawk autopilot controller architecture depicted

in Figure 3 shows the general structure of these controllers. The autopilot receives and

transmits MAVLink commands and telemetry via radio modems. These commands

determine the outer loop command inputs, parameter settings, and vehicle mode.

The inner loop controller commands are then achieved by monitors sensor readouts to

determine attitude and a position estimates and commanding actuators to maintain

the desired trajectory or flight characteristics. The control laws which govern the

inner and outer loops are determined by the mode of the autopilot, which is set from

the GCS or RC radio. Common modes among open source autopilots include a fully

manual mode, which passes RC commands directly to the actuators, a stabilized

mode, which controls only the inner loop controller to provide stabilized flight, and

a fully autonomous mode, which controls both inner and outer loops to maintain

stabile flight and the desired trajectory. Other modes include a guided mode, which

commands the aircraft to fly to a selected point and then loiter at that point.

15

Figure 3. Pixhawk Autopilot Control Architecture [17].

The tradeoff between the different open source autopilots is their cost, robustness

against failures, position estimation techniques used, and overall capabilities avail-

able. Based on these measures, the current market leader is the Pixhawk. Though a

fraction more expensive than others, this autopilot provides a more robust architec-

ture due to the optional redundant backup power supplies, GPS receivers, and IMUs.

An Extended Kalman Filter is also utilized to provide a better position estimate in the

presence of noise. Finally, this autopilot provides the user the fullest range of capa-

bilities compaired to other autopilots. These cheap and accessible autopilots coupled

16

with a GCS and a RC vehicle platform allow for near full autonomous behavior of

the vehicle.

Communication.

The method of transmitting and receiving commands and information from sen-

sors is a critical design point for all command and control architecture. This design

requirement is dependent on the mission to be accomplished, and is even more de-

manding for cooperative unmanned vehicle C2 architectures due to their increased

complexity and high computational demands. There are two general categories of

communication network architectures which allow for certain forms of cooperative

C2.

The first category of communication networks is the centralized network. As

displayed in Figure 4, this architecture allows each agent to communicate to a central

node, which then relays information to the other agents in the team. The three major

drawbacks from this communication structure are the relatively high transmission

latency for communication between vehicles, the constrained communication range,

and the increased vulnerability due to the single point of failure at the central node.

However, this network does allow for a central processing unit, allowing vehicles to

require less board processing, thus reducing their total weight.

17

Figure 4. Centralized Communication Network Architecture [18].

The other communication network category is the decentralized network which has

no centralized node through which all agents must obtain their information, allowing

them to communicate directly or indirectly with other agents or ground stations. A

subcategory of this is the ad hoc network architecture shown in Figure 5, which allows

agents to relay information directly or indirectly to other agents through the network.

In this configuration, a single UAV is used as the backbone link to the ground station,

allowing for a single high power transceiver on the backbone UAV to extend the range

of the team. This is unlike the centralized network which would require each UAV

to have a high power receiver to achieve the same range. This single backbone and

the relative proximity of the agents to each other allows for the majority of the

team to use relatively lighter weight transceivers. Additionally, the optimal path

of the communication link between vehicles can be determined through algorithms

processed on the agent. One downfall of this architecture is the vulnerability of the

system to the loss of the backbone node, which would disconnect all other agents from

the central node. If the team were in close proximity of the central node, the backbone

18

node is unnecessary, reducing this vulnerability. Another downfall of this architecture

is as the number of agents increase, the complexity of the network increases and the

availible bandwidth would decrease. This issue can be mitigated through the use of

other decentralized networks including the multi-group networks and multi-layer ad

hoc network. The multi-group network displayed in Figure 6 allows for centralized

control of each team while maintaining decentralized control within each team, and

the multi-layer network displayed in Figre 7 allows for decentralized control of each

team and decentralized control within each team [19].

Figure 5. Decentralized Ad Hoc Communication Network Architecture [18].

19

Figure 6. Decentralized Multi-Group Communication Network Architecture [18].

20

Figure 7. Decentralized Multi-Layer Communication Network Architecture [18].

These decentralized ad hoc networks can be accomplished through the use of

COTS transceivers which run onboard networking protocol algorithms to determine

the desired path to transfer data to its desired location. These components are used

in Mobile Ad Hoc Networks (MANET) for person to person communication, Vehicle

Ad Hoc Networks (VANET) for ground vehicle to ground vehicle communication,

Flying Ad Hoc Networks (FANET) for flying vehicle to flying vehicle communication.

The major difference between these networks is the node density and mobility. The

node density affects the number of optional paths for the data to be transferred, and

the node mobility affect the rate at which the topology of the network changes [18].

21

Ground Control Station.

One vital component of a C2 architecture is the central command station or GCS,

which allows the user to command the system to accomplish different tasks and review

information recieved from the vehicle. The GCS communicates to the autopilot via

mated radio transceivers using the MAVLink protocol to send outer loop controller

commands and change the mode of the autopilot, which changes the control laws

governing the outer and inner loop controllers. The recent explosion of OSS and

OSH has brought forth a number of easily obtainable ground control stations.

The first category of GCS is the PC based application which communicates with

the vehicle via a radio telemetry link or WIFI. These GCS provide a user friendly

Graphical User Interface (GUI) which allows for near full utilization of the full capa-

bility of the autopilot, which is limited by the capabilities the open source community

wants in the GCS. minimalized GCS allows users to remotely change flight modes,

plan and send waypoint missions, and monitor telemetry. More advanced GCS such

as Mission Planner [20] allow for the use of python scripts to add levels of autonomy

to the system through logic and computations. Unlike APM Planner 2.0 [21] and

Kestrel’s proprietary GCS Virtual Pilot [15], Mission Planner does not have a robust

method to control multiple vehicles. It does have a beta version of this capability.

However, Hardy [11] successfully demonstrated the ability to use python scripts to

pass information between multiple instances of Mission Planner to perform cooper-

ative behavior. The GCS MavProxy stands out due to its use of the PC operating

system’s command line to send MAVLink protocol commands directly to the vehicle

without the use of the GUI. This ground station is more flexible, modular, and allows

for a higher utilization of the full capability of the autopilot while also containing the

same capabilities of the other major GCS software. MAVProxy does not require the

use of a GUI, which can reduce the expected latency produced by this protocol layer.

22

Finally, like Mission Planner, this software allows for the use of scripting to achieve

a higher level of autonomy [22].

The most recent expansion in GCS software are tablet and phone applications

based GCS which utilize either a WIFI link or WIFI bridge to radio telemetry link to

control the vehicle. These applications are more simplistic than their PC counterparts,

providing a more limited number of the autopilot’s built in capabilities. All of these

ground control stations provide a GUI which displays streaming flight data and allows

the ability to set waypoints for autonomous missions. Other advanced applications

can utilize the GPS receiver on the control device to allow for a follow me mode

in which the vehicle follows the ground station, usually while keeping its camera

pointed at the target location. These applications are only for the most basic use of

the autopilot and do not allow for any additional scripting or major modification to

the base capabilities of the autopilot.

2.6 Chapter Summary

In this chapter, a definition, baseline information, and applications for cooperative

unmanned systems were established. Also, previous work pertaining to the develop-

ment of C2 architectures for multiple cooperative unmanned vehicles was reviewed.

Finally, existing COTS, OSH, and OSS and their capabilities were discussed as it

pertains to these architectures. In the next chapter a methodology is developed for

designing, implementing, and testing a cooperative C2 architecture for heterogeneous

unmanned vehicles.

23

III. Methodology

3.1 Chapter Overview

The purpose of this chapter is to articulate the methods followed to develop, test,

and verify the functionality of a cooperative C2 architecture for teams of multiple

vehicles. First, the process of developing the required architecture and software is

described. Then, the test and verification procedures to measure key characteristics

of the design are outlined.

3.2 Command and Control Architecture Development

In this section, the procedure and methods used for developing a C2 architecture

for teams of multiple vehicles is developed. For this research, the DOD Architecture

Framework (DODAF) 2.0 will be utilized as the collection of possible architectural

views to create. From this collection, key views will be completed to design and define

the system.

Before discussing the selected views to be created, an executive level summary of

the system’s primary goals, scope, and purpose is developed to scope the architecture

development methods. To accomplish this, the Overview and Summary Information

(AV-1), High-Level Operational Concept Graphic (OV-1), and brief use cases are

created. The AV-1 is an executive level description of the vision, scope, and purpose

of the desired system. Additionally, the use cases describe the activities the primary

and supporting actors and system accomplish during operation. Finally, the vision is

depicted using the OV-1, which visually portrays the operational concept. All of these

views will be developed for the formation flight and communication relay operations.

24

AV-1.

The AV-1 in Table 1 provides a high level overview and summary of the vision,

scope, and purpose of this system. The vision describes what the desired system is

and how it will work, the scope describes the self imposed factors that will limit the

development of the system, and the purpose describes why the system is needed to

accomplish the vision.

Table 1. AV-1: System Overview and Summary Information

Architecture Vision The vision for this system is a unified C2 architecture for
teams of two heterogeneous or homogeneous vehicles that
requires only a single operator. This architecture will al-
low the operator to control a team of autonomous vehicles
to perform cooperative missions scenarios. These scenar-
ios include performing formation flocking and performing
communication relay. The formation flocking scenario re-
quires a follower vehicle to autonomously maintain a fixed
formation relative to a lead vehicle. The relaying scenario
requires a relay vehicle to maintain a midpoint and pass
information between the GCS and a remote vehicle that
is out of communication range of the GCS.

Scope For the initial prototype system, teams will be limited to
two vehicles. All hardware and software will be limited
to OSH, OSS, and COTS. The development and testing
period is limited to six months.

Purpose The purpose of this system is to provide a single operator
the ability to control a team of multiple homogeneous and
heterogeneous vehicles to accomplish missions requiring
formation flocking or relaying communications through
local vehicles.

25

Formation Flight Use Case and OV-1.

The following use case describes the actions taken during the scenario of formation

flocking by all actors and system elements. The OV-1 in Figure 8 depicts the vision

for this operation.

Formation Flight Use Case and OV-1.

An operator desires to have two vehicles cooperatively flock in for-

mation to complete a mission. The primary actor is the GCS operator.

The operator determines the mission trajectory for the leader vehicle to

complete. The GCS operator saves the mission to the leader vehicle’s

autopilot. The GCS operator launches the lead vehicle. The GCS op-

erator commands the lead vehicle to initialize a loiter maneuver. The

GCS operator launches the follower vehicle. The GCS operator com-

mands the follower vehicle to initialize a loiter maneuver. The GCS

operator initializes the flocking C2 mode on the GCS. The GCS begins

sending commands to the follower vehicle to continuously stay at the

desired position relative to the leader. The GCS operator commands the

leader vehicle to start the mission. This process ends when the mission

is complete or when the GCS operator commands each vehicle to return

home or to be recovered.

26

Formation Flight OV-1.

Figure 8. OV-1: Formation Flight.

Communication Relay Use Case and OV-1.

The following use case describes the actions taken during the scenario of commu-

nication relay by all actors and system elements. The OV-1 in Figure 9 depicts the

vision for this operation.

Communication Relay Use Case.

An operator desires to have a relay vehicle pass information between

a remote vehicle and the GCS. The primary actor is the GCS operator.

The operator determines the mission trajectory for the remote vehicle to

complete. The GCS operator saves the mission to the remote vehicle’s

27

autopilot. The GCS operator launches the remote vehicle. The GCS

operator commands the remote vehicle to initialize a loiter maneuver.

The GCS operator launches the relay vehicle. The GCS operator com-

mands the relay vehicle to initialize a loiter maneuver. The GCS oper-

ator initializes the relay C2 mode on the GCS. The GCS begins sending

commands to the relay vehicle to continuously stay at the desired posi-

tion relative to the remote vehicle. The GCS operator commands the

remote vehicle to start the mission. This process ends when the mission

is complete, when the GCS operator commands each vehicle to return

home, or to be recovered.

Communication Relay OV-1.

Figure 9. OV-1: Communication Relay.

28

Architecture Development Method.

The actions described in the use case summaries are decomposed into lower level

operational activities in the Operational Activity Decomposition Tree (OV-5a). To

aid in this decomposition, an Operational Activity Model (OV-5b) will be developed

based on the logic described in each use case. The actors and high level components

of the system depicted as swim lanes in the OV-5b are then decomposed into sub

components and the functions they accomplish in a System Functionality Description

(SV-4). These sub components are then grouped based on their physical location in

each high level component of the system, which is depicted in the Systems Interface

Description (SV-1). Finally, the leaf level functions depicted in the SV-4 will be

traced to the leaf level operational activities of the OV-5a in an Operational Activity

to System Function Traceability Matrix (SV-5a) to demonstrate concordance between

architectural views [23].

3.3 Software Development Procedure

In this section, the procedure for developing the software for a C2 architecture

for teams of multiple vehicles is discussed. Based on the use cases described in the

previous section, a controller is required for processing information from vehicle 1

and sending commands to vehicle 2 from the GCS. These controllers will be able to

command a follower vehicle to maintain a desired offset position relative to the leader

and command a relay vehicle to maintain a midpoint position between the GCS and

a remote vehicle. The commanded position calculation used in this controller for each

scenario are developed in the results and analysis chapter.

29

3.4 Test and Verification Procedure

This section outlines the system test and verification methods performed. The

tests methods described are developed to measure the latency and position accuracy

of the system, while the verification methods are developed to validate the system’s

ability to accomplish the operations outlined in the previous section.

Formation Flocking Verification, Relative Accuracy and Precision Tests.

The first set of tests verifies the system’s ability to perform formation flocking and

measures the relative accuracy and precision achieved during formation flocking. The

verification of the systems capability to perform formation flocking is based on qual-

itative pass fail measures. The system successfully demonstrates formation flocking

if both vehicles demonstrates a leader follower relationship and the follower displays

the tendency to stay near the desired position. The leader follower relationship is also

demonstrated by the follower attempting to operate in the same operating region as

the leader and the follower maneuvering in the same direction, clockwise or counters

clockwise, as the leader.

For this research, accuracy is measured using the Distance Error Root Mean

Square (DRMS), which is the measure of the average squared error between the

follower vehicle’s current and desired position at each time step. The equation for

DRMS is shown as Equation 1, where N is the number of time steps, Pi is the ith

desired position for the follower, and P̂i is the ith measured position of the follower.

DRMS(P, P̂) =

√√√√ 1

N

N∑
i

(Pi − P̂i)
2 (1)

The precision is measured using the standard deviation of the measured errors in the

follower’s position relative to the desired position of the follower. The equation for

30

standard deviation is shown below as Equation 2, where N is the number of time

steps, Pi is the ith desired position for the follower, P̂i is the ith measured position of

the follower, and E() is the expected value.

S(P, P̂) =

√√√√ 1

N

N∑
i

((Pi − P̂i)i − E(Pi − P̂i))
2 (2)

These tests will be performed using four combinations of three vehicles. These

combinations include a UGS following a multi-rotor UAS, a multi-rotor UAS follow-

ing a UGS, a multi-rotor UAS following a multi-rotor UAS, and a fixed wing UAS

following a fixed wing UAS. To aid in the identification of performance characteristics

of the system while accomplishing straight and curved flight paths, the leader in each

test will be commanded to autonomously perform both a box and circle path. The

follower will simultaneously be commanded to perform formation flocking at a specific

offset radius and offset angle. After the test, the flight data for both the leader and

follower will be obtained from telemetry logs stored on the GCS. The error between

the follower position and the desired follower position will then be evaluated from

these telemetry logs.

The two tests with teams consisting of a UGS and a multi-rotor UAS test the

system’s ability to perform missions using teams of heterogeneous vehicles. The

tests with teams consisting of two multi-rotor UAS and two fixed wing UAS test

the system’s ability to perform missions using teams of homogeneous vehicles. The

combination of fixed wing aircraft and ground vehicle or fixed wing aircraft and multi-

rotor are not tested due to the difference in operating speed between the vehicles,

which would limit the team’s ability to maintain formation. The test comprised of

only multi-rotor or fixed wing aircraft will use an offset in altitude due to the increased

speed of the vehicles and desire to avoid mid air collisions. Table 2 displays a test

matrix of the different vehicle combinations being tested.

31

Table 2. Formation Flocking Test Matrix

Follower

UGS
Multi-Rotor

UAS

Fixed Wing

UAS
L

e
a
d
e
r UGS No Yes No

Multi-Rotor

UAS
Yes Yes No

Fixed Wing

UAS
No No Yes

Communication Relay Verification, Relative Accuracy and Precision

Tests.

Two tests will be performed to verify the system is capable of relaying the teleme-

try and C2 link between the GCS and a remote vehicle through a relay vehicle. To

accomplish this, communication nodes at the GCS, relay vehicle, and remote vehicle

will be configured on the same network, allowing each to communicate with all nodes

on the network. Additionally, the transmission power will be turned down to the

lowest value. This allows the remote vehicle to more easily move out of the range of

the GCS node, forcing the path of communication through the relay vehicle at the

midpoint. The qualitative measure for this scenario is simply verifying the system

relays the C2 link. Finally, from the flight data logs stored on the GCS, the relative

position accuracy and precision of the follower vehicle will be determined using the

same methods outlined for formation flocking.

The procedure for this test is as follows. The remote vehicles will be moved away

from the GCS in manual mode until the GCS loses the ability to communicate with

32

the remote node, as indicated by the percent of telemetry packets received in Mission

Planner. The relay vehicle will then be moved in manual mode to the midpoint

between the GCS and remote vehicle until the C2 link between the remote vehicle and

GCS is reestablished. Doing this ensures the path of communication goes through the

relay node to the remote vehicle due to the GCS and remote nodes physical distance

from one another. Once the link is reestablished, the communication relay C2 script

will be started to command the relay vehicle to maintain a midpoint position. The

remote vehicle will then be driven manually in all directions to ensure the relay

vehicle is maintaining a midpoint position. This verifies the system’s ability to relay

the communication and command links between vehicles and maintain a midpoint

position to ensure the link is not lost again. Figure 10 depicts the test setup used to

verify this capability.

Figure 10. Communication Relay Test Configuration.

This test will be performed using two teams, one consisting of two UGS, and the

other consisting of a multi-rotor UAS relaying the C2 link to a remote UGS. Table 3

details the combinations of vehicles and test performed for this capability.

33

Table 3. Communication Relay Test Matrix

Relay

UGS
Multi-Rotor

UAS

Fixed Wing

UAS
R

e
m

o
te

UGS Yes Yes No

Multi-Rotor

UAS
No No No

Fixed Wing

UAS
No No No

System Latency.

The final measure to be tested characterizes the latency within the system. For

this research, latency is defined as the difference between the time information is sent,

to the time the information is received and the desired action occurs. For the case

of formation flight, the total latency is the difference between the time the leader

vehicle sends its telemetry to the GCS, to the time when the follower vehicle receives

the new commanded waypoint. For this system, the total system latency can be

decomposed into sub-latencies (Figure 11). The first sub-latency, denoted t1, is the

difference between the time one vehicle sends telemetry to the GCS and the time

the GCS receives the telemetry. The second sub-latency, denoted t2, is the difference

between the time the GCS receives the telemetry and the time the GCS sends a

command up to the other vehicle. The third and final sub-latency, denoted t3, is

the difference between the time the GCS sends a command up to the other vehicle

and the time the other vehicle receives the command. These sub latencies will be

measured individually using C2 scripts on the GCS.

34

Figure 11. Latency Stackup Test.

3.5 Chapter Summary

This chapter reviewed the development, test, and verification methods used to

ensure the system developed is capable of accomplishing all of the desired tasks.

The following chapters will further develop the required architecture and analyze the

results from the test described above.

35

IV. Architecture

4.1 Chapter Overview

The purpose of this chapter is to articulate the development of the system archi-

tecture to meet the architecture overview information developed in the AV-1, OV-1,

and brief use cases from the previous chapter. For this architecture, all elements

are developed to be vehicle agnostic, meaning the elements could apply to ground,

quad rotor, or fixed wing vehicles. This is accomplished for the purpose of allowing

the resulting hardware and software to be applied to any of these types of vehicles

and in teams of any combination of these types of vehicles. Also, this architecture is

developed to be modular, allowing for different missions to be accomplished through

the variation of specific elements.

4.2 Operational Activities

In this section, the operational activities of the architecture are developed. To

accomplish this, an OV-5b is created to outline the logical flow of activities to ac-

complish each use case. From these activities, a joint OV-5a is created to depict

the decomposition from a high level abstract operation to the desired lower level

operational activities for the system to accomplish.

The OV-5b shown in Figure 12 depicts the flow of activities performed by the GCS

operator, GCS, and each vehicle for both the formation flocking and communication

relay use cases. These use cases are combined into a single activity flow diagram

due to the similarities in the activities performed and to drive the architecture to be

agnostic towards the mission being accomplished. In this view, it is shown that the

GCS operator initializes the use case by performing mission planning operations on

the GCS, with the GCS providing visual information regarding the developed mission.

36

The GCS operator then commands the GCS to write the mission to the autopilot,

causing the GCS to send a command to store the mission. Vehicle 1 receives this

command and provides a verification receipt to the GCS, which visually displays

the acceptance of the mission. After launching vehicle 1, the vehicle performs an

idle maneuver to allow vehicle 2 to be launched and start performing the desired

cooperative behavior before vehicle 1 proceeds to perform the mission. The follower

will continue to perform the cooperative behavior until the mission is complete, at

which time it will perform an idle maneuver until vehicle 1 is recovered. The flow of

activities ends with the vehicle 2 being recovered.

37

Figure 12. OV-5b: System Operational Activity Diagram.

38

The activity Perform cooperative activity is further refined in Figure 13 to further

refine each vehicle’s role in the activity. Additionally, this diagram aids in determin-

ing the communication structure required to pass vehicle telemetry to the GCS and

commands to each vehicle. This activity involves the GCS software and both vehicles.

The activity Calculate desired vehicle 2 position represents the algorithm performed

by the GCS to determine the commanded go to location sent to vehicle 2 to accom-

plish each cooperative behavior. This element is the point where the architecture

varies for each cooperative behavior, including formation flight and communication

relay, to allow for different mission controller calculations.

Figure 13. OV-5b: Perform Cooperative Activity.

The activities depicted in both OV-5b views are compiled into the OV-5a shown

in Figure 14. Additional elements show in blue and outlined in black are derived

39

activities that are required to perform other activities contained in the OV-5b. The

Pass telemetry and Pass command activities are derived from the need to pass in-

formation and commands to and from the remote vehicle through the relay vehicle

for the communication relay use case. The Maintain steady level movement and Pro-

vide navigation measurement activities are derived from the need for the vehicle to

stabilize itself and utilize sensors to perform waypoint based navigation. The Ma-

neuver vehicle and Move vehicle activities are derived from the need for the vehicle

to maneuver and propel itself during missions. Finally, the Command idle maneuver

activity is derived from the need for the operator to sequence the launching of each

vehicle by having them perform their idle maneuver to wait for further commands.

40

Figure 14. OV-5a: Operational Activity Decomposition Tree.

