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In this short note we briefly outline a new and remarkably fast algorithm
for solving a a large class of high dimensional Hamilton-Jacobi (H-J) initial
value problems arising in optimal control and elsewhere [1]. This is done
without the use of grids or numerial approximations. Moreover, by using the
level set method [8] we can rapidly compute projections of a point in Rn, n
large to a fairly arbitrary compact set [2]. The method seems to generalize
widely beyond what will we present here to some nonconvex Hamiltonians,
state dependent Hamiltonians, differential games and perhaps new linear
programming algorithms.

We begin with the HJ initial value problem
∂ϕ

∂t
(x, t) +H(∇xϕ(x, t)) = 0 in Rn × (0,+∞)

ϕ(x, 0) = J(x) ∀x ∈ Rn.
(1)

We assume J : Rn → R is convex and one coercive, i.e., lim‖x‖2→+∞
J(x)
‖x‖2 =

+∞, H : Rn → R is convex and positively one homogeneous (we sometimes
relax all these assumptions).

A good example of this is

H(v) = ‖v‖2.

Here ‖v‖p = (Σn
i=1|vi|p)

1
p for p ≥ 1 and 〈x, v〉 = Σn

i=1xivi.
If we take for J a convex Lipschitz function having the property that,

for Ω a convex compact set of Rn
J(x) < 0 for any x ∈ int Ω

J(x) = 0 for any x ∈ (Ω \ int Ω)

J(x) > 0 for any x ∈ (Rn \ Ω).
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We call this level set initial data. Then the set of points for which ϕ(x, t) =
0, t > 0 are exactly those at a distance t, from the boundary of Ω. In fact
given x̄ /∈ Ω, then the closest point xopt from x̄ to ∂Ω is exactly

xopt = x̄− t ∇ϕ(x̄, t)

‖∇ϕ(x̄, t)‖2
. (2)

To solve (1) we use the Hopf formula [5]

ϕ(x, t) = (J∗ + tH)∗(x) = − min
v∈Rn
{J∗(v) + tH(v)− 〈x, v〉},

where the Fenchel-Legendre transform f∗ : Rn → R ∪ (+∞) of the convex
function f is defined by

f∗(v) = sup
x∈Rn

{〈v, x〉 − f(x)}.

Moreover, for free we get that the minimizer satisfies

arg min
v∈Rn
{J∗(v) + tH(v)− 〈x, v〉} = ∇xϕ(x, t). (3)

whenever ϕ(·, t) is differentiable at x. Let us note here that our algorithm
computes ϕ(x, t) but also ∇xϕ(x, t).

Also, we can use the Hopf-Lax formula [5, 6] to solve (1).

ϕ(x, t) = min
z ∈ Rn

{
J(z) + tH∗

(
x− z
t

)}
(4)

for convex H.
From (4) it is easy to show that if we have k different initial value prob-

lems i = 1, . . . k
∂ϕi

∂t
(x, t) +H(∇xϕi(x, t)) = 0, in Rn × (0,+∞)

ϕi(x, 0) = Ji(x) ∀x ∈ Rn

with the usual hypotheses, then (4) implies, for any x ∈ Rn, t > 0

ϕi(x, t) = min
z ∈ Rn

{
Ji(z) + tH∗

(
x− z
t

)}
.

So

min
i=1,k

ϕi(x, t) = min
z ∈ Rn

{
min

i=1,...,k

{
Ji(z) + tH∗

(
x− z
t

)}}
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solves the initial value problem
∂ϕ

∂t
(x, t) +H(∇xϕ(x, t)) = 0, in Rn × (0,+∞)

ϕ(x, 0) = min
i=1,...,k

Ji(x) ∀x ∈ Rn.
(5)

This means that if Ω = ∪i=1,...,kΩi, each Ωi is compact and convex and may
overlap, then we can easily compute the set of all points at distance t from
Ω which is exactly the solution to (5) where each Ji is a level set function
for Ωi. Moreover, at every point x̄ outside of Ω̄ for which there is one i such
that ϕi(x̄, t) < ϕi′(x̄, t) for any i 6= i′, then the closest point xopt to x̄ and Ω
is again

xopt = x̄− t ∇xϕi(x̄, t)

|∇xϕi(x̄, t)|
.