The activities depicted in the OV-5b and OV-5a views are written to be agnostic

41

towards vehicle type to allow the architecture to be applied to different types of ve-

hicles. Table 4 below contains descriptions of how these activities are performed by

each type of vehicle.

Table 4. Vehicle Agnostic Activity Descriptions for Each Type of Vehicle

Activity Action by UGS Action by Multi-
Rotor UAS

Action by Fixed
Wing UAS

Perform
Launch

Start Driving Initialize propellers.
Lift off of ground and
hover at designated
altitude and position.

Perform a hand
launch or rolling
launch and fly in
a helix until the
designated altitude
is reached.

Perform
Recovery

Start Driving Transit to the land-
ing site. Hover over
landing site. Reduce
altitude until vehicle
touches down. Stop
propellers.

Transit to the land-
ing site. Reduce
altitude and speed.
Land the UAS in the
landing area.

Perform idle
maneuver

Stop driving. Stop all movement
and hover at the de-
sired position or per-
form a circular loiter
around the location.

Perform a circular
loiter maneuver
around the specified
location.

Perform go to
location

Drive to the location
and perform an idle
maneuver

Fly to location and
perform an idle ma-
neuver.

Fly to location and
perform an idle ma-
neuver.

4.3 System Elements and Functions

The SV-1 is a graphical representation of the physical architecture. This repre-

sentation displays the allocation of components to sub-systems and the information

exchanged between components. This diagram will also aid in ensuring each compo-

nent can receive the specified data type.

42

Figure 15 depicts the SV-1 view for the desired system. Each element depicted

is either directly responsible for one or more of the activities described in the OV-

5a, or is required to aid other elements in the accomplishment of their activities.

These elements which aid other elements in accomplishing their activities include the

COM port, Monitor, and mouse and keyboard. These specific elements aid both the

operator and communication transceiver with passing commands and information to

and from the GCS computer and GCS software.

From this diagram, the operator provides inputs to the GCS via the keyboard

and mouse, and receives information from the GCS via the monitor. The GCS sends

commands and receives telemetry from each vehicle via the GCS communication

transceiver. Each communication transceiver is on a network with the other com-

munication transceivers. This configuration is required to allow one vehicle to act

as a relay vehicle if the other is out of range of the GCS. This case can be shown

by breaking the information passage between the GCS and vehicle 1. Due to the

networked communication transceivers, information being passed across this link can

still be passed through the vehicle 2 communication transceiver to the GCS. Each

vehicle is identical except for the telemetry and commands sent to the autopilot. This

is displayed this way to show that no processing is accomplished on the vehicle, and

only commands addressed to the vehicle will reach it’s autopilot. Finally, in each

vehicle, the autopilot provides actuation commands to each component and receives

GPS position information from the GPS receiver.

43

Figure 15. SV-1: System Interface Description.

44

The elements of the SV-1 are also defined by the system functions they perform.

These elements are further refined into the system functions they perform in the

SV-4 of Figure 16. Table 5 describes each of these functions based on the system

element that performs the function, the required input, and the resulting output of

each function.

Figure 16. SV-4: System Functionality Description.

45

Table 5. System Function Descriptions

Function System Element Input Output
Plan Mission Operator Mission specific re-

quirements
Planned mission to
be written to an au-
topilot

Send Command GCS Software Command to be sent
and address of recip-
ient

Command is sent to
recipient

Write Mission GCS Software Mission to be written
to autopilot

Confirmation that
mission was written
to autopilot

Perform Calcula-
tion

GCS Software Required informa-
tion for calculation
to be performed

Commanded position
to be sent to vehicle

Display Informa-
tion

Monitor Information from
GCS to be displayed

Information is dis-
played

Receive User In-
put

Mouse and Keyboard User mouse or key-
board input

Command in GCS
software

Receive Informa-
tion

Communication
Transceiver

Information from
sender and address
of recipient

Information is re-
ceived

Send Information Communication
Transceiver

Information and ad-
dress of recipient

Information is sent

Pass Information Communication
Transceiver

COM Port Information from
sender to be passed
and the address of
the recipient Infor-
mation is passed to
recipient

Perform Com-
mand

Autopilot Command from GCS Vehicle actuator sig-
nals

Perform Steady
Level Movement

Autopilot Sensor measurements Vehicle actuator sig-
nals

Provide Navi-
gation Measure-
ment

GPS- Compass GPS signal and mag-
netic North signal

Sensor measurement

Move Vehicle Maneuvering Com-
ponents and Primary
Propelling Compo-
nent

Vehicle actuator sig-
nals

Vehicle movement

46

To ensure all of the operational activities are being completed by system elements,

the SV-5a in Table 17 is used to map operational activities depicted in the OV-5a

to system functions depicted in the SV-4. This view is used to both ensure each

activity is able to be performed and ensure there are no extraneous components

either completing the same activities or completing non required activities.

47

Figure 17. SV-5a: System Function Traceability Matrix.

48

4.4 Chapter Summary

In this chapter, architectural views were created to articulate the development

of the system architecture to perform the conceptual operations described in the

AV-1, OV-1, and brief use cases. First, multiple OV-5b views were developed to

depict the logical sequence of activities required to perform the formation flocking

and communication relay use cases. An OV-5a was also created to depict all of the

activities depicted in the individual OV-5b views and how they related to the higher

level operation of the system. An SV-1 and SV-4 were then developed to depict the

system elements and functions required to accomplish the activities of the OV-5a and

how these elements interact. Finally, an SV-5a was created to ensure each activity is

being completed by a system function.

49

V. Results

5.1 Chapter Overview

In this section, the hardware and software selected to fulfill the roles and perform

the functions developed in the previous chapter are discussed. Then, the C2 scripts

to perform the formation flight and communication relay scenarios described in the

previous chapter are developed. Finally, the results of the tests performed to validate

and quantify the abilities of the system are outlined and analyzed.

5.2 Selected Hardware and Software

Communication System.

The Wave Relay MANET communication system was selected as the C2 link

between the GCS and each vehicle. This COTS system utilizes a 2.3 GHz to 2.5 GHz

radio frequency at up to 2.0 Watts to communicate with other nodes on the same IP

network. The routing path for each link is optimized in real time based on the GPS

location of each node and other factors proprietary to the system. Each node has the

capability of routing data from other nodes to the desired IP address. This capability

gives the system the ability to relay the C2 link from the GCS to a remote vehicle

through an intermediate relay vehicle. An IP to TTL converter is used to convert the

information being passed between the IP based Wave Relay node and the TTL based

telemetry port of the autopilot. Additionally, this converter provides the autopilot

with an IP address, allowing the GCS to connect via UDP or a virtual COM port.

Command and Control Software.

The command line based GCS software MAVProxy was selected as this system’s

primary GCS. This open source GCS software utilizes the MAVLink protocol to

50

communicate with the vehicle’s autopilot through the C2 link. MAVProxy does not

require a GUI like other GCS software, which reduces the processing power required

and allows the GCS to run faster than other GUI based GCS. Also, this GCS software

utilizes modules which increase the capabilities of the baseline GCS software. The

one module used in this system is DroneAPI, which enables the GCS to achieve

higher levels of autonomy through the use of Python 2.7 C2 scripts. These scripts

allow the GCS to send go to here commands to its vehicle, receive telemetry data,

and manipulate this information through the use of the full suite of tools available

in Python 2.7. One downfall of this GCS and module is it does not allow one GCS

and module pair to control more than one vehicle. Due to this, each vehicle requires

its own instance of MAVProxy running DroneAPI. Finally, this GCS is also capable

of sharing the vehicle’s telemetry and command authority with other GCS software.

On initialization, an IP socket is created to pass and receive this information. For

the purposes of meeting requirements outlined in the AFIT Military Flight Release,

Mission Planner is used as a heads up display for each vehicle during testing.

Autopilot.

The Pixhawk autopilot was selected to perform the autopilot element functions

described in the previous chapter. This autopilot is composed of an open source

chip set which utilizes inner loop stability control and outer loop waypoint navigation

control algorithms to allow vehicles to perform autonomous missions. These inner

and outer loop controllers fulfil the required maintain steady level movement function

described in the previous chapter.

One method of waypoint control used by this autopilot is the guided waypoint,

which is a single point that the vehicle will navigate to. Additionally, this waypoint

can be sent from the C2 script to produce an updated navigation path for the vehicle.

51

The Pixhawk utilizes the MAVLink protocol, commonly used on many different

open source ground control stations and Autopilots. This protocol allows the autopi-

lot to both receive commands from the GCS and transmit telemetry down to the

GCS. This functionality fulfills the receive command and send telemetry functions

described in the previous chapter.

Another function of this autopilot is the ability to store missions from the GCS and

perform stored missions. Waypoint based missions can be written to the autopilot’s

internal storage, allowing the autopilot to perform these missions when commanded

to by the GCS.

Vehicles.

One of the goals of this system is to have the ability to control any small unmanned

vehicle platform including UGS, multi-rotor UAS, and fixed wing UAS. Three COTS

RC vehicles were chosen to fill these roles and each vehicle was retrofitted with the

autopilot, sensors, and communication node described above. For the autopilot, each

vehicle received a 3DR GPS/Compass. For the communication system, each vehicle

received a GPS receiver, a 2.3 GHz to 2.5 GHz antenna, and an Ethernet to TTL

converter.

For the UGS, as shown in Figure 18, a Traxxas E-Maxx RC truck was retrofitted

with a component shelf which sits on the chasse of the vehicle.

52

Figure 18. Traxxas E-Maxx UGS.

For the UAS multi-rotor aircraft, as shown in Figure 19, a 3DR X8 Octo-copter

was used with no modifications to the base airframe.

53

Figure 19. 3DR X8 Multi-Rotor UAS.

For the fixed wing UAS, as shown in Figure 20, a Banana Hobby Supper Sky

Surfer was used. For this airframe, the rear control surface servos were moved from

the center fuselage back to the tail, reducing the length and allowable bending of the

wire connecting the servo arm to the surface control limb. Additionally, the Electronic

Speed Control (ESC) was mounted to the bottom of the aircraft to increase the airflow

across it and to reduce the space used in the fuselage.

54

Figure 20. Super Sky Surfer Fixed Wing UAS.

5.3 Command and Control Software Development

After developing the system architecture and choosing the componentry required,

it was discovered MAVProxy’s DroneAPI module does not have the ability to control

multiple vehicles from one C2 script. Due to this, each vehicle is controlled by its

own instances of MAVProxy and DroneAPI C2 script. This section develops the

methods of calculating the commanded position used to perform formation flocking

and communication relay through the DroneAPI C2 scripts.

Commanding one vehicle to move to a specified point relative to the other vehicle is

accomplished by sending a guided waypoint command from the GCS. This waypoint

command progresses through two control states. The first control state forces the

vehicle to change its ground course to navigate to the waypoint. The second state

forces the vehicle to perform a loiter maneuver at the point. Depending on the type

55

of vehicle and rules set on the vehicle’s autopilot, the vehicle will either stop inside

a predesignated radius circle around the point or maneuver through the circle and

performing a circle maneuver. In the case of the communication relay, it is desired

the relay vehicle reaches this final state if no new positions are being sent.

In the case of maintaining formation during flight, it is desired the follower not

perform a circle maneuver, as it would force the vehicle out of formation. In the case

of the UGS and multi-rotor, the vehicle can stop in the circle and not inflict position

error. However, the fixed wing aircraft is required to continue moving to maintain

flight and will perform circular loiters, which can induce position error from the plane

flying out of formation. This act of flying out of formation changes both the plane’s

heading and position, possibly also making it more difficult to recover the formation.

Placing the waypoint forward of the desired position makes it less likely that the

follower will reach the waypoint, and therefore reduces the probability of entering

the final control state. An additional benefit of placing the waypoint forward of the

desired position is it forces the follower to cut inside corners and catch up with a

leader vehicle if it is out of range.

To avoid the end state described, the waypoint is placed forward of the desired

position of the follower in the direction of the leaders ground course. The ground

course is used to negate the effects of side slip with the multi-rotor and fixed wing

UAS. Also, altitude will not be taken into account, as it will be fixed allowing each

vehicle to operate freely in its own altitude plane without interference. Figure 21

depicts this method of control and is used to calculate the commanded waypoint. In

this figure, the offset radius (rOffset) is the radial distance from the desired follower

position to the leader vehicle’s position, the offset angle (θOffset) is the angular offset

from the leader’s ground course vector, the L1 offset (L1) is the forward offset along

the leader’s ground course vector, and the ground course angle (θGC) is the angle of

56

the ground course vector of the leader vehicle relative to north.

Figure 21. Follower Commanded Position Calculation Method.

One down side to a constant L1 forward offset is that the follower is always com-

manded to fly ahead of its desired position. If the lead vehicle stops moving or slows,

the follower will fly ahead of its desired position, forcing it out of formation. To mit-

igate this, the L1 forward offset is defined as a function of the lead vehicles ground

course velocity and a lead time constant, denoted as L1t. The forward offset is now

defined as the product of the ground course velocity and lead time constant. With

this function, if the lead vehicle reaches a ground course velocity of zero, the follower

will be commanded to maneuver directly to its desired position.

One python script for each vehicle is required to accomplish this method of control

due to the required use of two instances of MAVProxy. For the case of formation flight,

57

these scripts consist of one leader sever script and one follower client script. For the

case of the communication relay scenario, these scripts consist of one remote vehicle

sever script and one relay vehicle client script.

The purpose of the leader server script is to acquire the position, ground course,

and velocity of the leader vehicle, and provide that information to the follower client

script through a UDP socket. The ground course is calculated using the vehicle’s

velocity in the X, Y, and Z directions relative to the body frame due to DroneAPI’s

inability to obtain the ground course directly from the vehicle’s telemetry stream.

The ground course of the vehicle is then rotated to be relative to North, the vehicle’s

position in latitude and longitude is provided relative to the geodetic frame (WGS-

84), and the altitude is provided relative to the launch point of the vehicle. The

python script created to perform this operation is contained in Appendix A

The purpose of the follower client script is to receive the information outlined from

the leader server script through a UDP socket, calculate the next waypoint to send to

the follower, and send the waypoint command to the follower autopilot. The python

script created to receive the leader’s information, call the offset position function,

and send the resulting position to the follower autopilot is contained in Appendix B.

The python function created to perform the commanded offset position calculation is

contained in the function follower pos in Appendix C.

The purpose of the remote vehicle sever script for communication relay is similar

to the leader server script, with the difference being the information obtained and sent

only includes the position of the remote vehicle. Also, for purposes of determining

the midpoint for the relay vehicle to maintain, on starting the remote vehicle server

script, the vehicle’s first position is obtained and used as the position of the GCS.

This script is contained in Appendix D.

The purpose of the relay client script is similar to the follower client script, with

58

the difference being the calculation performed to determine the desired position of the

relay vehicle. The relay client script contained in Appendix E receives the leader’s

information, calls the position function, and sends the guided waypoint command.

The position is determined by finding the midpoint between the GCS and remote

vehicle, and is contained in the function relay pos in Appendix C.

The rate at which both of these scripts run is governed to control the amount of

information stored in the UDP buffer. It was found during initial tests that if the

server script is run at a higher rate than the client script, the buffer will get filled,

causing the client script to send commands based on old information. For this reason,

the client script is always run at twice the rate of the server to ensure the buffer does

not fill.

5.4 Formation Flocking Test Results and Analysis

In this section, the results of the formation flocking tests outlined in the methodol-

ogy section are discussed and analyzed. For these analyses, both the absolute position

of each vehicle and the relative position error in meters will be used to display the

collected data. The absolute position displayed in meters at a local level will be used

to identify behavioral traits of the system while performing formation flocking, while

the relative position error is used to quantify the system’s abilities. The relative posi-

tion error is determined and displayed using the radial distance between the follower’s

position and the follower’s desired position relative to the leader. Also, the relative

position error of the follower forward and right of the desired position relative to the

leader’s ground course is also displayed. These values are displayed at a higher level

of precision than the GPS receiver can provide because the measurements are taken

after the combination of the IMU and GPS solutions in the Kalman filter. For all

tests except the fixed wing UAS tests, the position error will be calculated after the

59

follower has stabilized its position, typically about 50 seconds after the follower script

is initiated. For all tests, the lead vehicle performs the specified path counter clock-

wise. Also, the GCS and GCS communication node was located on the East edge of

each leader’s path for all tests. All other test specific incidences or interferences will

be outlined in each test’s section.

UGS Following Multi-Rotor UAS.

The first set of tests performed included a team composed of an UGS in the role of

the follower and a multi-rotor UAS in the role of the leader. This test was performed

as described in the methodology section, with the exception of not performing circular

paths. This change was caused by a time constraint while testing and the inability of

the particular multi-rotor used to perform circular paths. The test parameters listed

in Table 6 were varied with an offset radius of 2m and an offset angle of 0o.

Table 6. UGS Following Multi-Rotor UAS Test Parameter Matrix

Test Number Flight Path L1t

1 Box 0s

2 Box 1s

3 Box 2s

Test 1: Box Path, L1t = 0s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 0s forward offset lead time. As shown in Figure 22, after

allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 3.43m with a standard deviation of 2.23m and a DRMS of

3.46m. Additionally, as shown in Figure 23, the system achieved mean forward and

60

right errors of -0.88m and 0.62m with standard deviations of 3.25m and 2.26m and

DRMS of 2.84m and 1.98m. Figure 24 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 22. UGS Following Multi-Rotor UAS Test 1 Radial Position Error.

Figure 23. UGS Following Multi-Rotor UAS Test 1 Forward-Right Position Error.

61

Figure 24. UGS Following Multi-Rotor UAS Test 1 Vehicle Position.

Test 2: Box Path, L1t = 1s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 1s forward offset lead time. As shown in Figure 25, after

allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 1.32m with a standard deviation of 0.83m and a DRMS of

1.40m. Additionally, as shown in Figure 26, the system achieved mean forward and

right errors of 0.19m and 0.22m with standard deviations of 1.28m and 0.85m and

DRMS of 1.16m and 0.79m. Figure 27 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

62

Figure 25. UGS Following Multi-Rotor UAS Test 2 Radial Position Error.

Figure 26. UGS Following Multi-Rotor UAS Test 2 Forward-Right Position Error.

63

Figure 27. UGS Following Multi-Rotor UAS Test 2 Vehicle Position.

Test 3: Box Path, L1t = 2s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 2s forward offset lead time. As shown in Figure 28, after

allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 2.97m with a standard deviation of 1.70m and a DRMS of

2.79m. Additionally, as shown in Figure 29, the system achieved mean forward and

right errors of 0.13m and 0.74m with standard deviations of 2.53m and 2.18m and

DRMS of 2.07m and 1.88m. Figure 30 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from

the leader. During the test it was noted that the UGS would drive ahead of the

64

multi-rotor and stop, indicating it reached the waypoint and was waiting for a new

command.

Figure 28. UGS Following Multi-Rotor UAS Test 3 Radial Position Error.

Figure 29. UGS Following Multi-Rotor UAS Test 3 Forward-Right Position Error.

65

Figure 30. UGS Following Multi-Rotor UAS Test 3 Vehicle Position.

Team Analysis.

For this heterogeneous vehicle combination, the L1t value of 1s resulted in the

lowest position error for both the accuracy and precision measures. From this, it

can be concluded that this team performs straight line paths with a higher level of

positional accuracy and precision with this value of L1t. The resulting measurements

are summarized in Table 7 below.

66

Table 7. UGS Following Multi-Rotor UAS Test Results

Forward Error (m) Right Error (m) Position Error (m)

Test µ σ DRMS µ σ DRMS µ σ DRMS

1 -0.88 3.25 2.84 0.64 2.26 1.98 3.43 2.23 3.46

2 -0.19 1.28 1.16 0.22 0.85 0.79 1.32 0.83 1.40

3 -0.13 2.53 2.07 0.74 2.18 1.88 2.97 1.70 2.79

One reoccurring issue seen during this test is the UGS’s inability to maintain a

low enough velocity to not drive past the desired position. This is caused by the

motor and transmission’s inability to provide the higher torque required to move at

slower speeds, which for this specific platform is seen at velocities below 1.5 m/s.

These factors also cause the vehicle to accelerate quickly from a stopped position.

Additionally, the autopilot cannot command the vehicle to reverse or break, meaning

if the vehicle comes to a point it needs to stop at, the autopilot reduces the throttle

to zero and the vehicle rolls to a stop. The combination of these three factors cause

the system to induce position error by driving or rolling past the desired positions.

Additional error is accrued due to the method the UGS uses to maneuver, meaning

performing circular turns to change heading. After the previous issues occur and no

new waypoint is received, the vehicle will perform a turning maneuver to navigate

back to the passed point. This method of maneuvering can also induce errors at

corners as seen at the North West corner at points 81 and 129 of Figure 24. At these

corners, the vehicle drove through the commanded point, and after turning to the

right to maneuver back to the point, received a new point further down the next leg

of the path. This occurrence causes the vehicle to perform the equivalent of three

right hand turns verse one left hand turn.

These errors are also shown to be induced more at corners, as indicated in the

67

spike in radial position error for tests 1 and 3. For test 1, three spikes in error occur at

the North West corner and are due to the vehicle performing three right hand turns

instead of performing a single left hand turn. For test 3, these spikes in error are also

induced by the vehicles inability to perform a single left hand turn at the corners.

Test 2 does not have noticeable spikes in error at corners due to the higher frequency

of spikes across the entire time, which occurs at both turns and straight paths.

Finally, from the accuracy and precision measures for the forward and right errors,

the system has less ability to maintain forward position opposed to right position.

For each test, the standard deviation and DRMS of the right error are on average

0.59m and 0.48m lower than that of the forward error. However, as the L1t increases,

the forward mean error decreases, with no noticable trend in either dirrection for

the standard deviation or DRMS. This means that the error ellipse formed by the

standard deviation is centered closer to the desired location for higher values of L1t.

Multi-Rotor UAS Following UGS.

The next set of tests performed included a team composed of a multi-rotor UAS in

the role of the follower and a UGS in the role of the leader. This test was performed

as described in the methodology section, with the test parameters listed in Table 10

varied with an offset radius of 2m and an offset angle of 0o. This test was performed

in winds between 8 knots and 11 knots at between 170o and 210o.

68

Table 8. Multi-Rotor UAS Following UGS Test Parameter Matrix

Test Number Flight Path L1t

1 Box 0 s

2 Box 1 s

3 Box 2 s

4 Circle 0 s

5 Circle 1 s

6 Circle 2 s

Test 1: Box Path, L1t = 0s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 0s forward offset lead time. The data collected had a gap

of missing information making up the majority of the first 50s, so the follower was

allotted an additional 50s to stabilize after the gap. As shown in Figure 31, after

allowing the follower to stabilize its position for 50s after the data gap, the system

achieved a mean radial position error of 4.24m with a standard deviation of 2.27m and

a DRMS of 2.27m. Additionally, as shown in Figure 32, the system achieved mean

forward and right errors of -3.19m and -1.16m with standard deviations of 2.93m and

1.89m and DRMS of 2.48m and 1.27m. Figure 33 shows the path taken by both the

leader and the follower, and the desired path of the follower based on the desired

offset from the leader.

69

Figure 31. Multi-Rotor UAS Following UGS Test 1 Radial Position Error.

Figure 32. Multi-Rotor UAS Following UGS Test 1 Forward-Right Position Error.

70

Figure 33. Multi-Rotor UAS Following UGS Test 1 Vehicle Position.

Test 2: Box Path, L1t = 1s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 1s forward offset lead time. At time 120s, a large gust of

wind blew the lead vehicle off course causing a abnormally large spike in the error.

As shown in Figure 34, after allowing the follower to stabilize its position for 50s and

discounting errors after the gust of wind at time 120s, the system accomplished a

mean radial position error of 1.59m with a standard deviation of 0.97m and a DRMS

of 1.54m. Additionally, as shown in Figure 35, the system achieved mean forward

and right errors of -0.85m and -0.17m with standard deviations of 1.29m and 0.92m

and DRMS of 0.93m and 0.56m. Figure 36 shows the path taken by both the leader

71

and the follower, and the desired path of the follower based on the desired offset from

the leader.

Figure 34. Multi-Rotor UAS Following UGS Test 2 Radial Position Error.

Figure 35. Multi-Rotor UAS Following UGS Test 2 Forward-Right Position Error.

72

Figure 36. Multi-Rotor UAS Following UGS Test 2 Vehicle Position.

Test 3: Box Path, L1t = 2s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 2s forward offset lead time. As shown in Figure 37, after

allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 0.92m with a standard deviation of 0.43m and a DRMS of

0.90m. Additionally, as shown in Figure 38, the system achieved mean forward and

right errors of -0.03m and -0.23m with standard deviations of 0.87m and 0.46m and

DRMS of 0.77m and 0.46m. Figure 39 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

73

Figure 37. Multi-Rotor UAS Following UGS Test 3 Radial Position Error.

Figure 38. Multi-Rotor UAS Following UGS Test 3 Forward-Right Position Error.

74

Figure 39. Multi-Rotor UAS Following UGS Test 3 Vehicle Position.

Test 4: Circle Path, L1t = 0s.

For this run, a 15m radius circle pattern was performed by the leader vehicle, with

the follower vehicle using a 0s forward offset lead time. During this test, the UGS

leader stopped at approximately 165s due to a malfunction in its waypoint following

operation and the operator had to manually override the truck. The reminder of the

data after this point was removed due to it not allowing an additional 50s for the

follower to stabilize. As shown in Figure 40, after allowing the follower to stabilize

its position for 50s and removing the data after 165s, the system achieved a mean

radial position error of 1.94m with a standard deviation of 0.97m and a DRMS of

1.54m. Additionally, as shown in Figure 41, the system achieved mean forward and

75

right errors of -0.50m and -0.42m with standard deviations of 1.45m and 1.47m and

DRMS of 1.09m and 1.09m. Figure 42 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 40. Multi-Rotor UAS Following UGS Test 4 Radial Position Error.

Figure 41. Multi-Rotor UAS Following UGS Test 4 Forward-Right Position Error.

76

Figure 42. Multi-Rotor UAS Following UGS Test 4 Vehicle Position.

Test 5: Circle Path, L1t = 1s.

For this run, a 15m radius circle pattern was performed by the leader vehicle,

with the follower vehicle using a 1s forward offset lead time. As shown in Figure

43, after allowing the follower to stabilize its position for 50s, the system achieved a

mean radial position error of 1.96m with a standard deviation of 1.72m and a DRMS

of 2.13m. Additionally, as shown in Figure 44, the system achieved mean forward

and right errors of -0.92m and -0.88m with standard deviations of 1.72m and 1.49m

and DRMS of 1.60m and 1.41m. There is a noticeably longer stabilization time for

this test, so after a total of 100s of stabilization the system achieved a mean position

error of 1.01m with a standard deviation of 0.45m and a DRMS of 0.68m. Figure 45

77

shows the path taken by both the leader and the follower, and the desired path of

the follower based on the desired offset from the leader.

Figure 43. Multi-Rotor UAS Following UGS Test 5 Radial Position Error.

Figure 44. Multi-Rotor UAS Following UGS Test 5 Forward-Right Position Error.

78

Figure 45. Multi-Rotor UAS Following UGS Test 5 Vehicle Position.

Test 6: Circle Path, L1t = 2s.

For this run, a 15m radius circle pattern was performed by the leader vehicle,

with the follower vehicle using a 2s forward offset lead time. With 50s of stabilization

removed, there are two large plateaued spikes in error caused again by a malfunction

in the leader vehicle’s waypoint following operation, which caused the vehicle to

accelerate quickly after each circuit. The leader (UGS) telemetry stored during the

test showed a significant spike in velocity at times 76s and 138s, which went past the

cruise velocity of 1.5 m/s set on the auto pilot and matches the beginning of each

plateau. Figure 46 shows the position error with these plateaus removed up to the

79

point of the vehicle recovering a stabile position, representing the best estimate for the

mean and standard deviation for this configuration with no malfunction in the leader’s

operation. Before removing these errors the system achieved a mean position error

of 6.22m with a standard deviation of 5.2m. After removing these error plateaus, the

mean position error dropped to 1.47m with a standard deviation 1.01m and a DRMS

of 1.34m. Additionally, as shown in Figure 47, the system achieved mean forward and

right errors of -3.50m and 5.28m with standard deviations of 3.89m and 4.15m and

DRMS of 3.03m and 4.18m. This measure does appear to be reasonable based on the

close results of the two previous tests. However, this measure does have a lower level

of confidence due to the manipulation of the data described and the reduced number

of data points available. Figure 48 shows the path taken by both the leader and the

follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 46. Multi-Rotor UAS Following UGS Test 6 Radial Position Error.

80

Figure 47. Multi-Rotor UAS Following UGS Test 6 Forward-Right Position Error.

Figure 48. Multi-Rotor UAS Following UGS Test 6 Vehicle Position.

81

Team Analysis.

For this heterogeneous team, an L1t value of 2s with the leader performing a box

path resulted in the lowest radial mean position error and standard deviation. For

this path, as L1t increased, the mean position error, standard deviation, and DRMS

decreases. The opposite was indicated for a circular path, which an L1t value of 0s

produced the best results in the forward and right directions, with the radial position

results varying only. Also, it is shown that as L1t increases, the mean position error,

standard deviation, and DRMS increase. The resulting measurements are summarized

in Table 9 below.

Table 9. Multi-Rotor UAS Following UGS Test Results

Forward Error (m) Right Error (m) Position Error (m)

Test µ σ DRMS µ σ DRMS µ σ DRMS

1 -3.19 2.93 2.48 -1.16 1.89 1.27 4.24 2.27 2.27

2 -0.85 0.87 0.93 -0.17 0.92 0.56 1.59 0.85 1.08

3 -0.03 0.87 0.77 -0.23 0.46 0.46 0.92 0.43 0.90

4 -0.50 1.45 1.09 -0.42 1.47 1.09 1.94 0.97 1.54

5 -0.92 1.72 1.60 -0.88 1.49 1.41 1.96 1.72 2.13

6 -1.15 2.97 0.97 -1.86 4.06 0.92 1.47 1.01 1.34

Based on the results for the box pattern, this team performs straight line paths

with a higher level of accuracy and precision for higher values of L1t. One possible

cause of this is as L1t increases, the follower will cut inside corners more due to the

commanded point being projected further forward from the follower’s desired position.

Also, with the point projected further, the follower has more time to maneuver to the

point, as opposed to closer points which may require the follower to perform more

82

drastic maneuvers.

The team’s ability to perform curved paths is, however, inversely affected by higher

values of L1t based on the results for the circle pattern. As the value of L1t increases,

the path created by the commanded points becomes larger than the path of the lead

vehicle. This increased path radius causes the follower vehicle to fall behind due to

each vehicle having a common cruise velocity.

Unlike a UGS or fixed wing aircraft, the method the multi-rotor airframe uses to

maneuver allows the vehicle to move in any direction without performing turns. If

the vehicle flies past a waypoint or is commanded to fly to a point off of the current

ground course, it can simply pitch or roll in either direction to maneuver to the point.

Due to this higher level of maneuverability, the vehicle is able to achieve a higher level

of precision and accuracy when acting as the follower vehicle.

One possible cause of error can be seen at the corners of the box patter for L1t

values greater than zero. As the UGS makes the turns, the desired follower position

swings outside the box, creating an elbow on each corner. The higher this value gets,

the more the elbow protrudes off the path, which can most easily be seen in Figure

39. The added length to the flight path can force the vehicle to fall behind. However,

due to reasons stated above, the follower does cut some corners instead of following

this path, allowing the follower to catch up instead of fall behind on the longer elbow

path.

Finally, from the accuracy and precision measures for the forward and right errors,

the system has less ability to maintain forward position opposed to right position

while performing straight paths, as indicated by the box patern. For the box tests,

the standard deviation and DRMS of the right error are on average 0.61m and 0.63m

lower than that of the forward error. Also, as the L1t increases, the forward mean

error, standard deviation, and DRMS decreased. This means that the error ellipse

83

formed by both the standard deviation is centered closer to the desired location for

higher values of L1t. The opposite was seen for the loiter tests, which indicate as this

value increase, the center of the error ellipse migrates further away from the desired

position.

Multi-Rotor UAS Following Multi-Rotor UAS.

The next set of test performed included a team composed of two multi-rotor UAS

fulfilling the roles of both leader and follower. This test was performed as described

in the methodology section, with the test parameters listed in Table 10 varied for an

offset radius of 2m and an offset angle of 45o. The purpose of the 45o offset is to

avoid wind interference on the part of the lower altitude follower from the leader’s

downward thrust. This test was performed in winds at approximately 8 knots at 180o.

Table 10. Multi-Rotor UAS Following Multi-Rotor UAS Test Parameter Matrix

Test Number Flight Path L1t

1 Box 0 s

2 Box 1 s

3 Box 2 s

4 Circle 0 s

5 Circle 1 s

6 Circle 2 s

After testing was complete, an error was found in the method of calculating the

offset position when using an angular offset and a L1t greater than zero. This error

caused the commanded waypoint to not be placed forward of the follower’s desired

position in the direction of the leader’s ground course. This error does not effect

the data presented which use an offset of 45o and a L1t equal to zero. Due to this

84

issue, the mean error is expected to be higher than previous tests, but the standard

deviation should still represent the team’s ability to hold an accurate formation. The

corrected follower script with this issue fixed is contained in Appendix F.

Test 1: Box Path, L1t = 0s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 0s forward offset lead time. As shown in Figure 49, after

allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 3.45m with a standard deviation of 1.11m and a DRMS of

2.97m. Additionally, as shown in Figure 50, the system achieved mean forward and

right errors of -1.76m and 0.60m with standard deviations of 1.58m and 1.62m and

DRMS of 1.94m and 1.41m. Figure 51 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 49. Multi-Rotor UAS Following Multi-Rotor UAS Test 1 Radial Position Error.

85

Figure 50. Multi-Rotor UAS Following Multi-Rotor UAS Test 1 Forward-Right Posi-
tion Error.

Figure 51. Multi-Rotor UAS Following Multi-Rotor UAS Test 1 Vehicle Position.

86

Test 2: Box Path, L1t = 1s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 1s forward offset lead time. During the test, the safety pilot

of the follower vehicle performed a manual override and moved the vehicle off course.

As shown in Figure 52, after allowing the follower to stabilize its position for 50s

after the manual override, the system achieved a mean radial position error of 3.08m

with a standard deviation of 0.63m and a DRMS of 1.77m. Additionally, as shown in

Figure 53, the system achieved mean forward and right errors of -1.80m and 0.70m

with standard deviations of 1.18m and 0.85m and DRMS of 1.21m and 0.62m. Figure

54 shows the path taken by both the leader and the follower, and the desired path of

the follower based on the desired offset from the leader.

Figure 52. Multi-Rotor UAS Following Multi-Rotor UAS Test 2 Radial Position Error.

87

Figure 53. Multi-Rotor UAS Following Multi-Rotor UAS Test 2 Forward-Right Posi-
tion Error.

Figure 54. Multi-Rotor UAS Following Multi-Rotor UAS Test 2 Vehicle Position.

88

Test 3: Box Path, L1t = 2s.

For this run, a 15m box pattern was performed by the leader vehicle, with the

follower vehicle using a 2s forward offset lead time. As shown in Figure 55, after

allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 2.85m with a standard deviation of 1.32m and a DRMS of

2.53m. Additionally, as shown in Figure 56, the system achieved mean forward and

right errors of -1.00m and 0.49m with standard deviations of 1.33m and 1.29m and

DRMS of 1.34m and 1.11m. Figure 57 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 55. Multi-Rotor UAS Following Multi-Rotor UAS Test 3 Radial Position Error.

89

Figure 56. Multi-Rotor UAS Following Multi-Rotor UAS Test 3 Forward-Right Posi-
tion Error.

Figure 57. Multi-Rotor UAS Following Multi-Rotor UAS Test 3 Vehicle Position.

90

Test 4: Circle Path, L1t = 0s.

For this run, a 10m radius circle pattern was performed by the leader vehicle,

with the follower vehicle using a 0s forward offset lead time. As shown in Figure 58,

after allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 5.08m with a standard deviation of 2.16m and a DRMS of

4.17m. Additionally, as shown in Figure 59, the system achieved mean forward and

right errors of -2.92m and 0.81m with standard deviations of 1.92m and 2.25m and

DRMS of 2.64m and 1.80m. Figure 60 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 58. Multi-Rotor UAS Following Multi-Rotor UAS Test 4 Radial Position Error.

91

Figure 59. Multi-Rotor UAS Following Multi-Rotor UAS Test 4 Forward-Right Posi-
tion Error.

Figure 60. Multi-Rotor UAS Following Multi-Rotor UAS Test 4 Vehicle Position.

92

Test 5: Circle Path, L1t = 1s.

For this run, a 10m radius circle pattern was performed by the leader vehicle,

with the follower vehicle using a 1s forward offset lead time. As shown in Figure 61,

after allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 3.94m with a standard deviation of 1.68m and a DRMS of

3.51m. Additionally, as shown in Figure 62, the system achieved mean forward and

right errors of -2.54m and 0.01m with standard deviations of 1.56m and 1.18m and

DRMS of 2.44m and 0.96m. Figure 63 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 61. Multi-Rotor UAS Following Multi-Rotor UAS Test 5 Radial Position Error.

93

Figure 62. Multi-Rotor UAS Following Multi-Rotor UAS Test 5 Forward-Right Posi-
tion Error.

Figure 63. Multi-Rotor UAS Following Multi-Rotor UAS Test 5 Vehicle Position.

94

Test 6: Circle Path, L1t = 2s.

For this run, a 10m radius circle pattern was performed by the leader vehicle,

with the follower vehicle using a 2s forward offset lead time. As shown in Figure 64,

after allowing the follower to stabilize its position for 50s, the system achieved a mean

radial position error of 4.47m with a standard deviation of 2.29m and a DRMS of

3.67m. Additionally, as shown in Figure 65, the system achieved mean forward and

right errors of -2.44m and 0.67m with standard deviations of 1.78m and 1.97m and

DRMS of 2.21m and 1.52m. Figure 66 shows the path taken by both the leader and

the follower, and the desired path of the follower based on the desired offset from the

leader.

Figure 64. Multi-Rotor UAS Following Multi-Rotor UAS Test 6 Radial Position Error.

95

Figure 65. Multi-Rotor UAS Following Multi-Rotor UAS Test 6 Forward-Right Posi-
tion Error.

Figure 66. Multi-Rotor UAS Following Multi-Rotor UAS Test 6 Vehicle Position.

96

Team Analysis.

For this homogeneous team, an L1t value of 1s with the leader performing a box

path resulted in the lowest standard deviations and DRMS of the error, with the

lowest mean error being seen for an L1t value of 2s. Similarly for a circular path, an

L1t value of 1s produced the best results for the radial position error. These results

indicate this team performs straight and curved paths with a higher level of precision

and accuracy with this value of L1t. The resulting measurements are summarized in

Table 11.

Table 11. Multi-Rotor UAS Following Multi-Rotor UAS Test Results

Forward Error (m) Right Error (m) Position Error (m)

Test µ σ DRMS µ σ DRMS µ σ DRMS

1 -1.76 1.58 1.94 0.60 1.62 1.41 3.45 1.11 2.97

2 -1.80 1.18 1.21 0.70 0.85 0.62 3.08 0.63 1.77

3 -1.00 1.33 1.34 0.49 1.29 1.11 2.85 1.32 2.53

4 -2.92 1.92 2.64 -0.81 2.25 1.80 5.08 2.16 4.17

5 -2.54 1.56 2.44 -0.01 1.18 0.96 3.94 1.68 3.51

6 -2.44 1.78 2.21 -0.67 1.97 1.52 4.47 2.29 3.67

As shown in the position plots for each test point, the follower’s ground track

noticeably varied from the desired follower position ground track. One known cause

for this is the error in the method of calculating the commanded follower position

described previously. However, another possible cause of this variation is the combi-

nation of identical vehicle cruse velocities and the difference in length of the desired

follower ground track and leader ground track. Due to the follower’s desired ground

track on the outer circuit being longer than the leader’s inner circuit, the follower

97

would have to fly at a higher ground speed than the leader around turns to maintain

the desired separation. However, this is partially overcome by the follower cutting

inside corners as the commanded point is placed further to the left after the leader

turns. This allows the follower to gradually regain a similar ground track, as shown

in Figure 51 at the North East corner at point 136. Due to the first cause of error

stated not effecting tests with values of L1t equal to zero, it is likely the second cause

of error producing variations for both tests 1 and 4. For all other tests the product

of variation is likely a combination of both causes.

Based on the previous team’s results consisting of a multi-rotor UAS following

a UGS leader and based on how well the vehicles visually maintained separation

during the flight test, it is expected that a team consisting of two multi-rotor UAS

would perform as well or better. It is likely this is true due to their shared flight

characteristics which allow the airframe to maneuver in any direction.

Finally, from the accuracy and precision measures for the forward and right errors,

the system has less ability to maintain forward position opposed to right position

while performing straight paths, as indicated by the box patern. For the box tests,

the standard deviation and DRMS of the right error are on average 0.11m and 0.45m

closer to zero than that of the forward error. However, as the L1t increases, the

forward mean error decreased. This means that the error ellipse formed by both the

standard deviation is centered closer to the desired location for higher values of L1t.

No corrilation of this kind is seen for the loiter tests.

Fixed Wing UAS Following Fixed Wing UAS.

The next set of tests performed included a team composed of two fixed wing UAS

fulfilling both the leader and follower roles. This test was performed as described

in the methodology section with the exception of the leader performing the loiter

98

due to time constraints. The test parameters listed in Table 12 were varied for an

offset radius of 10m and an offset angle of 0o. This test was performed in winds at

approximately 11 knots at 180o.

Table 12. Fixed Wing UAS Following Fixed Wing UAS Test Parameter Matrix

Test Number Flight Path L1t

1 Box 0 s

2 Box 1 s

3 Box 2 s

Due to the highly oscillatory behavior of the position errors calculated, a 50 second

stabilization time is not used in determining the mean, standard deviation, and DRMS

of the data set.

Test 1: Box Path, L1t = 0s.

For this run, a box pattern was performed by the leader vehicle, with the follower

vehicle using a 0s forward offset lead time. As shown in Figure 67, for the full duration

of the test, the vehicle accomplished a mean radial position error of 118.82m with a

standard deviation of 64.96m and a DRMS of 135.38m. Additionally, as shown in

Figure 68, the system achieved mean forward and right errors of -60.57m and 74.31m

with standard deviations of 65.87m and 69.45m and DRMS of 89.42m and 101.65m.

Figure 69 shows the path taken by both the leader and the follower, and the desired

path of the follower based on the desired offset from the leader.

99

Figure 67. Fixed Wing UAS Following Fixed Wing UAS Test 1 Radial Position Error.

Figure 68. Fixed Wing UAS Following Fixed Wing UAS Test 1 Forward-Right Position
Error.

100

Figure 69. Fixed Wing UAS Following Fixed Wing UAS Test 1 Vehicle Position.

Test 2: Box Path, L1t = 1s.

For this run, a box pattern was performed by the leader vehicle, with the follower

vehicle using a 1s forward offset lead time. As shown in Figure 70, for the full duration

of the test, the vehicle accomplished a mean radial position error of 104.01m with a

standard deviation of 57.79m and a DRMS of 117.68m. Additionally, as shown in

Figure 71, the system achieved mean forward and right errors of -48.41m and 56.77m

with standard deviations of 72.39m and 58.06m and DRMS of 86.06m and 80.27m.

Figure 72 shows the path taken by both the leader and the follower, and the desired

path of the follower based on the desired offset from the leader.

101

Figure 70. Fixed Wing UAS Following Fixed Wing UAS Test 2 Radial Position Error.

Figure 71. Fixed Wing UAS Following Fixed Wing UAS Test 2 Forward-Right Position
Error.

102

Figure 72. Fixed Wing UAS Following Fixed Wing UAS Test 2 Vehicle Position.

Test 3: Box Path, L1t = 2s.

For this run, a box pattern was performed by the leader vehicle, with the follower

vehicle using a 2s forward offset lead time. As shown in Figure 73, for the full duration

of the test, the vehicle accomplished a mean radial position error of 121.78m with a

standard deviation of 62.11m and a DRMS of 139.11m. Additionally, as shown in

Figure 74, the system achieved mean forward and right errors of -60.26m and 74.90m

with standard deviations of 59.07m and 76.17m and DRMS of 83.93m and 106.25m.

Figure 75 shows the path taken by both the leader and the follower, and the desired

path of the follower based on the desired offset from the leader.

103

Figure 73. Fixed Wing UAS Following Fixed Wing UAS Test 3 Radial Position Error.

Figure 74. Fixed Wing UAS Following Fixed Wing UAS Test 3 Forward-Right Position
Error.

104

Figure 75. Fixed Wing UAS Following Fixed Wing UAS Test 3 Vehicle Position.

Team Analysis.

For this homogeneous team, an L1t value of 1s resulted in the lowest mean position

error, standard deviation, and DRMS. Compared to the other measures and the

seemingly erratic flight path performed by the follower vehicle, this result is not

significant. The resulting measurements are summarized in Table 13 below.

105

Table 13. Fixed Wing UAS Following Fixed Wing UAS Test Results

Forward Error (m) Right Error (m) Position Error (m)

Test µ σ DRMS µ σ DRMS µ σ DRMS

1 -60.57 65.87 89.42 -74.31 69.45 101.65 118.82 64.96 135.38

2 -48.41 72.39 86.06 -56.77 58.06 80.27 104.01 57.79 117.68

3 -60.26 59.07 83.93 -74.90 76.17 106.25 121.78 62.11 139.11

As shown in the three position plots, the follower did not maintain a ground track

that closely resembled the desired follower position’s ground track. However, the

vehicles did demonstrate a leader follower relationship. This relationship is indicated

by the follower turning primarily in the same direction as the leader and operating

in the same vicinity as the leader. Additionally, the ground course of the vehicle at

most points are either pointing in the area of the desired position, as shown at point

208 in Figure 75, or are on a path which will point in the area of the desired position,

as shown at point 115 in Figure 69.