If there are several i for which ϕi(x̄, t) is the minimum among all k of them,
then ∇xϕ will be “multivalued”, i.e. it will have jumps, but any of the xopt
defined above will be a closest point on Ω to x̄.

We solve the optimization problem (3) by using the split Bregman algo-
rithm [4, 3, 9] as follows

vk+1 = arg min
v∈Rn
{J∗(v)− 〈x, v〉+

λ

2
‖dk − v − bk‖22}, (6)

dk+1 = arg min
d∈Rn

{
tH(d) +

λ

2
‖d− vk+1 − bk‖22

}
(7)

bk+1 = bk + vk+1 − dk+1. (8)

Here the sequences (vk)k∈N, (d
k)k∈N both converge to ∇xϕ(x, t). Let us em-

phasize again that our numerical algorithm not only computes the solution
ϕ(x, t) but also computes ∇xϕ(x, t) when ϕ(·, t) is differentiable.

Both (6) and (7), up to change of variables, can be reformulated as
finding the unique minimizer of

arg min
w

{
αf(w) +

1

2
‖w − z‖22

}
which is the proximal map of f . Equation (6) can be solved if either J∗ or
J have easily computable proximal maps, which often occurs, especially if
one of them is smooth.

Equation (7) can be easily solved if H(d) = ‖d‖2 via the shrink2 operator
defined by

shrink2(z, α) =

{
z
‖z‖2 max(‖z‖2 − α, 0) if z 6= 0

0 if z = 0
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and we have

arg min
w

{
α‖w‖2 +

1

2
‖w − z‖22

}
= shrink2(z, α)

If H(d) = ‖d‖1 we use shrink1 operator defined as follows for any i = 1, . . . , n

(shrink1(z, α))i =


zi − α if zi > α

0 if |zi| ≤ α
zi + α if zi < −α

and we have

arg min
w

{
α‖w‖1 +

1

2
‖w − z‖22

}
= shrink1(z, α).

To solve (7) for more general H(d) convex one homogeneous or to find the
proximal map for f of that type we use the fact that H∗ is the characteristic
function of a closed convex set C ⊂ Rn

H∗ = Ic.

By using the Moreau identity [7] we realize that the proximal map of
H can be obtained by projecting onto C. To do this projection, we merely
solve the eikonal equation with level set initial data for C via split Bregman
as above in (6), (7), (8) with H(d) = ‖d‖2. This is easy using the shrink2

operator. We then use (2) to obtain the projection and repeat the entire
iteration.

Numerical experiments on an Intel Laptop Core i5-5300U running at
2.3 GHz are now presented. We consider diagonal matrices D defined by
Dii = 1 + 1+i

n for i = 1, . . . , n. We also consider matrices A defined by
Aii = 2 for i = 1, . . . , n and Aij = 1 for i, j = 1, . . . , n. Table 1 presents the
average time (in seconds) to evaluate the solution over 1,000,000 samples
(x, t) uniformly drawn in [−10, 10]n× [0, 10]. The convergence is remarkably
rapid: 10−6 to 10−8 seconds on a standard laptop, per function evaluation.
Figure 1 depicts 2-dimensional slices at different times for the (H-J) equation
with a weighted `1 Hamiltonian H = ‖D · ‖1, initial data J = 1

2‖ · ‖
2
2 and

n = 8.
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Figure 1: Evaluation of the solution φ((x1, x2, 0, 0, 0, 0, 0, 0)†, t) of the HJ-
PDE with initial data J = 1

2‖ · ‖
2
2 and Hamiltonian H = ‖D · ‖1 for

(x1, x2) ∈ [−20, 20]2 for different times t. Plots for t = 0, 3, 5, 8 and re-
spectively depicted in (a), (b), (c) and (d). The level lines multiple of 10
are superimposed on the plots.
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