Like the UGS, the fixed wing UAS is at a disadvantage compared to the multi-

rotor because of how it is designed to maneuver. If it is commanded to fly to a point

behind it or off the current ground course, it is required to perform a turn. However,

compared to the UGS, this effect is amplified by the speed, larger turn radius, and

the slower rate that commands are received at the extended distance from the GCS.

One indication of a slow rate of commands received and one common path error

shared by all three tests is the lobe that occurs at the North West corner of the leader’s

path. A section of the flight path from Figure 75 containing this lobe is displayed

in Figure 76 with the positions of both vehicles and the commanded position sent to

the follower vehicle shown. Starting at time step 1, the follower vehicle looks to be

106

turning towards the desired position up to time step 10, at which time it maneuvers

away from the desired flight path. The follower does not start to correct its heading

towards the desired position until after time step 16. This 6s delay is likely caused

by a weak C2 link connection, which did not allow the follower vehicle to receive

an updated command between these points. A weak C2 link is also most likely to

occur at this point, as it is one of the furthest points from the GCS communication

node, inducing fewer packets received from the GCS. The likely cause of the vehicle

performing a right turn, opposed to the desired left turn, is the autopilot was likely

commanding the vehicle to either maneuver back to a previous waypoint or to perform

a loiter around a waypoint.

Figure 76. Fixed Wing UAS Following Fixed Wing UAS Test 3 Vehicle Position NW
Corner.

107

Another possible cause of error is the method of introducing the vehicle into the

flight path. For this test, the vehicle was not flown into a specific position or in a

specific direction before starting the flocking script. This did not prep the vehicle to

enter the circuit, and perhaps forced it to take more drastic maneuvers to fly to the

correct position. An example of this can be seen in Figure 72, where the script was

initialized at point 1 with the follower in the North West corner of the path heading

West and the leader in the North East corner heading West. This caused the follower

to perform a tight left hand turn and enter the circuit going the wrong direction. An

example of the effects from a proper entrance can be seen in Figure 75 after point 185.

The vehicle flew into the circuit tangent to the ground track of the leader, allowing

the vehicle to maintain a higher level of precision for approximately 20 seconds as

shown in the error plot.

Formation Flight Analysis.

The system’s ability to control a team of two heterogeneous or homogeneous ve-

hicles to perform formation flocking was verified. The only exception to this is the

fixed wing aircraft team, which did not fully demonstrate formation flight, but did

demonstrate a leader follower relationship. The resulting mean position errors with

± one standard deviation and ± one DRMS from the mean for each test at each value

of L1t is outlined in Figure 77 below.

108

Figure 77. Formation Flocking Test Results Summary.

The effect of different L1t on the position error and standard deviation varied for

each vehicle combination and for each lead vehicle path performed. As expected,

the values of DRMS and standard deviation have a close correlation; meaning both

measures will increase or decrease together. Over all, the best performance was seen

with the multi-rotor UAS following UGS performing a box pattern with an L1t value

of 2. Both results of Box Test 1 and Box Test 2 indicate a higher correlation between

the value of L1t and the position error due to their tendency to neck down at specific

values. The other tests, however, indicate the value of L1t has less of an effect on

position error for those scenarios.

For Box Test 1, a minimum position error is indicated to exist around an L1t value

of 1s because the mean, standard deviations, and DRMS values are at their lowest at

this point. For Box Test 2, as L1t increases, the mean, standard deviation, and DRMS

decreased by 3.32 m, 1.85 m, and 1.37m respectively. Unlike its box counterpart,

Circle Test 2 indicates a maximum in position error and standard deviation for an L1t

value of one, with the standard deviation and DRMS decreasing as L1t approaches

109

zero and mean, standard deviation, and DRMS decreasing as L1t increases above

one. For the last three tests, there is a less prominent correlation between standard

deviation and L1t. For Box Test 3 as the value of L1t increased, the mean position error

decreased by 0.60m. The standard deviation and DRMS values reached a minimum

for this test at an L1t value of 1s, with increased values at the other values of L1t.

Circle test three indicates a minimum position error, standard deviation, and DRMS

for an L1t value of 1s with increasing mean, standard deviation, and DRMS for other

values of L1t. Finally, the plane tests indicate almost no correlation between L1t and

the mean and standard deviation.

One benefit seen with the UGS and multi-rotor UAS in the role of follower is this

control method’s tendency to command the follower to cut inside corners during the

box pattern. This action of cutting corners is caused by the commanded point being

placed down the next leg of the box ahead of the leader after it performs a turn.

This aids in the minimization of error, allowing the follower to take a shorter path

through the corner and catch up. However, with this decrease in forward error comes

an increase in right error due to the follower cutting the corner and going off track.

One common theme across all vehicle teams is the effect of the follower vehicle’s

method of maneuvering on the positional accuracy and precision of the system. As

indicated by the multi-rotor following a UGS performing both box and circle patterns,

the multi-rotor has the best ability to maintain a desired position relative to the

leader. This is due to the airframe’s ability to move in any direction, forwards or

backwards, and its method of loitering, which is to maintain a stationary position.

Both the UGS and fixed wing UAS are required to make turns, which can force them

off the desired path and induce more error. Finally, the fixed wing UAS is at the

biggest disadvantage due to statement above, the vehicles method of loitering which

requires it to fly in a circle around a point, and its higher operating speed which

110

reduces the amount of time the aircraft can react to a new commanded position.

The biggest issue seen during these tests is the fixed wing UAS’s inability to

maintain an offset. As stated previously, one likely cause is a weak C2 link which

decreases the percent of telemetry and command packets received, which in turn

increases the latency of the system. For this vehicle combination to operate near the

same level as the other teams the C2 link must be strengthened or the processing

must be moved on board the aircraft to reduce the number of links made.

The final problem seen across all teams is the followers lesser ability to maintain a

steady forward error. The forward and right errors for most tests indicated a greater

ability to maintain a more precise and accurate right error than forward error. This

inaccuracy and inprecision is likely due to the lack of command authority over the

ground course velocity of the vehicle. This functionality was not included in the

C2 architecture because the GCS and control module used does not allow for direct

control of the ground course velocity. However, as indicated by the results previously

discussed, the method of control used does allow for increased precision and accuracy

of forward position for varying values of L1t depending on the team and path taken.

5.5 Communication Relay Test Results and Analysis

In this section, the results of the communication relay tests outlined in the method-

ology section are discussed and analyzed. Both the absolute position of each vehicle at

a local level in meters and the relative position error in meters will be used to display

the collected data. The absolute position will be used to identify behavioral traits of

the system while performing communication relay, while the relative position error is

used for quantifying the system’s abilities. The relative position error is determined

and displayed using the radial distance between the relay vehicle’s position and the

relay vehicle’s desired position relative to the remote vehicle and GCS.

111

Test Results and Analysis.

The communication relay test was performed as specified in the methodology

section with one additional test to demonstrate the system’s ability to relay a C2 link

around obstructions. The first test, which verified the communication nodes would

reestablish a lost link of a remote vehicle, was first tested with a team of UGS. All

of the communication nodes, including each node on each vehicle and the GCS node,

were set to their lowest power setting of 40mW. The remote UGS was driven to a

distance of 114m until the C2 link was lost between it and the GCS. The relay vehicle

was then manually driven to a halfway point. After 5 seconds, the remote vehicle’s

C2 link was reestablished with 80% packets received.

Another test was performed with this team to demonstrate the system’s ability

to relay the C2 link around an obstruction. For this test, the remote vehicle was

driven next to a cement footer of a lamp post in line of sight with the relay vehicle

communication node turned off. At this point the GCS was receiving 90% of teleme-

try packets. The remote vehicle was then driven behind the cement footer, out of

line of sight, reducing the percent of packets received between 55% and 65%, with

intermittent loss of the C2 link. The relay vehicle was then turned on and driven to

a point where it would have visual line of sight of both the remote vehicle and GCS.

The GCS then started receiving between 80% and 90% of the telemetry packets.

The final test was performed with a team consisting of a UGS in the role of

the remote vehicle and a multi-rotor UAS in the role of a relay vehicle. Again, all

communication nodes were turned down to their lowest setting, and the remote vehicle

was driven away from the GCS until the link on the GCS was lost. The relay python

script was then started on the GCS, and the relay vehicle was commanded to move

to the midpoint between the GCS and the last known position of the remote vehicle.

Once the relay vehicle reached its destination, the link was reestablished with 85%

112

of the telemetry packets being received. The remote vehicle operator then manually

drove the vehicle around the area of the GCS. The positions of the remote and relay

vehicles are displayed in Figure 79, and the associated error in position between the

relay vehicle and its desired position is displayed in Figure 78. During this test, the

relay vehicle achieved a mean error of 9.76m with a standard deviation of 6.17m and a

DRMS of 11.55m after the vehicle came to a stabilized midpoint position. One point

to note on Figure 78 are the spikes in error seen between data point 300 and 700.

These spikes were caused by a lost link between the relay vehicle and GCS. These

lost links were caused by the remote vehicle driving far enough away to pull the relay

vehicle out of communication range of the GCS.

Figure 78. Multi-Rotor UAS Relaying to UGS Radial Position Error.

113

Figure 79. Multi-Rotor UAS Relaying to UGS Vehicle Position.

5.6 Latency Test Results and Analysis

Results.

Each component of the latency was measured as described in the methodology

section using scripts on the GCS. To measure the telemetry down to GCS time, the

GCS script collected the pitch and roll orientations from the telemetry at 20Hz to

ensure the sampling rate was higher than the rate new telemetry is made available,

which is indicated by multiple measurements of the same value for multiple adjacent

time steps. This difference in time between the first instance of a measurement and

an instance of a new measurement is determined as the telemetry down to GCS

114

time. The GCS processing time was measured by determining the start time of the

leader flocking script, passing that time through the UDP socket, and calculating

the total run time at the end of the follower flocking script. The command up and

telemetry down time is measured by determining the time to send an RC channel

PWM command from the GCS to the time the change is seen in the RC channel in

the collected telemetry. These tests provided the resulting values outlined in Table

14 below. The GCS processing time is approximated due to the high rate of speed

the GCS processing scripts run.

Table 14. Latency Test Results

Time Measurment µ σ

Telemetry Down to GCS 0.240s 0.005s

GCS Processing < 0.003s —

Command Up to Vehicle 0.220s 0.006s

Analysis.

The average total time for one vehicle to pass telemetry down to the GCS, to when

the follower vehicle reacts to this telemetry is approximately 0.46s based on the times

collected. Based on the standard deviations calculated, this total latency can vary

between 0.493s and 0.427s for ± 3 standard deviations. With a 2.0 Hz update rate

in the worst case, this system performs 400% faster than previous systems utilizing

entirely all COTS components and OSS. This is compared to the work of Hardy

[11], wherein Mission Planner’s built in swarming function was only able to achieve a

maximum of 0.4Hz. This can be attributed to the use of MAVProxy as the primary

GCS software, which as stated before does not require a more computationally taxing

GUI. However, this measurement is for a best case scenario, with all vehicles in close

115

range of the GCS and GCS transceiver. This does not include the impact of lost

telemetry packets over the communication network. As discussed in the formation

flocking tests for a team of fixed wing UAS, as the fixed wing UAS flew further away

from the GCS, the communication link degraded greatly. This caused slow updates of

new waypoints and caused the vehicle to fly erratically compared to the lead vehicle.

5.7 Chapter Summary

In this chapter, the hardware and software selected to accomplish the functions

of the developed architecture were discussed. The development of the C2 python

scripts to control the vehicle was outlined. Finally, the results from the formation

flight, communication relay, and latency tests were covered and the resulting data

was analyzed.

116

VI. Conclusion

6.1 Chapter Overview

This section reviews the work accomplished in this research and the conclusions

drawn from this research. Investigative questions outlined in the first chapter will be

revisited to outline the conclusions drawn from each. Recommendations of actions

that should be taken for future work work are also outlined.

6.2 Conclusion of Research

In the first chapter, investigative questions were established to guide this research

to obtain answers to each question. These questions will be restated and the conclu-

sions for each are outlined.

What are the desired missions to be accomplished by cooperative multi-

agent systems?

From the literature review, three groups of missions emerged. The first group is

formation flocking, which is the act of controlling two or more vehicles to perform

a mission in formation. The second group of missions complete the communication

relay scenario, which is the act of passing information between a remote vehicle or

sensor to a central GCS through an intermediate relay vehicle. The final group of

missions is comprised of search and surveillance missions, which include wide area or

perimeter searching or surveillance. For this research, the final group was not inves-

tigated as it was the only mission requiring a video system and it was desired the

system be simplified for the time scope of the project. However, the architecture and

system developed could possibly be applied to perform this mission with the addition

of the required video system.

117

What is the structure and limitations of existing C2 architectures for

cooperative unmanned vehicles?

Existing architectures range from being comprised of a mixture of proprietary

and COTS components and software to being comprised of entirely of COTS compo-

nents and OSS. All of these architectures have similar structures, with the primary

variation being the location where the processing is being accomplished. Systems

comprised of primarily proprietary components, as shown by Napolitano et al. [3],

have the capability to perform decision making onboard the vehicle which increases

the response time dramatically and allow for greater precision with position errors as

low as 3.43m with a standard deviation less than 2m for fixed wing aircraft. As the

processing migrates from onboard the vehicle to the GCS, as shown by How et al. [9],

the response rate diminishes along with the precision with distance errors contained

in a 25m box for fixed wing aircraft. Both of these systems utilize a proprietary GCS,

which allows for greater flexibility in the processing of information and sending of

commands. The final architecture examined is structured the same way, but utilizes

entirely COTS components and OSS. With this architecture, shown by Hardy [11],

the update rate further degraded to a maximum of 0.4 Hz for close range vehicles

including UGS and multi-rotor UAS. These results show a degradation in system

performance as more COTS components and OSS is integrated into the system and

as the mission processing unit migrates from onboard to the GCS.

What are the mission-specific qualitative and quantitative measures for

the system?

For this effort, it was decided the desired missions to be accomplished are the

formation flocking and communication relay scenarios based on previously developed

118

architectures. For these scenarios, it was determined the desired quantitative mea-

sures include both the relative accuracy and precision of the vehicle’s position error.

The DRMS from the desired position was used to measure the relative accuracy of the

system and the standard deviation was used to measure the precision. For formation

flocking, the behavior of the system was used as a qualitative measure to determine

if the system demonstrated a leader follower relationship. For communication relay,

the percent telemetry packets received was used to quantitatively measure when the

C2 link was lost, and the quality of the link once it was reestablished through the

relay vehicle. Also, the ability to relay a communication link was used to qualitatively

measure the system’s ability to perform communication relay. Finally, the latency

was measured using the time of each component of the system.

How well does this system perform using these performance measures?

The results of this question are contained in the results and analysis section.

The best results for formation flocking were seen with a team consisting of a multi-

rotor UAS following a UGS, which achieved a mean position error of 0.99m with a

standard deviation of 0.44m and DRMS of 0.59m. Other results for combinations of

these two vehicles ranged up to a mean position error of 5.08m, a standard deviation

of 2.46m, and a DRMS of 4.17m for separate tests. The worst case not contained in

the summary above was the team consisting of two fixed wing UAS aircraft, which

resulted in errors two orders of magnitude higher than other tests. This test did not

demonstrate the ability to perform formation flight, but did demonstrate a leader

follower relationship.

For the communication relay scenario, two tests were accomplished to test the

system’s ability to perform this scenario. Both tests at similar ranges with different

combinations of multi-rotor and UGS resulted in a similar percent of packets received,

119

ranging between 80% and 90% after the link was reestablished. This result was

also seen when relaying the C2 link around a physical obstacle. Finally, the system

achieved a mean error of 9.76m with a standard deviation of 6.17m and a DRMS of

11.55m while maintaining the follower’s position at the midpoint.

Finally, the measurements from the latency test showed that the process of ac-

quiring telemetry and sending commands makes up the majority of the latency, with

the GCS processing only taking up a small portion. From these tests, it was found

that the downlink time takes approximately 0.24s with a standard deviation of 0.005s,

the GCS processing time takes less than 0.003s, and the command uplink time takes

0.22s with a standard deviation of 0.006s.

What are the effects on system performance due to the utilization of

COTS, OSH, and OSS?

As indicated by the limitations of existing architectures, systems primarily or com-

pletely composed of COTS components have a tendency to have lower overall per-

formance than completely proprietary systems. These COTS components are likely

applied to roles that require the intended capabilities of the component be modified

to meet the desired functionality. One example of this can be shown with the autopi-

lot. On proprietary systems, the trend is to have the algorithms required to perform

the mission be performed onboard the autopilot. This on board processing combined

with the proper communication system that allow vehicle to vehicle communication

could allow for a higher control loop frequency. Nonproprietary systems require this

processing to be completed on the GCS, decreasing the control loop frequency. A de-

creased control loop frequency results in a longer period of time between commands

being sent to and performed by the autopilot’s outer loop, which increases the time

vehicle can veer off course and induce position error.

120

Another trend for completely proprietary systems is to utilize custom GCS soft-

ware that allows for full access to necessary measurements from the autopilot. The

GCS software used and other COTS GCS software packages have a limited number

of measurements available for manipulation in scripting modules. This again requires

the extension of the intended capabilities of the software to accomplish the desired

task.

6.3 Recommended Future Work

This research opened many doors for others to investigate new topics pertaining

to this system and to apply new topics through the use of this system or similar

systems. These recommended topics are outlined below.

This system performed relatively well for close range vehicles such as UGS and

multi-rotors UAS. Due to this, it is suggested this system be utilized as a platform for

future research on C2 algorithms of these close operating range vehicles. This system

is not perfect and can still be improved on. Examples of possible improvements

includes further developing the system to utilize a closed loop controller, investigating

other methods of determining the commanded position sent to the follower, and

investigating the addition of more vehicles.

The system as it stands could be modified to accomplish additional cooperative

vehicle tasks which require less positional accuracy. Examples of these tasks include

the wide area search problem, persistent surveillance, and perimeter surveillance.

These tasks could be accomplished by modifying the position calculation functions

contained in the multi vehicle toolbox function contained in Appendix C. Also, with

the addition of IP cameras, the communication system could additionally transmit

video down to the GCS to perform visual based missions.

As shown in the formation flight test for a team of fixed wing UAS, this system

121

does not provide the capability for these airframes to perform formation flight. One

major causes of this is the airframes relatively higher speed and the longer operating

range from the GCS required. These factors increase the latency and increase the

error induced between points. Due to this, it is suggested further investigation be

conducted into moving the processing onboard the vehicle. Utilizing the vehicle to

vehicle communication capability that is already present could reduce the commu-

nication link distance and total system latency. Also, by moving the processing on

board, an outer loop controller could be developed to achieve a higher level of control

authority. This could be achieved by injecting radio control commands from an on

board micro controller into the autopilot input port while the vehicle is in a stabilized

mode. This would utilize the inner loop stabilization while providing a higher rate of

control over the motion of the aircraft.

Measuring the system latency was one of the more difficult tasks during this re-

search. This is due to the inability to measure time differences between when physical

and computational events occur. It is recommended the methods of measuring sys-

tem latency be further investigated. System latency plays a large roll in positional

accuracy of this system and, if better understood, could be used to better predict

factors related to the system and therefore better control the system. Additionally,

the effects of relatively long range communication on system latency has not been

investigated for this or similar systems. This communication latency played a large

role in the fixed wing tests performed, and if better understood, could be beneficial

in future work related to fixed wing cooperative control.

122

Finally, it is recommended some of the tests performed be retested. The first set

of tests to be accomplished again are the formation flocking tests for a team of two

multi-rotor UAS due to the error in the commanded position described in the results.

Additionally, the formation flocking test for a team of two fixed wing UAS should also

be retested due to use of an inadequate antenna, which did not provide a sufficient

C2 link with the aircraft.

123

Bibliography

1. “Unmanned Systems Integrated Roadmap FY2013-2038,” 2013.

2. Nicholas Lazaredes, “Ukraine’s DIY drone war: Self-taught soldiers facing up to

Russian-backed war machine,” 2015.

3. Marcello R Napolitano, Yu Gu, Technical Officer, Curtis E Hanson, and

Ms Theresa Stanley, “Cooperative Gust Sensing and Suppression for Aircraft

Formation Flight Final Report Cooperative Gust Sensing and Suppression for

Aircraft Formation Flight Motivation,” Tech. Rep., NASA, 2012.

4. Yu Gu, Giampiero Campa, Brad Seanor, Srikanth Gururajan, and Marcello R

Napolitano, “Autonomous Formation Flight Design and Experiments,” in Aerial

Vehicles, Thanh Mung Lam, Ed., chapter 12, pp. 236–258. InTech, 2009.

5. Matthew T. Seibert, Andrew J. Stryker, Jill T. Ward, and Chris T. Well-

baum, “SYSTEM ANALYSIS AND PROTOTYPING FOR SINGLE OPER-

ATOR MANAGEMENT OF MULTIPLE UNMANNED AERIAL VEHICLES

OPERATING BEYOND LINE OF SIGHT,” M.S. thesis, Air Force Institute of

Technology, 2010.

6. Edison Pignaton De Freitas, Tales Heimfarth, Ivayr Farah Netto, Carlos Eduardo

Lino, Carlos Eduardo Pereira, Armando Morado Ferreira, Flávio Rech Wagner,

and Tony Larsson, “UAV relay network to support WSN connectivity,” in

2010 International Congress on Ultra Modern Telecommunications and Control

Systems and Workshops, ICUMT 2010, 2010.

7. Theodore T Diamond, Adam L Rutherford, and Jonathan B Taylor, “Cooperative

Unmanned Aerial Surveillance Control System Architecture,” M.S. thesis, Air

Force Institute of Technology, 2009.

124

8. David Smalley, “Locust: Autonomous, swarming uavs fly into the future,” Online,

April 2015.

9. Jonathan How, Ellis King, and Yoshiaki Kuwata, “Flight Demonstrations of

Cooperative Control for UAV Teams,” in AIAA 3rd ”Unmanned Unlimited”

Technical Conference, Worksho and Exhibit, 2004.

10. Derek Kingston, Randal W. Beard, and Ryan S. Holt, “Decentralized perimeter

surveillance using a team of UAVs,” 2008.

11. Stefan L Hardy, “IMPLEMENTING COOPERATIVE BEHAVIOR & CON-

TROL USING OPEN SOURCE TECHNOLOGY ACROSS HETEROGENEOUS

VEHICLES,” M.S. thesis, Air Force Institute of Technology, 2014.

12. “Pixhawk,” ”https://pixhawk.org/choice”.

13. “Ardupilot 2.6,” ”http://copter.ardupilot.com/wiki/

common-apm25-and-26-overview/”.

14. “Pickelo Autopilot,” ”http://www.cloudcaptech.com/products/

auto-pilots”.

15. “Kestrel Autopilot,” ”http://www.lockheedmartin.com/us/products/

procerus/kestrel-autopilot.html”.

16. “MAVLink Protocol,” ”http://qgroundcontrol.org/mavlink/start”.

17. “Pixhawk Control Architecture,” ”https://pixhawk.org/dev/architecture”.

18. Ilker Bekmezci, Ozgur Koray Sahingoz, and amil Temel, “Flying Ad-Hoc Net-

works (FANETs): A survey,” 2013.

125

https://pixhawk.org/choice
http://copter.ardupilot.com/wiki/common-apm25-and-26-overview/
http://copter.ardupilot.com/wiki/common-apm25-and-26-overview/
http://www.cloudcaptech.com/products/auto-pilots
http://www.cloudcaptech.com/products/auto-pilots
http://www.lockheedmartin.com/us/products/procerus/kestrel-autopilot.html
http://www.lockheedmartin.com/us/products/procerus/kestrel-autopilot.html
http://qgroundcontrol.org/mavlink/start
https://pixhawk.org/dev/architecture

19. Jun Li, Yifeng Zhou, and Louise Lamont, “Communication architectures and

protocols for networking unmanned aerial vehicles,” in 2013 IEEE Globecom

Workshops, GC Wkshps 2013, 2013.

20. “Mission Planner,” ”http://planner.ardupilot.com/”.

21. “APM Planner 2.0,” ”http://planner2.ardupilot.com/”.

22. “MAVProxy,” ”http://dronecode.github.io/MAVProxy/html/index.html”.

23. Department of Defense, “Dod architecture framework version 2.0,” August 2010.

126

http://planner.ardupilot.com/
http://planner2.ardupilot.com/
http://dronecode.github.io/MAVProxy/html/index.html

Appendix . Appendix

A Appendix A: Formation Flocking Leader Vehicle Script

1 #FlockingModeLeader (Jeremy Gray Aug 2015)
2 # Gets l o c a t i o n reques t from f o l l o w e r and g i v e s the l e a d e r s l o c a t i o n

and heading
3 #
4 # P r e r e q u i s i t s :
5 # Two (2) i n s t a n c e s o f MAVProxy are o p e r a t i o n a l
6 # Veh i c l e s are connected in both i n s t a n c e s o f MAVProxy
7 # Notes :
8 # f o r bes t r e s u l t s , update system time
9

10 import socke t
11 import sys
12 from droneapi . l i b import VehicleMode
13 from droneapi . l i b import Command
14 from droneapi . l i b import mavuti l
15 import numpy as np
16 import math
17 import time
18 from datet ime import datet ime
19 from LLA ECEF Convert import LLA ECEF Convert
20 from m u l t i v e h i c l e t o o l b o x import f o l l o w e r p o s
21

22 ’ ’ ’ INIT PARAMS ’ ’ ’
23 f r e q c o n t r o l =4.0 #frequency o f c o n t r o l loop , must be < f o l l owe r , must

be f l o a t (0 . 0)
24 f r e q s t o r e =2.0 #frequency o f data storage , must be f l o a t (0 . 0)
25 f r e q p r i n t =1.0 #frequency o f pr in ted updates , must be f l o a t (0 . 0)
26 msg s i ze =128 #s i z e o f msg to be passed
27

28 ’ ’ ’DRONEAPI INIT ’ ’ ’
29 # Get a l o c a l APIConnection to the a u t o p i l o t (from companion computer or

GCS) .
30 api = l o c a l c o n n e c t ()
31

32 # Create v e h i c l e o b j e c t s f o r each v e h i c l e from the APIConnection
33 v l e a d e r = api . g e t v e h i c l e s () [0]
34 pr in t ” Leader Veh ic l e Object Created ”
35

36 ’ ’ ’DATA FILE INIT ’ ’ ’
37 t imes t r = time . s t r f t i m e (”%m−%d−%Y %H−%M−%S”) #date−time f o r f i l e name
38 f i l e n a m e=’ l e a d e r g c s t e l ’ + t imes t r #f i l e name appended with

date time
39 d a t a f i l e = open (f i l e name , ’ a ’) #c r e a t e txt doc to append to
40 pr in t ’ t e l emetry f i l e open ’
41

42 ’ ’ ’CONNECTION INIT ’ ’ ’
43 #Setup UDP l i n k with l e a d e r s e r v e r

127

44 Port = 50005 # Port to TX/RX to / from f o l l o w e r c l i e n t
45 IP = ’ 1 2 7 . 0 . 0 . 1 ’ #Local Host IP
46 s = socket . socke t (socket . AF INET , socket .SOCK DGRAM) # Create TCP

socket ob j e c t
47 pr in t ’ socke t c r ea ted ’
48 address=(IP , Port)
49

50

51 ’ ’ ’ Main LOOP ’ ’ ’
52 t w r i t e=0 #f o r c e s f i r s t wr i t e to occure on s t a r t
53 t p r i n t=0
54 pr in t ’ s t a r t i n g c o n t r o l loop ’
55 #Current l o c a t i o n i s loc0 , next l o c a t i o n i s l o c1
56 whi le not api . e x i t :
57 t ry :
58 #get cur rent time f o r s l e e p . . .
59 t1=time . time ()
60

61 #get te l emetry in fo rmat ion
62 l a t=s t r (v l e a d e r . l o c a t i o n . l a t) #l a t i t u d e (deg)
63 l on=s t r (v l e a d e r . l o c a t i o n . lon) #long i tude (deg)
64 a l t a s l = s t r (v l e a d e r . l o c a t i o n . a l t) #a l t i t u d e above

sea l e v e l (m)
65 p=f l o a t (np . deg2rad (v l e a d e r . a t t i t u d e . p i t ch)) #pi t ch (rad) o f

v e h i c l e r e l a t i v e to NEU frame
66 r=f l o a t (np . deg2rad (v l e a d e r . a t t i t u d e . r o l l)) #r o l l (rad) o f

v e h i c l e r e l a t i v e to NEU frame
67 y=f l o a t (np . deg2rad (v l e a d e r . a t t i t u d e . yaw)) #yaw (rad) o f

v e h i c l e r e l a t i v e to NEU frame
68 v b=v l e a d e r . v e l o c i t y #v e l o c i t y

vectory (m/ s) r e l a t i v e to body
69 t t e l=time . time () #time te l emetry

was r e c i e v e d
70

71 #f l u s h data to l e a d e r
72 v l e a d e r . f l u s h ()
73

74 #determine gc r e l a t i v e to v e h i c l e frame (NED)
75 v b=np . array ([[v b [0] , v b [1] , v b [2]]])
76 c p=np . cos (p) ; s p=np . s i n (p)
77 c r=np . cos (r) ; s r=np . s i n (r)
78 c y=np . cos (y) ; s y=np . s i n (y)
79 R v b=np . array ([[c p ∗ c y , c p ∗ s y ,

−s p] ,
80 [s r ∗ s p ∗ c y−c r ∗ s y , s r ∗ s p ∗ s y+c r ∗ c y ,

s r ∗ c p] ,
81 [c r ∗ s p ∗ c y+s r ∗ s y , c r ∗ s p ∗ s y−s r ∗ c y ,

c r ∗ c p]])
82 #r o t a t i o n trans form from v e h i c l e to body
83 v v=np . dot (R v b .T, v b .T) #v e l o c i t y vec to r r e l a t i v e to v e h i c l e

(NED) frame
84 gc=np . arctan2 (v v [1] , v v [0]) #ground course (rad) r e l a t i v e

128

to North
85 v=np . l i n a l g . norm(v v) #v e l o c i t y o f l eader ,

used to c a l c L1
86

87 #i f V i s too slow use yaw (rad) as ground course
88 i f v < 0 . 2 5 :
89 gc= y
90

91 #bui ld te l emetry msg to be a known length (msg s i z e)
92 te l msg raw =’%s %s %s %s %s ’ %(la t , lon , a l t a s l , s t r (f l o a t (gc)) ,

s t r (v)) #bu i ld msg
93 t e l msg=msg s i z e ∗ ’ ’
94 i f l en (te l msg raw) < l en (te l msg) : #s e t msg s i z e to

known length
95 n spaces=len (te l msg)−l en (te l msg raw)
96 t e l msg=te l msg raw + n spaces ∗ ’ ’
97 e l s e :
98 pr in t ’ e r r : udp message exceeds l ength . I n c r e a s e msg s i z e ’
99 break

100

101 #send l e a d e r te l emetry to f o l l o w e r over UDP
102 s . sendto (s t r (te l msg) , address)
103

104 #append data w/ unix time on new l i n e o f data txt f i l e , i f 1/
f r e q s t o r e has pased

105 i f time . time () − t w r i t e > 1/ f r e q s t o r e :
106 msg data=’%s %s ’ %(t t e l , te l msg raw)
107 d a t a f i l e . wr i t e (msg data + ’ \n ’)
108 t w r i t e=time . time ()
109

110 #pr in t update message
111 i f time . time () − t p r i n t > 1/ f r e q p r i n t :
112 pr in t ’ t e l emetry sent & sto r ed : ’ + s t r (datet ime . now () . time

())
113 t p r i n t=time . time ()
114

115 #determine s l e e p time
116 t2=time . time ()
117 t r emain ing= (1/ f r e q c o n t r o l) − (t2 − t1)
118 i f t r ema in ing > 0 : #s l e e p f o r remainder o f t h i s c o n t r o l

c y c l e
119 time . s l e e p (t remain ing)
120 e l s e : #the ope ra t i on s in the whi l e loop took

too long
121 pr in t ’ f r e q c o n t r o l i s too high ’
122

123 except KeyboardInterrupt : #only way to stop the r i d e
124 d a t a f i l e . c l o s e ()
125 break
126

127 except :
128 pr in t ”Unexpected e r r o r : ” , sys . e x c i n f o () [0]

129

129 d a t a f i l e . c l o s e ()
130 break
131

132 # e x i t
133 s . c l o s e ()
134 pr in t ’End o f S c r i p t ’

130

B Appendix B: Formation Flocking Follower Vehicle Script

1 #FlockingModeFollower (Jeremy Gray SEP 2015)
2 # Gets l o c a t i o n o f l e a d e r v e h i c l e and s e t s waypoints to make f o l l o w e r

v e h i c l e f o l l o w at
3 # a f i x e d o f f s e t d i s t anc e
4 #
5 # P r e r e q u i s i t s :
6 # Two (2) i n s t a n c e s o f MAVProxy are o p e r a t i o n a l
7 # Veh i c l e s are connected in both i n s t a n c e s o f MAVProxy
8 # Notes :
9 # f o r bes t r e s u l t s , update system time

10

11 import socke t
12 import sys
13 import math
14 import time
15 from datet ime import datet ime
16 import re
17 from numpy import matrix
18 import numpy as np
19 from droneapi . l i b import VehicleMode , Location , Command, mavuti l
20 from LLA ECEF Convert import LLA ECEF Convert
21 from m u l t i v e h i c l e t o o l b o x import f o l l o w e r p o s
22

23

24 ’ ’ ’ INIT PARAMS ’ ’ ’
25 #Fol lower o f f s e t parameters (r e l a t i v e to l e a d e r ’ s body frame)
26 o f f l 1 s =2 #L1 lead time constant [s] f o r forward o f f s e t waypoint
27 o f f r = 2 #r a d i a l d i s t anc e [m] away from l e a d e r
28 o f f t h e t a = 45 #angle (deg) from −x a x i s (out o f t a i l) , CCW i s (+)

r o t a t i o n
29 a l t ag l cmd =10 #a l t ag l [m] to be commanded , used in guided pos
30

31 #timing prarameters
32 t f r e q =8.0 #c o n t r o l loop frequency , must be s lower than f o l l o w e r

and f l o a t (0 . 0)
33 f r e q s t o r e =2.0 #frequency o f s t o rage o f data to d i sk and must be

f l o a t (0 . 0)
34 f r e q p r i n t=1 #frequency o f p r i n t statements (t ry to reduce t h i s)
35

36 #other
37 msg s i ze =128 #s i z e o f msg to be passed
38

39 ’ ’ ’DRONEAPI INIT ’ ’ ’
40 # Get a l o c a l APIConnection to the a u t o p i l o t (from companion computer or

GCS) .
41 api = l o c a l c o n n e c t ()
42

43 # Create v e h i c l e o b j e c t s f o r f o l l o w e r v e h i c l e from the APIConnection
44 v f o l l o w e r = api . g e t v e h i c l e s () [0]
45 pr in t ” Fol lower Veh ic l e Object Created ”

131

46

47 ’ ’ ’DATA FILE INIT ’ ’ ’
48 t imes t r = time . s t r f t i m e (”%m−%d−%Y %H−%M−%S”) #date−time f o r f i l e name
49 f i l e n a m e=’ f o l l o w e r g c s t e l ’ + t imes t r #f i l e name appended with

date time
50 d a t a f i l e = open (f i l e name , ’ a ’) #c r e a t e txt doc to append to
51 msg data=’%s %s %s ’ %(o f f r , o f f t h e t a , o f f l 1 s)
52 d a t a f i l e . wr i t e (msg data + ’ \n ’)
53 pr in t ’ t e l emetry f i l e open ’
54

55 ’ ’ ’CONNECTION INIT ’ ’ ’
56 #Setup TCP l i n k with l e a d e r s e r v e r
57 Port = 50005 # Port to TX/RX to / from l e a d e r s e r v e r
58 IP = ’ 1 2 7 . 0 . 0 . 1 ’ #Local Host IP
59 s = socket . socke t (socket . AF INET , socket .SOCK DGRAM)
60 pr in t ’ socke t c r ea ted ’
61 s . bind ((IP , Port)) # Connect socke t
62 pr in t ’Bound to port ’ + s t r (Port)
63

64 ’ ’ ’ Main Loop ’ ’ ’
65 r c ch=v f o l l o w e r . channe l readback
66 t w r i t e=0 #f o r c e s f i r s t wr i t e to occure on s t a r t
67 t p r i n t=0 #f o r c e s f i r s t p r i n t to occure on s t a r t
68 #Current l o c a t i o n i s pos0 , next l o c a t i o n i s pos1
69 pr in t ’ s t a r t i n g c o n t r o l loop ’
70 whi le not api . e x i t :
71 t ry :
72 #get cur rent time f o r s l e e p . . .
73 t1=time . time ()
74

75 i f r c ch [’ 5 ’] > 1100 : #MANUAL MODE FAIL SAFE, w i l l not s t o r e data
76 v f o l l o w e r . mode = VehicleMode (”STABILIZE”)
77

78 i f time . time () − t p r i n t > 1/ f r e q p r i n t :
79 pr in t ” Fol lower Mode Set to Manual” + s t r (datet ime . now () . time

())
80 t p r i n t=time . time ()
81

82 time . s l e e p (0 . 0 1)
83

84 e l s e :
85 #read l e a d e r t e l from udp port
86 t e l l e a d e r = s . recv (msg s i z e) #get ” l a t (deg) lon (deg) a l t (m) gc (

rad) v (m/ s) ”
87

88 #manipulate l e a d e r t e l to parse out la t , lon , a l t , heading /gc ,
v e l o c i t y

89 pattern = re . compi le (” [] ”) #Data patern (data seperated
by [] i . e space)

90 param = pattern . s p l i t (t e l l e a d e r) #s p l i t data based on data
patern

91

132

92 p o s l e a d e r = np . array ([f l o a t (param [0]) , f l o a t (param [1]) , f l o a t (
param [2])])

93 #l e a d e r pos [l a t (deg) lon (deg) a l t (m)]
94 head ing l = np . rad2deg (f l o a t (param [3])) #l e a d e r ground course

(rad)
95 v l = f l o a t (param [4]) #l e a d e r v e l o c i t y (m/ s)
96

97 #c a l c u l a t e d e s i r e d p o s i t i o n
98 o f f l 1=o f f l 1 s ∗ v l #forward o f f s e t d i s t . ([m] = [s] ∗ [m/ s])
99 p o s 1 f=f o l l o w e r p o s (o f f r , o f f t h e t a , o f f l 1 ,

100 pos l eade r , h ead ing l) #p o s 1 f = [l a t (deg)
lon (deg) a l t (m)]

101

102 #Set new f o l l o w e r guided po int
103 guided pos=Locat ion (p o s 1 f [0] , p o s 1 f [1]−360 , a l t ag l cmd ,

i s r e l a t i v e=True)
104 i f v f o l l o w e r . mode != ”GUIDED” : #i f not a l r eady in guided . . . go

guided
105 v f o l l o w e r . mode = VehicleMode (”GUIDED”)
106 v f o l l o w e r . commands . goto (guided pos) #send guided po int
107 v f o l l o w e r . f l u s h () #f l u s h cmd to f o l l o w e r
108

109 #get te l emetry in fo rmat ion f o r s t o rage
110 l a t=s t r (v f o l l o w e r . l o c a t i o n . l a t) #l a t i t u d e (9 bytes CHECK)
111 l on=s t r (v f o l l o w e r . l o c a t i o n . lon) #long i tude (9 bytes CHECK)
112 a l t a s l = s t r (v f o l l o w e r . l o c a t i o n . a l t) #a l t i t u d e above sea l e v e l

(6 bytes CHECK)
113 p=f l o a t (np . deg2rad (v f o l l o w e r . a t t i t u d e . p i t ch)) #pi t ch (rad) o f

v e h i c l e r e l a t i v e to NEU frame
114 r=f l o a t (np . deg2rad (v f o l l o w e r . a t t i t u d e . r o l l)) #r o l l (rad) o f

v e h i c l e r e l a t i v e to NEU frame
115 y=f l o a t (np . deg2rad (v f o l l o w e r . a t t i t u d e . yaw)) #yaw (rad) o f

v e h i c l e r e l a t i v e to NEU frame
116 v b= v f o l l o w e r . v e l o c i t y #v e l o c i t y in x d i r

r e l a t i v e to body (CHECK)
117

118 #determine gc r e l a t i v e to v e h i c l e frame (NEU)
119 v b=np . array ([[v b [0] , v b [1] , v b [2]]])
120 c r=np . cos (r) ; s r=np . s i n (r)
121 c p=np . cos (p) ; s p=np . s i n (p)
122 c y=np . cos (y) ; s y=np . s i n (y)
123 R v b=np . array ([[c p ∗ c y , c p ∗ s y ,

−s p] ,
124 [s r ∗ s p ∗ c y−c r ∗ s y , s r ∗ s p ∗ s y+c r ∗ c y ,

s r ∗ c p] ,
125 [c r ∗ s p ∗ c y+s r ∗ s y , c r ∗ s p ∗ s y−s r ∗ c y ,

c r ∗ c p]])
126 #r o t a t i o n trans form from v e h i c l e to body
127 v v=np . dot (R v b .T, v b .T) #v e l o c i t y vec to r r e l a t i v e to v e h i c l e (

NEU) frame
128 gc=np . arctan2 (v v [1] , v v [0]) #ground course r e l a t i v e to NEU (

CHECK)

133

129 v=np . l i n a l g . norm(v v) #v e l o c i t y o f l eader , used to c a l c L1
130 t t e l=time . time ()
131

132 #i f V i s too slow use yaw as ground course
133 i f v < 1 :
134 gc= y
135

136 v f o l l o w e r . f l u s h ()
137

138 #bui ld te l emetry data s t r
139 te l msg raw =’%s %s %s %s %s %s %s %s ’ %(la t , lon , a l t a s l , s t r (f l o a t

(gc)) , s t r (v) ,
140 s t r (p o s 1 f [0]) , s t r (p o s 1 f

[1]) , s t r (p o s 1 f [2]))
141

142 #append data with unix time on a new l i n e o f data txt f i l e
143 i f time . time () − t w r i t e > 1/ f r e q s t o r e :
144 msg data=’%s %s ’ %(t t e l , te l msg raw)
145 d a t a f i l e . wr i t e (msg data + ’ \n ’)
146 t w r i t e=time . time ()
147

148 #pr in t update message
149 i f time . time () − t p r i n t > 1/ f r e q p r i n t :
150 pr in t ’cmd sent & te l emetry s to r ed : ’ + s t r (datet ime . now () .

time ())
151 t p r i n t=time . time ()
152

153 #determine s l e e p time
154 t2=time . time ()
155 t r emain ing= (1/ t f r e q) − (t2 − t1)
156 i f t r ema in ing > 0 : #s l e e p f o r remainder o f t h i s c o n t r o l c y c l e
157 time . s l e e p (t remain ing)
158 e l s e : #the ope ra t i on s in the whi l e loop took too

long
159 pr in t ’ t f r e q i s too high ’
160

161 except KeyboardInterrupt : #only way to stop the r i d e
162 d a t a f i l e . c l o s e ()
163 break
164

165 except :
166 pr in t ”Unexpected e r r o r : ” , sys . e x c i n f o () [0]
167 d a t a f i l e . c l o s e ()
168 break
169

170

171 # e x i t
172 s . c l o s e ()
173 pr in t ’End o f S c r i p t ’

134

C Appendix C: Multi-Vehicle Function Module, as Tested

1 ’ ’ ’
2 m u l t i v e h i c l e t o o l b o x . py
3 C a l c u l a t i o n s r equ i r ed f o r multi−v e h i c l e ope ra t i on s
4 1) f l o c k i n g f o l l o w e r pos c a l c u l a t i o n
5 2) comm r e l a y r e l a y v e h i c l e midpoint pos c a l c
6 ’ ’ ’
7

8 import numpy as np
9 from LLA ECEF Convert import LLA ECEF Convert

10

11 de f f o l l o w e r p o s (o f f r , o f f t h e t a , o f f l 1 , l o c 0 l , h ead ing l) :
12 #func t i on d e s c r i p t i o n : determines the next d e s i r e d l o c a t i o n o f

the f o l l o w e r
13 # v e h i c l e in l a t lon a l t (LLA)
14 #Inputs : o f f r : r a d i a l d i s t ance away from l e a d e r [m]
15 # o f f t h e t a : ang le (deg) from −x a x i s (out o f t a i l) ,

CCW i s (+) r o t a t i o n
16 # o f f l 1 : d i s t anc e the guided po int i s p laced

forward o f the d e s i r e d
17 # f o l l o w e r l o c a t i o n
18 # l o c 0 l : l o c a t i o n o f the l e a d e r at cur rent

incr iment o f time
19 # head ing l : heading o f the l e a d e r at cur rent

incr iment o f time
20 #Outputs : l o c 1 f : cur r ent d e s i r e d l o c a t i o n o f the f o l l o w e r
21

22

23 #Fol lower l o c1 r e l a t i v e to l e a d e r body frame
24 o f f t h e t a +=270 #add 270 deg to make o f f s e t r e l a t i v e to ea s t (+X

a x i s f o r math)
25 l o c 1 f =(o f f r − o f f l 1) ∗ np . array ([np . cos (np . deg2rad (o f f t h e t a)

) ,
26 np . s i n (np . deg2rad (o f f t h e t a)

) ,
27 0

])
28

29 #Fol lower l o c1 r e l a t i v e to Local Leve l Frame (L , North−East−Up)
frame

30 cos h=np . cos (np . deg2rad (head ing l))
31 s i n h=np . s i n (np . deg2rad (head ing l))
32 R BtoL=np . array ([[cos h , s in h , 0] ,
33 [− s in h , cos h , 0] ,
34 [0 , 0 , 1]]) #Rotation from body

to l o c a l
35 l o c 1 f=np . dot (l o c 1 f , R BtoL)
36

37 #Fol lower l o c1 from Local Leve l Frame (L , North−East−Up) to ECEF (E)
38 phi= np . deg2rad (l o c 0 l [0]) #l a t i t u d e o f l e a d e r
39 l a= np . deg2rad (l o c 0 l [1]) #lond i tude o f l e a d e r

135

40 s i n l a= np . s i n (l a)
41 c o s l a=np . cos (l a)
42 s i n p h i= np . s i n (phi)
43 c o s p h i=np . cos (phi)
44 R LtoE=np . array ([[− s i n l a , −s i n p h i ∗ c o s l a , c o s p h i ∗ c o s l a

] ,
45 [c o s l a , −s i n p h i ∗ s i n l a , c o s p h i ∗ s i n l a

] ,
46 [0 , cos ph i , s i n p h i

]]) #Rotation from l o c a l to e c e f
47

48 T LtoE=LLA ECEF Convert (np . rad2deg (phi) , np . rad2deg (l a) , l o c 0 l [2] , ’
LLAtoECEF ’)

49 l o c 1 f= np . dot (R LtoE , l o c 1 f) + T LtoE .T
50

51

52 #Fol lower Locat ion ECEF to l a t lon a l t (LLA)
53 l o c 1 f= LLA ECEF Convert (l o c 1 f [0] , l o c 1 f [1] , l o c 1 f [2] , ’ECEFtoLLA

’)
54

55 re turn l o c 1 f
56

57 de f r e l a y p o s (p o s g c s l l h , po s r em l lh) :
58 #func t i on d e s c r i p t i o n : Ca l cu l a t e s the midpoint between the GCS

and remote v e h i c l e
59 # to send the r e l a y v e h i c l e
60 #
61 #Inputs : p o s g c s l l h : pos o f GCS in l a t lon hae
62 # pos r em l lh : pos o f remote v e h i c l e in l a t lon hae
63 #
64 #Outputs : p o s r e l l l a : c a l c u l a t e d pos o f r e l a y v e h i c l e
65 #
66 #Notation :
67 # Remote v e h i c l e : rem
68 # Relay v e h i c l e : r e l
69 # Ground Control : GCS
70

71 #convert pos o f rem & gcs from l l h to e c e f
72 pos r em ece f=LLA ECEF Convert (po s r em l lh [0] , po s r em l lh [1] ,
73 pos r em l lh [2] , ’LLAtoECEF ’)
74

75 p o s g c s e c e f=LLA ECEF Convert (p o s g c s l l h [0] , p o s g c s l l h [1] ,
76 p o s g c s l l h [2] , ’LLAtoECEF ’)
77

78 #c a l c u l a t e midpoint in e c e f
79 p o s r e l e c e f=p o s g c s e c e f + 0 . 5∗ (pos rem ece f−p o s g c s e c e f)
80

81 #convert pos o f r e l from e c e f to l l h
82 p o s r e l l l a=LLA ECEF Convert (p o s r e l e c e f [0] , p o s r e l e c e f [1] ,
83 p o s r e l e c e f [2] , ’ECEFtoLLA ’)
84

85 re turn p o s r e l l l a

136

D Appendix D: Communication Relay Remote Vehicle Script

1 #FlockingModeLeader (Jeremy Gray Aug 2015)
2 # Gets l o c a t i o n reques t from f o l l o w e r and g i v e s the l e a d e r s l o c a t i o n

and heading
3 #
4 # P r e r e q u i s i t s :
5 # Two (2) i n s t a n c e s o f MAVProxy are o p e r a t i o n a l
6 # Veh i c l e s are connected in both i n s t a n c e s o f MAVProxy
7

8 import socke t
9 import sys

10 from droneapi . l i b import VehicleMode
11 from droneapi . l i b import Command
12 from droneapi . l i b import mavuti l
13 from numpy import matrix
14 import numpy as np
15 import math
16 import time
17 from datet ime import datet ime
18 from LLA ECEF Convert import LLA ECEF Convert
19 from m u l t i v e h i c l e t o o l b o x import f o l l o w e r p o s
20

21 ’ ’ ’ INIT PARAMS ’ ’ ’
22 t f r e q =5.0 #c o n t r o l loop frequency , must be s lower than f o l l o w e r
23 f r e q p r i n t =1.0 #ra t e o f p r i n t i n g updates
24 msg s i ze =128 #s i z e o f msg to be passed
25

26 ’ ’ ’DRONEAPI INIT ’ ’ ’
27 # Get a l o c a l APIConnection to the a u t o p i l o t (from companion computer or

GCS) .
28 api = l o c a l c o n n e c t ()
29

30 # Create v e h i c l e o b j e c t s f o r each v e h i c l e from the APIConnection
31 v remote = api . g e t v e h i c l e s () [0]
32 pr in t ” Leader Veh ic l e Object Created ”
33

34 ’ ’ ’CONNECTION INIT ’ ’ ’
35 #Setup UDP l i n k with l e a d e r s e r v e r
36 Port = 50005 # Port to TX/RX to / from f o l l o w e r c l i e n t
37 IP = ’ 1 2 7 . 0 . 0 . 1 ’ #Local Host IP
38 s = socket . socke t (socket . AF INET , socket .SOCK DGRAM) # Create TCP

socket ob j e c t
39 pr in t ’ socke t c r ea ted ’
40 address=(IP , Port)
41

42 ’ ’ ’ Main LOOP ’ ’ ’
43 t w r i t e=0 #f o r c e s f i r s t wr i t e to occure on s t a r t
44 t p r i n t=0
45 #Current l o c a t i o n i s loc0 , next l o c a t i o n i s l o c1
46 whi le not api . e x i t :
47 t ry :

137

48 #get cur rent time f o r s l e e p . . .
49 t1=time . time ()
50

51 #get te l emetry in fo rmat ion
52 l a t=s t r (v remote . l o c a t i o n . l a t) #l a t i t u d e (deg)
53 l on=s t r (v remote . l o c a t i o n . lon) #long i tude (deg)
54 a l t a s l = s t r (v remote . l o c a t i o n . a l t) #a l t i t u d e above sea

l e v e l
55

56 #bui ld te l emetry msg to be a known length (msg s i z e)
57 te l msg raw =’%s %s %s ’ %(la t , lon , a l t a s l) #bu i ld msg
58 t e l msg=msg s i z e ∗ ’ ’
59 i f l en (te l msg raw) < l en (te l msg) : #s e t msg s i z e to

known length
60 n spaces=len (te l msg)−l en (te l msg raw)
61 t e l msg=te l msg raw + n spaces ∗ ’ ’
62

63 v remote . f l u s h ()
64

65 s . sendto (s t r (te l msg) , address)
66 pr in t ’ t e l emetry sent : ’ + s t r (datet ime . now () . time ())
67

68 #pr in t update message
69 i f time . time () − t p r i n t > 1/ f r e q p r i n t :
70 pr in t ’ t e l emetry sent & sto r ed : ’ + s t r (datet ime . now () . time

())
71 t p r i n t=time . time ()
72

73 #determine s l e e p time
74 t2=time . time ()
75 t r emain ing= (1/ t f r e q) − (t2 − t1)
76 i f t r ema in ing > 0 : #s l e e p f o r remainder o f t h i s c o n t r o l

c y c l e
77 time . s l e e p (t remain ing)
78 e l s e : #the ope ra t i on s in the whi l e loop took

too long
79 pr in t ’ t f r e q i s too low ’
80

81 except KeyboardInterrupt :
82 break
83

84 except :
85 pr in t ”Unexpected e r r o r : ” , sys . e x c i n f o () [0]
86 break
87

88 # e x i t
89 s . c l o s e ()
90 pr in t ’End o f S c r i p t ’

138

E Appendix E: Communication Relay Relay Vehicle Script

1 #Comm Relay , Relay v e h i c l e c l i e n t s c r i p t (Jeremy Gray SEP 2015)
2 # Gets l o c a t i o n o f remote v e h i c l e and s e t s waypoints to make r e l a y

v e h i c l e
3 # t r a n s i t to a halfway po int to r e l a y comm
4 #
5 # P r e r e q u i s i t s :
6 # Two (2) i n s t a n c e s o f MAVProxy are o p e r a t i o n a l
7 # Veh i c l e s are connected in both i n s t a n c e s o f MAVProxy
8

9 import socke t
10 import sys
11 import math
12 import time
13 from datet ime import datet ime
14 import re
15 import numpy as np
16 from droneapi . l i b import VehicleMode , Location , Command, mavuti l
17 from LLA ECEF Convert import LLA ECEF Convert
18 from m u l t i v e h i c l e t o o l b o x import r e l a y p o s
19

20 ’ ’ ’ INIT PARAMS ’ ’ ’
21 a l t ag l cmd =10 #a l t ag l [m] to be commanded , used in guided pos
22 t f r e q =10.0 #c o n t r o l loop frequency , must be f a s t e r than l e a d e r
23 f r e q p r i n t =1.0 #ra t e o f p r i n t i n g updates
24 msg s i ze =128 #s i z e o f msg to be passed
25

26 ’ ’ ’DRONEAPI INIT ’ ’ ’
27 # Get a l o c a l APIConnection to the a u t o p i l o t (from companion computer or

GCS) .
28 api = l o c a l c o n n e c t ()
29

30 # Create v e h i c l e o b j e c t s f o r f o l l o w e r v e h i c l e from the APIConnection
31 v r e l a y = api . g e t v e h i c l e s () [0]
32 pr in t ” Fol lower Veh ic l e Object Created ”
33

34 ’ ’ ’CONNECTION INIT ’ ’ ’
35 #Setup TCP l i n k with l e a d e r s e r v e r
36 Port = 50005 # Port to TX/RX to / from l e a d e r s e r v e r
37 IP = ’ 1 2 7 . 0 . 0 . 1 ’ #Local Host IP
38 s = socket . socke t (socket . AF INET , socket .SOCK DGRAM)
39 pr in t ’ socke t c r ea ted ’
40 s . bind ((IP , Port)) # Connect socke t
41 pr in t ’Bound to port ’ + s t r (Port)
42

43 ’ ’ ’GET HOME LOCATION ’ ’ ’
44 pos home l la=np . array ([v r e l a y . l o c a t i o n . l a t , v r e l a y . l o c a t i o n . lon ,

v r e l a y . l o c a t i o n . a l t])
45 pr in t ” Home WP: %s ” % pos home l la
46

47 ’ ’ ’MAIN LOOP ’ ’ ’

139

48 msg s i ze =128
49 r c ch=v r e l a y . channe l readback
50 t w r i t e=0 #f o r c e s f i r s t wr i t e to occure on s t a r t
51 t p r i n t=0
52 #remote v e h i c l e i s rem , r e l a y i s r e l
53 whi le not api . e x i t :
54 t ry :
55 i f r c ch [’ 5 ’] > 1100 :
56 v r e l a y . mode = VehicleMode (”STABILIZE”)
57 pr in t ”Relay Mode Set to Manual”
58 time . s l e e p (0 . 2 5)
59 e l s e :
60 t1=time . time ()
61 t e l r em = s . recv (msg s i z e) #read port
62

63 #manipulate Rx data to parse out remote v e h i c l e pos
64 pattern = re . compi le (” [] ”) #Data patern (data seperated

by [] i . e space)
65 param = pattern . s p l i t (t e l r em) #s p l i t data based on data

patern
66

67 p o s r e m l l a = np . array ([f l o a t (param [0]) , f l o a t (param [1]) ,
f l o a t (param [2])])

68

69 #c a l c u l a t e d e s i r e d r e l a y p o s i t i o n
70 p o s r e l l l a=r e l a y p o s (pos home l la , p o s r e m l l a)
71 guided pos=Locat ion (p o s r e l l l a [0] , p o s r e l l l a [1]−360 ,
72 a l t ag l cmd , i s r e l a t i v e=True)
73

74 #Set new f o l l o w e r guided po int
75 i f v r e l a y . mode != ”GUIDED” :
76 v r e l a y . mode = VehicleMode (”GUIDED”)
77 v r e l a y . commands . goto (gu ided pos)
78 v r e l a y . f l u s h ()
79 pr in t ’cmd sent : ’ + s t r (p o s r e l l l a)
80

81 #pr in t update message
82 i f time . time () − t p r i n t > 1/ f r e q p r i n t :
83 pr in t ’cmd sent & te l emetry s to r ed : ’ + s t r (datet ime . now

() . time ())
84 t p r i n t=time . time ()
85

86 #determine s l e e p time
87 t2=time . time ()
88 t r emain ing= (1/ t f r e q) − (t2 − t1)
89 i f t r ema in ing > 0 : #s l e e p f o r remainder o f t h i s c o n t r o l

c y c l e
90 time . s l e e p (t remain ing)
91 e l s e : #the ope ra t i on s in the whi l e loop

took too long
92 pr in t ’ t f r e q i s too low ’
93

140

94 except KeyboardInterrupt : #only way to stop the r i d e
95 break
96

97 ## except :
98 ## pr i n t ”Unexpected e r r o r : ” , sys . e x c i n f o () [0]
99 ## break

100

101

102 # e x i t
103 s . c l o s e ()
104 pr in t ’End o f S c r i p t ’

141

F Appendix F: Multi-Vehicle Function Module With Fixed Follower Pos
Calculation

1 ’ ’ ’
2 m u l t i v e h i c l e t o o l b o x . py
3 C a l c u l a t i o n s r equ i r ed f o r multi−v e h i c l e ope ra t i on s
4 1) f l o c k i n g f o l l o w e r pos c a l c u l a t i o n
5 2) comm r e l a y r e l a y v e h i c l e midpoint pos c a l c
6 ’ ’ ’
7

8 import numpy as np
9 from LLA ECEF Convert import LLA ECEF Convert

10

11 de f f o l l o w e r p o s (o f f r , o f f t h e t a , o f f l 1 , l o c 0 l , h ead ing l) :
12 #func t i on d e s c r i p t i o n : determines the next d e s i r e d l o c a t i o n o f

the f o l l o w e r
13 # v e h i c l e in l a t lon a l t (LLA)
14 #Inputs : o f f r : r a d i a l d i s t ance away from l e a d e r [m]
15 # o f f t h e t a : ang le (deg) from −x a x i s (out o f t a i l) ,

CCW i s (+) r o t a t i o n
16 # o f f l 1 : d i s t anc e the guided po int i s p laced

forward o f the d e s i r e d
17 # f o l l o w e r l o c a t i o n
18 # l o c 0 l : l o c a t i o n o f the l e a d e r at cur rent

incr iment o f time
19 # head ing l : heading o f the l e a d e r at cur rent

incr iment o f time
20 #Outputs : l o c 1 f : cur r ent d e s i r e d l o c a t i o n o f the f o l l o w e r
21

22

23 #Fol lower l o c1 r e l a t i v e to l e a d e r body frame
24 o f f t h e t a +=270 #add 270 deg to make o f f s e t r e l a t i v e to ea s t (+X

a x i s f o r math)
25 o f f t h e t a=np . deg2rad (o f f t h e t a)
26 l o c 1 f= o f f r ∗np . array ([np . cos (o f f t h e t a) , np . s i n (o f f t h e t a) , 0]) −
27 o f f l 1 ∗np . array ([1 , 0 , 0])
28

29 #Fol lower l o c1 r e l a t i v e to Local Leve l Frame (L , North−East−Up)
frame

30 cos h=np . cos (np . deg2rad (head ing l))
31 s i n h=np . s i n (np . deg2rad (head ing l))
32 R BtoL=np . array ([[cos h , s in h , 0] ,
33 [− s in h , cos h , 0] ,
34 [0 , 0 , 1]]) #Rotation from body

to l o c a l
35 l o c 1 f=np . dot (l o c 1 f , R BtoL)
36

37 #Fol lower l o c1 from Local Leve l Frame (L , North−East−Up) to ECEF (E)
38 phi= np . deg2rad (l o c 0 l [0]) #l a t i t u d e o f l e a d e r
39 l a= np . deg2rad (l o c 0 l [1]) #lond i tude o f l e a d e r
40 s i n l a= np . s i n (l a)
41 c o s l a=np . cos (l a)

142

42 s i n p h i= np . s i n (phi)
43 c o s p h i=np . cos (phi)
44 R LtoE=np . array ([[− s i n l a , −s i n p h i ∗ c o s l a , c o s p h i ∗ c o s l a

] ,
45 [c o s l a , −s i n p h i ∗ s i n l a , c o s p h i ∗ s i n l a

] ,
46 [0 , cos ph i , s i n p h i

]]) #Rotation from l o c a l to e c e f
47

48 T LtoE=LLA ECEF Convert (np . rad2deg (phi) , np . rad2deg (l a) , l o c 0 l [2] , ’
LLAtoECEF ’)

49 l o c 1 f= np . dot (R LtoE , l o c 1 f) + T LtoE .T
50

51

52 #Fol lower Locat ion ECEF to l a t lon a l t (LLA)
53 l o c 1 f= LLA ECEF Convert (l o c 1 f [0] , l o c 1 f [1] , l o c 1 f [2] , ’ECEFtoLLA

’)
54

55 re turn l o c 1 f
56

57 de f r e l a y p o s (p o s g c s l l h , po s r em l lh) :
58 #func t i on d e s c r i p t i o n : Ca l cu l a t e s the midpoint between the GCS

and remote v e h i c l e
59 # to send the r e l a y v e h i c l e
60 #
61 #Inputs : p o s g c s l l h : pos o f GCS in l a t lon hae
62 # pos r em l lh : pos o f remote v e h i c l e in l a t lon hae
63 #
64 #Outputs : p o s r e l l l a : c a l c u l a t e d pos o f r e l a y v e h i c l e
65 #
66 #Notation :
67 # Remote v e h i c l e : rem
68 # Relay v e h i c l e : r e l
69 # Ground Control : GCS
70

71 #convert pos o f rem & gcs from l l h to e c e f
72 pos r em ece f=LLA ECEF Convert (po s r em l lh [0] , po s r em l lh [1] ,
73 pos r em l lh [2] , ’LLAtoECEF ’)
74

75 p o s g c s e c e f=LLA ECEF Convert (p o s g c s l l h [0] , p o s g c s l l h [1] ,
76 p o s g c s l l h [2] , ’LLAtoECEF ’)
77

78 #c a l c u l a t e midpoint in e c e f
79 p o s r e l e c e f=p o s g c s e c e f + 0 . 5∗ (pos rem ece f−p o s g c s e c e f)
80

81 #convert pos o f r e l from e c e f to l l h
82 p o s r e l l l a=LLA ECEF Convert (p o s r e l e c e f [0] , p o s r e l e c e f [1] ,
83 p o s r e l e c e f [2] , ’ECEFtoLLA ’)
84

85 re turn p o s r e l l l a

143

G Appendix G: Traxxas EMAXX UGS Pixhawk Parameters

#NOTE: 8/25/2015 12:26:27 PM

AHRS_COMP_BETA,0.1

AHRS_EKF_USE,0

AHRS_GPS_GAIN,1

AHRS_GPS_MINSATS,6

AHRS_GPS_USE,1

AHRS_ORIENTATION,0

AHRS_RP_P,0.2

AHRS_TRIM_X,0

AHRS_TRIM_Y,0

AHRS_TRIM_Z,0

AHRS_WIND_MAX,0

AHRS_YAW_P,0.2

AUTO_KICKSTART,0

AUTO_TRIGGER_PIN,-1

BATT_AMP_OFFSET,0

BATT_AMP_PERVOLT,17

BATT_CAPACITY,3300

BATT_CURR_PIN,-1

BATT_MONITOR,0

BATT_VOLT_MULT,10.1

BATT_VOLT_PIN,-1

BATT2_AMP_OFFSET,0

BATT2_AMP_PERVOL,17

BATT2_CAPACITY,3300

BATT2_CURR_PIN,3

BATT2_MONITOR,0

BATT2_VOLT_MULT,10.1

BATT2_VOLT_PIN,2

BRAKING_PERCENT,0

BRAKING_SPEEDERR,3

BRD_PWM_COUNT,4

BRD_SAFETYENABLE,1

BRD_SBUS_OUT,0

BRD_SER1_RTSCTS,2

BRD_SER2_RTSCTS,2

CAM_DURATION,10

CAM_SERVO_OFF,1100

CAM_SERVO_ON,1300

CAM_TRIGG_DIST,0

CAM_TRIGG_TYPE,0

CH7_OPTION,1

CLI_ENABLED,0

COMPASS_AUTODEC,1

COMPASS_DEC,-0.09905119

COMPASS_DEV_ID,73225

COMPASS_DEV_ID2,131594

COMPASS_DEV_ID3,0

COMPASS_EXTERN2,0

COMPASS_EXTERN3,0

COMPASS_EXTERNAL,1

COMPASS_LEARN,0

COMPASS_MOT_X,0

COMPASS_MOT_Y,0

COMPASS_MOT_Z,0

COMPASS_MOT2_X,0

COMPASS_MOT2_Y,0

COMPASS_MOT2_Z,0

COMPASS_MOT3_X,0

COMPASS_MOT3_Y,0

COMPASS_MOT3_Z,0

COMPASS_MOTCT,0

COMPASS_OFS_X,-101.8812

COMPASS_OFS_Y,-12.68495

COMPASS_OFS_Z,-101.4908

COMPASS_OFS2_X,271.3355

COMPASS_OFS2_Y,-438.0417

COMPASS_OFS2_Z,286.0888

COMPASS_OFS3_X,0

COMPASS_OFS3_Y,0

COMPASS_OFS3_Z,0

COMPASS_ORIENT,0

COMPASS_ORIENT2,0

COMPASS_ORIENT3,0

COMPASS_PRIMARY,0

COMPASS_USE,1

COMPASS_USE2,1

COMPASS_USE3,1

CRUISE_SPEED,1.5

CRUISE_THROTTLE,33

144

EKF_ABIAS_PNOISE,5E-05

EKF_ACC_PNOISE,0.25

EKF_ALT_NOISE,1

EKF_ALT_SOURCE,1

EKF_EAS_GATE,10

EKF_EAS_NOISE,1.4

EKF_FALLBACK,1

EKF_FLOW_DELAY,25

EKF_FLOW_GATE,5

EKF_FLOW_NOISE,0.15

EKF_GBIAS_PNOISE,8E-06

EKF_GLITCH_ACCEL,150

EKF_GLITCH_RAD,15

EKF_GND_GRADIENT,2

EKF_GPS_TYPE,0

EKF_GYRO_PNOISE,0.015

EKF_HGT_GATE,10

EKF_MAG_CAL,1

EKF_MAG_GATE,3

EKF_MAG_NOISE,0.05

EKF_MAGB_PNOISE,0.0003

EKF_MAGE_PNOISE,0.0003

EKF_MAX_FLOW,2.5

EKF_POS_DELAY,220

EKF_POS_GATE,10

EKF_POSNE_NOISE,0.5

EKF_RNG_GATE,5

EKF_VEL_DELAY,220

EKF_VEL_GATE,5

EKF_VELD_NOISE,0.7

EKF_VELNE_NOISE,0.5

EKF_WIND_PNOISE,0.1

EKF_WIND_PSCALE,0.5

FORMAT_VERSION,16

FS_ACTION,2

FS_GCS_ENABLE,0

FS_THR_ENABLE,1

FS_THR_VALUE,910

FS_TIMEOUT,5

GCS_PID_MASK,0

GND_ABS_PRESS,98397.73

GND_ALT_OFFSET,0

GND_TEMP,33.29029

GPS_AUTO_SWITCH,1

GPS_INJECT_TO,127

GPS_MIN_DGPS,100

GPS_MIN_ELEV,-100

GPS_NAVFILTER,8

GPS_RAW_DATA,0

GPS_SBAS_MODE,2

GPS_SBP_LOGMASK,-256

GPS_TYPE,1

GPS_TYPE2,0

INITIAL_MODE,0

INS_ACC2OFFS_X,0

INS_ACC2OFFS_Y,0

INS_ACC2OFFS_Z,0

INS_ACC2SCAL_X,1

INS_ACC2SCAL_Y,1

INS_ACC2SCAL_Z,1

INS_ACC3OFFS_X,0

INS_ACC3OFFS_Y,0

INS_ACC3OFFS_Z,0

INS_ACC3SCAL_X,0

INS_ACC3SCAL_Y,0

INS_ACC3SCAL_Z,0

INS_ACCEL_FILTER,10

INS_ACCOFFS_X,0

INS_ACCOFFS_Y,0

INS_ACCOFFS_Z,0

INS_ACCSCAL_X,1

INS_ACCSCAL_Y,1

INS_ACCSCAL_Z,1

INS_GYR2OFFS_X,0.007782747

INS_GYR2OFFS_Y,0.008182988

INS_GYR2OFFS_Z,-0.004160143

INS_GYR3OFFS_X,0

INS_GYR3OFFS_Y,0

INS_GYR3OFFS_Z,0

INS_GYRO_FILTER,10

INS_GYROFFS_X,-0.002938097

INS_GYROFFS_Y,0.03547082

INS_GYROFFS_Z,0.006362518

INS_PRODUCT_ID,5

LEARN_CH,7

LOG_BITMASK,65535

145

MAG_ENABLE,0

MIS_RESTART,0

MIS_TOTAL,6

MNT_ANGMAX_PAN,4500

MNT_ANGMAX_ROL,4500

MNT_ANGMAX_TIL,4500

MNT_ANGMIN_PAN,-4500

MNT_ANGMIN_ROL,-4500

MNT_ANGMIN_TIL,-4500

MNT_DEFLT_MODE,3

MNT_JSTICK_SPD,0

MNT_K_RATE,5

MNT_LEAD_PTCH,0

MNT_LEAD_RLL,0

MNT_NEUTRAL_X,0

MNT_NEUTRAL_Y,0

MNT_NEUTRAL_Z,0

MNT_OFF_ACC_X,0

MNT_OFF_ACC_Y,0

MNT_OFF_ACC_Z,0

MNT_OFF_GYRO_X,0

MNT_OFF_GYRO_Y,0

MNT_OFF_GYRO_Z,0

MNT_OFF_JNT_X,0

MNT_OFF_JNT_Y,0

MNT_OFF_JNT_Z,0

MNT_RC_IN_PAN,0

MNT_RC_IN_ROLL,0

MNT_RC_IN_TILT,0

MNT_RETRACT_X,0

MNT_RETRACT_Y,0

MNT_RETRACT_Z,0

MNT_STAB_PAN,0

MNT_STAB_ROLL,0

MNT_STAB_TILT,0

MNT_TYPE,0

MODE_CH,8

MODE1,10

MODE2,0

MODE3,2

MODE4,3

MODE5,10

MODE6,0

NAVL1_DAMPING,0.9

NAVL1_PERIOD,8

PIVOT_TURN_ANGLE,30

RC1_DZ,30

RC1_MAX,1760

RC1_MIN,1248

RC1_REV,1

RC1_TRIM,1496

RC10_DZ,0

RC10_FUNCTION,0

RC10_MAX,1900

RC10_MIN,1100

RC10_REV,1

RC10_TRIM,1500

RC11_DZ,0

RC11_FUNCTION,0

RC11_MAX,1900

RC11_MIN,1100

RC11_REV,1

RC11_TRIM,1500

RC12_DZ,0

RC12_FUNCTION,0

RC12_MAX,1900

RC12_MIN,1100

RC12_REV,1

RC12_TRIM,1500

RC13_DZ,0

RC13_FUNCTION,0

RC13_MAX,1900

RC13_MIN,1100

RC13_REV,1

RC13_TRIM,1500

RC14_DZ,0

RC14_FUNCTION,0

RC14_MAX,1900

RC14_MIN,1100

RC14_REV,1

RC14_TRIM,1500

RC2_DZ,30

RC2_FUNCTION,0

RC2_MAX,2009

RC2_MIN,1298

RC2_REV,1

146

RC2_TRIM,1500

RC3_DZ,0

RC3_MAX,2017

RC3_MIN,1120

RC3_REV,1

RC3_TRIM,1529

RC4_DZ,0

RC4_FUNCTION,0

RC4_MAX,2016

RC4_MIN,992

RC4_REV,1

RC4_TRIM,1502

RC5_DZ,0

RC5_FUNCTION,0

RC5_MAX,2017

RC5_MIN,2015

RC5_REV,1

RC5_TRIM,2017

RC6_DZ,0

RC6_FUNCTION,0

RC6_MAX,2017

RC6_MIN,2015

RC6_REV,1

RC6_TRIM,2016

RC7_DZ,0

RC7_FUNCTION,0

RC7_MAX,1146

RC7_MIN,1145

RC7_REV,1

RC7_TRIM,1146

RC8_DZ,0

RC8_FUNCTION,0

RC8_MAX,2017

RC8_MIN,991

RC8_REV,1

RC8_TRIM,2016

RC9_DZ,0

RC9_FUNCTION,0

RC9_MAX,1900

RC9_MIN,1100

RC9_REV,1

RC9_TRIM,1500

RCMAP_PITCH,3

RCMAP_ROLL,1

RCMAP_THROTTLE,2

RCMAP_YAW,4

RELAY_DEFAULT,0

RELAY_PIN,54

RELAY_PIN2,55

RELAY_PIN3,-1

RELAY_PIN4,-1

RNGFND_DEBOUNCE,2

RNGFND_FUNCTION,0

RNGFND_GNDCLEAR,10

RNGFND_MAX_CM,700

RNGFND_MIN_CM,20

RNGFND_OFFSET,0

RNGFND_PIN,-1

RNGFND_PWRRNG,0

RNGFND_RMETRIC,1

RNGFND_SCALING,3

RNGFND_SETTLE,0

RNGFND_STOP_PIN,-1

RNGFND_TRIGGR_CM,100

RNGFND_TURN_ANGL,45

RNGFND_TURN_TIME,1

RNGFND_TYPE,0

RNGFND2_FUNCTION,0

RNGFND2_GNDCLEAR,10

RNGFND2_MAX_CM,700

RNGFND2_MIN_CM,20

RNGFND2_OFFSET,0

RNGFND2_PIN,-1

RNGFND2_RMETRIC,1

RNGFND2_SCALING,3

RNGFND2_SETTLE,0

RNGFND2_STOP_PIN,-1

RNGFND2_TYPE,0

RSSI_PIN,-1

RST_SWITCH_CH,0

SCHED_DEBUG,0

SERIAL0_BAUD,115

SERIAL1_BAUD,57

SERIAL1_PROTOCOL,1

SERIAL2_BAUD,57

SERIAL2_PROTOCOL,1

147

SERIAL3_BAUD,38

SERIAL3_PROTOCOL,5

SERIAL4_BAUD,38

SERIAL4_PROTOCOL,5

SKID_STEER_IN,0

SKID_STEER_OUT,0

SKIP_GYRO_CAL,0

SPEED_TURN_DIST,2

SPEED_TURN_GAIN,1

SPEED2THR_D,0.5

SPEED2THR_I,0.5

SPEED2THR_IMAX,5000

SPEED2THR_P,0.5

SR0_EXT_STAT,2

SR0_EXTRA1,6

SR0_EXTRA2,6

SR0_EXTRA3,1

SR0_PARAMS,10

SR0_POSITION,2

SR0_RAW_CTRL,4

SR0_RAW_SENS,1

SR0_RC_CHAN,2

SR1_EXT_STAT,4

SR1_EXTRA1,4

SR1_EXTRA2,4

SR1_EXTRA3,4

SR1_PARAMS,10

SR1_POSITION,4

SR1_RAW_CTRL,4

SR1_RAW_SENS,4

SR1_RC_CHAN,4

SR2_EXT_STAT,1

SR2_EXTRA1,1

SR2_EXTRA2,1

SR2_EXTRA3,1

SR2_PARAMS,10

SR2_POSITION,1

SR2_RAW_CTRL,1

SR2_RAW_SENS,1

SR2_RC_CHAN,1

SR3_EXT_STAT,1

SR3_EXTRA1,1

SR3_EXTRA2,1

SR3_EXTRA3,1

SR3_PARAMS,10

SR3_POSITION,1

SR3_RAW_CTRL,1

SR3_RAW_SENS,1

SR3_RC_CHAN,1

STEER2SRV_D,0.2

STEER2SRV_FF,0

STEER2SRV_I,0.1

STEER2SRV_IMAX,5000

STEER2SRV_MINSPD,1

STEER2SRV_P,1.5

STEER2SRV_TCONST,0.75

SYS_NUM_RESETS,213

SYSID_MYGCS,255

SYSID_SW_TYPE,20

SYSID_THISMAV,1

TELEM_DELAY,0

THR_MAX,100

THR_MIN,0

THR_SLEWRATE,100

TURN_MAX_G,1.1

WP_RADIUS,2

H Appendix H: X8 Multi-Rotor UAS Pixhawk Parameters

#NOTE: 10/15/2015 3:47:42 PM

ACRO_BAL_PITCH,1

ACRO_BAL_ROLL,1

ACRO_EXPO,0.3

ACRO_RP_P,4.5

ACRO_TRAINER,2

ACRO_YAW_P,3

AHRS_COMP_BETA,0.1

AHRS_EKF_USE,0

AHRS_GPS_GAIN,1

AHRS_GPS_MINSATS,6

AHRS_GPS_USE,1

148

AHRS_ORIENTATION,0

AHRS_RP_P,0.1

AHRS_TRIM_X,-0.003521048

AHRS_TRIM_Y,0.01564041

AHRS_TRIM_Z,0

AHRS_WIND_MAX,0

AHRS_YAW_P,0.1

ANGLE_MAX,4500

ARMING_CHECK,1

ATC_ACCEL_RP_MAX,72000

ATC_ACCEL_Y_MAX,18000

ATC_RATE_FF_ENAB,1

ATC_RATE_RP_MAX,9000

ATC_RATE_Y_MAX,9000

ATC_SLEW_YAW,1000

BAROGLTCH_ACCEL,1500

BAROGLTCH_DIST,500

BAROGLTCH_ENABLE,1

BATT_AMP_OFFSET,0

BATT_AMP_PERVOLT,17

BATT_CAPACITY,6000

BATT_CURR_PIN,3

BATT_MONITOR,4

BATT_VOLT_MULT,10.1

BATT_VOLT_PIN,2

BATT_VOLT2_MULT,1

BATT_VOLT2_PIN,-1

BRD_PWM_COUNT,4

BRD_SAFETYENABLE,1

BRD_SER1_RTSCTS,2

BRD_SER2_RTSCTS,2

CAM_DURATION,10

CAM_SERVO_OFF,1100

CAM_SERVO_ON,1300

CAM_TRIGG_DIST,0

CAM_TRIGG_TYPE,0

CH7_OPT,18

CH8_OPT,0

CHUTE_ALT_MIN,10

CHUTE_ENABLED,0

CHUTE_SERVO_OFF,1100

CHUTE_SERVO_ON,1300

CHUTE_TYPE,0

CIRCLE_RADIUS,1000

CIRCLE_RATE,20

COMPASS_AUTODEC,1

COMPASS_DEC,0

COMPASS_DEV_ID,73225

COMPASS_DEV_ID2,131594

COMPASS_DEV_ID3,0

COMPASS_EXTERNAL,1

COMPASS_LEARN,0

COMPASS_MOT_X,0

COMPASS_MOT_Y,0

COMPASS_MOT_Z,0

COMPASS_MOT2_X,0

COMPASS_MOT2_Y,0

COMPASS_MOT2_Z,0

COMPASS_MOT3_X,0

COMPASS_MOT3_Y,0

COMPASS_MOT3_Z,0

COMPASS_MOTCT,0

COMPASS_OFS_X,-91

COMPASS_OFS_Y,-28

COMPASS_OFS_Z,-148

COMPASS_OFS2_X,-59

COMPASS_OFS2_Y,111

COMPASS_OFS2_Z,219

COMPASS_OFS3_X,0

COMPASS_OFS3_Y,0

COMPASS_OFS3_Z,0

COMPASS_ORIENT,0

COMPASS_PRIMARY,0

COMPASS_USE,1

DCM_CHECK_THRESH,0.8

EKF_ABIAS_PNOISE,0.0001

EKF_ACC_PNOISE,0.25

EKF_ALT_NOISE,1

EKF_CHECK_THRESH,0.8

EKF_EAS_GATE,10

EKF_EAS_NOISE,1.4

EKF_GBIAS_PNOISE,1E-06

EKF_GLITCH_ACCEL,150

EKF_GLITCH_RAD,15

EKF_GPS_TYPE,0

EKF_GYRO_PNOISE,0.015

149

EKF_HGT_GATE,10

EKF_MAG_CAL,1

EKF_MAG_GATE,3

EKF_MAG_NOISE,0.05

EKF_MAGB_PNOISE,0.0003

EKF_MAGE_PNOISE,0.0003

EKF_POS_DELAY,220

EKF_POS_GATE,10

EKF_POSNE_NOISE,0.5

EKF_VEL_DELAY,220

EKF_VEL_GATE,6

EKF_VELD_NOISE,0.7

EKF_VELNE_NOISE,0.5

EKF_WIND_PNOISE,0.1

EKF_WIND_PSCALE,0.5

ESC,0

FENCE_ACTION,1

FENCE_ALT_MAX,100

FENCE_ENABLE,0

FENCE_MARGIN,2

FENCE_RADIUS,300

FENCE_TYPE,3

FLOW_ENABLE,0

FLTMODE1,3

FLTMODE2,16

FLTMODE3,3

FLTMODE4,0

FLTMODE5,6

FLTMODE6,2

FRAME,1

FS_BATT_ENABLE,1

FS_BATT_MAH,20

FS_BATT_VOLTAGE,14

FS_GCS_ENABLE,1

FS_GPS_ENABLE,2

FS_THR_ENABLE,1

FS_THR_VALUE,975

GND_ABS_PRESS,98177.3

GND_ALT_OFFSET,0

GND_TEMP,37.70488

GPS_AUTO_SWITCH,1

GPS_HDOP_GOOD,200

GPS_MIN_DGPS,100

GPS_NAVFILTER,8

GPS_TYPE,1

GPS_TYPE2,0

GPSGLITCH_ACCEL,1000

GPSGLITCH_ENABLE,1

GPSGLITCH_RADIUS,200

HLD_LAT_P,1

INAV_TC_XY,2.5

INAV_TC_Z,5

INS_ACC2OFFS_X,1.147846

INS_ACC2OFFS_Y,1.140518

INS_ACC2OFFS_Z,1.171686

INS_ACC2SCAL_X,1.040946

INS_ACC2SCAL_Y,0.9906676

INS_ACC2SCAL_Z,0.9855135

INS_ACC3OFFS_X,0

INS_ACC3OFFS_Y,0

INS_ACC3OFFS_Z,0

INS_ACC3SCAL_X,0

INS_ACC3SCAL_Y,0

INS_ACC3SCAL_Z,0

INS_ACCOFFS_X,-0.004180954

INS_ACCOFFS_Y,-0.1249053

INS_ACCOFFS_Z,-0.1089551

INS_ACCSCAL_X,1.004815

INS_ACCSCAL_Y,0.9986967

INS_ACCSCAL_Z,0.9888687

INS_GYR2OFFS_X,-0.003148957

INS_GYR2OFFS_Y,0.0173818

INS_GYR2OFFS_Z,-0.009323909

INS_GYR3OFFS_X,0

INS_GYR3OFFS_Y,0

INS_GYR3OFFS_Z,0

INS_GYROFFS_X,-0.0135583

INS_GYROFFS_Y,0.03729856

INS_GYROFFS_Z,0.008076278

INS_MPU6K_FILTER,0

INS_PRODUCT_ID,0

LAND_REPOSITION,1

LAND_SPEED,50

LOG_BITMASK,26622

LOITER_LAT_D,0

LOITER_LAT_I,0.5

150

LOITER_LAT_IMAX,1000

LOITER_LAT_P,1

LOITER_LON_D,0

LOITER_LON_I,0.5

LOITER_LON_IMAX,1000

LOITER_LON_P,1

MAG_ENABLE,1

MIS_RESTART,0

MIS_TOTAL,2

MNT_ANGMAX_PAN,4500

MNT_ANGMAX_ROL,4500

MNT_ANGMAX_TIL,0

MNT_ANGMIN_PAN,-4500

MNT_ANGMIN_ROL,-4500

MNT_ANGMIN_TIL,-9000

MNT_CONTROL_X,0

MNT_CONTROL_Y,0

MNT_CONTROL_Z,0

MNT_JSTICK_SPD,0

MNT_MODE,3

MNT_NEUTRAL_X,0

MNT_NEUTRAL_Y,0

MNT_NEUTRAL_Z,0

MNT_RC_IN_PAN,0

MNT_RC_IN_ROLL,0

MNT_RC_IN_TILT,6

MNT_RETRACT_X,0

MNT_RETRACT_Y,0

MNT_RETRACT_Z,0

MNT_STAB_PAN,0

MNT_STAB_ROLL,0

MNT_STAB_TILT,0

MOT_SPIN_ARMED,70

MOT_TCRV_ENABLE,1

MOT_TCRV_MAXPCT,93

MOT_TCRV_MIDPCT,52

OF_PIT_D,0.12

OF_PIT_I,0.5

OF_PIT_IMAX,100

OF_PIT_P,2.5

OF_RLL_D,0.12

OF_RLL_I,0.5

OF_RLL_IMAX,100

OF_RLL_P,2.5

PHLD_BRAKE_ANGLE,3000

PHLD_BRAKE_RATE,8

PILOT_ACCEL_Z,250

PILOT_VELZ_MAX,250

POSCON_THR_HOVER,414

RALLY_LIMIT_KM,0.3

RALLY_TOTAL,0

RATE_PIT_D,0.005

RATE_PIT_I,0.1999

RATE_PIT_IMAX,5000

RATE_PIT_P,0.1999

RATE_RLL_D,0.005

RATE_RLL_I,0.1999

RATE_RLL_IMAX,5000

RATE_RLL_P,0.1999

RATE_YAW_D,0.005

RATE_YAW_I,0.02

RATE_YAW_IMAX,1000

RATE_YAW_P,0.16

RC_FEEL_RP,15

RC_SPEED,490

RC1_DZ,30

RC1_MAX,1931

RC1_MIN,1080

RC1_REV,1

RC1_TRIM,1506

RC10_DZ,0

RC10_FUNCTION,0

RC10_MAX,1900

RC10_MIN,1100

RC10_REV,1

RC10_TRIM,1500

RC11_DZ,0

RC11_FUNCTION,0

RC11_MAX,1900

RC11_MIN,1100

RC11_REV,1

RC11_TRIM,1500

RC12_DZ,0

RC12_FUNCTION,0

RC12_MAX,1900

RC12_MIN,1100

151

RC12_REV,1

RC12_TRIM,1500

RC13_DZ,0

RC13_FUNCTION,0

RC13_MAX,1900

RC13_MIN,1100

RC13_REV,1

RC13_TRIM,1500

RC14_DZ,0

RC14_FUNCTION,0

RC14_MAX,1900

RC14_MIN,1100

RC14_REV,1

RC14_TRIM,1500

RC2_DZ,30

RC2_MAX,1933

RC2_MIN,1082

RC2_REV,1

RC2_TRIM,1508

RC3_DZ,30

RC3_MAX,1851

RC3_MIN,1169

RC3_REV,1

RC3_TRIM,1171

RC4_DZ,40

RC4_MAX,1935

RC4_MIN,1084

RC4_REV,1

RC4_TRIM,1509

RC5_DZ,0

RC5_FUNCTION,0

RC5_MAX,1892

RC5_MIN,1196

RC5_REV,1

RC5_TRIM,1500

RC6_DZ,0

RC6_FUNCTION,0

RC6_MAX,1851

RC6_MIN,1169

RC6_REV,1

RC6_TRIM,1568

RC7_DZ,0

RC7_FUNCTION,0

RC7_MAX,1510

RC7_MIN,1084

RC7_REV,1

RC7_TRIM,1510

RC8_DZ,0

RC8_FUNCTION,0

RC8_MAX,1900

RC8_MIN,1100

RC8_REV,1

RC8_TRIM,1509

RC9_DZ,0

RC9_FUNCTION,7

RC9_MAX,1520

RC9_MIN,1000

RC9_REV,1

RC9_TRIM,1500

RCMAP_PITCH,2

RCMAP_ROLL,1

RCMAP_THROTTLE,3

RCMAP_YAW,4

RELAY_PIN,54

RELAY_PIN2,-1

RNGFND_FUNCTION,0

RNGFND_GAIN,0.8

RNGFND_MAX_CM,700

RNGFND_MIN_CM,20

RNGFND_OFFSET,0

RNGFND_PIN,-1

RNGFND_RMETRIC,1

RNGFND_SCALING,3

RNGFND_SETTLE_MS,0

RNGFND_STOP_PIN,-1

RNGFND_TYPE,0

RSSI_PIN,-1

RSSI_RANGE,5

RTL_ALT,2000

RTL_ALT_FINAL,0

RTL_LOIT_TIME,5000

SCHED_DEBUG,0

SERIAL0_BAUD,115

SERIAL1_BAUD,57

SERIAL2_BAUD,57

SERIAL2_PROTOCOL,2

152

SIMPLE,0

SR0_EXT_STAT,0

SR0_EXTRA1,0

SR0_EXTRA2,0

SR0_EXTRA3,0

SR0_PARAMS,10

SR0_POSITION,0

SR0_RAW_CTRL,0

SR0_RAW_SENS,0

SR0_RC_CHAN,0

SR1_EXT_STAT,0

SR1_EXTRA1,0

SR1_EXTRA2,0

SR1_EXTRA3,0

SR1_PARAMS,0

SR1_POSITION,0

SR1_RAW_CTRL,0

SR1_RAW_SENS,0

SR1_RC_CHAN,0

SR2_EXT_STAT,0

SR2_EXTRA1,0

SR2_EXTRA2,0

SR2_EXTRA3,0

SR2_PARAMS,0

SR2_POSITION,0

SR2_RAW_CTRL,0

SR2_RAW_SENS,0

SR2_RC_CHAN,0

STB_PIT_P,4

STB_RLL_P,4

STB_YAW_P,2.5

SUPER_SIMPLE,0

SYSID_MYGCS,255

SYSID_SW_MREV,120

SYSID_SW_TYPE,10

SYSID_THISMAV,1

TELEM_DELAY,0

TERRAIN_ENABLE,1

TERRAIN_SPACING,100

THR_ACCEL_D,0

THR_ACCEL_I,1

THR_ACCEL_IMAX,800

THR_ACCEL_P,0.5

THR_ALT_P,1

THR_DZ,100

THR_MAX,1000

THR_MID,450

THR_MIN,130

THR_RATE_P,5

TRIM_THROTTLE,414

TUNE,0

TUNE_HIGH,1000

TUNE_LOW,0

WP_YAW_BEHAVIOR,2

WPNAV_ACCEL,250

WPNAV_ACCEL_Z,100

WPNAV_LOIT_JERK,1000

WPNAV_LOIT_SPEED,200

WPNAV_RADIUS,100

WPNAV_SPEED,200

WPNAV_SPEED_DN,200

WPNAV_SPEED_UP,200

I Appendix I: Supper Sky Surfer UAS Pixhawk Parameters

#NOTE:

10/15/2015 12:11:10 PM

Plane: Skywalker

ACRO_LOCKING,0

ACRO_PITCH_RATE,180

ACRO_ROLL_RATE,180

AFS_AMSL_ERR_GPS,-1

AFS_AMSL_LIMIT,0

AFS_ENABLE,0

AFS_HB_PIN,-1

AFS_MAN_PIN,-1

AFS_MAX_COM_LOSS,0

AFS_MAX_GPS_LOSS,0

AFS_QNH_PRESSURE,0

AFS_RC_FAIL_MS,0

153

AFS_TERM_ACTION,0

AFS_TERM_PIN,-1

AFS_TERMINATE,0

AFS_WP_COMMS,0

AFS_WP_GPS_LOSS,0

AHRS_COMP_BETA,0.1

AHRS_EKF_USE,0

AHRS_GPS_GAIN,1

AHRS_GPS_MINSATS,6

AHRS_GPS_USE,1

AHRS_ORIENTATION,0

AHRS_RP_P,0.2

AHRS_TRIM_X,0

AHRS_TRIM_Y,0

AHRS_TRIM_Z,0

AHRS_WIND_MAX,0

AHRS_YAW_P,0.2

ALT_CTRL_ALG,0

ALT_HOLD_FBWCM,0

ALT_HOLD_RTL,10000

ALT_MIX,1

ALT_OFFSET,0

ARMING_CHECK,1

ARMING_DIS_RUD,0

ARMING_REQUIRE,0

ARSPD_AUTOCAL,0

ARSPD_ENABLE,1

ARSPD_FBW_MAX,22

ARSPD_FBW_MIN,9

ARSPD_OFFSET,2.130668

ARSPD_PIN,15

ARSPD_RATIO,1.9936

ARSPD_SKIP_CAL,0

ARSPD_TUBE_ORDER,2

ARSPD_USE,0

AUTO_FBW_STEER,0

AUTOTUNE_LEVEL,6

BATT_AMP_OFFSET,0

BATT_AMP_PERVOLT,17

BATT_CAPACITY,3300

BATT_CURR_PIN,3

BATT_MONITOR,0

BATT_VOLT_MULT,10.1

BATT_VOLT_PIN,2

BATT2_AMP_OFFSET,0

BATT2_AMP_PERVOL,17

BATT2_CAPACITY,3300

BATT2_CURR_PIN,3

BATT2_MONITOR,0

BATT2_VOLT_MULT,10.1

BATT2_VOLT_PIN,2

BRD_PWM_COUNT,4

BRD_SAFETYENABLE,1

BRD_SER1_RTSCTS,2

BRD_SER2_RTSCTS,2

CAM_DURATION,10

CAM_SERVO_OFF,1100

CAM_SERVO_ON,1300

CAM_TRIGG_DIST,0

CAM_TRIGG_TYPE,0

COMPASS_AUTODEC,1

COMPASS_DEC,0

COMPASS_DEV_ID,73225

COMPASS_DEV_ID2,131594

COMPASS_DEV_ID3,0

COMPASS_EXTERN2,0

COMPASS_EXTERN3,0

COMPASS_EXTERNAL,1

COMPASS_LEARN,1

COMPASS_MOT_X,0

COMPASS_MOT_Y,0

COMPASS_MOT_Z,0

COMPASS_MOT2_X,0

COMPASS_MOT2_Y,0

COMPASS_MOT2_Z,0

COMPASS_MOT3_X,0

COMPASS_MOT3_Y,0

COMPASS_MOT3_Z,0

COMPASS_MOTCT,0

COMPASS_OFS_X,-0.3281624

COMPASS_OFS_Y,5.074333

COMPASS_OFS_Z,-1.829881

COMPASS_OFS2_X,0.7644874

COMPASS_OFS2_Y,10.79797

COMPASS_OFS2_Z,-2.574864

COMPASS_OFS3_X,0

154

COMPASS_OFS3_Y,0

COMPASS_OFS3_Z,0

COMPASS_ORIENT,0

COMPASS_ORIENT2,0

COMPASS_ORIENT3,0

COMPASS_PRIMARY,0

COMPASS_USE,1

COMPASS_USE2,1

COMPASS_USE3,1

EKF_ABIAS_PNOISE,0.0002

EKF_ACC_PNOISE,0.5

EKF_ALT_NOISE,0.5

EKF_EAS_GATE,10

EKF_EAS_NOISE,1.4

EKF_FALLBACK,1

EKF_FLOW_DELAY,25

EKF_FLOW_GATE,3

EKF_FLOW_NOISE,0.3

EKF_GBIAS_PNOISE,1E-06

EKF_GLITCH_ACCEL,150

EKF_GLITCH_RAD,20

EKF_GND_GRADIENT,2

EKF_GPS_TYPE,0

EKF_GYRO_PNOISE,0.015

EKF_HGT_GATE,20

EKF_MAG_CAL,0

EKF_MAG_GATE,3

EKF_MAG_NOISE,0.05

EKF_MAGB_PNOISE,0.0003

EKF_MAGE_PNOISE,0.0003

EKF_MAX_FLOW,2.5

EKF_POS_DELAY,220

EKF_POS_GATE,30

EKF_POSNE_NOISE,0.5

EKF_RNG_GATE,5

EKF_VEL_DELAY,220

EKF_VEL_GATE,6

EKF_VELD_NOISE,0.5

EKF_VELNE_NOISE,0.3

EKF_WIND_PNOISE,0.1

EKF_WIND_PSCALE,0.5

ELEVON_CH1_REV,0

ELEVON_CH2_REV,0

ELEVON_MIXING,0

ELEVON_OUTPUT,0

ELEVON_REVERSE,0

FBWA_TDRAG_CHAN,0

FBWB_CLIMB_RATE,2

FBWB_ELEV_REV,0

FENCE_ACTION,0

FENCE_AUTOENABLE,0

FENCE_CHANNEL,0

FENCE_MAXALT,0

FENCE_MINALT,0

FENCE_RET_RALLY,0

FENCE_RETALT,0

FENCE_TOTAL,0

FLAP_1_PERCNT,0

FLAP_1_SPEED,0

FLAP_2_PERCNT,0

FLAP_2_SPEED,0

FLAP_IN_CHANNEL,0

FLAP_SLEWRATE,75

FLAPERON_OUTPUT,0

FLOW_ENABLE,0

FLOW_FXSCALER,0

FLOW_FYSCALER,0

FLTMODE_CH,8

FLTMODE1,10

FLTMODE2,2

FLTMODE3,2

FLTMODE4,2

FLTMODE5,2

FLTMODE6,0

FORMAT_VERSION,13

FS_BATT_MAH,0

FS_BATT_VOLTAGE,0

FS_GCS_ENABL,0

FS_LONG_ACTN,0

FS_LONG_TIMEOUT,20

FS_SHORT_ACTN,0

FS_SHORT_TIMEOUT,1.5

GLIDE_SLOPE_MIN,15

GND_ABS_PRESS,98518.57

GND_ALT_OFFSET,0

GND_TEMP,25

155

GPS_AUTO_SWITCH,1

GPS_MIN_DGPS,100

GPS_MIN_ELEV,-100

GPS_NAVFILTER,8

GPS_SBAS_MODE,2

GPS_TYPE,1

GPS_TYPE2,0

GROUND_STEER_ALT,0

GROUND_STEER_DPS,90

INS_ACC2OFFS_X,1.483593

INS_ACC2OFFS_Y,2.251354

INS_ACC2OFFS_Z,2.305809

INS_ACC2SCAL_X,1

INS_ACC2SCAL_Y,1

INS_ACC2SCAL_Z,1

INS_ACC3OFFS_X,0

INS_ACC3OFFS_Y,0

INS_ACC3OFFS_Z,0

INS_ACC3SCAL_X,0

INS_ACC3SCAL_Y,0

INS_ACC3SCAL_Z,0

INS_ACCOFFS_X,0.4568798

INS_ACCOFFS_Y,1.079645

INS_ACCOFFS_Z,-0.103158

INS_ACCSCAL_X,1

INS_ACCSCAL_Y,1

INS_ACCSCAL_Z,1

INS_GYR2OFFS_X,0.03132736

INS_GYR2OFFS_Y,0.04376069

INS_GYR2OFFS_Z,0.004333549

INS_GYR3OFFS_X,0

INS_GYR3OFFS_Y,0

INS_GYR3OFFS_Z,0

INS_GYROFFS_X,0.008482047

INS_GYROFFS_Y,0.02937811

INS_GYROFFS_Z,0.0008407365

INS_MPU6K_FILTER,0

INS_PRODUCT_ID,5

INVERTEDFLT_CH,0

KFF_RDDRMIX,0.5

KFF_THR2PTCH,0

LAND_FLAP_PERCNT,0

LAND_FLARE_ALT,3

LAND_FLARE_SEC,2

LAND_PITCH_CD,0

LEVEL_ROLL_LIMIT,5

LIM_PITCH_MAX,2000

LIM_PITCH_MIN,-2500

LIM_ROLL_CD,4500

LOG_BITMASK,65535

MAG_ENABLE,1

MIN_GNDSPD_CM,0

MIS_RESTART,0

MIS_TOTAL,0

MIXING_GAIN,0.5

MNT_ANGMAX_PAN,4500

MNT_ANGMAX_ROL,4500

MNT_ANGMAX_TIL,4500

MNT_ANGMIN_PAN,-4500

MNT_ANGMIN_ROL,-4500

MNT_ANGMIN_TIL,-4500

MNT_CONTROL_X,0

MNT_CONTROL_Y,0

MNT_CONTROL_Z,0

MNT_JSTICK_SPD,0

MNT_LEAD_PTCH,0

MNT_LEAD_RLL,0

MNT_MODE,0

MNT_NEUTRAL_X,0

MNT_NEUTRAL_Y,0

MNT_NEUTRAL_Z,0

MNT_RC_IN_PAN,0

MNT_RC_IN_ROLL,0

MNT_RC_IN_TILT,0

MNT_RETRACT_X,0

MNT_RETRACT_Y,0

MNT_RETRACT_Z,0

MNT_STAB_PAN,0

MNT_STAB_ROLL,0

MNT_STAB_TILT,0

NAV_CONTROLLER,1

NAVL1_DAMPING,0.75

NAVL1_PERIOD,18

OVERRIDE_CHAN,0

PTCH2SRV_D,0.2

PTCH2SRV_I,0.1

156

PTCH2SRV_IMAX,1500

PTCH2SRV_P,2.25

PTCH2SRV_RLL,1

PTCH2SRV_RMAX_DN,0

PTCH2SRV_RMAX_UP,0

PTCH2SRV_TCONST,0.5

RALLY_LIMIT_KM,5

RALLY_TOTAL,0

RC1_DZ,30

RC1_MAX,1900

RC1_MIN,1100

RC1_REV,1

RC1_TRIM,1500

RC10_DZ,0

RC10_FUNCTION,0

RC10_MAX,1900

RC10_MIN,1100

RC10_REV,1

RC10_TRIM,1500

RC11_DZ,0

RC11_FUNCTION,0

RC11_MAX,1900

RC11_MIN,1100

RC11_REV,1

RC11_TRIM,1500

RC12_DZ,0

RC12_FUNCTION,0

RC12_MAX,1900

RC12_MIN,1100

RC12_REV,1

RC12_TRIM,1500

RC13_DZ,0

RC13_FUNCTION,0

RC13_MAX,1900

RC13_MIN,1100

RC13_REV,1

RC13_TRIM,1500

RC14_DZ,0

RC14_FUNCTION,0

RC14_MAX,1900

RC14_MIN,1100

RC14_REV,1

RC14_TRIM,1500

RC2_DZ,30

RC2_MAX,1900

RC2_MIN,1100

RC2_REV,1

RC2_TRIM,1500

RC3_DZ,30

RC3_MAX,1900

RC3_MIN,1100

RC3_REV,1

RC3_TRIM,1500

RC4_DZ,30

RC4_MAX,1900

RC4_MIN,1100

RC4_REV,1

RC4_TRIM,1500

RC5_DZ,0

RC5_FUNCTION,0

RC5_MAX,1900

RC5_MIN,1100

RC5_REV,1

RC5_TRIM,1500

RC6_DZ,0

RC6_FUNCTION,0

RC6_MAX,1900

RC6_MIN,1100

RC6_REV,1

RC6_TRIM,1500

RC7_DZ,0

RC7_FUNCTION,1

RC7_MAX,1900

RC7_MIN,1100

RC7_REV,1

RC7_TRIM,1500

RC8_DZ,0

RC8_FUNCTION,0

RC8_MAX,1900

RC8_MIN,1100

RC8_REV,1

RC8_TRIM,1500

RC9_DZ,0

RC9_FUNCTION,0

RC9_MAX,1900

RC9_MIN,1100

157

RC9_REV,1

RC9_TRIM,1500

RCMAP_PITCH,2

RCMAP_ROLL,1

RCMAP_THROTTLE,3

RCMAP_YAW,4

RELAY_DEFAULT,0

RELAY_PIN,54

RELAY_PIN2,55

RELAY_PIN3,-1

RELAY_PIN4,-1

RLL2SRV_D,0.07

RLL2SRV_I,0.2

RLL2SRV_IMAX,1500

RLL2SRV_P,2.5

RLL2SRV_RMAX,0

RLL2SRV_TCONST,0.5

RNGFND_FUNCTION,0

RNGFND_LANDING,0

RNGFND_MAX_CM,700

RNGFND_MIN_CM,20

RNGFND_OFFSET,0

RNGFND_PIN,-1

RNGFND_RMETRIC,1

RNGFND_SCALING,3

RNGFND_SETTLE,0

RNGFND_STOP_PIN,-1

RNGFND_TYPE,0

RNGFND2_FUNCTION,0

RNGFND2_MAX_CM,700

RNGFND2_MIN_CM,20

RNGFND2_OFFSET,0

RNGFND2_PIN,-1

RNGFND2_RMETRIC,1

RNGFND2_SCALING,3

RNGFND2_SETTLE,0

RNGFND2_STOP_PIN,-1

RNGFND2_TYPE,0

RSSI_PIN,-1

RSSI_RANGE,5

RST_MISSION_CH,0

RST_SWITCH_CH,0

RTL_AUTOLAND,0

SCALING_SPEED,15

SCHED_DEBUG,0

SERIAL0_BAUD,115

SERIAL1_BAUD,57

SERIAL2_BAUD,57

SERIAL2_PROTOCOL,1

SKIP_GYRO_CAL,0

SR0_EXT_STAT,2

SR0_EXTRA1,10

SR0_EXTRA2,10

SR0_EXTRA3,2

SR0_PARAMS,10

SR0_POSITION,3

SR0_RAW_CTRL,1

SR0_RAW_SENS,2

SR0_RC_CHAN,2

SR1_EXT_STAT,1

SR1_EXTRA1,1

SR1_EXTRA2,1

SR1_EXTRA3,1

SR1_PARAMS,10

SR1_POSITION,1

SR1_RAW_CTRL,1

SR1_RAW_SENS,1

SR1_RC_CHAN,1

SR2_EXT_STAT,1

SR2_EXTRA1,1

SR2_EXTRA2,1

SR2_EXTRA3,1

SR2_PARAMS,10

SR2_POSITION,1

SR2_RAW_CTRL,1

SR2_RAW_SENS,1

SR2_RC_CHAN,1

STAB_PITCH_DOWN,2

STALL_PREVENTION,1

STEER2SRV_D,0.005

STEER2SRV_I,0.2

STEER2SRV_IMAX,1500

STEER2SRV_MINSPD,1

STEER2SRV_P,1.8

STEER2SRV_TCONST,0.75

STICK_MIXING,1

158

SYS_NUM_RESETS,3

SYSID_MYGCS,255

SYSID_SW_TYPE,0

SYSID_THISMAV,1

TECS_CLMB_MAX,5

TECS_HGT_OMEGA,3

TECS_INTEG_GAIN,0.1

TECS_LAND_ARSPD,-1

TECS_LAND_DAMP,0.5

TECS_LAND_SINK,0.25

TECS_LAND_SPDWGT,1

TECS_LAND_TCONST,2

TECS_LAND_THR,-1

TECS_PITCH_MAX,0

TECS_PITCH_MIN,0

TECS_PTCH_DAMP,0

TECS_RLL2THR,10

TECS_SINK_MAX,5

TECS_SINK_MIN,2

TECS_SPD_OMEGA,2

TECS_SPDWEIGHT,1

TECS_THR_DAMP,0.5

TECS_TIME_CONST,5

TECS_VERT_ACC,7

TELEM_DELAY,0

TERRAIN_ENABLE,1

TERRAIN_FOLLOW,0

TERRAIN_LOOKAHD,2000

TERRAIN_SPACING,100

THR_FAILSAFE,1

THR_FS_VALUE,950

THR_MAX,75

THR_MIN,0

THR_PASS_STAB,0

THR_SLEWRATE,100

THR_SUPP_MAN,0

THROTTLE_NUDGE,1

TKOFF_FLAP_PCNT,0

TKOFF_ROTATE_SPD,0

TKOFF_TDRAG_ELEV,0

TKOFF_TDRAG_SPD1,0

TKOFF_THR_DELAY,2

TKOFF_THR_MAX,0

TKOFF_THR_MINACC,0

TKOFF_THR_MINSPD,0

TKOFF_THR_SLEW,0

TRIM_ARSPD_CM,1200

TRIM_AUTO,0

TRIM_PITCH_CD,0

TRIM_THROTTLE,45

VTAIL_OUTPUT,0

WP_LOITER_RAD,60

WP_MAX_RADIUS,0

WP_RADIUS,90

YAW2SRV_DAMP,0.1

YAW2SRV_IMAX,1500

YAW2SRV_INT,0

YAW2SRV_RLL,0.25

YAW2SRV_SLIP,0

159

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–12–2015 Master’s Thesis Sept 2014 — Dec 2015

Design and Implementation of a Unified Command and Control
Architecture for Multiple Cooperative Unmanned Vehicles Utilizing
Commercial Off the Shelf Components

Jeremy Gray, Civilian, Ctr

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENV-MS-15-D-048

Department of Systems Engineering and Management (AFIT)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765
Dr. David Jacques COMM 937-255-3636 x3329
Email: david.jacques@afit.edu

AFIT/ENV

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States

Small unmanned systems provide great utility to military applications due to their portable and expendable design.
These systems are, however, costly to develop, produce, and maintain, making it desirable to integrate available
commercial off the shelf (COTS) components. This research investigates the integration of COTS components through
the development of a modular unified command and control (C2) architecture for heterogeneous and homogeneous vehicle
teams to accomplish formation flocking and communication relay scenarios. A vehicle agnostic architecture was
developed to be applied across different vehicle platforms, different vehicle combination, and different cooperative
missions. COTS components consisting primarily of open source hardware and software were integrated and tested based
on the positional accuracy, precision, and other qualitative measures. The resulting system successfully demonstrated
formation flocking in three of four vehicle combinations, with the forth still demonstrating leader follower behaviors. The
system achieved at best a mean positional error of 0.99m, a standard deviation of 0.44m, and a DRMS of 0.59m....

Cooperative, Command and Control, Multi-vehicle, Multi-agent, Architecture, Unmanned, UAS, UGS, COTS, OSH,
OSS, Formation Flight, Flocking, Communication Relay

U U U U 177

Dr. David Jacques, AFIT/ENV

(937) 255-3636, x3329; david.jacques@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction and Motivation
	Problem Statement
	Objective
	Investigative Questions and Methodology
	Scope
	Assumptions and Limitations
	Thesis Outline

	Literature Review
	Chapter Overview
	Unmanned Systems
	Cooperative Behavior Applications
	Formation Flight
	Communication Relay
	Search and Surveillance

	Command and Control Architectures
	State of Practice for COTS, OSH, and OSS
	Autopilot
	Communication
	Ground Control Station

	Chapter Summary

	Methodology
	Chapter Overview
	Command and Control Architecture Development
	AV-1
	Formation Flight Use Case and OV-1
	Communication Relay Use Case and OV-1
	Architecture Development Method

	Software Development Procedure
	Test and Verification Procedure
	Formation Flocking Verification, Relative Accuracy and Precision Tests
	Communication Relay Verification, Relative Accuracy and Precision Tests
	System Latency

	Chapter Summary

	Architecture
	Chapter Overview
	Operational Activities
	System Elements and Functions
	Chapter Summary

	Results
	Chapter Overview
	Selected Hardware and Software
	Communication System
	Command and Control Software
	Autopilot
	Vehicles

	Command and Control Software Development
	Formation Flocking Test Results and Analysis
	UGS Following Multi-Rotor UAS
	Multi-Rotor UAS Following UGS
	Multi-Rotor UAS Following Multi-Rotor UAS
	Fixed Wing UAS Following Fixed Wing UAS
	Formation Flight Analysis

	Communication Relay Test Results and Analysis
	Test Results and Analysis

	Latency Test Results and Analysis
	Results
	Analysis

	Chapter Summary

	Conclusion
	Chapter Overview
	Conclusion of Research
	Recommended Future Work

	Bibliography
	Appendix
	Appendix A: Formation Flocking Leader Vehicle Script
	Appendix B: Formation Flocking Follower Vehicle Script
	Appendix C: Multi-Vehicle Function Module, as Tested
	Appendix D: Communication Relay Remote Vehicle Script
	Appendix E: Communication Relay Relay Vehicle Script
	Appendix F: Multi-Vehicle Function Module With Fixed Follower_Pos Calculation
	Appendix G: Traxxas EMAXX UGS Pixhawk Parameters
	Appendix H: X8 Multi-Rotor UAS Pixhawk Parameters
	Appendix I: Supper Sky Surfer UAS Pixhawk Parameters

